aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-vect-transform.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-vect-transform.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-vect-transform.c3138
1 files changed, 3138 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-vect-transform.c b/gcc-4.2.1-5666.3/gcc/tree-vect-transform.c
new file mode 100644
index 000000000..14d3cc5e2
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-vect-transform.c
@@ -0,0 +1,3138 @@
+/* Transformation Utilities for Loop Vectorization.
+ Copyright (C) 2003,2004,2005,2006 Free Software Foundation, Inc.
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "target.h"
+#include "rtl.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "expr.h"
+#include "optabs.h"
+#include "recog.h"
+#include "tree-data-ref.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+#include "tree-vectorizer.h"
+#include "langhooks.h"
+#include "tree-pass.h"
+#include "toplev.h"
+#include "real.h"
+
+/* Utility functions for the code transformation. */
+static bool vect_transform_stmt (tree, block_stmt_iterator *);
+static void vect_align_data_ref (tree);
+static tree vect_create_destination_var (tree, tree);
+static tree vect_create_data_ref_ptr
+ (tree, block_stmt_iterator *, tree, tree *, bool);
+static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
+static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
+static tree vect_get_vec_def_for_operand (tree, tree, tree *);
+static tree vect_init_vector (tree, tree);
+static void vect_finish_stmt_generation
+ (tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
+static bool vect_is_simple_cond (tree, loop_vec_info);
+static void update_vuses_to_preheader (tree, struct loop*);
+static void vect_create_epilog_for_reduction (tree, tree, enum tree_code, tree);
+static tree get_initial_def_for_reduction (tree, tree, tree *);
+
+/* Utility function dealing with loop peeling (not peeling itself). */
+static void vect_generate_tmps_on_preheader
+ (loop_vec_info, tree *, tree *, tree *);
+static tree vect_build_loop_niters (loop_vec_info);
+static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge);
+static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
+static void vect_update_init_of_dr (struct data_reference *, tree niters);
+static void vect_update_inits_of_drs (loop_vec_info, tree);
+static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
+static void vect_do_peeling_for_loop_bound
+ (loop_vec_info, tree *, struct loops *);
+static int vect_min_worthwhile_factor (enum tree_code);
+
+
+/* Function vect_get_new_vect_var.
+
+ Returns a name for a new variable. The current naming scheme appends the
+ prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
+ the name of vectorizer generated variables, and appends that to NAME if
+ provided. */
+
+static tree
+vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
+{
+ const char *prefix;
+ tree new_vect_var;
+
+ switch (var_kind)
+ {
+ case vect_simple_var:
+ prefix = "vect_";
+ break;
+ case vect_scalar_var:
+ prefix = "stmp_";
+ break;
+ case vect_pointer_var:
+ prefix = "vect_p";
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (name)
+ new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
+ else
+ new_vect_var = create_tmp_var (type, prefix);
+
+ return new_vect_var;
+}
+
+
+/* Function vect_create_addr_base_for_vector_ref.
+
+ Create an expression that computes the address of the first memory location
+ that will be accessed for a data reference.
+
+ Input:
+ STMT: The statement containing the data reference.
+ NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
+ OFFSET: Optional. If supplied, it is be added to the initial address.
+
+ Output:
+ 1. Return an SSA_NAME whose value is the address of the memory location of
+ the first vector of the data reference.
+ 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
+ these statement(s) which define the returned SSA_NAME.
+
+ FORNOW: We are only handling array accesses with step 1. */
+
+static tree
+vect_create_addr_base_for_vector_ref (tree stmt,
+ tree *new_stmt_list,
+ tree offset)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
+ tree base_name = build_fold_indirect_ref (data_ref_base);
+ tree ref = DR_REF (dr);
+ tree scalar_type = TREE_TYPE (ref);
+ tree scalar_ptr_type = build_pointer_type (scalar_type);
+ tree vec_stmt;
+ tree new_temp;
+ tree addr_base, addr_expr;
+ tree dest, new_stmt;
+ tree base_offset = unshare_expr (DR_OFFSET (dr));
+ tree init = unshare_expr (DR_INIT (dr));
+
+ /* Create base_offset */
+ base_offset = size_binop (PLUS_EXPR, base_offset, init);
+ dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
+ add_referenced_var (dest);
+ base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);
+ append_to_statement_list_force (new_stmt, new_stmt_list);
+
+ if (offset)
+ {
+ tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
+ add_referenced_var (tmp);
+ offset = fold_build2 (MULT_EXPR, TREE_TYPE (offset), offset,
+ DR_STEP (dr));
+ base_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (base_offset),
+ base_offset, offset);
+ base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);
+ append_to_statement_list_force (new_stmt, new_stmt_list);
+ }
+
+ /* base + base_offset */
+ addr_base = fold_build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
+ base_offset);
+
+ /* addr_expr = addr_base */
+ addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
+ get_name (base_name));
+ add_referenced_var (addr_expr);
+ vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
+ new_temp = make_ssa_name (addr_expr, vec_stmt);
+ TREE_OPERAND (vec_stmt, 0) = new_temp;
+ append_to_statement_list_force (vec_stmt, new_stmt_list);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "created ");
+ print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
+ }
+ return new_temp;
+}
+
+
+/* Function vect_align_data_ref.
+
+ Handle misalignment of a memory accesses.
+
+ FORNOW: Can't handle misaligned accesses.
+ Make sure that the dataref is aligned. */
+
+static void
+vect_align_data_ref (tree stmt)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+
+ /* FORNOW: can't handle misaligned accesses;
+ all accesses expected to be aligned. */
+ gcc_assert (aligned_access_p (dr));
+}
+
+
+/* Function vect_create_data_ref_ptr.
+
+ Create a memory reference expression for vector access, to be used in a
+ vector load/store stmt. The reference is based on a new pointer to vector
+ type (vp).
+
+ Input:
+ 1. STMT: a stmt that references memory. Expected to be of the form
+ MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
+ 2. BSI: block_stmt_iterator where new stmts can be added.
+ 3. OFFSET (optional): an offset to be added to the initial address accessed
+ by the data-ref in STMT.
+ 4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
+ pointing to the initial address.
+
+ Output:
+ 1. Declare a new ptr to vector_type, and have it point to the base of the
+ data reference (initial addressed accessed by the data reference).
+ For example, for vector of type V8HI, the following code is generated:
+
+ v8hi *vp;
+ vp = (v8hi *)initial_address;
+
+ if OFFSET is not supplied:
+ initial_address = &a[init];
+ if OFFSET is supplied:
+ initial_address = &a[init + OFFSET];
+
+ Return the initial_address in INITIAL_ADDRESS.
+
+ 2. If ONLY_INIT is true, return the initial pointer. Otherwise, create
+ a data-reference in the loop based on the new vector pointer vp. This
+ new data reference will by some means be updated each iteration of
+ the loop. Return the pointer vp'.
+
+ FORNOW: handle only aligned and consecutive accesses. */
+
+static tree
+vect_create_data_ref_ptr (tree stmt,
+ block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
+ tree offset, tree *initial_address, bool only_init)
+{
+ tree base_name;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree vect_ptr_type;
+ tree vect_ptr;
+ tree tag;
+ tree new_temp;
+ tree vec_stmt;
+ tree new_stmt_list = NULL_TREE;
+ edge pe = loop_preheader_edge (loop);
+ basic_block new_bb;
+ tree vect_ptr_init;
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+
+ base_name = build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ tree data_ref_base = base_name;
+ fprintf (vect_dump, "create vector-pointer variable to type: ");
+ print_generic_expr (vect_dump, vectype, TDF_SLIM);
+ if (TREE_CODE (data_ref_base) == VAR_DECL)
+ fprintf (vect_dump, " vectorizing a one dimensional array ref: ");
+ else if (TREE_CODE (data_ref_base) == ARRAY_REF)
+ fprintf (vect_dump, " vectorizing a multidimensional array ref: ");
+ else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
+ fprintf (vect_dump, " vectorizing a record based array ref: ");
+ else if (TREE_CODE (data_ref_base) == SSA_NAME)
+ fprintf (vect_dump, " vectorizing a pointer ref: ");
+ print_generic_expr (vect_dump, base_name, TDF_SLIM);
+ }
+
+ /** (1) Create the new vector-pointer variable: **/
+
+ vect_ptr_type = build_pointer_type (vectype);
+ vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
+ get_name (base_name));
+ add_referenced_var (vect_ptr);
+
+
+ /** (2) Add aliasing information to the new vector-pointer:
+ (The points-to info (DR_PTR_INFO) may be defined later.) **/
+
+ tag = DR_MEMTAG (dr);
+ gcc_assert (tag);
+
+ /* If tag is a variable (and NOT_A_TAG) than a new symbol memory
+ tag must be created with tag added to its may alias list. */
+ if (!MTAG_P (tag))
+ new_type_alias (vect_ptr, tag, DR_REF (dr));
+ else
+ var_ann (vect_ptr)->symbol_mem_tag = tag;
+
+ var_ann (vect_ptr)->subvars = DR_SUBVARS (dr);
+
+ /** (3) Calculate the initial address the vector-pointer, and set
+ the vector-pointer to point to it before the loop: **/
+
+ /* Create: (&(base[init_val+offset]) in the loop preheader. */
+ new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
+ offset);
+ pe = loop_preheader_edge (loop);
+ new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
+ gcc_assert (!new_bb);
+ *initial_address = new_temp;
+
+ /* Create: p = (vectype *) initial_base */
+ vec_stmt = fold_convert (vect_ptr_type, new_temp);
+ vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
+ vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
+ TREE_OPERAND (vec_stmt, 0) = vect_ptr_init;
+ new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
+ gcc_assert (!new_bb);
+
+
+ /** (4) Handle the updating of the vector-pointer inside the loop: **/
+
+ if (only_init) /* No update in loop is required. */
+ {
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
+ return vect_ptr_init;
+ }
+ else
+ {
+ block_stmt_iterator incr_bsi;
+ bool insert_after;
+ tree indx_before_incr, indx_after_incr;
+ tree incr;
+
+ standard_iv_increment_position (loop, &incr_bsi, &insert_after);
+ create_iv (vect_ptr_init,
+ fold_convert (vect_ptr_type, TYPE_SIZE_UNIT (vectype)),
+ NULL_TREE, loop, &incr_bsi, insert_after,
+ &indx_before_incr, &indx_after_incr);
+ incr = bsi_stmt (incr_bsi);
+ set_stmt_info (stmt_ann (incr),
+ new_stmt_vec_info (incr, loop_vinfo));
+
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ {
+ duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
+ duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
+ }
+ merge_alias_info (vect_ptr_init, indx_before_incr);
+ merge_alias_info (vect_ptr_init, indx_after_incr);
+
+ return indx_before_incr;
+ }
+}
+
+
+/* Function vect_create_destination_var.
