aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-ssa-structalias.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-ssa-structalias.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-ssa-structalias.c5092
1 files changed, 5092 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-ssa-structalias.c b/gcc-4.2.1-5666.3/gcc/tree-ssa-structalias.c
new file mode 100644
index 000000000..d2bc09ba3
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-ssa-structalias.c
@@ -0,0 +1,5092 @@
+/* Tree based points-to analysis
+ Copyright (C) 2005, 2006 Free Software Foundation, Inc.
+ Contributed by Daniel Berlin <dberlin@dberlin.org>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; if not, write to the Free Software
+Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+*/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "obstack.h"
+#include "bitmap.h"
+#include "flags.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "output.h"
+#include "errors.h"
+#include "diagnostic.h"
+#include "tree.h"
+#include "c-common.h"
+#include "tree-flow.h"
+#include "tree-inline.h"
+#include "varray.h"
+#include "c-tree.h"
+#include "tree-gimple.h"
+#include "hashtab.h"
+#include "function.h"
+#include "cgraph.h"
+#include "tree-pass.h"
+#include "timevar.h"
+#include "alloc-pool.h"
+#include "splay-tree.h"
+#include "params.h"
+#include "tree-ssa-structalias.h"
+#include "cgraph.h"
+#include "pointer-set.h"
+
+/* The idea behind this analyzer is to generate set constraints from the
+ program, then solve the resulting constraints in order to generate the
+ points-to sets.
+
+ Set constraints are a way of modeling program analysis problems that
+ involve sets. They consist of an inclusion constraint language,
+ describing the variables (each variable is a set) and operations that
+ are involved on the variables, and a set of rules that derive facts
+ from these operations. To solve a system of set constraints, you derive
+ all possible facts under the rules, which gives you the correct sets
+ as a consequence.
+
+ See "Efficient Field-sensitive pointer analysis for C" by "David
+ J. Pearce and Paul H. J. Kelly and Chris Hankin, at
+ http://citeseer.ist.psu.edu/pearce04efficient.html
+
+ Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
+ of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
+ http://citeseer.ist.psu.edu/heintze01ultrafast.html
+
+ There are three types of real constraint expressions, DEREF,
+ ADDRESSOF, and SCALAR. Each constraint expression consists
+ of a constraint type, a variable, and an offset.
+
+ SCALAR is a constraint expression type used to represent x, whether
+ it appears on the LHS or the RHS of a statement.
+ DEREF is a constraint expression type used to represent *x, whether
+ it appears on the LHS or the RHS of a statement.
+ ADDRESSOF is a constraint expression used to represent &x, whether
+ it appears on the LHS or the RHS of a statement.
+
+ Each pointer variable in the program is assigned an integer id, and
+ each field of a structure variable is assigned an integer id as well.
+
+ Structure variables are linked to their list of fields through a "next
+ field" in each variable that points to the next field in offset
+ order.
+ Each variable for a structure field has
+
+ 1. "size", that tells the size in bits of that field.
+ 2. "fullsize, that tells the size in bits of the entire structure.
+ 3. "offset", that tells the offset in bits from the beginning of the
+ structure to this field.
+
+ Thus,
+ struct f
+ {
+ int a;
+ int b;
+ } foo;
+ int *bar;
+
+ looks like
+
+ foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
+ foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
+ bar -> id 3, size 32, offset 0, fullsize 32, next NULL
+
+
+ In order to solve the system of set constraints, the following is
+ done:
+
+ 1. Each constraint variable x has a solution set associated with it,
+ Sol(x).
+
+ 2. Constraints are separated into direct, copy, and complex.
+ Direct constraints are ADDRESSOF constraints that require no extra
+ processing, such as P = &Q
+ Copy constraints are those of the form P = Q.
+ Complex constraints are all the constraints involving dereferences
+ and offsets (including offsetted copies).
+
+ 3. All direct constraints of the form P = &Q are processed, such
+ that Q is added to Sol(P)
+
+ 4. All complex constraints for a given constraint variable are stored in a
+ linked list attached to that variable's node.
+
+ 5. A directed graph is built out of the copy constraints. Each
+ constraint variable is a node in the graph, and an edge from
+ Q to P is added for each copy constraint of the form P = Q
+
+ 6. The graph is then walked, and solution sets are
+ propagated along the copy edges, such that an edge from Q to P
+ causes Sol(P) <- Sol(P) union Sol(Q).
+
+ 7. As we visit each node, all complex constraints associated with
+ that node are processed by adding appropriate copy edges to the graph, or the
+ appropriate variables to the solution set.
+
+ 8. The process of walking the graph is iterated until no solution
+ sets change.
+
+ Prior to walking the graph in steps 6 and 7, We perform static
+ cycle elimination on the constraint graph, as well
+ as off-line variable substitution.
+
+ TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
+ on and turned into anything), but isn't. You can just see what offset
+ inside the pointed-to struct it's going to access.
+
+ TODO: Constant bounded arrays can be handled as if they were structs of the
+ same number of elements.
+
+ TODO: Modeling heap and incoming pointers becomes much better if we
+ add fields to them as we discover them, which we could do.
+
+ TODO: We could handle unions, but to be honest, it's probably not
+ worth the pain or slowdown. */
+
+static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map))) htab_t heapvar_for_stmt;
+
+/* One variable to represent all non-local accesses. */
+tree nonlocal_all;
+
+static bool use_field_sensitive = true;
+static int in_ipa_mode = 0;
+
+/* Used for predecessor bitmaps. */
+static bitmap_obstack predbitmap_obstack;
+
+/* Used for points-to sets. */
+static bitmap_obstack pta_obstack;
+
+/* Used for oldsolution members of variables. */
+static bitmap_obstack oldpta_obstack;
+
+/* Used for per-solver-iteration bitmaps. */
+static bitmap_obstack iteration_obstack;
+
+static unsigned int create_variable_info_for (tree, const char *);
+typedef struct constraint_graph *constraint_graph_t;
+static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
+
+DEF_VEC_P(constraint_t);
+DEF_VEC_ALLOC_P(constraint_t,heap);
+
+#define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
+ if (a) \
+ EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
+
+static struct constraint_stats
+{
+ unsigned int total_vars;
+ unsigned int nonpointer_vars;
+ unsigned int unified_vars_static;
+ unsigned int unified_vars_dynamic;
+ unsigned int iterations;
+ unsigned int num_edges;
+ unsigned int num_implicit_edges;
+ unsigned int points_to_sets_created;
+} stats;
+
+struct variable_info
+{
+ /* ID of this variable */
+ unsigned int id;
+
+ /* Name of this variable */
+ const char *name;
+
+ /* Tree that this variable is associated with. */
+ tree decl;
+
+ /* Offset of this variable, in bits, from the base variable */
+ unsigned HOST_WIDE_INT offset;
+
+ /* Size of the variable, in bits. */
+ unsigned HOST_WIDE_INT size;
+
+ /* Full size of the base variable, in bits. */
+ unsigned HOST_WIDE_INT fullsize;
+
+ /* A link to the variable for the next field in this structure. */
+ struct variable_info *next;
+
+ /* True if the variable is directly the target of a dereference.
+ This is used to track which variables are *actually* dereferenced
+ so we can prune their points to listed. */
+ unsigned int directly_dereferenced:1;
+
+ /* True if this is a variable created by the constraint analysis, such as
+ heap variables and constraints we had to break up. */
+ unsigned int is_artificial_var:1;
+
+ /* True if this is a special variable whose solution set should not be
+ changed. */
+ unsigned int is_special_var:1;
+
+ /* True for variables whose size is not known or variable. */
+ unsigned int is_unknown_size_var:1;
+
+ /* True for variables that have unions somewhere in them. */
+ unsigned int has_union:1;
+
+ /* True if this is a heap variable. */
+ unsigned int is_heap_var:1;
+
+ /* Points-to set for this variable. */
+ bitmap solution;
+
+ /* Old points-to set for this variable. */
+ bitmap oldsolution;
+
+ /* Variable ids represented by this node. */
+ bitmap variables;
+
+ /* Variable id this was collapsed to due to type unsafety. This
+ should be unused completely after build_succ_graph, or something
+ is broken. */
+ struct variable_info *collapsed_to;
+};
+typedef struct variable_info *varinfo_t;
+
+static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
+
+/* Pool of variable info structures. */
+static alloc_pool variable_info_pool;
+
+DEF_VEC_P(varinfo_t);
+
+DEF_VEC_ALLOC_P(varinfo_t, heap);
+
+/* Table of variable info structures for constraint variables.
+ Indexed directly by variable info id. */
+static VEC(varinfo_t,heap) *varmap;
+
+/* Return the varmap element N */
+
+static inline varinfo_t
+get_varinfo (unsigned int n)
+{
+ return VEC_index (varinfo_t, varmap, n);
+}
+
+/* Return the varmap element N, following the collapsed_to link. */
+
+static inline varinfo_t
+get_varinfo_fc (unsigned int n)
+{
+ varinfo_t v = VEC_index (varinfo_t, varmap, n);
+
+ if (v->collapsed_to)
+ return v->collapsed_to;
+ return v;
+}
+
+/* Variable that represents the unknown pointer. */
+static varinfo_t var_anything;
+static tree anything_tree;
+static unsigned int anything_id;
+
+/* Variable that represents the NULL pointer. */
+static varinfo_t var_nothing;
+static tree nothing_tree;
+static unsigned int nothing_id;
+
+/* Variable that represents read only memory. */
+static varinfo_t var_readonly;
+static tree readonly_tree;
+static unsigned int readonly_id;
+
+/* Variable that represents integers. This is used for when people do things
+ like &0->a.b. */
+static varinfo_t var_integer;
+static tree integer_tree;
+static unsigned int integer_id;
+
+/* Variable that represents escaped variables. This is used to give
+ incoming pointer variables a better set than ANYTHING. */
+static varinfo_t var_escaped_vars;
+static tree escaped_vars_tree;
+static unsigned int escaped_vars_id;
+
+/* Variable that represents non-local variables before we expand it to
+ one for each type. */
+static unsigned int nonlocal_vars_id;
+/* Lookup a heap var for FROM, and return it if we find one. */
+
+static tree
+heapvar_lookup (tree from)
+{
+ struct tree_map *h, in;
+ in.from = from;
+
+ h = htab_find_with_hash (heapvar_for_stmt, &in, htab_hash_pointer (from));
+ if (h)
+ return h->to;
+ return NULL_TREE;
+}
+
+/* Insert a mapping FROM->TO in the heap var for statement
+ hashtable. */
+
+static void
+heapvar_insert (tree from, tree to)
+{
+ struct tree_map *h;
+ void **loc;
+
+ h = ggc_alloc (sizeof (struct tree_map));
+ h->hash = htab_hash_pointer (from);
+ h->from = from;
+ h->to = to;
+ loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
+ *(struct tree_map **) loc = h;
+}
+
+/* Return a new variable info structure consisting for a variable
+ named NAME, and using constraint graph node NODE. */
+
+static varinfo_t
+new_var_info (tree t, unsigned int id, const char *name)
+{
+ varinfo_t ret = pool_alloc (variable_info_pool);
+
+ ret->id = id;
+ ret->name = name;
+ ret->decl = t;
+ ret->directly_dereferenced = false;
+ ret->is_artificial_var = false;
+ ret->is_heap_var = false;
+ ret->is_special_var = false;
+ ret->is_unknown_size_var = false;
+ ret->has_union = false;
+ ret->solution = BITMAP_ALLOC (&pta_obstack);
+ ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
+ ret->next = NULL;
+ ret->collapsed_to = NULL;
+ return ret;
+}
+
+typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
+
+/* An expression that appears in a constraint. */
+
+struct constraint_expr
+{
+ /* Constraint type. */
+ constraint_expr_type type;
+
+ /* Variable we are referring to in the constraint. */
+ unsigned int var;
+
+ /* Offset, in bits, of this constraint from the beginning of
+ variables it ends up referring to.
+
+ IOW, in a deref constraint, we would deref, get the result set,
+ then add OFFSET to each member. */
+ unsigned HOST_WIDE_INT offset;
+};
+
+typedef struct constraint_expr ce_s;
+DEF_VEC_O(ce_s);
+DEF_VEC_ALLOC_O(ce_s, heap);
+static void get_constraint_for (tree, VEC(ce_s, heap) **);
+static void do_deref (VEC (ce_s, heap) **);
+
+/* Our set constraints are made up of two constraint expressions, one
+ LHS, and one RHS.
+
+ As described in the introduction, our set constraints each represent an
+ operation between set valued variables.
+*/
+struct constraint
+{
+ struct constraint_expr lhs;
+ struct constraint_expr rhs;
+};
+
+/* List of constraints that we use to build the constraint graph from. */
+
+static VEC(constraint_t,heap) *constraints;
+static alloc_pool constraint_pool;
+
+
+DEF_VEC_I(int);
+DEF_VEC_ALLOC_I(int, heap);
+
+/* The constraint graph is represented as an array of bitmaps
+ containing successor nodes. */
+
+struct constraint_graph
+{
+ /* Size of this graph, which may be different than the number of
+ nodes in the variable map. */
+ unsigned int size;
+
+ /* Explicit successors of each node. */
+ bitmap *succs;
+
+ /* Implicit predecessors of each node (Used for variable
+ substitution). */
+ bitmap *implicit_preds;
+
+ /* Explicit predecessors of each node (Used for variable substitution). */
+ bitmap *preds;
+
+ /* Indirect cycle representatives, or -1 if the node has no indirect
+ cycles. */
+ int *indirect_cycles;
+
+ /* Representative node for a node. rep[a] == a unless the node has
+ been unified. */
+ unsigned int *rep;
+
+ /* Equivalence class representative for a node. This is used for
+ variable substitution. */
+ int *eq_rep;
+
+ /* Label for each node, used during variable substitution. */
+ unsigned int *label;
+
+ /* Bitmap of nodes where the bit is set if the node is a direct
+ node. Used for variable substitution. */
+ sbitmap direct_nodes;
+
+ /* Vector of complex constraints for each graph node. Complex
+ constraints are those involving dereferences or offsets that are
+ not 0. */
+ VEC(constraint_t,heap) **complex;
+};
+
+static constraint_graph_t graph;
+
+/* During variable substitution and the offline version of indirect
+ cycle finding, we create nodes to represent dereferences and
+ address taken constraints. These represent where these start and
+ end. */
+#define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
+#define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
+#define FIRST_ADDR_NODE (LAST_REF_NODE + 1)
+
+/* Return the representative node for NODE, if NODE has been unioned
+ with another NODE.
+ This function performs path compression along the way to finding
+ the representative. */
+
+static unsigned int
+find (unsigned int node)
+{
+ gcc_assert (node < graph->size);
+ if (graph->rep[node] != node)
+ return graph->rep[node] = find (graph->rep[node]);
+ return node;
+}
+
+/* Union the TO and FROM nodes to the TO nodes.
+ Note that at some point in the future, we may want to do
+ union-by-rank, in which case we are going to have to return the
+ node we unified to. */
+
+static bool
+unite (unsigned int to, unsigned int from)
+{
+ gcc_assert (to < graph->size && from < graph->size);
+ if (to != from && graph->rep[from] != to)
+ {
+ graph->rep[from] = to;
+ return true;
+ }
+ return false;
+}
+
+/* Create a new constraint consisting of LHS and RHS expressions. */
+
+static constraint_t
+new_constraint (const struct constraint_expr lhs,
+ const struct constraint_expr rhs)
+{
+ constraint_t ret = pool_alloc (constraint_pool);
+ ret->lhs = lhs;
+ ret->rhs = rhs;
+ return ret;
+}
+
+/* Print out constraint C to FILE. */
+
+void
+dump_constraint (FILE *file, constraint_t c)
+{
+ if (c->lhs.type == ADDRESSOF)
+ fprintf (file, "&");
+ else if (c->lhs.type == DEREF)
+ fprintf (file, "*");
+ fprintf (file, "%s", get_varinfo_fc (c->lhs.var)->name);
+ if (c->lhs.offset != 0)
+ fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
+ fprintf (file, " = ");
+ if (c->rhs.type == ADDRESSOF)
+ fprintf (file, "&");
+ else if (c->rhs.type == DEREF)
+ fprintf (file, "*");
+ fprintf (file, "%s", get_varinfo_fc (c->rhs.var)->name);
+ if (c->rhs.offset != 0)
+ fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
+ fprintf (file, "\n");
+}
+
+/* Print out constraint C to stderr. */
+
+void
+debug_constraint (constraint_t c)
+{
+ dump_constraint (stderr, c);
+}
+
+/* Print out all constraints to FILE */
+
+void
+dump_constraints (FILE *file)
+{
+ int i;
+ constraint_t c;
+ for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
+ dump_constraint (file, c);
+}
+
+/* Print out all constraints to stderr. */
+
+void
+debug_constraints (void)
+{
+ dump_constraints (stderr);
+}
+
+/* SOLVER FUNCTIONS
+
+ The solver is a simple worklist solver, that works on the following
+ algorithm:
+
+ sbitmap changed_nodes = all zeroes;
+ changed_count = 0;
+ For each node that is not already collapsed:
+ changed_count++;
+ set bit in changed nodes
+
+ while (changed_count > 0)
+ {
+ compute topological ordering for constraint graph
+
+ find and collapse cycles in the constraint graph (updating
+ changed if necessary)
+
+ for each node (n) in the graph in topological order:
+ changed_count--;
+
+ Process each complex constraint associated with the node,
+ updating changed if necessary.
+
+ For each outgoing edge from n, propagate the solution from n to
+ the destination of the edge, updating changed as necessary.
