aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c2162
1 files changed, 0 insertions, 2162 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c b/gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c
deleted file mode 100644
index 10656cf5d..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c
+++ /dev/null
@@ -1,2162 +0,0 @@
-/* Analysis Utilities for Loop Vectorization.
- Copyright (C) 2003,2004,2005,2006 Free Software Foundation, Inc.
- Contributed by Dorit Naishlos <dorit@il.ibm.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "ggc.h"
-#include "tree.h"
-/* APPLE LOCAL mainline 4.2 5569774 */
-#include "target.h"
-#include "basic-block.h"
-#include "diagnostic.h"
-#include "tree-flow.h"
-#include "tree-dump.h"
-#include "timevar.h"
-#include "cfgloop.h"
-#include "expr.h"
-#include "optabs.h"
-#include "params.h"
-#include "tree-chrec.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "tree-vectorizer.h"
-
-/* Main analysis functions. */
-static loop_vec_info vect_analyze_loop_form (struct loop *);
-static bool vect_analyze_data_refs (loop_vec_info);
-static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
-static void vect_analyze_scalar_cycles (loop_vec_info);
-static bool vect_analyze_data_ref_accesses (loop_vec_info);
-static bool vect_analyze_data_ref_dependences (loop_vec_info);
-static bool vect_analyze_data_refs_alignment (loop_vec_info);
-static bool vect_compute_data_refs_alignment (loop_vec_info);
-static bool vect_enhance_data_refs_alignment (loop_vec_info);
-static bool vect_analyze_operations (loop_vec_info);
-static bool vect_determine_vectorization_factor (loop_vec_info);
-
-/* Utility functions for the analyses. */
-static bool exist_non_indexing_operands_for_use_p (tree, tree);
-static void vect_mark_relevant (VEC(tree,heap) **, tree, bool, bool);
-static bool vect_stmt_relevant_p (tree, loop_vec_info, bool *, bool *);
-static tree vect_get_loop_niters (struct loop *, tree *);
-static bool vect_analyze_data_ref_dependence
- (struct data_dependence_relation *, loop_vec_info);
-static bool vect_compute_data_ref_alignment (struct data_reference *);
-static bool vect_analyze_data_ref_access (struct data_reference *);
-static bool vect_can_advance_ivs_p (loop_vec_info);
-static void vect_update_misalignment_for_peel
- (struct data_reference *, struct data_reference *, int npeel);
-
-
-/* Function vect_determine_vectorization_factor
-
- Determine the vectorization factor (VF). VF is the number of data elements
- that are operated upon in parallel in a single iteration of the vectorized
- loop. For example, when vectorizing a loop that operates on 4byte elements,
- on a target with vector size (VS) 16byte, the VF is set to 4, since 4
- elements can fit in a single vector register.
-
- We currently support vectorization of loops in which all types operated upon
- are of the same size. Therefore this function currently sets VF according to
- the size of the types operated upon, and fails if there are multiple sizes
- in the loop.
-
- VF is also the factor by which the loop iterations are strip-mined, e.g.:
- original loop:
- for (i=0; i<N; i++){
- a[i] = b[i] + c[i];
- }
-
- vectorized loop:
- for (i=0; i<N; i+=VF){
- a[i:VF] = b[i:VF] + c[i:VF];
- }
-*/
-
-static bool
-vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes;
- block_stmt_iterator si;
- unsigned int vectorization_factor = 0;
- int i;
- tree scalar_type;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
-
- for (i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
-
- for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
- {
- tree stmt = bsi_stmt (si);
- unsigned int nunits;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "==> examining statement: ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
-
- gcc_assert (stmt_info);
- /* skip stmts which do not need to be vectorized. */
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "skip.");
- continue;
- }
-
- if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump, "not vectorized: vector stmt in loop:");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
- return false;
- }
-
- if (STMT_VINFO_VECTYPE (stmt_info))
- {
- vectype = STMT_VINFO_VECTYPE (stmt_info);
- scalar_type = TREE_TYPE (vectype);
- }
- else
- {
- if (STMT_VINFO_DATA_REF (stmt_info))
- scalar_type =
- TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
- else if (TREE_CODE (stmt) == MODIFY_EXPR)
- scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0));
- else
- scalar_type = TREE_TYPE (stmt);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "get vectype for scalar type: ");
- print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
- }
-
- vectype = get_vectype_for_scalar_type (scalar_type);
- if (!vectype)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump,
- "not vectorized: unsupported data-type ");
- print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
- }
- return false;
- }
- STMT_VINFO_VECTYPE (stmt_info) = vectype;
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "vectype: ");
- print_generic_expr (vect_dump, vectype, TDF_SLIM);
- }
-
- nunits = TYPE_VECTOR_SUBPARTS (vectype);
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "nunits = %d", nunits);
-
- if (vectorization_factor)
- {
- /* FORNOW: don't allow mixed units.
- This restriction will be relaxed in the future. */
- if (nunits != vectorization_factor)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: mixed data-types");
- return false;
- }
- }
- else
- vectorization_factor = nunits;
-
- gcc_assert (GET_MODE_SIZE (TYPE_MODE (scalar_type))
- * vectorization_factor == UNITS_PER_SIMD_WORD);
- }
- }
-
- /* TODO: Analyze cost. Decide if worth while to vectorize. */
-
- if (vectorization_factor <= 1)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: unsupported data-type");
- return false;
- }
- LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
-
- return true;
-}
-
-
-/* Function vect_analyze_operations.
-
- Scan the loop stmts and make sure they are all vectorizable. */
-
-static bool
-vect_analyze_operations (loop_vec_info loop_vinfo)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes;
- block_stmt_iterator si;
- unsigned int vectorization_factor = 0;
- int i;
- bool ok;
- tree phi;
- stmt_vec_info stmt_info;
- bool need_to_vectorize = false;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_analyze_operations ===");
-
- gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
- vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
-
- for (i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
-
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- {
- stmt_info = vinfo_for_stmt (phi);
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "examining phi: ");
- print_generic_expr (vect_dump, phi, TDF_SLIM);
- }
-
- gcc_assert (stmt_info);
-
- if (STMT_VINFO_LIVE_P (stmt_info))
- {
- /* FORNOW: not yet supported. */
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: value used after loop.");
- return false;
- }
-
- if (STMT_VINFO_RELEVANT_P (stmt_info))
- {
- /* Most likely a reduction-like computation that is used
- in the loop. */
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: unsupported pattern.");
- return false;
- }
- }
-
- for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
- {
- tree stmt = bsi_stmt (si);
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "==> examining statement: ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
-
- gcc_assert (stmt_info);
-
- /* skip stmts which do not need to be vectorized.
