aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c2162
1 files changed, 2162 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c b/gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c
new file mode 100644
index 000000000..10656cf5d
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-vect-analyze.c
@@ -0,0 +1,2162 @@
+/* Analysis Utilities for Loop Vectorization.
+ Copyright (C) 2003,2004,2005,2006 Free Software Foundation, Inc.
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+/* APPLE LOCAL mainline 4.2 5569774 */
+#include "target.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "expr.h"
+#include "optabs.h"
+#include "params.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "tree-vectorizer.h"
+
+/* Main analysis functions. */
+static loop_vec_info vect_analyze_loop_form (struct loop *);
+static bool vect_analyze_data_refs (loop_vec_info);
+static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
+static void vect_analyze_scalar_cycles (loop_vec_info);
+static bool vect_analyze_data_ref_accesses (loop_vec_info);
+static bool vect_analyze_data_ref_dependences (loop_vec_info);
+static bool vect_analyze_data_refs_alignment (loop_vec_info);
+static bool vect_compute_data_refs_alignment (loop_vec_info);
+static bool vect_enhance_data_refs_alignment (loop_vec_info);
+static bool vect_analyze_operations (loop_vec_info);
+static bool vect_determine_vectorization_factor (loop_vec_info);
+
+/* Utility functions for the analyses. */
+static bool exist_non_indexing_operands_for_use_p (tree, tree);
+static void vect_mark_relevant (VEC(tree,heap) **, tree, bool, bool);
+static bool vect_stmt_relevant_p (tree, loop_vec_info, bool *, bool *);
+static tree vect_get_loop_niters (struct loop *, tree *);
+static bool vect_analyze_data_ref_dependence
+ (struct data_dependence_relation *, loop_vec_info);
+static bool vect_compute_data_ref_alignment (struct data_reference *);
+static bool vect_analyze_data_ref_access (struct data_reference *);
+static bool vect_can_advance_ivs_p (loop_vec_info);
+static void vect_update_misalignment_for_peel
+ (struct data_reference *, struct data_reference *, int npeel);
+
+
+/* Function vect_determine_vectorization_factor
+
+ Determine the vectorization factor (VF). VF is the number of data elements
+ that are operated upon in parallel in a single iteration of the vectorized
+ loop. For example, when vectorizing a loop that operates on 4byte elements,
+ on a target with vector size (VS) 16byte, the VF is set to 4, since 4
+ elements can fit in a single vector register.
+
+ We currently support vectorization of loops in which all types operated upon
+ are of the same size. Therefore this function currently sets VF according to
+ the size of the types operated upon, and fails if there are multiple sizes
+ in the loop.
+
+ VF is also the factor by which the loop iterations are strip-mined, e.g.:
+ original loop:
+ for (i=0; i<N; i++){
+ a[i] = b[i] + c[i];
+ }
+
+ vectorized loop:
+ for (i=0; i<N; i+=VF){
+ a[i:VF] = b[i:VF] + c[i:VF];
+ }
+*/
+
+static bool
+vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ int nbbs = loop->num_nodes;
+ block_stmt_iterator si;
+ unsigned int vectorization_factor = 0;
+ int i;
+ tree scalar_type;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
+
+ for (i = 0; i < nbbs; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ tree stmt = bsi_stmt (si);
+ unsigned int nunits;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "==> examining statement: ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+
+ gcc_assert (stmt_info);
+ /* skip stmts which do not need to be vectorized. */
+ if (!STMT_VINFO_RELEVANT_P (stmt_info)
+ && !STMT_VINFO_LIVE_P (stmt_info))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "skip.");
+ continue;
+ }
+
+ if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump, "not vectorized: vector stmt in loop:");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+
+ if (STMT_VINFO_VECTYPE (stmt_info))
+ {
+ vectype = STMT_VINFO_VECTYPE (stmt_info);
+ scalar_type = TREE_TYPE (vectype);
+ }
+ else
+ {
+ if (STMT_VINFO_DATA_REF (stmt_info))
+ scalar_type =
+ TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
+ else if (TREE_CODE (stmt) == MODIFY_EXPR)
+ scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0));
+ else
+ scalar_type = TREE_TYPE (stmt);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "get vectype for scalar type: ");
+ print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+ }
+
+ vectype = get_vectype_for_scalar_type (scalar_type);
+ if (!vectype)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump,
+ "not vectorized: unsupported data-type ");
+ print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+ }
+ return false;
+ }
+ STMT_VINFO_VECTYPE (stmt_info) = vectype;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vectype: ");
+ print_generic_expr (vect_dump, vectype, TDF_SLIM);
+ }
+
+ nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "nunits = %d", nunits);
+
+ if (vectorization_factor)
+ {
+ /* FORNOW: don't allow mixed units.
+ This restriction will be relaxed in the future. */
+ if (nunits != vectorization_factor)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: mixed data-types");
+ return false;
+ }
+ }
+ else
+ vectorization_factor = nunits;
+
+ gcc_assert (GET_MODE_SIZE (TYPE_MODE (scalar_type))
+ * vectorization_factor == UNITS_PER_SIMD_WORD);
+ }
+ }
+
+ /* TODO: Analyze cost. Decide if worth while to vectorize. */
+
+ if (vectorization_factor <= 1)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: unsupported data-type");
+ return false;
+ }
+ LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
+
+ return true;
+}
+
+
+/* Function vect_analyze_operations.
+
+ Scan the loop stmts and make sure they are all vectorizable. */
+
+static bool
+vect_analyze_operations (loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ int nbbs = loop->num_nodes;
+ block_stmt_iterator si;
+ unsigned int vectorization_factor = 0;
+ int i;
+ bool ok;
+ tree phi;
+ stmt_vec_info stmt_info;
+ bool need_to_vectorize = false;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_analyze_operations ===");
+
+ gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
+ vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+
+ for (i = 0; i < nbbs; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ stmt_info = vinfo_for_stmt (phi);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "examining phi: ");
+ print_generic_expr (vect_dump, phi, TDF_SLIM);
+ }
+
+ gcc_assert (stmt_info);
+
+ if (STMT_VINFO_LIVE_P (stmt_info))
+ {
+ /* FORNOW: not yet supported. */
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: value used after loop.");
+ return false;
+ }
+
+ if (STMT_VINFO_RELEVANT_P (stmt_info))
+ {
+ /* Most likely a reduction-like computation that is used
+ in the loop. */
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: unsupported pattern.");
+ return false;
+ }
+ }
+
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ tree stmt = bsi_stmt (si);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "==> examining statement: ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+
+ gcc_assert (stmt_info);
+
+ /* skip stmts which do not need to be vectorized.