+
+ } */
+
+/* Return true if two constraint expressions A and B are equal. */
+
+static bool
+constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
+{
+ return a.type == b.type && a.var == b.var && a.offset == b.offset;
+}
+
+/* Return true if constraint expression A is less than constraint expression
+ B. This is just arbitrary, but consistent, in order to give them an
+ ordering. */
+
+static bool
+constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
+{
+ if (a.type == b.type)
+ {
+ if (a.var == b.var)
+ return a.offset < b.offset;
+ else
+ return a.var < b.var;
+ }
+ else
+ return a.type < b.type;
+}
+
+/* Return true if constraint A is less than constraint B. This is just
+ arbitrary, but consistent, in order to give them an ordering. */
+
+static bool
+constraint_less (const constraint_t a, const constraint_t b)
+{
+ if (constraint_expr_less (a->lhs, b->lhs))
+ return true;
+ else if (constraint_expr_less (b->lhs, a->lhs))
+ return false;
+ else
+ return constraint_expr_less (a->rhs, b->rhs);
+}
+
+/* Return true if two constraints A and B are equal. */
+
+static bool
+constraint_equal (struct constraint a, struct constraint b)
+{
+ return constraint_expr_equal (a.lhs, b.lhs)
+ && constraint_expr_equal (a.rhs, b.rhs);
+}
+
+
+/* Find a constraint LOOKFOR in the sorted constraint vector VEC */
+
+static constraint_t
+constraint_vec_find (VEC(constraint_t,heap) *vec,
+ struct constraint lookfor)
+{
+ unsigned int place;
+ constraint_t found;
+
+ if (vec == NULL)
+ return NULL;
+
+ place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
+ if (place >= VEC_length (constraint_t, vec))
+ return NULL;
+ found = VEC_index (constraint_t, vec, place);
+ if (!constraint_equal (*found, lookfor))
+ return NULL;
+ return found;
+}
+
+/* Union two constraint vectors, TO and FROM. Put the result in TO. */
+
+static void
+constraint_set_union (VEC(constraint_t,heap) **to,
+ VEC(constraint_t,heap) **from)
+{
+ int i;
+ constraint_t c;
+
+ for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
+ {
+ if (constraint_vec_find (*to, *c) == NULL)
+ {
+ unsigned int place = VEC_lower_bound (constraint_t, *to, c,
+ constraint_less);
+ VEC_safe_insert (constraint_t, heap, *to, place, c);
+ }
+ }
+}
+
+/* Take a solution set SET, add OFFSET to each member of the set, and
+ overwrite SET with the result when done. */
+
+static void
+solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
+{
+ bitmap result = BITMAP_ALLOC (&iteration_obstack);
+ unsigned int i;
+ bitmap_iterator bi;
+ unsigned HOST_WIDE_INT min = -1, max = 0;
+
+ /* Compute set of vars we can reach from set + offset. */
+
+ EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
+ {
+ if (get_varinfo (i)->is_artificial_var
+ || get_varinfo (i)->has_union
+ || get_varinfo (i)->is_unknown_size_var)
+ continue;
+
+ if (get_varinfo (i)->offset + offset < min)
+ min = get_varinfo (i)->offset + offset;
+ if (get_varinfo (i)->offset + get_varinfo (i)->size + offset > max)
+ {
+ max = get_varinfo (i)->offset + get_varinfo (i)->size + offset;
+ if (max > get_varinfo (i)->fullsize)
+ max = get_varinfo (i)->fullsize;
+ }
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
+ {
+ /* If this is a properly sized variable, only add offset if it's
+ less than end. Otherwise, it is globbed to a single
+ variable. */
+
+ if (get_varinfo (i)->offset + get_varinfo (i)->size - 1 >= min
+ && get_varinfo (i)->offset < max)
+ {
+ bitmap_set_bit (result, i);
+ }
+ else if (get_varinfo (i)->is_artificial_var
+ || get_varinfo (i)->has_union
+ || get_varinfo (i)->is_unknown_size_var)
+ {
+ bitmap_set_bit (result, i);
+ }
+ }
+
+ bitmap_copy (set, result);
+ BITMAP_FREE (result);
+}
+
+/* Union solution sets TO and FROM, and add INC to each member of FROM in the
+ process. */
+
+static bool
+set_union_with_increment (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
+{
+ if (inc == 0)
+ return bitmap_ior_into (to, from);
+ else
+ {
+ bitmap tmp;
+ bool res;
+
+ tmp = BITMAP_ALLOC (&iteration_obstack);
+ bitmap_copy (tmp, from);
+ solution_set_add (tmp, inc);
+ res = bitmap_ior_into (to, tmp);
+ BITMAP_FREE (tmp);
+ return res;
+ }
+}
+
+/* Insert constraint C into the list of complex constraints for graph
+ node VAR. */
+
+static void
+insert_into_complex (constraint_graph_t graph,
+ unsigned int var, constraint_t c)
+{
+ VEC (constraint_t, heap) *complex = graph->complex[var];
+ unsigned int place = VEC_lower_bound (constraint_t, complex, c,
+ constraint_less);
+
+ /* Only insert constraints that do not already exist. */
+ if (place >= VEC_length (constraint_t, complex)
+ || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
+ VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
+}
+
+
+/* Condense two variable nodes into a single variable node, by moving
+ all associated info from SRC to TO. */
+
+static void
+merge_node_constraints (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ unsigned int i;
+ constraint_t c;
+
+ gcc_assert (find (from) == to);
+
+ /* Move all complex constraints from src node into to node */
+ for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
+ {
+ /* In complex constraints for node src, we may have either
+ a = *src, and *src = a, or an offseted constraint which are
+ always added to the rhs node's constraints. */
+
+ if (c->rhs.type == DEREF)
+ c->rhs.var = to;
+ else if (c->lhs.type == DEREF)
+ c->lhs.var = to;
+ else
+ c->rhs.var = to;
+ }
+ constraint_set_union (&graph->complex[to], &graph->complex[from]);
+ VEC_free (constraint_t, heap, graph->complex[from]);
+ graph->complex[from] = NULL;
+}
+
+
+/* Remove edges involving NODE from GRAPH. */
+
+static void
+clear_edges_for_node (constraint_graph_t graph, unsigned int node)
+{
+ if (graph->succs[node])
+ BITMAP_FREE (graph->succs[node]);
+}
+
+/* Merge GRAPH nodes FROM and TO into node TO. */
+
+static void
+merge_graph_nodes (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ if (graph->indirect_cycles[from] != -1)
+ {
+ /* If we have indirect cycles with the from node, and we have
+ none on the to node, the to node has indirect cycles from the
+ from node now that they are unified.
+ If indirect cycles exist on both, unify the nodes that they
+ are in a cycle with, since we know they are in a cycle with
+ each other. */
+ if (graph->indirect_cycles[to] == -1)
+ {
+ graph->indirect_cycles[to] = graph->indirect_cycles[from];
+ }
+ else
+ {
+ unsigned int tonode = find (graph->indirect_cycles[to]);
+ unsigned int fromnode = find (graph->indirect_cycles[from]);
+
+ if (unite (tonode, fromnode))
+ unify_nodes (graph, tonode, fromnode, true);
+ }
+ }
+
+ /* Merge all the successor edges. */
+ if (graph->succs[from])
+ {
+ if (!graph->succs[to])
+ graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
+ bitmap_ior_into (graph->succs[to],
+ graph->succs[from]);
+ }
+
+ clear_edges_for_node (graph, from);
+}
+
+
+/* Add an indirect graph edge to GRAPH, going from TO to FROM if
+ it doesn't exist in the graph already. */
+
+static void
+add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ if (to == from)
+ return;
+
+ if (!graph->implicit_preds[to])
+ graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
+
+ if (!bitmap_bit_p (graph->implicit_preds[to], from))
+ {
+ stats.num_implicit_edges++;
+ bitmap_set_bit (graph->implicit_preds[to], from);
+ }
+}
+
+/* Add a predecessor graph edge to GRAPH, going from TO to FROM if
+ it doesn't exist in the graph already.
+ Return false if the edge already existed, true otherwise. */
+
+static void
+add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ if (!graph->preds[to])
+ graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
+ if (!bitmap_bit_p (graph->preds[to], from))
+ bitmap_set_bit (graph->preds[to], from);
+}
+
+/* Add a graph edge to GRAPH, going from FROM to TO if
+ it doesn't exist in the graph already.
+ Return false if the edge already existed, true otherwise. */
+
+static bool
+add_graph_edge (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ if (to == from)
+ {
+ return false;
+ }
+ else
+ {
+ bool r = false;
+
+ if (!graph->succs[from])
+ graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
+ if (!bitmap_bit_p (graph->succs[from], to))
+ {
+ r = true;
+ if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
+ stats.num_edges++;
+ bitmap_set_bit (graph->succs[from], to);
+ }
+ return r;
+ }
+}
+
+
+/* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
+
+static bool
+valid_graph_edge (constraint_graph_t graph, unsigned int src,
+ unsigned int dest)
+{
+ return (graph->succs[dest]
+ && bitmap_bit_p (graph->succs[dest], src));
+}
+
+/* Build the constraint graph, adding only predecessor edges right now. */
+
+static void
+build_pred_graph (void)
+{
+ int i;
+ constraint_t c;
+ unsigned int j;
+
+ graph = XNEW (struct constraint_graph);
+ graph->size = (VEC_length (varinfo_t, varmap)) * 3;
+ graph->succs = XCNEWVEC (bitmap, graph->size);
+ graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
+ graph->preds = XCNEWVEC (bitmap, graph->size);
+ graph->indirect_cycles = XNEWVEC (int, VEC_length (varinfo_t, varmap));
+ graph->label = XCNEWVEC (unsigned int, graph->size);
+ graph->rep = XNEWVEC (unsigned int, graph->size);
+ graph->eq_rep = XNEWVEC (int, graph->size);
+ graph->complex = XCNEWVEC (VEC(constraint_t, heap) *,
+ VEC_length (varinfo_t, varmap));
+ graph->direct_nodes = sbitmap_alloc (graph->size);
+ sbitmap_zero (graph->direct_nodes);
+
+ for (j = 0; j < FIRST_REF_NODE; j++)
+ {
+ if (!get_varinfo (j)->is_special_var)
+ SET_BIT (graph->direct_nodes, j);
+ }
+
+ for (j = 0; j < graph->size; j++)
+ {
+ graph->rep[j] = j;
+ graph->eq_rep[j] = -1;
+ }
+
+ for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
+ graph->indirect_cycles[j] = -1;
+
+ for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
+ {
+ struct constraint_expr lhs = c->lhs;
+ struct constraint_expr rhs = c->rhs;
+ unsigned int lhsvar = get_varinfo_fc (lhs.var)->id;
+ unsigned int rhsvar = get_varinfo_fc (rhs.var)->id;
+
+ if (lhs.type == DEREF)
+ {
+ /* *x = y. */
+ if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
+ add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
+ if (rhs.type == ADDRESSOF)
+ RESET_BIT (graph->direct_nodes, rhsvar);
+ }
+ else if (rhs.type == DEREF)
+ {
+ /* x = *y */
+ if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
+ add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
+ else
+ RESET_BIT (graph->direct_nodes, lhsvar);
+ }
+ else if (rhs.type == ADDRESSOF)
+ {
+ /* x = &y */
+ add_pred_graph_edge (graph, lhsvar, FIRST_ADDR_NODE + rhsvar);
+ /* Implicitly, *x = y */
+ add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
+
+ RESET_BIT (graph->direct_nodes, rhsvar);
+ }
+ else if (lhsvar > anything_id
+ && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
+ {
+ /* x = y */
+ add_pred_graph_edge (graph, lhsvar, rhsvar);
+ /* Implicitly, *x = *y */
+ add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
+ FIRST_REF_NODE + rhsvar);
+ }
+ else if (lhs.offset != 0 || rhs.offset != 0)
+ {
+ if (rhs.offset != 0)
+ RESET_BIT (graph->direct_nodes, lhs.var);
+ if (lhs.offset != 0)
+ RESET_BIT (graph->direct_nodes, rhs.var);
+ }
+ }
+}
+
+/* Build the constraint graph, adding successor edges. */
+
+static void
+build_succ_graph (void)
+{
+ int i;
+ constraint_t c;
+
+ for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
+ {
+ struct constraint_expr lhs;
+ struct constraint_expr rhs;
+ unsigned int lhsvar;
+ unsigned int rhsvar;
+
+ if (!c)
+ continue;
+
+ lhs = c->lhs;
+ rhs = c->rhs;
+ lhsvar = find (get_varinfo_fc (lhs.var)->id);
+ rhsvar = find (get_varinfo_fc (rhs.var)->id);
+
+ if (lhs.type == DEREF)
+ {
+ if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
+ add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
+ }
+ else if (rhs.type == DEREF)
+ {
+ if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
+ add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
+ }
+ else if (rhs.type == ADDRESSOF)
+ {
+ /* x = &y */
+ gcc_assert (find (get_varinfo_fc (rhs.var)->id)
+ == get_varinfo_fc (rhs.var)->id);
+ bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
+ }
+ else if (lhsvar > anything_id
+ && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
+ {
+ add_graph_edge (graph, lhsvar, rhsvar);
+ }
+ }
+}
+
+
+/* Changed variables on the last iteration. */
+static unsigned int changed_count;
+static sbitmap changed;
+
+DEF_VEC_I(unsigned);
+DEF_VEC_ALLOC_I(unsigned,heap);
+
+
+/* Strongly Connected Component visitation info. */
+
+struct scc_info
+{
+ sbitmap visited;
+ sbitmap roots;
+ unsigned int *dfs;
+ unsigned int *node_mapping;
+ int current_index;
+ VEC(unsigned,heap) *scc_stack;
+};
+
+
+/* Recursive routine to find strongly connected components in GRAPH.
+ SI is the SCC info to store the information in, and N is the id of current
+ graph node we are processing.
+
+ This is Tarjan's strongly connected component finding algorithm, as
+ modified by Nuutila to keep only non-root nodes on the stack.
+ The algorithm can be found in "On finding the strongly connected
+ connected components in a directed graph" by Esko Nuutila and Eljas
+ Soisalon-Soininen, in Information Processing Letters volume 49,
+ number 1, pages 9-14. */
+
+static void
+scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
+{
+ unsigned int i;
+ bitmap_iterator bi;
+ unsigned int my_dfs;
+
+ SET_BIT (si->visited, n);
+ si->dfs[n] = si->current_index ++;
+ my_dfs = si->dfs[n];
+
+ /* Visit all the successors. */
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
+ {
+ unsigned int w;
+
+ if (i > LAST_REF_NODE)
+ break;
+
+ w = find (i);
+ if (TEST_BIT (si->roots, w))
+ continue;
+
+ if (!TEST_BIT (si->visited, w))
+ scc_visit (graph, si, w);
+ {
+ unsigned int t = find (w);
+ unsigned int nnode = find (n);
+ gcc_assert (nnode == n);
+
+ if (si->dfs[t] < si->dfs[nnode])
+ si->dfs[n] = si->dfs[t];
+ }
+ }
+
+ /* See if any components have been identified. */
+ if (si->dfs[n] == my_dfs)
+ {
+ if (VEC_length (unsigned, si->scc_stack) > 0
+ && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
+ {
+ bitmap scc = BITMAP_ALLOC (NULL);
+ bool have_ref_node = n >= FIRST_REF_NODE;
+ unsigned int lowest_node;
+ bitmap_iterator bi;
+
+ bitmap_set_bit (scc, n);
+
+ while (VEC_length (unsigned, si->scc_stack) != 0
+ && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
+ {
+ unsigned int w = VEC_pop (unsigned, si->scc_stack);
+
+ bitmap_set_bit (scc, w);
+ if (w >= FIRST_REF_NODE)
+ have_ref_node = true;
+ }
+
+ lowest_node = bitmap_first_set_bit (scc);
+ gcc_assert (lowest_node < FIRST_REF_NODE);
+ EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
+ {
+ if (i < FIRST_REF_NODE)
+ {
+ /* Mark this node for collapsing. */
+ if (unite (lowest_node, i))
+ unify_nodes (graph, lowest_node, i, false);
+ }
+ else
+ {
+ unite (lowest_node, i);
+ graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
+ }
+ }
+ }
+ SET_BIT (si->roots, n);
+ }
+ else
+ VEC_safe_push (unsigned, heap, si->scc_stack, n);
+}
+
+/* Unify node FROM into node TO, updating the changed count if
+ necessary when UPDATE_CHANGED is true. */
+
+static void
+unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
+ bool update_changed)
+{
+
+ gcc_assert (to != from && find (to) == to);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Unifying %s to %s\n",
+ get_varinfo (from)->name,
+ get_varinfo (to)->name);
+
+ if (update_changed)
+ stats.unified_vars_dynamic++;
+ else
+ stats.unified_vars_static++;
+
+ merge_graph_nodes (graph, to, from);
+ merge_node_constraints (graph, to, from);
+
+ if (update_changed && TEST_BIT (changed, from))
+ {
+ RESET_BIT (changed, from);
+ if (!TEST_BIT (changed, to))
+ SET_BIT (changed, to);
+ else
+ {
+ gcc_assert (changed_count > 0);
+ changed_count--;
+ }
+ }
+
+ /* If the solution changes because of the merging, we need to mark
+ the variable as changed. */
+ if (bitmap_ior_into (get_varinfo (to)->solution,
+ get_varinfo (from)->solution))
+ {
+ if (update_changed && !TEST_BIT (changed, to))
+ {
+ SET_BIT (changed, to);
+ changed_count++;
+ }
+ }
+
+ BITMAP_FREE (get_varinfo (from)->solution);
+ BITMAP_FREE (get_varinfo (from)->oldsolution);
+
+ if (stats.iterations > 0)
+ {
+ BITMAP_FREE (get_varinfo (to)->oldsolution);
+ get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
+ }
+
+ if (valid_graph_edge (graph, to, to))
+ {
+ if (graph->succs[to])
+ bitmap_clear_bit (graph->succs[to], to);
+ }
+}
+
+/* Information needed to compute the topological ordering of a graph. */
+
+struct topo_info
+{
+ /* sbitmap of visited nodes. */
+ sbitmap visited;
+ /* Array that stores the topological order of the graph, *in
+ reverse*. */
+ VEC(unsigned,heap) *topo_order;
+};
+
+
+/* Initialize and return a topological info structure. */
+
+static struct topo_info *
+init_topo_info (void)
+{
+ size_t size = VEC_length (varinfo_t, varmap);
+ struct topo_info *ti = XNEW (struct topo_info);
+ ti->visited = sbitmap_alloc (size);
+ sbitmap_zero (ti->visited);
+ ti->topo_order = VEC_alloc (unsigned, heap, 1);
+ return ti;
+}
+
+
+/* Free the topological sort info pointed to by TI. */
+
+static void
+free_topo_info (struct topo_info *ti)
+{
+ sbitmap_free (ti->visited);
+ VEC_free (unsigned, heap, ti->topo_order);
+ free (ti);
+}
+
+/* Visit the graph in topological order, and store the order in the
+ topo_info structure. */
+
+static void
+topo_visit (constraint_graph_t graph, struct topo_info *ti,
+ unsigned int n)
+{
+ bitmap_iterator bi;
+ unsigned int j;
+
+ SET_BIT (ti->visited, n);
+
+ if (graph->succs[n])
+ EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
+ {
+ if (!TEST_BIT (ti->visited, j))
+ topo_visit (graph, ti, j);
+ }
+
+ VEC_safe_push (unsigned, heap, ti->topo_order, n);
+}
+
+/* Return true if variable N + OFFSET is a legal field of N. */
+
+static bool
+type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
+{
+ varinfo_t ninfo = get_varinfo (n);
+
+ /* For things we've globbed to single variables, any offset into the
+ variable acts like the entire variable, so that it becomes offset
+ 0. */
+ if (ninfo->is_special_var
+ || ninfo->is_artificial_var
+ || ninfo->is_unknown_size_var)
+ {
+ *offset = 0;
+ return true;
+ }
+ return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
+}
+
+/* Process a constraint C that represents *x = &y. */
+
+static void
+do_da_constraint (constraint_graph_t graph ATTRIBUTE_UNUSED,
+ constraint_t c, bitmap delta)
+{
+ unsigned int rhs = c->rhs.var;
+ unsigned int j;
+ bitmap_iterator bi;
+
+ /* For each member j of Delta (Sol(x)), add x to Sol(j) */
+ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
+ {
+ unsigned HOST_WIDE_INT offset = c->lhs.offset;
+ if (type_safe (j, &offset) && !(get_varinfo (j)->is_special_var))
+ {
+ /* *x != NULL && *x != ANYTHING*/
+ varinfo_t v;
+ unsigned int t;
+ bitmap sol;
+ unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + offset;
+
+ v = first_vi_for_offset (get_varinfo (j), fieldoffset);
+ if (!v)
+ continue;
+ t = find (v->id);
+ sol = get_varinfo (t)->solution;
+ if (!bitmap_bit_p (sol, rhs))
+ {
+ bitmap_set_bit (sol, rhs);
+ if (!TEST_BIT (changed, t))
+ {
+ SET_BIT (changed, t);
+ changed_count++;
+ }
+ }
+ }
+ else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
+ fprintf (dump_file, "Untypesafe usage in do_da_constraint.\n");
+
+ }
+}
+
+/* Process a constraint C that represents x = *y, using DELTA as the
+ starting solution. */
+
+static void
+do_sd_constraint (constraint_graph_t graph, constraint_t c,
+ bitmap delta)
+{
+ unsigned int lhs = find (c->lhs.var);
+ bool flag = false;
+ bitmap sol = get_varinfo (lhs)->solution;
+ unsigned int j;
+ bitmap_iterator bi;
+
+ if (bitmap_bit_p (delta, anything_id))
+ {
+ flag = !bitmap_bit_p (sol, anything_id);
+ if (flag)
+ bitmap_set_bit (sol, anything_id);
+ goto done;
+ }
+ /* For each variable j in delta (Sol(y)), add
+ an edge in the graph from j to x, and union Sol(j) into Sol(x). */
+ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
+ {
+ unsigned HOST_WIDE_INT roffset = c->rhs.offset;
+ if (type_safe (j, &roffset))
+ {
+ varinfo_t v;
+ unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
+ unsigned int t;
+
+ v = first_vi_for_offset (get_varinfo (j), fieldoffset);
+ if (!v)
+ continue;
+ t = find (v->id);
+
+ /* Adding edges from the special vars is pointless.