- this is expected to include:
- - the COND_EXPR which is the loop exit condition
- - any LABEL_EXPRs in the loop
- - computations that are used only for array indexing or loop
- control */
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "irrelevant.");
- continue;
- }
-
- if (STMT_VINFO_RELEVANT_P (stmt_info))
- {
- gcc_assert (!VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))));
- gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
-
- ok = (vectorizable_operation (stmt, NULL, NULL)
- || vectorizable_assignment (stmt, NULL, NULL)
- || vectorizable_load (stmt, NULL, NULL)
- || vectorizable_store (stmt, NULL, NULL)
- || vectorizable_condition (stmt, NULL, NULL));
-
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump,
- "not vectorized: relevant stmt not supported: ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
- return false;
- }
- need_to_vectorize = true;
- }
-
- if (STMT_VINFO_LIVE_P (stmt_info))
- {
- ok = vectorizable_reduction (stmt, NULL, NULL);
-
- if (ok)
- need_to_vectorize = true;
- else
- ok = vectorizable_live_operation (stmt, NULL, NULL);
-
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump,
- "not vectorized: live stmt not supported: ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
- return false;
- }
- }
- } /* stmts in bb */
- } /* bbs */
-
- /* TODO: Analyze cost. Decide if worth while to vectorize. */
-
- /* All operations in the loop are either irrelevant (deal with loop
- control, or dead), or only used outside the loop and can be moved
- out of the loop (e.g. invariants, inductions). The loop can be
- optimized away by scalar optimizations. We're better off not
- touching this loop. */
- if (!need_to_vectorize)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump,
- "All the computation can be taken out of the loop.");
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump,
- "not vectorized: redundant loop. no profit to vectorize.");
- return false;
- }
-
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- && vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump,
- "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
- vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
-
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- && LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: iteration count too small.");
- return false;
- }
-
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
- || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "epilog loop required.");
- if (!vect_can_advance_ivs_p (loop_vinfo))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump,
- "not vectorized: can't create epilog loop 1.");
- return false;
- }
- if (!slpeel_can_duplicate_loop_p (loop, loop->single_exit))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump,
- "not vectorized: can't create epilog loop 2.");
- return false;
- }
- }
-
- return true;
-}
-
-
-/* Function exist_non_indexing_operands_for_use_p
-
- USE is one of the uses attached to STMT. Check if USE is
- used in STMT for anything other than indexing an array. */
-
-static bool
-exist_non_indexing_operands_for_use_p (tree use, tree stmt)
-{
- tree operand;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-
- /* USE corresponds to some operand in STMT. If there is no data
- reference in STMT, then any operand that corresponds to USE
- is not indexing an array. */
- if (!STMT_VINFO_DATA_REF (stmt_info))
- return true;
-
- /* STMT has a data_ref. FORNOW this means that its of one of
- the following forms:
- -1- ARRAY_REF = var
- -2- var = ARRAY_REF
- (This should have been verified in analyze_data_refs).
-
- 'var' in the second case corresponds to a def, not a use,
- so USE cannot correspond to any operands that are not used
- for array indexing.
-
- Therefore, all we need to check is if STMT falls into the
- first case, and whether var corresponds to USE. */
-
- if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
- return false;
-
- operand = TREE_OPERAND (stmt, 1);
-
- if (TREE_CODE (operand) != SSA_NAME)
- return false;
-
- if (operand == use)
- return true;
-
- return false;
-}
-
-
-/* Function vect_analyze_scalar_cycles.
-
- Examine the cross iteration def-use cycles of scalar variables, by
- analyzing the loop (scalar) PHIs; Classify each cycle as one of the
- following: invariant, induction, reduction, unknown.
-
- Some forms of scalar cycles are not yet supported.
-
- Example1: reduction: (unsupported yet)
-
- loop1:
- for (i=0; i<N; i++)
- sum += a[i];
-
- Example2: induction: (unsupported yet)
-
- loop2:
- for (i=0; i<N; i++)
- a[i] = i;
-
- Note: the following loop *is* vectorizable:
-
- loop3:
- for (i=0; i<N; i++)
- a[i] = b[i];
-
- even though it has a def-use cycle caused by the induction variable i:
-
- loop: i_2 = PHI (i_0, i_1)
- a[i_2] = ...;
- i_1 = i_2 + 1;
- GOTO loop;
-
- because the def-use cycle in loop3 is considered "not relevant" - i.e.,
- it does not need to be vectorized because it is only used for array
- indexing (see 'mark_stmts_to_be_vectorized'). The def-use cycle in
- loop2 on the other hand is relevant (it is being written to memory).
-*/
-
-static void
-vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
-{
- tree phi;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block bb = loop->header;
- tree dummy;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
-
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- {
- tree access_fn = NULL;
- tree def = PHI_RESULT (phi);
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
- tree reduc_stmt;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "Analyze phi: ");
- print_generic_expr (vect_dump, phi, TDF_SLIM);
- }
-
- /* Skip virtual phi's. The data dependences that are associated with
- virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
-
- if (!is_gimple_reg (SSA_NAME_VAR (def)))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "virtual phi. skip.");
- continue;
- }
-
- STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
-
- /* Analyze the evolution function. */
-
- access_fn = analyze_scalar_evolution (loop, def);
-
- if (!access_fn)
- continue;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "Access function of PHI: ");
- print_generic_expr (vect_dump, access_fn, TDF_SLIM);
- }
-
- if (vect_is_simple_iv_evolution (loop->num, access_fn, &dummy, &dummy))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Detected induction.");
- STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
- continue;
- }
-
- /* TODO: handle invariant phis */
-
- reduc_stmt = vect_is_simple_reduction (loop, phi);
- if (reduc_stmt)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Detected reduction.");
- STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
- STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
- vect_reduction_def;
- }
- else
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Unknown def-use cycle pattern.");
-
- }
-
- return;
-}
-
-
-/* Function vect_analyze_data_ref_dependence.