+ this is expected to include:
+ - the COND_EXPR which is the loop exit condition
+ - any LABEL_EXPRs in the loop
+ - computations that are used only for array indexing or loop
+ control */
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info)
+ && !STMT_VINFO_LIVE_P (stmt_info))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "irrelevant.");
+ continue;
+ }
+
+ if (STMT_VINFO_RELEVANT_P (stmt_info))
+ {
+ gcc_assert (!VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))));
+ gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
+
+ ok = (vectorizable_operation (stmt, NULL, NULL)
+ || vectorizable_assignment (stmt, NULL, NULL)
+ || vectorizable_load (stmt, NULL, NULL)
+ || vectorizable_store (stmt, NULL, NULL)
+ || vectorizable_condition (stmt, NULL, NULL));
+
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump,
+ "not vectorized: relevant stmt not supported: ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+ need_to_vectorize = true;
+ }
+
+ if (STMT_VINFO_LIVE_P (stmt_info))
+ {
+ ok = vectorizable_reduction (stmt, NULL, NULL);
+
+ if (ok)
+ need_to_vectorize = true;
+ else
+ ok = vectorizable_live_operation (stmt, NULL, NULL);
+
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump,
+ "not vectorized: live stmt not supported: ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+ }
+ } /* stmts in bb */
+ } /* bbs */
+
+ /* TODO: Analyze cost. Decide if worth while to vectorize. */
+
+ /* All operations in the loop are either irrelevant (deal with loop
+ control, or dead), or only used outside the loop and can be moved
+ out of the loop (e.g. invariants, inductions). The loop can be
+ optimized away by scalar optimizations. We're better off not
+ touching this loop. */
+ if (!need_to_vectorize)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump,
+ "All the computation can be taken out of the loop.");
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump,
+ "not vectorized: redundant loop. no profit to vectorize.");
+ return false;
+ }
+
+ if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+ && vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump,
+ "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
+ vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
+
+ if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+ && LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: iteration count too small.");
+ return false;
+ }
+
+ if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
+ || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
+ || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "epilog loop required.");
+ if (!vect_can_advance_ivs_p (loop_vinfo))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump,
+ "not vectorized: can't create epilog loop 1.");
+ return false;
+ }
+ if (!slpeel_can_duplicate_loop_p (loop, loop->single_exit))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump,
+ "not vectorized: can't create epilog loop 2.");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/* Function exist_non_indexing_operands_for_use_p
+
+ USE is one of the uses attached to STMT. Check if USE is
+ used in STMT for anything other than indexing an array. */
+
+static bool
+exist_non_indexing_operands_for_use_p (tree use, tree stmt)
+{
+ tree operand;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ /* USE corresponds to some operand in STMT. If there is no data
+ reference in STMT, then any operand that corresponds to USE
+ is not indexing an array. */
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return true;
+
+ /* STMT has a data_ref. FORNOW this means that its of one of
+ the following forms:
+ -1- ARRAY_REF = var
+ -2- var = ARRAY_REF
+ (This should have been verified in analyze_data_refs).
+
+ 'var' in the second case corresponds to a def, not a use,
+ so USE cannot correspond to any operands that are not used
+ for array indexing.
+
+ Therefore, all we need to check is if STMT falls into the
+ first case, and whether var corresponds to USE. */
+
+ if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
+ return false;
+
+ operand = TREE_OPERAND (stmt, 1);
+
+ if (TREE_CODE (operand) != SSA_NAME)
+ return false;
+
+ if (operand == use)
+ return true;
+
+ return false;
+}
+
+
+/* Function vect_analyze_scalar_cycles.
+
+ Examine the cross iteration def-use cycles of scalar variables, by
+ analyzing the loop (scalar) PHIs; Classify each cycle as one of the
+ following: invariant, induction, reduction, unknown.
+
+ Some forms of scalar cycles are not yet supported.
+
+ Example1: reduction: (unsupported yet)
+
+ loop1:
+ for (i=0; i<N; i++)
+ sum += a[i];
+
+ Example2: induction: (unsupported yet)
+
+ loop2:
+ for (i=0; i<N; i++)
+ a[i] = i;
+
+ Note: the following loop *is* vectorizable:
+
+ loop3:
+ for (i=0; i<N; i++)
+ a[i] = b[i];
+
+ even though it has a def-use cycle caused by the induction variable i:
+
+ loop: i_2 = PHI (i_0, i_1)
+ a[i_2] = ...;
+ i_1 = i_2 + 1;
+ GOTO loop;
+
+ because the def-use cycle in loop3 is considered "not relevant" - i.e.,
+ it does not need to be vectorized because it is only used for array
+ indexing (see 'mark_stmts_to_be_vectorized'). The def-use cycle in
+ loop2 on the other hand is relevant (it is being written to memory).
+*/
+
+static void
+vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
+{
+ tree phi;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block bb = loop->header;
+ tree dummy;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
+
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ tree access_fn = NULL;
+ tree def = PHI_RESULT (phi);
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
+ tree reduc_stmt;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "Analyze phi: ");
+ print_generic_expr (vect_dump, phi, TDF_SLIM);
+ }
+
+ /* Skip virtual phi's. The data dependences that are associated with
+ virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
+
+ if (!is_gimple_reg (SSA_NAME_VAR (def)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "virtual phi. skip.");
+ continue;
+ }
+
+ STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
+
+ /* Analyze the evolution function. */
+
+ access_fn = analyze_scalar_evolution (loop, def);
+
+ if (!access_fn)
+ continue;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "Access function of PHI: ");
+ print_generic_expr (vect_dump, access_fn, TDF_SLIM);
+ }
+
+ if (vect_is_simple_iv_evolution (loop->num, access_fn, &dummy, &dummy))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Detected induction.");
+ STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
+ continue;
+ }
+
+ /* TODO: handle invariant phis */
+
+ reduc_stmt = vect_is_simple_reduction (loop, phi);
+ if (reduc_stmt)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Detected reduction.");
+ STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
+ STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
+ vect_reduction_def;
+ }
+ else
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Unknown def-use cycle pattern.");
+
+ }
+
+ return;
+}
+
+
+/* Function vect_analyze_data_ref_dependence.
