aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c2125
1 files changed, 0 insertions, 2125 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c b/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c
deleted file mode 100644
index 429622bcf..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-niter.c
+++ /dev/null
@@ -1,2125 +0,0 @@
-/* Functions to determine/estimate number of iterations of a loop.
- Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 2, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "output.h"
-#include "diagnostic.h"
-#include "intl.h"
-#include "tree-flow.h"
-#include "tree-dump.h"
-#include "cfgloop.h"
-#include "tree-pass.h"
-#include "ggc.h"
-#include "tree-chrec.h"
-#include "tree-scalar-evolution.h"
-#include "tree-data-ref.h"
-#include "params.h"
-#include "flags.h"
-#include "toplev.h"
-#include "tree-inline.h"
-
-#define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
-
-
-/*
-
- Analysis of number of iterations of an affine exit test.
-
-*/
-
-/* Returns true if ARG is either NULL_TREE or constant zero. Unlike
- integer_zerop, it does not care about overflow flags. */
-
-bool
-zero_p (tree arg)
-{
- if (!arg)
- return true;
-
- if (TREE_CODE (arg) != INTEGER_CST)
- return false;
-
- return (TREE_INT_CST_LOW (arg) == 0 && TREE_INT_CST_HIGH (arg) == 0);
-}
-
-/* Returns true if ARG a nonzero constant. Unlike integer_nonzerop, it does
- not care about overflow flags. */
-
-static bool
-nonzero_p (tree arg)
-{
- if (!arg)
- return false;
-
- if (TREE_CODE (arg) != INTEGER_CST)
- return false;
-
- return (TREE_INT_CST_LOW (arg) != 0 || TREE_INT_CST_HIGH (arg) != 0);
-}
-
-/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
-
-static tree
-inverse (tree x, tree mask)
-{
- tree type = TREE_TYPE (x);
- tree rslt;
- unsigned ctr = tree_floor_log2 (mask);
-
- if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
- {
- unsigned HOST_WIDE_INT ix;
- unsigned HOST_WIDE_INT imask;
- unsigned HOST_WIDE_INT irslt = 1;
-
- gcc_assert (cst_and_fits_in_hwi (x));
- gcc_assert (cst_and_fits_in_hwi (mask));
-
- ix = int_cst_value (x);
- imask = int_cst_value (mask);
-
- for (; ctr; ctr--)
- {
- irslt *= ix;
- ix *= ix;
- }
- irslt &= imask;
-
- rslt = build_int_cst_type (type, irslt);
- }
- else
- {
- rslt = build_int_cst (type, 1);
- for (; ctr; ctr--)
- {
- rslt = int_const_binop (MULT_EXPR, rslt, x, 0);
- x = int_const_binop (MULT_EXPR, x, x, 0);
- }
- rslt = int_const_binop (BIT_AND_EXPR, rslt, mask, 0);
- }
-
- return rslt;
-}
-
-/* Determines number of iterations of loop whose ending condition
- is IV <> FINAL. TYPE is the type of the iv. The number of
- iterations is stored to NITER. NEVER_INFINITE is true if
- we know that the exit must be taken eventually, i.e., that the IV
- ever reaches the value FINAL (we derived this earlier, and possibly set
- NITER->assumptions to make sure this is the case). */
-
-static bool
-number_of_iterations_ne (tree type, affine_iv *iv, tree final,
- struct tree_niter_desc *niter, bool never_infinite)
-{
- tree niter_type = unsigned_type_for (type);
- tree s, c, d, bits, assumption, tmp, bound;
-
- niter->control = *iv;
- niter->bound = final;
- niter->cmp = NE_EXPR;
-
- /* Rearrange the terms so that we get inequality s * i <> c, with s
- positive. Also cast everything to the unsigned type. */
- if (tree_int_cst_sign_bit (iv->step))
- {
- s = fold_convert (niter_type,
- fold_build1 (NEGATE_EXPR, type, iv->step));
- c = fold_build2 (MINUS_EXPR, niter_type,
- fold_convert (niter_type, iv->base),
- fold_convert (niter_type, final));
- }
- else
- {
- s = fold_convert (niter_type, iv->step);
- c = fold_build2 (MINUS_EXPR, niter_type,
- fold_convert (niter_type, final),
- fold_convert (niter_type, iv->base));
- }
-
- /* First the trivial cases -- when the step is 1. */
- if (integer_onep (s))
- {
- niter->niter = c;
- return true;
- }
-
- /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
- is infinite. Otherwise, the number of iterations is
- (inverse(s/d) * (c/d)) mod (size of mode/d). */
- bits = num_ending_zeros (s);
- bound = build_low_bits_mask (niter_type,
- (TYPE_PRECISION (niter_type)
- - tree_low_cst (bits, 1)));
-
- d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
- build_int_cst (niter_type, 1), bits);
- s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
-
- if (!never_infinite)
- {
- /* If we cannot assume that the loop is not infinite, record the
- assumptions for divisibility of c. */
- assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
- assumption = fold_build2 (EQ_EXPR, boolean_type_node,
- assumption, build_int_cst (niter_type, 0));
- if (!nonzero_p (assumption))
- niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- niter->assumptions, assumption);
- }
-
- c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
- tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
- niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
- return true;
-}
-
-/* Checks whether we can determine the final value of the control variable
- of the loop with ending condition IV0 < IV1 (computed in TYPE).
- DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
- of the step. The assumptions necessary to ensure that the computation
- of the final value does not overflow are recorded in NITER. If we
- find the final value, we adjust DELTA and return TRUE. Otherwise
- we return false. */
-
-static bool
-number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
- struct tree_niter_desc *niter,
- tree *delta, tree step)
-{
- tree niter_type = TREE_TYPE (step);
- tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
- tree tmod;
- tree assumption = boolean_true_node, bound, noloop;
-
- if (TREE_CODE (mod) != INTEGER_CST)
- return false;
- if (nonzero_p (mod))
- mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
- tmod = fold_convert (type, mod);
-
- if (nonzero_p (iv0->step))
- {
- /* The final value of the iv is iv1->base + MOD, assuming that this
- computation does not overflow, and that
- iv0->base <= iv1->base + MOD. */
- if (!iv1->no_overflow && !zero_p (mod))
- {
- bound = fold_build2 (MINUS_EXPR, type,
- TYPE_MAX_VALUE (type), tmod);
- assumption = fold_build2 (LE_EXPR, boolean_type_node,
- iv1->base, bound);
- if (zero_p (assumption))
- return false;
- }
- noloop = fold_build2 (GT_EXPR, boolean_type_node,
- iv0->base,
- fold_build2 (PLUS_EXPR, type,
- iv1->base, tmod));
- }
- else
- {
- /* The final value of the iv is iv0->base - MOD, assuming that this
- computation does not overflow, and that
- iv0->base - MOD <= iv1->base. */
- if (!iv0->no_overflow && !zero_p (mod))
- {
- bound = fold_build2 (PLUS_EXPR, type,
- TYPE_MIN_VALUE (type), tmod);
- assumption = fold_build2 (GE_EXPR, boolean_type_node,
- iv0->base, bound);
- if (zero_p (assumption))
- return false;
- }
- noloop = fold_build2 (GT_EXPR, boolean_type_node,
- fold_build2 (MINUS_EXPR, type,
- iv0->base, tmod),
- iv1->base);
- }
-
- if (!nonzero_p (assumption))
- niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- niter->assumptions,
- assumption);
- if (!zero_p (noloop))
- niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
- niter->may_be_zero,
- noloop);
- *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
- return true;
-}
-
-/* Add assertions to NITER that ensure that the control variable of the loop
- with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
- are TYPE. Returns false if we can prove that there is an overflow, true
- otherwise. STEP is the absolute value of the step. */
-
-static bool
-assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
- struct tree_niter_desc *niter, tree step)
-{
- tree bound, d, assumption, diff;
- tree niter_type = TREE_TYPE (step);
-
- if (nonzero_p (iv0->step))
- {
- /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
- if (iv0->no_overflow)
- return true;
-
- /* If iv0->base is a constant, we can determine the last value before
- overflow precisely; otherwise we conservatively assume
- MAX - STEP + 1. */
-
- if (TREE_CODE (iv0->base) == INTEGER_CST)
- {
- d = fold_build2 (MINUS_EXPR, niter_type,
- fold_convert (niter_type, TYPE_MAX_VALUE (type)),
- fold_convert (niter_type, iv0->base));
- diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
- }
- else
- diff = fold_build2 (MINUS_EXPR, niter_type, step,
- build_int_cst (niter_type, 1));
- bound = fold_build2 (MINUS_EXPR, type,
- TYPE_MAX_VALUE (type), fold_convert (type, diff));
- assumption = fold_build2 (LE_EXPR, boolean_type_node,
- iv1->base, bound);
- }
- else
- {