-
- Return TRUE if there (might) exist a dependence between a memory-reference
- DRA and a memory-reference DRB. */
-
-static bool
-vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
- loop_vec_info loop_vinfo)
-{
- unsigned int i;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- struct data_reference *dra = DDR_A (ddr);
- struct data_reference *drb = DDR_B (ddr);
- stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
- stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
- lambda_vector dist_v;
- unsigned int loop_depth;
-
- if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
- return false;
-
- if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump,
- "not vectorized: can't determine dependence between ");
- print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
- fprintf (vect_dump, " and ");
- print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
- }
- return true;
- }
-
- if (DDR_NUM_DIST_VECTS (ddr) == 0)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump, "not vectorized: bad dist vector for ");
- print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
- fprintf (vect_dump, " and ");
- print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
- }
- return true;
- }
-
- loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
- for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
- {
- int dist = dist_v[loop_depth];
-
- if (vect_print_dump_info (REPORT_DR_DETAILS))
- fprintf (vect_dump, "dependence distance = %d.", dist);
-
- /* Same loop iteration. */
- if (dist % vectorization_factor == 0)
- {
- /* Two references with distance zero have the same alignment. */
- VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a), drb);
- VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b), dra);
- if (vect_print_dump_info (REPORT_ALIGNMENT))
- fprintf (vect_dump, "accesses have the same alignment.");
- if (vect_print_dump_info (REPORT_DR_DETAILS))
- {
- fprintf (vect_dump, "dependence distance modulo vf == 0 between ");
- print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
- fprintf (vect_dump, " and ");
- print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
- }
- continue;
- }
-
- if (abs (dist) >= vectorization_factor)
- {
- /* Dependence distance does not create dependence, as far as vectorization
- is concerned, in this case. */
- if (vect_print_dump_info (REPORT_DR_DETAILS))
- fprintf (vect_dump, "dependence distance >= VF.");
- continue;
- }
-
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump,
- "not vectorized: possible dependence between data-refs ");
- print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
- fprintf (vect_dump, " and ");
- print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
- }
-
- return true;
- }
-
- return false;
-}
-
-
-/* Function vect_analyze_data_ref_dependences.
-
- Examine all the data references in the loop, and make sure there do not
- exist any data dependences between them. */
-
-static bool
-vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
-{
- unsigned int i;
- VEC (ddr_p, heap) *ddrs = LOOP_VINFO_DDRS (loop_vinfo);
- struct data_dependence_relation *ddr;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_analyze_dependences ===");
-
- for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
- if (vect_analyze_data_ref_dependence (ddr, loop_vinfo))
- return false;
-
- return true;
-}
-
-
-/* Function vect_compute_data_ref_alignment
-
- Compute the misalignment of the data reference DR.
-
- Output:
- 1. If during the misalignment computation it is found that the data reference
- cannot be vectorized then false is returned.
- 2. DR_MISALIGNMENT (DR) is defined.
-
- FOR NOW: No analysis is actually performed. Misalignment is calculated
- only for trivial cases. TODO. */
-
-static bool
-vect_compute_data_ref_alignment (struct data_reference *dr)
-{
- tree stmt = DR_STMT (dr);
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree ref = DR_REF (dr);
- tree vectype;
- tree base, base_addr;
- bool base_aligned;
- tree misalign;
- tree aligned_to, alignment;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "vect_compute_data_ref_alignment:");
-
- /* Initialize misalignment to unknown. */
- DR_MISALIGNMENT (dr) = -1;
-
- misalign = DR_OFFSET_MISALIGNMENT (dr);
- aligned_to = DR_ALIGNED_TO (dr);
- base_addr = DR_BASE_ADDRESS (dr);
- base = build_fold_indirect_ref (base_addr);
- vectype = STMT_VINFO_VECTYPE (stmt_info);
- alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
-
- if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
- || !misalign)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "Unknown alignment for access: ");
- print_generic_expr (vect_dump, base, TDF_SLIM);
- }
- return true;
- }
-
- if ((DECL_P (base)
- && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
- alignment) >= 0)
- || (TREE_CODE (base_addr) == SSA_NAME
- && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
- TREE_TYPE (base_addr)))),
- alignment) >= 0))
- base_aligned = true;
- else
- base_aligned = false;
-
- if (!base_aligned)
- {
- /* Do not change the alignment of global variables if
- flag_section_anchors is enabled. */
- if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
- || (TREE_STATIC (base) && flag_section_anchors))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "can't force alignment of ref: ");
- print_generic_expr (vect_dump, ref, TDF_SLIM);
- }
- return true;
- }
-
- /* Force the alignment of the decl.
- NOTE: This is the only change to the code we make during
- the analysis phase, before deciding to vectorize the loop. */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "force alignment");
- DECL_ALIGN (base) = TYPE_ALIGN (vectype);
- DECL_USER_ALIGN (base) = 1;
- }
-
- /* At this point we assume that the base is aligned. */
- gcc_assert (base_aligned
- || (TREE_CODE (base) == VAR_DECL
- && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
-
- /* Modulo alignment. */
- misalign = size_binop (TRUNC_MOD_EXPR, misalign, alignment);
-
- if (!host_integerp (misalign, 1))
- {
- /* Negative or overflowed misalignment value. */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "unexpected misalign value");
- return false;
- }
-
- DR_MISALIGNMENT (dr) = TREE_INT_CST_LOW (misalign);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
- print_generic_expr (vect_dump, ref, TDF_SLIM);
- }
-
- return true;
-}
-
-
-/* Function vect_compute_data_refs_alignment
-
- Compute the misalignment of data references in the loop.
- Return FALSE if a data reference is found that cannot be vectorized. */
-
-static bool
-vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
-{
- VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
- struct data_reference *dr;
- unsigned int i;
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- if (!vect_compute_data_ref_alignment (dr))
- return false;
-
- return true;
-}
-
-
-/* Function vect_update_misalignment_for_peel
-
- DR - the data reference whose misalignment is to be adjusted.
- DR_PEEL - the data reference whose misalignment is being made
- zero in the vector loop by the peel.