+
+ Create a new temporary of type VECTYPE. */
+
+static tree
+vect_create_destination_var (tree scalar_dest, tree vectype)
+{
+ tree vec_dest;
+ const char *new_name;
+ tree type;
+ enum vect_var_kind kind;
+
+ kind = vectype ? vect_simple_var : vect_scalar_var;
+ type = vectype ? vectype : TREE_TYPE (scalar_dest);
+
+ gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
+
+ new_name = get_name (scalar_dest);
+ if (!new_name)
+ new_name = "var_";
+ vec_dest = vect_get_new_vect_var (type, vect_simple_var, new_name);
+ add_referenced_var (vec_dest);
+
+ return vec_dest;
+}
+
+
+/* Function vect_init_vector.
+
+ Insert a new stmt (INIT_STMT) that initializes a new vector variable with
+ the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
+ used in the vectorization of STMT. */
+
+static tree
+vect_init_vector (tree stmt, tree vector_var)
+{
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ tree new_var;
+ tree init_stmt;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
+ tree vec_oprnd;
+ edge pe;
+ tree new_temp;
+ basic_block new_bb;
+
+ new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
+ add_referenced_var (new_var);
+
+ init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
+ new_temp = make_ssa_name (new_var, init_stmt);
+ TREE_OPERAND (init_stmt, 0) = new_temp;
+
+ pe = loop_preheader_edge (loop);
+ new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
+ gcc_assert (!new_bb);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "created new init_stmt: ");
+ print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
+ }
+
+ vec_oprnd = TREE_OPERAND (init_stmt, 0);
+ return vec_oprnd;
+}
+
+
+/* Function vect_get_vec_def_for_operand.
+
+ OP is an operand in STMT. This function returns a (vector) def that will be
+ used in the vectorized stmt for STMT.
+
+ In the case that OP is an SSA_NAME which is defined in the loop, then
+ STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
+
+ In case OP is an invariant or constant, a new stmt that creates a vector def
+ needs to be introduced. */
+
+static tree
+vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
+{
+ tree vec_oprnd;
+ tree vec_stmt;
+ tree def_stmt;
+ stmt_vec_info def_stmt_info = NULL;
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
+ int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ tree vec_inv;
+ tree vec_cst;
+ tree t = NULL_TREE;
+ tree def;
+ int i;
+ enum vect_def_type dt;
+ bool is_simple_use;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
+ print_generic_expr (vect_dump, op, TDF_SLIM);
+ }
+
+ is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
+ gcc_assert (is_simple_use);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ if (def)
+ {
+ fprintf (vect_dump, "def = ");
+ print_generic_expr (vect_dump, def, TDF_SLIM);
+ }
+ if (def_stmt)
+ {
+ fprintf (vect_dump, " def_stmt = ");
+ print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
+ }
+ }
+
+ switch (dt)
+ {
+ /* Case 1: operand is a constant. */
+ case vect_constant_def:
+ {
+ if (scalar_def)
+ *scalar_def = op;
+
+ /* Create 'vect_cst_ = {cst,cst,...,cst}' */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
+
+ for (i = nunits - 1; i >= 0; --i)
+ {
+ t = tree_cons (NULL_TREE, op, t);
+ }
+ vec_cst = build_vector (vectype, t);
+ return vect_init_vector (stmt, vec_cst);
+ }
+
+ /* Case 2: operand is defined outside the loop - loop invariant. */
+ case vect_invariant_def:
+ {
+ if (scalar_def)
+ *scalar_def = def;
+
+ /* Create 'vec_inv = {inv,inv,..,inv}' */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Create vector_inv.");
+
+ for (i = nunits - 1; i >= 0; --i)
+ {
+ t = tree_cons (NULL_TREE, def, t);
+ }
+
+ /* FIXME: use build_constructor directly. */
+ vec_inv = build_constructor_from_list (vectype, t);
+ return vect_init_vector (stmt, vec_inv);
+ }
+
+ /* Case 3: operand is defined inside the loop. */
+ case vect_loop_def:
+ {
+ if (scalar_def)
+ *scalar_def = def_stmt;
+
+ /* Get the def from the vectorized stmt. */
+ def_stmt_info = vinfo_for_stmt (def_stmt);
+ vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
+ gcc_assert (vec_stmt);
+ vec_oprnd = TREE_OPERAND (vec_stmt, 0);
+ return vec_oprnd;
+ }
+
+ /* Case 4: operand is defined by a loop header phi - reduction */
+ case vect_reduction_def:
+ {
+ gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
+
+ /* Get the def before the loop */
+ op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
+ return get_initial_def_for_reduction (stmt, op, scalar_def);
+ }
+
+ /* Case 5: operand is defined by loop-header phi - induction. */
+ case vect_induction_def:
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "induction - unsupported.");
+ internal_error ("no support for induction"); /* FORNOW */
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Function vect_finish_stmt_generation.
+
+ Insert a new stmt. */
+
+static void
+vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
+{
+ bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "add new stmt: ");
+ print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
+ }
+
+ /* Make sure bsi points to the stmt that is being vectorized. */
+ gcc_assert (stmt == bsi_stmt (*bsi));
+
+#ifdef USE_MAPPED_LOCATION
+ SET_EXPR_LOCATION (vec_stmt, EXPR_LOCATION (stmt));
+#else
+ SET_EXPR_LOCUS (vec_stmt, EXPR_LOCUS (stmt));
+#endif
+}
+
+
+#define ADJUST_IN_EPILOG 1
+
+/* Function get_initial_def_for_reduction
+
+ Input:
+ STMT - a stmt that performs a reduction operation in the loop.
+ INIT_VAL - the initial value of the reduction variable
+
+ Output:
+ SCALAR_DEF - a tree that holds a value to be added to the final result
+ of the reduction (used for "ADJUST_IN_EPILOG" - see below).
+ Return a vector variable, initialized according to the operation that STMT
+ performs. This vector will be used as the initial value of the
+ vector of partial results.
+
+ Option1 ("ADJUST_IN_EPILOG"): Initialize the vector as follows:
+ add: [0,0,...,0,0]
+ mult: [1,1,...,1,1]
+ min/max: [init_val,init_val,..,init_val,init_val]
+ bit and/or: [init_val,init_val,..,init_val,init_val]
+ and when necessary (e.g. add/mult case) let the caller know
+ that it needs to adjust the result by init_val.
+
+ Option2: Initialize the vector as follows:
+ add: [0,0,...,0,init_val]
+ mult: [1,1,...,1,init_val]
+ min/max: [init_val,init_val,...,init_val]
+ bit and/or: [init_val,init_val,...,init_val]
+ and no adjustments are needed.
+
+ For example, for the following code:
+
+ s = init_val;
+ for (i=0;i<n;i++)
+ s = s + a[i];
+
+ STMT is 's = s + a[i]', and the reduction variable is 's'.
+ For a vector of 4 units, we want to return either [0,0,0,init_val],
+ or [0,0,0,0] and let the caller know that it needs to adjust
+ the result at the end by 'init_val'.
+
+ FORNOW: We use the "ADJUST_IN_EPILOG" scheme.
+ TODO: Use some cost-model to estimate which scheme is more profitable.
+*/
+
+static tree
+get_initial_def_for_reduction (tree stmt, tree init_val, tree *scalar_def)
+{
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
+ int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
+ int nelements;
+ enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
+ tree type = TREE_TYPE (init_val);
+ tree def;
+ tree vec, t = NULL_TREE;
+ bool need_epilog_adjust;
+ int i;
+
+ gcc_assert (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));
+
+ switch (code)
+ {
+ case WIDEN_SUM_EXPR:
+ case DOT_PROD_EXPR:
+ case PLUS_EXPR:
+ if (INTEGRAL_TYPE_P (type))
+ def = build_int_cst (type, 0);
+ else
+ def = build_real (type, dconst0);
+
+#ifdef ADJUST_IN_EPILOG
+ /* All the 'nunits' elements are set to 0. The final result will be
+ adjusted by 'init_val' at the loop epilog. */
+ nelements = nunits;
+ need_epilog_adjust = true;
+#else
+ /* 'nunits - 1' elements are set to 0; The last element is set to
+ 'init_val'. No further adjustments at the epilog are needed. */
+ nelements = nunits - 1;
+ need_epilog_adjust = false;
+#endif
+ break;
+
+ case MIN_EXPR:
+ case MAX_EXPR:
+ def = init_val;
+ nelements = nunits;
+ need_epilog_adjust = false;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ for (i = nelements - 1; i >= 0; --i)
+ t = tree_cons (NULL_TREE, def, t);
+
+ if (nelements == nunits - 1)
+ {
+ /* Set the last element of the vector. */
+ t = tree_cons (NULL_TREE, init_val, t);
+ nelements += 1;
+ }
+ gcc_assert (nelements == nunits);
+
+ if (TREE_CODE (init_val) == INTEGER_CST || TREE_CODE (init_val) == REAL_CST)
+ vec = build_vector (vectype, t);
+ else
+ vec = build_constructor_from_list (vectype, t);
+
+ if (!need_epilog_adjust)
+ *scalar_def = NULL_TREE;
+ else
+ *scalar_def = init_val;
+
+ return vect_init_vector (stmt, vec);
+}
+
+
+/* Function vect_create_epilog_for_reduction
+
+ Create code at the loop-epilog to finalize the result of a reduction
+ computation.
+
+ VECT_DEF is a vector of partial results.
+ REDUC_CODE is the tree-code for the epilog reduction.
+ STMT is the scalar reduction stmt that is being vectorized.
+ REDUCTION_PHI is the phi-node that carries the reduction computation.
+
+ This function:
+ 1. Creates the reduction def-use cycle: sets the the arguments for
+ REDUCTION_PHI:
+ The loop-entry argument is the vectorized initial-value of the reduction.
+ The loop-latch argument is VECT_DEF - the vector of partial sums.
+ 2. "Reduces" the vector of partial results VECT_DEF into a single result,
+ by applying the operation specified by REDUC_CODE if available, or by
+ other means (whole-vector shifts or a scalar loop).
+ The function also creates a new phi node at the loop exit to preserve
+ loop-closed form, as illustrated below.