- /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
- if (iv1->no_overflow)
- return true;
-
- if (TREE_CODE (iv1->base) == INTEGER_CST)
- {
- d = fold_build2 (MINUS_EXPR, niter_type,
- fold_convert (niter_type, iv1->base),
- fold_convert (niter_type, TYPE_MIN_VALUE (type)));
- diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
- }
- else
- diff = fold_build2 (MINUS_EXPR, niter_type, step,
- build_int_cst (niter_type, 1));
- bound = fold_build2 (PLUS_EXPR, type,
- TYPE_MIN_VALUE (type), fold_convert (type, diff));
- assumption = fold_build2 (GE_EXPR, boolean_type_node,
- iv0->base, bound);
- }
-
- if (zero_p (assumption))
- return false;
- if (!nonzero_p (assumption))
- niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- niter->assumptions, assumption);
-
- iv0->no_overflow = true;
- iv1->no_overflow = true;
- return true;
-}
-
-/* Add an assumption to NITER that a loop whose ending condition
- is IV0 < IV1 rolls. TYPE is the type of the control iv. */
-
-static void
-assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
- struct tree_niter_desc *niter)
-{
- tree assumption = boolean_true_node, bound, diff;
- tree mbz, mbzl, mbzr;
-
- if (nonzero_p (iv0->step))
- {
- diff = fold_build2 (MINUS_EXPR, type,
- iv0->step, build_int_cst (type, 1));
-
- /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
- 0 address never belongs to any object, we can assume this for
- pointers. */
- if (!POINTER_TYPE_P (type))
- {
- bound = fold_build2 (PLUS_EXPR, type,
- TYPE_MIN_VALUE (type), diff);
- assumption = fold_build2 (GE_EXPR, boolean_type_node,
- iv0->base, bound);
- }
-
- /* And then we can compute iv0->base - diff, and compare it with
- iv1->base. */
- mbzl = fold_build2 (MINUS_EXPR, type, iv0->base, diff);
- mbzr = iv1->base;
- }
- else
- {
- diff = fold_build2 (PLUS_EXPR, type,
- iv1->step, build_int_cst (type, 1));
-
- if (!POINTER_TYPE_P (type))
- {
- bound = fold_build2 (PLUS_EXPR, type,
- TYPE_MAX_VALUE (type), diff);
- assumption = fold_build2 (LE_EXPR, boolean_type_node,
- iv1->base, bound);
- }
-
- mbzl = iv0->base;
- mbzr = fold_build2 (MINUS_EXPR, type, iv1->base, diff);
- }
-
- mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
-
- if (!nonzero_p (assumption))
- niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- niter->assumptions, assumption);
- if (!zero_p (mbz))
- niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
- niter->may_be_zero, mbz);
-}
-
-/* Determines number of iterations of loop whose ending condition
- is IV0 < IV1. TYPE is the type of the iv. The number of
- iterations is stored to NITER. */
-
-static bool
-number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
- struct tree_niter_desc *niter,
- bool never_infinite ATTRIBUTE_UNUSED)
-{
- tree niter_type = unsigned_type_for (type);
- tree delta, step, s;
-
- if (nonzero_p (iv0->step))
- {
- niter->control = *iv0;
- niter->cmp = LT_EXPR;
- niter->bound = iv1->base;
- }
- else
- {
- niter->control = *iv1;
- niter->cmp = GT_EXPR;
- niter->bound = iv0->base;
- }
-
- delta = fold_build2 (MINUS_EXPR, niter_type,
- fold_convert (niter_type, iv1->base),
- fold_convert (niter_type, iv0->base));
-
- /* First handle the special case that the step is +-1. */
- if ((iv0->step && integer_onep (iv0->step)
- && zero_p (iv1->step))
- || (iv1->step && integer_all_onesp (iv1->step)
- && zero_p (iv0->step)))
- {
- /* for (i = iv0->base; i < iv1->base; i++)
-
- or
-
- for (i = iv1->base; i > iv0->base; i--).