+
+ Return TRUE if there (might) exist a dependence between a memory-reference
+ DRA and a memory-reference DRB. */
+
+static bool
+vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
+ loop_vec_info loop_vinfo)
+{
+ unsigned int i;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ struct data_reference *dra = DDR_A (ddr);
+ struct data_reference *drb = DDR_B (ddr);
+ stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
+ stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+ lambda_vector dist_v;
+ unsigned int loop_depth;
+
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ return false;
+
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump,
+ "not vectorized: can't determine dependence between ");
+ print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+ fprintf (vect_dump, " and ");
+ print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+ }
+ return true;
+ }
+
+ if (DDR_NUM_DIST_VECTS (ddr) == 0)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump, "not vectorized: bad dist vector for ");
+ print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+ fprintf (vect_dump, " and ");
+ print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+ }
+ return true;
+ }
+
+ loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
+ for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
+ {
+ int dist = dist_v[loop_depth];
+
+ if (vect_print_dump_info (REPORT_DR_DETAILS))
+ fprintf (vect_dump, "dependence distance = %d.", dist);
+
+ /* Same loop iteration. */
+ if (dist % vectorization_factor == 0)
+ {
+ /* Two references with distance zero have the same alignment. */
+ VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a), drb);
+ VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b), dra);
+ if (vect_print_dump_info (REPORT_ALIGNMENT))
+ fprintf (vect_dump, "accesses have the same alignment.");
+ if (vect_print_dump_info (REPORT_DR_DETAILS))
+ {
+ fprintf (vect_dump, "dependence distance modulo vf == 0 between ");
+ print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+ fprintf (vect_dump, " and ");
+ print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+ }
+ continue;
+ }
+
+ if (abs (dist) >= vectorization_factor)
+ {
+ /* Dependence distance does not create dependence, as far as vectorization
+ is concerned, in this case. */
+ if (vect_print_dump_info (REPORT_DR_DETAILS))
+ fprintf (vect_dump, "dependence distance >= VF.");
+ continue;
+ }
+
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump,
+ "not vectorized: possible dependence between data-refs ");
+ print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
+ fprintf (vect_dump, " and ");
+ print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Function vect_analyze_data_ref_dependences.
+
+ Examine all the data references in the loop, and make sure there do not
+ exist any data dependences between them. */
+
+static bool
+vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
+{
+ unsigned int i;
+ VEC (ddr_p, heap) *ddrs = LOOP_VINFO_DDRS (loop_vinfo);
+ struct data_dependence_relation *ddr;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_analyze_dependences ===");
+
+ for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+ if (vect_analyze_data_ref_dependence (ddr, loop_vinfo))
+ return false;
+
+ return true;
+}
+
+
+/* Function vect_compute_data_ref_alignment
+
+ Compute the misalignment of the data reference DR.
+
+ Output:
+ 1. If during the misalignment computation it is found that the data reference
+ cannot be vectorized then false is returned.
+ 2. DR_MISALIGNMENT (DR) is defined.
+
+ FOR NOW: No analysis is actually performed. Misalignment is calculated
+ only for trivial cases. TODO. */
+
+static bool
+vect_compute_data_ref_alignment (struct data_reference *dr)
+{
+ tree stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree ref = DR_REF (dr);
+ tree vectype;
+ tree base, base_addr;
+ bool base_aligned;
+ tree misalign;
+ tree aligned_to, alignment;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vect_compute_data_ref_alignment:");
+
+ /* Initialize misalignment to unknown. */
+ DR_MISALIGNMENT (dr) = -1;
+
+ misalign = DR_OFFSET_MISALIGNMENT (dr);
+ aligned_to = DR_ALIGNED_TO (dr);
+ base_addr = DR_BASE_ADDRESS (dr);
+ base = build_fold_indirect_ref (base_addr);
+ vectype = STMT_VINFO_VECTYPE (stmt_info);
+ alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
+
+ if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
+ || !misalign)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "Unknown alignment for access: ");
+ print_generic_expr (vect_dump, base, TDF_SLIM);
+ }
+ return true;
+ }
+
+ if ((DECL_P (base)
+ && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
+ alignment) >= 0)
+ || (TREE_CODE (base_addr) == SSA_NAME
+ && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
+ TREE_TYPE (base_addr)))),
+ alignment) >= 0))
+ base_aligned = true;
+ else
+ base_aligned = false;
+
+ if (!base_aligned)
+ {
+ /* Do not change the alignment of global variables if
+ flag_section_anchors is enabled. */
+ if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
+ || (TREE_STATIC (base) && flag_section_anchors))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "can't force alignment of ref: ");
+ print_generic_expr (vect_dump, ref, TDF_SLIM);
+ }
+ return true;
+ }
+
+ /* Force the alignment of the decl.
+ NOTE: This is the only change to the code we make during
+ the analysis phase, before deciding to vectorize the loop. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "force alignment");
+ DECL_ALIGN (base) = TYPE_ALIGN (vectype);
+ DECL_USER_ALIGN (base) = 1;
+ }
+
+ /* At this point we assume that the base is aligned. */
+ gcc_assert (base_aligned
+ || (TREE_CODE (base) == VAR_DECL
+ && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
+
+ /* Modulo alignment. */
+ misalign = size_binop (TRUNC_MOD_EXPR, misalign, alignment);
+
+ if (!host_integerp (misalign, 1))
+ {
+ /* Negative or overflowed misalignment value. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "unexpected misalign value");
+ return false;
+ }
+
+ DR_MISALIGNMENT (dr) = TREE_INT_CST_LOW (misalign);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
+ print_generic_expr (vect_dump, ref, TDF_SLIM);
+ }
+
+ return true;
+}
+
+
+/* Function vect_compute_data_refs_alignment
+
+ Compute the misalignment of data references in the loop.
+ Return FALSE if a data reference is found that cannot be vectorized. */
+
+static bool
+vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+ VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ struct data_reference *dr;
+ unsigned int i;
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ if (!vect_compute_data_ref_alignment (dr))
+ return false;
+
+ return true;
+}
+
+
+/* Function vect_update_misalignment_for_peel
+
+ DR - the data reference whose misalignment is to be adjusted.
+ DR_PEEL - the data reference whose misalignment is being made
+ zero in the vector loop by the peel.