+ They don't have sets that can change. */
+ if (get_varinfo (t) ->is_special_var)
+ flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
+ else if (add_graph_edge (graph, lhs, t))
+ flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
+ }
+ else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
+ fprintf (dump_file, "Untypesafe usage in do_sd_constraint\n");
+
+ }
+
+done:
+ /* If the LHS solution changed, mark the var as changed. */
+ if (flag)
+ {
+ get_varinfo (lhs)->solution = sol;
+ if (!TEST_BIT (changed, lhs))
+ {
+ SET_BIT (changed, lhs);
+ changed_count++;
+ }
+ }
+}
+
+/* Process a constraint C that represents *x = y. */
+
+static void
+do_ds_constraint (constraint_t c, bitmap delta)
+{
+ unsigned int rhs = find (c->rhs.var);
+ unsigned HOST_WIDE_INT roff = c->rhs.offset;
+ bitmap sol = get_varinfo (rhs)->solution;
+ unsigned int j;
+ bitmap_iterator bi;
+
+ if (bitmap_bit_p (sol, anything_id))
+ {
+ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
+ {
+ varinfo_t jvi = get_varinfo (j);
+ unsigned int t;
+ unsigned int loff = c->lhs.offset;
+ unsigned HOST_WIDE_INT fieldoffset = jvi->offset + loff;
+ varinfo_t v;
+
+ v = first_vi_for_offset (get_varinfo (j), fieldoffset);
+ if (!v)
+ continue;
+ t = find (v->id);
+
+ if (!bitmap_bit_p (get_varinfo (t)->solution, anything_id))
+ {
+ bitmap_set_bit (get_varinfo (t)->solution, anything_id);
+ if (!TEST_BIT (changed, t))
+ {
+ SET_BIT (changed, t);
+ changed_count++;
+ }
+ }
+ }
+ return;
+ }
+
+ /* For each member j of delta (Sol(x)), add an edge from y to j and
+ union Sol(y) into Sol(j) */
+ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
+ {
+ unsigned HOST_WIDE_INT loff = c->lhs.offset;
+ if (type_safe (j, &loff) && !(get_varinfo (j)->is_special_var))
+ {
+ varinfo_t v;
+ unsigned int t;
+ unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;
+ bitmap tmp;
+
+ v = first_vi_for_offset (get_varinfo (j), fieldoffset);
+ if (!v)
+ continue;
+ t = find (v->id);
+ tmp = get_varinfo (t)->solution;
+
+ if (set_union_with_increment (tmp, sol, roff))
+ {
+ get_varinfo (t)->solution = tmp;
+ if (t == rhs)
+ sol = get_varinfo (rhs)->solution;
+ if (!TEST_BIT (changed, t))
+ {
+ SET_BIT (changed, t);
+ changed_count++;
+ }
+ }
+ }
+ else if (0 && dump_file && !(get_varinfo (j)->is_special_var))
+ fprintf (dump_file, "Untypesafe usage in do_ds_constraint\n");
+ }
+}
+
+/* Handle a non-simple (simple meaning requires no iteration),
+ constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
+
+static void
+do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
+{
+ if (c->lhs.type == DEREF)
+ {
+ if (c->rhs.type == ADDRESSOF)
+ {
+ /* *x = &y */
+ do_da_constraint (graph, c, delta);
+ }
+ else
+ {
+ /* *x = y */
+ do_ds_constraint (c, delta);
+ }
+ }
+ else if (c->rhs.type == DEREF)
+ {
+ /* x = *y */
+ if (!(get_varinfo (c->lhs.var)->is_special_var))
+ do_sd_constraint (graph, c, delta);
+ }
+ else
+ {
+ bitmap tmp;
+ bitmap solution;
+ bool flag = false;
+ unsigned int t;
+
+ gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
+ t = find (c->rhs.var);
+ solution = get_varinfo (t)->solution;
+ t = find (c->lhs.var);
+ tmp = get_varinfo (t)->solution;
+
+ flag = set_union_with_increment (tmp, solution, c->rhs.offset);
+
+ if (flag)
+ {
+ get_varinfo (t)->solution = tmp;
+ if (!TEST_BIT (changed, t))
+ {
+ SET_BIT (changed, t);
+ changed_count++;
+ }
+ }
+ }
+}
+
+/* Initialize and return a new SCC info structure. */
+
+static struct scc_info *
+init_scc_info (size_t size)
+{
+ struct scc_info *si = XNEW (struct scc_info);
+ size_t i;
+
+ si->current_index = 0;
+ si->visited = sbitmap_alloc (size);
+ sbitmap_zero (si->visited);
+ si->roots = sbitmap_alloc (size);
+ sbitmap_zero (si->roots);
+ si->node_mapping = XNEWVEC (unsigned int, size);
+ si->dfs = XCNEWVEC (unsigned int, size);
+
+ for (i = 0; i < size; i++)
+ si->node_mapping[i] = i;
+
+ si->scc_stack = VEC_alloc (unsigned, heap, 1);
+ return si;
+}
+
+/* Free an SCC info structure pointed to by SI */
+
+static void
+free_scc_info (struct scc_info *si)
+{
+ sbitmap_free (si->visited);
+ sbitmap_free (si->roots);
+ free (si->node_mapping);
+ free (si->dfs);
+ VEC_free (unsigned, heap, si->scc_stack);
+ free (si);
+}
+
+
+/* Find indirect cycles in GRAPH that occur, using strongly connected
+ components, and note them in the indirect cycles map.
+
+ This technique comes from Ben Hardekopf and Calvin Lin,
+ "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
+ Lines of Code", submitted to PLDI 2007. */
+
+static void
+find_indirect_cycles (constraint_graph_t graph)
+{
+ unsigned int i;
+ unsigned int size = graph->size;
+ struct scc_info *si = init_scc_info (size);
+
+ for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
+ if (!TEST_BIT (si->visited, i) && find (i) == i)
+ scc_visit (graph, si, i);
+
+ free_scc_info (si);
+}
+
+/* Compute a topological ordering for GRAPH, and store the result in the
+ topo_info structure TI. */
+
+static void
+compute_topo_order (constraint_graph_t graph,
+ struct topo_info *ti)
+{
+ unsigned int i;
+ unsigned int size = VEC_length (varinfo_t, varmap);
+
+ for (i = 0; i != size; ++i)
+ if (!TEST_BIT (ti->visited, i) && find (i) == i)
+ topo_visit (graph, ti, i);
+}
+
+/* Perform offline variable substitution.
+
+ This is a linear time way of identifying variables that must have
+ equivalent points-to sets, including those caused by static cycles,
+ and single entry subgraphs, in the constraint graph.
+
+ The technique is described in "Off-line variable substitution for
+ scaling points-to analysis" by Atanas Rountev and Satish Chandra,
+ in "ACM SIGPLAN Notices" volume 35, number 5, pages 47-56.
+
+ There is an optimal way to do this involving hash based value
+ numbering, once the technique is published i will implement it
+ here.
+
+ The general method of finding equivalence classes is as follows:
+ Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
+ Add fake nodes (ADDRESS nodes) and edges for a = &b constraints.
+ Initialize all non-REF/ADDRESS nodes to be direct nodes
+ For each SCC in the predecessor graph:
+ for each member (x) of the SCC
+ if x is not a direct node:
+ set rootnode(SCC) to be not a direct node
+ collapse node x into rootnode(SCC).
+ if rootnode(SCC) is not a direct node:
+ label rootnode(SCC) with a new equivalence class
+ else:
+ if all labeled predecessors of rootnode(SCC) have the same
+ label:
+ label rootnode(SCC) with this label
+ else:
+ label rootnode(SCC) with a new equivalence class
+
+ All direct nodes with the same equivalence class can be replaced
+ with a single representative node.
+ All unlabeled nodes (label == 0) are not pointers and all edges
+ involving them can be eliminated.
+ We perform these optimizations during move_complex_constraints.
+*/
+
+static int equivalence_class;
+
+/* Recursive routine to find strongly connected components in GRAPH,
+ and label it's nodes with equivalence classes.
+ This is used during variable substitution to find cycles involving
+ the regular or implicit predecessors, and label them as equivalent.
+ The SCC finding algorithm used is the same as that for scc_visit. */
+
+static void
+label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
+{
+ unsigned int i;
+ bitmap_iterator bi;
+ unsigned int my_dfs;
+
+ gcc_assert (si->node_mapping[n] == n);
+ SET_BIT (si->visited, n);
+ si->dfs[n] = si->current_index ++;
+ my_dfs = si->dfs[n];
+
+ /* Visit all the successors. */
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
+ {
+ unsigned int w = si->node_mapping[i];
+
+ if (TEST_BIT (si->roots, w))
+ continue;
+
+ if (!TEST_BIT (si->visited, w))
+ label_visit (graph, si, w);
+ {
+ unsigned int t = si->node_mapping[w];
+ unsigned int nnode = si->node_mapping[n];
+ gcc_assert (nnode == n);
+
+ if (si->dfs[t] < si->dfs[nnode])
+ si->dfs[n] = si->dfs[t];
+ }
+ }
+
+ /* Visit all the implicit predecessors. */
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
+ {
+ unsigned int w = si->node_mapping[i];
+
+ if (TEST_BIT (si->roots, w))
+ continue;
+
+ if (!TEST_BIT (si->visited, w))
+ label_visit (graph, si, w);
+ {
+ unsigned int t = si->node_mapping[w];
+ unsigned int nnode = si->node_mapping[n];
+ gcc_assert (nnode == n);
+
+ if (si->dfs[t] < si->dfs[nnode])
+ si->dfs[n] = si->dfs[t];
+ }
+ }
+
+ /* See if any components have been identified. */
+ if (si->dfs[n] == my_dfs)
+ {
+ while (VEC_length (unsigned, si->scc_stack) != 0
+ && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
+ {
+ unsigned int w = VEC_pop (unsigned, si->scc_stack);
+ si->node_mapping[w] = n;
+
+ if (!TEST_BIT (graph->direct_nodes, w))
+ RESET_BIT (graph->direct_nodes, n);
+ }
+ SET_BIT (si->roots, n);
+
+ if (!TEST_BIT (graph->direct_nodes, n))
+ {
+ graph->label[n] = equivalence_class++;
+ }
+ else
+ {
+ unsigned int size = 0;
+ unsigned int firstlabel = ~0;
+
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
+ {
+ unsigned int j = si->node_mapping[i];
+
+ if (j == n || graph->label[j] == 0)
+ continue;
+
+ if (firstlabel == (unsigned int)~0)
+ {
+ firstlabel = graph->label[j];
+ size++;
+ }
+ else if (graph->label[j] != firstlabel)
+ size++;
+ }
+
+ if (size == 0)
+ graph->label[n] = 0;
+ else if (size == 1)
+ graph->label[n] = firstlabel;
+ else
+ graph->label[n] = equivalence_class++;
+ }
+ }
+ else
+ VEC_safe_push (unsigned, heap, si->scc_stack, n);
+}
+
+/* Perform offline variable substitution, discovering equivalence
+ classes, and eliminating non-pointer variables. */
+
+static struct scc_info *
+perform_var_substitution (constraint_graph_t graph)
+{
+ unsigned int i;
+ unsigned int size = graph->size;
+ struct scc_info *si = init_scc_info (size);
+
+ bitmap_obstack_initialize (&iteration_obstack);
+ equivalence_class = 0;
+
+ /* We only need to visit the non-address nodes for labeling
+ purposes, as the address nodes will never have any predecessors,
+ because &x never appears on the LHS of a constraint. */
+ for (i = 0; i < LAST_REF_NODE; i++)
+ if (!TEST_BIT (si->visited, si->node_mapping[i]))
+ label_visit (graph, si, si->node_mapping[i]);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ for (i = 0; i < FIRST_REF_NODE; i++)
+ {
+ bool direct_node = TEST_BIT (graph->direct_nodes, i);
+ fprintf (dump_file,
+ "Equivalence class for %s node id %d:%s is %d\n",
+ direct_node ? "Direct node" : "Indirect node", i,
+ get_varinfo (i)->name,
+ graph->label[si->node_mapping[i]]);
+ }
+
+ /* Quickly eliminate our non-pointer variables. */
+
+ for (i = 0; i < FIRST_REF_NODE; i++)
+ {
+ unsigned int node = si->node_mapping[i];
+
+ if (graph->label[node] == 0 && TEST_BIT (graph->direct_nodes, node))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "%s is a non-pointer variable, eliminating edges.\n",
+ get_varinfo (node)->name);
+ stats.nonpointer_vars++;
+ clear_edges_for_node (graph, node);
+ }
+ }
+ return si;
+}
+
+/* Free information that was only necessary for variable
+ substitution. */
+
+static void
+free_var_substitution_info (struct scc_info *si)
+{
+ free_scc_info (si);
+ free (graph->label);
+ free (graph->eq_rep);
+ sbitmap_free (graph->direct_nodes);
+ bitmap_obstack_release (&iteration_obstack);
+}
+
+/* Return an existing node that is equivalent to NODE, which has
+ equivalence class LABEL, if one exists. Return NODE otherwise. */
+
+static unsigned int
+find_equivalent_node (constraint_graph_t graph,
+ unsigned int node, unsigned int label)
+{
+ /* If the address version of this variable is unused, we can
+ substitute it for anything else with the same label.
+ Otherwise, we know the pointers are equivalent, but not the
+ locations. */
+
+ if (graph->label[FIRST_ADDR_NODE + node] == 0)
+ {
+ gcc_assert (label < graph->size);
+
+ if (graph->eq_rep[label] != -1)
+ {
+ /* Unify the two variables since we know they are equivalent. */
+ if (unite (graph->eq_rep[label], node))
+ unify_nodes (graph, graph->eq_rep[label], node, false);
+ return graph->eq_rep[label];
+ }
+ else
+ {
+ graph->eq_rep[label] = node;
+ }
+ }
+ return node;
+}
+
+/* Move complex constraints to the appropriate nodes, and collapse
+ variables we've discovered are equivalent during variable
+ substitution. SI is the SCC_INFO that is the result of
+ perform_variable_substitution. */
+
+static void
+move_complex_constraints (constraint_graph_t graph,
+ struct scc_info *si)
+{
+ int i;
+ unsigned int j;
+ constraint_t c;
+
+ for (j = 0; j < graph->size; j++)
+ gcc_assert (find (j) == j);
+
+ for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
+ {
+ struct constraint_expr lhs = c->lhs;
+ struct constraint_expr rhs = c->rhs;
+ unsigned int lhsvar = find (get_varinfo_fc (lhs.var)->id);
+ unsigned int rhsvar = find (get_varinfo_fc (rhs.var)->id);
+ unsigned int lhsnode, rhsnode;
+ unsigned int lhslabel, rhslabel;
+
+ lhsnode = si->node_mapping[lhsvar];
+ rhsnode = si->node_mapping[rhsvar];
+ lhslabel = graph->label[lhsnode];
+ rhslabel = graph->label[rhsnode];
+
+ /* See if it is really a non-pointer variable, and if so, ignore
+ the constraint. */
+ if (lhslabel == 0)
+ {
+ if (!TEST_BIT (graph->direct_nodes, lhsnode))
+ lhslabel = graph->label[lhsnode] = equivalence_class++;
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+
+ fprintf (dump_file, "%s is a non-pointer variable,"
+ "ignoring constraint:",
+ get_varinfo (lhs.var)->name);
+ dump_constraint (dump_file, c);
+ }
+ VEC_replace (constraint_t, constraints, i, NULL);
+ continue;
+ }
+ }
+
+ if (rhslabel == 0)
+ {
+ if (!TEST_BIT (graph->direct_nodes, rhsnode))
+ rhslabel = graph->label[rhsnode] = equivalence_class++;
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+
+ fprintf (dump_file, "%s is a non-pointer variable,"
+ "ignoring constraint:",
+ get_varinfo (rhs.var)->name);
+ dump_constraint (dump_file, c);
+ }
+ VEC_replace (constraint_t, constraints, i, NULL);
+ continue;
+ }
+ }
+
+ lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
+ rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
+ c->lhs.var = lhsvar;
+ c->rhs.var = rhsvar;
+
+ if (lhs.type == DEREF)
+ {
+ if (rhs.type == ADDRESSOF || rhsvar > anything_id)
+ insert_into_complex (graph, lhsvar, c);
+ }
+ else if (rhs.type == DEREF)
+ {
+ if (!(get_varinfo (lhsvar)->is_special_var))
+ insert_into_complex (graph, rhsvar, c);
+ }
+ else if (rhs.type != ADDRESSOF && lhsvar > anything_id
+ && (lhs.offset != 0 || rhs.offset != 0))
+ {
+ insert_into_complex (graph, rhsvar, c);
+ }
+
+ }
+}
+
+/* Eliminate indirect cycles involving NODE. Return true if NODE was
+ part of an SCC, false otherwise. */
+
+static bool
+eliminate_indirect_cycles (unsigned int node)
+{
+ if (graph->indirect_cycles[node] != -1
+ && !bitmap_empty_p (get_varinfo (node)->solution))
+ {
+ unsigned int i;
+ VEC(unsigned,heap) *queue = NULL;
+ int queuepos;
+ unsigned int to = find (graph->indirect_cycles[node]);
+ bitmap_iterator bi;
+
+ /* We can't touch the solution set and call unify_nodes
+ at the same time, because unify_nodes is going to do
+ bitmap unions into it. */
+
+ EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
+ {
+ if (find (i) == i && i != to)
+ {
+ if (unite (to, i))
+ VEC_safe_push (unsigned, heap, queue, i);
+ }
+ }
+
+ for (queuepos = 0;
+ VEC_iterate (unsigned, queue, queuepos, i);
+ queuepos++)
+ {
+ unify_nodes (graph, to, i, true);
+ }
+ VEC_free (unsigned, heap, queue);
+ return true;
+ }
+ return false;
+}
+
+/* Solve the constraint graph GRAPH using our worklist solver.