-
- In both cases # of iterations is iv1->base - iv0->base, assuming that
- iv1->base >= iv0->base. */
- niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
- iv1->base, iv0->base);
- niter->niter = delta;
- return true;
- }
-
- if (nonzero_p (iv0->step))
- step = fold_convert (niter_type, iv0->step);
- else
- step = fold_convert (niter_type,
- fold_build1 (NEGATE_EXPR, type, iv1->step));
-
- /* If we can determine the final value of the control iv exactly, we can
- transform the condition to != comparison. In particular, this will be
- the case if DELTA is constant. */
- if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step))
- {
- affine_iv zps;
-
- zps.base = build_int_cst (niter_type, 0);
- zps.step = step;
- /* number_of_iterations_lt_to_ne will add assumptions that ensure that
- zps does not overflow. */
- zps.no_overflow = true;
-
- return number_of_iterations_ne (type, &zps, delta, niter, true);
- }
-
- /* Make sure that the control iv does not overflow. */
- if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
- return false;
-
- /* We determine the number of iterations as (delta + step - 1) / step. For
- this to work, we must know that iv1->base >= iv0->base - step + 1,
- otherwise the loop does not roll. */
- assert_loop_rolls_lt (type, iv0, iv1, niter);
-
- s = fold_build2 (MINUS_EXPR, niter_type,
- step, build_int_cst (niter_type, 1));
- delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
- niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
- return true;
-}
-
-/* Determines number of iterations of loop whose ending condition
- is IV0 <= IV1. TYPE is the type of the iv. The number of
- iterations is stored to NITER. NEVER_INFINITE is true if
- we know that this condition must eventually become false (we derived this
- earlier, and possibly set NITER->assumptions to make sure this
- is the case). */
-
-static bool
-number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
- struct tree_niter_desc *niter, bool never_infinite)
-{
- tree assumption;
-
- /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
- IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
- value of the type. This we must know anyway, since if it is
- equal to this value, the loop rolls forever. */
-
- if (!never_infinite)
- {
- if (nonzero_p (iv0->step))
- assumption = fold_build2 (NE_EXPR, boolean_type_node,
- iv1->base, TYPE_MAX_VALUE (type));
- else
- assumption = fold_build2 (NE_EXPR, boolean_type_node,
- iv0->base, TYPE_MIN_VALUE (type));
-
- if (zero_p (assumption))
- return false;
- if (!nonzero_p (assumption))
- niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- niter->assumptions, assumption);
- }
-
- if (nonzero_p (iv0->step))
- iv1->base = fold_build2 (PLUS_EXPR, type,
- iv1->base, build_int_cst (type, 1));
- else
- iv0->base = fold_build2 (MINUS_EXPR, type,
- iv0->base, build_int_cst (type, 1));
- return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
-}
-
-/* Determine the number of iterations according to condition (for staying
- inside loop) which compares two induction variables using comparison
- operator CODE. The induction variable on left side of the comparison
- is IV0, the right-hand side is IV1. Both induction variables must have
- type TYPE, which must be an integer or pointer type. The steps of the
- ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
-
- ONLY_EXIT is true if we are sure this is the only way the loop could be
- exited (including possibly non-returning function calls, exceptions, etc.)
- -- in this case we can use the information whether the control induction
- variables can overflow or not in a more efficient way.
