aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-ssa-reassoc.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-ssa-reassoc.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-ssa-reassoc.c1521
1 files changed, 0 insertions, 1521 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-ssa-reassoc.c b/gcc-4.2.1-5666.3/gcc/tree-ssa-reassoc.c
deleted file mode 100644
index d93f44d0a..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-ssa-reassoc.c
+++ /dev/null
@@ -1,1521 +0,0 @@
-/* Reassociation for trees.
- Copyright (C) 2005 Free Software Foundation, Inc.
- Contributed by Daniel Berlin <dan@dberlin.org>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to
-the Free Software Foundation, 51 Franklin Street, Fifth Floor,
-Boston, MA 02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "errors.h"
-#include "ggc.h"
-#include "tree.h"
-#include "basic-block.h"
-#include "diagnostic.h"
-#include "tree-inline.h"
-#include "tree-flow.h"
-#include "tree-gimple.h"
-#include "tree-dump.h"
-#include "timevar.h"
-#include "tree-iterator.h"
-#include "tree-pass.h"
-#include "alloc-pool.h"
-#include "vec.h"
-#include "langhooks.h"
-
-/* This is a simple global reassociation pass. It is, in part, based
- on the LLVM pass of the same name (They do some things more/less
- than we do, in different orders, etc).
-
- It consists of five steps:
-
- 1. Breaking up subtract operations into addition + negate, where
- it would promote the reassociation of adds.
-
- 2. Left linearization of the expression trees, so that (A+B)+(C+D)
- becomes (((A+B)+C)+D), which is easier for us to rewrite later.
- During linearization, we place the operands of the binary
- expressions into a vector of operand_entry_t
-
- 3. Optimization of the operand lists, eliminating things like a +
- -a, a & a, etc.
-
- 4. Rewrite the expression trees we linearized and optimized so
- they are in proper rank order.
-
- 5. Repropagate negates, as nothing else will clean it up ATM.
-
- A bit of theory on #4, since nobody seems to write anything down
- about why it makes sense to do it the way they do it:
-
- We could do this much nicer theoretically, but don't (for reasons
- explained after how to do it theoretically nice :P).
-
- In order to promote the most redundancy elimination, you want
- binary expressions whose operands are the same rank (or
- preferably, the same value) exposed to the redundancy eliminator,
- for possible elimination.
-
- So the way to do this if we really cared, is to build the new op
- tree from the leaves to the roots, merging as you go, and putting the
- new op on the end of the worklist, until you are left with one
- thing on the worklist.
-
- IE if you have to rewrite the following set of operands (listed with
- rank in parentheses), with opcode PLUS_EXPR:
-
- a (1), b (1), c (1), d (2), e (2)
-
-
- We start with our merge worklist empty, and the ops list with all of
- those on it.
-
- You want to first merge all leaves of the same rank, as much as
- possible.
-
- So first build a binary op of
-
- mergetmp = a + b, and put "mergetmp" on the merge worklist.
-
- Because there is no three operand form of PLUS_EXPR, c is not going to
- be exposed to redundancy elimination as a rank 1 operand.
-
- So you might as well throw it on the merge worklist (you could also
- consider it to now be a rank two operand, and merge it with d and e,
- but in this case, you then have evicted e from a binary op. So at
- least in this situation, you can't win.)
-
- Then build a binary op of d + e
- mergetmp2 = d + e
-
- and put mergetmp2 on the merge worklist.
-
- so merge worklist = {mergetmp, c, mergetmp2}
-
- Continue building binary ops of these operations until you have only
- one operation left on the worklist.
-
- So we have
-
- build binary op
- mergetmp3 = mergetmp + c
-
- worklist = {mergetmp2, mergetmp3}
-
- mergetmp4 = mergetmp2 + mergetmp3
-
- worklist = {mergetmp4}
-
- because we have one operation left, we can now just set the original
- statement equal to the result of that operation.
-
- This will at least expose a + b and d + e to redundancy elimination
- as binary operations.
-
- For extra points, you can reuse the old statements to build the
- mergetmps, since you shouldn't run out.
-
- So why don't we do this?
-
- Because it's expensive, and rarely will help. Most trees we are
- reassociating have 3 or less ops. If they have 2 ops, they already
- will be written into a nice single binary op. If you have 3 ops, a
- single simple check suffices to tell you whether the first two are of the
- same rank. If so, you know to order it
-
- mergetmp = op1 + op2
- newstmt = mergetmp + op3
-
- instead of
- mergetmp = op2 + op3
- newstmt = mergetmp + op1
-
- If all three are of the same rank, you can't expose them all in a
- single binary operator anyway, so the above is *still* the best you
- can do.