+
+ The flow at the entry to this function:
+
+ loop:
+ vec_def = phi <null, null> # REDUCTION_PHI
+ VECT_DEF = vector_stmt # vectorized form of STMT
+ s_loop = scalar_stmt # (scalar) STMT
+ loop_exit:
+ s_out0 = phi <s_loop> # (scalar) EXIT_PHI
+ use <s_out0>
+ use <s_out0>
+
+ The above is transformed by this function into:
+
+ loop:
+ vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
+ VECT_DEF = vector_stmt # vectorized form of STMT
+ s_loop = scalar_stmt # (scalar) STMT
+ loop_exit:
+ s_out0 = phi <s_loop> # (scalar) EXIT_PHI
+ v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
+ v_out2 = reduce <v_out1>
+ s_out3 = extract_field <v_out2, 0>
+ s_out4 = adjust_result <s_out3>
+ use <s_out4>
+ use <s_out4>
+*/
+
+static void
+vect_create_epilog_for_reduction (tree vect_def, tree stmt,
+ enum tree_code reduc_code, tree reduction_phi)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype;
+ enum machine_mode mode;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block exit_bb;
+ tree scalar_dest;
+ tree scalar_type;
+ tree new_phi;
+ block_stmt_iterator exit_bsi;
+ tree vec_dest;
+ tree new_temp;
+ tree new_name;
+ tree epilog_stmt;
+ tree new_scalar_dest, exit_phi;
+ tree bitsize, bitpos, bytesize;
+ enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
+ tree scalar_initial_def;
+ tree vec_initial_def;
+ tree orig_name;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ bool extract_scalar_result;
+ tree reduction_op;
+ tree orig_stmt;
+ tree use_stmt;
+ tree operation = TREE_OPERAND (stmt, 1);
+ int op_type;
+
+ op_type = TREE_CODE_LENGTH (TREE_CODE (operation));
+ reduction_op = TREE_OPERAND (operation, op_type-1);
+ vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
+ mode = TYPE_MODE (vectype);
+
+ /*** 1. Create the reduction def-use cycle ***/
+
+ /* 1.1 set the loop-entry arg of the reduction-phi: */
+ /* For the case of reduction, vect_get_vec_def_for_operand returns
+ the scalar def before the loop, that defines the initial value
+ of the reduction variable. */
+ vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
+ &scalar_initial_def);
+ add_phi_arg (reduction_phi, vec_initial_def, loop_preheader_edge (loop));
+
+ /* 1.2 set the loop-latch arg for the reduction-phi: */
+ add_phi_arg (reduction_phi, vect_def, loop_latch_edge (loop));
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "transform reduction: created def-use cycle:");
+ print_generic_expr (vect_dump, reduction_phi, TDF_SLIM);
+ fprintf (vect_dump, "\n");
+ print_generic_expr (vect_dump, SSA_NAME_DEF_STMT (vect_def), TDF_SLIM);
+ }
+
+
+ /*** 2. Create epilog code
+ The reduction epilog code operates across the elements of the vector
+ of partial results computed by the vectorized loop.
+ The reduction epilog code consists of:
+ step 1: compute the scalar result in a vector (v_out2)
+ step 2: extract the scalar result (s_out3) from the vector (v_out2)
+ step 3: adjust the scalar result (s_out3) if needed.
+
+ Step 1 can be accomplished using one the following three schemes:
+ (scheme 1) using reduc_code, if available.
+ (scheme 2) using whole-vector shifts, if available.
+ (scheme 3) using a scalar loop. In this case steps 1+2 above are
+ combined.
+
+ The overall epilog code looks like this:
+
+ s_out0 = phi <s_loop> # original EXIT_PHI
+ v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
+ v_out2 = reduce <v_out1> # step 1
+ s_out3 = extract_field <v_out2, 0> # step 2
+ s_out4 = adjust_result <s_out3> # step 3
+
+ (step 3 is optional, and step2 1 and 2 may be combined).
+ Lastly, the uses of s_out0 are replaced by s_out4.
+
+ ***/
+
+ /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
+ v_out1 = phi <v_loop> */
+
+ exit_bb = loop->single_exit->dest;
+ new_phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
+ SET_PHI_ARG_DEF (new_phi, loop->single_exit->dest_idx, vect_def);
+ exit_bsi = bsi_start (exit_bb);
+
+ /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
+ (i.e. when reduc_code is not available) and in the final adjustment code
+ (if needed). Also get the original scalar reduction variable as
+ defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
+ represents a reduction pattern), the tree-code and scalar-def are
+ taken from the original stmt that the pattern-stmt (STMT) replaces.
+ Otherwise (it is a regular reduction) - the tree-code and scalar-def
+ are taken from STMT. */
+
+ orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+ if (!orig_stmt)
+ {
+ /* Regular reduction */
+ orig_stmt = stmt;
+ }
+ else
+ {
+ /* Reduction pattern */
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
+ gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
+ gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
+ }
+ code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
+ scalar_dest = TREE_OPERAND (orig_stmt, 0);
+ scalar_type = TREE_TYPE (scalar_dest);
+ new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
+ bitsize = TYPE_SIZE (scalar_type);
+ bytesize = TYPE_SIZE_UNIT (scalar_type);
+
+ /* 2.3 Create the reduction code, using one of the three schemes described
+ above. */
+
+ if (reduc_code < NUM_TREE_CODES)
+ {
+ /*** Case 1: Create:
+ v_out2 = reduc_expr <v_out1> */
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Reduce using direct vector reduction.");
+
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
+ build1 (reduc_code, vectype, PHI_RESULT (new_phi)));
+ new_temp = make_ssa_name (vec_dest, epilog_stmt);
+ TREE_OPERAND (epilog_stmt, 0) = new_temp;
+ bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+
+ extract_scalar_result = true;
+ }
+ else
+ {
+ enum tree_code shift_code = 0;
+ bool have_whole_vector_shift = true;
+ int bit_offset;
+ int element_bitsize = tree_low_cst (bitsize, 1);
+ int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
+ tree vec_temp;
+
+ if (vec_shr_optab->handlers[mode].insn_code != CODE_FOR_nothing)
+ shift_code = VEC_RSHIFT_EXPR;
+ else
+ have_whole_vector_shift = false;
+
+ /* Regardless of whether we have a whole vector shift, if we're
+ emulating the operation via tree-vect-generic, we don't want
+ to use it. Only the first round of the reduction is likely
+ to still be profitable via emulation. */
+ /* ??? It might be better to emit a reduction tree code here, so that
+ tree-vect-generic can expand the first round via bit tricks. */
+ if (!VECTOR_MODE_P (mode))
+ have_whole_vector_shift = false;
+ else
+ {
+ optab optab = optab_for_tree_code (code, vectype);
+ if (optab->handlers[mode].insn_code == CODE_FOR_nothing)
+ have_whole_vector_shift = false;
+ }
+
+ if (have_whole_vector_shift)
+ {
+ /*** Case 2: Create:
+ for (offset = VS/2; offset >= element_size; offset/=2)
+ {
+ Create: va' = vec_shift <va, offset>
+ Create: va = vop <va, va'>
+ } */
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Reduce using vector shifts");
+
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ new_temp = PHI_RESULT (new_phi);
+
+ for (bit_offset = vec_size_in_bits/2;
+ bit_offset >= element_bitsize;
+ bit_offset /= 2)
+ {
+ tree bitpos = size_int (bit_offset);
+
+ epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
+ build2 (shift_code, vectype, new_temp, bitpos));
+ new_name = make_ssa_name (vec_dest, epilog_stmt);
+ TREE_OPERAND (epilog_stmt, 0) = new_name;
+ bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+
+ epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
+ build2 (code, vectype, new_name, new_temp));
+ new_temp = make_ssa_name (vec_dest, epilog_stmt);
+ TREE_OPERAND (epilog_stmt, 0) = new_temp;
+ bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+ }
+
+ extract_scalar_result = true;
+ }
+ else
+ {
+ tree rhs;
+
+ /*** Case 3: Create:
+ s = extract_field <v_out2, 0>
+ for (offset = element_size;
+ offset < vector_size;
+ offset += element_size;)
+ {
+ Create: s' = extract_field <v_out2, offset>
+ Create: s = op <s, s'>
+ } */
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Reduce using scalar code. ");
+
+ vec_temp = PHI_RESULT (new_phi);
+ vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
+ rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
+ bitsize_zero_node);
+ BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
+ epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
+ new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
+ TREE_OPERAND (epilog_stmt, 0) = new_temp;
+ bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+
+ for (bit_offset = element_bitsize;
+ bit_offset < vec_size_in_bits;
+ bit_offset += element_bitsize)
+ {
+ tree bitpos = bitsize_int (bit_offset);
+ tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
+ bitpos);
+
+ BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
+ epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
+ rhs);
+ new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
+ TREE_OPERAND (epilog_stmt, 0) = new_name;
+ bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+
+ epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
+ build2 (code, scalar_type, new_name, new_temp));
+ new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
+ TREE_OPERAND (epilog_stmt, 0) = new_temp;
+ bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+ }
+
+ extract_scalar_result = false;
+ }
+ }
+
+ /* 2.4 Extract the final scalar result. Create:
+ s_out3 = extract_field <v_out2, bitpos> */
+
+ if (extract_scalar_result)
+ {
+ tree rhs;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "extract scalar result");
+
+ if (BYTES_BIG_ENDIAN)
+ bitpos = size_binop (MULT_EXPR,
+ bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
+ TYPE_SIZE (scalar_type));
+ else
+ bitpos = bitsize_zero_node;
+
+ rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
+ BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
+ epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
+ new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
+ TREE_OPERAND (epilog_stmt, 0) = new_temp;
+ bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+ }
+
+ /* 2.4 Adjust the final result by the initial value of the reduction
+ variable. (When such adjustment is not needed, then
+ 'scalar_initial_def' is zero).
+
+ Create:
+ s_out4 = scalar_expr <s_out3, scalar_initial_def> */
+
+ if (scalar_initial_def)
+ {
+ epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
+ build2 (code, scalar_type, new_temp, scalar_initial_def));
+ new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
+ TREE_OPERAND (epilog_stmt, 0) = new_temp;
+ bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
+ }
+
+ /* 2.6 Replace uses of s_out0 with uses of s_out3 */
+
+ /* Find the loop-closed-use at the loop exit of the original scalar result.
+ (The reduction result is expected to have two immediate uses - one at the
+ latch block, and one at the loop exit). */
+ exit_phi = NULL;
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
+ {
+ if (!flow_bb_inside_loop_p (loop, bb_for_stmt (USE_STMT (use_p))))
+ {
+ exit_phi = USE_STMT (use_p);
+ break;
+ }
+ }
+ /* We expect to have found an exit_phi because of loop-closed-ssa form. */
+ gcc_assert (exit_phi);
+ /* Replace the uses: */
+ orig_name = PHI_RESULT (exit_phi);
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ SET_USE (use_p, new_temp);
+}
+
+
+/* Function vectorizable_reduction.
+
+ Check if STMT performs a reduction operation that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise.
+
+ This function also handles reduction idioms (patterns) that have been
+ recognized in advance during vect_pattern_recog. In this case, STMT may be
+ of this form:
+ X = pattern_expr (arg0, arg1, ..., X)
+ and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
+ sequence that had been detected and replaced by the pattern-stmt (STMT).