-
- The results (number of iterations and assumptions as described in
- comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
- Returns false if it fails to determine number of iterations, true if it
- was determined (possibly with some assumptions). */
-
-static bool
-number_of_iterations_cond (tree type, affine_iv *iv0, enum tree_code code,
- affine_iv *iv1, struct tree_niter_desc *niter,
- bool only_exit)
-{
- bool never_infinite;
-
- /* The meaning of these assumptions is this:
- if !assumptions
- then the rest of information does not have to be valid
- if may_be_zero then the loop does not roll, even if
- niter != 0. */
- niter->assumptions = boolean_true_node;
- niter->may_be_zero = boolean_false_node;
- niter->niter = NULL_TREE;
- niter->additional_info = boolean_true_node;
-
- niter->bound = NULL_TREE;
- niter->cmp = ERROR_MARK;
-
- /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
- the control variable is on lhs. */
- if (code == GE_EXPR || code == GT_EXPR
- || (code == NE_EXPR && zero_p (iv0->step)))
- {
- SWAP (iv0, iv1);
- code = swap_tree_comparison (code);
- }
-
- if (!only_exit)
- {
- /* If this is not the only possible exit from the loop, the information
- that the induction variables cannot overflow as derived from
- signedness analysis cannot be relied upon. We use them e.g. in the
- following way: given loop for (i = 0; i <= n; i++), if i is
- signed, it cannot overflow, thus this loop is equivalent to
- for (i = 0; i < n + 1; i++); however, if n == MAX, but the loop
- is exited in some other way before i overflows, this transformation
- is incorrect (the new loop exits immediately). */
- iv0->no_overflow = false;
- iv1->no_overflow = false;
- }
-
- if (POINTER_TYPE_P (type))
- {
- /* Comparison of pointers is undefined unless both iv0 and iv1 point
- to the same object. If they do, the control variable cannot wrap
- (as wrap around the bounds of memory will never return a pointer
- that would be guaranteed to point to the same object, even if we
- avoid undefined behavior by casting to size_t and back). The
- restrictions on pointer arithmetics and comparisons of pointers
- ensure that using the no-overflow assumptions is correct in this
- case even if ONLY_EXIT is false. */
- iv0->no_overflow = true;
- iv1->no_overflow = true;
- }
-
- /* If the control induction variable does not overflow, the loop obviously
- cannot be infinite. */
- if (!zero_p (iv0->step) && iv0->no_overflow)
- never_infinite = true;
- else if (!zero_p (iv1->step) && iv1->no_overflow)
- never_infinite = true;
- else
- never_infinite = false;
-
- /* We can handle the case when neither of the sides of the comparison is
- invariant, provided that the test is NE_EXPR. This rarely occurs in
- practice, but it is simple enough to manage. */
- if (!zero_p (iv0->step) && !zero_p (iv1->step))
- {
- if (code != NE_EXPR)
- return false;
-
- iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
- iv0->step, iv1->step);
- iv0->no_overflow = false;
- iv1->step = NULL_TREE;
- iv1->no_overflow = true;
- }
-
- /* If the result of the comparison is a constant, the loop is weird. More
- precise handling would be possible, but the situation is not common enough
- to waste time on it. */
- if (zero_p (iv0->step) && zero_p (iv1->step))
- return false;
-
- /* Ignore loops of while (i-- < 10) type. */
- if (code != NE_EXPR)
- {
- if (iv0->step && tree_int_cst_sign_bit (iv0->step))
- return false;
-
- if (!zero_p (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
- return false;
- }
-
- /* If the loop exits immediately, there is nothing to do. */
- if (zero_p (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
- {
- niter->niter = build_int_cst (unsigned_type_for (type), 0);
- return true;
- }
-
- /* OK, now we know we have a senseful loop. Handle several cases, depending
- on what comparison operator is used. */
- switch (code)
- {
- case NE_EXPR:
- gcc_assert (zero_p (iv1->step));
- return number_of_iterations_ne (type, iv0, iv1->base, niter, never_infinite);
- case LT_EXPR:
- return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
- case LE_EXPR:
- return number_of_iterations_le (type, iv0, iv1, niter, never_infinite);
- default:
- gcc_unreachable ();
- }
-}
-
-/* Substitute NEW for OLD in EXPR and fold the result. */
-
-static tree
-simplify_replace_tree (tree expr, tree old, tree new)
-{
- unsigned i, n;
- tree ret = NULL_TREE, e, se;
-
- if (!expr)
- return NULL_TREE;
-
- if (expr == old
- || operand_equal_p (expr, old, 0))
- return unshare_expr (new);
-
- if (!EXPR_P (expr))
- return expr;