- NPEEL - the number of iterations in the peel loop if the misalignment
- of DR_PEEL is known at compile time. */
-
-static void
-vect_update_misalignment_for_peel (struct data_reference *dr,
- struct data_reference *dr_peel, int npeel)
-{
- unsigned int i;
- int drsize;
- VEC(dr_p,heap) *same_align_drs;
- struct data_reference *current_dr;
-
- if (known_alignment_for_access_p (dr)
- && DR_MISALIGNMENT (dr) == DR_MISALIGNMENT (dr_peel))
- {
- DR_MISALIGNMENT (dr) = 0;
- return;
- }
-
- /* It can be assumed that the data refs with the same alignment as dr_peel
- are aligned in the vector loop. */
- same_align_drs
- = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
- for (i = 0; VEC_iterate (dr_p, same_align_drs, i, current_dr); i++)
- {
- if (current_dr != dr)
- continue;
- gcc_assert (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT (dr_peel));
- DR_MISALIGNMENT (dr) = 0;
- return;
- }
-
- if (known_alignment_for_access_p (dr)
- && known_alignment_for_access_p (dr_peel))
- {
- drsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
- DR_MISALIGNMENT (dr) += npeel * drsize;
- DR_MISALIGNMENT (dr) %= UNITS_PER_SIMD_WORD;
- return;
- }
-
- DR_MISALIGNMENT (dr) = -1;
-}
-
-
-/* Function vect_verify_datarefs_alignment
-
- Return TRUE if all data references in the loop can be
- handled with respect to alignment. */
-
-static bool
-vect_verify_datarefs_alignment (loop_vec_info loop_vinfo)
-{
- VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
- struct data_reference *dr;
- enum dr_alignment_support supportable_dr_alignment;
- unsigned int i;
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- {
- supportable_dr_alignment = vect_supportable_dr_alignment (dr);
- if (!supportable_dr_alignment)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- if (DR_IS_READ (dr))
- fprintf (vect_dump,
- "not vectorized: unsupported unaligned load.");
- else
- fprintf (vect_dump,
- "not vectorized: unsupported unaligned store.");
- }
- return false;
- }
- if (supportable_dr_alignment != dr_aligned
- && vect_print_dump_info (REPORT_ALIGNMENT))
- fprintf (vect_dump, "Vectorizing an unaligned access.");
- }
- return true;
-}
-
-
-/* APPLE LOCAL begin mainline 4.2 5569774 */
-/* Function vector_alignment_reachable_p
-
- Return true if vector alignment for DR is reachable by peeling
- a few loop iterations. Return false otherwise. */
-
-static bool
-vector_alignment_reachable_p (struct data_reference *dr)
-{
- tree stmt = DR_STMT (dr);
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
-
- /* If misalignment is known at the compile time then allow peeling
- only if natural alignment is reachable through peeling. */
- if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
- {
- HOST_WIDE_INT elmsize =
- int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
- fprintf (vect_dump, ". misalignment = %d. ", DR_MISALIGNMENT (dr));
- }
- if (DR_MISALIGNMENT (dr) % elmsize)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "data size does not divide the misalignment.\n");
- return false;
- }
- }
-
- if (!known_alignment_for_access_p (dr))
- {
- tree type = (TREE_TYPE (DR_REF (dr)));
- tree ba = DR_BASE_OBJECT (dr);
- bool is_packed = false;
-
- if (ba)
- is_packed = contains_packed_reference (ba);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Unknown misalignment, is_packed = %d",is_packed);
- if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
- return true;
- else
- return false;
- }
-
- return true;
-}
-/* APPLE LOCAL end mainline 4.2 5569774 */
-
-/* Function vect_enhance_data_refs_alignment
-
- This pass will use loop versioning and loop peeling in order to enhance
- the alignment of data references in the loop.
-
- FOR NOW: we assume that whatever versioning/peeling takes place, only the
- original loop is to be vectorized; Any other loops that are created by
- the transformations performed in this pass - are not supposed to be
- vectorized. This restriction will be relaxed.
-
- This pass will require a cost model to guide it whether to apply peeling
- or versioning or a combination of the two. For example, the scheme that
- intel uses when given a loop with several memory accesses, is as follows:
- choose one memory access ('p') which alignment you want to force by doing
- peeling. Then, either (1) generate a loop in which 'p' is aligned and all
- other accesses are not necessarily aligned, or (2) use loop versioning to
- generate one loop in which all accesses are aligned, and another loop in
- which only 'p' is necessarily aligned.
-
- ("Automatic Intra-Register Vectorization for the Intel Architecture",
- Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
- Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
-
- Devising a cost model is the most critical aspect of this work. It will
- guide us on which access to peel for, whether to use loop versioning, how
- many versions to create, etc. The cost model will probably consist of
- generic considerations as well as target specific considerations (on
- powerpc for example, misaligned stores are more painful than misaligned
- loads).
-
- Here are the general steps involved in alignment enhancements:
-
- -- original loop, before alignment analysis:
- for (i=0; i<N; i++){
- x = q[i]; # DR_MISALIGNMENT(q) = unknown
- p[i] = y; # DR_MISALIGNMENT(p) = unknown
- }
-
- -- After vect_compute_data_refs_alignment:
- for (i=0; i<N; i++){
- x = q[i]; # DR_MISALIGNMENT(q) = 3
- p[i] = y; # DR_MISALIGNMENT(p) = unknown
- }
-
- -- Possibility 1: we do loop versioning:
- if (p is aligned) {
- for (i=0; i<N; i++){ # loop 1A
- x = q[i]; # DR_MISALIGNMENT(q) = 3
- p[i] = y; # DR_MISALIGNMENT(p) = 0
- }
- }
- else {
- for (i=0; i<N; i++){ # loop 1B
- x = q[i]; # DR_MISALIGNMENT(q) = 3
- p[i] = y; # DR_MISALIGNMENT(p) = unaligned
- }
- }
-
- -- Possibility 2: we do loop peeling:
- for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
- x = q[i];
- p[i] = y;
- }
- for (i = 3; i < N; i++){ # loop 2A
- x = q[i]; # DR_MISALIGNMENT(q) = 0
- p[i] = y; # DR_MISALIGNMENT(p) = unknown
- }
-
- -- Possibility 3: combination of loop peeling and versioning:
- for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
- x = q[i];
- p[i] = y;
- }
- if (p is aligned) {
- for (i = 3; i<N; i++){ # loop 3A
- x = q[i]; # DR_MISALIGNMENT(q) = 0
- p[i] = y; # DR_MISALIGNMENT(p) = 0
- }
- }
- else {
- for (i = 3; i<N; i++){ # loop 3B
- x = q[i]; # DR_MISALIGNMENT(q) = 0
- p[i] = y; # DR_MISALIGNMENT(p) = unaligned
- }
- }
-
- These loops are later passed to loop_transform to be vectorized. The
- vectorizer will use the alignment information to guide the transformation
- (whether to generate regular loads/stores, or with special handling for
- misalignment). */
-
-static bool
-vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
-{
- VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
- enum dr_alignment_support supportable_dr_alignment;
- struct data_reference *dr0 = NULL;
- struct data_reference *dr;
- unsigned int i;
- bool do_peeling = false;
- bool do_versioning = false;
- bool stat;
-
- /* While cost model enhancements are expected in the future, the high level
- view of the code at this time is as follows:
-
- A) If there is a misaligned write then see if peeling to align this write
- can make all data references satisfy vect_supportable_dr_alignment.
- If so, update data structures as needed and return true. Note that
- at this time vect_supportable_dr_alignment is known to return false
- for a a misaligned write.