-
- Thus, this is what we do. When we have three ops left, we check to see
- what order to put them in, and call it a day. As a nod to vector sum
- reduction, we check if any of ops are a really a phi node that is a
- destructive update for the associating op, and keep the destructive
- update together for vector sum reduction recognition. */
-
-
-/* Statistics */
-static struct
-{
- int linearized;
- int constants_eliminated;
- int ops_eliminated;
- int rewritten;
-} reassociate_stats;
-
-/* Operator, rank pair. */
-typedef struct operand_entry
-{
- unsigned int rank;
- tree op;
-} *operand_entry_t;
-
-static alloc_pool operand_entry_pool;
-
-
-/* Starting rank number for a given basic block, so that we can rank
- operations using unmovable instructions in that BB based on the bb
- depth. */
-static unsigned int *bb_rank;
-
-/* Operand->rank hashtable. */
-static htab_t operand_rank;
-
-
-/* Look up the operand rank structure for expression E. */
-
-static operand_entry_t
-find_operand_rank (tree e)
-{
- void **slot;
- struct operand_entry vrd;
-
- vrd.op = e;
- slot = htab_find_slot (operand_rank, &vrd, NO_INSERT);
- if (!slot)
- return NULL;
- return ((operand_entry_t) *slot);
-}
-
-/* Insert {E,RANK} into the operand rank hashtable. */
-
-static void
-insert_operand_rank (tree e, unsigned int rank)
-{
- void **slot;
- operand_entry_t new_pair = pool_alloc (operand_entry_pool);
-
- new_pair->op = e;
- new_pair->rank = rank;
- slot = htab_find_slot (operand_rank, new_pair, INSERT);
- gcc_assert (*slot == NULL);
- *slot = new_pair;
-}
-
-/* Return the hash value for a operand rank structure */
-
-static hashval_t
-operand_entry_hash (const void *p)
-{
- const operand_entry_t vr = (operand_entry_t) p;
- return iterative_hash_expr (vr->op, 0);
-}
-
-/* Return true if two operand rank structures are equal. */
-
-static int
-operand_entry_eq (const void *p1, const void *p2)
-{
- const operand_entry_t vr1 = (operand_entry_t) p1;
- const operand_entry_t vr2 = (operand_entry_t) p2;
- return vr1->op == vr2->op;
-}
-
-/* Given an expression E, return the rank of the expression. */
-
-static unsigned int
-get_rank (tree e)
-{
- operand_entry_t vr;
-
- /* Constants have rank 0. */
- if (is_gimple_min_invariant (e))
- return 0;
-
- /* SSA_NAME's have the rank of the expression they are the result
- of.
- For globals and uninitialized values, the rank is 0.
- For function arguments, use the pre-setup rank.
- For PHI nodes, stores, asm statements, etc, we use the rank of
- the BB.
- For simple operations, the rank is the maximum rank of any of
- its operands, or the bb_rank, whichever is less.
- I make no claims that this is optimal, however, it gives good
- results. */
-
- if (TREE_CODE (e) == SSA_NAME)
- {
- tree stmt;
- tree rhs;
- unsigned int rank, maxrank;
- int i;
-
- if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
- && e == default_def (SSA_NAME_VAR (e)))
- return find_operand_rank (e)->rank;
-
- stmt = SSA_NAME_DEF_STMT (e);
- if (bb_for_stmt (stmt) == NULL)
- return 0;
-
- if (TREE_CODE (stmt) != MODIFY_EXPR
- || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
- return bb_rank[bb_for_stmt (stmt)->index];
-
- /* If we already have a rank for this expression, use that. */
- vr = find_operand_rank (e);
- if (vr)
- return vr->rank;
-
- /* Otherwise, find the maximum rank for the operands, or the bb
- rank, whichever is less. */
- rank = 0;
- maxrank = bb_rank[bb_for_stmt(stmt)->index];
- rhs = TREE_OPERAND (stmt, 1);
- if (TREE_CODE_LENGTH (TREE_CODE (rhs)) == 0)
- rank = MAX (rank, get_rank (rhs));
- else
- {
- for (i = 0;
- i < TREE_CODE_LENGTH (TREE_CODE (rhs))
- && TREE_OPERAND (rhs, i)
- && rank != maxrank;
- i++)
- rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i)));
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Rank for ");
- print_generic_expr (dump_file, e, 0);
- fprintf (dump_file, " is %d\n", (rank + 1));
- }
-
- /* Note the rank in the hashtable so we don't recompute it. */
- insert_operand_rank (e, (rank + 1));
- return (rank + 1);
- }
-
- /* Globals, etc, are rank 0 */
- return 0;
-}
-
-DEF_VEC_P(operand_entry_t);
-DEF_VEC_ALLOC_P(operand_entry_t, heap);
-
-/* We want integer ones to end up last no matter what, since they are
- the ones we can do the most with. */
-#define INTEGER_CONST_TYPE 1 << 3
-#define FLOAT_CONST_TYPE 1 << 2
-#define OTHER_CONST_TYPE 1 << 1
-
-/* Classify an invariant tree into integer, float, or other, so that
- we can sort them to be near other constants of the same type. */
-static inline int
-constant_type (tree t)
-{
- if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
- return INTEGER_CONST_TYPE;
- else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
- return FLOAT_CONST_TYPE;
- else
- return OTHER_CONST_TYPE;
-}
-
-/* qsort comparison function to sort operand entries PA and PB by rank
- so that the sorted array is ordered by rank in decreasing order. */
-static int
-sort_by_operand_rank (const void *pa, const void *pb)
-{
- const operand_entry_t oea = *(const operand_entry_t *)pa;
- const operand_entry_t oeb = *(const operand_entry_t *)pb;
-
- /* It's nicer for optimize_expression if constants that are likely
- to fold when added/multiplied//whatever are put next to each
- other. Since all constants have rank 0, order them by type. */
- if (oeb->rank == 0 && oea->rank == 0)
- return constant_type (oeb->op) - constant_type (oea->op);
-
- /* Lastly, make sure the versions that are the same go next to each
- other. We use SSA_NAME_VERSION because it's stable. */
- if ((oeb->rank - oea->rank == 0)
- && TREE_CODE (oea->op) == SSA_NAME
- && TREE_CODE (oeb->op) == SSA_NAME)
- return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
-
- return oeb->rank - oea->rank;
-}
-
-/* Add an operand entry to *OPS for the tree operand OP. */
-
-static void
-add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
-{
- operand_entry_t oe = pool_alloc (operand_entry_pool);
-
- oe->op = op;
- oe->rank = get_rank (op);
- VEC_safe_push (operand_entry_t, heap, *ops, oe);
-}
-
-/* Return true if STMT is reassociable operation containing a binary
- operation with tree code CODE. */
-
-static bool
-is_reassociable_op (tree stmt, enum tree_code code)
-{
- if (!IS_EMPTY_STMT (stmt)
- && TREE_CODE (stmt) == MODIFY_EXPR
- && TREE_CODE (TREE_OPERAND (stmt, 1)) == code
- && has_single_use (TREE_OPERAND (stmt, 0)))
- return true;
- return false;
-}
-
-
-/* Given NAME, if NAME is defined by a unary operation OPCODE, return the
- operand of the negate operation. Otherwise, return NULL. */
-
-static tree
-get_unary_op (tree name, enum tree_code opcode)
-{
- tree stmt = SSA_NAME_DEF_STMT (name);
- tree rhs;
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return NULL_TREE;
-
- rhs = TREE_OPERAND (stmt, 1);
- if (TREE_CODE (rhs) == opcode)
- return TREE_OPERAND (rhs, 0);
- return NULL_TREE;
-}
-
-/* If CURR and LAST are a pair of ops that OPCODE allows us to
- eliminate through equivalences, do so, remove them from OPS, and
- return true. Otherwise, return false. */
-
-static bool
-eliminate_duplicate_pair (enum tree_code opcode,
- VEC (operand_entry_t, heap) **ops,
- bool *all_done,
- unsigned int i,
- operand_entry_t curr,
- operand_entry_t last)
-{
-
- /* If we have two of the same op, and the opcode is & |, min, or max,
- we can eliminate one of them.