-
- n = TREE_CODE_LENGTH (TREE_CODE (expr));
- for (i = 0; i < n; i++)
- {
- e = TREE_OPERAND (expr, i);
- se = simplify_replace_tree (e, old, new);
- if (e == se)
- continue;
-
- if (!ret)
- ret = copy_node (expr);
-
- TREE_OPERAND (ret, i) = se;
- }
-
- return (ret ? fold (ret) : expr);
-}
-
-/* Expand definitions of ssa names in EXPR as long as they are simple
- enough, and return the new expression. */
-
-tree
-expand_simple_operations (tree expr)
-{
- unsigned i, n;
- tree ret = NULL_TREE, e, ee, stmt;
- enum tree_code code;
-
- if (expr == NULL_TREE)
- return expr;
-
- if (is_gimple_min_invariant (expr))
- return expr;
-
- code = TREE_CODE (expr);
- if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
- {
- n = TREE_CODE_LENGTH (code);
- for (i = 0; i < n; i++)
- {
- e = TREE_OPERAND (expr, i);
- ee = expand_simple_operations (e);
- if (e == ee)
- continue;
-
- if (!ret)
- ret = copy_node (expr);
-
- TREE_OPERAND (ret, i) = ee;
- }
-
- if (!ret)
- return expr;
-
- fold_defer_overflow_warnings ();
- ret = fold (ret);
- fold_undefer_and_ignore_overflow_warnings ();
- return ret;
- }
-
- if (TREE_CODE (expr) != SSA_NAME)
- return expr;
-
- stmt = SSA_NAME_DEF_STMT (expr);
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return expr;
-
- e = TREE_OPERAND (stmt, 1);
- if (/* Casts are simple. */
- TREE_CODE (e) != NOP_EXPR
- && TREE_CODE (e) != CONVERT_EXPR
- /* Copies are simple. */
- && TREE_CODE (e) != SSA_NAME
- /* Assignments of invariants are simple. */
- && !is_gimple_min_invariant (e)
- /* And increments and decrements by a constant are simple. */
- && !((TREE_CODE (e) == PLUS_EXPR
- || TREE_CODE (e) == MINUS_EXPR)
- && is_gimple_min_invariant (TREE_OPERAND (e, 1))))
- return expr;
-
- return expand_simple_operations (e);
-}
-
-/* Tries to simplify EXPR using the condition COND. Returns the simplified
- expression (or EXPR unchanged, if no simplification was possible). */
-
-static tree
-tree_simplify_using_condition_1 (tree cond, tree expr)
-{
- bool changed;
- tree e, te, e0, e1, e2, notcond;
- enum tree_code code = TREE_CODE (expr);
-
- if (code == INTEGER_CST)
- return expr;
-
- if (code == TRUTH_OR_EXPR
- || code == TRUTH_AND_EXPR
- || code == COND_EXPR)
- {
- changed = false;
-
- e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
- if (TREE_OPERAND (expr, 0) != e0)
- changed = true;
-
- e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
- if (TREE_OPERAND (expr, 1) != e1)
- changed = true;
-
- if (code == COND_EXPR)
- {
- e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
- if (TREE_OPERAND (expr, 2) != e2)
- changed = true;
- }
- else
- e2 = NULL_TREE;
-
- if (changed)
- {
- if (code == COND_EXPR)
- expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
- else
- expr = fold_build2 (code, boolean_type_node, e0, e1);
- }
-
- return expr;
- }
-
- /* In case COND is equality, we may be able to simplify EXPR by copy/constant
- propagation, and vice versa. Fold does not handle this, since it is
- considered too expensive. */
- if (TREE_CODE (cond) == EQ_EXPR)
- {
- e0 = TREE_OPERAND (cond, 0);
- e1 = TREE_OPERAND (cond, 1);
-
- /* We know that e0 == e1. Check whether we cannot simplify expr
- using this fact. */
- e = simplify_replace_tree (expr, e0, e1);
- if (zero_p (e) || nonzero_p (e))
- return e;
-
- e = simplify_replace_tree (expr, e1, e0);
- if (zero_p (e) || nonzero_p (e))
- return e;
- }
- if (TREE_CODE (expr) == EQ_EXPR)
- {
- e0 = TREE_OPERAND (expr, 0);
- e1 = TREE_OPERAND (expr, 1);
-
- /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
- e = simplify_replace_tree (cond, e0, e1);
- if (zero_p (e))
- return e;
- e = simplify_replace_tree (cond, e1, e0);
- if (zero_p (e))
- return e;
- }
- if (TREE_CODE (expr) == NE_EXPR)
- {
- e0 = TREE_OPERAND (expr, 0);
- e1 = TREE_OPERAND (expr, 1);
-
- /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
- e = simplify_replace_tree (cond, e0, e1);
- if (zero_p (e))
- return boolean_true_node;
- e = simplify_replace_tree (cond, e1, e0);
- if (zero_p (e))
- return boolean_true_node;
- }
-
- te = expand_simple_operations (expr);
-
- /* Check whether COND ==> EXPR. */
- notcond = invert_truthvalue (cond);
- e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
- if (nonzero_p (e))
- return e;
-
- /* Check whether COND ==> not EXPR. */
- e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
- if (e && zero_p (e))
- return e;
-
- return expr;
-}
-
-/* Tries to simplify EXPR using the condition COND. Returns the simplified
- expression (or EXPR unchanged, if no simplification was possible).