-
- B) If peeling wasn't possible and there is a data reference with an
- unknown misalignment that does not satisfy vect_supportable_dr_alignment
- then see if loop versioning checks can be used to make all data
- references satisfy vect_supportable_dr_alignment. If so, update
- data structures as needed and return true.
-
- C) If neither peeling nor versioning were successful then return false if
- any data reference does not satisfy vect_supportable_dr_alignment.
-
- D) Return true (all data references satisfy vect_supportable_dr_alignment).
-
- Note, Possibility 3 above (which is peeling and versioning together) is not
- being done at this time. */
-
- /* (1) Peeling to force alignment. */
-
- /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
- Considerations:
- + How many accesses will become aligned due to the peeling
- - How many accesses will become unaligned due to the peeling,
- and the cost of misaligned accesses.
- - The cost of peeling (the extra runtime checks, the increase
- in code size).
-
- The scheme we use FORNOW: peel to force the alignment of the first
- misaligned store in the loop.
- Rationale: misaligned stores are not yet supported.
-
- TODO: Use a cost model. */
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- if (!DR_IS_READ (dr) && !aligned_access_p (dr))
- {
- /* APPLE LOCAL begin mainline 4.2 5569774 */
- do_peeling = vector_alignment_reachable_p (dr);
- if (do_peeling)
- dr0 = dr;
- if (!do_peeling && vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "vector alignment may not be reachable");
- /* APPLE LOCAL end mainline 4.2 5569774 */
- break;
- }
-
- /* Often peeling for alignment will require peeling for loop-bound, which in
- turn requires that we know how to adjust the loop ivs after the loop. */
- if (!vect_can_advance_ivs_p (loop_vinfo))
- do_peeling = false;
-
- if (do_peeling)
- {
- int mis;
- int npeel = 0;
-
- if (known_alignment_for_access_p (dr0))
- {
- /* Since it's known at compile time, compute the number of iterations
- in the peeled loop (the peeling factor) for use in updating
- DR_MISALIGNMENT values. The peeling factor is the vectorization
- factor minus the misalignment as an element count. */
- mis = DR_MISALIGNMENT (dr0);
- mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
- npeel = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - mis;
- }
-
- /* Ensure that all data refs can be vectorized after the peel. */
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- {
- int save_misalignment;
-
- if (dr == dr0)
- continue;
-
- save_misalignment = DR_MISALIGNMENT (dr);
- vect_update_misalignment_for_peel (dr, dr0, npeel);
- supportable_dr_alignment = vect_supportable_dr_alignment (dr);
- DR_MISALIGNMENT (dr) = save_misalignment;
-
- if (!supportable_dr_alignment)
- {
- do_peeling = false;
- break;
- }
- }
-
- if (do_peeling)
- {
- /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
- If the misalignment of DR_i is identical to that of dr0 then set
- DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
- dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
- by the peeling factor times the element size of DR_i (MOD the
- vectorization factor times the size). Otherwise, the
- misalignment of DR_i must be set to unknown. */
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- if (dr != dr0)
- vect_update_misalignment_for_peel (dr, dr0, npeel);
-
- LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
- LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
- DR_MISALIGNMENT (dr0) = 0;
- if (vect_print_dump_info (REPORT_ALIGNMENT))
- fprintf (vect_dump, "Alignment of access forced using peeling.");
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Peeling for alignment will be applied.");
-
- stat = vect_verify_datarefs_alignment (loop_vinfo);
- gcc_assert (stat);
- return stat;
- }
- }
-
-
- /* (2) Versioning to force alignment. */
-
- /* Try versioning if:
- 1) flag_tree_vect_loop_version is TRUE
- 2) optimize_size is FALSE
- 3) there is at least one unsupported misaligned data ref with an unknown
- misalignment, and
- 4) all misaligned data refs with a known misalignment are supported, and
- 5) the number of runtime alignment checks is within reason. */
-
- do_versioning = flag_tree_vect_loop_version && (!optimize_size);
-
- if (do_versioning)
- {
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- {
- if (aligned_access_p (dr))
- continue;
-
- supportable_dr_alignment = vect_supportable_dr_alignment (dr);
-
- if (!supportable_dr_alignment)
- {
- tree stmt;
- int mask;
- tree vectype;
-
- if (known_alignment_for_access_p (dr)
- || VEC_length (tree,
- LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
- >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_CHECKS))
- {
- do_versioning = false;
- break;
- }
-
- stmt = DR_STMT (dr);
- vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
- gcc_assert (vectype);
-
- /* The rightmost bits of an aligned address must be zeros.
- Construct the mask needed for this test. For example,
- GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
- mask must be 15 = 0xf. */
- mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
-
- /* FORNOW: use the same mask to test all potentially unaligned
- references in the loop. The vectorizer currently supports
- a single vector size, see the reference to
- GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
- vectorization factor is computed. */
- gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
- || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
- LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
- VEC_safe_push (tree, heap,
- LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo),
- DR_STMT (dr));
- }
- }
-
- /* Versioning requires at least one misaligned data reference. */
- if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)) == 0)
- do_versioning = false;
- else if (!do_versioning)
- VEC_truncate (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo), 0);
- }
-
- if (do_versioning)
- {
- VEC(tree,heap) *may_misalign_stmts
- = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
- tree stmt;
-
- /* It can now be assumed that the data references in the statements
- in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
- of the loop being vectorized. */
- for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, stmt); i++)
- {
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- dr = STMT_VINFO_DATA_REF (stmt_info);
- DR_MISALIGNMENT (dr) = 0;
- if (vect_print_dump_info (REPORT_ALIGNMENT))
- fprintf (vect_dump, "Alignment of access forced using versioning.");
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Versioning for alignment will be applied.");
-
- /* Peeling and versioning can't be done together at this time. */
- gcc_assert (! (do_peeling && do_versioning));
-
- stat = vect_verify_datarefs_alignment (loop_vinfo);
- gcc_assert (stat);
- return stat;
- }
-
- /* This point is reached if neither peeling nor versioning is being done. */
- gcc_assert (! (do_peeling || do_versioning));
-
- stat = vect_verify_datarefs_alignment (loop_vinfo);
- return stat;
-}
-
-
-/* Function vect_analyze_data_refs_alignment
-
- Analyze the alignment of the data-references in the loop.
- Return FALSE if a data reference is found that cannot be vectorized. */
-
-static bool
-vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
-{
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
-
- if (!vect_compute_data_refs_alignment (loop_vinfo))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump,
- "not vectorized: can't calculate alignment for data ref.");
- return false;
- }
-
- return true;
-}
-
-
-/* Function vect_analyze_data_ref_access.