+
+ In some cases of reduction patterns, the type of the reduction variable X is
+ different than the type of the other arguments of STMT.
+ In such cases, the vectype that is used when transforming STMT into a vector
+ stmt is different than the vectype that is used to determine the
+ vectorization factor, because it consists of a different number of elements
+ than the actual number of elements that are being operated upon in parallel.
+
+ For example, consider an accumulation of shorts into an int accumulator.
+ On some targets it's possible to vectorize this pattern operating on 8
+ shorts at a time (hence, the vectype for purposes of determining the
+ vectorization factor should be V8HI); on the other hand, the vectype that
+ is used to create the vector form is actually V4SI (the type of the result).
+
+ Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
+ indicates what is the actual level of parallelism (V8HI in the example), so
+ that the right vectorization factor would be derived. This vectype
+ corresponds to the type of arguments to the reduction stmt, and should *NOT*
+ be used to create the vectorized stmt. The right vectype for the vectorized
+ stmt is obtained from the type of the result X:
+ get_vectype_for_scalar_type (TREE_TYPE (X))
+
+ This means that, contrary to "regular" reductions (or "regular" stmts in
+ general), the following equation:
+ STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
+ does *NOT* necessarily hold for reduction patterns. */
+
+bool
+vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op;
+ tree loop_vec_def0, loop_vec_def1;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ tree operation;
+ enum tree_code code, orig_code, epilog_reduc_code = 0;
+ enum machine_mode vec_mode;
+ int op_type;
+ optab optab, reduc_optab;
+ tree new_temp;
+ tree def, def_stmt;
+ enum vect_def_type dt;
+ tree new_phi;
+ tree scalar_type;
+ bool is_simple_use;
+ tree orig_stmt;
+ stmt_vec_info orig_stmt_info;
+ tree expr = NULL_TREE;
+ int i;
+
+ /* 1. Is vectorizable reduction? */
+
+ /* Not supportable if the reduction variable is used in the loop. */
+ if (STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ if (!STMT_VINFO_LIVE_P (stmt_info))
+ return false;
+
+ /* Make sure it was already recognized as a reduction computation. */
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
+ return false;
+
+ /* 2. Has this been recognized as a reduction pattern?
+
+ Check if STMT represents a pattern that has been recognized
+ in earlier analysis stages. For stmts that represent a pattern,
+ the STMT_VINFO_RELATED_STMT field records the last stmt in
+ the original sequence that constitutes the pattern. */
+
+ orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+ if (orig_stmt)
+ {
+ orig_stmt_info = vinfo_for_stmt (orig_stmt);
+ gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
+ gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
+ gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
+ }
+
+ /* 3. Check the operands of the operation. The first operands are defined
+ inside the loop body. The last operand is the reduction variable,
+ which is defined by the loop-header-phi. */
+
+ gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
+
+ operation = TREE_OPERAND (stmt, 1);
+ code = TREE_CODE (operation);
+ op_type = TREE_CODE_LENGTH (code);
+
+ if (op_type != binary_op && op_type != ternary_op)
+ return false;
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ scalar_type = TREE_TYPE (scalar_dest);
+
+ /* All uses but the last are expected to be defined in the loop.
+ The last use is the reduction variable. */
+ for (i = 0; i < op_type-1; i++)
+ {
+ op = TREE_OPERAND (operation, i);
+ is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
+ gcc_assert (is_simple_use);
+ gcc_assert (dt == vect_loop_def || dt == vect_invariant_def ||
+ dt == vect_constant_def);
+ }
+
+ op = TREE_OPERAND (operation, i);
+ is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
+ gcc_assert (is_simple_use);
+ gcc_assert (dt == vect_reduction_def);
+ gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
+ if (orig_stmt)
+ gcc_assert (orig_stmt == vect_is_simple_reduction (loop, def_stmt));
+ else
+ gcc_assert (stmt == vect_is_simple_reduction (loop, def_stmt));
+
+ if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
+ return false;
+
+ /* 4. Supportable by target? */
+
+ /* 4.1. check support for the operation in the loop */
+ optab = optab_for_tree_code (code, vectype);
+ if (!optab)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "no optab.");
+ return false;
+ }
+ vec_mode = TYPE_MODE (vectype);
+ if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "op not supported by target.");
+ if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
+ || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ < vect_min_worthwhile_factor (code))
+ return false;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "proceeding using word mode.");
+ }
+
+ /* Worthwhile without SIMD support? */
+ if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ < vect_min_worthwhile_factor (code))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "not worthwhile without SIMD support.");
+ return false;
+ }
+
+ /* 4.2. Check support for the epilog operation.
+
+ If STMT represents a reduction pattern, then the type of the
+ reduction variable may be different than the type of the rest
+ of the arguments. For example, consider the case of accumulation
+ of shorts into an int accumulator; The original code:
+ S1: int_a = (int) short_a;
+ orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
+
+ was replaced with:
+ STMT: int_acc = widen_sum <short_a, int_acc>
+
+ This means that:
+ 1. The tree-code that is used to create the vector operation in the
+ epilog code (that reduces the partial results) is not the
+ tree-code of STMT, but is rather the tree-code of the original
+ stmt from the pattern that STMT is replacing. I.e, in the example
+ above we want to use 'widen_sum' in the loop, but 'plus' in the
+ epilog.
+ 2. The type (mode) we use to check available target support
+ for the vector operation to be created in the *epilog*, is
+ determined by the type of the reduction variable (in the example
+ above we'd check this: plus_optab[vect_int_mode]).
+ However the type (mode) we use to check available target support
+ for the vector operation to be created *inside the loop*, is
+ determined by the type of the other arguments to STMT (in the
+ example we'd check this: widen_sum_optab[vect_short_mode]).
+
+ This is contrary to "regular" reductions, in which the types of all
+ the arguments are the same as the type of the reduction variable.
+ For "regular" reductions we can therefore use the same vector type
+ (and also the same tree-code) when generating the epilog code and
+ when generating the code inside the loop. */
+
+ if (orig_stmt)
+ {
+ /* This is a reduction pattern: get the vectype from the type of the
+ reduction variable, and get the tree-code from orig_stmt. */
+ orig_code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
+ vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
+ vec_mode = TYPE_MODE (vectype);
+ }
+ else
+ {
+ /* Regular reduction: use the same vectype and tree-code as used for
+ the vector code inside the loop can be used for the epilog code. */
+ orig_code = code;
+ }
+
+ if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
+ return false;
+ reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype);
+ if (!reduc_optab)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "no optab for reduction.");
+ epilog_reduc_code = NUM_TREE_CODES;
+ }
+ if (reduc_optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "reduc op not supported by target.");
+ epilog_reduc_code = NUM_TREE_CODES;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform reduction.");
+
+ /* Create the destination vector */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Create the reduction-phi that defines the reduction-operand. */
+ new_phi = create_phi_node (vec_dest, loop->header);
+
+ /* Prepare the operand that is defined inside the loop body */
+ op = TREE_OPERAND (operation, 0);
+ loop_vec_def0 = vect_get_vec_def_for_operand (op, stmt, NULL);
+ if (op_type == binary_op)
+ expr = build2 (code, vectype, loop_vec_def0, PHI_RESULT (new_phi));
+ else if (op_type == ternary_op)
+ {
+ op = TREE_OPERAND (operation, 1);
+ loop_vec_def1 = vect_get_vec_def_for_operand (op, stmt, NULL);
+ expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1,
+ PHI_RESULT (new_phi));
+ }
+
+ /* Create the vectorized operation that computes the partial results */
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, expr);
+ new_temp = make_ssa_name (vec_dest, *vec_stmt);
+ TREE_OPERAND (*vec_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ /* Finalize the reduction-phi (set it's arguments) and create the
+ epilog reduction code. */
+ vect_create_epilog_for_reduction (new_temp, stmt, epilog_reduc_code, new_phi);
+ return true;
+}
+
+
+/* Function vectorizable_assignment.
+
+ Check if STMT performs an assignment (copy) that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+bool
+vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op;
+ tree vec_oprnd;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ tree new_temp;
+ tree def, def_stmt;
+ enum vect_def_type dt;
+
+ /* Is vectorizable assignment? */
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ return false;
+
+ op = TREE_OPERAND (stmt, 1);
+ if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
+ return true;
+ }
+
+ /** Transform. **/
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform assignment.");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle use. */
+ op = TREE_OPERAND (stmt, 1);
+ vec_oprnd = vect_get_vec_def_for_operand (op, stmt, NULL);
+
+ /* Arguments are ready. create the new vector stmt. */
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
+ new_temp = make_ssa_name (vec_dest, *vec_stmt);
+ TREE_OPERAND (*vec_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ return true;
+}
+
+
+/* Function vect_min_worthwhile_factor.
+
+ For a loop where we could vectorize the operation indicated by CODE,
+ return the minimum vectorization factor that makes it worthwhile
+ to use generic vectors. */
+static int
+vect_min_worthwhile_factor (enum tree_code code)
+{
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case NEGATE_EXPR:
+ return 4;
+
+ case BIT_AND_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ case BIT_NOT_EXPR:
+ return 2;
+
+ default:
+ return INT_MAX;
+ }
+}
+
+
+/* Function vectorizable_operation.
