aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c2125
1 files changed, 2125 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c b/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c
new file mode 100644
index 000000000..429622bcf
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c
@@ -0,0 +1,2125 @@
+/* Functions to determine/estimate number of iterations of a loop.
+ Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "output.h"
+#include "diagnostic.h"
+#include "intl.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "cfgloop.h"
+#include "tree-pass.h"
+#include "ggc.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+#include "tree-data-ref.h"
+#include "params.h"
+#include "flags.h"
+#include "toplev.h"
+#include "tree-inline.h"
+
+#define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
+
+
+/*
+
+ Analysis of number of iterations of an affine exit test.
+
+*/
+
+/* Returns true if ARG is either NULL_TREE or constant zero. Unlike
+ integer_zerop, it does not care about overflow flags. */
+
+bool
+zero_p (tree arg)
+{
+ if (!arg)
+ return true;
+
+ if (TREE_CODE (arg) != INTEGER_CST)
+ return false;
+
+ return (TREE_INT_CST_LOW (arg) == 0 && TREE_INT_CST_HIGH (arg) == 0);
+}
+
+/* Returns true if ARG a nonzero constant. Unlike integer_nonzerop, it does
+ not care about overflow flags. */
+
+static bool
+nonzero_p (tree arg)
+{
+ if (!arg)
+ return false;
+
+ if (TREE_CODE (arg) != INTEGER_CST)
+ return false;
+
+ return (TREE_INT_CST_LOW (arg) != 0 || TREE_INT_CST_HIGH (arg) != 0);
+}
+
+/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
+
+static tree
+inverse (tree x, tree mask)
+{
+ tree type = TREE_TYPE (x);
+ tree rslt;
+ unsigned ctr = tree_floor_log2 (mask);
+
+ if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
+ {
+ unsigned HOST_WIDE_INT ix;
+ unsigned HOST_WIDE_INT imask;
+ unsigned HOST_WIDE_INT irslt = 1;
+
+ gcc_assert (cst_and_fits_in_hwi (x));
+ gcc_assert (cst_and_fits_in_hwi (mask));
+
+ ix = int_cst_value (x);
+ imask = int_cst_value (mask);
+
+ for (; ctr; ctr--)
+ {
+ irslt *= ix;
+ ix *= ix;
+ }
+ irslt &= imask;
+
+ rslt = build_int_cst_type (type, irslt);
+ }
+ else
+ {
+ rslt = build_int_cst (type, 1);
+ for (; ctr; ctr--)
+ {
+ rslt = int_const_binop (MULT_EXPR, rslt, x, 0);
+ x = int_const_binop (MULT_EXPR, x, x, 0);
+ }
+ rslt = int_const_binop (BIT_AND_EXPR, rslt, mask, 0);
+ }
+
+ return rslt;
+}
+
+/* Determines number of iterations of loop whose ending condition
+ is IV <> FINAL. TYPE is the type of the iv. The number of
+ iterations is stored to NITER. NEVER_INFINITE is true if
+ we know that the exit must be taken eventually, i.e., that the IV
+ ever reaches the value FINAL (we derived this earlier, and possibly set
+ NITER->assumptions to make sure this is the case). */
+
+static bool
+number_of_iterations_ne (tree type, affine_iv *iv, tree final,
+ struct tree_niter_desc *niter, bool never_infinite)
+{
+ tree niter_type = unsigned_type_for (type);
+ tree s, c, d, bits, assumption, tmp, bound;
+
+ niter->control = *iv;
+ niter->bound = final;
+ niter->cmp = NE_EXPR;
+
+ /* Rearrange the terms so that we get inequality s * i <> c, with s
+ positive. Also cast everything to the unsigned type. */
+ if (tree_int_cst_sign_bit (iv->step))
+ {
+ s = fold_convert (niter_type,
+ fold_build1 (NEGATE_EXPR, type, iv->step));
+ c = fold_build2 (MINUS_EXPR, niter_type,
+ fold_convert (niter_type, iv->base),
+ fold_convert (niter_type, final));
+ }
+ else
+ {
+ s = fold_convert (niter_type, iv->step);
+ c = fold_build2 (MINUS_EXPR, niter_type,
+ fold_convert (niter_type, final),
+ fold_convert (niter_type, iv->base));
+ }
+
+ /* First the trivial cases -- when the step is 1. */
+ if (integer_onep (s))
+ {
+ niter->niter = c;
+ return true;
+ }
+
+ /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
+ is infinite. Otherwise, the number of iterations is
+ (inverse(s/d) * (c/d)) mod (size of mode/d). */
+ bits = num_ending_zeros (s);
+ bound = build_low_bits_mask (niter_type,
+ (TYPE_PRECISION (niter_type)
+ - tree_low_cst (bits, 1)));
+
+ d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
+ build_int_cst (niter_type, 1), bits);
+ s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
+
+ if (!never_infinite)
+ {
+ /* If we cannot assume that the loop is not infinite, record the
+ assumptions for divisibility of c. */
+ assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
+ assumption = fold_build2 (EQ_EXPR, boolean_type_node,
+ assumption, build_int_cst (niter_type, 0));
+ if (!nonzero_p (assumption))
+ niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ niter->assumptions, assumption);
+ }
+
+ c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
+ tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
+ niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
+ return true;
+}
+
+/* Checks whether we can determine the final value of the control variable
+ of the loop with ending condition IV0 < IV1 (computed in TYPE).
+ DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
+ of the step. The assumptions necessary to ensure that the computation
+ of the final value does not overflow are recorded in NITER. If we
+ find the final value, we adjust DELTA and return TRUE. Otherwise
+ we return false. */
+
+static bool
+number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
+ struct tree_niter_desc *niter,
+ tree *delta, tree step)
+{
+ tree niter_type = TREE_TYPE (step);
+ tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
+ tree tmod;
+ tree assumption = boolean_true_node, bound, noloop;
+
+ if (TREE_CODE (mod) != INTEGER_CST)
+ return false;
+ if (nonzero_p (mod))
+ mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
+ tmod = fold_convert (type, mod);
+
+ if (nonzero_p (iv0->step))
+ {
+ /* The final value of the iv is iv1->base + MOD, assuming that this
+ computation does not overflow, and that
+ iv0->base <= iv1->base + MOD. */
+ if (!iv1->no_overflow && !zero_p (mod))
+ {
+ bound = fold_build2 (MINUS_EXPR, type,
+ TYPE_MAX_VALUE (type), tmod);
+ assumption = fold_build2 (LE_EXPR, boolean_type_node,
+ iv1->base, bound);
+ if (zero_p (assumption))
+ return false;
+ }
+ noloop = fold_build2 (GT_EXPR, boolean_type_node,
+ iv0->base,
+ fold_build2 (PLUS_EXPR, type,
+ iv1->base, tmod));
+ }
+ else
+ {
+ /* The final value of the iv is iv0->base - MOD, assuming that this
+ computation does not overflow, and that
+ iv0->base - MOD <= iv1->base. */
+ if (!iv0->no_overflow && !zero_p (mod))
+ {
+ bound = fold_build2 (PLUS_EXPR, type,
+ TYPE_MIN_VALUE (type), tmod);
+ assumption = fold_build2 (GE_EXPR, boolean_type_node,
+ iv0->base, bound);
+ if (zero_p (assumption))
+ return false;
+ }
+ noloop = fold_build2 (GT_EXPR, boolean_type_node,
+ fold_build2 (MINUS_EXPR, type,
+ iv0->base, tmod),
+ iv1->base);
+ }
+
+ if (!nonzero_p (assumption))
+ niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ niter->assumptions,
+ assumption);
+ if (!zero_p (noloop))
+ niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
+ niter->may_be_zero,
+ noloop);
+ *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
+ return true;
+}
+
+/* Add assertions to NITER that ensure that the control variable of the loop
+ with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
+ are TYPE. Returns false if we can prove that there is an overflow, true
+ otherwise. STEP is the absolute value of the step. */
+
+static bool
+assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
+ struct tree_niter_desc *niter, tree step)
+{
+ tree bound, d, assumption, diff;
+ tree niter_type = TREE_TYPE (step);
+
+ if (nonzero_p (iv0->step))
+ {
+ /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