+ NPEEL - the number of iterations in the peel loop if the misalignment
+ of DR_PEEL is known at compile time. */
+
+static void
+vect_update_misalignment_for_peel (struct data_reference *dr,
+ struct data_reference *dr_peel, int npeel)
+{
+ unsigned int i;
+ int drsize;
+ VEC(dr_p,heap) *same_align_drs;
+ struct data_reference *current_dr;
+
+ if (known_alignment_for_access_p (dr)
+ && DR_MISALIGNMENT (dr) == DR_MISALIGNMENT (dr_peel))
+ {
+ DR_MISALIGNMENT (dr) = 0;
+ return;
+ }
+
+ /* It can be assumed that the data refs with the same alignment as dr_peel
+ are aligned in the vector loop. */
+ same_align_drs
+ = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
+ for (i = 0; VEC_iterate (dr_p, same_align_drs, i, current_dr); i++)
+ {
+ if (current_dr != dr)
+ continue;
+ gcc_assert (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT (dr_peel));
+ DR_MISALIGNMENT (dr) = 0;
+ return;
+ }
+
+ if (known_alignment_for_access_p (dr)
+ && known_alignment_for_access_p (dr_peel))
+ {
+ drsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
+ DR_MISALIGNMENT (dr) += npeel * drsize;
+ DR_MISALIGNMENT (dr) %= UNITS_PER_SIMD_WORD;
+ return;
+ }
+
+ DR_MISALIGNMENT (dr) = -1;
+}
+
+
+/* Function vect_verify_datarefs_alignment
+
+ Return TRUE if all data references in the loop can be
+ handled with respect to alignment. */
+
+static bool
+vect_verify_datarefs_alignment (loop_vec_info loop_vinfo)
+{
+ VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ struct data_reference *dr;
+ enum dr_alignment_support supportable_dr_alignment;
+ unsigned int i;
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ {
+ supportable_dr_alignment = vect_supportable_dr_alignment (dr);
+ if (!supportable_dr_alignment)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ if (DR_IS_READ (dr))
+ fprintf (vect_dump,
+ "not vectorized: unsupported unaligned load.");
+ else
+ fprintf (vect_dump,
+ "not vectorized: unsupported unaligned store.");
+ }
+ return false;
+ }
+ if (supportable_dr_alignment != dr_aligned
+ && vect_print_dump_info (REPORT_ALIGNMENT))
+ fprintf (vect_dump, "Vectorizing an unaligned access.");
+ }
+ return true;
+}
+
+
+/* APPLE LOCAL begin mainline 4.2 5569774 */
+/* Function vector_alignment_reachable_p
+
+ Return true if vector alignment for DR is reachable by peeling
+ a few loop iterations. Return false otherwise. */
+
+static bool
+vector_alignment_reachable_p (struct data_reference *dr)
+{
+ tree stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* If misalignment is known at the compile time then allow peeling
+ only if natural alignment is reachable through peeling. */
+ if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
+ {
+ HOST_WIDE_INT elmsize =
+ int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
+ fprintf (vect_dump, ". misalignment = %d. ", DR_MISALIGNMENT (dr));
+ }
+ if (DR_MISALIGNMENT (dr) % elmsize)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "data size does not divide the misalignment.\n");
+ return false;
+ }
+ }
+
+ if (!known_alignment_for_access_p (dr))
+ {
+ tree type = (TREE_TYPE (DR_REF (dr)));
+ tree ba = DR_BASE_OBJECT (dr);
+ bool is_packed = false;
+
+ if (ba)
+ is_packed = contains_packed_reference (ba);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Unknown misalignment, is_packed = %d",is_packed);
+ if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
+ return true;
+ else
+ return false;
+ }
+
+ return true;
+}
+/* APPLE LOCAL end mainline 4.2 5569774 */
+
+/* Function vect_enhance_data_refs_alignment
+
+ This pass will use loop versioning and loop peeling in order to enhance
+ the alignment of data references in the loop.
+
+ FOR NOW: we assume that whatever versioning/peeling takes place, only the
+ original loop is to be vectorized; Any other loops that are created by
+ the transformations performed in this pass - are not supposed to be
+ vectorized. This restriction will be relaxed.
+
+ This pass will require a cost model to guide it whether to apply peeling
+ or versioning or a combination of the two. For example, the scheme that
+ intel uses when given a loop with several memory accesses, is as follows:
+ choose one memory access ('p') which alignment you want to force by doing
+ peeling. Then, either (1) generate a loop in which 'p' is aligned and all
+ other accesses are not necessarily aligned, or (2) use loop versioning to
+ generate one loop in which all accesses are aligned, and another loop in
+ which only 'p' is necessarily aligned.
+
+ ("Automatic Intra-Register Vectorization for the Intel Architecture",
+ Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
+ Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
+
+ Devising a cost model is the most critical aspect of this work. It will
+ guide us on which access to peel for, whether to use loop versioning, how
+ many versions to create, etc. The cost model will probably consist of
+ generic considerations as well as target specific considerations (on
+ powerpc for example, misaligned stores are more painful than misaligned
+ loads).
+
+ Here are the general steps involved in alignment enhancements:
+
+ -- original loop, before alignment analysis:
+ for (i=0; i<N; i++){
+ x = q[i]; # DR_MISALIGNMENT(q) = unknown
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- After vect_compute_data_refs_alignment:
+ for (i=0; i<N; i++){
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- Possibility 1: we do loop versioning:
+ if (p is aligned) {
+ for (i=0; i<N; i++){ # loop 1A
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = 0
+ }
+ }
+ else {
+ for (i=0; i<N; i++){ # loop 1B
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = unaligned
+ }
+ }
+
+ -- Possibility 2: we do loop peeling:
+ for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
+ x = q[i];
+ p[i] = y;
+ }
+ for (i = 3; i < N; i++){ # loop 2A
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- Possibility 3: combination of loop peeling and versioning:
+ for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
+ x = q[i];
+ p[i] = y;
+ }
+ if (p is aligned) {
+ for (i = 3; i<N; i++){ # loop 3A
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = 0
+ }
+ }
+ else {
+ for (i = 3; i<N; i++){ # loop 3B
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = unaligned
+ }
+ }
+
+ These loops are later passed to loop_transform to be vectorized. The
+ vectorizer will use the alignment information to guide the transformation
+ (whether to generate regular loads/stores, or with special handling for
+ misalignment). */
+
+static bool
+vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+ VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ enum dr_alignment_support supportable_dr_alignment;
+ struct data_reference *dr0 = NULL;
+ struct data_reference *dr;
+ unsigned int i;
+ bool do_peeling = false;
+ bool do_versioning = false;
+ bool stat;
+
+ /* While cost model enhancements are expected in the future, the high level
+ view of the code at this time is as follows:
+
+ A) If there is a misaligned write then see if peeling to align this write
+ can make all data references satisfy vect_supportable_dr_alignment.
+ If so, update data structures as needed and return true. Note that
+ at this time vect_supportable_dr_alignment is known to return false
+ for a a misaligned write.
+
+ B) If peeling wasn't possible and there is a data reference with an
+ unknown misalignment that does not satisfy vect_supportable_dr_alignment
+ then see if loop versioning checks can be used to make all data
+ references satisfy vect_supportable_dr_alignment. If so, update
+ data structures as needed and return true.