-
- Analyze the access pattern of the data-reference DR. For now, a data access
- has to be consecutive to be considered vectorizable. */
-
-static bool
-vect_analyze_data_ref_access (struct data_reference *dr)
-{
- tree step = DR_STEP (dr);
- tree scalar_type = TREE_TYPE (DR_REF (dr));
-
- if (!step || tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "not consecutive access");
- return false;
- }
- return true;
-}
-
-
-/* Function vect_analyze_data_ref_accesses.
-
- Analyze the access pattern of all the data references in the loop.
-
- FORNOW: the only access pattern that is considered vectorizable is a
- simple step 1 (consecutive) access.
-
- FORNOW: handle only arrays and pointer accesses. */
-
-static bool
-vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
-{
- unsigned int i;
- VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
- struct data_reference *dr;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- if (!vect_analyze_data_ref_access (dr))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: complicated access pattern.");
- return false;
- }
-
- return true;
-}
-
-
-/* Function vect_analyze_data_refs.
-
- Find all the data references in the loop.
-
- The general structure of the analysis of data refs in the vectorizer is as
- follows:
- 1- vect_analyze_data_refs(loop): call compute_data_dependences_for_loop to
- find and analyze all data-refs in the loop and their dependences.
- 2- vect_analyze_dependences(): apply dependence testing using ddrs.
- 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
- 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
-
-*/
-
-static bool
-vect_analyze_data_refs (loop_vec_info loop_vinfo)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- unsigned int i;
- VEC (data_reference_p, heap) *datarefs;
- struct data_reference *dr;
- tree scalar_type;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_analyze_data_refs ===");
-
- compute_data_dependences_for_loop (loop, false,
- &LOOP_VINFO_DATAREFS (loop_vinfo),
- &LOOP_VINFO_DDRS (loop_vinfo));
-
- /* Go through the data-refs, check that the analysis succeeded. Update pointer
- from stmt_vec_info struct to DR and vectype. */
- datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- {
- tree stmt;
- stmt_vec_info stmt_info;
-
- if (!dr || !DR_REF (dr))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: unhandled data-ref ");
- return false;
- }
-
- /* Update DR field in stmt_vec_info struct. */
- stmt = DR_STMT (dr);
- stmt_info = vinfo_for_stmt (stmt);
-
- if (STMT_VINFO_DATA_REF (stmt_info))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump,
- "not vectorized: more than one data ref in stmt: ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
- return false;
- }
- STMT_VINFO_DATA_REF (stmt_info) = dr;
-
- /* Check that analysis of the data-ref succeeded. */
- if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
- || !DR_STEP (dr))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump, "not vectorized: data ref analysis failed ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
- return false;
- }
- if (!DR_MEMTAG (dr))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump, "not vectorized: no memory tag for ");
- print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
- }
- return false;
- }
-
- /* Set vectype for STMT. */
- scalar_type = TREE_TYPE (DR_REF (dr));
- STMT_VINFO_VECTYPE (stmt_info) =
- get_vectype_for_scalar_type (scalar_type);
- if (!STMT_VINFO_VECTYPE (stmt_info))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- {
- fprintf (vect_dump,
- "not vectorized: no vectype for stmt: ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- fprintf (vect_dump, " scalar_type: ");
- print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
- }
- return false;
- }
- }
-
- return true;
-}
-
-
-/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
-
-/* Function vect_mark_relevant.
-
- Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
-
-static void
-vect_mark_relevant (VEC(tree,heap) **worklist, tree stmt,
- bool relevant_p, bool live_p)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- bool save_relevant_p = STMT_VINFO_RELEVANT_P (stmt_info);
- bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "mark relevant %d, live %d.",relevant_p, live_p);
-
- if (STMT_VINFO_IN_PATTERN_P (stmt_info))
- {
- tree pattern_stmt;
-
- /* This is the last stmt in a sequence that was detected as a
- pattern that can potentially be vectorized. Don't mark the stmt
- as relevant/live because it's not going to vectorized.
- Instead mark the pattern-stmt that replaces it. */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "last stmt in pattern. don't mark relevant/live.");
- pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
- stmt_info = vinfo_for_stmt (pattern_stmt);
- gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
- save_relevant_p = STMT_VINFO_RELEVANT_P (stmt_info);
- save_live_p = STMT_VINFO_LIVE_P (stmt_info);
- stmt = pattern_stmt;
- }
-
- STMT_VINFO_LIVE_P (stmt_info) |= live_p;
- STMT_VINFO_RELEVANT_P (stmt_info) |= relevant_p;
-
- if (TREE_CODE (stmt) == PHI_NODE)
- /* Don't put phi-nodes in the worklist. Phis that are marked relevant
- or live will fail vectorization later on. */
- return;
-
- if (STMT_VINFO_RELEVANT_P (stmt_info) == save_relevant_p
- && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "already marked relevant/live.");
- return;
- }
-
- VEC_safe_push (tree, heap, *worklist, stmt);
-}
-
-
-/* Function vect_stmt_relevant_p.
-
- Return true if STMT in loop that is represented by LOOP_VINFO is
- "relevant for vectorization".
-
- A stmt is considered "relevant for vectorization" if:
- - it has uses outside the loop.
- - it has vdefs (it alters memory).
- - control stmts in the loop (except for the exit condition).
-
- CHECKME: what other side effects would the vectorizer allow? */
-
-static bool
-vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo,
- bool *relevant_p, bool *live_p)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- ssa_op_iter op_iter;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- def_operand_p def_p;
-
- *relevant_p = false;
- *live_p = false;
-
- /* cond stmt other than loop exit cond. */
- if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
- *relevant_p = true;
-
- /* changing memory. */
- if (TREE_CODE (stmt) != PHI_NODE)
- if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
- *relevant_p = true;
- }
-
- /* uses outside the loop. */
- FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
- {
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
- {
- basic_block bb = bb_for_stmt (USE_STMT (use_p));
- if (!flow_bb_inside_loop_p (loop, bb))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
-
- /* We expect all such uses to be in the loop exit phis
- (because of loop closed form) */
- gcc_assert (TREE_CODE (USE_STMT (use_p)) == PHI_NODE);
- gcc_assert (bb == loop->single_exit->dest);
-
- *live_p = true;
- }
- }
- }
-
- return (*live_p || *relevant_p);
-}
-
-
-/* Function vect_mark_stmts_to_be_vectorized.
-
- Not all stmts in the loop need to be vectorized. For example:
-
- for i...
- for j...
- 1. T0 = i + j
- 2. T1 = a[T0]
-
- 3. j = j + 1
-
- Stmt 1 and 3 do not need to be vectorized, because loop control and
- addressing of vectorized data-refs are handled differently.
