aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-vect-transform.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-vect-transform.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-vect-transform.c3138
1 files changed, 0 insertions, 3138 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-vect-transform.c b/gcc-4.2.1-5666.3/gcc/tree-vect-transform.c
deleted file mode 100644
index 14d3cc5e2..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-vect-transform.c
+++ /dev/null
@@ -1,3138 +0,0 @@
-/* Transformation Utilities for Loop Vectorization.
- Copyright (C) 2003,2004,2005,2006 Free Software Foundation, Inc.
- Contributed by Dorit Naishlos <dorit@il.ibm.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "ggc.h"
-#include "tree.h"
-#include "target.h"
-#include "rtl.h"
-#include "basic-block.h"
-#include "diagnostic.h"
-#include "tree-flow.h"
-#include "tree-dump.h"
-#include "timevar.h"
-#include "cfgloop.h"
-#include "expr.h"
-#include "optabs.h"
-#include "recog.h"
-#include "tree-data-ref.h"
-#include "tree-chrec.h"
-#include "tree-scalar-evolution.h"
-#include "tree-vectorizer.h"
-#include "langhooks.h"
-#include "tree-pass.h"
-#include "toplev.h"
-#include "real.h"
-
-/* Utility functions for the code transformation. */
-static bool vect_transform_stmt (tree, block_stmt_iterator *);
-static void vect_align_data_ref (tree);
-static tree vect_create_destination_var (tree, tree);
-static tree vect_create_data_ref_ptr
- (tree, block_stmt_iterator *, tree, tree *, bool);
-static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
-static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
-static tree vect_get_vec_def_for_operand (tree, tree, tree *);
-static tree vect_init_vector (tree, tree);
-static void vect_finish_stmt_generation
- (tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
-static bool vect_is_simple_cond (tree, loop_vec_info);
-static void update_vuses_to_preheader (tree, struct loop*);
-static void vect_create_epilog_for_reduction (tree, tree, enum tree_code, tree);
-static tree get_initial_def_for_reduction (tree, tree, tree *);
-
-/* Utility function dealing with loop peeling (not peeling itself). */
-static void vect_generate_tmps_on_preheader
- (loop_vec_info, tree *, tree *, tree *);
-static tree vect_build_loop_niters (loop_vec_info);
-static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge);
-static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
-static void vect_update_init_of_dr (struct data_reference *, tree niters);
-static void vect_update_inits_of_drs (loop_vec_info, tree);
-static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
-static void vect_do_peeling_for_loop_bound
- (loop_vec_info, tree *, struct loops *);
-static int vect_min_worthwhile_factor (enum tree_code);
-
-
-/* Function vect_get_new_vect_var.
-
- Returns a name for a new variable. The current naming scheme appends the
- prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
- the name of vectorizer generated variables, and appends that to NAME if
- provided. */
-
-static tree
-vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
-{
- const char *prefix;
- tree new_vect_var;
-
- switch (var_kind)
- {
- case vect_simple_var:
- prefix = "vect_";
- break;
- case vect_scalar_var:
- prefix = "stmp_";
- break;
- case vect_pointer_var:
- prefix = "vect_p";
- break;
- default:
- gcc_unreachable ();
- }
-
- if (name)
- new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
- else
- new_vect_var = create_tmp_var (type, prefix);
-
- return new_vect_var;
-}
-
-
-/* Function vect_create_addr_base_for_vector_ref.
-
- Create an expression that computes the address of the first memory location
- that will be accessed for a data reference.
-
- Input:
- STMT: The statement containing the data reference.
- NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
- OFFSET: Optional. If supplied, it is be added to the initial address.
-
- Output:
- 1. Return an SSA_NAME whose value is the address of the memory location of
- the first vector of the data reference.
- 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
- these statement(s) which define the returned SSA_NAME.
-
- FORNOW: We are only handling array accesses with step 1. */
-
-static tree
-vect_create_addr_base_for_vector_ref (tree stmt,
- tree *new_stmt_list,
- tree offset)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
- tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
- tree base_name = build_fold_indirect_ref (data_ref_base);
- tree ref = DR_REF (dr);
- tree scalar_type = TREE_TYPE (ref);
- tree scalar_ptr_type = build_pointer_type (scalar_type);
- tree vec_stmt;
- tree new_temp;
- tree addr_base, addr_expr;
- tree dest, new_stmt;
- tree base_offset = unshare_expr (DR_OFFSET (dr));
- tree init = unshare_expr (DR_INIT (dr));
-
- /* Create base_offset */
- base_offset = size_binop (PLUS_EXPR, base_offset, init);
- dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
- add_referenced_var (dest);
- base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);
- append_to_statement_list_force (new_stmt, new_stmt_list);
-
- if (offset)
- {
- tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
- add_referenced_var (tmp);
- offset = fold_build2 (MULT_EXPR, TREE_TYPE (offset), offset,
- DR_STEP (dr));
- base_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (base_offset),
- base_offset, offset);
- base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);
- append_to_statement_list_force (new_stmt, new_stmt_list);
- }
-
- /* base + base_offset */
- addr_base = fold_build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
- base_offset);
-
- /* addr_expr = addr_base */
- addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
- get_name (base_name));
- add_referenced_var (addr_expr);
- vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
- new_temp = make_ssa_name (addr_expr, vec_stmt);
- TREE_OPERAND (vec_stmt, 0) = new_temp;
- append_to_statement_list_force (vec_stmt, new_stmt_list);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "created ");
- print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
- }
- return new_temp;
-}
-
-
-/* Function vect_align_data_ref.
-
- Handle misalignment of a memory accesses.
-
- FORNOW: Can't handle misaligned accesses.
- Make sure that the dataref is aligned. */
-
-static void
-vect_align_data_ref (tree stmt)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
-
- /* FORNOW: can't handle misaligned accesses;
- all accesses expected to be aligned. */
- gcc_assert (aligned_access_p (dr));
-}
-
-
-/* Function vect_create_data_ref_ptr.
-
- Create a memory reference expression for vector access, to be used in a
- vector load/store stmt. The reference is based on a new pointer to vector
- type (vp).
-
- Input:
- 1. STMT: a stmt that references memory. Expected to be of the form
- MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
- 2. BSI: block_stmt_iterator where new stmts can be added.
- 3. OFFSET (optional): an offset to be added to the initial address accessed
- by the data-ref in STMT.
- 4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
- pointing to the initial address.
-
- Output:
- 1. Declare a new ptr to vector_type, and have it point to the base of the
- data reference (initial addressed accessed by the data reference).
- For example, for vector of type V8HI, the following code is generated:
-
- v8hi *vp;
- vp = (v8hi *)initial_address;
-
- if OFFSET is not supplied:
- initial_address = &a[init];
- if OFFSET is supplied:
- initial_address = &a[init + OFFSET];
-
- Return the initial_address in INITIAL_ADDRESS.
-
- 2. If ONLY_INIT is true, return the initial pointer. Otherwise, create
- a data-reference in the loop based on the new vector pointer vp. This
- new data reference will by some means be updated each iteration of
- the loop. Return the pointer vp'.
-
- FORNOW: handle only aligned and consecutive accesses. */
-
-static tree
-vect_create_data_ref_ptr (tree stmt,
- block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
- tree offset, tree *initial_address, bool only_init)
-{
- tree base_name;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- tree vect_ptr_type;
- tree vect_ptr;
- tree tag;
- tree new_temp;
- tree vec_stmt;
- tree new_stmt_list = NULL_TREE;
- edge pe = loop_preheader_edge (loop);
- basic_block new_bb;
- tree vect_ptr_init;
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
-
- base_name = build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- tree data_ref_base = base_name;
- fprintf (vect_dump, "create vector-pointer variable to type: ");
- print_generic_expr (vect_dump, vectype, TDF_SLIM);
- if (TREE_CODE (data_ref_base) == VAR_DECL)
- fprintf (vect_dump, " vectorizing a one dimensional array ref: ");
- else if (TREE_CODE (data_ref_base) == ARRAY_REF)
- fprintf (vect_dump, " vectorizing a multidimensional array ref: ");
- else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
- fprintf (vect_dump, " vectorizing a record based array ref: ");
- else if (TREE_CODE (data_ref_base) == SSA_NAME)
- fprintf (vect_dump, " vectorizing a pointer ref: ");
- print_generic_expr (vect_dump, base_name, TDF_SLIM);
- }
-
- /** (1) Create the new vector-pointer variable: **/
-
- vect_ptr_type = build_pointer_type (vectype);
- vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
- get_name (base_name));
- add_referenced_var (vect_ptr);
-
-
- /** (2) Add aliasing information to the new vector-pointer:
- (The points-to info (DR_PTR_INFO) may be defined later.) **/
-
- tag = DR_MEMTAG (dr);
- gcc_assert (tag);
-
- /* If tag is a variable (and NOT_A_TAG) than a new symbol memory
- tag must be created with tag added to its may alias list. */
- if (!MTAG_P (tag))
- new_type_alias (vect_ptr, tag, DR_REF (dr));
- else
- var_ann (vect_ptr)->symbol_mem_tag = tag;
-
- var_ann (vect_ptr)->subvars = DR_SUBVARS (dr);
-
- /** (3) Calculate the initial address the vector-pointer, and set
- the vector-pointer to point to it before the loop: **/
-
- /* Create: (&(base[init_val+offset]) in the loop preheader. */
- new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
- offset);
- pe = loop_preheader_edge (loop);
- new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
- gcc_assert (!new_bb);
- *initial_address = new_temp;
-
- /* Create: p = (vectype *) initial_base */
- vec_stmt = fold_convert (vect_ptr_type, new_temp);
- vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
- vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
- TREE_OPERAND (vec_stmt, 0) = vect_ptr_init;
- new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
- gcc_assert (!new_bb);
-
-
- /** (4) Handle the updating of the vector-pointer inside the loop: **/
-
- if (only_init) /* No update in loop is required. */
- {
- /* Copy the points-to information if it exists. */
- if (DR_PTR_INFO (dr))
- duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
- return vect_ptr_init;
- }
- else
- {
- block_stmt_iterator incr_bsi;
- bool insert_after;
- tree indx_before_incr, indx_after_incr;
- tree incr;
-
- standard_iv_increment_position (loop, &incr_bsi, &insert_after);
- create_iv (vect_ptr_init,
- fold_convert (vect_ptr_type, TYPE_SIZE_UNIT (vectype)),
- NULL_TREE, loop, &incr_bsi, insert_after,
- &indx_before_incr, &indx_after_incr);
- incr = bsi_stmt (incr_bsi);
- set_stmt_info (stmt_ann (incr),
- new_stmt_vec_info (incr, loop_vinfo));
-
- /* Copy the points-to information if it exists. */
- if (DR_PTR_INFO (dr))
- {
- duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
- duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
- }
- merge_alias_info (vect_ptr_init, indx_before_incr);
- merge_alias_info (vect_ptr_init, indx_after_incr);
-
- return indx_before_incr;
- }
-}
-
-
-/* Function vect_create_destination_var.