+
+ C) If neither peeling nor versioning were successful then return false if
+ any data reference does not satisfy vect_supportable_dr_alignment.
+
+ D) Return true (all data references satisfy vect_supportable_dr_alignment).
+
+ Note, Possibility 3 above (which is peeling and versioning together) is not
+ being done at this time. */
+
+ /* (1) Peeling to force alignment. */
+
+ /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
+ Considerations:
+ + How many accesses will become aligned due to the peeling
+ - How many accesses will become unaligned due to the peeling,
+ and the cost of misaligned accesses.
+ - The cost of peeling (the extra runtime checks, the increase
+ in code size).
+
+ The scheme we use FORNOW: peel to force the alignment of the first
+ misaligned store in the loop.
+ Rationale: misaligned stores are not yet supported.
+
+ TODO: Use a cost model. */
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ if (!DR_IS_READ (dr) && !aligned_access_p (dr))
+ {
+ /* APPLE LOCAL begin mainline 4.2 5569774 */
+ do_peeling = vector_alignment_reachable_p (dr);
+ if (do_peeling)
+ dr0 = dr;
+ if (!do_peeling && vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vector alignment may not be reachable");
+ /* APPLE LOCAL end mainline 4.2 5569774 */
+ break;
+ }
+
+ /* Often peeling for alignment will require peeling for loop-bound, which in
+ turn requires that we know how to adjust the loop ivs after the loop. */
+ if (!vect_can_advance_ivs_p (loop_vinfo))
+ do_peeling = false;
+
+ if (do_peeling)
+ {
+ int mis;
+ int npeel = 0;
+
+ if (known_alignment_for_access_p (dr0))
+ {
+ /* Since it's known at compile time, compute the number of iterations
+ in the peeled loop (the peeling factor) for use in updating
+ DR_MISALIGNMENT values. The peeling factor is the vectorization
+ factor minus the misalignment as an element count. */
+ mis = DR_MISALIGNMENT (dr0);
+ mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
+ npeel = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - mis;
+ }
+
+ /* Ensure that all data refs can be vectorized after the peel. */
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ {
+ int save_misalignment;
+
+ if (dr == dr0)
+ continue;
+
+ save_misalignment = DR_MISALIGNMENT (dr);
+ vect_update_misalignment_for_peel (dr, dr0, npeel);
+ supportable_dr_alignment = vect_supportable_dr_alignment (dr);
+ DR_MISALIGNMENT (dr) = save_misalignment;
+
+ if (!supportable_dr_alignment)
+ {
+ do_peeling = false;
+ break;
+ }
+ }
+
+ if (do_peeling)
+ {
+ /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
+ If the misalignment of DR_i is identical to that of dr0 then set
+ DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
+ dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
+ by the peeling factor times the element size of DR_i (MOD the
+ vectorization factor times the size). Otherwise, the
+ misalignment of DR_i must be set to unknown. */
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ if (dr != dr0)
+ vect_update_misalignment_for_peel (dr, dr0, npeel);
+
+ LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
+ LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
+ DR_MISALIGNMENT (dr0) = 0;
+ if (vect_print_dump_info (REPORT_ALIGNMENT))
+ fprintf (vect_dump, "Alignment of access forced using peeling.");
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Peeling for alignment will be applied.");
+
+ stat = vect_verify_datarefs_alignment (loop_vinfo);
+ gcc_assert (stat);
+ return stat;
+ }
+ }
+
+
+ /* (2) Versioning to force alignment. */
+
+ /* Try versioning if:
+ 1) flag_tree_vect_loop_version is TRUE
+ 2) optimize_size is FALSE
+ 3) there is at least one unsupported misaligned data ref with an unknown
+ misalignment, and
+ 4) all misaligned data refs with a known misalignment are supported, and
+ 5) the number of runtime alignment checks is within reason. */
+
+ do_versioning = flag_tree_vect_loop_version && (!optimize_size);
+
+ if (do_versioning)
+ {
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ {
+ if (aligned_access_p (dr))
+ continue;
+
+ supportable_dr_alignment = vect_supportable_dr_alignment (dr);
+
+ if (!supportable_dr_alignment)
+ {
+ tree stmt;
+ int mask;
+ tree vectype;
+
+ if (known_alignment_for_access_p (dr)
+ || VEC_length (tree,
+ LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
+ >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_CHECKS))
+ {
+ do_versioning = false;
+ break;
+ }
+
+ stmt = DR_STMT (dr);
+ vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+ gcc_assert (vectype);
+
+ /* The rightmost bits of an aligned address must be zeros.
+ Construct the mask needed for this test. For example,
+ GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
+ mask must be 15 = 0xf. */
+ mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
+
+ /* FORNOW: use the same mask to test all potentially unaligned
+ references in the loop. The vectorizer currently supports
+ a single vector size, see the reference to
+ GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
+ vectorization factor is computed. */
+ gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
+ || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
+ LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
+ VEC_safe_push (tree, heap,
+ LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo),
+ DR_STMT (dr));
+ }
+ }
+
+ /* Versioning requires at least one misaligned data reference. */
+ if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)) == 0)
+ do_versioning = false;
+ else if (!do_versioning)
+ VEC_truncate (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo), 0);
+ }
+
+ if (do_versioning)
+ {
+ VEC(tree,heap) *may_misalign_stmts
+ = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
+ tree stmt;
+
+ /* It can now be assumed that the data references in the statements
+ in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
+ of the loop being vectorized. */
+ for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, stmt); i++)
+ {
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ dr = STMT_VINFO_DATA_REF (stmt_info);
+ DR_MISALIGNMENT (dr) = 0;
+ if (vect_print_dump_info (REPORT_ALIGNMENT))
+ fprintf (vect_dump, "Alignment of access forced using versioning.");
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Versioning for alignment will be applied.");
+
+ /* Peeling and versioning can't be done together at this time. */
+ gcc_assert (! (do_peeling && do_versioning));
+
+ stat = vect_verify_datarefs_alignment (loop_vinfo);
+ gcc_assert (stat);
+ return stat;
+ }
+
+ /* This point is reached if neither peeling nor versioning is being done. */
+ gcc_assert (! (do_peeling || do_versioning));
+
+ stat = vect_verify_datarefs_alignment (loop_vinfo);
+ return stat;
+}
+
+
+/* Function vect_analyze_data_refs_alignment
+
+ Analyze the alignment of the data-references in the loop.
+ Return FALSE if a data reference is found that cannot be vectorized. */
+
+static bool
+vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
+
+ if (!vect_compute_data_refs_alignment (loop_vinfo))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump,
+ "not vectorized: can't calculate alignment for data ref.");
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_access.