+
+ Check if STMT performs a binary or unary operation that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+bool
+vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree operation;
+ tree op0, op1 = NULL;
+ tree vec_oprnd0, vec_oprnd1=NULL;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ int i;
+ enum tree_code code;
+ enum machine_mode vec_mode;
+ tree new_temp;
+ int op_type;
+ tree op;
+ optab optab;
+ int icode;
+ enum machine_mode optab_op2_mode;
+ tree def, def_stmt;
+ enum vect_def_type dt;
+
+ /* Is STMT a vectorizable binary/unary operation? */
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
+
+ if (STMT_VINFO_LIVE_P (stmt_info))
+ {
+ /* FORNOW: not yet supported. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "value used after loop.");
+ return false;
+ }
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
+ return false;
+
+ operation = TREE_OPERAND (stmt, 1);
+ code = TREE_CODE (operation);
+ optab = optab_for_tree_code (code, vectype);
+
+ /* Support only unary or binary operations. */
+ op_type = TREE_CODE_LENGTH (code);
+ if (op_type != unary_op && op_type != binary_op)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
+ return false;
+ }
+
+ for (i = 0; i < op_type; i++)
+ {
+ op = TREE_OPERAND (operation, i);
+ if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ }
+
+ /* Supportable by target? */
+ if (!optab)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "no optab.");
+ return false;
+ }
+ vec_mode = TYPE_MODE (vectype);
+ icode = (int) optab->handlers[(int) vec_mode].insn_code;
+ if (icode == CODE_FOR_nothing)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "op not supported by target.");
+ if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
+ || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ < vect_min_worthwhile_factor (code))
+ return false;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "proceeding using word mode.");
+ }
+
+ /* Worthwhile without SIMD support? */
+ if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ < vect_min_worthwhile_factor (code))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "not worthwhile without SIMD support.");
+ return false;
+ }
+
+ if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
+ {
+ /* FORNOW: not yet supported. */
+ if (!VECTOR_MODE_P (vec_mode))
+ return false;
+
+ /* Invariant argument is needed for a vector shift
+ by a scalar shift operand. */
+ optab_op2_mode = insn_data[icode].operand[2].mode;
+ if (! (VECTOR_MODE_P (optab_op2_mode)
+ || dt == vect_constant_def
+ || dt == vect_invariant_def))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "operand mode requires invariant argument.");
+ return false;
+ }
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform binary/unary operation.");
+
+ /* Handle def. */
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle uses. */
+ op0 = TREE_OPERAND (operation, 0);
+ vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+
+ if (op_type == binary_op)
+ {
+ op1 = TREE_OPERAND (operation, 1);
+
+ if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
+ {
+ /* Vector shl and shr insn patterns can be defined with
+ scalar operand 2 (shift operand). In this case, use
+ constant or loop invariant op1 directly, without
+ extending it to vector mode first. */
+
+ optab_op2_mode = insn_data[icode].operand[2].mode;
+ if (!VECTOR_MODE_P (optab_op2_mode))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "operand 1 using scalar mode.");
+ vec_oprnd1 = op1;
+ }
+ }
+
+ if (!vec_oprnd1)
+ vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
+ }
+
+ /* Arguments are ready. create the new vector stmt. */
+
+ if (op_type == binary_op)
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
+ build2 (code, vectype, vec_oprnd0, vec_oprnd1));
+ else
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
+ build1 (code, vectype, vec_oprnd0));
+ new_temp = make_ssa_name (vec_dest, *vec_stmt);
+ TREE_OPERAND (*vec_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ return true;
+}
+
+
+/* Function vectorizable_store.
+
+ Check if STMT defines a non scalar data-ref (array/pointer/structure) that
+ can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+bool
+vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree scalar_dest;
+ tree data_ref;
+ tree op;
+ tree vec_oprnd1;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum machine_mode vec_mode;
+ tree dummy;
+ enum dr_alignment_support alignment_support_cheme;
+ ssa_op_iter iter;
+ tree def, def_stmt;
+ enum vect_def_type dt;
+
+ /* Is vectorizable store? */
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ if (TREE_CODE (scalar_dest) != ARRAY_REF
+ && TREE_CODE (scalar_dest) != INDIRECT_REF)
+ return false;
+
+ op = TREE_OPERAND (stmt, 1);
+ if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+
+ vec_mode = TYPE_MODE (vectype);
+ /* FORNOW. In some cases can vectorize even if data-type not supported
+ (e.g. - array initialization with 0). */
+ if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform store");
+
+ alignment_support_cheme = vect_supportable_dr_alignment (dr);
+ gcc_assert (alignment_support_cheme);
+ gcc_assert (alignment_support_cheme == dr_aligned); /* FORNOW */
+
+ /* Handle use - get the vectorized def from the defining stmt. */
+ vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt, NULL);
+
+ /* Handle def. */
+ /* FORNOW: make sure the data reference is aligned. */
+ vect_align_data_ref (stmt);
+ data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
+ data_ref = build_fold_indirect_ref (data_ref);
+
+ /* Arguments are ready. create the new vector stmt. */
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ /* Copy the V_MAY_DEFS representing the aliasing of the original array
+ element's definition to the vector's definition then update the
+ defining statement. The original is being deleted so the same
+ SSA_NAMEs can be used. */
+ copy_virtual_operands (*vec_stmt, stmt);
+
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_VMAYDEF)
+ {
+ SSA_NAME_DEF_STMT (def) = *vec_stmt;
+
+ /* If this virtual def has a use outside the loop and a loop peel is
+ performed then the def may be renamed by the peel. Mark it for
+ renaming so the later use will also be renamed. */
+ mark_sym_for_renaming (SSA_NAME_VAR (def));
+ }
+
+ return true;
+}
+
+
+/* vectorizable_load.
+
+ Check if STMT reads a non scalar data-ref (array/pointer/structure) that
+ can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+bool
+vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree scalar_dest;
+ tree vec_dest = NULL;
+ tree data_ref = NULL;
+ tree op;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree new_temp;
+ int mode;
+ tree init_addr;
+ tree new_stmt;
+ tree dummy;
+ basic_block new_bb;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ edge pe = loop_preheader_edge (loop);
+ enum dr_alignment_support alignment_support_cheme;
+
+ /* Is vectorizable load? */
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
+
+ if (STMT_VINFO_LIVE_P (stmt_info))
+ {
+ /* FORNOW: not yet supported. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "value used after loop.");
+ return false;
+ }
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ return false;
+
+ op = TREE_OPERAND (stmt, 1);
+ if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+ mode = (int) TYPE_MODE (vectype);
+
+ /* FORNOW. In some cases can vectorize even if data-type not supported
+ (e.g. - data copies). */
+ if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Aligned load, but unsupported type.");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform load.");
+
+ alignment_support_cheme = vect_supportable_dr_alignment (dr);
+ gcc_assert (alignment_support_cheme);
+
+ if (alignment_support_cheme == dr_aligned
+ || alignment_support_cheme == dr_unaligned_supported)
+ {
+ /* Create:
+ p = initial_addr;
+ indx = 0;
+ loop {
+ vec_dest = *(p);
+ indx = indx + 1;
+ }
+ */
+
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
+ if (aligned_access_p (dr))
+ data_ref = build_fold_indirect_ref (data_ref);
+ else
+ {
+ int mis = DR_MISALIGNMENT (dr);
+ tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
+ tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
+ data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
+ }
+ new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ TREE_OPERAND (new_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, new_stmt, bsi);
+ copy_virtual_operands (new_stmt, stmt);
+ }
+ else if (alignment_support_cheme == dr_unaligned_software_pipeline)
+ {
+ /* Create:
+ p1 = initial_addr;
+ msq_init = *(floor(p1))
+ p2 = initial_addr + VS - 1;
+ magic = have_builtin ? builtin_result : initial_address;
+ indx = 0;
+ loop {
+ p2' = p2 + indx * vectype_size
+ lsq = *(floor(p2'))
+ vec_dest = realign_load (msq, lsq, magic)
+ indx = indx + 1;
+ msq = lsq;
+ }
+ */
+
+ tree offset;
+ tree magic;
+ tree phi_stmt;
+ tree msq_init;
+ tree msq, lsq;
+ tree dataref_ptr;
+ tree params;
+
+ /* <1> Create msq_init = *(floor(p1)) in the loop preheader */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE,
+ &init_addr, true);
+ data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
+ new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ TREE_OPERAND (new_stmt, 0) = new_temp;
+ new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ msq_init = TREE_OPERAND (new_stmt, 0);
+ copy_virtual_operands (new_stmt, stmt);
+ update_vuses_to_preheader (new_stmt, loop);
+
+
+ /* <2> Create lsq = *(floor(p2')) in the loop */
+ offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
+ data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
+ new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ TREE_OPERAND (new_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, new_stmt, bsi);
+ lsq = TREE_OPERAND (new_stmt, 0);
+ copy_virtual_operands (new_stmt, stmt);
+
+
+ /* <3> */
+ if (targetm.vectorize.builtin_mask_for_load)
+ {
+ /* Create permutation mask, if required, in loop preheader. */
+ tree builtin_decl;
+ params = build_tree_list (NULL_TREE, init_addr);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ builtin_decl = targetm.vectorize.builtin_mask_for_load ();
+ new_stmt = build_function_call_expr (builtin_decl, params);
+ new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ TREE_OPERAND (new_stmt, 0) = new_temp;
+ new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ magic = TREE_OPERAND (new_stmt, 0);
+
+ /* The result of the CALL_EXPR to this builtin is determined from
+ the value of the parameter and no global variables are touched
+ which makes the builtin a "const" function. Requiring the
+ builtin to have the "const" attribute makes it unnecessary
+ to call mark_call_clobbered. */
+ gcc_assert (TREE_READONLY (builtin_decl));
+ }
+ else
+ {
+ /* Use current address instead of init_addr for reduced reg pressure.
+ */
+ magic = dataref_ptr;
+ }
+
+
+ /* <4> Create msq = phi <msq_init, lsq> in loop */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ msq = make_ssa_name (vec_dest, NULL_TREE);
+ phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
+ SSA_NAME_DEF_STMT (msq) = phi_stmt;
+ add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
+ add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
+
+
+ /* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
+ new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ TREE_OPERAND (new_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, new_stmt, bsi);
+ }
+ else
+ gcc_unreachable ();
+
+ *vec_stmt = new_stmt;
+ return true;
+}
+
+
+/* Function vectorizable_live_operation.
+
+ STMT computes a value that is used outside the loop. Check if
+ it can be supported. */
+
+bool
+vectorizable_live_operation (tree stmt,
+ block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
+ tree *vec_stmt ATTRIBUTE_UNUSED)
+{
+ tree operation;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ int i;
+ enum tree_code code;
+ int op_type;
+ tree op;
+ tree def, def_stmt;
+ enum vect_def_type dt;
+
+ if (!STMT_VINFO_LIVE_P (stmt_info))
+ return false;
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
+ return false;
+
+ operation = TREE_OPERAND (stmt, 1);
+ code = TREE_CODE (operation);
+
+ op_type = TREE_CODE_LENGTH (code);
+
+ /* FORNOW: support only if all uses are invariant. This means
+ that the scalar operations can remain in place, unvectorized.
+ The original last scalar value that they compute will be used. */
+
+ for (i = 0; i < op_type; i++)
+ {
+ op = TREE_OPERAND (operation, i);
+ if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+
+ if (dt != vect_invariant_def && dt != vect_constant_def)
+ return false;
+ }
+
+ /* No transformation is required for the cases we currently support. */
+ return true;
+}
+
+
+/* Function vect_is_simple_cond.
+
+ Input:
+ LOOP - the loop that is being vectorized.
+ COND - Condition that is checked for simple use.
+
+ Returns whether a COND can be vectorized. Checks whether
+ condition operands are supportable using vec_is_simple_use. */
+
+static bool
+vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
+{
+ tree lhs, rhs;
+ tree def;
+ enum vect_def_type dt;
+
+ if (!COMPARISON_CLASS_P (cond))
+ return false;
+
+ lhs = TREE_OPERAND (cond, 0);
+ rhs = TREE_OPERAND (cond, 1);
+
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ tree lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
+ if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
+ return false;
+ }
+ else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST)
+ return false;
+
+ if (TREE_CODE (rhs) == SSA_NAME)
+ {
+ tree rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
+ if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
+ return false;
+ }
+ else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST)
+ return false;
+
+ return true;
+}
+
+/* vectorizable_condition.