-
- Create a new temporary of type VECTYPE. */
-
-static tree
-vect_create_destination_var (tree scalar_dest, tree vectype)
-{
- tree vec_dest;
- const char *new_name;
- tree type;
- enum vect_var_kind kind;
-
- kind = vectype ? vect_simple_var : vect_scalar_var;
- type = vectype ? vectype : TREE_TYPE (scalar_dest);
-
- gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
-
- new_name = get_name (scalar_dest);
- if (!new_name)
- new_name = "var_";
- vec_dest = vect_get_new_vect_var (type, vect_simple_var, new_name);
- add_referenced_var (vec_dest);
-
- return vec_dest;
-}
-
-
-/* Function vect_init_vector.
-
- Insert a new stmt (INIT_STMT) that initializes a new vector variable with
- the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
- used in the vectorization of STMT. */
-
-static tree
-vect_init_vector (tree stmt, tree vector_var)
-{
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree new_var;
- tree init_stmt;
- tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
- tree vec_oprnd;
- edge pe;
- tree new_temp;
- basic_block new_bb;
-
- new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
- add_referenced_var (new_var);
-
- init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
- new_temp = make_ssa_name (new_var, init_stmt);
- TREE_OPERAND (init_stmt, 0) = new_temp;
-
- pe = loop_preheader_edge (loop);
- new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
- gcc_assert (!new_bb);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "created new init_stmt: ");
- print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
- }
-
- vec_oprnd = TREE_OPERAND (init_stmt, 0);
- return vec_oprnd;
-}
-
-
-/* Function vect_get_vec_def_for_operand.
-
- OP is an operand in STMT. This function returns a (vector) def that will be
- used in the vectorized stmt for STMT.
-
- In the case that OP is an SSA_NAME which is defined in the loop, then
- STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
-
- In case OP is an invariant or constant, a new stmt that creates a vector def
- needs to be introduced. */
-
-static tree
-vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
-{
- tree vec_oprnd;
- tree vec_stmt;
- tree def_stmt;
- stmt_vec_info def_stmt_info = NULL;
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
- int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree vec_inv;
- tree vec_cst;
- tree t = NULL_TREE;
- tree def;
- int i;
- enum vect_def_type dt;
- bool is_simple_use;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
- print_generic_expr (vect_dump, op, TDF_SLIM);
- }
-
- is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
- gcc_assert (is_simple_use);
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- if (def)
- {
- fprintf (vect_dump, "def = ");
- print_generic_expr (vect_dump, def, TDF_SLIM);
- }
- if (def_stmt)
- {
- fprintf (vect_dump, " def_stmt = ");
- print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
- }
- }
-
- switch (dt)
- {
- /* Case 1: operand is a constant. */
- case vect_constant_def:
- {
- if (scalar_def)
- *scalar_def = op;
-
- /* Create 'vect_cst_ = {cst,cst,...,cst}' */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
-
- for (i = nunits - 1; i >= 0; --i)
- {
- t = tree_cons (NULL_TREE, op, t);
- }
- vec_cst = build_vector (vectype, t);
- return vect_init_vector (stmt, vec_cst);
- }
-
- /* Case 2: operand is defined outside the loop - loop invariant. */
- case vect_invariant_def:
- {
- if (scalar_def)
- *scalar_def = def;
-
- /* Create 'vec_inv = {inv,inv,..,inv}' */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Create vector_inv.");
-
- for (i = nunits - 1; i >= 0; --i)
- {
- t = tree_cons (NULL_TREE, def, t);
- }
-
- /* FIXME: use build_constructor directly. */
- vec_inv = build_constructor_from_list (vectype, t);
- return vect_init_vector (stmt, vec_inv);
- }
-
- /* Case 3: operand is defined inside the loop. */
- case vect_loop_def:
- {
- if (scalar_def)
- *scalar_def = def_stmt;
-
- /* Get the def from the vectorized stmt. */
- def_stmt_info = vinfo_for_stmt (def_stmt);
- vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
- gcc_assert (vec_stmt);
- vec_oprnd = TREE_OPERAND (vec_stmt, 0);
- return vec_oprnd;
- }
-
- /* Case 4: operand is defined by a loop header phi - reduction */
- case vect_reduction_def:
- {
- gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
-
- /* Get the def before the loop */
- op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
- return get_initial_def_for_reduction (stmt, op, scalar_def);
- }
-
- /* Case 5: operand is defined by loop-header phi - induction. */
- case vect_induction_def:
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "induction - unsupported.");
- internal_error ("no support for induction"); /* FORNOW */
- }
-
- default:
- gcc_unreachable ();
- }
-}
-
-
-/* Function vect_finish_stmt_generation.
-
- Insert a new stmt. */
-
-static void
-vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
-{
- bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "add new stmt: ");
- print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
- }
-
- /* Make sure bsi points to the stmt that is being vectorized. */
- gcc_assert (stmt == bsi_stmt (*bsi));
-
-#ifdef USE_MAPPED_LOCATION
- SET_EXPR_LOCATION (vec_stmt, EXPR_LOCATION (stmt));
-#else
- SET_EXPR_LOCUS (vec_stmt, EXPR_LOCUS (stmt));
-#endif
-}
-
-
-#define ADJUST_IN_EPILOG 1
-
-/* Function get_initial_def_for_reduction
-
- Input:
- STMT - a stmt that performs a reduction operation in the loop.
- INIT_VAL - the initial value of the reduction variable
-
- Output:
- SCALAR_DEF - a tree that holds a value to be added to the final result
- of the reduction (used for "ADJUST_IN_EPILOG" - see below).
- Return a vector variable, initialized according to the operation that STMT
- performs. This vector will be used as the initial value of the
- vector of partial results.
-
- Option1 ("ADJUST_IN_EPILOG"): Initialize the vector as follows:
- add: [0,0,...,0,0]
- mult: [1,1,...,1,1]
- min/max: [init_val,init_val,..,init_val,init_val]
- bit and/or: [init_val,init_val,..,init_val,init_val]
- and when necessary (e.g. add/mult case) let the caller know
- that it needs to adjust the result by init_val.
-
- Option2: Initialize the vector as follows:
- add: [0,0,...,0,init_val]
- mult: [1,1,...,1,init_val]
- min/max: [init_val,init_val,...,init_val]
- bit and/or: [init_val,init_val,...,init_val]
- and no adjustments are needed.
-
- For example, for the following code:
-
- s = init_val;
- for (i=0;i<n;i++)
- s = s + a[i];
-
- STMT is 's = s + a[i]', and the reduction variable is 's'.
- For a vector of 4 units, we want to return either [0,0,0,init_val],
- or [0,0,0,0] and let the caller know that it needs to adjust
- the result at the end by 'init_val'.
-
- FORNOW: We use the "ADJUST_IN_EPILOG" scheme.
- TODO: Use some cost-model to estimate which scheme is more profitable.
-*/
-
-static tree
-get_initial_def_for_reduction (tree stmt, tree init_val, tree *scalar_def)
-{
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
- int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
- int nelements;
- enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
- tree type = TREE_TYPE (init_val);
- tree def;
- tree vec, t = NULL_TREE;
- bool need_epilog_adjust;
- int i;
-
- gcc_assert (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));
-
- switch (code)
- {
- case WIDEN_SUM_EXPR:
- case DOT_PROD_EXPR:
- case PLUS_EXPR:
- if (INTEGRAL_TYPE_P (type))
- def = build_int_cst (type, 0);
- else
- def = build_real (type, dconst0);
-
-#ifdef ADJUST_IN_EPILOG
- /* All the 'nunits' elements are set to 0. The final result will be
- adjusted by 'init_val' at the loop epilog. */
- nelements = nunits;
- need_epilog_adjust = true;
-#else
- /* 'nunits - 1' elements are set to 0; The last element is set to
- 'init_val'. No further adjustments at the epilog are needed. */
- nelements = nunits - 1;
- need_epilog_adjust = false;
-#endif
- break;
-
- case MIN_EXPR:
- case MAX_EXPR:
- def = init_val;
- nelements = nunits;
- need_epilog_adjust = false;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- for (i = nelements - 1; i >= 0; --i)
- t = tree_cons (NULL_TREE, def, t);
-
- if (nelements == nunits - 1)
- {
- /* Set the last element of the vector. */
- t = tree_cons (NULL_TREE, init_val, t);
- nelements += 1;
- }
- gcc_assert (nelements == nunits);
-
- if (TREE_CODE (init_val) == INTEGER_CST || TREE_CODE (init_val) == REAL_CST)
- vec = build_vector (vectype, t);
- else
- vec = build_constructor_from_list (vectype, t);
-
- if (!need_epilog_adjust)
- *scalar_def = NULL_TREE;
- else
- *scalar_def = init_val;
-
- return vect_init_vector (stmt, vec);
-}
-
-
-/* Function vect_create_epilog_for_reduction
-
- Create code at the loop-epilog to finalize the result of a reduction
- computation.
-
- VECT_DEF is a vector of partial results.
- REDUC_CODE is the tree-code for the epilog reduction.
- STMT is the scalar reduction stmt that is being vectorized.
- REDUCTION_PHI is the phi-node that carries the reduction computation.
-
- This function:
- 1. Creates the reduction def-use cycle: sets the the arguments for
- REDUCTION_PHI:
- The loop-entry argument is the vectorized initial-value of the reduction.
- The loop-latch argument is VECT_DEF - the vector of partial sums.
- 2. "Reduces" the vector of partial results VECT_DEF into a single result,
- by applying the operation specified by REDUC_CODE if available, or by
- other means (whole-vector shifts or a scalar loop).
- The function also creates a new phi node at the loop exit to preserve
- loop-closed form, as illustrated below.