+ if (iv0->no_overflow)
+ return true;
+
+ /* If iv0->base is a constant, we can determine the last value before
+ overflow precisely; otherwise we conservatively assume
+ MAX - STEP + 1. */
+
+ if (TREE_CODE (iv0->base) == INTEGER_CST)
+ {
+ d = fold_build2 (MINUS_EXPR, niter_type,
+ fold_convert (niter_type, TYPE_MAX_VALUE (type)),
+ fold_convert (niter_type, iv0->base));
+ diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
+ }
+ else
+ diff = fold_build2 (MINUS_EXPR, niter_type, step,
+ build_int_cst (niter_type, 1));
+ bound = fold_build2 (MINUS_EXPR, type,
+ TYPE_MAX_VALUE (type), fold_convert (type, diff));
+ assumption = fold_build2 (LE_EXPR, boolean_type_node,
+ iv1->base, bound);
+ }
+ else
+ {
+ /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
+ if (iv1->no_overflow)
+ return true;
+
+ if (TREE_CODE (iv1->base) == INTEGER_CST)
+ {
+ d = fold_build2 (MINUS_EXPR, niter_type,
+ fold_convert (niter_type, iv1->base),
+ fold_convert (niter_type, TYPE_MIN_VALUE (type)));
+ diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
+ }
+ else
+ diff = fold_build2 (MINUS_EXPR, niter_type, step,
+ build_int_cst (niter_type, 1));
+ bound = fold_build2 (PLUS_EXPR, type,
+ TYPE_MIN_VALUE (type), fold_convert (type, diff));
+ assumption = fold_build2 (GE_EXPR, boolean_type_node,
+ iv0->base, bound);
+ }
+
+ if (zero_p (assumption))
+ return false;
+ if (!nonzero_p (assumption))
+ niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ niter->assumptions, assumption);
+
+ iv0->no_overflow = true;
+ iv1->no_overflow = true;
+ return true;
+}
+
+/* Add an assumption to NITER that a loop whose ending condition
+ is IV0 < IV1 rolls. TYPE is the type of the control iv. */
+
+static void
+assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
+ struct tree_niter_desc *niter)
+{
+ tree assumption = boolean_true_node, bound, diff;
+ tree mbz, mbzl, mbzr;
+
+ if (nonzero_p (iv0->step))
+ {
+ diff = fold_build2 (MINUS_EXPR, type,
+ iv0->step, build_int_cst (type, 1));
+
+ /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
+ 0 address never belongs to any object, we can assume this for
+ pointers. */
+ if (!POINTER_TYPE_P (type))
+ {
+ bound = fold_build2 (PLUS_EXPR, type,
+ TYPE_MIN_VALUE (type), diff);
+ assumption = fold_build2 (GE_EXPR, boolean_type_node,
+ iv0->base, bound);
+ }
+
+ /* And then we can compute iv0->base - diff, and compare it with
+ iv1->base. */
+ mbzl = fold_build2 (MINUS_EXPR, type, iv0->base, diff);
+ mbzr = iv1->base;
+ }
+ else
+ {
+ diff = fold_build2 (PLUS_EXPR, type,
+ iv1->step, build_int_cst (type, 1));
+
+ if (!POINTER_TYPE_P (type))
+ {
+ bound = fold_build2 (PLUS_EXPR, type,
+ TYPE_MAX_VALUE (type), diff);
+ assumption = fold_build2 (LE_EXPR, boolean_type_node,
+ iv1->base, bound);
+ }
+
+ mbzl = iv0->base;
+ mbzr = fold_build2 (MINUS_EXPR, type, iv1->base, diff);
+ }
+
+ mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
+
+ if (!nonzero_p (assumption))
+ niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ niter->assumptions, assumption);
+ if (!zero_p (mbz))
+ niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
+ niter->may_be_zero, mbz);
+}
+
+/* Determines number of iterations of loop whose ending condition
+ is IV0 < IV1. TYPE is the type of the iv. The number of
+ iterations is stored to NITER. */
+
+static bool
+number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
+ struct tree_niter_desc *niter,
+ bool never_infinite ATTRIBUTE_UNUSED)
+{
+ tree niter_type = unsigned_type_for (type);
+ tree delta, step, s;
+
+ if (nonzero_p (iv0->step))
+ {
+ niter->control = *iv0;
+ niter->cmp = LT_EXPR;
+ niter->bound = iv1->base;
+ }
+ else
+ {
+ niter->control = *iv1;
+ niter->cmp = GT_EXPR;
+ niter->bound = iv0->base;
+ }
+
+ delta = fold_build2 (MINUS_EXPR, niter_type,
+ fold_convert (niter_type, iv1->base),
+ fold_convert (niter_type, iv0->base));
+
+ /* First handle the special case that the step is +-1. */
+ if ((iv0->step && integer_onep (iv0->step)
+ && zero_p (iv1->step))
+ || (iv1->step && integer_all_onesp (iv1->step)
+ && zero_p (iv0->step)))
+ {
+ /* for (i = iv0->base; i < iv1->base; i++)
+
+ or
+
+ for (i = iv1->base; i > iv0->base; i--).
+
+ In both cases # of iterations is iv1->base - iv0->base, assuming that
+ iv1->base >= iv0->base. */
+ niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
+ iv1->base, iv0->base);
+ niter->niter = delta;
+ return true;
+ }
+
+ if (nonzero_p (iv0->step))
+ step = fold_convert (niter_type, iv0->step);
+ else
+ step = fold_convert (niter_type,
+ fold_build1 (NEGATE_EXPR, type, iv1->step));
+
+ /* If we can determine the final value of the control iv exactly, we can
+ transform the condition to != comparison. In particular, this will be
+ the case if DELTA is constant. */
+ if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step))
+ {
+ affine_iv zps;
+
+ zps.base = build_int_cst (niter_type, 0);
+ zps.step = step;
+ /* number_of_iterations_lt_to_ne will add assumptions that ensure that
+ zps does not overflow. */
+ zps.no_overflow = true;
+
+ return number_of_iterations_ne (type, &zps, delta, niter, true);
+ }
+
+ /* Make sure that the control iv does not overflow. */
+ if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
+ return false;
+
+ /* We determine the number of iterations as (delta + step - 1) / step. For
+ this to work, we must know that iv1->base >= iv0->base - step + 1,
+ otherwise the loop does not roll. */
+ assert_loop_rolls_lt (type, iv0, iv1, niter);
+
+ s = fold_build2 (MINUS_EXPR, niter_type,
+ step, build_int_cst (niter_type, 1));
+ delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
+ niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
+ return true;
+}
+
+/* Determines number of iterations of loop whose ending condition
+ is IV0 <= IV1. TYPE is the type of the iv. The number of
+ iterations is stored to NITER. NEVER_INFINITE is true if
+ we know that this condition must eventually become false (we derived this
+ earlier, and possibly set NITER->assumptions to make sure this
+ is the case). */
+
+static bool
+number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
+ struct tree_niter_desc *niter, bool never_infinite)
+{
+ tree assumption;
+
+ /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
+ IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
+ value of the type. This we must know anyway, since if it is
+ equal to this value, the loop rolls forever. */
+
+ if (!never_infinite)
+ {
+ if (nonzero_p (iv0->step))
+ assumption = fold_build2 (NE_EXPR, boolean_type_node,
+ iv1->base, TYPE_MAX_VALUE (type));
+ else
+ assumption = fold_build2 (NE_EXPR, boolean_type_node,
+ iv0->base, TYPE_MIN_VALUE (type));
+
+ if (zero_p (assumption))
+ return false;
+ if (!nonzero_p (assumption))
+ niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ niter->assumptions, assumption);
+ }
+
+ if (nonzero_p (iv0->step))
+ iv1->base = fold_build2 (PLUS_EXPR, type,
+ iv1->base, build_int_cst (type, 1));
+ else
+ iv0->base = fold_build2 (MINUS_EXPR, type,
+ iv0->base, build_int_cst (type, 1));
+ return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
+}
+
+/* Determine the number of iterations according to condition (for staying
+ inside loop) which compares two induction variables using comparison
+ operator CODE. The induction variable on left side of the comparison
+ is IV0, the right-hand side is IV1. Both induction variables must have
+ type TYPE, which must be an integer or pointer type. The steps of the
+ ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
+
+ ONLY_EXIT is true if we are sure this is the only way the loop could be
+ exited (including possibly non-returning function calls, exceptions, etc.)