+
+ Check if STMT is conditional modify expression that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
+ at BSI.
+
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+bool
+vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
+{
+ tree scalar_dest = NULL_TREE;
+ tree vec_dest = NULL_TREE;
+ tree op = NULL_TREE;
+ tree cond_expr, then_clause, else_clause;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
+ tree vec_compare, vec_cond_expr;
+ tree new_temp;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum machine_mode vec_mode;
+ tree def;
+ enum vect_def_type dt;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
+
+ if (STMT_VINFO_LIVE_P (stmt_info))
+ {
+ /* FORNOW: not yet supported. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "value used after loop.");
+ return false;
+ }
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ op = TREE_OPERAND (stmt, 1);
+
+ if (TREE_CODE (op) != COND_EXPR)
+ return false;
+
+ cond_expr = TREE_OPERAND (op, 0);
+ then_clause = TREE_OPERAND (op, 1);
+ else_clause = TREE_OPERAND (op, 2);
+
+ if (!vect_is_simple_cond (cond_expr, loop_vinfo))
+ return false;
+
+ /* We do not handle two different vector types for the condition
+ and the values. */
+ if (TREE_TYPE (TREE_OPERAND (cond_expr, 0)) != TREE_TYPE (vectype))
+ return false;
+
+ if (TREE_CODE (then_clause) == SSA_NAME)
+ {
+ tree then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
+ if (!vect_is_simple_use (then_clause, loop_vinfo,
+ &then_def_stmt, &def, &dt))
+ return false;
+ }
+ else if (TREE_CODE (then_clause) != INTEGER_CST
+ && TREE_CODE (then_clause) != REAL_CST)
+ return false;
+
+ if (TREE_CODE (else_clause) == SSA_NAME)
+ {
+ tree else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
+ if (!vect_is_simple_use (else_clause, loop_vinfo,
+ &else_def_stmt, &def, &dt))
+ return false;
+ }
+ else if (TREE_CODE (else_clause) != INTEGER_CST
+ && TREE_CODE (else_clause) != REAL_CST)
+ return false;
+
+
+ vec_mode = TYPE_MODE (vectype);
+
+ if (!vec_stmt)
+ {
+ STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
+ return expand_vec_cond_expr_p (op, vec_mode);
+ }
+
+ /* Transform */
+
+ /* Handle def. */
+ scalar_dest = TREE_OPERAND (stmt, 0);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle cond expr. */
+ vec_cond_lhs =
+ vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
+ vec_cond_rhs =
+ vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
+ vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
+ vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);
+
+ /* Arguments are ready. create the new vector stmt. */
+ vec_compare = build2 (TREE_CODE (cond_expr), vectype,
+ vec_cond_lhs, vec_cond_rhs);
+ vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
+ vec_compare, vec_then_clause, vec_else_clause);
+
+ *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_cond_expr);
+ new_temp = make_ssa_name (vec_dest, *vec_stmt);
+ TREE_OPERAND (*vec_stmt, 0) = new_temp;
+ vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
+
+ return true;
+}
+
+/* Function vect_transform_stmt.
+
+ Create a vectorized stmt to replace STMT, and insert it at BSI. */
+
+bool
+vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
+{
+ bool is_store = false;
+ tree vec_stmt = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree orig_stmt_in_pattern;
+ bool done;
+
+ if (STMT_VINFO_RELEVANT_P (stmt_info))
+ {
+ switch (STMT_VINFO_TYPE (stmt_info))
+ {
+ case op_vec_info_type:
+ done = vectorizable_operation (stmt, bsi, &vec_stmt);
+ gcc_assert (done);
+ break;
+
+ case assignment_vec_info_type:
+ done = vectorizable_assignment (stmt, bsi, &vec_stmt);
+ gcc_assert (done);
+ break;
+
+ case load_vec_info_type:
+ done = vectorizable_load (stmt, bsi, &vec_stmt);
+ gcc_assert (done);
+ break;
+
+ case store_vec_info_type:
+ done = vectorizable_store (stmt, bsi, &vec_stmt);
+ gcc_assert (done);
+ is_store = true;
+ break;
+
+ case condition_vec_info_type:
+ done = vectorizable_condition (stmt, bsi, &vec_stmt);
+ gcc_assert (done);
+ break;
+
+ default:
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "stmt not supported.");
+ gcc_unreachable ();
+ }
+
+ gcc_assert (vec_stmt);
+ STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
+ orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
+ if (orig_stmt_in_pattern)
+ {
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
+ if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
+ {
+ gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
+
+ /* STMT was inserted by the vectorizer to replace a computation
+ idiom. ORIG_STMT_IN_PATTERN is a stmt in the original
+ sequence that computed this idiom. We need to record a pointer
+ to VEC_STMT in the stmt_info of ORIG_STMT_IN_PATTERN. See more
+ detail in the documentation of vect_pattern_recog. */
+
+ STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
+ }
+ }
+ }
+
+ if (STMT_VINFO_LIVE_P (stmt_info))
+ {
+ switch (STMT_VINFO_TYPE (stmt_info))
+ {
+ case reduc_vec_info_type:
+ done = vectorizable_reduction (stmt, bsi, &vec_stmt);
+ gcc_assert (done);
+ break;
+
+ default:
+ done = vectorizable_live_operation (stmt, bsi, &vec_stmt);
+ gcc_assert (done);
+ }
+
+ if (vec_stmt)
+ {
+ gcc_assert (!STMT_VINFO_VEC_STMT (stmt_info));
+ STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
+ }
+ }
+
+ return is_store;
+}
+
+
+/* This function builds ni_name = number of iterations loop executes
+ on the loop preheader. */
+
+static tree
+vect_build_loop_niters (loop_vec_info loop_vinfo)
+{
+ tree ni_name, stmt, var;
+ edge pe;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
+
+ var = create_tmp_var (TREE_TYPE (ni), "niters");
+ add_referenced_var (var);
+ ni_name = force_gimple_operand (ni, &stmt, false, var);
+
+ pe = loop_preheader_edge (loop);
+ if (stmt)
+ {
+ basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
+ gcc_assert (!new_bb);
+ }
+
+ return ni_name;
+}
+
+
+/* This function generates the following statements:
+
+ ni_name = number of iterations loop executes
+ ratio = ni_name / vf
+ ratio_mult_vf_name = ratio * vf
+
+ and places them at the loop preheader edge. */
+
+static void
+vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
+ tree *ni_name_ptr,
+ tree *ratio_mult_vf_name_ptr,
+ tree *ratio_name_ptr)
+{
+
+ edge pe;
+ basic_block new_bb;
+ tree stmt, ni_name;
+ tree var;
+ tree ratio_name;
+ tree ratio_mult_vf_name;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ tree ni = LOOP_VINFO_NITERS (loop_vinfo);
+ int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ tree log_vf;
+
+ pe = loop_preheader_edge (loop);
+
+ /* Generate temporary variable that contains
+ number of iterations loop executes. */
+
+ ni_name = vect_build_loop_niters (loop_vinfo);
+ log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
+
+ /* Create: ratio = ni >> log2(vf) */
+
+ var = create_tmp_var (TREE_TYPE (ni), "bnd");
+ add_referenced_var (var);
+ ratio_name = make_ssa_name (var, NULL_TREE);
+ stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
+ build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
+ SSA_NAME_DEF_STMT (ratio_name) = stmt;
+
+ pe = loop_preheader_edge (loop);
+ new_bb = bsi_insert_on_edge_immediate (pe, stmt);
+ gcc_assert (!new_bb);
+
+ /* Create: ratio_mult_vf = ratio << log2 (vf). */
+
+ var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
+ add_referenced_var (var);
+ ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
+ stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
+ build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
+ SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
+
+ pe = loop_preheader_edge (loop);
+ new_bb = bsi_insert_on_edge_immediate (pe, stmt);
+ gcc_assert (!new_bb);
+
+ *ni_name_ptr = ni_name;
+ *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
+ *ratio_name_ptr = ratio_name;
+
+ return;
+}
+
+
+/* Function update_vuses_to_preheader.
+
+ Input:
+ STMT - a statement with potential VUSEs.
+ LOOP - the loop whose preheader will contain STMT.
+
+ It's possible to vectorize a loop even though an SSA_NAME from a VUSE
+ appears to be defined in a V_MAY_DEF in another statement in a loop.
+ One such case is when the VUSE is at the dereference of a __restricted__
+ pointer in a load and the V_MAY_DEF is at the dereference of a different
+ __restricted__ pointer in a store. Vectorization may result in
+ copy_virtual_uses being called to copy the problematic VUSE to a new
+ statement that is being inserted in the loop preheader. This procedure
+ is called to change the SSA_NAME in the new statement's VUSE from the
+ SSA_NAME updated in the loop to the related SSA_NAME available on the
+ path entering the loop.
+
+ When this function is called, we have the following situation:
+
+ # vuse <name1>
+ S1: vload
+ do {
+ # name1 = phi < name0 , name2>
+
+ # vuse <name1>
+ S2: vload
+
+ # name2 = vdef <name1>
+ S3: vstore
+
+ }while...
+
+ Stmt S1 was created in the loop preheader block as part of misaligned-load
+ handling. This function fixes the name of the vuse of S1 from 'name1' to
+ 'name0'. */
+
+static void
+update_vuses_to_preheader (tree stmt, struct loop *loop)
+{
+ basic_block header_bb = loop->header;
+ edge preheader_e = loop_preheader_edge (loop);
+ ssa_op_iter iter;
+ use_operand_p use_p;
+
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VUSE)
+ {
+ tree ssa_name = USE_FROM_PTR (use_p);
+ tree def_stmt = SSA_NAME_DEF_STMT (ssa_name);
+ tree name_var = SSA_NAME_VAR (ssa_name);
+ basic_block bb = bb_for_stmt (def_stmt);
+
+ /* For a use before any definitions, def_stmt is a NOP_EXPR. */
+ if (!IS_EMPTY_STMT (def_stmt)
+ && flow_bb_inside_loop_p (loop, bb))
+ {
+ /* If the block containing the statement defining the SSA_NAME
+ is in the loop then it's necessary to find the definition
+ outside the loop using the PHI nodes of the header. */
+ tree phi;
+ bool updated = false;
+
+ for (phi = phi_nodes (header_bb); phi; phi = TREE_CHAIN (phi))
+ {
+ if (SSA_NAME_VAR (PHI_RESULT (phi)) == name_var)
+ {
+ SET_USE (use_p, PHI_ARG_DEF (phi, preheader_e->dest_idx));
+ updated = true;
+ break;
+ }
+ }
+ gcc_assert (updated);
+ }
+ }
+}
+
+
+/* Function vect_update_ivs_after_vectorizer.