- Wrapper around tree_simplify_using_condition_1 that ensures that chains
- of simple operations in definitions of ssa names in COND are expanded,
- so that things like casts or incrementing the value of the bound before
- the loop do not cause us to fail. */
-
-static tree
-tree_simplify_using_condition (tree cond, tree expr)
-{
- cond = expand_simple_operations (cond);
-
- return tree_simplify_using_condition_1 (cond, expr);
-}
-
-/* The maximum number of dominator BBs we search for conditions
- of loop header copies we use for simplifying a conditional
- expression. */
-#define MAX_DOMINATORS_TO_WALK 8
-
-/* Tries to simplify EXPR using the conditions on entry to LOOP.
- Record the conditions used for simplification to CONDS_USED.
- Returns the simplified expression (or EXPR unchanged, if no
- simplification was possible).*/
-
-static tree
-simplify_using_initial_conditions (struct loop *loop, tree expr,
- tree *conds_used)
-{
- edge e;
- basic_block bb;
- tree exp, cond;
- int cnt = 0;
-
- if (TREE_CODE (expr) == INTEGER_CST)
- return expr;
-
- /* Limit walking the dominators to avoid quadraticness in
- the number of BBs times the number of loops in degenerate
- cases. */
- for (bb = loop->header;
- bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
- bb = get_immediate_dominator (CDI_DOMINATORS, bb))
- {
- if (!single_pred_p (bb))
- continue;
- e = single_pred_edge (bb);
-
- if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
- continue;
-
- cond = COND_EXPR_COND (last_stmt (e->src));
- if (e->flags & EDGE_FALSE_VALUE)
- cond = invert_truthvalue (cond);
- exp = tree_simplify_using_condition (cond, expr);
-
- if (exp != expr)
- *conds_used = fold_build2 (TRUTH_AND_EXPR,
- boolean_type_node,
- *conds_used,
- cond);
-
- expr = exp;
- ++cnt;
- }
-
- return expr;
-}
-
-/* Tries to simplify EXPR using the evolutions of the loop invariants
- in the superloops of LOOP. Returns the simplified expression
- (or EXPR unchanged, if no simplification was possible). */
-
-static tree
-simplify_using_outer_evolutions (struct loop *loop, tree expr)
-{
- enum tree_code code = TREE_CODE (expr);
- bool changed;
- tree e, e0, e1, e2;
-
- if (is_gimple_min_invariant (expr))
- return expr;
-
- if (code == TRUTH_OR_EXPR
- || code == TRUTH_AND_EXPR
- || code == COND_EXPR)
- {
- changed = false;
-
- e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
- if (TREE_OPERAND (expr, 0) != e0)
- changed = true;
-
- e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
- if (TREE_OPERAND (expr, 1) != e1)
- changed = true;
-
- if (code == COND_EXPR)
- {
- e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
- if (TREE_OPERAND (expr, 2) != e2)
- changed = true;
- }
- else
- e2 = NULL_TREE;
-
- if (changed)
- {
- if (code == COND_EXPR)
- expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
- else
- expr = fold_build2 (code, boolean_type_node, e0, e1);
- }
-
- return expr;
- }
-
- e = instantiate_parameters (loop, expr);
- if (is_gimple_min_invariant (e))
- return e;
-
- return expr;
-}
-
-/* Returns true if EXIT is the only possible exit from LOOP. */
-
-static bool
-loop_only_exit_p (struct loop *loop, edge exit)
-{
- basic_block *body;
- block_stmt_iterator bsi;
- unsigned i;
- tree call;
-
- if (exit != loop->single_exit)
- return false;
-
- body = get_loop_body (loop);
- for (i = 0; i < loop->num_nodes; i++)
- {
- for (bsi = bsi_start (body[0]); !bsi_end_p (bsi); bsi_next (&bsi))
- {
- call = get_call_expr_in (bsi_stmt (bsi));
- if (call && TREE_SIDE_EFFECTS (call))
- {
- free (body);
- return false;
- }
- }
- }
-
- free (body);
- return true;
-}
-
-/* Stores description of number of iterations of LOOP derived from
- EXIT (an exit edge of the LOOP) in NITER. Returns true if some
- useful information could be derived (and fields of NITER has
- meaning described in comments at struct tree_niter_desc
- declaration), false otherwise. If WARN is true and