-
- The flow at the entry to this function:
-
- loop:
- vec_def = phi <null, null> # REDUCTION_PHI
- VECT_DEF = vector_stmt # vectorized form of STMT
- s_loop = scalar_stmt # (scalar) STMT
- loop_exit:
- s_out0 = phi <s_loop> # (scalar) EXIT_PHI
- use <s_out0>
- use <s_out0>
-
- The above is transformed by this function into:
-
- loop:
- vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
- VECT_DEF = vector_stmt # vectorized form of STMT
- s_loop = scalar_stmt # (scalar) STMT
- loop_exit:
- s_out0 = phi <s_loop> # (scalar) EXIT_PHI
- v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
- v_out2 = reduce <v_out1>
- s_out3 = extract_field <v_out2, 0>
- s_out4 = adjust_result <s_out3>
- use <s_out4>
- use <s_out4>
-*/
-
-static void
-vect_create_epilog_for_reduction (tree vect_def, tree stmt,
- enum tree_code reduc_code, tree reduction_phi)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype;
- enum machine_mode mode;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block exit_bb;
- tree scalar_dest;
- tree scalar_type;
- tree new_phi;
- block_stmt_iterator exit_bsi;
- tree vec_dest;
- tree new_temp;
- tree new_name;
- tree epilog_stmt;
- tree new_scalar_dest, exit_phi;
- tree bitsize, bitpos, bytesize;
- enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
- tree scalar_initial_def;
- tree vec_initial_def;
- tree orig_name;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- bool extract_scalar_result;
- tree reduction_op;
- tree orig_stmt;
- tree use_stmt;
- tree operation = TREE_OPERAND (stmt, 1);
- int op_type;
-
- op_type = TREE_CODE_LENGTH (TREE_CODE (operation));
- reduction_op = TREE_OPERAND (operation, op_type-1);
- vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
- mode = TYPE_MODE (vectype);
-
- /*** 1. Create the reduction def-use cycle ***/
-
- /* 1.1 set the loop-entry arg of the reduction-phi: */
- /* For the case of reduction, vect_get_vec_def_for_operand returns
- the scalar def before the loop, that defines the initial value
- of the reduction variable. */
- vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
- &scalar_initial_def);
- add_phi_arg (reduction_phi, vec_initial_def, loop_preheader_edge (loop));
-
- /* 1.2 set the loop-latch arg for the reduction-phi: */
- add_phi_arg (reduction_phi, vect_def, loop_latch_edge (loop));
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "transform reduction: created def-use cycle:");
- print_generic_expr (vect_dump, reduction_phi, TDF_SLIM);
- fprintf (vect_dump, "\n");
- print_generic_expr (vect_dump, SSA_NAME_DEF_STMT (vect_def), TDF_SLIM);
- }
-
-
- /*** 2. Create epilog code
- The reduction epilog code operates across the elements of the vector
- of partial results computed by the vectorized loop.
- The reduction epilog code consists of:
- step 1: compute the scalar result in a vector (v_out2)
- step 2: extract the scalar result (s_out3) from the vector (v_out2)
- step 3: adjust the scalar result (s_out3) if needed.
-
- Step 1 can be accomplished using one the following three schemes:
- (scheme 1) using reduc_code, if available.
- (scheme 2) using whole-vector shifts, if available.
- (scheme 3) using a scalar loop. In this case steps 1+2 above are
- combined.
-
- The overall epilog code looks like this:
-
- s_out0 = phi <s_loop> # original EXIT_PHI
- v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
- v_out2 = reduce <v_out1> # step 1
- s_out3 = extract_field <v_out2, 0> # step 2
- s_out4 = adjust_result <s_out3> # step 3
-
- (step 3 is optional, and step2 1 and 2 may be combined).
- Lastly, the uses of s_out0 are replaced by s_out4.
-
- ***/
-
- /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
- v_out1 = phi <v_loop> */
-
- exit_bb = loop->single_exit->dest;
- new_phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
- SET_PHI_ARG_DEF (new_phi, loop->single_exit->dest_idx, vect_def);
- exit_bsi = bsi_start (exit_bb);
-
- /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
- (i.e. when reduc_code is not available) and in the final adjustment code
- (if needed). Also get the original scalar reduction variable as
- defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
- represents a reduction pattern), the tree-code and scalar-def are
- taken from the original stmt that the pattern-stmt (STMT) replaces.
- Otherwise (it is a regular reduction) - the tree-code and scalar-def
- are taken from STMT. */
-
- orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
- if (!orig_stmt)
- {
- /* Regular reduction */
- orig_stmt = stmt;
- }
- else
- {
- /* Reduction pattern */
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
- gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
- gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
- }
- code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
- scalar_dest = TREE_OPERAND (orig_stmt, 0);
- scalar_type = TREE_TYPE (scalar_dest);
- new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
- bitsize = TYPE_SIZE (scalar_type);
- bytesize = TYPE_SIZE_UNIT (scalar_type);
-
- /* 2.3 Create the reduction code, using one of the three schemes described
- above. */
-
- if (reduc_code < NUM_TREE_CODES)
- {
- /*** Case 1: Create:
- v_out2 = reduc_expr <v_out1> */
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Reduce using direct vector reduction.");
-
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
- build1 (reduc_code, vectype, PHI_RESULT (new_phi)));
- new_temp = make_ssa_name (vec_dest, epilog_stmt);
- TREE_OPERAND (epilog_stmt, 0) = new_temp;
- bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-
- extract_scalar_result = true;
- }
- else
- {
- enum tree_code shift_code = 0;
- bool have_whole_vector_shift = true;
- int bit_offset;
- int element_bitsize = tree_low_cst (bitsize, 1);
- int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
- tree vec_temp;
-
- if (vec_shr_optab->handlers[mode].insn_code != CODE_FOR_nothing)
- shift_code = VEC_RSHIFT_EXPR;
- else
- have_whole_vector_shift = false;
-
- /* Regardless of whether we have a whole vector shift, if we're
- emulating the operation via tree-vect-generic, we don't want
- to use it. Only the first round of the reduction is likely
- to still be profitable via emulation. */
- /* ??? It might be better to emit a reduction tree code here, so that
- tree-vect-generic can expand the first round via bit tricks. */
- if (!VECTOR_MODE_P (mode))
- have_whole_vector_shift = false;
- else
- {
- optab optab = optab_for_tree_code (code, vectype);
- if (optab->handlers[mode].insn_code == CODE_FOR_nothing)
- have_whole_vector_shift = false;
- }
-
- if (have_whole_vector_shift)
- {
- /*** Case 2: Create:
- for (offset = VS/2; offset >= element_size; offset/=2)
- {
- Create: va' = vec_shift <va, offset>
- Create: va = vop <va, va'>
- } */
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Reduce using vector shifts");
-
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- new_temp = PHI_RESULT (new_phi);
-
- for (bit_offset = vec_size_in_bits/2;
- bit_offset >= element_bitsize;
- bit_offset /= 2)
- {
- tree bitpos = size_int (bit_offset);
-
- epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
- build2 (shift_code, vectype, new_temp, bitpos));
- new_name = make_ssa_name (vec_dest, epilog_stmt);
- TREE_OPERAND (epilog_stmt, 0) = new_name;
- bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-
- epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
- build2 (code, vectype, new_name, new_temp));
- new_temp = make_ssa_name (vec_dest, epilog_stmt);
- TREE_OPERAND (epilog_stmt, 0) = new_temp;
- bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
- }
-
- extract_scalar_result = true;
- }
- else
- {
- tree rhs;
-
- /*** Case 3: Create:
- s = extract_field <v_out2, 0>
- for (offset = element_size;
- offset < vector_size;
- offset += element_size;)
- {
- Create: s' = extract_field <v_out2, offset>
- Create: s = op <s, s'>
- } */
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Reduce using scalar code. ");
-
- vec_temp = PHI_RESULT (new_phi);
- vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
- rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
- bitsize_zero_node);
- BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
- epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
- new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
- TREE_OPERAND (epilog_stmt, 0) = new_temp;
- bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-
- for (bit_offset = element_bitsize;
- bit_offset < vec_size_in_bits;
- bit_offset += element_bitsize)
- {
- tree bitpos = bitsize_int (bit_offset);
- tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
- bitpos);
-
- BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
- epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
- rhs);
- new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
- TREE_OPERAND (epilog_stmt, 0) = new_name;
- bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
-
- epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
- build2 (code, scalar_type, new_name, new_temp));
- new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
- TREE_OPERAND (epilog_stmt, 0) = new_temp;
- bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
- }
-
- extract_scalar_result = false;
- }
- }
-
- /* 2.4 Extract the final scalar result. Create:
- s_out3 = extract_field <v_out2, bitpos> */
-
- if (extract_scalar_result)
- {
- tree rhs;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "extract scalar result");
-
- if (BYTES_BIG_ENDIAN)
- bitpos = size_binop (MULT_EXPR,
- bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
- TYPE_SIZE (scalar_type));
- else
- bitpos = bitsize_zero_node;
-
- rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
- BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
- epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
- new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
- TREE_OPERAND (epilog_stmt, 0) = new_temp;
- bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
- }
-
- /* 2.4 Adjust the final result by the initial value of the reduction
- variable. (When such adjustment is not needed, then
- 'scalar_initial_def' is zero).
-
- Create:
- s_out4 = scalar_expr <s_out3, scalar_initial_def> */
-
- if (scalar_initial_def)
- {
- epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
- build2 (code, scalar_type, new_temp, scalar_initial_def));
- new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
- TREE_OPERAND (epilog_stmt, 0) = new_temp;
- bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
- }
-
- /* 2.6 Replace uses of s_out0 with uses of s_out3 */
-
- /* Find the loop-closed-use at the loop exit of the original scalar result.
- (The reduction result is expected to have two immediate uses - one at the
- latch block, and one at the loop exit). */
- exit_phi = NULL;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
- {
- if (!flow_bb_inside_loop_p (loop, bb_for_stmt (USE_STMT (use_p))))
- {
- exit_phi = USE_STMT (use_p);
- break;
- }
- }
- /* We expect to have found an exit_phi because of loop-closed-ssa form. */
- gcc_assert (exit_phi);
- /* Replace the uses: */
- orig_name = PHI_RESULT (exit_phi);
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- SET_USE (use_p, new_temp);
-}
-
-
-/* Function vectorizable_reduction.
-
- Check if STMT performs a reduction operation that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise.
-
- This function also handles reduction idioms (patterns) that have been
- recognized in advance during vect_pattern_recog. In this case, STMT may be
- of this form:
- X = pattern_expr (arg0, arg1, ..., X)
- and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
- sequence that had been detected and replaced by the pattern-stmt (STMT).
-
- In some cases of reduction patterns, the type of the reduction variable X is
- different than the type of the other arguments of STMT.