+ This is based on the PW* family of solvers from the "Efficient Field
+ Sensitive Pointer Analysis for C" paper.
+ It works by iterating over all the graph nodes, processing the complex
+ constraints and propagating the copy constraints, until everything stops
+ changed. This corresponds to steps 6-8 in the solving list given above. */
+
+static void
+solve_graph (constraint_graph_t graph)
+{
+ unsigned int size = VEC_length (varinfo_t, varmap);
+ unsigned int i;
+ bitmap pts;
+
+ changed_count = 0;
+ changed = sbitmap_alloc (size);
+ sbitmap_zero (changed);
+
+ /* Mark all initial non-collapsed nodes as changed. */
+ for (i = 0; i < size; i++)
+ {
+ varinfo_t ivi = get_varinfo (i);
+ if (find (i) == i && !bitmap_empty_p (ivi->solution)
+ && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
+ || VEC_length (constraint_t, graph->complex[i]) > 0))
+ {
+ SET_BIT (changed, i);
+ changed_count++;
+ }
+ }
+
+ /* Allocate a bitmap to be used to store the changed bits. */
+ pts = BITMAP_ALLOC (&pta_obstack);
+
+ while (changed_count > 0)
+ {
+ unsigned int i;
+ struct topo_info *ti = init_topo_info ();
+ stats.iterations++;
+
+ bitmap_obstack_initialize (&iteration_obstack);
+
+ compute_topo_order (graph, ti);
+
+ while (VEC_length (unsigned, ti->topo_order) != 0)
+ {
+
+ i = VEC_pop (unsigned, ti->topo_order);
+
+ /* If this variable is not a representative, skip it. */
+ if (find (i) != i)
+ continue;
+
+ /* In certain indirect cycle cases, we may merge this
+ variable to another. */
+ if (eliminate_indirect_cycles (i) && find (i) != i)
+ continue;
+
+ /* If the node has changed, we need to process the
+ complex constraints and outgoing edges again. */
+ if (TEST_BIT (changed, i))
+ {
+ unsigned int j;
+ constraint_t c;
+ bitmap solution;
+ VEC(constraint_t,heap) *complex = graph->complex[i];
+ bool solution_empty;
+
+ RESET_BIT (changed, i);
+ changed_count--;
+
+ /* Compute the changed set of solution bits. */
+ bitmap_and_compl (pts, get_varinfo (i)->solution,
+ get_varinfo (i)->oldsolution);
+
+ if (bitmap_empty_p (pts))
+ continue;
+
+ bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
+
+ solution = get_varinfo (i)->solution;
+ solution_empty = bitmap_empty_p (solution);
+
+ /* Process the complex constraints */
+ for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
+ {
+ /* The only complex constraint that can change our
+ solution to non-empty, given an empty solution,
+ is a constraint where the lhs side is receiving
+ some set from elsewhere. */
+ if (!solution_empty || c->lhs.type != DEREF)
+ do_complex_constraint (graph, c, pts);
+ }
+
+ solution_empty = bitmap_empty_p (solution);
+
+ if (!solution_empty)
+ {
+ bitmap_iterator bi;
+
+ /* Propagate solution to all successors. */
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
+ 0, j, bi)
+ {
+ bitmap tmp;
+ bool flag;
+
+ unsigned int to = find (j);
+ tmp = get_varinfo (to)->solution;
+ flag = false;
+
+ /* Don't try to propagate to ourselves. */
+ if (to == i)
+ continue;
+
+ flag = set_union_with_increment (tmp, pts, 0);
+
+ if (flag)
+ {
+ get_varinfo (to)->solution = tmp;
+ if (!TEST_BIT (changed, to))
+ {
+ SET_BIT (changed, to);
+ changed_count++;
+ }
+ }
+ }
+ }
+ }
+ }
+ free_topo_info (ti);
+ bitmap_obstack_release (&iteration_obstack);
+ }
+
+ BITMAP_FREE (pts);
+ sbitmap_free (changed);
+ bitmap_obstack_release (&oldpta_obstack);
+}
+
+/* Map from trees to variable infos. */
+static struct pointer_map_t *vi_for_tree;
+
+
+/* Insert ID as the variable id for tree T in the vi_for_tree map. */
+
+static void
+insert_vi_for_tree (tree t, varinfo_t vi)
+{
+ void **slot = pointer_map_insert (vi_for_tree, t);
+ gcc_assert (vi);
+ gcc_assert (*slot == NULL);
+ *slot = vi;
+}
+
+/* Find the variable info for tree T in VI_FOR_TREE. If T does not
+ exist in the map, return NULL, otherwise, return the varinfo we found. */
+
+static varinfo_t
+lookup_vi_for_tree (tree t)
+{
+ void **slot = pointer_map_contains (vi_for_tree, t);
+ if (slot == NULL)
+ return NULL;
+
+ return (varinfo_t) *slot;
+}
+
+/* Return a printable name for DECL */
+
+static const char *
+alias_get_name (tree decl)
+{
+ const char *res = get_name (decl);
+ char *temp;
+ int num_printed = 0;
+
+ if (res != NULL)
+ return res;
+
+ res = "NULL";
+ if (!dump_file)
+ return res;
+
+ if (TREE_CODE (decl) == SSA_NAME)
+ {
+ num_printed = asprintf (&temp, "%s_%u",
+ alias_get_name (SSA_NAME_VAR (decl)),
+ SSA_NAME_VERSION (decl));
+ }
+ else if (DECL_P (decl))
+ {
+ num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
+ }
+ if (num_printed > 0)
+ {
+ res = ggc_strdup (temp);
+ free (temp);
+ }
+ return res;
+}
+
+/* Find the variable id for tree T in the map.
+ If T doesn't exist in the map, create an entry for it and return it. */
+
+static varinfo_t
+get_vi_for_tree (tree t)
+{
+ void **slot = pointer_map_contains (vi_for_tree, t);
+ if (slot == NULL)
+ return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
+
+ return (varinfo_t) *slot;
+}
+
+/* Get a constraint expression from an SSA_VAR_P node. */
+
+static struct constraint_expr
+get_constraint_exp_from_ssa_var (tree t)
+{
+ struct constraint_expr cexpr;
+
+ gcc_assert (SSA_VAR_P (t) || DECL_P (t));
+
+ /* For parameters, get at the points-to set for the actual parm
+ decl. */
+ if (TREE_CODE (t) == SSA_NAME
+ && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
+ && default_def (SSA_NAME_VAR (t)) == t)
+ return get_constraint_exp_from_ssa_var (SSA_NAME_VAR (t));
+
+ cexpr.type = SCALAR;
+
+ cexpr.var = get_vi_for_tree (t)->id;
+ /* If we determine the result is "anything", and we know this is readonly,
+ say it points to readonly memory instead. */
+ if (cexpr.var == anything_id && TREE_READONLY (t))
+ {
+ cexpr.type = ADDRESSOF;
+ cexpr.var = readonly_id;
+ }
+
+ cexpr.offset = 0;
+ return cexpr;
+}
+
+/* Process a completed constraint T, and add it to the constraint
+ list. */
+
+static void
+process_constraint (constraint_t t)
+{
+ struct constraint_expr rhs = t->rhs;
+ struct constraint_expr lhs = t->lhs;
+
+ gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
+ gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
+
+ if (lhs.type == DEREF)
+ get_varinfo (lhs.var)->directly_dereferenced = true;
+ if (rhs.type == DEREF)
+ get_varinfo (rhs.var)->directly_dereferenced = true;
+
+ if (!use_field_sensitive)
+ {
+ t->rhs.offset = 0;
+ t->lhs.offset = 0;
+ }
+
+ /* ANYTHING == ANYTHING is pointless. */
+ if (lhs.var == anything_id && rhs.var == anything_id)
+ return;
+
+ /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
+ else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
+ {
+ rhs = t->lhs;
+ t->lhs = t->rhs;
+ t->rhs = rhs;
+ process_constraint (t);
+ }
+ /* This can happen in our IR with things like n->a = *p */
+ else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
+ {
+ /* Split into tmp = *rhs, *lhs = tmp */
+ tree rhsdecl = get_varinfo (rhs.var)->decl;
+ tree pointertype = TREE_TYPE (rhsdecl);
+ tree pointedtotype = TREE_TYPE (pointertype);
+ tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
+ struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
+
+ /* If this is an aggregate of known size, we should have passed
+ this off to do_structure_copy, and it should have broken it
+ up. */
+ gcc_assert (!AGGREGATE_TYPE_P (pointedtotype)
+ || get_varinfo (rhs.var)->is_unknown_size_var);
+
+ process_constraint (new_constraint (tmplhs, rhs));
+ process_constraint (new_constraint (lhs, tmplhs));
+ }
+ else
+ {
+ gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
+ VEC_safe_push (constraint_t, heap, constraints, t);
+ }
+}
+
+/* Return true if T is a variable of a type that could contain
+ pointers. */
+
+static bool
+could_have_pointers (tree t)
+{
+ tree type = TREE_TYPE (t);
+
+ if (POINTER_TYPE_P (type)
+ || AGGREGATE_TYPE_P (type)
+ || TREE_CODE (type) == COMPLEX_TYPE)
+ return true;
+
+ return false;
+}
+
+/* Return the position, in bits, of FIELD_DECL from the beginning of its
+ structure. */
+
+static unsigned HOST_WIDE_INT
+bitpos_of_field (const tree fdecl)
+{
+
+ if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
+ || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
+ return -1;
+
+ return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8)
+ + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
+}
+
+
+/* Return true if an access to [ACCESSPOS, ACCESSSIZE]
+ overlaps with a field at [FIELDPOS, FIELDSIZE] */
+
+static bool
+offset_overlaps_with_access (const unsigned HOST_WIDE_INT fieldpos,
+ const unsigned HOST_WIDE_INT fieldsize,
+ const unsigned HOST_WIDE_INT accesspos,
+ const unsigned HOST_WIDE_INT accesssize)
+{
+ if (fieldpos == accesspos && fieldsize == accesssize)
+ return true;
+ if (accesspos >= fieldpos && accesspos < (fieldpos + fieldsize))
+ return true;
+ if (accesspos < fieldpos && (accesspos + accesssize > fieldpos))
+ return true;
+
+ return false;
+}
+
+/* Given a COMPONENT_REF T, return the constraint_expr for it. */
+
+static void
+get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results)
+{
+ tree orig_t = t;
+ HOST_WIDE_INT bitsize = -1;
+ HOST_WIDE_INT bitmaxsize = -1;
+ HOST_WIDE_INT bitpos;
+ tree forzero;
+ struct constraint_expr *result;
+ unsigned int beforelength = VEC_length (ce_s, *results);
+
+ /* Some people like to do cute things like take the address of
+ &0->a.b */
+ forzero = t;
+ while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
+ forzero = TREE_OPERAND (forzero, 0);
+
+ if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
+ {
+ struct constraint_expr temp;
+
+ temp.offset = 0;
+ temp.var = integer_id;
+ temp.type = SCALAR;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+
+ t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
+
+ /* String constants are readonly, so there is nothing to really do
+ here. */
+ if (TREE_CODE (t) == STRING_CST)
+ return;
+
+ get_constraint_for (t, results);
+ result = VEC_last (ce_s, *results);
+ result->offset = bitpos;
+
+ gcc_assert (beforelength + 1 == VEC_length (ce_s, *results));
+
+ /* This can also happen due to weird offsetof type macros. */
+ if (TREE_CODE (t) != ADDR_EXPR && result->type == ADDRESSOF)
+ result->type = SCALAR;
+
+ if (result->type == SCALAR)
+ {
+ /* In languages like C, you can access one past the end of an
+ array. You aren't allowed to dereference it, so we can
+ ignore this constraint. When we handle pointer subtraction,
+ we may have to do something cute here. */
+
+ if (result->offset < get_varinfo (result->var)->fullsize
+ && bitmaxsize != 0)
+ {
+ /* It's also not true that the constraint will actually start at the
+ right offset, it may start in some padding. We only care about
+ setting the constraint to the first actual field it touches, so
+ walk to find it. */
+ varinfo_t curr;
+ for (curr = get_varinfo (result->var); curr; curr = curr->next)
+ {
+ if (offset_overlaps_with_access (curr->offset, curr->size,
+ result->offset, bitmaxsize))
+ {
+ result->var = curr->id;
+ break;
+ }
+ }
+ /* assert that we found *some* field there. The user couldn't be
+ accessing *only* padding. */
+ /* Still the user could access one past the end of an array
+ embedded in a struct resulting in accessing *only* padding. */
+ gcc_assert (curr || ref_contains_array_ref (orig_t));
+ }
+ else if (bitmaxsize == 0)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Access to zero-sized part of variable,"
+ "ignoring\n");
+ }
+ else
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Access to past the end of variable, ignoring\n");
+
+ result->offset = 0;
+ }
+}
+
+
+/* Dereference the constraint expression CONS, and return the result.
+ DEREF (ADDRESSOF) = SCALAR
+ DEREF (SCALAR) = DEREF
+ DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
+ This is needed so that we can handle dereferencing DEREF constraints. */
+
+static void
+do_deref (VEC (ce_s, heap) **constraints)
+{
+ struct constraint_expr *c;
+ unsigned int i = 0;
+
+ for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
+ {
+ if (c->type == SCALAR)
+ c->type = DEREF;
+ else if (c->type == ADDRESSOF)
+ c->type = SCALAR;
+ else if (c->type == DEREF)
+ {
+ tree tmpvar = create_tmp_var_raw (ptr_type_node, "dereftmp");
+ struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
+ process_constraint (new_constraint (tmplhs, *c));
+ c->var = tmplhs.var;
+ }
+ else
+ gcc_unreachable ();
+ }
+}
+
+/* Create a nonlocal variable of TYPE to represent nonlocals we can
+ alias. */
+
+static tree
+create_nonlocal_var (tree type)
+{
+ tree nonlocal = create_tmp_var_raw (type, "NONLOCAL");
+
+ if (referenced_vars)
+ add_referenced_var (nonlocal);
+
+ DECL_EXTERNAL (nonlocal) = 1;
+ return nonlocal;
+}
+
+/* Given a tree T, return the constraint expression for it. */
+
+static void
+get_constraint_for (tree t, VEC (ce_s, heap) **results)
+{
+ struct constraint_expr temp;
+
+ /* x = integer is all glommed to a single variable, which doesn't
+ point to anything by itself. That is, of course, unless it is an
+ integer constant being treated as a pointer, in which case, we
+ will return that this is really the addressof anything. This
+ happens below, since it will fall into the default case. The only
+ case we know something about an integer treated like a pointer is
+ when it is the NULL pointer, and then we just say it points to
+ NULL. */
+ if (TREE_CODE (t) == INTEGER_CST
+ && !POINTER_TYPE_P (TREE_TYPE (t)))
+ {
+ temp.var = integer_id;
+ temp.type = SCALAR;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ else if (TREE_CODE (t) == INTEGER_CST
+ && integer_zerop (t))
+ {
+ temp.var = nothing_id;
+ temp.type = ADDRESSOF;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+
+ switch (TREE_CODE_CLASS (TREE_CODE (t)))
+ {
+ case tcc_expression:
+ {
+ switch (TREE_CODE (t))
+ {
+ case ADDR_EXPR:
+ {
+ struct constraint_expr *c;
+ unsigned int i;
+ tree exp = TREE_OPERAND (t, 0);
+ tree pttype = TREE_TYPE (TREE_TYPE (t));
+
+ get_constraint_for (exp, results);
+
+ /* Make sure we capture constraints to all elements
+ of an array. */
+ if ((handled_component_p (exp)
+ && ref_contains_array_ref (exp))
+ || TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE)
+ {
+ struct constraint_expr *origrhs;
+ varinfo_t origvar;
+ struct constraint_expr tmp;
+
+ if (VEC_length (ce_s, *results) == 0)
+ return;
+
+ gcc_assert (VEC_length (ce_s, *results) == 1);
+ origrhs = VEC_last (ce_s, *results);
+ tmp = *origrhs;
+ VEC_pop (ce_s, *results);
+ origvar = get_varinfo (origrhs->var);
+ for (; origvar; origvar = origvar->next)
+ {
+ tmp.var = origvar->id;
+ VEC_safe_push (ce_s, heap, *results, &tmp);
+ }
+ }
+ else if (VEC_length (ce_s, *results) == 1
+ && (AGGREGATE_TYPE_P (pttype)
+ || TREE_CODE (pttype) == COMPLEX_TYPE))
+ {
+ struct constraint_expr *origrhs;
+ varinfo_t origvar;
+ struct constraint_expr tmp;
+
+ gcc_assert (VEC_length (ce_s, *results) == 1);
+ origrhs = VEC_last (ce_s, *results);
+ tmp = *origrhs;
+ VEC_pop (ce_s, *results);
+ origvar = get_varinfo (origrhs->var);
+ for (; origvar; origvar = origvar->next)
+ {
+ tmp.var = origvar->id;
+ VEC_safe_push (ce_s, heap, *results, &tmp);
+ }
+ }
+
+ for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
+ {
+ if (c->type == DEREF)
+ c->type = SCALAR;
+ else
+ c->type = ADDRESSOF;
+ }
+ return;
+ }
+ break;
+ case CALL_EXPR:
+ /* XXX: In interprocedural mode, if we didn't have the
+ body, we would need to do *each pointer argument =
+ &ANYTHING added. */
+ if (call_expr_flags (t) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA))
+ {
+ varinfo_t vi;
+ tree heapvar = heapvar_lookup (t);
+
+ if (heapvar == NULL)
+ {
+ heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
+ DECL_EXTERNAL (heapvar) = 1;
+ if (referenced_vars)
+ add_referenced_var (heapvar);
+ heapvar_insert (t, heapvar);
+ }
+
+ temp.var = create_variable_info_for (heapvar,
+ alias_get_name (heapvar));
+
+ vi = get_varinfo (temp.var);
+ vi->is_artificial_var = 1;
+ vi->is_heap_var = 1;
+ temp.type = ADDRESSOF;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ else
+ {
+ temp.var = escaped_vars_id;
+ temp.type = SCALAR;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ break;
+ default:
+ {
+ temp.type = ADDRESSOF;
+ temp.var = anything_id;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ }
+ }
+ case tcc_reference:
+ {
+ switch (TREE_CODE (t))
+ {
+ case INDIRECT_REF:
+ {
+ get_constraint_for (TREE_OPERAND (t, 0), results);
+ do_deref (results);
+ return;
+ }
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ case COMPONENT_REF:
+ get_constraint_for_component_ref (t, results);
+ return;
+ default:
+ {
+ temp.type = ADDRESSOF;
+ temp.var = anything_id;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ }
+ }
+ case tcc_unary:
+ {
+ switch (TREE_CODE (t))
+ {
+ case NOP_EXPR:
+ case CONVERT_EXPR:
+ case NON_LVALUE_EXPR:
+ {
+ tree op = TREE_OPERAND (t, 0);
+
+ /* Cast from non-pointer to pointers are bad news for us.