+
+ Analyze the access pattern of the data-reference DR. For now, a data access
+ has to be consecutive to be considered vectorizable. */
+
+static bool
+vect_analyze_data_ref_access (struct data_reference *dr)
+{
+ tree step = DR_STEP (dr);
+ tree scalar_type = TREE_TYPE (DR_REF (dr));
+
+ if (!step || tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "not consecutive access");
+ return false;
+ }
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_accesses.
+
+ Analyze the access pattern of all the data references in the loop.
+
+ FORNOW: the only access pattern that is considered vectorizable is a
+ simple step 1 (consecutive) access.
+
+ FORNOW: handle only arrays and pointer accesses. */
+
+static bool
+vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
+{
+ unsigned int i;
+ VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ struct data_reference *dr;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ if (!vect_analyze_data_ref_access (dr))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: complicated access pattern.");
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_data_refs.
+
+ Find all the data references in the loop.
+
+ The general structure of the analysis of data refs in the vectorizer is as
+ follows:
+ 1- vect_analyze_data_refs(loop): call compute_data_dependences_for_loop to
+ find and analyze all data-refs in the loop and their dependences.
+ 2- vect_analyze_dependences(): apply dependence testing using ddrs.
+ 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
+ 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
+
+*/
+
+static bool
+vect_analyze_data_refs (loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ unsigned int i;
+ VEC (data_reference_p, heap) *datarefs;
+ struct data_reference *dr;
+ tree scalar_type;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_analyze_data_refs ===");
+
+ compute_data_dependences_for_loop (loop, false,
+ &LOOP_VINFO_DATAREFS (loop_vinfo),
+ &LOOP_VINFO_DDRS (loop_vinfo));
+
+ /* Go through the data-refs, check that the analysis succeeded. Update pointer
+ from stmt_vec_info struct to DR and vectype. */
+ datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ {
+ tree stmt;
+ stmt_vec_info stmt_info;
+
+ if (!dr || !DR_REF (dr))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: unhandled data-ref ");
+ return false;
+ }
+
+ /* Update DR field in stmt_vec_info struct. */
+ stmt = DR_STMT (dr);
+ stmt_info = vinfo_for_stmt (stmt);
+
+ if (STMT_VINFO_DATA_REF (stmt_info))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump,
+ "not vectorized: more than one data ref in stmt: ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+ STMT_VINFO_DATA_REF (stmt_info) = dr;
+
+ /* Check that analysis of the data-ref succeeded. */
+ if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
+ || !DR_STEP (dr))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump, "not vectorized: data ref analysis failed ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+ return false;
+ }
+ if (!DR_MEMTAG (dr))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump, "not vectorized: no memory tag for ");
+ print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
+ }
+ return false;
+ }
+
+ /* Set vectype for STMT. */
+ scalar_type = TREE_TYPE (DR_REF (dr));
+ STMT_VINFO_VECTYPE (stmt_info) =
+ get_vectype_for_scalar_type (scalar_type);
+ if (!STMT_VINFO_VECTYPE (stmt_info))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ {
+ fprintf (vect_dump,
+ "not vectorized: no vectype for stmt: ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ fprintf (vect_dump, " scalar_type: ");
+ print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
+ }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
+
+/* Function vect_mark_relevant.
+
+ Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
+
+static void
+vect_mark_relevant (VEC(tree,heap) **worklist, tree stmt,
+ bool relevant_p, bool live_p)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ bool save_relevant_p = STMT_VINFO_RELEVANT_P (stmt_info);
+ bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "mark relevant %d, live %d.",relevant_p, live_p);
+
+ if (STMT_VINFO_IN_PATTERN_P (stmt_info))
+ {
+ tree pattern_stmt;
+
+ /* This is the last stmt in a sequence that was detected as a
+ pattern that can potentially be vectorized. Don't mark the stmt
+ as relevant/live because it's not going to vectorized.
+ Instead mark the pattern-stmt that replaces it. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "last stmt in pattern. don't mark relevant/live.");
+ pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+ stmt_info = vinfo_for_stmt (pattern_stmt);
+ gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
+ save_relevant_p = STMT_VINFO_RELEVANT_P (stmt_info);
+ save_live_p = STMT_VINFO_LIVE_P (stmt_info);
+ stmt = pattern_stmt;
+ }
+
+ STMT_VINFO_LIVE_P (stmt_info) |= live_p;
+ STMT_VINFO_RELEVANT_P (stmt_info) |= relevant_p;
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ /* Don't put phi-nodes in the worklist. Phis that are marked relevant
+ or live will fail vectorization later on. */
+ return;
+
+ if (STMT_VINFO_RELEVANT_P (stmt_info) == save_relevant_p
+ && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "already marked relevant/live.");
+ return;
+ }
+
+ VEC_safe_push (tree, heap, *worklist, stmt);
+}
+
+
+/* Function vect_stmt_relevant_p.
+
+ Return true if STMT in loop that is represented by LOOP_VINFO is
+ "relevant for vectorization".
+
+ A stmt is considered "relevant for vectorization" if:
+ - it has uses outside the loop.
+ - it has vdefs (it alters memory).
+ - control stmts in the loop (except for the exit condition).
+
+ CHECKME: what other side effects would the vectorizer allow? */
+
+static bool
+vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo,
+ bool *relevant_p, bool *live_p)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ ssa_op_iter op_iter;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ def_operand_p def_p;
+
+ *relevant_p = false;
+ *live_p = false;
+
+ /* cond stmt other than loop exit cond. */
+ if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
+ *relevant_p = true;
+
+ /* changing memory. */
+ if (TREE_CODE (stmt) != PHI_NODE)
+ if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
+ *relevant_p = true;
+ }
+
+ /* uses outside the loop. */
+ FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
+ {
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
+ {
+ basic_block bb = bb_for_stmt (USE_STMT (use_p));
+ if (!flow_bb_inside_loop_p (loop, bb))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
+
+ /* We expect all such uses to be in the loop exit phis
+ (because of loop closed form) */
+ gcc_assert (TREE_CODE (USE_STMT (use_p)) == PHI_NODE);
+ gcc_assert (bb == loop->single_exit->dest);
+
+ *live_p = true;
+ }
+ }
+ }
+
+ return (*live_p || *relevant_p);
+}
+
+
+/* Function vect_mark_stmts_to_be_vectorized.
+
+ Not all stmts in the loop need to be vectorized. For example:
+
+ for i...
+ for j...