- If we have two of the same op, and the opcode is ^, we can
- eliminate both of them. */
-
- if (last && last->op == curr->op)
- {
- switch (opcode)
- {
- case MAX_EXPR:
- case MIN_EXPR:
- case BIT_IOR_EXPR:
- case BIT_AND_EXPR:
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, curr->op, 0);
- fprintf (dump_file, " [&|minmax] ");
- print_generic_expr (dump_file, last->op, 0);
- fprintf (dump_file, " -> ");
- print_generic_stmt (dump_file, last->op, 0);
- }
-
- VEC_ordered_remove (operand_entry_t, *ops, i);
- reassociate_stats.ops_eliminated ++;
-
- return true;
-
- case BIT_XOR_EXPR:
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, curr->op, 0);
- fprintf (dump_file, " ^ ");
- print_generic_expr (dump_file, last->op, 0);
- fprintf (dump_file, " -> nothing\n");
- }
-
- reassociate_stats.ops_eliminated += 2;
-
- if (VEC_length (operand_entry_t, *ops) == 2)
- {
- VEC_free (operand_entry_t, heap, *ops);
- *ops = NULL;
- add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op),
- integer_zero_node));
- *all_done = true;
- }
- else
- {
- VEC_ordered_remove (operand_entry_t, *ops, i-1);
- VEC_ordered_remove (operand_entry_t, *ops, i-1);
- }
-
- return true;
-
- default:
- break;
- }
- }
- return false;
-}
-
-/* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression,
- look in OPS for a corresponding positive operation to cancel it
- out. If we find one, remove the other from OPS, replace
- OPS[CURRINDEX] with 0, and return true. Otherwise, return
- false. */
-
-static bool
-eliminate_plus_minus_pair (enum tree_code opcode,
- VEC (operand_entry_t, heap) **ops,
- unsigned int currindex,
- operand_entry_t curr)
-{
- tree negateop;
- unsigned int i;
- operand_entry_t oe;
-
- if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
- return false;
-
- negateop = get_unary_op (curr->op, NEGATE_EXPR);
- if (negateop == NULL_TREE)
- return false;
-
- /* Any non-negated version will have a rank that is one less than
- the current rank. So once we hit those ranks, if we don't find
- one, we can stop. */
-
- for (i = currindex + 1;
- VEC_iterate (operand_entry_t, *ops, i, oe)
- && oe->rank >= curr->rank - 1 ;
- i++)
- {
- if (oe->op == negateop)
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, negateop, 0);
- fprintf (dump_file, " + -");
- print_generic_expr (dump_file, oe->op, 0);
- fprintf (dump_file, " -> 0\n");
- }
-
- VEC_ordered_remove (operand_entry_t, *ops, i);
- add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op),
- integer_zero_node));
- VEC_ordered_remove (operand_entry_t, *ops, currindex);
- reassociate_stats.ops_eliminated ++;
-
- return true;
- }
- }
-
- return false;
-}
-
-/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
- bitwise not expression, look in OPS for a corresponding operand to
- cancel it out. If we find one, remove the other from OPS, replace
- OPS[CURRINDEX] with 0, and return true. Otherwise, return
- false. */
-
-static bool
-eliminate_not_pairs (enum tree_code opcode,
- VEC (operand_entry_t, heap) **ops,
- unsigned int currindex,
- operand_entry_t curr)
-{
- tree notop;
- unsigned int i;
- operand_entry_t oe;
-
- if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
- || TREE_CODE (curr->op) != SSA_NAME)
- return false;
-
- notop = get_unary_op (curr->op, BIT_NOT_EXPR);
- if (notop == NULL_TREE)
- return false;
-
- /* Any non-not version will have a rank that is one less than
- the current rank. So once we hit those ranks, if we don't find
- one, we can stop. */
-
- for (i = currindex + 1;
- VEC_iterate (operand_entry_t, *ops, i, oe)
- && oe->rank >= curr->rank - 1;
- i++)
- {
- if (oe->op == notop)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, notop, 0);
- if (opcode == BIT_AND_EXPR)
- fprintf (dump_file, " & ~");
- else if (opcode == BIT_IOR_EXPR)
- fprintf (dump_file, " | ~");
- print_generic_expr (dump_file, oe->op, 0);
- if (opcode == BIT_AND_EXPR)
- fprintf (dump_file, " -> 0\n");
- else if (opcode == BIT_IOR_EXPR)
- fprintf (dump_file, " -> -1\n");
- }
-
- if (opcode == BIT_AND_EXPR)
- oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node);
- else if (opcode == BIT_IOR_EXPR)
- oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
- TYPE_PRECISION (TREE_TYPE (oe->op)));
-
- reassociate_stats.ops_eliminated
- += VEC_length (operand_entry_t, *ops) - 1;
- VEC_free (operand_entry_t, heap, *ops);
- *ops = NULL;
- VEC_safe_push (operand_entry_t, heap, *ops, oe);