+ Anything else, we see through */
+ if (!(POINTER_TYPE_P (TREE_TYPE (t))
+ && ! POINTER_TYPE_P (TREE_TYPE (op))))
+ {
+ get_constraint_for (op, results);
+ return;
+ }
+
+ /* FALLTHRU */
+ }
+ default:
+ {
+ temp.type = ADDRESSOF;
+ temp.var = anything_id;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ }
+ }
+ case tcc_exceptional:
+ {
+ switch (TREE_CODE (t))
+ {
+ case PHI_NODE:
+ {
+ get_constraint_for (PHI_RESULT (t), results);
+ return;
+ }
+ break;
+ case SSA_NAME:
+ {
+ struct constraint_expr temp;
+ temp = get_constraint_exp_from_ssa_var (t);
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ break;
+ default:
+ {
+ temp.type = ADDRESSOF;
+ temp.var = anything_id;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ }
+ }
+ case tcc_declaration:
+ {
+ struct constraint_expr temp;
+ temp = get_constraint_exp_from_ssa_var (t);
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ default:
+ {
+ temp.type = ADDRESSOF;
+ temp.var = anything_id;
+ temp.offset = 0;
+ VEC_safe_push (ce_s, heap, *results, &temp);
+ return;
+ }
+ }
+}
+
+
+/* Handle the structure copy case where we have a simple structure copy
+ between LHS and RHS that is of SIZE (in bits)
+
+ For each field of the lhs variable (lhsfield)
+ For each field of the rhs variable at lhsfield.offset (rhsfield)
+ add the constraint lhsfield = rhsfield
+
+ If we fail due to some kind of type unsafety or other thing we
+ can't handle, return false. We expect the caller to collapse the
+ variable in that case. */
+
+static bool
+do_simple_structure_copy (const struct constraint_expr lhs,
+ const struct constraint_expr rhs,
+ const unsigned HOST_WIDE_INT size)
+{
+ varinfo_t p = get_varinfo (lhs.var);
+ unsigned HOST_WIDE_INT pstart, last;
+ pstart = p->offset;
+ last = p->offset + size;
+ for (; p && p->offset < last; p = p->next)
+ {
+ varinfo_t q;
+ struct constraint_expr templhs = lhs;
+ struct constraint_expr temprhs = rhs;
+ unsigned HOST_WIDE_INT fieldoffset;
+
+ templhs.var = p->id;
+ q = get_varinfo (temprhs.var);
+ fieldoffset = p->offset - pstart;
+ q = first_vi_for_offset (q, q->offset + fieldoffset);
+ if (!q)
+ return false;
+ temprhs.var = q->id;
+ process_constraint (new_constraint (templhs, temprhs));
+ }
+ return true;
+}
+
+
+/* Handle the structure copy case where we have a structure copy between a
+ aggregate on the LHS and a dereference of a pointer on the RHS
+ that is of SIZE (in bits)
+
+ For each field of the lhs variable (lhsfield)
+ rhs.offset = lhsfield->offset
+ add the constraint lhsfield = rhs
+*/
+
+static void
+do_rhs_deref_structure_copy (const struct constraint_expr lhs,
+ const struct constraint_expr rhs,
+ const unsigned HOST_WIDE_INT size)
+{
+ varinfo_t p = get_varinfo (lhs.var);
+ unsigned HOST_WIDE_INT pstart,last;
+ pstart = p->offset;
+ last = p->offset + size;
+
+ for (; p && p->offset < last; p = p->next)
+ {
+ varinfo_t q;
+ struct constraint_expr templhs = lhs;
+ struct constraint_expr temprhs = rhs;
+ unsigned HOST_WIDE_INT fieldoffset;
+
+
+ if (templhs.type == SCALAR)
+ templhs.var = p->id;
+ else
+ templhs.offset = p->offset;
+
+ q = get_varinfo (temprhs.var);
+ fieldoffset = p->offset - pstart;
+ temprhs.offset += fieldoffset;
+ process_constraint (new_constraint (templhs, temprhs));
+ }
+}
+
+/* Handle the structure copy case where we have a structure copy
+ between a aggregate on the RHS and a dereference of a pointer on
+ the LHS that is of SIZE (in bits)
+
+ For each field of the rhs variable (rhsfield)
+ lhs.offset = rhsfield->offset
+ add the constraint lhs = rhsfield
+*/
+
+static void
+do_lhs_deref_structure_copy (const struct constraint_expr lhs,
+ const struct constraint_expr rhs,
+ const unsigned HOST_WIDE_INT size)
+{
+ varinfo_t p = get_varinfo (rhs.var);
+ unsigned HOST_WIDE_INT pstart,last;
+ pstart = p->offset;
+ last = p->offset + size;
+
+ for (; p && p->offset < last; p = p->next)
+ {
+ varinfo_t q;
+ struct constraint_expr templhs = lhs;
+ struct constraint_expr temprhs = rhs;
+ unsigned HOST_WIDE_INT fieldoffset;
+
+
+ if (temprhs.type == SCALAR)
+ temprhs.var = p->id;
+ else
+ temprhs.offset = p->offset;
+
+ q = get_varinfo (templhs.var);
+ fieldoffset = p->offset - pstart;
+ templhs.offset += fieldoffset;
+ process_constraint (new_constraint (templhs, temprhs));
+ }
+}
+
+/* Sometimes, frontends like to give us bad type information. This
+ function will collapse all the fields from VAR to the end of VAR,
+ into VAR, so that we treat those fields as a single variable.
+ We return the variable they were collapsed into. */
+
+static unsigned int
+collapse_rest_of_var (unsigned int var)
+{
+ varinfo_t currvar = get_varinfo (var);
+ varinfo_t field;
+
+ for (field = currvar->next; field; field = field->next)
+ {
+ if (dump_file)
+ fprintf (dump_file, "Type safety: Collapsing var %s into %s\n",
+ field->name, currvar->name);
+
+ gcc_assert (!field->collapsed_to);
+ field->collapsed_to = currvar;
+ }
+
+ currvar->next = NULL;
+ currvar->size = currvar->fullsize - currvar->offset;
+
+ return currvar->id;
+}
+
+/* Handle aggregate copies by expanding into copies of the respective
+ fields of the structures. */
+
+static void
+do_structure_copy (tree lhsop, tree rhsop)
+{
+ struct constraint_expr lhs, rhs, tmp;
+ VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
+ varinfo_t p;
+ unsigned HOST_WIDE_INT lhssize;
+ unsigned HOST_WIDE_INT rhssize;
+
+ get_constraint_for (lhsop, &lhsc);
+ get_constraint_for (rhsop, &rhsc);
+ gcc_assert (VEC_length (ce_s, lhsc) == 1);
+ gcc_assert (VEC_length (ce_s, rhsc) == 1);
+ lhs = *(VEC_last (ce_s, lhsc));
+ rhs = *(VEC_last (ce_s, rhsc));
+
+ VEC_free (ce_s, heap, lhsc);
+ VEC_free (ce_s, heap, rhsc);
+
+ /* If we have special var = x, swap it around. */
+ if (lhs.var <= integer_id && !(get_varinfo (rhs.var)->is_special_var))
+ {
+ tmp = lhs;
+ lhs = rhs;
+ rhs = tmp;
+ }
+
+ /* This is fairly conservative for the RHS == ADDRESSOF case, in that it's
+ possible it's something we could handle. However, most cases falling
+ into this are dealing with transparent unions, which are slightly
+ weird. */
+ if (rhs.type == ADDRESSOF && !(get_varinfo (rhs.var)->is_special_var))
+ {
+ rhs.type = ADDRESSOF;
+ rhs.var = anything_id;
+ }
+
+ /* If the RHS is a special var, or an addressof, set all the LHS fields to
+ that special var. */
+ if (rhs.var <= integer_id)
+ {
+ for (p = get_varinfo (lhs.var); p; p = p->next)
+ {
+ struct constraint_expr templhs = lhs;
+ struct constraint_expr temprhs = rhs;
+
+ if (templhs.type == SCALAR )
+ templhs.var = p->id;
+ else
+ templhs.offset += p->offset;
+ process_constraint (new_constraint (templhs, temprhs));
+ }
+ }
+ else
+ {
+ tree rhstype = TREE_TYPE (rhsop);
+ tree lhstype = TREE_TYPE (lhsop);
+ tree rhstypesize;
+ tree lhstypesize;
+
+ lhstypesize = DECL_P (lhsop) ? DECL_SIZE (lhsop) : TYPE_SIZE (lhstype);
+ rhstypesize = DECL_P (rhsop) ? DECL_SIZE (rhsop) : TYPE_SIZE (rhstype);
+
+ /* If we have a variably sized types on the rhs or lhs, and a deref
+ constraint, add the constraint, lhsconstraint = &ANYTHING.
+ This is conservatively correct because either the lhs is an unknown
+ sized var (if the constraint is SCALAR), or the lhs is a DEREF
+ constraint, and every variable it can point to must be unknown sized
+ anyway, so we don't need to worry about fields at all. */
+ if ((rhs.type == DEREF && TREE_CODE (rhstypesize) != INTEGER_CST)
+ || (lhs.type == DEREF && TREE_CODE (lhstypesize) != INTEGER_CST))
+ {
+ rhs.var = anything_id;
+ rhs.type = ADDRESSOF;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+ return;
+ }
+
+ /* The size only really matters insofar as we don't set more or less of
+ the variable. If we hit an unknown size var, the size should be the
+ whole darn thing. */
+ if (get_varinfo (rhs.var)->is_unknown_size_var)
+ rhssize = ~0;
+ else
+ rhssize = TREE_INT_CST_LOW (rhstypesize);
+
+ if (get_varinfo (lhs.var)->is_unknown_size_var)
+ lhssize = ~0;
+ else
+ lhssize = TREE_INT_CST_LOW (lhstypesize);
+
+
+ if (rhs.type == SCALAR && lhs.type == SCALAR)
+ {
+ if (!do_simple_structure_copy (lhs, rhs, MIN (lhssize, rhssize)))
+ {
+ lhs.var = collapse_rest_of_var (lhs.var);
+ rhs.var = collapse_rest_of_var (rhs.var);
+ lhs.offset = 0;
+ rhs.offset = 0;
+ lhs.type = SCALAR;
+ rhs.type = SCALAR;
+ process_constraint (new_constraint (lhs, rhs));
+ }
+ }
+ else if (lhs.type != DEREF && rhs.type == DEREF)
+ do_rhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
+ else if (lhs.type == DEREF && rhs.type != DEREF)
+ do_lhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
+ else
+ {
+ tree pointedtotype = lhstype;
+ tree tmpvar;
+
+ gcc_assert (rhs.type == DEREF && lhs.type == DEREF);
+ tmpvar = create_tmp_var_raw (pointedtotype, "structcopydereftmp");
+ do_structure_copy (tmpvar, rhsop);
+ do_structure_copy (lhsop, tmpvar);
+ }
+ }
+}
+
+
+/* Update related alias information kept in AI. This is used when
+ building name tags, alias sets and deciding grouping heuristics.
+ STMT is the statement to process. This function also updates
+ ADDRESSABLE_VARS. */
+
+static void
+update_alias_info (tree stmt, struct alias_info *ai)
+{
+ bitmap addr_taken;
+ use_operand_p use_p;
+ ssa_op_iter iter;
+ enum escape_type stmt_escape_type = is_escape_site (stmt);
+ tree op;
+
+ if (stmt_escape_type == ESCAPE_TO_CALL
+ || stmt_escape_type == ESCAPE_TO_PURE_CONST)
+ {
+ ai->num_calls_found++;
+ if (stmt_escape_type == ESCAPE_TO_PURE_CONST)
+ ai->num_pure_const_calls_found++;
+ }
+
+ /* Mark all the variables whose address are taken by the statement. */
+ addr_taken = addresses_taken (stmt);
+ if (addr_taken)
+ {
+ bitmap_ior_into (addressable_vars, addr_taken);
+
+ /* If STMT is an escape point, all the addresses taken by it are
+ call-clobbered. */
+ if (stmt_escape_type != NO_ESCAPE)
+ {
+ bitmap_iterator bi;
+ unsigned i;
+
+ EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
+ {
+ tree rvar = referenced_var (i);
+ if (!unmodifiable_var_p (rvar))
+ mark_call_clobbered (rvar, stmt_escape_type);
+ }
+ }
+ }
+
+ /* Process each operand use. If an operand may be aliased, keep
+ track of how many times it's being used. For pointers, determine
+ whether they are dereferenced by the statement, or whether their
+ value escapes, etc. */
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ tree op, var;
+ var_ann_t v_ann;
+ struct ptr_info_def *pi;
+ bool is_store, is_potential_deref;
+ unsigned num_uses, num_derefs;
+
+ op = USE_FROM_PTR (use_p);
+
+ /* If STMT is a PHI node, OP may be an ADDR_EXPR. If so, add it
+ to the set of addressable variables. */
+ if (TREE_CODE (op) == ADDR_EXPR)
+ {
+ gcc_assert (TREE_CODE (stmt) == PHI_NODE);
+
+ /* PHI nodes don't have annotations for pinning the set
+ of addresses taken, so we collect them here.
+
+ FIXME, should we allow PHI nodes to have annotations
+ so that they can be treated like regular statements?
+ Currently, they are treated as second-class
+ statements. */
+ add_to_addressable_set (TREE_OPERAND (op, 0), &addressable_vars);
+ continue;
+ }
+
+ /* Ignore constants. */
+ if (TREE_CODE (op) != SSA_NAME)
+ continue;
+
+ var = SSA_NAME_VAR (op);
+ v_ann = var_ann (var);
+
+ /* The base variable of an ssa name must be a GIMPLE register, and thus
+ it cannot be aliased. */
+ gcc_assert (!may_be_aliased (var));
+
+ /* We are only interested in pointers. */
+ if (!POINTER_TYPE_P (TREE_TYPE (op)))
+ continue;
+
+ pi = get_ptr_info (op);
+
+ /* Add OP to AI->PROCESSED_PTRS, if it's not there already. */
+ if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op)))
+ {
+ SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op));
+ VEC_safe_push (tree, heap, ai->processed_ptrs, op);
+ }
+
+ /* If STMT is a PHI node, then it will not have pointer
+ dereferences and it will not be an escape point. */
+ if (TREE_CODE (stmt) == PHI_NODE)
+ continue;
+
+ /* Determine whether OP is a dereferenced pointer, and if STMT
+ is an escape point, whether OP escapes. */
+ count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
+
+ /* Handle a corner case involving address expressions of the
+ form '&PTR->FLD'. The problem with these expressions is that
+ they do not represent a dereference of PTR. However, if some
+ other transformation propagates them into an INDIRECT_REF
+ expression, we end up with '*(&PTR->FLD)' which is folded
+ into 'PTR->FLD'.
+
+ So, if the original code had no other dereferences of PTR,
+ the aliaser will not create memory tags for it, and when
+ &PTR->FLD gets propagated to INDIRECT_REF expressions, the
+ memory operations will receive no V_MAY_DEF/VUSE operands.
+
+ One solution would be to have count_uses_and_derefs consider
+ &PTR->FLD a dereference of PTR. But that is wrong, since it
+ is not really a dereference but an offset calculation.
+
+ What we do here is to recognize these special ADDR_EXPR
+ nodes. Since these expressions are never GIMPLE values (they
+ are not GIMPLE invariants), they can only appear on the RHS
+ of an assignment and their base address is always an
+ INDIRECT_REF expression. */
+ is_potential_deref = false;
+ if (TREE_CODE (stmt) == MODIFY_EXPR
+ && TREE_CODE (TREE_OPERAND (stmt, 1)) == ADDR_EXPR
+ && !is_gimple_val (TREE_OPERAND (stmt, 1)))
+ {
+ /* If the RHS if of the form &PTR->FLD and PTR == OP, then
+ this represents a potential dereference of PTR. */
+ tree rhs = TREE_OPERAND (stmt, 1);
+ tree base = get_base_address (TREE_OPERAND (rhs, 0));
+ if (TREE_CODE (base) == INDIRECT_REF
+ && TREE_OPERAND (base, 0) == op)
+ is_potential_deref = true;
+ }
+
+ if (num_derefs > 0 || is_potential_deref)
+ {
+ /* Mark OP as dereferenced. In a subsequent pass,
+ dereferenced pointers that point to a set of
+ variables will be assigned a name tag to alias
+ all the variables OP points to. */
+ pi->is_dereferenced = 1;
+
+ /* Keep track of how many time we've dereferenced each
+ pointer. */
+ NUM_REFERENCES_INC (v_ann);
+
+ /* If this is a store operation, mark OP as being
+ dereferenced to store, otherwise mark it as being
+ dereferenced to load. */
+ if (is_store)
+ bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
+ else
+ bitmap_set_bit (ai->dereferenced_ptrs_load, DECL_UID (var));
+ }
+
+ if (stmt_escape_type != NO_ESCAPE && num_derefs < num_uses)
+ {
+ /* If STMT is an escape point and STMT contains at
+ least one direct use of OP, then the value of OP
+ escapes and so the pointed-to variables need to
+ be marked call-clobbered. */
+ pi->value_escapes_p = 1;
+ pi->escape_mask |= stmt_escape_type;
+
+ /* If the statement makes a function call, assume
+ that pointer OP will be dereferenced in a store
+ operation inside the called function. */
+ if (get_call_expr_in (stmt)
+ || stmt_escape_type == ESCAPE_STORED_IN_GLOBAL)
+ {
+ bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
+ pi->is_dereferenced = 1;
+ }
+ }
+ }
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ return;
+
+ /* Update reference counter for definitions to any
+ potentially aliased variable. This is used in the alias
+ grouping heuristics. */
+ FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
+ {
+ tree var = SSA_NAME_VAR (op);
+ var_ann_t ann = var_ann (var);
+ bitmap_set_bit (ai->written_vars, DECL_UID (var));
+ if (may_be_aliased (var))
+ NUM_REFERENCES_INC (ann);
+
+ }
+
+ /* Mark variables in V_MAY_DEF operands as being written to. */
+ FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
+ {
+ tree var = DECL_P (op) ? op : SSA_NAME_VAR (op);
+ bitmap_set_bit (ai->written_vars, DECL_UID (var));
+ }
+}
+
+/* Handle pointer arithmetic EXPR when creating aliasing constraints.