- In such cases, the vectype that is used when transforming STMT into a vector
- stmt is different than the vectype that is used to determine the
- vectorization factor, because it consists of a different number of elements
- than the actual number of elements that are being operated upon in parallel.
-
- For example, consider an accumulation of shorts into an int accumulator.
- On some targets it's possible to vectorize this pattern operating on 8
- shorts at a time (hence, the vectype for purposes of determining the
- vectorization factor should be V8HI); on the other hand, the vectype that
- is used to create the vector form is actually V4SI (the type of the result).
-
- Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
- indicates what is the actual level of parallelism (V8HI in the example), so
- that the right vectorization factor would be derived. This vectype
- corresponds to the type of arguments to the reduction stmt, and should *NOT*
- be used to create the vectorized stmt. The right vectype for the vectorized
- stmt is obtained from the type of the result X:
- get_vectype_for_scalar_type (TREE_TYPE (X))
-
- This means that, contrary to "regular" reductions (or "regular" stmts in
- general), the following equation:
- STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
- does *NOT* necessarily hold for reduction patterns. */
-
-bool
-vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
-{
- tree vec_dest;
- tree scalar_dest;
- tree op;
- tree loop_vec_def0, loop_vec_def1;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree operation;
- enum tree_code code, orig_code, epilog_reduc_code = 0;
- enum machine_mode vec_mode;
- int op_type;
- optab optab, reduc_optab;
- tree new_temp;
- tree def, def_stmt;
- enum vect_def_type dt;
- tree new_phi;
- tree scalar_type;
- bool is_simple_use;
- tree orig_stmt;
- stmt_vec_info orig_stmt_info;
- tree expr = NULL_TREE;
- int i;
-
- /* 1. Is vectorizable reduction? */
-
- /* Not supportable if the reduction variable is used in the loop. */
- if (STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (!STMT_VINFO_LIVE_P (stmt_info))
- return false;
-
- /* Make sure it was already recognized as a reduction computation. */
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
- return false;
-
- /* 2. Has this been recognized as a reduction pattern?
-
- Check if STMT represents a pattern that has been recognized
- in earlier analysis stages. For stmts that represent a pattern,
- the STMT_VINFO_RELATED_STMT field records the last stmt in
- the original sequence that constitutes the pattern. */
-
- orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
- if (orig_stmt)
- {
- orig_stmt_info = vinfo_for_stmt (orig_stmt);
- gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
- gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
- gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
- }
-
- /* 3. Check the operands of the operation. The first operands are defined
- inside the loop body. The last operand is the reduction variable,
- which is defined by the loop-header-phi. */
-
- gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
-
- operation = TREE_OPERAND (stmt, 1);
- code = TREE_CODE (operation);
- op_type = TREE_CODE_LENGTH (code);
-
- if (op_type != binary_op && op_type != ternary_op)
- return false;
- scalar_dest = TREE_OPERAND (stmt, 0);
- scalar_type = TREE_TYPE (scalar_dest);
-
- /* All uses but the last are expected to be defined in the loop.
- The last use is the reduction variable. */
- for (i = 0; i < op_type-1; i++)
- {
- op = TREE_OPERAND (operation, i);
- is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
- gcc_assert (is_simple_use);
- gcc_assert (dt == vect_loop_def || dt == vect_invariant_def ||
- dt == vect_constant_def);
- }
-
- op = TREE_OPERAND (operation, i);
- is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
- gcc_assert (is_simple_use);
- gcc_assert (dt == vect_reduction_def);
- gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
- if (orig_stmt)
- gcc_assert (orig_stmt == vect_is_simple_reduction (loop, def_stmt));
- else
- gcc_assert (stmt == vect_is_simple_reduction (loop, def_stmt));
-
- if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
- return false;
-
- /* 4. Supportable by target? */
-
- /* 4.1. check support for the operation in the loop */
- optab = optab_for_tree_code (code, vectype);
- if (!optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab.");
- return false;
- }
- vec_mode = TYPE_MODE (vectype);
- if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "op not supported by target.");
- if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
- || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- < vect_min_worthwhile_factor (code))
- return false;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "proceeding using word mode.");
- }
-
- /* Worthwhile without SIMD support? */
- if (!VECTOR_MODE_P (TYPE_MODE (vectype))
- && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- < vect_min_worthwhile_factor (code))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "not worthwhile without SIMD support.");
- return false;
- }
-
- /* 4.2. Check support for the epilog operation.
-
- If STMT represents a reduction pattern, then the type of the
- reduction variable may be different than the type of the rest
- of the arguments. For example, consider the case of accumulation
- of shorts into an int accumulator; The original code:
- S1: int_a = (int) short_a;
- orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
-
- was replaced with:
- STMT: int_acc = widen_sum <short_a, int_acc>
-
- This means that:
- 1. The tree-code that is used to create the vector operation in the
- epilog code (that reduces the partial results) is not the
- tree-code of STMT, but is rather the tree-code of the original
- stmt from the pattern that STMT is replacing. I.e, in the example
- above we want to use 'widen_sum' in the loop, but 'plus' in the
- epilog.
- 2. The type (mode) we use to check available target support
- for the vector operation to be created in the *epilog*, is
- determined by the type of the reduction variable (in the example
- above we'd check this: plus_optab[vect_int_mode]).
- However the type (mode) we use to check available target support
- for the vector operation to be created *inside the loop*, is
- determined by the type of the other arguments to STMT (in the
- example we'd check this: widen_sum_optab[vect_short_mode]).
-
- This is contrary to "regular" reductions, in which the types of all
- the arguments are the same as the type of the reduction variable.
- For "regular" reductions we can therefore use the same vector type
- (and also the same tree-code) when generating the epilog code and
- when generating the code inside the loop. */
-
- if (orig_stmt)
- {
- /* This is a reduction pattern: get the vectype from the type of the
- reduction variable, and get the tree-code from orig_stmt. */
- orig_code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
- vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
- vec_mode = TYPE_MODE (vectype);
- }
- else
- {
- /* Regular reduction: use the same vectype and tree-code as used for
- the vector code inside the loop can be used for the epilog code. */
- orig_code = code;
- }
-
- if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
- return false;
- reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype);
- if (!reduc_optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab for reduction.");
- epilog_reduc_code = NUM_TREE_CODES;
- }
- if (reduc_optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "reduc op not supported by target.");
- epilog_reduc_code = NUM_TREE_CODES;
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform reduction.");
-
- /* Create the destination vector */
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
- /* Create the reduction-phi that defines the reduction-operand. */
- new_phi = create_phi_node (vec_dest, loop->header);
-
- /* Prepare the operand that is defined inside the loop body */
- op = TREE_OPERAND (operation, 0);
- loop_vec_def0 = vect_get_vec_def_for_operand (op, stmt, NULL);
- if (op_type == binary_op)
- expr = build2 (code, vectype, loop_vec_def0, PHI_RESULT (new_phi));
- else if (op_type == ternary_op)
- {
- op = TREE_OPERAND (operation, 1);
- loop_vec_def1 = vect_get_vec_def_for_operand (op, stmt, NULL);
- expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1,
- PHI_RESULT (new_phi));
- }
-
- /* Create the vectorized operation that computes the partial results */
- *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, expr);
- new_temp = make_ssa_name (vec_dest, *vec_stmt);
- TREE_OPERAND (*vec_stmt, 0) = new_temp;
- vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
-
- /* Finalize the reduction-phi (set it's arguments) and create the
- epilog reduction code. */
- vect_create_epilog_for_reduction (new_temp, stmt, epilog_reduc_code, new_phi);
- return true;
-}
-
-
-/* Function vectorizable_assignment.
-
- Check if STMT performs an assignment (copy) that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
-{
- tree vec_dest;
- tree scalar_dest;
- tree op;
- tree vec_oprnd;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- tree new_temp;
- tree def, def_stmt;
- enum vect_def_type dt;
-
- /* Is vectorizable assignment? */
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return false;
-
- scalar_dest = TREE_OPERAND (stmt, 0);
- if (TREE_CODE (scalar_dest) != SSA_NAME)
- return false;
-
- op = TREE_OPERAND (stmt, 1);
- if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
- return true;
- }
-
- /** Transform. **/
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform assignment.");
-
- /* Handle def. */
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
- /* Handle use. */
- op = TREE_OPERAND (stmt, 1);
- vec_oprnd = vect_get_vec_def_for_operand (op, stmt, NULL);
-
- /* Arguments are ready. create the new vector stmt. */
- *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
- new_temp = make_ssa_name (vec_dest, *vec_stmt);
- TREE_OPERAND (*vec_stmt, 0) = new_temp;
- vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
-
- return true;
-}
-
-
-/* Function vect_min_worthwhile_factor.
-
- For a loop where we could vectorize the operation indicated by CODE,
- return the minimum vectorization factor that makes it worthwhile
- to use generic vectors. */
-static int
-vect_min_worthwhile_factor (enum tree_code code)
-{
- switch (code)
- {
- case PLUS_EXPR:
- case MINUS_EXPR:
- case NEGATE_EXPR:
- return 4;
-
- case BIT_AND_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- case BIT_NOT_EXPR:
- return 2;
-
- default:
- return INT_MAX;
- }
-}
-
-
-/* Function vectorizable_operation.