+ -- in this case we can use the information whether the control induction
+ variables can overflow or not in a more efficient way.
+
+ The results (number of iterations and assumptions as described in
+ comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
+ Returns false if it fails to determine number of iterations, true if it
+ was determined (possibly with some assumptions). */
+
+static bool
+number_of_iterations_cond (tree type, affine_iv *iv0, enum tree_code code,
+ affine_iv *iv1, struct tree_niter_desc *niter,
+ bool only_exit)
+{
+ bool never_infinite;
+
+ /* The meaning of these assumptions is this:
+ if !assumptions
+ then the rest of information does not have to be valid
+ if may_be_zero then the loop does not roll, even if
+ niter != 0. */
+ niter->assumptions = boolean_true_node;
+ niter->may_be_zero = boolean_false_node;
+ niter->niter = NULL_TREE;
+ niter->additional_info = boolean_true_node;
+
+ niter->bound = NULL_TREE;
+ niter->cmp = ERROR_MARK;
+
+ /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
+ the control variable is on lhs. */
+ if (code == GE_EXPR || code == GT_EXPR
+ || (code == NE_EXPR && zero_p (iv0->step)))
+ {
+ SWAP (iv0, iv1);
+ code = swap_tree_comparison (code);
+ }
+
+ if (!only_exit)
+ {
+ /* If this is not the only possible exit from the loop, the information
+ that the induction variables cannot overflow as derived from
+ signedness analysis cannot be relied upon. We use them e.g. in the
+ following way: given loop for (i = 0; i <= n; i++), if i is
+ signed, it cannot overflow, thus this loop is equivalent to
+ for (i = 0; i < n + 1; i++); however, if n == MAX, but the loop
+ is exited in some other way before i overflows, this transformation
+ is incorrect (the new loop exits immediately). */
+ iv0->no_overflow = false;
+ iv1->no_overflow = false;
+ }
+
+ if (POINTER_TYPE_P (type))
+ {
+ /* Comparison of pointers is undefined unless both iv0 and iv1 point
+ to the same object. If they do, the control variable cannot wrap
+ (as wrap around the bounds of memory will never return a pointer
+ that would be guaranteed to point to the same object, even if we
+ avoid undefined behavior by casting to size_t and back). The
+ restrictions on pointer arithmetics and comparisons of pointers
+ ensure that using the no-overflow assumptions is correct in this
+ case even if ONLY_EXIT is false. */
+ iv0->no_overflow = true;
+ iv1->no_overflow = true;
+ }
+
+ /* If the control induction variable does not overflow, the loop obviously
+ cannot be infinite. */
+ if (!zero_p (iv0->step) && iv0->no_overflow)
+ never_infinite = true;
+ else if (!zero_p (iv1->step) && iv1->no_overflow)
+ never_infinite = true;
+ else
+ never_infinite = false;
+
+ /* We can handle the case when neither of the sides of the comparison is
+ invariant, provided that the test is NE_EXPR. This rarely occurs in
+ practice, but it is simple enough to manage. */
+ if (!zero_p (iv0->step) && !zero_p (iv1->step))
+ {
+ if (code != NE_EXPR)
+ return false;
+
+ iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
+ iv0->step, iv1->step);
+ iv0->no_overflow = false;
+ iv1->step = NULL_TREE;
+ iv1->no_overflow = true;
+ }
+
+ /* If the result of the comparison is a constant, the loop is weird. More
+ precise handling would be possible, but the situation is not common enough
+ to waste time on it. */
+ if (zero_p (iv0->step) && zero_p (iv1->step))
+ return false;
+
+ /* Ignore loops of while (i-- < 10) type. */
+ if (code != NE_EXPR)
+ {
+ if (iv0->step && tree_int_cst_sign_bit (iv0->step))
+ return false;
+
+ if (!zero_p (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
+ return false;
+ }
+
+ /* If the loop exits immediately, there is nothing to do. */
+ if (zero_p (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
+ {
+ niter->niter = build_int_cst (unsigned_type_for (type), 0);
+ return true;
+ }
+
+ /* OK, now we know we have a senseful loop. Handle several cases, depending
+ on what comparison operator is used. */
+ switch (code)
+ {
+ case NE_EXPR:
+ gcc_assert (zero_p (iv1->step));
+ return number_of_iterations_ne (type, iv0, iv1->base, niter, never_infinite);
+ case LT_EXPR:
+ return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
+ case LE_EXPR:
+ return number_of_iterations_le (type, iv0, iv1, niter, never_infinite);
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Substitute NEW for OLD in EXPR and fold the result. */
+
+static tree
+simplify_replace_tree (tree expr, tree old, tree new)
+{
+ unsigned i, n;
+ tree ret = NULL_TREE, e, se;
+
+ if (!expr)
+ return NULL_TREE;
+
+ if (expr == old
+ || operand_equal_p (expr, old, 0))
+ return unshare_expr (new);
+
+ if (!EXPR_P (expr))
+ return expr;
+
+ n = TREE_CODE_LENGTH (TREE_CODE (expr));
+ for (i = 0; i < n; i++)
+ {
+ e = TREE_OPERAND (expr, i);
+ se = simplify_replace_tree (e, old, new);
+ if (e == se)
+ continue;
+
+ if (!ret)
+ ret = copy_node (expr);
+
+ TREE_OPERAND (ret, i) = se;
+ }
+
+ return (ret ? fold (ret) : expr);
+}
+
+/* Expand definitions of ssa names in EXPR as long as they are simple
+ enough, and return the new expression. */
+
+tree
+expand_simple_operations (tree expr)
+{
+ unsigned i, n;
+ tree ret = NULL_TREE, e, ee, stmt;
+ enum tree_code code;
+
+ if (expr == NULL_TREE)
+ return expr;
+
+ if (is_gimple_min_invariant (expr))
+ return expr;
+
+ code = TREE_CODE (expr);
+ if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
+ {
+ n = TREE_CODE_LENGTH (code);
+ for (i = 0; i < n; i++)
+ {
+ e = TREE_OPERAND (expr, i);
+ ee = expand_simple_operations (e);
+ if (e == ee)
+ continue;
+
+ if (!ret)
+ ret = copy_node (expr);
+
+ TREE_OPERAND (ret, i) = ee;
+ }
+
+ if (!ret)
+ return expr;
+
+ fold_defer_overflow_warnings ();
+ ret = fold (ret);
+ fold_undefer_and_ignore_overflow_warnings ();
+ return ret;
+ }
+
+ if (TREE_CODE (expr) != SSA_NAME)
+ return expr;
+
+ stmt = SSA_NAME_DEF_STMT (expr);
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return expr;
+
+ e = TREE_OPERAND (stmt, 1);
+ if (/* Casts are simple. */
+ TREE_CODE (e) != NOP_EXPR
+ && TREE_CODE (e) != CONVERT_EXPR
+ /* Copies are simple. */
+ && TREE_CODE (e) != SSA_NAME
+ /* Assignments of invariants are simple. */
+ && !is_gimple_min_invariant (e)
+ /* And increments and decrements by a constant are simple. */
+ && !((TREE_CODE (e) == PLUS_EXPR
+ || TREE_CODE (e) == MINUS_EXPR)
+ && is_gimple_min_invariant (TREE_OPERAND (e, 1))))
+ return expr;
+
+ return expand_simple_operations (e);
+}
+
+/* Tries to simplify EXPR using the condition COND. Returns the simplified
+ expression (or EXPR unchanged, if no simplification was possible). */
+
+static tree
+tree_simplify_using_condition_1 (tree cond, tree expr)
+{
+ bool changed;
+ tree e, te, e0, e1, e2, notcond;
+ enum tree_code code = TREE_CODE (expr);
+