+ Expressions of the type PTR + CST can be handled in two ways:
+
+ 1- If the constraint for PTR is ADDRESSOF for a non-structure
+ variable, then we can use it directly because adding or
+ subtracting a constant may not alter the original ADDRESSOF
+ constraint (i.e., pointer arithmetic may not legally go outside
+ an object's boundaries).
+
+ 2- If the constraint for PTR is ADDRESSOF for a structure variable,
+ then if CST is a compile-time constant that can be used as an
+ offset, we can determine which sub-variable will be pointed-to
+ by the expression.
+
+ Return true if the expression is handled. For any other kind of
+ expression, return false so that each operand can be added as a
+ separate constraint by the caller. */
+
+static bool
+handle_ptr_arith (VEC (ce_s, heap) *lhsc, tree expr)
+{
+ tree op0, op1;
+ struct constraint_expr *c, *c2;
+ unsigned int i = 0;
+ unsigned int j = 0;
+ VEC (ce_s, heap) *temp = NULL;
+ unsigned HOST_WIDE_INT rhsoffset = 0;
+
+ if (TREE_CODE (expr) != PLUS_EXPR
+ && TREE_CODE (expr) != MINUS_EXPR)
+ return false;
+
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+
+ get_constraint_for (op0, &temp);
+ if (POINTER_TYPE_P (TREE_TYPE (op0))
+ && host_integerp (op1, 1)
+ && TREE_CODE (expr) == PLUS_EXPR)
+ {
+ if ((TREE_INT_CST_LOW (op1) * BITS_PER_UNIT) / BITS_PER_UNIT
+ != TREE_INT_CST_LOW (op1))
+ return false;
+ rhsoffset = TREE_INT_CST_LOW (op1) * BITS_PER_UNIT;
+ }
+ else
+ return false;
+
+
+ for (i = 0; VEC_iterate (ce_s, lhsc, i, c); i++)
+ for (j = 0; VEC_iterate (ce_s, temp, j, c2); j++)
+ {
+ if (c2->type == ADDRESSOF && rhsoffset != 0)
+ {
+ varinfo_t temp = get_varinfo (c2->var);
+
+ /* An access one after the end of an array is valid,
+ so simply punt on accesses we cannot resolve. */
+ temp = first_vi_for_offset (temp, rhsoffset);
+ if (temp == NULL)
+ continue;
+ c2->var = temp->id;
+ c2->offset = 0;
+ }
+ else
+ c2->offset = rhsoffset;
+ process_constraint (new_constraint (*c, *c2));
+ }
+
+ VEC_free (ce_s, heap, temp);
+
+ return true;
+}
+
+
+/* Walk statement T setting up aliasing constraints according to the
+ references found in T. This function is the main part of the
+ constraint builder. AI points to auxiliary alias information used
+ when building alias sets and computing alias grouping heuristics. */
+
+static void
+find_func_aliases (tree origt)
+{
+ tree t = origt;
+ VEC(ce_s, heap) *lhsc = NULL;
+ VEC(ce_s, heap) *rhsc = NULL;
+ struct constraint_expr *c;
+
+ if (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0))
+ t = TREE_OPERAND (t, 0);
+
+ /* Now build constraints expressions. */
+ if (TREE_CODE (t) == PHI_NODE)
+ {
+ gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (PHI_RESULT (t))));
+
+ /* Only care about pointers and structures containing
+ pointers. */
+ if (could_have_pointers (PHI_RESULT (t)))
+ {
+ int i;
+ unsigned int j;
+
+ /* For a phi node, assign all the arguments to
+ the result. */
+ get_constraint_for (PHI_RESULT (t), &lhsc);
+ for (i = 0; i < PHI_NUM_ARGS (t); i++)
+ {
+ tree rhstype;
+ tree strippedrhs = PHI_ARG_DEF (t, i);
+
+ STRIP_NOPS (strippedrhs);
+ rhstype = TREE_TYPE (strippedrhs);
+ get_constraint_for (PHI_ARG_DEF (t, i), &rhsc);
+
+ for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
+ {
+ struct constraint_expr *c2;
+ while (VEC_length (ce_s, rhsc) > 0)
+ {
+ c2 = VEC_last (ce_s, rhsc);
+ process_constraint (new_constraint (*c, *c2));
+ VEC_pop (ce_s, rhsc);
+ }
+ }
+ }
+ }
+ }
+ /* In IPA mode, we need to generate constraints to pass call
+ arguments through their calls. There are two case, either a
+ modify_expr when we are returning a value, or just a plain
+ call_expr when we are not. */
+ else if (in_ipa_mode
+ && ((TREE_CODE (t) == MODIFY_EXPR
+ && TREE_CODE (TREE_OPERAND (t, 1)) == CALL_EXPR
+ && !(call_expr_flags (TREE_OPERAND (t, 1))
+ & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))
+ || (TREE_CODE (t) == CALL_EXPR
+ && !(call_expr_flags (t)
+ & (ECF_MALLOC | ECF_MAY_BE_ALLOCA)))))
+ {
+ tree lhsop;
+ tree rhsop;
+ tree arglist;
+ varinfo_t fi;
+ int i = 1;
+ tree decl;
+ if (TREE_CODE (t) == MODIFY_EXPR)
+ {
+ lhsop = TREE_OPERAND (t, 0);
+ rhsop = TREE_OPERAND (t, 1);
+ }
+ else
+ {
+ lhsop = NULL;
+ rhsop = t;
+ }
+ decl = get_callee_fndecl (rhsop);
+
+ /* If we can directly resolve the function being called, do so.
+ Otherwise, it must be some sort of indirect expression that
+ we should still be able to handle. */
+ if (decl)
+ {
+ fi = get_vi_for_tree (decl);
+ }
+ else
+ {
+ decl = TREE_OPERAND (rhsop, 0);
+ fi = get_vi_for_tree (decl);
+ }
+
+ /* Assign all the passed arguments to the appropriate incoming
+ parameters of the function. */
+ arglist = TREE_OPERAND (rhsop, 1);
+
+ for (;arglist; arglist = TREE_CHAIN (arglist))
+ {
+ tree arg = TREE_VALUE (arglist);
+ struct constraint_expr lhs ;
+ struct constraint_expr *rhsp;
+
+ get_constraint_for (arg, &rhsc);
+ if (TREE_CODE (decl) != FUNCTION_DECL)
+ {
+ lhs.type = DEREF;
+ lhs.var = fi->id;
+ lhs.offset = i;
+ }
+ else
+ {
+ lhs.type = SCALAR;
+ lhs.var = first_vi_for_offset (fi, i)->id;
+ lhs.offset = 0;
+ }
+ while (VEC_length (ce_s, rhsc) != 0)
+ {
+ rhsp = VEC_last (ce_s, rhsc);
+ process_constraint (new_constraint (lhs, *rhsp));
+ VEC_pop (ce_s, rhsc);
+ }
+ i++;
+ }
+
+ /* If we are returning a value, assign it to the result. */
+ if (lhsop)
+ {
+ struct constraint_expr rhs;
+ struct constraint_expr *lhsp;
+ unsigned int j = 0;
+
+ get_constraint_for (lhsop, &lhsc);
+ if (TREE_CODE (decl) != FUNCTION_DECL)
+ {
+ rhs.type = DEREF;
+ rhs.var = fi->id;
+ rhs.offset = i;
+ }
+ else
+ {
+ rhs.type = SCALAR;
+ rhs.var = first_vi_for_offset (fi, i)->id;
+ rhs.offset = 0;
+ }
+ for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
+ process_constraint (new_constraint (*lhsp, rhs));
+ }
+ }
+ /* Otherwise, just a regular assignment statement. */
+ else if (TREE_CODE (t) == MODIFY_EXPR)
+ {
+ tree lhsop = TREE_OPERAND (t, 0);
+ tree rhsop = TREE_OPERAND (t, 1);
+ int i;
+
+ if ((AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
+ || TREE_CODE (TREE_TYPE (lhsop)) == COMPLEX_TYPE)
+ && (AGGREGATE_TYPE_P (TREE_TYPE (rhsop))
+ || TREE_CODE (TREE_TYPE (lhsop)) == COMPLEX_TYPE))
+ {
+ do_structure_copy (lhsop, rhsop);
+ }
+ else
+ {
+ /* Only care about operations with pointers, structures
+ containing pointers, dereferences, and call expressions. */
+ if (could_have_pointers (lhsop)
+ || TREE_CODE (rhsop) == CALL_EXPR)
+ {
+ get_constraint_for (lhsop, &lhsc);
+ switch (TREE_CODE_CLASS (TREE_CODE (rhsop)))
+ {
+ /* RHS that consist of unary operations,
+ exceptional types, or bare decls/constants, get
+ handled directly by get_constraint_for. */
+ case tcc_reference:
+ case tcc_declaration:
+ case tcc_constant:
+ case tcc_exceptional:
+ case tcc_expression:
+ case tcc_unary:
+ {
+ unsigned int j;
+
+ get_constraint_for (rhsop, &rhsc);
+ for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
+ {
+ struct constraint_expr *c2;
+ unsigned int k;
+
+ for (k = 0; VEC_iterate (ce_s, rhsc, k, c2); k++)
+ process_constraint (new_constraint (*c, *c2));
+ }
+
+ }
+ break;
+
+ case tcc_binary:
+ {
+ /* For pointer arithmetic of the form
+ PTR + CST, we can simply use PTR's
+ constraint because pointer arithmetic is
+ not allowed to go out of bounds. */
+ if (handle_ptr_arith (lhsc, rhsop))
+ break;
+ }
+ /* FALLTHRU */
+
+ /* Otherwise, walk each operand. Notice that we
+ can't use the operand interface because we need
+ to process expressions other than simple operands
+ (e.g. INDIRECT_REF, ADDR_EXPR, CALL_EXPR). */
+ default:
+ for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (rhsop)); i++)
+ {
+ tree op = TREE_OPERAND (rhsop, i);
+ unsigned int j;
+
+ gcc_assert (VEC_length (ce_s, rhsc) == 0);
+ get_constraint_for (op, &rhsc);
+ for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
+ {
+ struct constraint_expr *c2;
+ while (VEC_length (ce_s, rhsc) > 0)
+ {
+ c2 = VEC_last (ce_s, rhsc);
+ process_constraint (new_constraint (*c, *c2));
+ VEC_pop (ce_s, rhsc);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* After promoting variables and computing aliasing we will
+ need to re-scan most statements. FIXME: Try to minimize the
+ number of statements re-scanned. It's not really necessary to
+ re-scan *all* statements. */
+ mark_stmt_modified (origt);
+ VEC_free (ce_s, heap, rhsc);
+ VEC_free (ce_s, heap, lhsc);
+}
+
+
+/* Find the first varinfo in the same variable as START that overlaps with
+ OFFSET.
+ Effectively, walk the chain of fields for the variable START to find the
+ first field that overlaps with OFFSET.
+ Return NULL if we can't find one. */
+
+static varinfo_t
+first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
+{
+ varinfo_t curr = start;
+ while (curr)
+ {
+ /* We may not find a variable in the field list with the actual
+ offset when when we have glommed a structure to a variable.
+ In that case, however, offset should still be within the size
+ of the variable. */
+ if (offset >= curr->offset && offset < (curr->offset + curr->size))
+ return curr;
+ curr = curr->next;
+ }
+ return NULL;
+}
+
+
+/* Insert the varinfo FIELD into the field list for BASE, at the front
+ of the list. */
+
+static void
+insert_into_field_list (varinfo_t base, varinfo_t field)
+{
+ varinfo_t prev = base;
+ varinfo_t curr = base->next;
+
+ field->next = curr;
+ prev->next = field;
+}
+
+/* Insert the varinfo FIELD into the field list for BASE, ordered by
+ offset. */
+
+static void
+insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
+{
+ varinfo_t prev = base;
+ varinfo_t curr = base->next;
+
+ if (curr == NULL)
+ {
+ prev->next = field;
+ field->next = NULL;
+ }
+ else
+ {
+ while (curr)
+ {
+ if (field->offset <= curr->offset)
+ break;
+ prev = curr;
+ curr = curr->next;
+ }
+ field->next = prev->next;
+ prev->next = field;
+ }
+}
+
+/* qsort comparison function for two fieldoff's PA and PB */
+
+static int
+fieldoff_compare (const void *pa, const void *pb)
+{
+ const fieldoff_s *foa = (const fieldoff_s *)pa;
+ const fieldoff_s *fob = (const fieldoff_s *)pb;
+ HOST_WIDE_INT foasize, fobsize;
+
+ if (foa->offset != fob->offset)
+ return foa->offset - fob->offset;
+
+ foasize = TREE_INT_CST_LOW (foa->size);
+ fobsize = TREE_INT_CST_LOW (fob->size);
+ return foasize - fobsize;
+}
+
+/* Sort a fieldstack according to the field offset and sizes. */
+void
+sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
+{
+ qsort (VEC_address (fieldoff_s, fieldstack),
+ VEC_length (fieldoff_s, fieldstack),
+ sizeof (fieldoff_s),
+ fieldoff_compare);
+}
+
+/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
+ of TYPE onto fieldstack, recording their offsets along the way.
+ OFFSET is used to keep track of the offset in this entire structure, rather
+ than just the immediately containing structure. Returns the number
+ of fields pushed.
+ HAS_UNION is set to true if we find a union type as a field of
+ TYPE. */
+
+int
+push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
+ HOST_WIDE_INT offset, bool *has_union)
+{
+ tree field;
+ int count = 0;
+ unsigned HOST_WIDE_INT minoffset = -1;
+
+ if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+ fieldoff_s *real_part, *img_part;
+ real_part = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
+ real_part->type = TREE_TYPE (type);
+ real_part->size = TYPE_SIZE (TREE_TYPE (type));
+ real_part->offset = offset;
+ real_part->decl = NULL_TREE;
+
+ img_part = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
+ img_part->type = TREE_TYPE (type);
+ img_part->size = TYPE_SIZE (TREE_TYPE (type));
+ img_part->offset = offset + TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (type)));
+ img_part->decl = NULL_TREE;
+
+ return 2;
+ }
+
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ tree sz = TYPE_SIZE (type);
+ tree elsz = TYPE_SIZE (TREE_TYPE (type));
+ HOST_WIDE_INT nr;
+ int i;
+
+ if (! sz
+ || ! host_integerp (sz, 1)
+ || TREE_INT_CST_LOW (sz) == 0
+ || ! elsz
+ || ! host_integerp (elsz, 1)
+ || TREE_INT_CST_LOW (elsz) == 0)
+ return 0;
+
+ nr = TREE_INT_CST_LOW (sz) / TREE_INT_CST_LOW (elsz);
+ if (nr > SALIAS_MAX_ARRAY_ELEMENTS)
+ return 0;
+
+ for (i = 0; i < nr; ++i)
+ {
+ bool push = false;
+ int pushed = 0;
+
+ if (has_union
+ && (TREE_CODE (TREE_TYPE (type)) == QUAL_UNION_TYPE
+ || TREE_CODE (TREE_TYPE (type)) == UNION_TYPE))
+ *has_union = true;
+
+ if (!AGGREGATE_TYPE_P (TREE_TYPE (type))) /* var_can_have_subvars */
+ push = true;
+ else if (!(pushed = push_fields_onto_fieldstack
+ (TREE_TYPE (type), fieldstack,
+ offset + i * TREE_INT_CST_LOW (elsz), has_union)))
+ /* Empty structures may have actual size, like in C++. So
+ see if we didn't push any subfields and the size is
+ nonzero, push the field onto the stack */
+ push = true;
+
+ if (push)
+ {
+ fieldoff_s *pair;
+
+ pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
+ pair->type = TREE_TYPE (type);
+ pair->size = elsz;
+ pair->decl = NULL_TREE;
+ pair->offset = offset + i * TREE_INT_CST_LOW (elsz);
+ count++;
+ }
+ else
+ count += pushed;
+ }
+
+ return count;
+ }
+
+ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL)
+ {
+ bool push = false;
+ int pushed = 0;
+
+ if (has_union
+ && (TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
+ || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
+ *has_union = true;
+
+ if (!var_can_have_subvars (field))
+ push = true;
+ else if (!(pushed = push_fields_onto_fieldstack
+ (TREE_TYPE (field), fieldstack,
+ offset + bitpos_of_field (field), has_union))
+ && DECL_SIZE (field)
+ && !integer_zerop (DECL_SIZE (field)))
+ /* Empty structures may have actual size, like in C++. So
+ see if we didn't push any subfields and the size is
+ nonzero, push the field onto the stack */
+ push = true;
+
+ if (push)
+ {
+ fieldoff_s *pair;
+
+ pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
+ pair->type = TREE_TYPE (field);
+ pair->size = DECL_SIZE (field);
+ pair->decl = field;
+ pair->offset = offset + bitpos_of_field (field);
+ count++;
+ }
+ else
+ count += pushed;
+
+ if (bitpos_of_field (field) < minoffset)
+ minoffset = bitpos_of_field (field);
+ }
+
+ /* We need to create a fake subvar for empty bases. But _only_ for non-empty
+ classes. */
+ if (minoffset != 0 && count != 0)
+ {
+ fieldoff_s *pair;
+
+ pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
+ pair->type = void_type_node;
+ pair->size = build_int_cst (size_type_node, minoffset);
+ pair->decl = NULL;
+ pair->offset = offset;
+ count++;
+ }
+
+ return count;
+}
+
+/* Create a constraint from ESCAPED_VARS variable to VI. */
+static void
+make_constraint_from_escaped (varinfo_t vi)
+{
+ struct constraint_expr lhs, rhs;
+
+ lhs.var = vi->id;
+ lhs.offset = 0;
+ lhs.type = SCALAR;
+
+ rhs.var = escaped_vars_id;
+ rhs.offset = 0;
+ rhs.type = SCALAR;
+ process_constraint (new_constraint (lhs, rhs));
+}
+
+/* Create a constraint to the ESCAPED_VARS variable from constraint
+ expression RHS. */
+
+static void
+make_constraint_to_escaped (struct constraint_expr rhs)
+{
+ struct constraint_expr lhs;
+
+ lhs.var = escaped_vars_id;
+ lhs.offset = 0;
+ lhs.type = SCALAR;
+
+ process_constraint (new_constraint (lhs, rhs));
+}
+
+/* Count the number of arguments DECL has, and set IS_VARARGS to true
+ if it is a varargs function. */
+
+static unsigned int
+count_num_arguments (tree decl, bool *is_varargs)
+{
+ unsigned int i = 0;
+ tree t;
+
+ for (t = TYPE_ARG_TYPES (TREE_TYPE (decl));
+ t;
+ t = TREE_CHAIN (t))
+ {
+ if (TREE_VALUE (t) == void_type_node)
+ break;
+ i++;
+ }
+
+ if (!t)
+ *is_varargs = true;
+ return i;
+}
+
+/* Creation function node for DECL, using NAME, and return the index
+ of the variable we've created for the function. */
+
+static unsigned int
+create_function_info_for (tree decl, const char *name)
+{
+ unsigned int index = VEC_length (varinfo_t, varmap);
+ varinfo_t vi;
+ tree arg;
+ unsigned int i;
+ bool is_varargs = false;
+
+ /* Create the variable info. */
+
+ vi = new_var_info (decl, index, name);
+ vi->decl = decl;
+ vi->offset = 0;
+ vi->has_union = 0;
+ vi->size = 1;
+ vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
+ insert_vi_for_tree (vi->decl, vi);
+ VEC_safe_push (varinfo_t, heap, varmap, vi);
+
+ stats.total_vars++;
+
+ /* If it's varargs, we don't know how many arguments it has, so we
+ can't do much.