+ 1. T0 = i + j
+ 2. T1 = a[T0]
+
+ 3. j = j + 1
+
+ Stmt 1 and 3 do not need to be vectorized, because loop control and
+ addressing of vectorized data-refs are handled differently.
+
+ This pass detects such stmts. */
+
+static bool
+vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
+{
+ VEC(tree,heap) *worklist;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ unsigned int nbbs = loop->num_nodes;
+ block_stmt_iterator si;
+ tree stmt, use;
+ stmt_ann_t ann;
+ ssa_op_iter iter;
+ unsigned int i;
+ stmt_vec_info stmt_vinfo;
+ basic_block bb;
+ tree phi;
+ bool relevant_p, live_p;
+ tree def, def_stmt;
+ enum vect_def_type dt;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
+
+ worklist = VEC_alloc (tree, heap, 64);
+
+ /* 1. Init worklist. */
+
+ bb = loop->header;
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "init: phi relevant? ");
+ print_generic_expr (vect_dump, phi, TDF_SLIM);
+ }
+
+ if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant_p, &live_p))
+ vect_mark_relevant (&worklist, phi, relevant_p, live_p);
+ }
+
+ for (i = 0; i < nbbs; i++)
+ {
+ bb = bbs[i];
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ stmt = bsi_stmt (si);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "init: stmt relevant? ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+
+ if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant_p, &live_p))
+ vect_mark_relevant (&worklist, stmt, relevant_p, live_p);
+ }
+ }
+
+
+ /* 2. Process_worklist */
+
+ while (VEC_length (tree, worklist) > 0)
+ {
+ stmt = VEC_pop (tree, worklist);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "worklist: examine stmt: ");
+ print_generic_expr (vect_dump, stmt, TDF_SLIM);
+ }
+
+ /* Examine the USEs of STMT. For each ssa-name USE thta is defined
+ in the loop, mark the stmt that defines it (DEF_STMT) as
+ relevant/irrelevant and live/dead according to the liveness and
+ relevance properties of STMT.
+ */
+
+ gcc_assert (TREE_CODE (stmt) != PHI_NODE);
+
+ ann = stmt_ann (stmt);
+ stmt_vinfo = vinfo_for_stmt (stmt);
+
+ relevant_p = STMT_VINFO_RELEVANT_P (stmt_vinfo);
+ live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
+
+ /* Generally, the liveness and relevance properties of STMT are
+ propagated to the DEF_STMTs of its USEs:
+ STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
+ STMT_VINFO_RELEVANT_P (DEF_STMT_info) <-- relevant_p
+
+ Exceptions:
+
+ (case 1)
+ If USE is used only for address computations (e.g. array indexing),
+ which does not need to be directly vectorized, then the
+ liveness/relevance of the respective DEF_STMT is left unchanged.
+
+ (case 2)
+ If STMT has been identified as defining a reduction variable, then
+ we have two cases:
+ (case 2.1)
+ The last use of STMT is the reduction-variable, which is defined
+ by a loop-header-phi. We don't want to mark the phi as live or
+ relevant (because it does not need to be vectorized, it is handled
+ as part of the vectorization of the reduction), so in this case we
+ skip the call to vect_mark_relevant.
+ (case 2.2)
+ The rest of the uses of STMT are defined in the loop body. For
+ the def_stmt of these uses we want to set liveness/relevance
+ as follows:
+ STMT_VINFO_LIVE_P (DEF_STMT_info) <-- false
+ STMT_VINFO_RELEVANT_P (DEF_STMT_info) <-- true
+ because even though STMT is classified as live (since it defines a
+ value that is used across loop iterations) and irrelevant (since it
+ is not used inside the loop), it will be vectorized, and therefore
+ the corresponding DEF_STMTs need to marked as relevant.
+ */
+
+ /* case 2.2: */
+ if (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def)
+ {
+ gcc_assert (!relevant_p && live_p);
+ relevant_p = true;
+ live_p = false;
+ }
+
+ FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
+ {
+ /* case 1: we are only interested in uses that need to be vectorized.
+ Uses that are used for address computation are not considered
+ relevant.
+ */
+ if (!exist_non_indexing_operands_for_use_p (use, stmt))
+ continue;
+
+ if (!vect_is_simple_use (use, loop_vinfo, &def_stmt, &def, &dt))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
+ VEC_free (tree, heap, worklist);
+ return false;
+ }
+
+ if (!def_stmt || IS_EMPTY_STMT (def_stmt))
+ continue;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "worklist: examine use %d: ", i);
+ print_generic_expr (vect_dump, use, TDF_SLIM);
+ }
+
+ bb = bb_for_stmt (def_stmt);
+ if (!flow_bb_inside_loop_p (loop, bb))
+ continue;
+
+ /* case 2.1: the reduction-use does not mark the defining-phi
+ as relevant. */
+ if (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
+ && TREE_CODE (def_stmt) == PHI_NODE)
+ continue;
+
+ vect_mark_relevant (&worklist, def_stmt, relevant_p, live_p);
+ }
+ } /* while worklist */
+
+ VEC_free (tree, heap, worklist);
+ return true;
+}
+
+
+/* Function vect_can_advance_ivs_p
+
+ In case the number of iterations that LOOP iterates is unknown at compile
+ time, an epilog loop will be generated, and the loop induction variables
+ (IVs) will be "advanced" to the value they are supposed to take just before
+ the epilog loop. Here we check that the access function of the loop IVs
+ and the expression that represents the loop bound are simple enough.
+ These restrictions will be relaxed in the future. */
+
+static bool
+vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block bb = loop->header;
+ tree phi;
+
+ /* Analyze phi functions of the loop header. */
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_can_advance_ivs_p ===");
+
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ tree access_fn = NULL;
+ tree evolution_part;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "Analyze phi: ");
+ print_generic_expr (vect_dump, phi, TDF_SLIM);
+ }
+
+ /* Skip virtual phi's. The data dependences that are associated with
+ virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
+
+ if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "virtual phi. skip.");
+ continue;
+ }
+
+ /* Skip reduction phis. */
+
+ if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "reduc phi. skip.");
+ continue;
+ }
+
+ /* Analyze the evolution function. */
+
+ access_fn = instantiate_parameters
+ (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
+
+ if (!access_fn)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "No Access function.");
+ return false;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "Access function of PHI: ");
+ print_generic_expr (vect_dump, access_fn, TDF_SLIM);
+ }
+
+ evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
+
+ if (evolution_part == NULL_TREE)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "No evolution.");
+ return false;
+ }
+
+ /* FORNOW: We do not transform initial conditions of IVs
+ which evolution functions are a polynomial of degree >= 2. */
+
+ if (tree_is_chrec (evolution_part))
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vect_get_loop_niters.