+ if (code == INTEGER_CST)
+ return expr;
+
+ if (code == TRUTH_OR_EXPR
+ || code == TRUTH_AND_EXPR
+ || code == COND_EXPR)
+ {
+ changed = false;
+
+ e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
+ if (TREE_OPERAND (expr, 0) != e0)
+ changed = true;
+
+ e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
+ if (TREE_OPERAND (expr, 1) != e1)
+ changed = true;
+
+ if (code == COND_EXPR)
+ {
+ e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
+ if (TREE_OPERAND (expr, 2) != e2)
+ changed = true;
+ }
+ else
+ e2 = NULL_TREE;
+
+ if (changed)
+ {
+ if (code == COND_EXPR)
+ expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
+ else
+ expr = fold_build2 (code, boolean_type_node, e0, e1);
+ }
+
+ return expr;
+ }
+
+ /* In case COND is equality, we may be able to simplify EXPR by copy/constant
+ propagation, and vice versa. Fold does not handle this, since it is
+ considered too expensive. */
+ if (TREE_CODE (cond) == EQ_EXPR)
+ {
+ e0 = TREE_OPERAND (cond, 0);
+ e1 = TREE_OPERAND (cond, 1);
+
+ /* We know that e0 == e1. Check whether we cannot simplify expr
+ using this fact. */
+ e = simplify_replace_tree (expr, e0, e1);
+ if (zero_p (e) || nonzero_p (e))
+ return e;
+
+ e = simplify_replace_tree (expr, e1, e0);
+ if (zero_p (e) || nonzero_p (e))
+ return e;
+ }
+ if (TREE_CODE (expr) == EQ_EXPR)
+ {
+ e0 = TREE_OPERAND (expr, 0);
+ e1 = TREE_OPERAND (expr, 1);
+
+ /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
+ e = simplify_replace_tree (cond, e0, e1);
+ if (zero_p (e))
+ return e;
+ e = simplify_replace_tree (cond, e1, e0);
+ if (zero_p (e))
+ return e;
+ }
+ if (TREE_CODE (expr) == NE_EXPR)
+ {
+ e0 = TREE_OPERAND (expr, 0);
+ e1 = TREE_OPERAND (expr, 1);
+
+ /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
+ e = simplify_replace_tree (cond, e0, e1);
+ if (zero_p (e))
+ return boolean_true_node;
+ e = simplify_replace_tree (cond, e1, e0);
+ if (zero_p (e))
+ return boolean_true_node;
+ }
+
+ te = expand_simple_operations (expr);
+
+ /* Check whether COND ==> EXPR. */
+ notcond = invert_truthvalue (cond);
+ e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
+ if (nonzero_p (e))
+ return e;
+
+ /* Check whether COND ==> not EXPR. */
+ e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
+ if (e && zero_p (e))
+ return e;
+
+ return expr;
+}
+
+/* Tries to simplify EXPR using the condition COND. Returns the simplified
+ expression (or EXPR unchanged, if no simplification was possible).
+ Wrapper around tree_simplify_using_condition_1 that ensures that chains
+ of simple operations in definitions of ssa names in COND are expanded,
+ so that things like casts or incrementing the value of the bound before
+ the loop do not cause us to fail. */
+
+static tree
+tree_simplify_using_condition (tree cond, tree expr)
+{
+ cond = expand_simple_operations (cond);
+
+ return tree_simplify_using_condition_1 (cond, expr);
+}
+
+/* The maximum number of dominator BBs we search for conditions
+ of loop header copies we use for simplifying a conditional
+ expression. */
+#define MAX_DOMINATORS_TO_WALK 8
+
+/* Tries to simplify EXPR using the conditions on entry to LOOP.
+ Record the conditions used for simplification to CONDS_USED.
+ Returns the simplified expression (or EXPR unchanged, if no
+ simplification was possible).*/
+
+static tree
+simplify_using_initial_conditions (struct loop *loop, tree expr,
+ tree *conds_used)
+{
+ edge e;
+ basic_block bb;
+ tree exp, cond;
+ int cnt = 0;
+
+ if (TREE_CODE (expr) == INTEGER_CST)
+ return expr;
+
+ /* Limit walking the dominators to avoid quadraticness in
+ the number of BBs times the number of loops in degenerate
+ cases. */
+ for (bb = loop->header;
+ bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
+ bb = get_immediate_dominator (CDI_DOMINATORS, bb))
+ {
+ if (!single_pred_p (bb))
+ continue;
+ e = single_pred_edge (bb);
+
+ if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
+ continue;
+
+ cond = COND_EXPR_COND (last_stmt (e->src));
+ if (e->flags & EDGE_FALSE_VALUE)
+ cond = invert_truthvalue (cond);
+ exp = tree_simplify_using_condition (cond, expr);
+
+ if (exp != expr)
+ *conds_used = fold_build2 (TRUTH_AND_EXPR,
+ boolean_type_node,
+ *conds_used,
+ cond);
+
+ expr = exp;
+ ++cnt;
+ }
+
+ return expr;
+}
+
+/* Tries to simplify EXPR using the evolutions of the loop invariants
+ in the superloops of LOOP. Returns the simplified expression
+ (or EXPR unchanged, if no simplification was possible). */
+
+static tree
+simplify_using_outer_evolutions (struct loop *loop, tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+ bool changed;
+ tree e, e0, e1, e2;
+
+ if (is_gimple_min_invariant (expr))
+ return expr;
+
+ if (code == TRUTH_OR_EXPR
+ || code == TRUTH_AND_EXPR
+ || code == COND_EXPR)
+ {
+ changed = false;
+
+ e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
+ if (TREE_OPERAND (expr, 0) != e0)
+ changed = true;
+
+ e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
+ if (TREE_OPERAND (expr, 1) != e1)
+ changed = true;
+
+ if (code == COND_EXPR)
+ {
+ e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
+ if (TREE_OPERAND (expr, 2) != e2)
+ changed = true;
+ }
+ else
+ e2 = NULL_TREE;
+
+ if (changed)
+ {
+ if (code == COND_EXPR)
+ expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
+ else
+ expr = fold_build2 (code, boolean_type_node, e0, e1);
+ }
+
+ return expr;
+ }
+
+ e = instantiate_parameters (loop, expr);
+ if (is_gimple_min_invariant (e))
+ return e;
+
+ return expr;
+}
+
+/* Returns true if EXIT is the only possible exit from LOOP. */
+
+static bool
+loop_only_exit_p (struct loop *loop, edge exit)
+{
+ basic_block *body;
+ block_stmt_iterator bsi;
+ unsigned i;
+ tree call;
+
+ if (exit != loop->single_exit)
+ return false;
+
+ body = get_loop_body (loop);
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ for (bsi = bsi_start (body[0]); !bsi_end_p (bsi); bsi_next (&bsi))
+ {
+ call = get_call_expr_in (bsi_stmt (bsi));
+ if (call && TREE_SIDE_EFFECTS (call))
+ {
+ free (body);
+ return false;
+ }
+ }
+ }
+
+ free (body);
+ return true;
+}
+
+/* Stores description of number of iterations of LOOP derived from
+ EXIT (an exit edge of the LOOP) in NITER. Returns true if some
+ useful information could be derived (and fields of NITER has
+ meaning described in comments at struct tree_niter_desc
+ declaration), false otherwise. If WARN is true and
+ -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
+ potentially unsafe assumptions. */
+
+bool
+number_of_iterations_exit (struct loop *loop, edge exit,
+ struct tree_niter_desc *niter,
+ bool warn)
+{
+ tree stmt, cond, type;
+ tree op0, op1;
+ enum tree_code code;
+ affine_iv iv0, iv1;
+
+ if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
+ return false;
+
+ niter->assumptions = boolean_false_node;