+ */
+ if (is_varargs)
+ {
+ vi->fullsize = ~0;
+ vi->size = ~0;
+ vi->is_unknown_size_var = true;
+ return index;
+ }
+
+
+ arg = DECL_ARGUMENTS (decl);
+
+ /* Set up variables for each argument. */
+ for (i = 1; i < vi->fullsize; i++)
+ {
+ varinfo_t argvi;
+ const char *newname;
+ char *tempname;
+ unsigned int newindex;
+ tree argdecl = decl;
+
+ if (arg)
+ argdecl = arg;
+
+ newindex = VEC_length (varinfo_t, varmap);
+ asprintf (&tempname, "%s.arg%d", name, i-1);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+
+ argvi = new_var_info (argdecl, newindex, newname);
+ argvi->decl = argdecl;
+ VEC_safe_push (varinfo_t, heap, varmap, argvi);
+ argvi->offset = i;
+ argvi->size = 1;
+ argvi->fullsize = vi->fullsize;
+ argvi->has_union = false;
+ insert_into_field_list_sorted (vi, argvi);
+ stats.total_vars ++;
+ if (arg)
+ {
+ insert_vi_for_tree (arg, argvi);
+ arg = TREE_CHAIN (arg);
+ }
+ }
+
+ /* Create a variable for the return var. */
+ if (DECL_RESULT (decl) != NULL
+ || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
+ {
+ varinfo_t resultvi;
+ const char *newname;
+ char *tempname;
+ unsigned int newindex;
+ tree resultdecl = decl;
+
+ vi->fullsize ++;
+
+ if (DECL_RESULT (decl))
+ resultdecl = DECL_RESULT (decl);
+
+ newindex = VEC_length (varinfo_t, varmap);
+ asprintf (&tempname, "%s.result", name);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+
+ resultvi = new_var_info (resultdecl, newindex, newname);
+ resultvi->decl = resultdecl;
+ VEC_safe_push (varinfo_t, heap, varmap, resultvi);
+ resultvi->offset = i;
+ resultvi->size = 1;
+ resultvi->fullsize = vi->fullsize;
+ resultvi->has_union = false;
+ insert_into_field_list_sorted (vi, resultvi);
+ stats.total_vars ++;
+ if (DECL_RESULT (decl))
+ insert_vi_for_tree (DECL_RESULT (decl), resultvi);
+ }
+ return index;
+}
+
+
+/* Return true if FIELDSTACK contains fields that overlap.
+ FIELDSTACK is assumed to be sorted by offset. */
+
+static bool
+check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
+{
+ fieldoff_s *fo = NULL;
+ unsigned int i;
+ HOST_WIDE_INT lastoffset = -1;
+
+ for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
+ {
+ if (fo->offset == lastoffset)
+ return true;
+ lastoffset = fo->offset;
+ }
+ return false;
+}
+
+/* This function is called through walk_tree to walk global
+ initializers looking for constraints we need to add to the
+ constraint list. */
+
+static tree
+find_global_initializers (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
+ void *viv)
+{
+ varinfo_t vi = (varinfo_t)viv;
+ tree t = *tp;
+
+ switch (TREE_CODE (t))
+ {
+ /* Dereferences and addressofs are the only important things
+ here, and i don't even remember if dereferences are legal
+ here in initializers. */
+ case INDIRECT_REF:
+ case ADDR_EXPR:
+ {
+ struct constraint_expr *c;
+ size_t i;
+
+ VEC(ce_s, heap) *rhsc = NULL;
+ get_constraint_for (t, &rhsc);
+ for (i = 0; VEC_iterate (ce_s, rhsc, i, c); i++)
+ {
+ struct constraint_expr lhs;
+
+ lhs.var = vi->id;
+ lhs.type = SCALAR;
+ lhs.offset = 0;
+ process_constraint (new_constraint (lhs, *c));
+ }
+
+ VEC_free (ce_s, heap, rhsc);
+ }
+ break;
+ case VAR_DECL:
+ /* We might not have walked this because we skip
+ DECL_EXTERNALs during the initial scan. */
+ if (referenced_vars)
+ {
+ get_var_ann (t);
+ if (referenced_var_check_and_insert (t))
+ mark_sym_for_renaming (t);
+ }
+ break;
+ default:
+ break;
+ }
+ return NULL_TREE;
+}
+
+/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
+ This will also create any varinfo structures necessary for fields
+ of DECL. */
+
+static unsigned int
+create_variable_info_for (tree decl, const char *name)
+{
+ unsigned int index = VEC_length (varinfo_t, varmap);
+ varinfo_t vi;
+ tree decltype = TREE_TYPE (decl);
+ tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decltype);
+ bool notokay = false;
+ bool hasunion;
+ bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
+ VEC (fieldoff_s,heap) *fieldstack = NULL;
+
+ if (TREE_CODE (decl) == FUNCTION_DECL && in_ipa_mode)
+ return create_function_info_for (decl, name);
+
+ hasunion = TREE_CODE (decltype) == UNION_TYPE
+ || TREE_CODE (decltype) == QUAL_UNION_TYPE;
+ if (var_can_have_subvars (decl) && use_field_sensitive && !hasunion)
+ {
+ push_fields_onto_fieldstack (decltype, &fieldstack, 0, &hasunion);
+ if (hasunion)
+ {
+ VEC_free (fieldoff_s, heap, fieldstack);
+ notokay = true;
+ }
+ }
+
+
+ /* If the variable doesn't have subvars, we may end up needing to
+ sort the field list and create fake variables for all the
+ fields. */
+ vi = new_var_info (decl, index, name);
+ vi->decl = decl;
+ vi->offset = 0;
+ vi->has_union = hasunion;
+ if (!declsize
+ || TREE_CODE (declsize) != INTEGER_CST
+ || TREE_CODE (decltype) == UNION_TYPE
+ || TREE_CODE (decltype) == QUAL_UNION_TYPE)
+ {
+ vi->is_unknown_size_var = true;
+ vi->fullsize = ~0;
+ vi->size = ~0;
+ }
+ else
+ {
+ vi->fullsize = TREE_INT_CST_LOW (declsize);
+ vi->size = vi->fullsize;
+ }
+
+ insert_vi_for_tree (vi->decl, vi);
+ VEC_safe_push (varinfo_t, heap, varmap, vi);
+ if (is_global && (!flag_whole_program || !in_ipa_mode))
+ {
+ make_constraint_from_escaped (vi);
+
+ /* If the variable can't be aliased, there is no point in
+ putting it in the set of nonlocal vars. */
+ if (may_be_aliased (vi->decl))
+ {
+ struct constraint_expr rhs;
+ rhs.var = index;
+ rhs.type = ADDRESSOF;
+ rhs.offset = 0;
+ make_constraint_to_escaped (rhs);
+ }
+
+ if (TREE_CODE (decl) != FUNCTION_DECL && DECL_INITIAL (decl))
+ {
+ walk_tree_without_duplicates (&DECL_INITIAL (decl),
+ find_global_initializers,
+ (void *)vi);
+ }
+ }
+
+ stats.total_vars++;
+ if (use_field_sensitive
+ && !notokay
+ && !vi->is_unknown_size_var
+ && var_can_have_subvars (decl)
+ && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
+ {
+ unsigned int newindex = VEC_length (varinfo_t, varmap);
+ fieldoff_s *fo = NULL;
+ unsigned int i;
+
+ for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
+ {
+ if (! fo->size
+ || TREE_CODE (fo->size) != INTEGER_CST
+ || fo->offset < 0)
+ {
+ notokay = true;
+ break;
+ }
+ }
+
+ /* We can't sort them if we have a field with a variable sized type,
+ which will make notokay = true. In that case, we are going to return
+ without creating varinfos for the fields anyway, so sorting them is a
+ waste to boot. */
+ if (!notokay)
+ {
+ sort_fieldstack (fieldstack);
+ /* Due to some C++ FE issues, like PR 22488, we might end up
+ what appear to be overlapping fields even though they,
+ in reality, do not overlap. Until the C++ FE is fixed,
+ we will simply disable field-sensitivity for these cases. */
+ notokay = check_for_overlaps (fieldstack);
+ }
+
+
+ if (VEC_length (fieldoff_s, fieldstack) != 0)
+ fo = VEC_index (fieldoff_s, fieldstack, 0);
+
+ if (fo == NULL || notokay)
+ {
+ vi->is_unknown_size_var = 1;
+ vi->fullsize = ~0;
+ vi->size = ~0;
+ VEC_free (fieldoff_s, heap, fieldstack);
+ return index;
+ }
+
+ vi->size = TREE_INT_CST_LOW (fo->size);
+ vi->offset = fo->offset;
+ for (i = VEC_length (fieldoff_s, fieldstack) - 1;
+ i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
+ i--)
+ {
+ varinfo_t newvi;
+ const char *newname = "NULL";
+ char *tempname;
+
+ newindex = VEC_length (varinfo_t, varmap);
+ if (dump_file)
+ {
+ if (fo->decl)
+ asprintf (&tempname, "%s.%s",
+ vi->name, alias_get_name (fo->decl));
+ else
+ asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC,
+ vi->name, fo->offset);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+ }
+ newvi = new_var_info (decl, newindex, newname);
+ newvi->offset = fo->offset;
+ newvi->size = TREE_INT_CST_LOW (fo->size);
+ newvi->fullsize = vi->fullsize;
+ insert_into_field_list (vi, newvi);
+ VEC_safe_push (varinfo_t, heap, varmap, newvi);
+ if (is_global && (!flag_whole_program || !in_ipa_mode))
+ {
+ /* If the variable can't be aliased, there is no point in
+ putting it in the set of nonlocal vars. */
+ if (may_be_aliased (vi->decl))
+ {
+ struct constraint_expr rhs;
+
+ rhs.var = newindex;
+ rhs.type = ADDRESSOF;
+ rhs.offset = 0;
+ make_constraint_to_escaped (rhs);
+ }
+ make_constraint_from_escaped (newvi);
+ }
+
+ stats.total_vars++;
+ }
+ VEC_free (fieldoff_s, heap, fieldstack);
+ }
+ return index;
+}
+
+/* Print out the points-to solution for VAR to FILE. */
+
+void
+dump_solution_for_var (FILE *file, unsigned int var)
+{
+ varinfo_t vi = get_varinfo (var);
+ unsigned int i;
+ bitmap_iterator bi;
+
+ if (find (var) != var)
+ {
+ varinfo_t vipt = get_varinfo (find (var));
+ fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
+ }
+ else
+ {
+ fprintf (file, "%s = { ", vi->name);
+ EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
+ {
+ fprintf (file, "%s ", get_varinfo (i)->name);
+ }
+ fprintf (file, "}\n");
+ }
+}
+
+/* Print the points-to solution for VAR to stdout. */
+
+void
+debug_solution_for_var (unsigned int var)
+{
+ dump_solution_for_var (stdout, var);
+}
+
+/* Create varinfo structures for all of the variables in the
+ function for intraprocedural mode. */
+
+static void
+intra_create_variable_infos (void)
+{
+ tree t;
+ struct constraint_expr lhs, rhs;
+ varinfo_t nonlocal_vi;
+
+ /* For each incoming pointer argument arg, ARG = ESCAPED_VARS or a
+ dummy variable if flag_argument_noalias > 2. */
+ for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
+ {
+ varinfo_t p;
+ unsigned int arg_id;
+
+ if (!could_have_pointers (t))
+ continue;
+
+ arg_id = get_vi_for_tree (t)->id;
+
+ /* With flag_argument_noalias greater than two means that the incoming
+ argument cannot alias anything except for itself so create a HEAP
+ variable. */
+ if (POINTER_TYPE_P (TREE_TYPE (t))
+ && flag_argument_noalias > 2)
+ {
+ varinfo_t vi;
+ tree heapvar = heapvar_lookup (t);
+
+ lhs.offset = 0;
+ lhs.type = SCALAR;
+ lhs.var = get_vi_for_tree (t)->id;
+
+ if (heapvar == NULL_TREE)
+ {
+ heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
+ "PARM_NOALIAS");
+ DECL_EXTERNAL (heapvar) = 1;
+ if (referenced_vars)
+ add_referenced_var (heapvar);
+ heapvar_insert (t, heapvar);
+ }
+
+ vi = get_vi_for_tree (heapvar);
+ vi->is_artificial_var = 1;
+ vi->is_heap_var = 1;
+ rhs.var = vi->id;
+ rhs.type = ADDRESSOF;
+ rhs.offset = 0;
+ for (p = get_varinfo (lhs.var); p; p = p->next)
+ {
+ struct constraint_expr temp = lhs;
+ temp.var = p->id;
+ process_constraint (new_constraint (temp, rhs));
+ }
+ }
+ else
+ {
+ for (p = get_varinfo (arg_id); p; p = p->next)
+ make_constraint_from_escaped (p);
+ }
+ }
+ if (!nonlocal_all)
+ nonlocal_all = create_nonlocal_var (void_type_node);
+
+ /* Create variable info for the nonlocal var if it does not
+ exist. */
+ nonlocal_vars_id = create_variable_info_for (nonlocal_all,
+ get_name (nonlocal_all));
+ nonlocal_vi = get_varinfo (nonlocal_vars_id);
+ nonlocal_vi->is_artificial_var = 1;
+ nonlocal_vi->is_heap_var = 1;
+ nonlocal_vi->is_unknown_size_var = 1;
+ nonlocal_vi->directly_dereferenced = true;
+
+ rhs.var = nonlocal_vars_id;
+ rhs.type = ADDRESSOF;
+ rhs.offset = 0;
+
+ lhs.var = escaped_vars_id;
+ lhs.type = SCALAR;
+ lhs.offset = 0;
+
+ process_constraint (new_constraint (lhs, rhs));
+}
+
+/* Set bits in INTO corresponding to the variable uids in solution set
+ FROM, which came from variable PTR.
+ For variables that are actually dereferenced, we also use type
+ based alias analysis to prune the points-to sets. */
+
+static void
+set_uids_in_ptset (tree ptr, bitmap into, bitmap from)
+{
+ unsigned int i;
+ bitmap_iterator bi;
+ subvar_t sv;
+ unsigned HOST_WIDE_INT ptr_alias_set = get_alias_set (TREE_TYPE (ptr));
+
+ EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
+ {
+ varinfo_t vi = get_varinfo (i);
+ unsigned HOST_WIDE_INT var_alias_set;
+
+ /* The only artificial variables that are allowed in a may-alias
+ set are heap variables. */
+ if (vi->is_artificial_var && !vi->is_heap_var)
+ continue;
+
+ if (vi->has_union && get_subvars_for_var (vi->decl) != NULL)
+ {
+ /* Variables containing unions may need to be converted to
+ their SFT's, because SFT's can have unions and we cannot. */
+ for (sv = get_subvars_for_var (vi->decl); sv; sv = sv->next)
+ bitmap_set_bit (into, DECL_UID (sv->var));
+ }
+ else if (TREE_CODE (vi->decl) == VAR_DECL
+ || TREE_CODE (vi->decl) == PARM_DECL
+ || TREE_CODE (vi->decl) == RESULT_DECL)
+ {
+ if (var_can_have_subvars (vi->decl)
+ && get_subvars_for_var (vi->decl))
+ {
+ /* If VI->DECL is an aggregate for which we created
+ SFTs, add the SFT corresponding to VI->OFFSET. */
+ tree sft = get_subvar_at (vi->decl, vi->offset);
+ if (sft)
+ {
+ var_alias_set = get_alias_set (sft);
+ if (!vi->directly_dereferenced
+ || alias_sets_conflict_p (ptr_alias_set, var_alias_set))
+ bitmap_set_bit (into, DECL_UID (sft));
+ }
+ }
+ else
+ {
+ /* Otherwise, just add VI->DECL to the alias set.