-
- Check if STMT performs a binary or unary operation that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
-{
- tree vec_dest;
- tree scalar_dest;
- tree operation;
- tree op0, op1 = NULL;
- tree vec_oprnd0, vec_oprnd1=NULL;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- int i;
- enum tree_code code;
- enum machine_mode vec_mode;
- tree new_temp;
- int op_type;
- tree op;
- optab optab;
- int icode;
- enum machine_mode optab_op2_mode;
- tree def, def_stmt;
- enum vect_def_type dt;
-
- /* Is STMT a vectorizable binary/unary operation? */
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
-
- if (STMT_VINFO_LIVE_P (stmt_info))
- {
- /* FORNOW: not yet supported. */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "value used after loop.");
- return false;
- }
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return false;
-
- if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
- return false;
-
- operation = TREE_OPERAND (stmt, 1);
- code = TREE_CODE (operation);
- optab = optab_for_tree_code (code, vectype);
-
- /* Support only unary or binary operations. */
- op_type = TREE_CODE_LENGTH (code);
- if (op_type != unary_op && op_type != binary_op)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
- return false;
- }
-
- for (i = 0; i < op_type; i++)
- {
- op = TREE_OPERAND (operation, i);
- if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
- }
-
- /* Supportable by target? */
- if (!optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab.");
- return false;
- }
- vec_mode = TYPE_MODE (vectype);
- icode = (int) optab->handlers[(int) vec_mode].insn_code;
- if (icode == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "op not supported by target.");
- if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
- || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- < vect_min_worthwhile_factor (code))
- return false;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "proceeding using word mode.");
- }
-
- /* Worthwhile without SIMD support? */
- if (!VECTOR_MODE_P (TYPE_MODE (vectype))
- && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- < vect_min_worthwhile_factor (code))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "not worthwhile without SIMD support.");
- return false;
- }
-
- if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
- {
- /* FORNOW: not yet supported. */
- if (!VECTOR_MODE_P (vec_mode))
- return false;
-
- /* Invariant argument is needed for a vector shift
- by a scalar shift operand. */
- optab_op2_mode = insn_data[icode].operand[2].mode;
- if (! (VECTOR_MODE_P (optab_op2_mode)
- || dt == vect_constant_def
- || dt == vect_invariant_def))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "operand mode requires invariant argument.");
- return false;
- }
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform binary/unary operation.");
-
- /* Handle def. */
- scalar_dest = TREE_OPERAND (stmt, 0);
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
- /* Handle uses. */
- op0 = TREE_OPERAND (operation, 0);
- vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
-
- if (op_type == binary_op)
- {
- op1 = TREE_OPERAND (operation, 1);
-
- if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
- {
- /* Vector shl and shr insn patterns can be defined with
- scalar operand 2 (shift operand). In this case, use
- constant or loop invariant op1 directly, without
- extending it to vector mode first. */
-
- optab_op2_mode = insn_data[icode].operand[2].mode;
- if (!VECTOR_MODE_P (optab_op2_mode))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "operand 1 using scalar mode.");
- vec_oprnd1 = op1;
- }
- }
-
- if (!vec_oprnd1)
- vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
- }
-
- /* Arguments are ready. create the new vector stmt. */
-
- if (op_type == binary_op)
- *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
- build2 (code, vectype, vec_oprnd0, vec_oprnd1));
- else
- *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
- build1 (code, vectype, vec_oprnd0));
- new_temp = make_ssa_name (vec_dest, *vec_stmt);
- TREE_OPERAND (*vec_stmt, 0) = new_temp;
- vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
-
- return true;
-}
-
-
-/* Function vectorizable_store.
-
- Check if STMT defines a non scalar data-ref (array/pointer/structure) that
- can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
-{
- tree scalar_dest;
- tree data_ref;
- tree op;
- tree vec_oprnd1;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- enum machine_mode vec_mode;
- tree dummy;
- enum dr_alignment_support alignment_support_cheme;
- ssa_op_iter iter;
- tree def, def_stmt;
- enum vect_def_type dt;
-
- /* Is vectorizable store? */
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return false;
-
- scalar_dest = TREE_OPERAND (stmt, 0);
- if (TREE_CODE (scalar_dest) != ARRAY_REF
- && TREE_CODE (scalar_dest) != INDIRECT_REF)
- return false;
-
- op = TREE_OPERAND (stmt, 1);
- if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- vec_mode = TYPE_MODE (vectype);
- /* FORNOW. In some cases can vectorize even if data-type not supported
- (e.g. - array initialization with 0). */
- if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
- return false;
-
- if (!STMT_VINFO_DATA_REF (stmt_info))
- return false;
-
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform store");
-
- alignment_support_cheme = vect_supportable_dr_alignment (dr);
- gcc_assert (alignment_support_cheme);
- gcc_assert (alignment_support_cheme == dr_aligned); /* FORNOW */
-
- /* Handle use - get the vectorized def from the defining stmt. */
- vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt, NULL);
-
- /* Handle def. */
- /* FORNOW: make sure the data reference is aligned. */
- vect_align_data_ref (stmt);
- data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
- data_ref = build_fold_indirect_ref (data_ref);
-
- /* Arguments are ready. create the new vector stmt. */
- *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
- vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
-
- /* Copy the V_MAY_DEFS representing the aliasing of the original array
- element's definition to the vector's definition then update the
- defining statement. The original is being deleted so the same
- SSA_NAMEs can be used. */
- copy_virtual_operands (*vec_stmt, stmt);
-
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_VMAYDEF)
- {
- SSA_NAME_DEF_STMT (def) = *vec_stmt;
-
- /* If this virtual def has a use outside the loop and a loop peel is
- performed then the def may be renamed by the peel. Mark it for
- renaming so the later use will also be renamed. */
- mark_sym_for_renaming (SSA_NAME_VAR (def));
- }
-
- return true;
-}
-
-
-/* vectorizable_load.
-
- Check if STMT reads a non scalar data-ref (array/pointer/structure) that
- can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
-{
- tree scalar_dest;
- tree vec_dest = NULL;
- tree data_ref = NULL;
- tree op;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- tree new_temp;
- int mode;
- tree init_addr;
- tree new_stmt;
- tree dummy;
- basic_block new_bb;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- edge pe = loop_preheader_edge (loop);
- enum dr_alignment_support alignment_support_cheme;
-
- /* Is vectorizable load? */
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
-
- if (STMT_VINFO_LIVE_P (stmt_info))
- {
- /* FORNOW: not yet supported. */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "value used after loop.");
- return false;
- }
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return false;
-
- scalar_dest = TREE_OPERAND (stmt, 0);
- if (TREE_CODE (scalar_dest) != SSA_NAME)
- return false;
-
- op = TREE_OPERAND (stmt, 1);
- if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
- return false;
-
- if (!STMT_VINFO_DATA_REF (stmt_info))
- return false;
-
- mode = (int) TYPE_MODE (vectype);
-
- /* FORNOW. In some cases can vectorize even if data-type not supported
- (e.g. - data copies). */
- if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Aligned load, but unsupported type.");
- return false;
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform load.");
-
- alignment_support_cheme = vect_supportable_dr_alignment (dr);
- gcc_assert (alignment_support_cheme);
-
- if (alignment_support_cheme == dr_aligned
- || alignment_support_cheme == dr_unaligned_supported)
- {
- /* Create:
- p = initial_addr;
- indx = 0;
- loop {
- vec_dest = *(p);
- indx = indx + 1;
- }
- */
-
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
- if (aligned_access_p (dr))
- data_ref = build_fold_indirect_ref (data_ref);
- else
- {
- int mis = DR_MISALIGNMENT (dr);
- tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
- tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
- data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
- }
- new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- TREE_OPERAND (new_stmt, 0) = new_temp;
- vect_finish_stmt_generation (stmt, new_stmt, bsi);
- copy_virtual_operands (new_stmt, stmt);
- }
- else if (alignment_support_cheme == dr_unaligned_software_pipeline)
- {
- /* Create:
- p1 = initial_addr;
- msq_init = *(floor(p1))
- p2 = initial_addr + VS - 1;
- magic = have_builtin ? builtin_result : initial_address;
- indx = 0;
- loop {
- p2' = p2 + indx * vectype_size
- lsq = *(floor(p2'))
- vec_dest = realign_load (msq, lsq, magic)
- indx = indx + 1;
- msq = lsq;
- }
- */
-
- tree offset;
- tree magic;
- tree phi_stmt;
- tree msq_init;
- tree msq, lsq;
- tree dataref_ptr;
- tree params;
-
- /* <1> Create msq_init = *(floor(p1)) in the loop preheader */
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE,
- &init_addr, true);
- data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
- new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- TREE_OPERAND (new_stmt, 0) = new_temp;
- new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
- gcc_assert (!new_bb);
- msq_init = TREE_OPERAND (new_stmt, 0);
- copy_virtual_operands (new_stmt, stmt);
- update_vuses_to_preheader (new_stmt, loop);
-
-
- /* <2> Create lsq = *(floor(p2')) in the loop */
- offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
- data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
- new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- TREE_OPERAND (new_stmt, 0) = new_temp;
- vect_finish_stmt_generation (stmt, new_stmt, bsi);
- lsq = TREE_OPERAND (new_stmt, 0);
- copy_virtual_operands (new_stmt, stmt);
-
-
- /* <3> */
- if (targetm.vectorize.builtin_mask_for_load)
- {
- /* Create permutation mask, if required, in loop preheader. */
- tree builtin_decl;
- params = build_tree_list (NULL_TREE, init_addr);
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- builtin_decl = targetm.vectorize.builtin_mask_for_load ();
- new_stmt = build_function_call_expr (builtin_decl, params);
- new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- TREE_OPERAND (new_stmt, 0) = new_temp;
- new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
- gcc_assert (!new_bb);
- magic = TREE_OPERAND (new_stmt, 0);
-
- /* The result of the CALL_EXPR to this builtin is determined from
- the value of the parameter and no global variables are touched
- which makes the builtin a "const" function. Requiring the
- builtin to have the "const" attribute makes it unnecessary
- to call mark_call_clobbered. */
- gcc_assert (TREE_READONLY (builtin_decl));
- }
- else
- {
- /* Use current address instead of init_addr for reduced reg pressure.
- */
- magic = dataref_ptr;
- }
-
-
- /* <4> Create msq = phi <msq_init, lsq> in loop */
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- msq = make_ssa_name (vec_dest, NULL_TREE);
- phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
- SSA_NAME_DEF_STMT (msq) = phi_stmt;
- add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
- add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
-
-
- /* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop */
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
- new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- TREE_OPERAND (new_stmt, 0) = new_temp;
- vect_finish_stmt_generation (stmt, new_stmt, bsi);
- }
- else
- gcc_unreachable ();
-
- *vec_stmt = new_stmt;
- return true;
-}
-
-
-/* Function vectorizable_live_operation.
-
- STMT computes a value that is used outside the loop. Check if
- it can be supported. */
-
-bool
-vectorizable_live_operation (tree stmt,
- block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
- tree *vec_stmt ATTRIBUTE_UNUSED)
-{
- tree operation;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- int i;
- enum tree_code code;
- int op_type;
- tree op;
- tree def, def_stmt;
- enum vect_def_type dt;
-
- if (!STMT_VINFO_LIVE_P (stmt_info))
- return false;
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return false;
-
- if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
- return false;
-
- operation = TREE_OPERAND (stmt, 1);
- code = TREE_CODE (operation);
-
- op_type = TREE_CODE_LENGTH (code);
-
- /* FORNOW: support only if all uses are invariant. This means
- that the scalar operations can remain in place, unvectorized.