+
+ "Advance" the induction variables of LOOP to the value they should take
+ after the execution of LOOP. This is currently necessary because the
+ vectorizer does not handle induction variables that are used after the
+ loop. Such a situation occurs when the last iterations of LOOP are
+ peeled, because:
+ 1. We introduced new uses after LOOP for IVs that were not originally used
+ after LOOP: the IVs of LOOP are now used by an epilog loop.
+ 2. LOOP is going to be vectorized; this means that it will iterate N/VF
+ times, whereas the loop IVs should be bumped N times.
+
+ Input:
+ - LOOP - a loop that is going to be vectorized. The last few iterations
+ of LOOP were peeled.
+ - NITERS - the number of iterations that LOOP executes (before it is
+ vectorized). i.e, the number of times the ivs should be bumped.
+ - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
+ coming out from LOOP on which there are uses of the LOOP ivs
+ (this is the path from LOOP->exit to epilog_loop->preheader).
+
+ The new definitions of the ivs are placed in LOOP->exit.
+ The phi args associated with the edge UPDATE_E in the bb
+ UPDATE_E->dest are updated accordingly.
+
+ Assumption 1: Like the rest of the vectorizer, this function assumes
+ a single loop exit that has a single predecessor.
+
+ Assumption 2: The phi nodes in the LOOP header and in update_bb are
+ organized in the same order.
+
+ Assumption 3: The access function of the ivs is simple enough (see
+ vect_can_advance_ivs_p). This assumption will be relaxed in the future.
+
+ Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
+ coming out of LOOP on which the ivs of LOOP are used (this is the path
+ that leads to the epilog loop; other paths skip the epilog loop). This
+ path starts with the edge UPDATE_E, and its destination (denoted update_bb)
+ needs to have its phis updated.
+ */
+
+static void
+vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
+ edge update_e)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block exit_bb = loop->single_exit->dest;
+ tree phi, phi1;
+ basic_block update_bb = update_e->dest;
+
+ /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
+
+ /* Make sure there exists a single-predecessor exit bb: */
+ gcc_assert (single_pred_p (exit_bb));
+
+ for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb);
+ phi && phi1;
+ phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
+ {
+ tree access_fn = NULL;
+ tree evolution_part;
+ tree init_expr;
+ tree step_expr;
+ tree var, stmt, ni, ni_name;
+ block_stmt_iterator last_bsi;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
+ print_generic_expr (vect_dump, phi, TDF_SLIM);
+ }
+
+ /* Skip virtual phi's. */
+ if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "virtual phi. skip.");
+ continue;
+ }
+
+ /* Skip reduction phis. */
+ if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "reduc phi. skip.");
+ continue;
+ }
+
+ access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
+ gcc_assert (access_fn);
+ evolution_part =
+ unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
+ gcc_assert (evolution_part != NULL_TREE);
+
+ /* FORNOW: We do not support IVs whose evolution function is a polynomial
+ of degree >= 2 or exponential. */
+ gcc_assert (!tree_is_chrec (evolution_part));
+
+ step_expr = evolution_part;
+ init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
+ loop->num));
+
+ ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
+ build2 (MULT_EXPR, TREE_TYPE (niters),
+ niters, step_expr), init_expr);
+
+ var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
+ add_referenced_var (var);
+
+ ni_name = force_gimple_operand (ni, &stmt, false, var);
+
+ /* Insert stmt into exit_bb. */
+ last_bsi = bsi_last (exit_bb);
+ if (stmt)
+ bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);
+
+ /* Fix phi expressions in the successor bb. */
+ SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
+ }
+}
+
+
+/* Function vect_do_peeling_for_loop_bound
+
+ Peel the last iterations of the loop represented by LOOP_VINFO.
+ The peeled iterations form a new epilog loop. Given that the loop now
+ iterates NITERS times, the new epilog loop iterates
+ NITERS % VECTORIZATION_FACTOR times.
+
+ The original loop will later be made to iterate
+ NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO). */
+
+static void
+vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
+ struct loops *loops)
+{
+ tree ni_name, ratio_mult_vf_name;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ struct loop *new_loop;
+ edge update_e;
+ basic_block preheader;
+ int loop_num;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
+
+ initialize_original_copy_tables ();
+
+ /* Generate the following variables on the preheader of original loop:
+
+ ni_name = number of iteration the original loop executes
+ ratio = ni_name / vf
+ ratio_mult_vf_name = ratio * vf */
+ vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
+ &ratio_mult_vf_name, ratio);
+
+ loop_num = loop->num;
+ new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->single_exit,
+ ratio_mult_vf_name, ni_name, false);
+ gcc_assert (new_loop);
+ gcc_assert (loop_num == loop->num);
+#ifdef ENABLE_CHECKING
+ slpeel_verify_cfg_after_peeling (loop, new_loop);
+#endif
+
+ /* A guard that controls whether the new_loop is to be executed or skipped
+ is placed in LOOP->exit. LOOP->exit therefore has two successors - one
+ is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
+ is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
+ is on the path where the LOOP IVs are used and need to be updated. */
+
+ preheader = loop_preheader_edge (new_loop)->src;
+ if (EDGE_PRED (preheader, 0)->src == loop->single_exit->dest)
+ update_e = EDGE_PRED (preheader, 0);
+ else
+ update_e = EDGE_PRED (preheader, 1);
+
+ /* Update IVs of original loop as if they were advanced
+ by ratio_mult_vf_name steps. */
+ vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
+
+ /* After peeling we have to reset scalar evolution analyzer. */
+ scev_reset ();
+
+ free_original_copy_tables ();
+}
+
+
+/* Function vect_gen_niters_for_prolog_loop
+
+ Set the number of iterations for the loop represented by LOOP_VINFO
+ to the minimum between LOOP_NITERS (the original iteration count of the loop)
+ and the misalignment of DR - the data reference recorded in
+ LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
+ this loop, the data reference DR will refer to an aligned location.
+
+ The following computation is generated:
+
+ If the misalignment of DR is known at compile time:
+ addr_mis = int mis = DR_MISALIGNMENT (dr);
+ Else, compute address misalignment in bytes:
+ addr_mis = addr & (vectype_size - 1)
+
+ prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
+
+ (elem_size = element type size; an element is the scalar element
+ whose type is the inner type of the vectype) */
+
+static tree
+vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
+{
+ struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
+ int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ tree var, stmt;
+ tree iters, iters_name;
+ edge pe;
+ basic_block new_bb;
+ tree dr_stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
+ tree niters_type = TREE_TYPE (loop_niters);
+
+ pe = loop_preheader_edge (loop);
+
+ if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
+ {
+ int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
+ int element_size = vectype_align/vf;
+ int elem_misalign = byte_misalign / element_size;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "known alignment = %d.", byte_misalign);
+ iters = build_int_cst (niters_type, (vf - elem_misalign)&(vf-1));
+ }
+ else
+ {
+ tree new_stmts = NULL_TREE;
+ tree start_addr =
+ vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
+ tree ptr_type = TREE_TYPE (start_addr);
+ tree size = TYPE_SIZE (ptr_type);
+ tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
+ tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
+ tree elem_size_log =
+ build_int_cst (type, exact_log2 (vectype_align/vf));
+ tree vf_minus_1 = build_int_cst (type, vf - 1);
+ tree vf_tree = build_int_cst (type, vf);
+ tree byte_misalign;
+ tree elem_misalign;
+
+ new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
+ gcc_assert (!new_bb);
+
+ /* Create: byte_misalign = addr & (vectype_size - 1) */
+ byte_misalign =
+ build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
+
+ /* Create: elem_misalign = byte_misalign / element_size */
+ elem_misalign =
+ build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
+
+ /* Create: (niters_type) (VF - elem_misalign)&(VF - 1) */
+ iters = build2 (MINUS_EXPR, type, vf_tree, elem_misalign);
+ iters = build2 (BIT_AND_EXPR, type, iters, vf_minus_1);
+ iters = fold_convert (niters_type, iters);
+ }
+
+ /* Create: prolog_loop_niters = min (iters, loop_niters) */
+ /* If the loop bound is known at compile time we already verified that it is
+ greater than vf; since the misalignment ('iters') is at most vf, there's
+ no need to generate the MIN_EXPR in this case. */
+ if (TREE_CODE (loop_niters) != INTEGER_CST)
+ iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "niters for prolog loop: ");
+ print_generic_expr (vect_dump, iters, TDF_SLIM);
+ }
+
+ var = create_tmp_var (niters_type, "prolog_loop_niters");
+ add_referenced_var (var);
+ iters_name = force_gimple_operand (iters, &stmt, false, var);
+
+ /* Insert stmt on loop preheader edge. */
+ if (stmt)
+ {
+ basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
+ gcc_assert (!new_bb);
+ }
+
+ return iters_name;
+}
+
+
+/* Function vect_update_init_of_dr
+
+ NITERS iterations were peeled from LOOP. DR represents a data reference
+ in LOOP. This function updates the information recorded in DR to
+ account for the fact that the first NITERS iterations had already been
+ executed. Specifically, it updates the OFFSET field of DR. */
+
+static void
+vect_update_init_of_dr (struct data_reference *dr, tree niters)
+{
+ tree offset = DR_OFFSET (dr);
+
+ niters = fold_build2 (MULT_EXPR, TREE_TYPE (niters), niters, DR_STEP (dr));
+ offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, niters);
+ DR_OFFSET (dr) = offset;
+}
+
+
+/* Function vect_update_inits_of_drs
+
+ NITERS iterations were peeled from the loop represented by LOOP_VINFO.
+ This function updates the information recorded for the data references in
+ the loop to account for the fact that the first NITERS iterations had
+ already been executed. Specifically, it updates the initial_condition of the
+ access_function of all the data_references in the loop. */
+
+static void
+vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
+{
+ unsigned int i;
+ VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ struct data_reference *dr;
+
+ if (vect_dump && (dump_flags & TDF_DETAILS))
+ fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ vect_update_init_of_dr (dr, niters);
+}
+
+
+/* Function vect_do_peeling_for_alignment
+
+ Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
+ 'niters' is set to the misalignment of one of the data references in the
+ loop, thereby forcing it to refer to an aligned location at the beginning
+ of the execution of this loop. The data reference for which we are
+ peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
+
+static void
+vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ tree niters_of_prolog_loop, ni_name;
+ tree n_iters;
+ struct loop *new_loop;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
+
+ initialize_original_copy_tables ();
+
+ ni_name = vect_build_loop_niters (loop_vinfo);
+ niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
+
+ /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
+ new_loop =
+ slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop),
+ niters_of_prolog_loop, ni_name, true);
+ gcc_assert (new_loop);
+#ifdef ENABLE_CHECKING
+ slpeel_verify_cfg_after_peeling (new_loop, loop);
+#endif
+
+ /* Update number of times loop executes. */
+ n_iters = LOOP_VINFO_NITERS (loop_vinfo);
+ LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
+ TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
+
+ /* Update the init conditions of the access functions of all data refs. */
+ vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
+
+ /* After peeling we have to reset scalar evolution analyzer. */
+ scev_reset ();
+
+ free_original_copy_tables ();
+}
+
+
+/* Function vect_create_cond_for_align_checks.