+ stmt = last_stmt (exit->src);
+ if (!stmt || TREE_CODE (stmt) != COND_EXPR)
+ return false;
+
+ /* We want the condition for staying inside loop. */
+ cond = COND_EXPR_COND (stmt);
+ if (exit->flags & EDGE_TRUE_VALUE)
+ cond = invert_truthvalue (cond);
+
+ code = TREE_CODE (cond);
+ switch (code)
+ {
+ case GT_EXPR:
+ case GE_EXPR:
+ case NE_EXPR:
+ case LT_EXPR:
+ case LE_EXPR:
+ break;
+
+ default:
+ return false;
+ }
+
+ op0 = TREE_OPERAND (cond, 0);
+ op1 = TREE_OPERAND (cond, 1);
+ type = TREE_TYPE (op0);
+
+ if (TREE_CODE (type) != INTEGER_TYPE
+ && !POINTER_TYPE_P (type))
+ return false;
+
+ if (!simple_iv (loop, stmt, op0, &iv0, false))
+ return false;
+ if (!simple_iv (loop, stmt, op1, &iv1, false))
+ return false;
+
+ /* We don't want to see undefined signed overflow warnings while
+ computing the nmber of iterations. */
+ fold_defer_overflow_warnings ();
+
+ iv0.base = expand_simple_operations (iv0.base);
+ iv1.base = expand_simple_operations (iv1.base);
+ if (!number_of_iterations_cond (type, &iv0, code, &iv1, niter,
+ loop_only_exit_p (loop, exit)))
+ {
+ fold_undefer_and_ignore_overflow_warnings ();
+ return false;
+ }
+
+ if (optimize >= 3)
+ {
+ niter->assumptions = simplify_using_outer_evolutions (loop,
+ niter->assumptions);
+ niter->may_be_zero = simplify_using_outer_evolutions (loop,
+ niter->may_be_zero);
+ niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
+ }
+
+ niter->additional_info = boolean_true_node;
+ niter->assumptions
+ = simplify_using_initial_conditions (loop,
+ niter->assumptions,
+ &niter->additional_info);
+ niter->may_be_zero
+ = simplify_using_initial_conditions (loop,
+ niter->may_be_zero,
+ &niter->additional_info);
+
+ fold_undefer_and_ignore_overflow_warnings ();
+
+ if (integer_onep (niter->assumptions))
+ return true;
+
+ /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
+ But if we can prove that there is overflow or some other source of weird
+ behavior, ignore the loop even with -funsafe-loop-optimizations. */
+ if (integer_zerop (niter->assumptions))
+ return false;
+
+ if (flag_unsafe_loop_optimizations)
+ niter->assumptions = boolean_true_node;
+
+ if (warn)
+ {
+ const char *wording;
+ location_t loc = EXPR_LOCATION (stmt);
+
+ /* We can provide a more specific warning if one of the operator is
+ constant and the other advances by +1 or -1. */
+ if (!zero_p (iv1.step)
+ ? (zero_p (iv0.step)
+ && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
+ : (iv0.step
+ && (integer_onep (iv0.step) || integer_all_onesp (iv0.step))))
+ wording =
+ flag_unsafe_loop_optimizations
+ ? N_("assuming that the loop is not infinite")
+ : N_("cannot optimize possibly infinite loops");
+ else
+ wording =
+ flag_unsafe_loop_optimizations
+ ? N_("assuming that the loop counter does not overflow")
+ : N_("cannot optimize loop, the loop counter may overflow");
+
+ if (LOCATION_LINE (loc) > 0)
+ warning (OPT_Wunsafe_loop_optimizations, "%H%s", &loc, gettext (wording));
+ else
+ warning (OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
+ }
+
+ return flag_unsafe_loop_optimizations;
+}
+
+/* Try to determine the number of iterations of LOOP. If we succeed,
+ expression giving number of iterations is returned and *EXIT is
+ set to the edge from that the information is obtained. Otherwise
+ chrec_dont_know is returned. */
+
+tree
+find_loop_niter (struct loop *loop, edge *exit)
+{
+ unsigned n_exits, i;
+ edge *exits = get_loop_exit_edges (loop, &n_exits);
+ edge ex;
+ tree niter = NULL_TREE, aniter;
+ struct tree_niter_desc desc;
+
+ *exit = NULL;
+ for (i = 0; i < n_exits; i++)
+ {
+ ex = exits[i];
+ if (!just_once_each_iteration_p (loop, ex->src))
+ continue;
+
+ if (!number_of_iterations_exit (loop, ex, &desc, false))
+ continue;
+
+ if (nonzero_p (desc.may_be_zero))
+ {
+ /* We exit in the first iteration through this exit.
+ We won't find anything better. */
+ niter = build_int_cst (unsigned_type_node, 0);
+ *exit = ex;
+ break;
+ }
+
+ if (!zero_p (desc.may_be_zero))
+ continue;
+
+ aniter = desc.niter;
+
+ if (!niter)
+ {
+ /* Nothing recorded yet. */
+ niter = aniter;
+ *exit = ex;
+ continue;
+ }
+
+ /* Prefer constants, the lower the better. */
+ if (TREE_CODE (aniter) != INTEGER_CST)
+ continue;
+
+ if (TREE_CODE (niter) != INTEGER_CST)
+ {
+ niter = aniter;
+ *exit = ex;
+ continue;
+ }
+
+ if (tree_int_cst_lt (aniter, niter))
+ {
+ niter = aniter;
+ *exit = ex;
+ continue;
+ }
+ }
+ free (exits);
+
+ return niter ? niter : chrec_dont_know;
+}
+
+/*
+
+ Analysis of a number of iterations of a loop by a brute-force evaluation.
+
+*/
+
+/* Bound on the number of iterations we try to evaluate. */
+
+#define MAX_ITERATIONS_TO_TRACK \
+ ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
+
+/* Returns the loop phi node of LOOP such that ssa name X is derived from its
+ result by a chain of operations such that all but exactly one of their
+ operands are constants. */
+
+static tree
+chain_of_csts_start (struct loop *loop, tree x)
+{
+ tree stmt = SSA_NAME_DEF_STMT (x);
+ tree use;
+ basic_block bb = bb_for_stmt (stmt);
+
+ if (!bb
+ || !flow_bb_inside_loop_p (loop, bb))
+ return NULL_TREE;
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ {
+ if (bb == loop->header)
+ return stmt;
+
+ return NULL_TREE;
+ }
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return NULL_TREE;
+
+ if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+ return NULL_TREE;
+ if (SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF) == NULL_DEF_OPERAND_P)
+ return NULL_TREE;
+
+ use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
+ if (use == NULL_USE_OPERAND_P)
+ return NULL_TREE;
+
+ return chain_of_csts_start (loop, use);
+}
+
+/* Determines whether the expression X is derived from a result of a phi node
+ in header of LOOP such that
+
+ * the derivation of X consists only from operations with constants
+ * the initial value of the phi node is constant
+ * the value of the phi node in the next iteration can be derived from the
+ value in the current iteration by a chain of operations with constants.
+
+ If such phi node exists, it is returned. If X is a constant, X is returned
+ unchanged. Otherwise NULL_TREE is returned. */
+
+static tree
+get_base_for (struct loop *loop, tree x)
+{
+ tree phi, init, next;
+
+ if (is_gimple_min_invariant (x))
+ return x;
+
+ phi = chain_of_csts_start (loop, x);
+ if (!phi)
+ return NULL_TREE;
+
+ init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
+ next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
+
+ if (TREE_CODE (next) != SSA_NAME)
+ return NULL_TREE;
+
+ if (!is_gimple_min_invariant (init))
+ return NULL_TREE;
+
+ if (chain_of_csts_start (loop, next) != phi)
+ return NULL_TREE;
+
+ return phi;
+}
+
+/* Given an expression X, then
+
+ * if X is NULL_TREE, we return the constant BASE.