-
- This pass detects such stmts. */
-
-static bool
-vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
-{
- VEC(tree,heap) *worklist;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- unsigned int nbbs = loop->num_nodes;
- block_stmt_iterator si;
- tree stmt, use;
- stmt_ann_t ann;
- ssa_op_iter iter;
- unsigned int i;
- stmt_vec_info stmt_vinfo;
- basic_block bb;
- tree phi;
- bool relevant_p, live_p;
- tree def, def_stmt;
- enum vect_def_type dt;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
-
- worklist = VEC_alloc (tree, heap, 64);
-
- /* 1. Init worklist. */
-
- bb = loop->header;
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "init: phi relevant? ");
- print_generic_expr (vect_dump, phi, TDF_SLIM);
- }
-
- if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant_p, &live_p))
- vect_mark_relevant (&worklist, phi, relevant_p, live_p);
- }
-
- for (i = 0; i < nbbs; i++)
- {
- bb = bbs[i];
- for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
- {
- stmt = bsi_stmt (si);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "init: stmt relevant? ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
-
- if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant_p, &live_p))
- vect_mark_relevant (&worklist, stmt, relevant_p, live_p);
- }
- }
-
-
- /* 2. Process_worklist */
-
- while (VEC_length (tree, worklist) > 0)
- {
- stmt = VEC_pop (tree, worklist);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "worklist: examine stmt: ");
- print_generic_expr (vect_dump, stmt, TDF_SLIM);
- }
-
- /* Examine the USEs of STMT. For each ssa-name USE thta is defined
- in the loop, mark the stmt that defines it (DEF_STMT) as
- relevant/irrelevant and live/dead according to the liveness and
- relevance properties of STMT.
- */
-
- gcc_assert (TREE_CODE (stmt) != PHI_NODE);
-
- ann = stmt_ann (stmt);
- stmt_vinfo = vinfo_for_stmt (stmt);
-
- relevant_p = STMT_VINFO_RELEVANT_P (stmt_vinfo);
- live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
-
- /* Generally, the liveness and relevance properties of STMT are
- propagated to the DEF_STMTs of its USEs:
- STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
- STMT_VINFO_RELEVANT_P (DEF_STMT_info) <-- relevant_p
-
- Exceptions:
-
- (case 1)
- If USE is used only for address computations (e.g. array indexing),
- which does not need to be directly vectorized, then the
- liveness/relevance of the respective DEF_STMT is left unchanged.
-
- (case 2)
- If STMT has been identified as defining a reduction variable, then
- we have two cases:
- (case 2.1)
- The last use of STMT is the reduction-variable, which is defined
- by a loop-header-phi. We don't want to mark the phi as live or
- relevant (because it does not need to be vectorized, it is handled
- as part of the vectorization of the reduction), so in this case we
- skip the call to vect_mark_relevant.
- (case 2.2)
- The rest of the uses of STMT are defined in the loop body. For
- the def_stmt of these uses we want to set liveness/relevance
- as follows:
- STMT_VINFO_LIVE_P (DEF_STMT_info) <-- false
- STMT_VINFO_RELEVANT_P (DEF_STMT_info) <-- true
- because even though STMT is classified as live (since it defines a
- value that is used across loop iterations) and irrelevant (since it
- is not used inside the loop), it will be vectorized, and therefore
- the corresponding DEF_STMTs need to marked as relevant.
- */
-
- /* case 2.2: */
- if (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def)
- {
- gcc_assert (!relevant_p && live_p);
- relevant_p = true;
- live_p = false;
- }
-
- FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
- {
- /* case 1: we are only interested in uses that need to be vectorized.
- Uses that are used for address computation are not considered
- relevant.
- */
- if (!exist_non_indexing_operands_for_use_p (use, stmt))
- continue;
-
- if (!vect_is_simple_use (use, loop_vinfo, &def_stmt, &def, &dt))
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
- VEC_free (tree, heap, worklist);
- return false;
- }
-
- if (!def_stmt || IS_EMPTY_STMT (def_stmt))
- continue;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "worklist: examine use %d: ", i);
- print_generic_expr (vect_dump, use, TDF_SLIM);
- }
-
- bb = bb_for_stmt (def_stmt);
- if (!flow_bb_inside_loop_p (loop, bb))
- continue;
-
- /* case 2.1: the reduction-use does not mark the defining-phi
- as relevant. */
- if (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
- && TREE_CODE (def_stmt) == PHI_NODE)
- continue;
-
- vect_mark_relevant (&worklist, def_stmt, relevant_p, live_p);
- }
- } /* while worklist */
-
- VEC_free (tree, heap, worklist);
- return true;
-}
-
-
-/* Function vect_can_advance_ivs_p
-
- In case the number of iterations that LOOP iterates is unknown at compile
- time, an epilog loop will be generated, and the loop induction variables
- (IVs) will be "advanced" to the value they are supposed to take just before
- the epilog loop. Here we check that the access function of the loop IVs
- and the expression that represents the loop bound are simple enough.
- These restrictions will be relaxed in the future. */
-
-static bool
-vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block bb = loop->header;
- tree phi;
-
- /* Analyze phi functions of the loop header. */
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_can_advance_ivs_p ===");
-
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- {
- tree access_fn = NULL;
- tree evolution_part;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "Analyze phi: ");
- print_generic_expr (vect_dump, phi, TDF_SLIM);
- }
-
- /* Skip virtual phi's. The data dependences that are associated with
- virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
-
- if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "virtual phi. skip.");
- continue;
- }
-
- /* Skip reduction phis. */
-
- if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "reduc phi. skip.");
- continue;
- }
-
- /* Analyze the evolution function. */
-
- access_fn = instantiate_parameters
- (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
-
- if (!access_fn)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "No Access function.");
- return false;
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "Access function of PHI: ");
- print_generic_expr (vect_dump, access_fn, TDF_SLIM);
- }
-
- evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
-
- if (evolution_part == NULL_TREE)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "No evolution.");
- return false;
- }
-
- /* FORNOW: We do not transform initial conditions of IVs
- which evolution functions are a polynomial of degree >= 2. */
-
- if (tree_is_chrec (evolution_part))
- return false;
- }
-
- return true;
-}
-
-
-/* Function vect_get_loop_niters.
-
- Determine how many iterations the loop is executed.
- If an expression that represents the number of iterations
- can be constructed, place it in NUMBER_OF_ITERATIONS.