- return true;
- }
- }
-
- return false;
-}
-
-/* Use constant value that may be present in OPS to try to eliminate
- operands. Note that this function is only really used when we've
- eliminated ops for other reasons, or merged constants. Across
- single statements, fold already does all of this, plus more. There
- is little point in duplicating logic, so I've only included the
- identities that I could ever construct testcases to trigger. */
-
-static void
-eliminate_using_constants (enum tree_code opcode,
- VEC(operand_entry_t, heap) **ops)
-{
- operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
-
- if (oelast->rank == 0 && INTEGRAL_TYPE_P (TREE_TYPE (oelast->op)))
- {
- switch (opcode)
- {
- case BIT_AND_EXPR:
- if (integer_zerop (oelast->op))
- {
- if (VEC_length (operand_entry_t, *ops) != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found & 0, removing all other ops\n");
-
- reassociate_stats.ops_eliminated
- += VEC_length (operand_entry_t, *ops) - 1;
-
- VEC_free (operand_entry_t, heap, *ops);
- *ops = NULL;
- VEC_safe_push (operand_entry_t, heap, *ops, oelast);
- return;
- }
- }
- else if (integer_all_onesp (oelast->op))
- {
- if (VEC_length (operand_entry_t, *ops) != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found & -1, removing\n");
- VEC_pop (operand_entry_t, *ops);
- reassociate_stats.ops_eliminated++;
- }
- }
- break;
- case BIT_IOR_EXPR:
- if (integer_all_onesp (oelast->op))
- {
- if (VEC_length (operand_entry_t, *ops) != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found | -1, removing all other ops\n");
-
- reassociate_stats.ops_eliminated
- += VEC_length (operand_entry_t, *ops) - 1;
-
- VEC_free (operand_entry_t, heap, *ops);
- *ops = NULL;
- VEC_safe_push (operand_entry_t, heap, *ops, oelast);
- return;
- }
- }
- else if (integer_zerop (oelast->op))
- {
- if (VEC_length (operand_entry_t, *ops) != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found | 0, removing\n");
- VEC_pop (operand_entry_t, *ops);
- reassociate_stats.ops_eliminated++;
- }
- }
- break;
- case MULT_EXPR:
- if (integer_zerop (oelast->op))
- {
- if (VEC_length (operand_entry_t, *ops) != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found * 0, removing all other ops\n");
-
- reassociate_stats.ops_eliminated
- += VEC_length (operand_entry_t, *ops) - 1;
- VEC_free (operand_entry_t, heap, *ops);
- *ops = NULL;
- VEC_safe_push (operand_entry_t, heap, *ops, oelast);
- return;
- }
- }
- else if (integer_onep (oelast->op))
- {
- if (VEC_length (operand_entry_t, *ops) != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found * 1, removing\n");
- VEC_pop (operand_entry_t, *ops);
- reassociate_stats.ops_eliminated++;
- return;
- }
- }
- break;
- case BIT_XOR_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- if (integer_zerop (oelast->op))
- {
- if (VEC_length (operand_entry_t, *ops) != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found [|^+] 0, removing\n");
- VEC_pop (operand_entry_t, *ops);
- reassociate_stats.ops_eliminated++;
- return;
- }
- }
- break;
- default:
- break;
- }
- }
-}
-
-/* Perform various identities and other optimizations on the list of
- operand entries, stored in OPS. The tree code for the binary
- operation between all the operands is OPCODE. */
-
-static void
-optimize_ops_list (enum tree_code opcode,
- VEC (operand_entry_t, heap) **ops)
-{
- unsigned int length = VEC_length (operand_entry_t, *ops);
- unsigned int i;
- operand_entry_t oe;
- operand_entry_t oelast = NULL;
- bool iterate = false;
-
- if (length == 1)
- return;
-
- oelast = VEC_last (operand_entry_t, *ops);
-
- /* If the last two are constants, pop the constants off, merge them
- and try the next two. */
- if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
- {
- operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
-
- if (oelm1->rank == 0
- && is_gimple_min_invariant (oelm1->op)
- && lang_hooks.types_compatible_p (TREE_TYPE (oelm1->op),
- TREE_TYPE (oelast->op)))
- {
- tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
- oelm1->op, oelast->op);
-
- if (folded && is_gimple_min_invariant (folded))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Merging constants\n");
-
- VEC_pop (operand_entry_t, *ops);
- VEC_pop (operand_entry_t, *ops);
-
- add_to_ops_vec (ops, folded);
- reassociate_stats.constants_eliminated++;
-
- optimize_ops_list (opcode, ops);
- return;
- }
- }
- }
-