+ Don't type prune artificial vars. */
+ if (vi->is_artificial_var)
+ bitmap_set_bit (into, DECL_UID (vi->decl));
+ else
+ {
+ var_alias_set = get_alias_set (vi->decl);
+ if (!vi->directly_dereferenced
+ || alias_sets_conflict_p (ptr_alias_set, var_alias_set))
+ bitmap_set_bit (into, DECL_UID (vi->decl));
+ }
+ }
+ }
+ }
+}
+
+
+static bool have_alias_info = false;
+
+/* Given a pointer variable P, fill in its points-to set, or return
+ false if we can't. */
+
+bool
+find_what_p_points_to (tree p)
+{
+ tree lookup_p = p;
+ varinfo_t vi;
+
+ if (!have_alias_info)
+ return false;
+
+ /* For parameters, get at the points-to set for the actual parm
+ decl. */
+ if (TREE_CODE (p) == SSA_NAME
+ && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
+ && default_def (SSA_NAME_VAR (p)) == p)
+ lookup_p = SSA_NAME_VAR (p);
+
+ vi = lookup_vi_for_tree (lookup_p);
+ if (vi)
+ {
+
+ if (vi->is_artificial_var)
+ return false;
+
+ /* See if this is a field or a structure. */
+ if (vi->size != vi->fullsize)
+ {
+ /* Nothing currently asks about structure fields directly,
+ but when they do, we need code here to hand back the
+ points-to set. */
+ if (!var_can_have_subvars (vi->decl)
+ || get_subvars_for_var (vi->decl) == NULL)
+ return false;
+ }
+ else
+ {
+ struct ptr_info_def *pi = get_ptr_info (p);
+ unsigned int i;
+ bitmap_iterator bi;
+
+ /* This variable may have been collapsed, let's get the real
+ variable. */
+ vi = get_varinfo (find (vi->id));
+
+ /* Translate artificial variables into SSA_NAME_PTR_INFO
+ attributes. */
+ EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
+ {
+ varinfo_t vi = get_varinfo (i);
+
+ if (vi->is_artificial_var)
+ {
+ /* FIXME. READONLY should be handled better so that
+ flow insensitive aliasing can disregard writable
+ aliases. */
+ if (vi->id == nothing_id)
+ pi->pt_null = 1;
+ else if (vi->id == anything_id)
+ pi->pt_anything = 1;
+ else if (vi->id == readonly_id)
+ pi->pt_anything = 1;
+ else if (vi->id == integer_id)
+ pi->pt_anything = 1;
+ else if (vi->is_heap_var)
+ pi->pt_global_mem = 1;
+ }
+ }
+
+ if (pi->pt_anything)
+ return false;
+
+ if (!pi->pt_vars)
+ pi->pt_vars = BITMAP_GGC_ALLOC ();
+
+ set_uids_in_ptset (vi->decl, pi->pt_vars, vi->solution);
+
+ if (bitmap_empty_p (pi->pt_vars))
+ pi->pt_vars = NULL;
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+
+/* Dump points-to information to OUTFILE. */
+
+void
+dump_sa_points_to_info (FILE *outfile)
+{
+ unsigned int i;
+
+ fprintf (outfile, "\nPoints-to sets\n\n");
+
+ if (dump_flags & TDF_STATS)
+ {
+ fprintf (outfile, "Stats:\n");
+ fprintf (outfile, "Total vars: %d\n", stats.total_vars);
+ fprintf (outfile, "Non-pointer vars: %d\n",
+ stats.nonpointer_vars);
+ fprintf (outfile, "Statically unified vars: %d\n",
+ stats.unified_vars_static);
+ fprintf (outfile, "Dynamically unified vars: %d\n",
+ stats.unified_vars_dynamic);
+ fprintf (outfile, "Iterations: %d\n", stats.iterations);
+ fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
+ fprintf (outfile, "Number of implicit edges: %d\n",
+ stats.num_implicit_edges);
+ }
+
+ for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
+ dump_solution_for_var (outfile, i);
+}
+
+
+/* Debug points-to information to stderr. */
+
+void
+debug_sa_points_to_info (void)
+{
+ dump_sa_points_to_info (stderr);
+}
+
+
+/* Initialize the always-existing constraint variables for NULL
+ ANYTHING, READONLY, and INTEGER */
+
+static void
+init_base_vars (void)
+{
+ struct constraint_expr lhs, rhs;
+
+ /* Create the NULL variable, used to represent that a variable points
+ to NULL. */
+ nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
+ var_nothing = new_var_info (nothing_tree, 0, "NULL");
+ insert_vi_for_tree (nothing_tree, var_nothing);
+ var_nothing->is_artificial_var = 1;
+ var_nothing->offset = 0;
+ var_nothing->size = ~0;
+ var_nothing->fullsize = ~0;
+ var_nothing->is_special_var = 1;
+ nothing_id = 0;
+ VEC_safe_push (varinfo_t, heap, varmap, var_nothing);
+
+ /* Create the ANYTHING variable, used to represent that a variable
+ points to some unknown piece of memory. */
+ anything_tree = create_tmp_var_raw (void_type_node, "ANYTHING");
+ var_anything = new_var_info (anything_tree, 1, "ANYTHING");
+ insert_vi_for_tree (anything_tree, var_anything);
+ var_anything->is_artificial_var = 1;
+ var_anything->size = ~0;
+ var_anything->offset = 0;
+ var_anything->next = NULL;
+ var_anything->fullsize = ~0;
+ var_anything->is_special_var = 1;
+ anything_id = 1;
+
+ /* Anything points to anything. This makes deref constraints just
+ work in the presence of linked list and other p = *p type loops,
+ by saying that *ANYTHING = ANYTHING. */
+ VEC_safe_push (varinfo_t, heap, varmap, var_anything);
+ lhs.type = SCALAR;
+ lhs.var = anything_id;
+ lhs.offset = 0;
+ rhs.type = ADDRESSOF;
+ rhs.var = anything_id;
+ rhs.offset = 0;
+
+ /* This specifically does not use process_constraint because
+ process_constraint ignores all anything = anything constraints, since all
+ but this one are redundant. */
+ VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
+
+ /* Create the READONLY variable, used to represent that a variable
+ points to readonly memory. */
+ readonly_tree = create_tmp_var_raw (void_type_node, "READONLY");
+ var_readonly = new_var_info (readonly_tree, 2, "READONLY");
+ var_readonly->is_artificial_var = 1;
+ var_readonly->offset = 0;
+ var_readonly->size = ~0;
+ var_readonly->fullsize = ~0;
+ var_readonly->next = NULL;
+ var_readonly->is_special_var = 1;
+ insert_vi_for_tree (readonly_tree, var_readonly);
+ readonly_id = 2;
+ VEC_safe_push (varinfo_t, heap, varmap, var_readonly);
+
+ /* readonly memory points to anything, in order to make deref
+ easier. In reality, it points to anything the particular
+ readonly variable can point to, but we don't track this
+ separately. */
+ lhs.type = SCALAR;
+ lhs.var = readonly_id;
+ lhs.offset = 0;
+ rhs.type = ADDRESSOF;
+ rhs.var = anything_id;
+ rhs.offset = 0;
+
+ process_constraint (new_constraint (lhs, rhs));
+
+ /* Create the INTEGER variable, used to represent that a variable points
+ to an INTEGER. */
+ integer_tree = create_tmp_var_raw (void_type_node, "INTEGER");
+ var_integer = new_var_info (integer_tree, 3, "INTEGER");
+ insert_vi_for_tree (integer_tree, var_integer);
+ var_integer->is_artificial_var = 1;
+ var_integer->size = ~0;
+ var_integer->fullsize = ~0;
+ var_integer->offset = 0;
+ var_integer->next = NULL;
+ var_integer->is_special_var = 1;
+ integer_id = 3;
+ VEC_safe_push (varinfo_t, heap, varmap, var_integer);
+
+ /* INTEGER = ANYTHING, because we don't know where a dereference of
+ a random integer will point to. */
+ lhs.type = SCALAR;
+ lhs.var = integer_id;
+ lhs.offset = 0;
+ rhs.type = ADDRESSOF;
+ rhs.var = anything_id;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+
+ /* Create the ESCAPED_VARS variable used to represent variables that
+ escape this function. */
+ escaped_vars_tree = create_tmp_var_raw (void_type_node, "ESCAPED_VARS");
+ var_escaped_vars = new_var_info (escaped_vars_tree, 4, "ESCAPED_VARS");
+ insert_vi_for_tree (escaped_vars_tree, var_escaped_vars);
+ var_escaped_vars->is_artificial_var = 1;
+ var_escaped_vars->size = ~0;
+ var_escaped_vars->fullsize = ~0;
+ var_escaped_vars->offset = 0;
+ var_escaped_vars->next = NULL;
+ escaped_vars_id = 4;
+ VEC_safe_push (varinfo_t, heap, varmap, var_escaped_vars);
+
+ /* ESCAPED_VARS = *ESCAPED_VARS */
+ lhs.type = SCALAR;
+ lhs.var = escaped_vars_id;
+ lhs.offset = 0;
+ rhs.type = DEREF;
+ rhs.var = escaped_vars_id;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+
+}
+
+/* Initialize things necessary to perform PTA */
+
+static void
+init_alias_vars (void)
+{
+ bitmap_obstack_initialize (&pta_obstack);
+ bitmap_obstack_initialize (&oldpta_obstack);
+ bitmap_obstack_initialize (&predbitmap_obstack);
+
+ constraint_pool = create_alloc_pool ("Constraint pool",
+ sizeof (struct constraint), 30);
+ variable_info_pool = create_alloc_pool ("Variable info pool",
+ sizeof (struct variable_info), 30);
+ constraints = VEC_alloc (constraint_t, heap, 8);
+ varmap = VEC_alloc (varinfo_t, heap, 8);
+ vi_for_tree = pointer_map_create ();
+
+ memset (&stats, 0, sizeof (stats));
+ init_base_vars ();
+}
+
+/* Given a statement STMT, generate necessary constraints to
+ escaped_vars for the escaping variables. */
+
+static void
+find_escape_constraints (tree stmt)
+{
+ enum escape_type stmt_escape_type = is_escape_site (stmt);
+ tree rhs;
+ VEC(ce_s, heap) *rhsc = NULL;
+ struct constraint_expr *c;
+ size_t i;
+
+ if (stmt_escape_type == NO_ESCAPE)
+ return;
+
+ if (TREE_CODE (stmt) == RETURN_EXPR)
+ {
+ /* Returns are either bare, with an embedded MODIFY_EXPR, or
+ just a plain old expression. */
+ if (!TREE_OPERAND (stmt, 0))
+ return;
+ if (TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR)
+ rhs = TREE_OPERAND (TREE_OPERAND (stmt, 0), 1);
+ else
+ rhs = TREE_OPERAND (stmt, 0);
+
+ get_constraint_for (rhs, &rhsc);
+ for (i = 0; VEC_iterate (ce_s, rhsc, i, c); i++)
+ make_constraint_to_escaped (*c);
+ VEC_free (ce_s, heap, rhsc);
+ return;
+ }
+ else if (TREE_CODE (stmt) == ASM_EXPR)
+ {
+ /* Whatever the inputs of the ASM are, escape. */
+ tree arg;
+
+ for (arg = ASM_INPUTS (stmt); arg; arg = TREE_CHAIN (arg))
+ {
+ rhsc = NULL;
+ get_constraint_for (TREE_VALUE (arg), &rhsc);
+ for (i = 0; VEC_iterate (ce_s, rhsc, i, c); i++)
+ make_constraint_to_escaped (*c);
+ VEC_free (ce_s, heap, rhsc);
+ }
+ return;
+ }
+ else if (TREE_CODE (stmt) == CALL_EXPR
+ || (TREE_CODE (stmt) == MODIFY_EXPR
+ && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
+ {
+ /* Calls cause all of the arguments passed in to escape. */
+ tree arg;
+
+ if (TREE_CODE (stmt) == MODIFY_EXPR)
+ stmt = TREE_OPERAND (stmt, 1);
+ for (arg = TREE_OPERAND (stmt, 1); arg; arg = TREE_CHAIN (arg))
+ {
+ if (POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arg))))
+ {
+ rhsc = NULL;
+ get_constraint_for (TREE_VALUE (arg), &rhsc);
+ for (i = 0; VEC_iterate (ce_s, rhsc, i, c); i++)
+ make_constraint_to_escaped (*c);
+ VEC_free (ce_s, heap, rhsc);
+ }
+ }
+ return;
+ }
+ else
+ {
+ gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
+ }
+
+ gcc_assert (stmt_escape_type == ESCAPE_BAD_CAST
+ || stmt_escape_type == ESCAPE_STORED_IN_GLOBAL
+ || stmt_escape_type == ESCAPE_UNKNOWN);
+ rhs = TREE_OPERAND (stmt, 1);
+
+ /* Look through casts for the real escaping variable.
+ Constants don't really escape, so ignore them.
+ Otherwise, whatever escapes must be on our RHS. */
+ if (TREE_CODE (rhs) == NOP_EXPR
+ || TREE_CODE (rhs) == CONVERT_EXPR
+ || TREE_CODE (rhs) == NON_LVALUE_EXPR)
+ {
+ get_constraint_for (TREE_OPERAND (rhs, 0), &rhsc);
+ }
+ else if (CONSTANT_CLASS_P (rhs))
+ return;
+ else
+ {
+ get_constraint_for (rhs, &rhsc);
+ }
+ for (i = 0; VEC_iterate (ce_s, rhsc, i, c); i++)
+ make_constraint_to_escaped (*c);
+ VEC_free (ce_s, heap, rhsc);
+}
+
+
+/* Remove the REF and ADDRESS edges from GRAPH, as well as all the
+ predecessor edges. */
+
+static void
+remove_preds_and_fake_succs (constraint_graph_t graph)
+{
+ unsigned int i;
+
+ /* Clear the implicit ref and address nodes from the successor
+ lists. */
+ for (i = 0; i < FIRST_REF_NODE; i++)
+ {
+ if (graph->succs[i])
+ bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
+ FIRST_REF_NODE * 2);
+ }
+
+ /* Free the successor list for the non-ref nodes. */
+ for (i = FIRST_REF_NODE; i < graph->size; i++)
+ {
+ if (graph->succs[i])
+ BITMAP_FREE (graph->succs[i]);
+ }
+
+ /* Now reallocate the size of the successor list as, and blow away
+ the predecessor bitmaps. */
+ graph->size = VEC_length (varinfo_t, varmap);
+ graph->succs = xrealloc (graph->succs, graph->size * sizeof (bitmap));
+
+ free (graph->implicit_preds);
+ graph->implicit_preds = NULL;
+ free (graph->preds);
+ graph->preds = NULL;
+ bitmap_obstack_release (&predbitmap_obstack);
+}
+
+/* Create points-to sets for the current function. See the comments
+ at the start of the file for an algorithmic overview. */
+
+void
+compute_points_to_sets (struct alias_info *ai)
+{
+ basic_block bb;
+ struct scc_info *si;
+
+ timevar_push (TV_TREE_PTA);
+
+ init_alias_vars ();
+ init_alias_heapvars ();
+
+ intra_create_variable_infos ();
+
+ /* Now walk all statements and derive aliases. */
+ FOR_EACH_BB (bb)
+ {
+ block_stmt_iterator bsi;
+ tree phi;
+
+ for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
+ {
+ if (is_gimple_reg (PHI_RESULT (phi)))
+ {
+ find_func_aliases (phi);
+ /* Update various related attributes like escaped
+ addresses, pointer dereferences for loads and stores.
+ This is used when creating name tags and alias
+ sets. */
+ update_alias_info (phi, ai);
+ }
+ }
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ {
+ tree stmt = bsi_stmt (bsi);
+
+ find_func_aliases (stmt);
+ find_escape_constraints (stmt);
+ /* Update various related attributes like escaped
+ addresses, pointer dereferences for loads and stores.
+ This is used when creating name tags and alias
+ sets. */
+ update_alias_info (stmt, ai);
+ }
+ }
+
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
+ dump_constraints (dump_file);
+ }
+
+ if (dump_file)
+ fprintf (dump_file,
+ "\nCollapsing static cycles and doing variable "
+ "substitution:\n");
+
+ build_pred_graph ();
+ si = perform_var_substitution (graph);
+ move_complex_constraints (graph, si);
+ free_var_substitution_info (si);
+
+ build_succ_graph ();
+ find_indirect_cycles (graph);
+
+ /* Implicit nodes and predecessors are no longer necessary at this
+ point. */
+ remove_preds_and_fake_succs (graph);
+
+ if (dump_file)
+ fprintf (dump_file, "\nSolving graph:\n");
+
+ solve_graph (graph);
+
+ if (dump_file)
+ dump_sa_points_to_info (dump_file);
+ have_alias_info = true;
+
+ timevar_pop (TV_TREE_PTA);
+}
+
+/* Delete created points-to sets. */
+
+void
+delete_points_to_sets (void)
+{
+ varinfo_t v;
+ int i;
+
+ if (dump_file && (dump_flags & TDF_STATS))
+ fprintf (dump_file, "Points to sets created:%d\n",
+ stats.points_to_sets_created);
+
+ pointer_map_destroy (vi_for_tree);
+ bitmap_obstack_release (&pta_obstack);
+ VEC_free (constraint_t, heap, constraints);
+
+ for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
+ VEC_free (constraint_t, heap, graph->complex[i]);
+ free (graph->complex);
+
+ free (graph->rep);
+ free (graph->succs);
+ free (graph->indirect_cycles);
+ free (graph);
+
+ VEC_free (varinfo_t, heap, varmap);
+ free_alloc_pool (variable_info_pool);
+ free_alloc_pool (constraint_pool);
+ have_alias_info = false;
+}
+
+/* Return true if we should execute IPA PTA. */
+static bool
+gate_ipa_pta (void)
+{
+ return (flag_unit_at_a_time != 0
+ && flag_ipa_pta
+ /* Don't bother doing anything if the program has errors. */
+ && !(errorcount || sorrycount));
+}
+
+/* Execute the driver for IPA PTA. */
+static unsigned int
+ipa_pta_execute (void)
+{
+#if 0
+ struct cgraph_node *node;
+ in_ipa_mode = 1;
+ init_alias_heapvars ();
+ init_alias_vars ();
+
+ for (node = cgraph_nodes; node; node = node->next)
+ {
+ if (!node->analyzed || cgraph_is_master_clone (node))
+ {
+ unsigned int varid;
+
+ varid = create_function_info_for (node->decl,
+ cgraph_node_name (node));
+ if (node->local.externally_visible)
+ {
+ varinfo_t fi = get_varinfo (varid);
+ for (; fi; fi = fi->next)
+ make_constraint_from_escaped (fi);
+ }
+ }
+ }
+ for (node = cgraph_nodes; node; node = node->next)
+ {
+ if (node->analyzed && cgraph_is_master_clone (node))
+ {
+ struct function *cfun = DECL_STRUCT_FUNCTION (node->decl);
+ basic_block bb;
+ tree old_func_decl = current_function_decl;
+ if (dump_file)
+ fprintf (dump_file,
+ "Generating constraints for %s\n",
+ cgraph_node_name (node));
+ push_cfun (cfun);
+ current_function_decl = node->decl;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ block_stmt_iterator bsi;
+ tree phi;
+
+ for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
+ {
+ if (is_gimple_reg (PHI_RESULT (phi)))
+ {
+ find_func_aliases (phi);
+ }
+ }
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ {
+ tree stmt = bsi_stmt (bsi);
+ find_func_aliases (stmt);
+ }
+ }
+ current_function_decl = old_func_decl;
+ pop_cfun ();
+ }
+ else
+ {
+ /* Make point to anything. */
+ }
+ }
+
+ build_constraint_graph ();
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
+ dump_constraints (dump_file);
+ }
+
+ if (dump_file)
+ fprintf (dump_file,
+ "\nCollapsing static cycles and doing variable "
+ "substitution:\n");
+
+ find_and_collapse_graph_cycles (graph, false);
+ perform_var_substitution (graph);
+
+ if (dump_file)
+ fprintf (dump_file, "\nSolving graph:\n");
+
+ solve_graph (graph);
+
+ if (dump_file)
+ dump_sa_points_to_info (dump_file);
+ in_ipa_mode = 0;
+ delete_alias_heapvars ();
+ delete_points_to_sets ();
+#endif
+ return 0;
+}
+
+struct tree_opt_pass pass_ipa_pta =
+{
+ "pta", /* name */
+ gate_ipa_pta, /* gate */
+ ipa_pta_execute, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_IPA_PTA, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+ 0 /* letter */
+};
+
+/* Initialize the heapvar for statement mapping. */
+void
+init_alias_heapvars (void)
+{
+ if (!heapvar_for_stmt)
+ heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, tree_map_eq,
+ NULL);
+ nonlocal_all = NULL_TREE;
+}
+
+void
+delete_alias_heapvars (void)
+{
+ nonlocal_all = NULL_TREE;
+ htab_delete (heapvar_for_stmt);
+ heapvar_for_stmt = NULL;
+}
+
+#include "gt-tree-ssa-structalias.h"