+
+ Create a conditional expression that represents the alignment checks for
+ all of data references (array element references) whose alignment must be
+ checked at runtime.
+
+ Input:
+ LOOP_VINFO - two fields of the loop information are used.
+ LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
+ LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
+
+ Output:
+ COND_EXPR_STMT_LIST - statements needed to construct the conditional
+ expression.
+ The returned value is the conditional expression to be used in the if
+ statement that controls which version of the loop gets executed at runtime.
+
+ The algorithm makes two assumptions:
+ 1) The number of bytes "n" in a vector is a power of 2.
+ 2) An address "a" is aligned if a%n is zero and that this
+ test can be done as a&(n-1) == 0. For example, for 16
+ byte vectors the test is a&0xf == 0. */
+
+static tree
+vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
+ tree *cond_expr_stmt_list)
+{
+ VEC(tree,heap) *may_misalign_stmts
+ = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
+ tree ref_stmt;
+ int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
+ tree mask_cst;
+ unsigned int i;
+ tree psize;
+ tree int_ptrsize_type;
+ char tmp_name[20];
+ tree or_tmp_name = NULL_TREE;
+ tree and_tmp, and_tmp_name, and_stmt;
+ tree ptrsize_zero;
+
+ /* Check that mask is one less than a power of 2, i.e., mask is
+ all zeros followed by all ones. */
+ gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
+
+ /* CHECKME: what is the best integer or unsigned type to use to hold a
+ cast from a pointer value? */
+ psize = TYPE_SIZE (ptr_type_node);
+ int_ptrsize_type
+ = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
+
+ /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
+ of the first vector of the i'th data reference. */
+
+ for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, ref_stmt); i++)
+ {
+ tree new_stmt_list = NULL_TREE;
+ tree addr_base;
+ tree addr_tmp, addr_tmp_name, addr_stmt;
+ tree or_tmp, new_or_tmp_name, or_stmt;
+
+ /* create: addr_tmp = (int)(address_of_first_vector) */
+ addr_base = vect_create_addr_base_for_vector_ref (ref_stmt,
+ &new_stmt_list,
+ NULL_TREE);
+
+ if (new_stmt_list != NULL_TREE)
+ append_to_statement_list_force (new_stmt_list, cond_expr_stmt_list);
+
+ sprintf (tmp_name, "%s%d", "addr2int", i);
+ addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
+ add_referenced_var (addr_tmp);
+ addr_tmp_name = make_ssa_name (addr_tmp, NULL_TREE);
+ addr_stmt = fold_convert (int_ptrsize_type, addr_base);
+ addr_stmt = build2 (MODIFY_EXPR, void_type_node,
+ addr_tmp_name, addr_stmt);
+ SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
+ append_to_statement_list_force (addr_stmt, cond_expr_stmt_list);
+
+ /* The addresses are OR together. */
+
+ if (or_tmp_name != NULL_TREE)
+ {
+ /* create: or_tmp = or_tmp | addr_tmp */
+ sprintf (tmp_name, "%s%d", "orptrs", i);
+ or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
+ add_referenced_var (or_tmp);
+ new_or_tmp_name = make_ssa_name (or_tmp, NULL_TREE);
+ or_stmt = build2 (MODIFY_EXPR, void_type_node, new_or_tmp_name,
+ build2 (BIT_IOR_EXPR, int_ptrsize_type,
+ or_tmp_name,
+ addr_tmp_name));
+ SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
+ append_to_statement_list_force (or_stmt, cond_expr_stmt_list);
+ or_tmp_name = new_or_tmp_name;
+ }
+ else
+ or_tmp_name = addr_tmp_name;
+
+ } /* end for i */
+
+ mask_cst = build_int_cst (int_ptrsize_type, mask);
+
+ /* create: and_tmp = or_tmp & mask */
+ and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
+ add_referenced_var (and_tmp);
+ and_tmp_name = make_ssa_name (and_tmp, NULL_TREE);
+
+ and_stmt = build2 (MODIFY_EXPR, void_type_node,
+ and_tmp_name,
+ build2 (BIT_AND_EXPR, int_ptrsize_type,
+ or_tmp_name, mask_cst));
+ SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
+ append_to_statement_list_force (and_stmt, cond_expr_stmt_list);
+
+ /* Make and_tmp the left operand of the conditional test against zero.
+ if and_tmp has a nonzero bit then some address is unaligned. */
+ ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
+ return build2 (EQ_EXPR, boolean_type_node,
+ and_tmp_name, ptrsize_zero);
+}
+
+
+/* Function vect_transform_loop.
+
+ The analysis phase has determined that the loop is vectorizable.
+ Vectorize the loop - created vectorized stmts to replace the scalar
+ stmts in the loop, and update the loop exit condition. */
+
+void
+vect_transform_loop (loop_vec_info loop_vinfo,
+ struct loops *loops ATTRIBUTE_UNUSED)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ int nbbs = loop->num_nodes;
+ block_stmt_iterator si;
+ int i;
+ tree ratio = NULL;
+ int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ bitmap_iterator bi;
+ unsigned int j;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vec_transform_loop ===");
+
+ /* If the loop has data references that may or may not be aligned then
+ two versions of the loop need to be generated, one which is vectorized
+ and one which isn't. A test is then generated to control which of the
+ loops is executed. The test checks for the alignment of all of the
+ data references that may or may not be aligned. */
+
+ if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
+ {
+ struct loop *nloop;
+ tree cond_expr;
+ tree cond_expr_stmt_list = NULL_TREE;
+ basic_block condition_bb;
+ block_stmt_iterator cond_exp_bsi;
+ basic_block merge_bb;
+ basic_block new_exit_bb;
+ edge new_exit_e, e;
+ tree orig_phi, new_phi, arg;
+
+ cond_expr = vect_create_cond_for_align_checks (loop_vinfo,
+ &cond_expr_stmt_list);
+ initialize_original_copy_tables ();
+ nloop = loop_version (loops, loop, cond_expr, &condition_bb, true);
+ free_original_copy_tables();
+
+ /** Loop versioning violates an assumption we try to maintain during
+ vectorization - that the loop exit block has a single predecessor.
+ After versioning, the exit block of both loop versions is the same
+ basic block (i.e. it has two predecessors). Just in order to simplify
+ following transformations in the vectorizer, we fix this situation
+ here by adding a new (empty) block on the exit-edge of the loop,
+ with the proper loop-exit phis to maintain loop-closed-form. **/
+
+ merge_bb = loop->single_exit->dest;
+ gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
+ new_exit_bb = split_edge (loop->single_exit);
+ add_bb_to_loop (new_exit_bb, loop->outer);
+ new_exit_e = loop->single_exit;
+ e = EDGE_SUCC (new_exit_bb, 0);
+
+ for (orig_phi = phi_nodes (merge_bb); orig_phi;
+ orig_phi = PHI_CHAIN (orig_phi))
+ {
+ new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+ new_exit_bb);
+ arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
+ add_phi_arg (new_phi, arg, new_exit_e);
+ SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
+ }
+
+ /** end loop-exit-fixes after versioning **/
+
+ update_ssa (TODO_update_ssa);
+ cond_exp_bsi = bsi_last (condition_bb);
+ bsi_insert_before (&cond_exp_bsi, cond_expr_stmt_list, BSI_SAME_STMT);
+ }
+
+ /* CHECKME: we wouldn't need this if we called update_ssa once
+ for all loops. */
+ bitmap_zero (vect_vnames_to_rename);
+
+ /* Peel the loop if there are data refs with unknown alignment.
+ Only one data ref with unknown store is allowed. */
+
+ if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
+ vect_do_peeling_for_alignment (loop_vinfo, loops);
+
+ /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
+ compile time constant), or it is a constant that doesn't divide by the
+ vectorization factor, then an epilog loop needs to be created.
+ We therefore duplicate the loop: the original loop will be vectorized,
+ and will compute the first (n/VF) iterations. The second copy of the loop
+ will remain scalar and will compute the remaining (n%VF) iterations.
+ (VF is the vectorization factor). */
+
+ if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+ || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+ && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
+ vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
+ else
+ ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
+ LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
+
+ /* 1) Make sure the loop header has exactly two entries
+ 2) Make sure we have a preheader basic block. */
+
+ gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
+
+ loop_split_edge_with (loop_preheader_edge (loop), NULL);
+
+
+ /* FORNOW: the vectorizer supports only loops which body consist
+ of one basic block (header + empty latch). When the vectorizer will
+ support more involved loop forms, the order by which the BBs are
+ traversed need to be reconsidered. */
+
+ for (i = 0; i < nbbs; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (si = bsi_start (bb); !bsi_end_p (si);)
+ {
+ tree stmt = bsi_stmt (si);
+ stmt_vec_info stmt_info;
+ bool is_store;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "------>vectorizing statement: ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+ stmt_info = vinfo_for_stmt (stmt);
+ gcc_assert (stmt_info);
+ if (!STMT_VINFO_RELEVANT_P (stmt_info)
+ && !STMT_VINFO_LIVE_P (stmt_info))
+ {
+ bsi_next (&si);
+ continue;
+ }
+ /* FORNOW: Verify that all stmts operate on the same number of
+ units and no inner unrolling is necessary. */
+ gcc_assert
+ (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
+ == (unsigned HOST_WIDE_INT) vectorization_factor);
+
+ /* -------- vectorize statement ------------ */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform statement.");
+
+ is_store = vect_transform_stmt (stmt, &si);
+ if (is_store)
+ {
+ /* Free the attached stmt_vec_info and remove the stmt. */
+ stmt_ann_t ann = stmt_ann (stmt);
+ free (stmt_info);
+ set_stmt_info (ann, NULL);
+ bsi_remove (&si, true);
+ continue;
+ }
+
+ bsi_next (&si);
+ } /* stmts in BB */
+ } /* BBs in loop */
+
+ slpeel_make_loop_iterate_ntimes (loop, ratio);
+
+ EXECUTE_IF_SET_IN_BITMAP (vect_vnames_to_rename, 0, j, bi)
+ mark_sym_for_renaming (SSA_NAME_VAR (ssa_name (j)));
+
+ /* The memory tags and pointers in vectorized statements need to
+ have their SSA forms updated. FIXME, why can't this be delayed
+ until all the loops have been transformed? */
+ update_ssa (TODO_update_ssa);
+
+ if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
+ fprintf (vect_dump, "LOOP VECTORIZED.");
+}