+ * otherwise X is a SSA name, whose value in the considered loop is derived
+ by a chain of operations with constant from a result of a phi node in
+ the header of the loop. Then we return value of X when the value of the
+ result of this phi node is given by the constant BASE. */
+
+static tree
+get_val_for (tree x, tree base)
+{
+ tree stmt, nx, val;
+ use_operand_p op;
+ ssa_op_iter iter;
+
+ gcc_assert (is_gimple_min_invariant (base));
+
+ if (!x)
+ return base;
+
+ stmt = SSA_NAME_DEF_STMT (x);
+ if (TREE_CODE (stmt) == PHI_NODE)
+ return base;
+
+ FOR_EACH_SSA_USE_OPERAND (op, stmt, iter, SSA_OP_USE)
+ {
+ nx = USE_FROM_PTR (op);
+ val = get_val_for (nx, base);
+ SET_USE (op, val);
+ val = fold (TREE_OPERAND (stmt, 1));
+ SET_USE (op, nx);
+ /* only iterate loop once. */
+ return val;
+ }
+
+ /* Should never reach here. */
+ gcc_unreachable();
+}
+
+/* Tries to count the number of iterations of LOOP till it exits by EXIT
+ by brute force -- i.e. by determining the value of the operands of the
+ condition at EXIT in first few iterations of the loop (assuming that
+ these values are constant) and determining the first one in that the
+ condition is not satisfied. Returns the constant giving the number
+ of the iterations of LOOP if successful, chrec_dont_know otherwise. */
+
+tree
+loop_niter_by_eval (struct loop *loop, edge exit)
+{
+ tree cond, cnd, acnd;
+ tree op[2], val[2], next[2], aval[2], phi[2];
+ unsigned i, j;
+ enum tree_code cmp;
+
+ cond = last_stmt (exit->src);
+ if (!cond || TREE_CODE (cond) != COND_EXPR)
+ return chrec_dont_know;
+
+ cnd = COND_EXPR_COND (cond);
+ if (exit->flags & EDGE_TRUE_VALUE)
+ cnd = invert_truthvalue (cnd);
+
+ cmp = TREE_CODE (cnd);
+ switch (cmp)
+ {
+ case EQ_EXPR:
+ case NE_EXPR:
+ case GT_EXPR:
+ case GE_EXPR:
+ case LT_EXPR:
+ case LE_EXPR:
+ for (j = 0; j < 2; j++)
+ op[j] = TREE_OPERAND (cnd, j);
+ break;
+
+ default:
+ return chrec_dont_know;
+ }
+
+ for (j = 0; j < 2; j++)
+ {
+ phi[j] = get_base_for (loop, op[j]);
+ if (!phi[j])
+ return chrec_dont_know;
+ }
+
+ for (j = 0; j < 2; j++)
+ {
+ if (TREE_CODE (phi[j]) == PHI_NODE)
+ {
+ val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop));
+ next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop));
+ }
+ else
+ {
+ val[j] = phi[j];
+ next[j] = NULL_TREE;
+ op[j] = NULL_TREE;
+ }
+ }
+
+ /* Don't issue signed overflow warnings. */
+ fold_defer_overflow_warnings ();
+
+ for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
+ {
+ for (j = 0; j < 2; j++)
+ aval[j] = get_val_for (op[j], val[j]);
+
+ acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
+ if (acnd && zero_p (acnd))
+ {
+ fold_undefer_and_ignore_overflow_warnings ();
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Proved that loop %d iterates %d times using brute force.\n",
+ loop->num, i);
+ return build_int_cst (unsigned_type_node, i);
+ }
+
+ for (j = 0; j < 2; j++)
+ {
+ val[j] = get_val_for (next[j], val[j]);
+ if (!is_gimple_min_invariant (val[j]))
+ {
+ fold_undefer_and_ignore_overflow_warnings ();
+ return chrec_dont_know;
+ }
+ }
+ }
+
+ fold_undefer_and_ignore_overflow_warnings ();
+
+ return chrec_dont_know;
+}
+
+/* Finds the exit of the LOOP by that the loop exits after a constant
+ number of iterations and stores the exit edge to *EXIT. The constant
+ giving the number of iterations of LOOP is returned. The number of
+ iterations is determined using loop_niter_by_eval (i.e. by brute force
+ evaluation). If we are unable to find the exit for that loop_niter_by_eval
+ determines the number of iterations, chrec_dont_know is returned. */
+
+tree
+find_loop_niter_by_eval (struct loop *loop, edge *exit)
+{
+ unsigned n_exits, i;
+ edge *exits = get_loop_exit_edges (loop, &n_exits);
+ edge ex;
+ tree niter = NULL_TREE, aniter;
+
+ *exit = NULL;
+ for (i = 0; i < n_exits; i++)
+ {
+ ex = exits[i];
+ if (!just_once_each_iteration_p (loop, ex->src))
+ continue;
+
+ aniter = loop_niter_by_eval (loop, ex);
+ if (chrec_contains_undetermined (aniter))
+ continue;
+
+ if (niter
+ && !tree_int_cst_lt (aniter, niter))
+ continue;
+
+ niter = aniter;
+ *exit = ex;
+ }
+ free (exits);
+
+ return niter ? niter : chrec_dont_know;
+}
+
+/*
+
+ Analysis of upper bounds on number of iterations of a loop.
+
+*/
+
+/* Returns true if we can prove that COND ==> VAL >= 0. */
+
+static bool
+implies_nonnegative_p (tree cond, tree val)
+{
+ tree type = TREE_TYPE (val);
+ tree compare;
+
+ if (tree_expr_nonnegative_p (val))
+ return true;
+
+ if (nonzero_p (cond))
+ return false;
+
+ compare = fold_build2 (GE_EXPR,
+ boolean_type_node, val, build_int_cst (type, 0));
+ compare = tree_simplify_using_condition_1 (cond, compare);
+
+ return nonzero_p (compare);
+}
+
+/* Returns true if we can prove that COND ==> A >= B. */
+
+static bool
+implies_ge_p (tree cond, tree a, tree b)
+{
+ tree compare = fold_build2 (GE_EXPR, boolean_type_node, a, b);
+
+ if (nonzero_p (compare))
+ return true;
+
+ if (nonzero_p (cond))
+ return false;
+
+ compare = tree_simplify_using_condition_1 (cond, compare);
+
+ return nonzero_p (compare);
+}
+
+/* Returns a constant upper bound on the value of expression VAL. VAL
+ is considered to be unsigned. If its type is signed, its value must
+ be nonnegative.
+
+ The condition ADDITIONAL must be satisfied (for example, if VAL is
+ "(unsigned) n" and ADDITIONAL is "n > 0", then we can derive that
+ VAL is at most (unsigned) MAX_INT). */
+
+static double_int
+derive_constant_upper_bound (tree val, tree additional)
+{
+ tree type = TREE_TYPE (val);
+ tree op0, op1, subtype, maxt;
+ double_int bnd, max, mmax, cst;
+
+ if (INTEGRAL_TYPE_P (type))
+ maxt = TYPE_MAX_VALUE (type);
+ else
+ maxt = upper_bound_in_type (type, type);
+
+ max = tree_to_double_int (maxt);
+
+ switch (TREE_CODE (val))
+ {
+ case INTEGER_CST:
+ return tree_to_double_int (val);
+
+ case NOP_EXPR:
+ case CONVERT_EXPR:
+ op0 = TREE_OPERAND (val, 0);
+ subtype = TREE_TYPE (op0);
+ if (!TYPE_UNSIGNED (subtype)
+ /* If TYPE is also signed, the fact that VAL is nonnegative implies
+ that OP0 is nonnegative. */
+ && TYPE_UNSIGNED (type)
+ && !implies_nonnegative_p (additional, op0))
+ {
+ /* If we cannot prove that the casted expression is nonnegative,
+ we cannot establish more useful upper bound than the precision
+ of the type gives us. */
+ return max;
+ }
+
+ /* We now know that op0 is an nonnegative value. Try deriving an upper
+ bound for it. */
+ bnd = derive_constant_upper_bound (op0, additional);
+
+ /* If the bound does not fit in TYPE, max. value of TYPE could be
+ attained. */
+ if (double_int_ucmp (max, bnd) < 0)
+ return max;
+
+ return bnd;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ op0 = TREE_OPERAND (val, 0);
+ op1 = TREE_OPERAND (val, 1);
+
+ if (TREE_CODE (op1) != INTEGER_CST
+ || !implies_nonnegative_p (additional, op0))
+ return max;
+
+ /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
+ choose the most logical way how to treat this constant regardless
+ of the signedness of the type. */
+ cst = tree_to_double_int (op1);
+ cst = double_int_sext (cst, TYPE_PRECISION (type));
+ if (TREE_CODE (val) == PLUS_EXPR)
+ cst = double_int_neg (cst);
+
+ bnd = derive_constant_upper_bound (op0, additional);
+
+ if (double_int_negative_p (cst))
+ {
+ cst = double_int_neg (cst);
+ /* Avoid CST == 0x80000... */
+ if (double_int_negative_p (cst))
+ return max;;
+
+ /* OP0 + CST. We need to check that
+ BND <= MAX (type) - CST. */
+
+ mmax = double_int_add (max, double_int_neg (cst));
+ if (double_int_ucmp (bnd, mmax) > 0)
+ return max;
+
+ return double_int_add (bnd, cst);
+ }
+ else
+ {
+ /* OP0 - CST, where CST >= 0.