- eliminate_using_constants (opcode, ops);
- oelast = NULL;
-
- for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
- {
- bool done = false;
-
- if (eliminate_not_pairs (opcode, ops, i, oe))
- return;
- if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
- || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
- {
- if (done)
- return;
- iterate = true;
- oelast = NULL;
- continue;
- }
- oelast = oe;
- i++;
- }
-
- length = VEC_length (operand_entry_t, *ops);
- oelast = VEC_last (operand_entry_t, *ops);
-
- if (iterate)
- optimize_ops_list (opcode, ops);
-}
-
-/* Return true if OPERAND is defined by a PHI node which uses the LHS
- of STMT in it's operands. This is also known as a "destructive
- update" operation. */
-
-static bool
-is_phi_for_stmt (tree stmt, tree operand)
-{
- tree def_stmt;
- tree lhs = TREE_OPERAND (stmt, 0);
- use_operand_p arg_p;
- ssa_op_iter i;
-
- if (TREE_CODE (operand) != SSA_NAME)
- return false;
-
- def_stmt = SSA_NAME_DEF_STMT (operand);
- if (TREE_CODE (def_stmt) != PHI_NODE)
- return false;
-
- FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
- if (lhs == USE_FROM_PTR (arg_p))
- return true;
- return false;
-}
-
-/* Recursively rewrite our linearized statements so that the operators
- match those in OPS[OPINDEX], putting the computation in rank
- order. */
-
-static void
-rewrite_expr_tree (tree stmt, unsigned int opindex,
- VEC(operand_entry_t, heap) * ops)
-{
- tree rhs = TREE_OPERAND (stmt, 1);
- operand_entry_t oe;
-
- /* If we have three operands left, then we want to make sure the one
- that gets the double binary op are the ones with the same rank.
-
- The alternative we try is to see if this is a destructive
- update style statement, which is like:
- b = phi (a, ...)
- a = c + b;
- In that case, we want to use the destructive update form to
- expose the possible vectorizer sum reduction opportunity.
- In that case, the third operand will be the phi node.
-
- We could, of course, try to be better as noted above, and do a
- lot of work to try to find these opportunities in >3 operand
- cases, but it is unlikely to be worth it. */
- if (opindex + 3 == VEC_length (operand_entry_t, ops))
- {
- operand_entry_t oe1, oe2, oe3;
-
- oe1 = VEC_index (operand_entry_t, ops, opindex);
- oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
- oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
-
- if ((oe1->rank == oe2->rank
- && oe2->rank != oe3->rank)
- || (is_phi_for_stmt (stmt, oe3->op)
- && !is_phi_for_stmt (stmt, oe1->op)
- && !is_phi_for_stmt (stmt, oe2->op)))
- {
- struct operand_entry temp = *oe3;
- oe3->op = oe1->op;
- oe3->rank = oe1->rank;
- oe1->op = temp.op;
- oe1->rank= temp.rank;
- }
- }
-
- /* The final recursion case for this function is that you have
- exactly two operations left.
- If we had one exactly one op in the entire list to start with, we
- would have never called this function, and the tail recursion
- rewrites them one at a time. */
- if (opindex + 2 == VEC_length (operand_entry_t, ops))
- {
- operand_entry_t oe1, oe2;
-
- oe1 = VEC_index (operand_entry_t, ops, opindex);
- oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
-
- if (TREE_OPERAND (rhs, 0) != oe1->op
- || TREE_OPERAND (rhs, 1) != oe2->op)
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Transforming ");
- print_generic_expr (dump_file, rhs, 0);
- }
-
- TREE_OPERAND (rhs, 0) = oe1->op;
- TREE_OPERAND (rhs, 1) = oe2->op;
- update_stmt (stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " into ");
- print_generic_stmt (dump_file, rhs, 0);
- }
-
- }
- return;
- }
-
- /* If we hit here, we should have 3 or more ops left. */
- gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
-
- /* Rewrite the next operator. */
- oe = VEC_index (operand_entry_t, ops, opindex);
-
- if (oe->op != TREE_OPERAND (rhs, 1))
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Transforming ");
- print_generic_expr (dump_file, rhs, 0);
- }
-
- TREE_OPERAND (rhs, 1) = oe->op;
- update_stmt (stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " into ");
- print_generic_stmt (dump_file, rhs, 0);
- }
- }
- /* Recurse on the LHS of the binary operator, which is guaranteed to
- be the non-leaf side. */
- rewrite_expr_tree (SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0)),
- opindex + 1, ops);
-}
-
-/* Transform STMT, which is really (A +B) + (C + D) into the left
- linear form, ((A+B)+C)+D.