- The original last scalar value that they compute will be used. */
-
- for (i = 0; i < op_type; i++)
- {
- op = TREE_OPERAND (operation, i);
- if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- if (dt != vect_invariant_def && dt != vect_constant_def)
- return false;
- }
-
- /* No transformation is required for the cases we currently support. */
- return true;
-}
-
-
-/* Function vect_is_simple_cond.
-
- Input:
- LOOP - the loop that is being vectorized.
- COND - Condition that is checked for simple use.
-
- Returns whether a COND can be vectorized. Checks whether
- condition operands are supportable using vec_is_simple_use. */
-
-static bool
-vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
-{
- tree lhs, rhs;
- tree def;
- enum vect_def_type dt;
-
- if (!COMPARISON_CLASS_P (cond))
- return false;
-
- lhs = TREE_OPERAND (cond, 0);
- rhs = TREE_OPERAND (cond, 1);
-
- if (TREE_CODE (lhs) == SSA_NAME)
- {
- tree lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
- if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
- return false;
- }
- else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST)
- return false;
-
- if (TREE_CODE (rhs) == SSA_NAME)
- {
- tree rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
- if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
- return false;
- }
- else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST)
- return false;
-
- return true;
-}
-
-/* vectorizable_condition.
-
- Check if STMT is conditional modify expression that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
- at BSI.
-
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
-{
- tree scalar_dest = NULL_TREE;
- tree vec_dest = NULL_TREE;
- tree op = NULL_TREE;
- tree cond_expr, then_clause, else_clause;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
- tree vec_compare, vec_cond_expr;
- tree new_temp;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- enum machine_mode vec_mode;
- tree def;
- enum vect_def_type dt;
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
-
- if (STMT_VINFO_LIVE_P (stmt_info))
- {
- /* FORNOW: not yet supported. */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "value used after loop.");
- return false;
- }
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return false;
-
- op = TREE_OPERAND (stmt, 1);
-
- if (TREE_CODE (op) != COND_EXPR)
- return false;
-
- cond_expr = TREE_OPERAND (op, 0);
- then_clause = TREE_OPERAND (op, 1);
- else_clause = TREE_OPERAND (op, 2);
-
- if (!vect_is_simple_cond (cond_expr, loop_vinfo))
- return false;
-
- /* We do not handle two different vector types for the condition
- and the values. */
- if (TREE_TYPE (TREE_OPERAND (cond_expr, 0)) != TREE_TYPE (vectype))
- return false;
-
- if (TREE_CODE (then_clause) == SSA_NAME)
- {
- tree then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
- if (!vect_is_simple_use (then_clause, loop_vinfo,
- &then_def_stmt, &def, &dt))
- return false;
- }
- else if (TREE_CODE (then_clause) != INTEGER_CST
- && TREE_CODE (then_clause) != REAL_CST)
- return false;
-
- if (TREE_CODE (else_clause) == SSA_NAME)
- {
- tree else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
- if (!vect_is_simple_use (else_clause, loop_vinfo,
- &else_def_stmt, &def, &dt))
- return false;
- }
- else if (TREE_CODE (else_clause) != INTEGER_CST
- && TREE_CODE (else_clause) != REAL_CST)
- return false;
-
-
- vec_mode = TYPE_MODE (vectype);
-
- if (!vec_stmt)
- {
- STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
- return expand_vec_cond_expr_p (op, vec_mode);
- }
-
- /* Transform */
-
- /* Handle def. */
- scalar_dest = TREE_OPERAND (stmt, 0);
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
- /* Handle cond expr. */
- vec_cond_lhs =
- vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
- vec_cond_rhs =
- vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
- vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
- vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);
-
- /* Arguments are ready. create the new vector stmt. */
- vec_compare = build2 (TREE_CODE (cond_expr), vectype,
- vec_cond_lhs, vec_cond_rhs);
- vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
- vec_compare, vec_then_clause, vec_else_clause);
-
- *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_cond_expr);
- new_temp = make_ssa_name (vec_dest, *vec_stmt);
- TREE_OPERAND (*vec_stmt, 0) = new_temp;
- vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
-
- return true;
-}
-
-/* Function vect_transform_stmt.
-
- Create a vectorized stmt to replace STMT, and insert it at BSI. */
-
-bool
-vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
-{
- bool is_store = false;
- tree vec_stmt = NULL_TREE;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree orig_stmt_in_pattern;
- bool done;
-
- if (STMT_VINFO_RELEVANT_P (stmt_info))
- {
- switch (STMT_VINFO_TYPE (stmt_info))
- {
- case op_vec_info_type:
- done = vectorizable_operation (stmt, bsi, &vec_stmt);
- gcc_assert (done);
- break;
-
- case assignment_vec_info_type:
- done = vectorizable_assignment (stmt, bsi, &vec_stmt);
- gcc_assert (done);
- break;
-
- case load_vec_info_type:
- done = vectorizable_load (stmt, bsi, &vec_stmt);
- gcc_assert (done);
- break;
-
- case store_vec_info_type:
- done = vectorizable_store (stmt, bsi, &vec_stmt);
- gcc_assert (done);
- is_store = true;
- break;
-
- case condition_vec_info_type:
- done = vectorizable_condition (stmt, bsi, &vec_stmt);
- gcc_assert (done);
- break;
-
- default:
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "stmt not supported.");
- gcc_unreachable ();
- }
-
- gcc_assert (vec_stmt);
- STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
- orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
- if (orig_stmt_in_pattern)
- {
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
- if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
- {
- gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
-
- /* STMT was inserted by the vectorizer to replace a computation
- idiom. ORIG_STMT_IN_PATTERN is a stmt in the original
- sequence that computed this idiom. We need to record a pointer
- to VEC_STMT in the stmt_info of ORIG_STMT_IN_PATTERN. See more
- detail in the documentation of vect_pattern_recog. */
-
- STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
- }
- }
- }
-
- if (STMT_VINFO_LIVE_P (stmt_info))
- {
- switch (STMT_VINFO_TYPE (stmt_info))
- {
- case reduc_vec_info_type:
- done = vectorizable_reduction (stmt, bsi, &vec_stmt);
- gcc_assert (done);
- break;
-
- default:
- done = vectorizable_live_operation (stmt, bsi, &vec_stmt);
- gcc_assert (done);
- }
-
- if (vec_stmt)
- {
- gcc_assert (!STMT_VINFO_VEC_STMT (stmt_info));
- STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
- }
- }
-
- return is_store;
-}
-
-
-/* This function builds ni_name = number of iterations loop executes
- on the loop preheader. */
-
-static tree
-vect_build_loop_niters (loop_vec_info loop_vinfo)
-{
- tree ni_name, stmt, var;
- edge pe;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
-
- var = create_tmp_var (TREE_TYPE (ni), "niters");
- add_referenced_var (var);
- ni_name = force_gimple_operand (ni, &stmt, false, var);
-
- pe = loop_preheader_edge (loop);
- if (stmt)
- {
- basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
- gcc_assert (!new_bb);
- }
-
- return ni_name;
-}
-
-
-/* This function generates the following statements:
-
- ni_name = number of iterations loop executes
- ratio = ni_name / vf
- ratio_mult_vf_name = ratio * vf
-
- and places them at the loop preheader edge. */
-
-static void
-vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
- tree *ni_name_ptr,
- tree *ratio_mult_vf_name_ptr,
- tree *ratio_name_ptr)
-{
-
- edge pe;
- basic_block new_bb;
- tree stmt, ni_name;
- tree var;
- tree ratio_name;
- tree ratio_mult_vf_name;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree ni = LOOP_VINFO_NITERS (loop_vinfo);
- int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- tree log_vf;
-
- pe = loop_preheader_edge (loop);
-
- /* Generate temporary variable that contains
- number of iterations loop executes. */
-
- ni_name = vect_build_loop_niters (loop_vinfo);
- log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
-
- /* Create: ratio = ni >> log2(vf) */
-
- var = create_tmp_var (TREE_TYPE (ni), "bnd");
- add_referenced_var (var);
- ratio_name = make_ssa_name (var, NULL_TREE);
- stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
- build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
- SSA_NAME_DEF_STMT (ratio_name) = stmt;
-
- pe = loop_preheader_edge (loop);
- new_bb = bsi_insert_on_edge_immediate (pe, stmt);
- gcc_assert (!new_bb);
-
- /* Create: ratio_mult_vf = ratio << log2 (vf). */
-
- var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
- add_referenced_var (var);
- ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
- stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
- build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
- SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
-
- pe = loop_preheader_edge (loop);
- new_bb = bsi_insert_on_edge_immediate (pe, stmt);
- gcc_assert (!new_bb);
-
- *ni_name_ptr = ni_name;
- *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
- *ratio_name_ptr = ratio_name;
-
- return;
-}
-
-
-/* Function update_vuses_to_preheader.
-
- Input:
- STMT - a statement with potential VUSEs.
- LOOP - the loop whose preheader will contain STMT.
-
- It's possible to vectorize a loop even though an SSA_NAME from a VUSE
- appears to be defined in a V_MAY_DEF in another statement in a loop.
- One such case is when the VUSE is at the dereference of a __restricted__
- pointer in a load and the V_MAY_DEF is at the dereference of a different
- __restricted__ pointer in a store. Vectorization may result in
- copy_virtual_uses being called to copy the problematic VUSE to a new
- statement that is being inserted in the loop preheader. This procedure
- is called to change the SSA_NAME in the new statement's VUSE from the
- SSA_NAME updated in the loop to the related SSA_NAME available on the
- path entering the loop.
-
- When this function is called, we have the following situation:
-
- # vuse <name1>
- S1: vload
- do {
- # name1 = phi < name0 , name2>
-
- # vuse <name1>
- S2: vload
-
- # name2 = vdef <name1>
- S3: vstore
-
- }while...
-
- Stmt S1 was created in the loop preheader block as part of misaligned-load
- handling. This function fixes the name of the vuse of S1 from 'name1' to
- 'name0'. */
-
-static void
-update_vuses_to_preheader (tree stmt, struct loop *loop)
-{
- basic_block header_bb = loop->header;
- edge preheader_e = loop_preheader_edge (loop);
- ssa_op_iter iter;
- use_operand_p use_p;
-
- FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VUSE)
- {
- tree ssa_name = USE_FROM_PTR (use_p);
- tree def_stmt = SSA_NAME_DEF_STMT (ssa_name);
- tree name_var = SSA_NAME_VAR (ssa_name);
- basic_block bb = bb_for_stmt (def_stmt);
-
- /* For a use before any definitions, def_stmt is a NOP_EXPR. */
- if (!IS_EMPTY_STMT (def_stmt)
- && flow_bb_inside_loop_p (loop, bb))
- {
- /* If the block containing the statement defining the SSA_NAME
- is in the loop then it's necessary to find the definition
- outside the loop using the PHI nodes of the header. */
- tree phi;
- bool updated = false;
-
- for (phi = phi_nodes (header_bb); phi; phi = TREE_CHAIN (phi))
- {
- if (SSA_NAME_VAR (PHI_RESULT (phi)) == name_var)
- {
- SET_USE (use_p, PHI_ARG_DEF (phi, preheader_e->dest_idx));
- updated = true;
- break;
- }
- }
- gcc_assert (updated);
- }
- }
-}
-
-
-/* Function vect_update_ivs_after_vectorizer.