- Return the loop exit condition. */
-
-static tree
-vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
-{
- tree niters;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== get_loop_niters ===");
-
- niters = number_of_iterations_in_loop (loop);
-
- if (niters != NULL_TREE
- && niters != chrec_dont_know)
- {
- *number_of_iterations = niters;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "==> get_loop_niters:" );
- print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
- }
- }
-
- return get_loop_exit_condition (loop);
-}
-
-
-/* Function vect_analyze_loop_form.
-
- Verify the following restrictions (some may be relaxed in the future):
- - it's an inner-most loop
- - number of BBs = 2 (which are the loop header and the latch)
- - the loop has a pre-header
- - the loop has a single entry and exit
- - the loop exit condition is simple enough, and the number of iterations
- can be analyzed (a countable loop). */
-
-static loop_vec_info
-vect_analyze_loop_form (struct loop *loop)
-{
- loop_vec_info loop_vinfo;
- tree loop_cond;
- tree number_of_iterations = NULL;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_analyze_loop_form ===");
-
- if (loop->inner)
- {
- if (vect_print_dump_info (REPORT_OUTER_LOOPS))
- fprintf (vect_dump, "not vectorized: nested loop.");
- return NULL;
- }
-
- if (!loop->single_exit
- || loop->num_nodes != 2
- || EDGE_COUNT (loop->header->preds) != 2)
- {
- if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
- {
- if (!loop->single_exit)
- fprintf (vect_dump, "not vectorized: multiple exits.");
- else if (loop->num_nodes != 2)
- fprintf (vect_dump, "not vectorized: too many BBs in loop.");
- else if (EDGE_COUNT (loop->header->preds) != 2)
- fprintf (vect_dump, "not vectorized: too many incoming edges.");
- }
-
- return NULL;
- }
-
- /* We assume that the loop exit condition is at the end of the loop. i.e,
- that the loop is represented as a do-while (with a proper if-guard
- before the loop if needed), where the loop header contains all the
- executable statements, and the latch is empty. */
- if (!empty_block_p (loop->latch)
- || phi_nodes (loop->latch))
- {
- if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
- fprintf (vect_dump, "not vectorized: unexpected loop form.");
- return NULL;
- }
-
- /* Make sure there exists a single-predecessor exit bb: */
- if (!single_pred_p (loop->single_exit->dest))
- {
- edge e = loop->single_exit;
- if (!(e->flags & EDGE_ABNORMAL))
- {
- split_loop_exit_edge (e);
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "split exit edge.");
- }
- else
- {
- if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
- fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
- return NULL;
- }
- }
-
- if (empty_block_p (loop->header))
- {
- if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
- fprintf (vect_dump, "not vectorized: empty loop.");
- return NULL;
- }
-
- loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
- if (!loop_cond)
- {
- if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
- fprintf (vect_dump, "not vectorized: complicated exit condition.");
- return NULL;
- }
-
- if (!number_of_iterations)
- {
- if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
- fprintf (vect_dump,
- "not vectorized: number of iterations cannot be computed.");
- return NULL;
- }
-
- if (chrec_contains_undetermined (number_of_iterations))
- {
- if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
- fprintf (vect_dump, "Infinite number of iterations.");
- return false;
- }
-
- loop_vinfo = new_loop_vec_info (loop);
- LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
-
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "Symbolic number of iterations is ");
- print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
- }
- }
- else
- if (LOOP_VINFO_INT_NITERS (loop_vinfo) == 0)
- {
- if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "not vectorized: number of iterations = 0.");
- return NULL;
- }
-
- LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
-
- return loop_vinfo;
-}
-
-
-/* Function vect_analyze_loop.
-
- Apply a set of analyses on LOOP, and create a loop_vec_info struct
- for it. The different analyses will record information in the
- loop_vec_info struct. */
-loop_vec_info
-vect_analyze_loop (struct loop *loop)
-{
- bool ok;
- loop_vec_info loop_vinfo;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "===== analyze_loop_nest =====");
-
- /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
-
- loop_vinfo = vect_analyze_loop_form (loop);
- if (!loop_vinfo)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "bad loop form.");
- return NULL;
- }
-
- /* Find all data references in the loop (which correspond to vdefs/vuses)
- and analyze their evolution in the loop.
-
- FORNOW: Handle only simple, array references, which
- alignment can be forced, and aligned pointer-references. */
-
- ok = vect_analyze_data_refs (loop_vinfo);
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "bad data references.");
- destroy_loop_vec_info (loop_vinfo);
- return NULL;
- }
-
- /* Classify all cross-iteration scalar data-flow cycles.
- Cross-iteration cycles caused by virtual phis are analyzed separately. */
-
- vect_analyze_scalar_cycles (loop_vinfo);
-
- vect_pattern_recog (loop_vinfo);
-
- /* Data-flow analysis to detect stmts that do not need to be vectorized. */
-
- ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "unexpected pattern.");
- destroy_loop_vec_info (loop_vinfo);
- return NULL;
- }
-
- /* Analyze the alignment of the data-refs in the loop.
- Fail if a data reference is found that cannot be vectorized. */
-
- ok = vect_analyze_data_refs_alignment (loop_vinfo);
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "bad data alignment.");
- destroy_loop_vec_info (loop_vinfo);
- return NULL;
- }
-
- ok = vect_determine_vectorization_factor (loop_vinfo);
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "can't determine vectorization factor.");
- destroy_loop_vec_info (loop_vinfo);
- return NULL;
- }
-
- /* Analyze data dependences between the data-refs in the loop.
- FORNOW: fail at the first data dependence that we encounter. */
-
- ok = vect_analyze_data_ref_dependences (loop_vinfo);
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "bad data dependence.");
- destroy_loop_vec_info (loop_vinfo);
- return NULL;
- }
-
- /* Analyze the access patterns of the data-refs in the loop (consecutive,
- complex, etc.). FORNOW: Only handle consecutive access pattern. */
-
- ok = vect_analyze_data_ref_accesses (loop_vinfo);
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "bad data access.");
- destroy_loop_vec_info (loop_vinfo);
- return NULL;
- }
-
- /* This pass will decide on using loop versioning and/or loop peeling in
- order to enhance the alignment of data references in the loop. */
-
- ok = vect_enhance_data_refs_alignment (loop_vinfo);
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "bad data alignment.");
- destroy_loop_vec_info (loop_vinfo);
- return NULL;
- }
-
- /* Scan all the operations in the loop and make sure they are
- vectorizable. */
-
- ok = vect_analyze_operations (loop_vinfo);
- if (!ok)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "bad operation or unsupported loop bound.");
- destroy_loop_vec_info (loop_vinfo);
- return NULL;
- }
-
- LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
-
- return loop_vinfo;
-}