- Recurse on D if necessary. */
-
-static void
-linearize_expr (tree stmt)
-{
- block_stmt_iterator bsinow, bsirhs;
- tree rhs = TREE_OPERAND (stmt, 1);
- enum tree_code rhscode = TREE_CODE (rhs);
- tree binrhs = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 1));
- tree binlhs = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
- tree newbinrhs = NULL_TREE;
-
- gcc_assert (is_reassociable_op (binlhs, TREE_CODE (rhs))
- && is_reassociable_op (binrhs, TREE_CODE (rhs)));
-
- bsinow = bsi_for_stmt (stmt);
- bsirhs = bsi_for_stmt (binrhs);
- bsi_move_before (&bsirhs, &bsinow);
-
- TREE_OPERAND (rhs, 1) = TREE_OPERAND (TREE_OPERAND (binrhs, 1), 0);
- if (TREE_CODE (TREE_OPERAND (rhs, 1)) == SSA_NAME)
- newbinrhs = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 1));
- TREE_OPERAND (TREE_OPERAND (binrhs, 1), 0) = TREE_OPERAND (binlhs, 0);
- TREE_OPERAND (rhs, 0) = TREE_OPERAND (binrhs, 0);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Linearized: ");
- print_generic_stmt (dump_file, rhs, 0);
- }
-
- reassociate_stats.linearized++;
- update_stmt (binrhs);
- update_stmt (binlhs);
- update_stmt (stmt);
- TREE_VISITED (binrhs) = 1;
- TREE_VISITED (binlhs) = 1;
- TREE_VISITED (stmt) = 1;
-
- /* Tail recurse on the new rhs if it still needs reassociation. */
- if (newbinrhs && is_reassociable_op (newbinrhs, rhscode))
- linearize_expr (stmt);
-
-}
-
-/* If LHS has a single immediate use that is a MODIFY_EXPR, return
- it. Otherwise, return NULL. */
-
-static tree
-get_single_immediate_use (tree lhs)
-{
- use_operand_p immuse;
- tree immusestmt;
-
- if (TREE_CODE (lhs) == SSA_NAME
- && single_imm_use (lhs, &immuse, &immusestmt))
- {
- if (TREE_CODE (immusestmt) == RETURN_EXPR)
- immusestmt = TREE_OPERAND (immusestmt, 0);
- if (TREE_CODE (immusestmt) == MODIFY_EXPR)
- return immusestmt;
- }
- return NULL_TREE;
-}
-static VEC(tree, heap) *broken_up_subtracts;
-
-
-/* Recursively negate the value of TONEGATE, and return the SSA_NAME
- representing the negated value. Insertions of any necessary
- instructions go before BSI.
- This function is recursive in that, if you hand it "a_5" as the
- value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
- transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
-
-static tree
-negate_value (tree tonegate, block_stmt_iterator *bsi)
-{
- tree negatedef = tonegate;
- tree resultofnegate;
-
- if (TREE_CODE (tonegate) == SSA_NAME)
- negatedef = SSA_NAME_DEF_STMT (tonegate);
-
- /* If we are trying to negate a name, defined by an add, negate the
- add operands instead. */
- if (TREE_CODE (tonegate) == SSA_NAME
- && TREE_CODE (negatedef) == MODIFY_EXPR
- && TREE_CODE (TREE_OPERAND (negatedef, 0)) == SSA_NAME
- && has_single_use (TREE_OPERAND (negatedef, 0))
- && TREE_CODE (TREE_OPERAND (negatedef, 1)) == PLUS_EXPR)
- {
- block_stmt_iterator bsi;
- tree binop = TREE_OPERAND (negatedef, 1);
-
- bsi = bsi_for_stmt (negatedef);
- TREE_OPERAND (binop, 0) = negate_value (TREE_OPERAND (binop, 0),
- &bsi);
- bsi = bsi_for_stmt (negatedef);
- TREE_OPERAND (binop, 1) = negate_value (TREE_OPERAND (binop, 1),
- &bsi);
- update_stmt (negatedef);
- return TREE_OPERAND (negatedef, 0);
- }
-
- tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
- resultofnegate = force_gimple_operand_bsi (bsi, tonegate, true,
- NULL_TREE);
- VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate);
- return resultofnegate;
-
-}
-
-/* Return true if we should break up the subtract in STMT into an add
- with negate. This is true when we the subtract operands are really
- adds, or the subtract itself is used in an add expression. In
- either case, breaking up the subtract into an add with negate
- exposes the adds to reassociation. */
-
-static bool
-should_break_up_subtract (tree stmt)
-{
-
- tree lhs = TREE_OPERAND (stmt, 0);
- tree rhs = TREE_OPERAND (stmt, 1);
- tree binlhs = TREE_OPERAND (rhs, 0);
- tree binrhs = TREE_OPERAND (rhs, 1);
- tree immusestmt;
-
- if (TREE_CODE (binlhs) == SSA_NAME
- && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR))
- return true;
-
- if (TREE_CODE (binrhs) == SSA_NAME
- && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR))
- return true;
-
- if (TREE_CODE (lhs) == SSA_NAME
- && (immusestmt = get_single_immediate_use (lhs))
- && TREE_CODE (TREE_OPERAND (immusestmt, 1)) == PLUS_EXPR)
- return true;
- return false;
-
-}
-
-/* Transform STMT from A - B into A + -B. */
-
-static void
-break_up_subtract (tree stmt, block_stmt_iterator *bsi)
-{
- tree rhs = TREE_OPERAND (stmt, 1);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Breaking up subtract ");
- print_generic_stmt (dump_file, stmt, 0);
- }
-
- TREE_SET_CODE (TREE_OPERAND (stmt, 1), PLUS_EXPR);
- TREE_OPERAND (rhs, 1) = negate_value (TREE_OPERAND (rhs, 1), bsi);
-
- update_stmt (stmt);
-}
-
-/* Recursively linearize a binary expression that is the RHS of STMT.