-
- "Advance" the induction variables of LOOP to the value they should take
- after the execution of LOOP. This is currently necessary because the
- vectorizer does not handle induction variables that are used after the
- loop. Such a situation occurs when the last iterations of LOOP are
- peeled, because:
- 1. We introduced new uses after LOOP for IVs that were not originally used
- after LOOP: the IVs of LOOP are now used by an epilog loop.
- 2. LOOP is going to be vectorized; this means that it will iterate N/VF
- times, whereas the loop IVs should be bumped N times.
-
- Input:
- - LOOP - a loop that is going to be vectorized. The last few iterations
- of LOOP were peeled.
- - NITERS - the number of iterations that LOOP executes (before it is
- vectorized). i.e, the number of times the ivs should be bumped.
- - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
- coming out from LOOP on which there are uses of the LOOP ivs
- (this is the path from LOOP->exit to epilog_loop->preheader).
-
- The new definitions of the ivs are placed in LOOP->exit.
- The phi args associated with the edge UPDATE_E in the bb
- UPDATE_E->dest are updated accordingly.
-
- Assumption 1: Like the rest of the vectorizer, this function assumes
- a single loop exit that has a single predecessor.
-
- Assumption 2: The phi nodes in the LOOP header and in update_bb are
- organized in the same order.
-
- Assumption 3: The access function of the ivs is simple enough (see
- vect_can_advance_ivs_p). This assumption will be relaxed in the future.
-
- Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
- coming out of LOOP on which the ivs of LOOP are used (this is the path
- that leads to the epilog loop; other paths skip the epilog loop). This
- path starts with the edge UPDATE_E, and its destination (denoted update_bb)
- needs to have its phis updated.
- */
-
-static void
-vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
- edge update_e)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block exit_bb = loop->single_exit->dest;
- tree phi, phi1;
- basic_block update_bb = update_e->dest;
-
- /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
-
- /* Make sure there exists a single-predecessor exit bb: */
- gcc_assert (single_pred_p (exit_bb));
-
- for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb);
- phi && phi1;
- phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
- {
- tree access_fn = NULL;
- tree evolution_part;
- tree init_expr;
- tree step_expr;
- tree var, stmt, ni, ni_name;
- block_stmt_iterator last_bsi;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
- print_generic_expr (vect_dump, phi, TDF_SLIM);
- }
-
- /* Skip virtual phi's. */
- if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "virtual phi. skip.");
- continue;
- }
-
- /* Skip reduction phis. */
- if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "reduc phi. skip.");
- continue;
- }
-
- access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
- gcc_assert (access_fn);
- evolution_part =
- unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
- gcc_assert (evolution_part != NULL_TREE);
-
- /* FORNOW: We do not support IVs whose evolution function is a polynomial
- of degree >= 2 or exponential. */
- gcc_assert (!tree_is_chrec (evolution_part));
-
- step_expr = evolution_part;
- init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
- loop->num));
-
- ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
- build2 (MULT_EXPR, TREE_TYPE (niters),
- niters, step_expr), init_expr);
-
- var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
- add_referenced_var (var);
-
- ni_name = force_gimple_operand (ni, &stmt, false, var);
-
- /* Insert stmt into exit_bb. */
- last_bsi = bsi_last (exit_bb);
- if (stmt)
- bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);
-
- /* Fix phi expressions in the successor bb. */
- SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
- }
-}
-
-
-/* Function vect_do_peeling_for_loop_bound
-
- Peel the last iterations of the loop represented by LOOP_VINFO.
- The peeled iterations form a new epilog loop. Given that the loop now
- iterates NITERS times, the new epilog loop iterates
- NITERS % VECTORIZATION_FACTOR times.
-
- The original loop will later be made to iterate
- NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO). */
-
-static void
-vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
- struct loops *loops)
-{
- tree ni_name, ratio_mult_vf_name;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- struct loop *new_loop;
- edge update_e;
- basic_block preheader;
- int loop_num;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
-
- initialize_original_copy_tables ();
-
- /* Generate the following variables on the preheader of original loop:
-
- ni_name = number of iteration the original loop executes
- ratio = ni_name / vf
- ratio_mult_vf_name = ratio * vf */
- vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
- &ratio_mult_vf_name, ratio);
-
- loop_num = loop->num;
- new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->single_exit,
- ratio_mult_vf_name, ni_name, false);
- gcc_assert (new_loop);
- gcc_assert (loop_num == loop->num);
-#ifdef ENABLE_CHECKING
- slpeel_verify_cfg_after_peeling (loop, new_loop);
-#endif
-
- /* A guard that controls whether the new_loop is to be executed or skipped
- is placed in LOOP->exit. LOOP->exit therefore has two successors - one
- is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
- is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
- is on the path where the LOOP IVs are used and need to be updated. */
-
- preheader = loop_preheader_edge (new_loop)->src;
- if (EDGE_PRED (preheader, 0)->src == loop->single_exit->dest)
- update_e = EDGE_PRED (preheader, 0);
- else
- update_e = EDGE_PRED (preheader, 1);
-
- /* Update IVs of original loop as if they were advanced
- by ratio_mult_vf_name steps. */
- vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
-
- /* After peeling we have to reset scalar evolution analyzer. */
- scev_reset ();
-
- free_original_copy_tables ();
-}
-
-
-/* Function vect_gen_niters_for_prolog_loop
-
- Set the number of iterations for the loop represented by LOOP_VINFO
- to the minimum between LOOP_NITERS (the original iteration count of the loop)
- and the misalignment of DR - the data reference recorded in
- LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
- this loop, the data reference DR will refer to an aligned location.
-
- The following computation is generated:
-
- If the misalignment of DR is known at compile time:
- addr_mis = int mis = DR_MISALIGNMENT (dr);
- Else, compute address misalignment in bytes:
- addr_mis = addr & (vectype_size - 1)
-
- prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
-
- (elem_size = element type size; an element is the scalar element
- whose type is the inner type of the vectype) */
-
-static tree
-vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
-{
- struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
- int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree var, stmt;
- tree iters, iters_name;
- edge pe;
- basic_block new_bb;
- tree dr_stmt = DR_STMT (dr);
- stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
- tree niters_type = TREE_TYPE (loop_niters);
-
- pe = loop_preheader_edge (loop);
-
- if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
- {
- int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
- int element_size = vectype_align/vf;
- int elem_misalign = byte_misalign / element_size;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "known alignment = %d.", byte_misalign);
- iters = build_int_cst (niters_type, (vf - elem_misalign)&(vf-1));
- }
- else
- {
- tree new_stmts = NULL_TREE;
- tree start_addr =
- vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
- tree ptr_type = TREE_TYPE (start_addr);
- tree size = TYPE_SIZE (ptr_type);
- tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
- tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
- tree elem_size_log =
- build_int_cst (type, exact_log2 (vectype_align/vf));
- tree vf_minus_1 = build_int_cst (type, vf - 1);
- tree vf_tree = build_int_cst (type, vf);
- tree byte_misalign;
- tree elem_misalign;
-
- new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
- gcc_assert (!new_bb);
-
- /* Create: byte_misalign = addr & (vectype_size - 1) */
- byte_misalign =
- build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
-
- /* Create: elem_misalign = byte_misalign / element_size */
- elem_misalign =
- build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
-
- /* Create: (niters_type) (VF - elem_misalign)&(VF - 1) */
- iters = build2 (MINUS_EXPR, type, vf_tree, elem_misalign);
- iters = build2 (BIT_AND_EXPR, type, iters, vf_minus_1);
- iters = fold_convert (niters_type, iters);
- }
-
- /* Create: prolog_loop_niters = min (iters, loop_niters) */
- /* If the loop bound is known at compile time we already verified that it is
- greater than vf; since the misalignment ('iters') is at most vf, there's
- no need to generate the MIN_EXPR in this case. */
- if (TREE_CODE (loop_niters) != INTEGER_CST)
- iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "niters for prolog loop: ");
- print_generic_expr (vect_dump, iters, TDF_SLIM);
- }
-
- var = create_tmp_var (niters_type, "prolog_loop_niters");
- add_referenced_var (var);
- iters_name = force_gimple_operand (iters, &stmt, false, var);
-
- /* Insert stmt on loop preheader edge. */
- if (stmt)
- {
- basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
- gcc_assert (!new_bb);
- }
-
- return iters_name;
-}
-
-
-/* Function vect_update_init_of_dr
-
- NITERS iterations were peeled from LOOP. DR represents a data reference
- in LOOP. This function updates the information recorded in DR to
- account for the fact that the first NITERS iterations had already been
- executed. Specifically, it updates the OFFSET field of DR. */
-
-static void
-vect_update_init_of_dr (struct data_reference *dr, tree niters)
-{
- tree offset = DR_OFFSET (dr);
-
- niters = fold_build2 (MULT_EXPR, TREE_TYPE (niters), niters, DR_STEP (dr));
- offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, niters);
- DR_OFFSET (dr) = offset;
-}
-
-
-/* Function vect_update_inits_of_drs
-
- NITERS iterations were peeled from the loop represented by LOOP_VINFO.