+
+ If TYPE is signed, we have already verified that OP0 >= 0, and we
+ know that the result is nonnegative. This implies that
+ VAL <= BND - CST.
+
+ If TYPE is unsigned, we must additionally know that OP0 >= CST,
+ otherwise the operation underflows.
+ */
+
+ /* This should only happen if the type is unsigned; however, for
+ programs that use overflowing signed arithmetics even with
+ -fno-wrapv, this condition may also be true for signed values. */
+ if (double_int_ucmp (bnd, cst) < 0)
+ return max;
+
+ if (TYPE_UNSIGNED (type)
+ && !implies_ge_p (additional,
+ op0, double_int_to_tree (type, cst)))
+ return max;
+
+ bnd = double_int_add (bnd, double_int_neg (cst));
+ }
+
+ return bnd;
+
+ case FLOOR_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ op0 = TREE_OPERAND (val, 0);
+ op1 = TREE_OPERAND (val, 1);
+ if (TREE_CODE (op1) != INTEGER_CST
+ || tree_int_cst_sign_bit (op1))
+ return max;
+
+ bnd = derive_constant_upper_bound (op0, additional);
+ return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
+
+ default:
+ return max;
+ }
+}
+
+/* Records that AT_STMT is executed at most BOUND times in LOOP. The
+ additional condition ADDITIONAL is recorded with the bound. */
+
+void
+record_estimate (struct loop *loop, tree bound, tree additional, tree at_stmt)
+{
+ struct nb_iter_bound *elt = xmalloc (sizeof (struct nb_iter_bound));
+ double_int i_bound = derive_constant_upper_bound (bound, additional);
+ tree c_bound = double_int_to_tree (unsigned_type_for (TREE_TYPE (bound)),
+ i_bound);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Statements after ");
+ print_generic_expr (dump_file, at_stmt, TDF_SLIM);
+ fprintf (dump_file, " are executed at most ");
+ print_generic_expr (dump_file, bound, TDF_SLIM);
+ fprintf (dump_file, " (bounded by ");
+ print_generic_expr (dump_file, c_bound, TDF_SLIM);
+ fprintf (dump_file, ") times in loop %d.\n", loop->num);
+ }
+
+ elt->bound = c_bound;
+ elt->at_stmt = at_stmt;
+ elt->next = loop->bounds;
+ loop->bounds = elt;
+}
+
+/* Initialize LOOP->ESTIMATED_NB_ITERATIONS with the lowest safe
+ approximation of the number of iterations for LOOP. */
+
+static void
+compute_estimated_nb_iterations (struct loop *loop)
+{
+ struct nb_iter_bound *bound;
+
+ for (bound = loop->bounds; bound; bound = bound->next)
+ {
+ if (TREE_CODE (bound->bound) != INTEGER_CST)
+ continue;
+
+ /* Update only when there is no previous estimation, or when the current
+ estimation is smaller. */
+ if (chrec_contains_undetermined (loop->estimated_nb_iterations)
+ || tree_int_cst_lt (bound->bound, loop->estimated_nb_iterations))
+ loop->estimated_nb_iterations = bound->bound;
+ }
+}
+
+/* The following analyzers are extracting informations on the bounds
+ of LOOP from the following undefined behaviors:
+
+ - data references should not access elements over the statically
+ allocated size,
+
+ - signed variables should not overflow when flag_wrapv is not set.
+*/
+
+static void
+infer_loop_bounds_from_undefined (struct loop *loop)
+{
+ unsigned i;
+ basic_block bb, *bbs;
+ block_stmt_iterator bsi;
+
+ bbs = get_loop_body (loop);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ bb = bbs[i];
+
+ /* If BB is not executed in each iteration of the loop, we cannot
+ use the operations in it to infer reliable upper bound on the
+ # of iterations of the loop. */
+ if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
+ continue;
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ {
+ tree stmt = bsi_stmt (bsi);
+
+ switch (TREE_CODE (stmt))
+ {
+ case MODIFY_EXPR:
+ {
+ tree op0 = TREE_OPERAND (stmt, 0);
+ tree op1 = TREE_OPERAND (stmt, 1);
+
+ /* For each array access, analyze its access function
+ and record a bound on the loop iteration domain. */
+ if (TREE_CODE (op1) == ARRAY_REF
+ && !array_ref_contains_indirect_ref (op1))
+ estimate_iters_using_array (stmt, op1);
+
+ if (TREE_CODE (op0) == ARRAY_REF
+ && !array_ref_contains_indirect_ref (op0))
+ estimate_iters_using_array (stmt, op0);
+
+ /* For each signed type variable in LOOP, analyze its
+ scalar evolution and record a bound of the loop
+ based on the type's ranges. */
+ else if (!flag_wrapv && TREE_CODE (op0) == SSA_NAME)
+ {
+ tree init, step, diff, estimation;
+ tree scev = instantiate_parameters
+ (loop, analyze_scalar_evolution (loop, op0));
+ tree type = chrec_type (scev);
+
+ if (chrec_contains_undetermined (scev)
+ || TYPE_OVERFLOW_WRAPS (type))
+ break;
+
+ init = initial_condition_in_loop_num (scev, loop->num);
+ step = evolution_part_in_loop_num (scev, loop->num);
+
+ if (init == NULL_TREE
+ || step == NULL_TREE
+ || TREE_CODE (init) != INTEGER_CST
+ || TREE_CODE (step) != INTEGER_CST
+ || TYPE_MIN_VALUE (type) == NULL_TREE
+ || TYPE_MAX_VALUE (type) == NULL_TREE)
+ break;
+
+ if (integer_nonzerop (step))
+ {
+ tree utype;
+
+ if (tree_int_cst_lt (step, integer_zero_node))
+ diff = fold_build2 (MINUS_EXPR, type, init,
+ TYPE_MIN_VALUE (type));
+ else
+ diff = fold_build2 (MINUS_EXPR, type,
+ TYPE_MAX_VALUE (type), init);
+
+ utype = unsigned_type_for (type);
+ estimation = fold_build2 (CEIL_DIV_EXPR, type, diff,
+ step);
+ record_estimate (loop,
+ fold_convert (utype, estimation),
+ boolean_true_node, stmt);
+ }
+ }
+
+ break;
+ }
+
+ case CALL_EXPR:
+ {
+ tree args;
+
+ for (args = TREE_OPERAND (stmt, 1); args;
+ args = TREE_CHAIN (args))
+ if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF
+ && !array_ref_contains_indirect_ref (TREE_VALUE (args)))
+ estimate_iters_using_array (stmt, TREE_VALUE (args));
+
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+ }
+
+ compute_estimated_nb_iterations (loop);
+ free (bbs);
+}
+
+/* Records estimates on numbers of iterations of LOOP. */
+
+static void
+estimate_numbers_of_iterations_loop (struct loop *loop)
+{
+ edge *exits;
+ tree niter, type;
+ unsigned i, n_exits;
+ struct tree_niter_desc niter_desc;
+
+ /* Give up if we already have tried to compute an estimation. */
+ if (loop->estimated_nb_iterations == chrec_dont_know
+ /* Or when we already have an estimation. */
+ || (loop->estimated_nb_iterations != NULL_TREE
+ && TREE_CODE (loop->estimated_nb_iterations) == INTEGER_CST))
+ return;
+ else
+ loop->estimated_nb_iterations = chrec_dont_know;
+
+ exits = get_loop_exit_edges (loop, &n_exits);
+ for (i = 0; i < n_exits; i++)
+ {
+ if (!number_of_iterations_exit (loop, exits[i], &niter_desc, false))
+ continue;
+
+ niter = niter_desc.niter;
+ type = TREE_TYPE (niter);
+ if (!zero_p (niter_desc.may_be_zero)
+ && !nonzero_p (niter_desc.may_be_zero))
+ niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
+ build_int_cst (type, 0),
+ niter);
+ record_estimate (loop, niter,