- Place the operands of the expression tree in the vector named OPS. */
-
-static void
-linearize_expr_tree (VEC(operand_entry_t, heap) **ops, tree stmt)
-{
- block_stmt_iterator bsinow, bsilhs;
- tree rhs = TREE_OPERAND (stmt, 1);
- tree binrhs = TREE_OPERAND (rhs, 1);
- tree binlhs = TREE_OPERAND (rhs, 0);
- tree binlhsdef, binrhsdef;
- bool binlhsisreassoc = false;
- bool binrhsisreassoc = false;
- enum tree_code rhscode = TREE_CODE (rhs);
-
- TREE_VISITED (stmt) = 1;
-
- if (TREE_CODE (binlhs) == SSA_NAME)
- {
- binlhsdef = SSA_NAME_DEF_STMT (binlhs);
- binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode);
- }
-
- if (TREE_CODE (binrhs) == SSA_NAME)
- {
- binrhsdef = SSA_NAME_DEF_STMT (binrhs);
- binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode);
- }
-
- /* If the LHS is not reassociable, but the RHS is, we need to swap
- them. If neither is reassociable, there is nothing we can do, so
- just put them in the ops vector. If the LHS is reassociable,
- linearize it. If both are reassociable, then linearize the RHS
- and the LHS. */
-
- if (!binlhsisreassoc)
- {
- tree temp;
-
- if (!binrhsisreassoc)
- {
- add_to_ops_vec (ops, binrhs);
- add_to_ops_vec (ops, binlhs);
- return;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "swapping operands of ");
- print_generic_expr (dump_file, stmt, 0);
- }
-
- swap_tree_operands (stmt, &TREE_OPERAND (rhs, 0),
- &TREE_OPERAND (rhs, 1));
- update_stmt (stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " is now ");
- print_generic_stmt (dump_file, stmt, 0);
- }
-
- /* We want to make it so the lhs is always the reassociative op,
- so swap. */
- temp = binlhs;
- binlhs = binrhs;
- binrhs = temp;
- }
- else if (binrhsisreassoc)
- {
- linearize_expr (stmt);
- gcc_assert (rhs == TREE_OPERAND (stmt, 1));
- binlhs = TREE_OPERAND (rhs, 0);
- binrhs = TREE_OPERAND (rhs, 1);
- }
-
- gcc_assert (TREE_CODE (binrhs) != SSA_NAME
- || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), rhscode));
- bsinow = bsi_for_stmt (stmt);
- bsilhs = bsi_for_stmt (SSA_NAME_DEF_STMT (binlhs));
- bsi_move_before (&bsilhs, &bsinow);
- linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs));
- add_to_ops_vec (ops, binrhs);
-}
-
-/* Repropagate the negates back into subtracts, since no other pass
- currently does it. */
-
-static void
-repropagate_negates (void)
-{
- unsigned int i = 0;
- tree negate;
-
- for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++)
- {
- tree user = get_single_immediate_use (negate);
-
- /* The negate operand can be either operand of a PLUS_EXPR
- (it can be the LHS if the RHS is a constant for example).
-
- Force the negate operand to the RHS of the PLUS_EXPR, then
- transform the PLUS_EXPR into a MINUS_EXPR. */
- if (user
- && TREE_CODE (user) == MODIFY_EXPR
- && TREE_CODE (TREE_OPERAND (user, 1)) == PLUS_EXPR)
- {
- tree rhs = TREE_OPERAND (user, 1);
-
- /* If the negated operand appears on the LHS of the
- PLUS_EXPR, exchange the operands of the PLUS_EXPR
- to force the negated operand to the RHS of the PLUS_EXPR. */
- if (TREE_OPERAND (TREE_OPERAND (user, 1), 0) == negate)
- {
- tree temp = TREE_OPERAND (rhs, 0);
- TREE_OPERAND (rhs, 0) = TREE_OPERAND (rhs, 1);
- TREE_OPERAND (rhs, 1) = temp;
- }
-
- /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
- the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
- if (TREE_OPERAND (TREE_OPERAND (user, 1), 1) == negate)
- {
- TREE_SET_CODE (rhs, MINUS_EXPR);
- TREE_OPERAND (rhs, 1) = get_unary_op (negate, NEGATE_EXPR);
- update_stmt (user);
- }
- }
- }
-}
-
-/* Break up subtract operations in block BB.
-
- We do this top down because we don't know whether the subtract is
- part of a possible chain of reassociation except at the top.
-
- IE given
- d = f + g
- c = a + e
- b = c - d
- q = b - r
- k = t - q
-
- we want to break up k = t - q, but we won't until we've transformed q
- = b - r, which won't be broken up until we transform b = c - d. */
-
-static void
-break_up_subtract_bb (basic_block bb)
-{
- block_stmt_iterator bsi;
- basic_block son;
-
- for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
- {
- tree stmt = bsi_stmt (bsi);
-
- if (TREE_CODE (stmt) == MODIFY_EXPR)
- {
- tree lhs = TREE_OPERAND (stmt, 0);
- tree rhs = TREE_OPERAND (stmt, 1);
-
- TREE_VISITED (stmt) = 0;
- /* If unsafe math optimizations we can do reassociation for
- non-integral types. */
- if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- || !INTEGRAL_TYPE_P (TREE_TYPE (rhs)))
- && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs))
- || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(lhs))
- || !flag_unsafe_math_optimizations))
- continue;
-
- /* Check for a subtract used only in an addition. If this
- is the case, transform it into add of a negate for better
- reassociation. IE transform C = A-B into C = A + -B if C
- is only used in an addition. */
- if (TREE_CODE (rhs) == MINUS_EXPR)
- if (should_break_up_subtract (stmt))
- break_up_subtract (stmt, &bsi);
- }
- }
- for (son = first_dom_son (CDI_DOMINATORS, bb);
- son;
- son = next_dom_son (CDI_DOMINATORS, son))
- break_up_subtract_bb (son);
-}
-
-/* Reassociate expressions in basic block BB and its post-dominator as
- children. */
-
-static void