- This function updates the information recorded for the data references in
- the loop to account for the fact that the first NITERS iterations had
- already been executed. Specifically, it updates the initial_condition of the
- access_function of all the data_references in the loop. */
-
-static void
-vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
-{
- unsigned int i;
- VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
- struct data_reference *dr;
-
- if (vect_dump && (dump_flags & TDF_DETAILS))
- fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- vect_update_init_of_dr (dr, niters);
-}
-
-
-/* Function vect_do_peeling_for_alignment
-
- Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
- 'niters' is set to the misalignment of one of the data references in the
- loop, thereby forcing it to refer to an aligned location at the beginning
- of the execution of this loop. The data reference for which we are
- peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
-
-static void
-vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree niters_of_prolog_loop, ni_name;
- tree n_iters;
- struct loop *new_loop;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
-
- initialize_original_copy_tables ();
-
- ni_name = vect_build_loop_niters (loop_vinfo);
- niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
-
- /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
- new_loop =
- slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop),
- niters_of_prolog_loop, ni_name, true);
- gcc_assert (new_loop);
-#ifdef ENABLE_CHECKING
- slpeel_verify_cfg_after_peeling (new_loop, loop);
-#endif
-
- /* Update number of times loop executes. */
- n_iters = LOOP_VINFO_NITERS (loop_vinfo);
- LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
- TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
-
- /* Update the init conditions of the access functions of all data refs. */
- vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
-
- /* After peeling we have to reset scalar evolution analyzer. */
- scev_reset ();
-
- free_original_copy_tables ();
-}
-
-
-/* Function vect_create_cond_for_align_checks.
-
- Create a conditional expression that represents the alignment checks for
- all of data references (array element references) whose alignment must be
- checked at runtime.
-
- Input:
- LOOP_VINFO - two fields of the loop information are used.
- LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
- LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
-
- Output:
- COND_EXPR_STMT_LIST - statements needed to construct the conditional
- expression.
- The returned value is the conditional expression to be used in the if
- statement that controls which version of the loop gets executed at runtime.
-
- The algorithm makes two assumptions:
- 1) The number of bytes "n" in a vector is a power of 2.
- 2) An address "a" is aligned if a%n is zero and that this
- test can be done as a&(n-1) == 0. For example, for 16
- byte vectors the test is a&0xf == 0. */
-
-static tree
-vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
- tree *cond_expr_stmt_list)
-{
- VEC(tree,heap) *may_misalign_stmts
- = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
- tree ref_stmt;
- int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
- tree mask_cst;
- unsigned int i;
- tree psize;
- tree int_ptrsize_type;
- char tmp_name[20];
- tree or_tmp_name = NULL_TREE;
- tree and_tmp, and_tmp_name, and_stmt;
- tree ptrsize_zero;
-
- /* Check that mask is one less than a power of 2, i.e., mask is
- all zeros followed by all ones. */
- gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
-
- /* CHECKME: what is the best integer or unsigned type to use to hold a
- cast from a pointer value? */
- psize = TYPE_SIZE (ptr_type_node);
- int_ptrsize_type
- = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
-
- /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
- of the first vector of the i'th data reference. */
-
- for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, ref_stmt); i++)
- {
- tree new_stmt_list = NULL_TREE;
- tree addr_base;
- tree addr_tmp, addr_tmp_name, addr_stmt;
- tree or_tmp, new_or_tmp_name, or_stmt;
-
- /* create: addr_tmp = (int)(address_of_first_vector) */
- addr_base = vect_create_addr_base_for_vector_ref (ref_stmt,
- &new_stmt_list,
- NULL_TREE);
-
- if (new_stmt_list != NULL_TREE)
- append_to_statement_list_force (new_stmt_list, cond_expr_stmt_list);
-
- sprintf (tmp_name, "%s%d", "addr2int", i);
- addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
- add_referenced_var (addr_tmp);
- addr_tmp_name = make_ssa_name (addr_tmp, NULL_TREE);
- addr_stmt = fold_convert (int_ptrsize_type, addr_base);
- addr_stmt = build2 (MODIFY_EXPR, void_type_node,
- addr_tmp_name, addr_stmt);
- SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
- append_to_statement_list_force (addr_stmt, cond_expr_stmt_list);
-
- /* The addresses are OR together. */
-
- if (or_tmp_name != NULL_TREE)
- {
- /* create: or_tmp = or_tmp | addr_tmp */
- sprintf (tmp_name, "%s%d", "orptrs", i);
- or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
- add_referenced_var (or_tmp);
- new_or_tmp_name = make_ssa_name (or_tmp, NULL_TREE);
- or_stmt = build2 (MODIFY_EXPR, void_type_node, new_or_tmp_name,
- build2 (BIT_IOR_EXPR, int_ptrsize_type,
- or_tmp_name,
- addr_tmp_name));
- SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
- append_to_statement_list_force (or_stmt, cond_expr_stmt_list);
- or_tmp_name = new_or_tmp_name;
- }
- else
- or_tmp_name = addr_tmp_name;
-
- } /* end for i */
-
- mask_cst = build_int_cst (int_ptrsize_type, mask);
-
- /* create: and_tmp = or_tmp & mask */
- and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
- add_referenced_var (and_tmp);
- and_tmp_name = make_ssa_name (and_tmp, NULL_TREE);
-
- and_stmt = build2 (MODIFY_EXPR, void_type_node,
- and_tmp_name,
- build2 (BIT_AND_EXPR, int_ptrsize_type,
- or_tmp_name, mask_cst));
- SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
- append_to_statement_list_force (and_stmt, cond_expr_stmt_list);
-
- /* Make and_tmp the left operand of the conditional test against zero.
- if and_tmp has a nonzero bit then some address is unaligned. */
- ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
- return build2 (EQ_EXPR, boolean_type_node,
- and_tmp_name, ptrsize_zero);
-}
-
-
-/* Function vect_transform_loop.
-
- The analysis phase has determined that the loop is vectorizable.
- Vectorize the loop - created vectorized stmts to replace the scalar
- stmts in the loop, and update the loop exit condition. */
-
-void
-vect_transform_loop (loop_vec_info loop_vinfo,
- struct loops *loops ATTRIBUTE_UNUSED)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes;
- block_stmt_iterator si;
- int i;
- tree ratio = NULL;
- int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- bitmap_iterator bi;
- unsigned int j;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vec_transform_loop ===");
-
- /* If the loop has data references that may or may not be aligned then
- two versions of the loop need to be generated, one which is vectorized
- and one which isn't. A test is then generated to control which of the
- loops is executed. The test checks for the alignment of all of the
- data references that may or may not be aligned. */
-
- if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
- {
- struct loop *nloop;
- tree cond_expr;
- tree cond_expr_stmt_list = NULL_TREE;
- basic_block condition_bb;
- block_stmt_iterator cond_exp_bsi;
- basic_block merge_bb;
- basic_block new_exit_bb;
- edge new_exit_e, e;
- tree orig_phi, new_phi, arg;
-
- cond_expr = vect_create_cond_for_align_checks (loop_vinfo,
- &cond_expr_stmt_list);
- initialize_original_copy_tables ();
- nloop = loop_version (loops, loop, cond_expr, &condition_bb, true);
- free_original_copy_tables();
-
- /** Loop versioning violates an assumption we try to maintain during
- vectorization - that the loop exit block has a single predecessor.
- After versioning, the exit block of both loop versions is the same
- basic block (i.e. it has two predecessors). Just in order to simplify
- following transformations in the vectorizer, we fix this situation
- here by adding a new (empty) block on the exit-edge of the loop,
- with the proper loop-exit phis to maintain loop-closed-form. **/
-
- merge_bb = loop->single_exit->dest;
- gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
- new_exit_bb = split_edge (loop->single_exit);
- add_bb_to_loop (new_exit_bb, loop->outer);
- new_exit_e = loop->single_exit;
- e = EDGE_SUCC (new_exit_bb, 0);
-
- for (orig_phi = phi_nodes (merge_bb); orig_phi;
- orig_phi = PHI_CHAIN (orig_phi))
- {
- new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
- new_exit_bb);
- arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
- add_phi_arg (new_phi, arg, new_exit_e);
- SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
- }
-
- /** end loop-exit-fixes after versioning **/
-
- update_ssa (TODO_update_ssa);
- cond_exp_bsi = bsi_last (condition_bb);
- bsi_insert_before (&cond_exp_bsi, cond_expr_stmt_list, BSI_SAME_STMT);
- }
-
- /* CHECKME: we wouldn't need this if we called update_ssa once
- for all loops. */
- bitmap_zero (vect_vnames_to_rename);
-
- /* Peel the loop if there are data refs with unknown alignment.
- Only one data ref with unknown store is allowed. */
-
- if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
- vect_do_peeling_for_alignment (loop_vinfo, loops);
-
- /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
- compile time constant), or it is a constant that doesn't divide by the
- vectorization factor, then an epilog loop needs to be created.
- We therefore duplicate the loop: the original loop will be vectorized,
- and will compute the first (n/VF) iterations. The second copy of the loop
- will remain scalar and will compute the remaining (n%VF) iterations.
- (VF is the vectorization factor). */
-
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
- vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
- else
- ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
- LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
-
- /* 1) Make sure the loop header has exactly two entries
- 2) Make sure we have a preheader basic block. */
-
- gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
-
- loop_split_edge_with (loop_preheader_edge (loop), NULL);
-
-
- /* FORNOW: the vectorizer supports only loops which body consist
- of one basic block (header + empty latch). When the vectorizer will
- support more involved loop forms, the order by which the BBs are
- traversed need to be reconsidered. */
-
- for (i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
-
- for (si = bsi_start (bb); !bsi_end_p (si);)
- {
- tree stmt = bsi_stmt (si);
- stmt_vec_info stmt_info;
- bool is_store;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "------>vectorizing statement: ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
- stmt_info = vinfo_for_stmt (stmt);
- gcc_assert (stmt_info);
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- {
- bsi_next (&si);
- continue;
- }
- /* FORNOW: Verify that all stmts operate on the same number of
- units and no inner unrolling is necessary. */
- gcc_assert
- (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
- == (unsigned HOST_WIDE_INT) vectorization_factor);
-
- /* -------- vectorize statement ------------ */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform statement.");
-
- is_store = vect_transform_stmt (stmt, &si);
- if (is_store)
- {
- /* Free the attached stmt_vec_info and remove the stmt. */
- stmt_ann_t ann = stmt_ann (stmt);
- free (stmt_info);
- set_stmt_info (ann, NULL);
- bsi_remove (&si, true);
- continue;
- }
-
- bsi_next (&si);
- } /* stmts in BB */
- } /* BBs in loop */
-
- slpeel_make_loop_iterate_ntimes (loop, ratio);
-
- EXECUTE_IF_SET_IN_BITMAP (vect_vnames_to_rename, 0, j, bi)
- mark_sym_for_renaming (SSA_NAME_VAR (ssa_name (j)));
-
- /* The memory tags and pointers in vectorized statements need to
- have their SSA forms updated. FIXME, why can't this be delayed
- until all the loops have been transformed? */
- update_ssa (TODO_update_ssa);
-
- if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
- fprintf (vect_dump, "LOOP VECTORIZED.");
-}