+ niter_desc.additional_info,
+ last_stmt (exits[i]->src));
+ }
+ free (exits);
+
+ if (chrec_contains_undetermined (loop->estimated_nb_iterations))
+ infer_loop_bounds_from_undefined (loop);
+}
+
+/* Records estimates on numbers of iterations of LOOPS. */
+
+void
+estimate_numbers_of_iterations (struct loops *loops)
+{
+ unsigned i;
+ struct loop *loop;
+
+ /* We don't want to issue signed overflow warnings while getting
+ loop iteration estimates. */
+ fold_defer_overflow_warnings ();
+
+ for (i = 1; i < loops->num; i++)
+ {
+ loop = loops->parray[i];
+ if (loop)
+ estimate_numbers_of_iterations_loop (loop);
+ }
+
+ fold_undefer_and_ignore_overflow_warnings ();
+}
+
+/* Returns true if statement S1 dominates statement S2. */
+
+static bool
+stmt_dominates_stmt_p (tree s1, tree s2)
+{
+ basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2);
+
+ if (!bb1
+ || s1 == s2)
+ return true;
+
+ if (bb1 == bb2)
+ {
+ block_stmt_iterator bsi;
+
+ for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi))
+ if (bsi_stmt (bsi) == s1)
+ return true;
+
+ return false;
+ }
+
+ return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
+}
+
+/* Returns true when we can prove that the number of executions of
+ STMT in the loop is at most NITER, according to the fact
+ that the statement NITER_BOUND->at_stmt is executed at most
+ NITER_BOUND->bound times. */
+
+static bool
+n_of_executions_at_most (tree stmt,
+ struct nb_iter_bound *niter_bound,
+ tree niter)
+{
+ tree cond;
+ tree bound = niter_bound->bound;
+ tree bound_type = TREE_TYPE (bound);
+ tree nit_type = TREE_TYPE (niter);
+ enum tree_code cmp;
+
+ gcc_assert (TYPE_UNSIGNED (bound_type)
+ && TYPE_UNSIGNED (nit_type)
+ && is_gimple_min_invariant (bound));
+ if (TYPE_PRECISION (nit_type) > TYPE_PRECISION (bound_type))
+ bound = fold_convert (nit_type, bound);
+ else
+ niter = fold_convert (bound_type, niter);
+
+ /* After the statement niter_bound->at_stmt we know that anything is
+ executed at most BOUND times. */
+ if (stmt && stmt_dominates_stmt_p (niter_bound->at_stmt, stmt))
+ cmp = GE_EXPR;
+ /* Before the statement niter_bound->at_stmt we know that anything
+ is executed at most BOUND + 1 times. */
+ else
+ cmp = GT_EXPR;
+
+ cond = fold_binary (cmp, boolean_type_node, niter, bound);
+ return nonzero_p (cond);
+}
+
+/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
+
+bool
+nowrap_type_p (tree type)
+{
+ if (INTEGRAL_TYPE_P (type)
+ && TYPE_OVERFLOW_UNDEFINED (type))
+ return true;
+
+ if (POINTER_TYPE_P (type))
+ return true;
+
+ return false;
+}
+
+/* Return false only when the induction variable BASE + STEP * I is
+ known to not overflow: i.e. when the number of iterations is small
+ enough with respect to the step and initial condition in order to
+ keep the evolution confined in TYPEs bounds. Return true when the
+ iv is known to overflow or when the property is not computable.
+
+ USE_OVERFLOW_SEMANTICS is true if this function should assume that
+ the rules for overflow of the given language apply (e.g., that signed
+ arithmetics in C does not overflow). */
+
+bool
+scev_probably_wraps_p (tree base, tree step,
+ tree at_stmt, struct loop *loop,
+ bool use_overflow_semantics)
+{
+ struct nb_iter_bound *bound;
+ tree delta, step_abs;
+ tree unsigned_type, valid_niter;
+ tree type = TREE_TYPE (step);
+
+ /* FIXME: We really need something like
+ http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
+
+ We used to test for the following situation that frequently appears
+ during address arithmetics:
+
+ D.1621_13 = (long unsigned intD.4) D.1620_12;
+ D.1622_14 = D.1621_13 * 8;
+ D.1623_15 = (doubleD.29 *) D.1622_14;
+
+ And derived that the sequence corresponding to D_14
+ can be proved to not wrap because it is used for computing a
+ memory access; however, this is not really the case -- for example,
+ if D_12 = (unsigned char) [254,+,1], then D_14 has values
+ 2032, 2040, 0, 8, ..., but the code is still legal. */
+
+ if (chrec_contains_undetermined (base)
+ || chrec_contains_undetermined (step)
+ || TREE_CODE (step) != INTEGER_CST)
+ return true;
+
+ if (zero_p (step))
+ return false;
+
+ /* If we can use the fact that signed and pointer arithmetics does not
+ wrap, we are done. */
+ if (use_overflow_semantics && nowrap_type_p (type))
+ return false;
+
+ /* Don't issue signed overflow warnings. */
+ fold_defer_overflow_warnings ();
+
+ /* Otherwise, compute the number of iterations before we reach the
+ bound of the type, and verify that the loop is exited before this
+ occurs. */
+ unsigned_type = unsigned_type_for (type);
+ base = fold_convert (unsigned_type, base);
+
+ if (tree_int_cst_sign_bit (step))
+ {
+ tree extreme = fold_convert (unsigned_type,
+ lower_bound_in_type (type, type));
+ delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
+ step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
+ fold_convert (unsigned_type, step));
+ }
+ else
+ {
+ tree extreme = fold_convert (unsigned_type,
+ upper_bound_in_type (type, type));
+ delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
+ step_abs = fold_convert (unsigned_type, step);
+ }
+
+ valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
+
+ estimate_numbers_of_iterations_loop (loop);
+ for (bound = loop->bounds; bound; bound = bound->next)
+ {
+ if (n_of_executions_at_most (at_stmt, bound, valid_niter))
+ {
+ fold_undefer_and_ignore_overflow_warnings ();
+ return false;
+ }
+ }
+
+ fold_undefer_and_ignore_overflow_warnings ();
+
+ /* At this point we still don't have a proof that the iv does not
+ overflow: give up. */
+ return true;
+}
+
+/* Frees the information on upper bounds on numbers of iterations of LOOP. */
+
+void
+free_numbers_of_iterations_estimates_loop (struct loop *loop)
+{
+ struct nb_iter_bound *bound, *next;
+
+ loop->nb_iterations = NULL;
+ loop->estimated_nb_iterations = NULL;
+ for (bound = loop->bounds; bound; bound = next)
+ {
+ next = bound->next;
+ free (bound);
+ }
+
+ loop->bounds = NULL;
+}
+
+/* Frees the information on upper bounds on numbers of iterations of LOOPS. */
+
+void
+free_numbers_of_iterations_estimates (struct loops *loops)
+{
+ unsigned i;
+ struct loop *loop;
+
+ for (i = 1; i < loops->num; i++)
+ {
+ loop = loops->parray[i];
+ if (loop)
+ free_numbers_of_iterations_estimates_loop (loop);
+ }
+}
+
+/* Substitute value VAL for ssa name NAME inside expressions held
+ at LOOP. */
+
+void
+substitute_in_loop_info (struct loop *loop, tree name, tree val)
+{
+ loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
+ loop->estimated_nb_iterations
+ = simplify_replace_tree (loop->estimated_nb_iterations, name, val);
+}