-reassociate_bb (basic_block bb)
-{
- block_stmt_iterator bsi;
- basic_block son;
-
- for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
- {
- tree stmt = bsi_stmt (bsi);
-
- if (TREE_CODE (stmt) == MODIFY_EXPR)
- {
- tree lhs = TREE_OPERAND (stmt, 0);
- tree rhs = TREE_OPERAND (stmt, 1);
-
- /* If this was part of an already processed tree, we don't
- need to touch it again. */
- if (TREE_VISITED (stmt))
- continue;
-
- /* If unsafe math optimizations we can do reassociation for
- non-integral types. */
- if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- || !INTEGRAL_TYPE_P (TREE_TYPE (rhs)))
- && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs))
- || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(lhs))
- || !flag_unsafe_math_optimizations))
- continue;
-
- if (associative_tree_code (TREE_CODE (rhs)))
- {
- VEC(operand_entry_t, heap) *ops = NULL;
-
- /* There may be no immediate uses left by the time we
- get here because we may have eliminated them all. */
- if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
- continue;
-
- TREE_VISITED (stmt) = 1;
- linearize_expr_tree (&ops, stmt);
- qsort (VEC_address (operand_entry_t, ops),
- VEC_length (operand_entry_t, ops),
- sizeof (operand_entry_t),
- sort_by_operand_rank);
- optimize_ops_list (TREE_CODE (rhs), &ops);
-
- if (VEC_length (operand_entry_t, ops) == 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Transforming ");
- print_generic_expr (dump_file, rhs, 0);
- }
- TREE_OPERAND (stmt, 1) = VEC_last (operand_entry_t, ops)->op;
- update_stmt (stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " into ");
- print_generic_stmt (dump_file,
- TREE_OPERAND (stmt, 1), 0);
- }
- }
- else
- {
- rewrite_expr_tree (stmt, 0, ops);
- }
-
- VEC_free (operand_entry_t, heap, ops);
- }
- }
- }
- for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
- son;
- son = next_dom_son (CDI_POST_DOMINATORS, son))
- reassociate_bb (son);
-}
-
-void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
-void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
-
-/* Dump the operand entry vector OPS to FILE. */
-
-void
-dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
-{
- operand_entry_t oe;
- unsigned int i;
-
- for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++)
- {
- fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
- print_generic_stmt (file, oe->op, 0);
- }
-}
-
-/* Dump the operand entry vector OPS to STDERR. */
-
-void
-debug_ops_vector (VEC (operand_entry_t, heap) *ops)
-{
- dump_ops_vector (stderr, ops);
-}
-
-static void
-do_reassoc (void)
-{
- break_up_subtract_bb (ENTRY_BLOCK_PTR);
- reassociate_bb (EXIT_BLOCK_PTR);
-}
-
-/* Initialize the reassociation pass. */
-
-static void
-init_reassoc (void)
-{
- int i;
- unsigned int rank = 2;
- tree param;
- int *bbs = XNEWVEC (int, last_basic_block + 1);
-
- memset (&reassociate_stats, 0, sizeof (reassociate_stats));
-
- operand_entry_pool = create_alloc_pool ("operand entry pool",
- sizeof (struct operand_entry), 30);
-
- /* Reverse RPO (Reverse Post Order) will give us something where
- deeper loops come later. */
- pre_and_rev_post_order_compute (NULL, bbs, false);
- bb_rank = XCNEWVEC (unsigned int, last_basic_block + 1);
-
- operand_rank = htab_create (511, operand_entry_hash,
- operand_entry_eq, 0);
-
- /* Give each argument a distinct rank. */
- for (param = DECL_ARGUMENTS (current_function_decl);
- param;
- param = TREE_CHAIN (param))
- {
- if (default_def (param) != NULL)
- {
- tree def = default_def (param);
- insert_operand_rank (def, ++rank);
- }
- }
-
- /* Give the chain decl a distinct rank. */
- if (cfun->static_chain_decl != NULL)
- {
- tree def = default_def (cfun->static_chain_decl);
- if (def != NULL)
- insert_operand_rank (def, ++rank);
- }
-
- /* Set up rank for each BB */
- for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
- bb_rank[bbs[i]] = ++rank << 16;
-
- free (bbs);
- calculate_dominance_info (CDI_DOMINATORS);
- calculate_dominance_info (CDI_POST_DOMINATORS);
- broken_up_subtracts = NULL;
-}
-
-/* Cleanup after the reassociation pass, and print stats if
- requested. */
-
-static void
-fini_reassoc (void)
-{
-
- if (dump_file && (dump_flags & TDF_STATS))
- {
- fprintf (dump_file, "Reassociation stats:\n");
- fprintf (dump_file, "Linearized: %d\n",
- reassociate_stats.linearized);
- fprintf (dump_file, "Constants eliminated: %d\n",
- reassociate_stats.constants_eliminated);
- fprintf (dump_file, "Ops eliminated: %d\n",
- reassociate_stats.ops_eliminated);
- fprintf (dump_file, "Statements rewritten: %d\n",
- reassociate_stats.rewritten);
- }
- htab_delete (operand_rank);
-
- free_alloc_pool (operand_entry_pool);
- free (bb_rank);
- VEC_free (tree, heap, broken_up_subtracts);
- free_dominance_info (CDI_POST_DOMINATORS);
-}
-
-/* Gate and execute functions for Reassociation. */
-
-static unsigned int
-execute_reassoc (void)
-{
- init_reassoc ();
-
- do_reassoc ();
- repropagate_negates ();
-
- fini_reassoc ();
- return 0;
-}
-
-struct tree_opt_pass pass_reassoc =
-{
- "reassoc", /* name */
- NULL, /* gate */
- execute_reassoc, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_TREE_REASSOC, /* tv_id */
- PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
- 0 /* letter */
-};