+
+ Determine how many iterations the loop is executed.
+ If an expression that represents the number of iterations
+ can be constructed, place it in NUMBER_OF_ITERATIONS.
+ Return the loop exit condition. */
+
+static tree
+vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
+{
+ tree niters;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== get_loop_niters ===");
+
+ niters = number_of_iterations_in_loop (loop);
+
+ if (niters != NULL_TREE
+ && niters != chrec_dont_know)
+ {
+ *number_of_iterations = niters;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "==> get_loop_niters:" );
+ print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
+ }
+ }
+
+ return get_loop_exit_condition (loop);
+}
+
+
+/* Function vect_analyze_loop_form.
+
+ Verify the following restrictions (some may be relaxed in the future):
+ - it's an inner-most loop
+ - number of BBs = 2 (which are the loop header and the latch)
+ - the loop has a pre-header
+ - the loop has a single entry and exit
+ - the loop exit condition is simple enough, and the number of iterations
+ can be analyzed (a countable loop). */
+
+static loop_vec_info
+vect_analyze_loop_form (struct loop *loop)
+{
+ loop_vec_info loop_vinfo;
+ tree loop_cond;
+ tree number_of_iterations = NULL;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_analyze_loop_form ===");
+
+ if (loop->inner)
+ {
+ if (vect_print_dump_info (REPORT_OUTER_LOOPS))
+ fprintf (vect_dump, "not vectorized: nested loop.");
+ return NULL;
+ }
+
+ if (!loop->single_exit
+ || loop->num_nodes != 2
+ || EDGE_COUNT (loop->header->preds) != 2)
+ {
+ if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
+ {
+ if (!loop->single_exit)
+ fprintf (vect_dump, "not vectorized: multiple exits.");
+ else if (loop->num_nodes != 2)
+ fprintf (vect_dump, "not vectorized: too many BBs in loop.");
+ else if (EDGE_COUNT (loop->header->preds) != 2)
+ fprintf (vect_dump, "not vectorized: too many incoming edges.");
+ }
+
+ return NULL;
+ }
+
+ /* We assume that the loop exit condition is at the end of the loop. i.e,
+ that the loop is represented as a do-while (with a proper if-guard
+ before the loop if needed), where the loop header contains all the
+ executable statements, and the latch is empty. */
+ if (!empty_block_p (loop->latch)
+ || phi_nodes (loop->latch))
+ {
+ if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
+ fprintf (vect_dump, "not vectorized: unexpected loop form.");
+ return NULL;
+ }
+
+ /* Make sure there exists a single-predecessor exit bb: */
+ if (!single_pred_p (loop->single_exit->dest))
+ {
+ edge e = loop->single_exit;
+ if (!(e->flags & EDGE_ABNORMAL))
+ {
+ split_loop_exit_edge (e);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "split exit edge.");
+ }
+ else
+ {
+ if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
+ fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
+ return NULL;
+ }
+ }
+
+ if (empty_block_p (loop->header))
+ {
+ if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
+ fprintf (vect_dump, "not vectorized: empty loop.");
+ return NULL;
+ }
+
+ loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
+ if (!loop_cond)
+ {
+ if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
+ fprintf (vect_dump, "not vectorized: complicated exit condition.");
+ return NULL;
+ }
+
+ if (!number_of_iterations)
+ {
+ if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
+ fprintf (vect_dump,
+ "not vectorized: number of iterations cannot be computed.");
+ return NULL;
+ }
+
+ if (chrec_contains_undetermined (number_of_iterations))
+ {
+ if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
+ fprintf (vect_dump, "Infinite number of iterations.");
+ return false;
+ }
+
+ loop_vinfo = new_loop_vec_info (loop);
+ LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
+
+ if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "Symbolic number of iterations is ");
+ print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
+ }
+ }
+ else
+ if (LOOP_VINFO_INT_NITERS (loop_vinfo) == 0)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
+ fprintf (vect_dump, "not vectorized: number of iterations = 0.");
+ return NULL;
+ }
+
+ LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
+
+ return loop_vinfo;
+}
+
+
+/* Function vect_analyze_loop.
+
+ Apply a set of analyses on LOOP, and create a loop_vec_info struct
+ for it. The different analyses will record information in the
+ loop_vec_info struct. */
+loop_vec_info
+vect_analyze_loop (struct loop *loop)
+{
+ bool ok;
+ loop_vec_info loop_vinfo;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "===== analyze_loop_nest =====");
+
+ /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
+
+ loop_vinfo = vect_analyze_loop_form (loop);
+ if (!loop_vinfo)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "bad loop form.");
+ return NULL;
+ }
+
+ /* Find all data references in the loop (which correspond to vdefs/vuses)
+ and analyze their evolution in the loop.
+
+ FORNOW: Handle only simple, array references, which
+ alignment can be forced, and aligned pointer-references. */
+
+ ok = vect_analyze_data_refs (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "bad data references.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ /* Classify all cross-iteration scalar data-flow cycles.
+ Cross-iteration cycles caused by virtual phis are analyzed separately. */
+
+ vect_analyze_scalar_cycles (loop_vinfo);
+
+ vect_pattern_recog (loop_vinfo);
+
+ /* Data-flow analysis to detect stmts that do not need to be vectorized. */
+
+ ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "unexpected pattern.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ /* Analyze the alignment of the data-refs in the loop.
+ Fail if a data reference is found that cannot be vectorized. */
+
+ ok = vect_analyze_data_refs_alignment (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "bad data alignment.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ ok = vect_determine_vectorization_factor (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "can't determine vectorization factor.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ /* Analyze data dependences between the data-refs in the loop.
+ FORNOW: fail at the first data dependence that we encounter. */
+
+ ok = vect_analyze_data_ref_dependences (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "bad data dependence.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ /* Analyze the access patterns of the data-refs in the loop (consecutive,
+ complex, etc.). FORNOW: Only handle consecutive access pattern. */
+
+ ok = vect_analyze_data_ref_accesses (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "bad data access.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ /* This pass will decide on using loop versioning and/or loop peeling in
+ order to enhance the alignment of data references in the loop. */
+
+ ok = vect_enhance_data_refs_alignment (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "bad data alignment.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ /* Scan all the operations in the loop and make sure they are
+ vectorizable. */
+
+ ok = vect_analyze_operations (loop_vinfo);
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "bad operation or unsupported loop bound.");
+ destroy_loop_vec_info (loop_vinfo);
+ return NULL;
+ }
+
+ LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
+
+ return loop_vinfo;
+}