- -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
- potentially unsafe assumptions. */
-
-bool
-number_of_iterations_exit (struct loop *loop, edge exit,
- struct tree_niter_desc *niter,
- bool warn)
-{
- tree stmt, cond, type;
- tree op0, op1;
- enum tree_code code;
- affine_iv iv0, iv1;
-
- if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
- return false;
-
- niter->assumptions = boolean_false_node;
- stmt = last_stmt (exit->src);
- if (!stmt || TREE_CODE (stmt) != COND_EXPR)
- return false;
-
- /* We want the condition for staying inside loop. */
- cond = COND_EXPR_COND (stmt);
- if (exit->flags & EDGE_TRUE_VALUE)
- cond = invert_truthvalue (cond);
-
- code = TREE_CODE (cond);
- switch (code)
- {
- case GT_EXPR:
- case GE_EXPR:
- case NE_EXPR:
- case LT_EXPR:
- case LE_EXPR:
- break;
-
- default:
- return false;
- }
-
- op0 = TREE_OPERAND (cond, 0);
- op1 = TREE_OPERAND (cond, 1);
- type = TREE_TYPE (op0);
-
- if (TREE_CODE (type) != INTEGER_TYPE
- && !POINTER_TYPE_P (type))
- return false;
-
- if (!simple_iv (loop, stmt, op0, &iv0, false))
- return false;
- if (!simple_iv (loop, stmt, op1, &iv1, false))
- return false;
-
- /* We don't want to see undefined signed overflow warnings while
- computing the nmber of iterations. */
- fold_defer_overflow_warnings ();
-
- iv0.base = expand_simple_operations (iv0.base);
- iv1.base = expand_simple_operations (iv1.base);
- if (!number_of_iterations_cond (type, &iv0, code, &iv1, niter,
- loop_only_exit_p (loop, exit)))
- {
- fold_undefer_and_ignore_overflow_warnings ();
- return false;
- }
-
- if (optimize >= 3)
- {
- niter->assumptions = simplify_using_outer_evolutions (loop,
- niter->assumptions);
- niter->may_be_zero = simplify_using_outer_evolutions (loop,
- niter->may_be_zero);
- niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
- }
-
- niter->additional_info = boolean_true_node;
- niter->assumptions
- = simplify_using_initial_conditions (loop,
- niter->assumptions,
- &niter->additional_info);
- niter->may_be_zero
- = simplify_using_initial_conditions (loop,
- niter->may_be_zero,
- &niter->additional_info);
-
- fold_undefer_and_ignore_overflow_warnings ();
-
- if (integer_onep (niter->assumptions))
- return true;
-
- /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
- But if we can prove that there is overflow or some other source of weird
- behavior, ignore the loop even with -funsafe-loop-optimizations. */
- if (integer_zerop (niter->assumptions))
- return false;
-
- if (flag_unsafe_loop_optimizations)
- niter->assumptions = boolean_true_node;
-
- if (warn)
- {
- const char *wording;
- location_t loc = EXPR_LOCATION (stmt);
-
- /* We can provide a more specific warning if one of the operator is
- constant and the other advances by +1 or -1. */
- if (!zero_p (iv1.step)
- ? (zero_p (iv0.step)
- && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
- : (iv0.step
- && (integer_onep (iv0.step) || integer_all_onesp (iv0.step))))
- wording =
- flag_unsafe_loop_optimizations
- ? N_("assuming that the loop is not infinite")
- : N_("cannot optimize possibly infinite loops");
- else
- wording =
- flag_unsafe_loop_optimizations
- ? N_("assuming that the loop counter does not overflow")
- : N_("cannot optimize loop, the loop counter may overflow");
-
- if (LOCATION_LINE (loc) > 0)
- warning (OPT_Wunsafe_loop_optimizations, "%H%s", &loc, gettext (wording));
- else
- warning (OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
- }
-
- return flag_unsafe_loop_optimizations;
-}
-
-/* Try to determine the number of iterations of LOOP. If we succeed,
- expression giving number of iterations is returned and *EXIT is
- set to the edge from that the information is obtained. Otherwise
- chrec_dont_know is returned. */
-
-tree
-find_loop_niter (struct loop *loop, edge *exit)
-{
- unsigned n_exits, i;
- edge *exits = get_loop_exit_edges (loop, &n_exits);
- edge ex;
- tree niter = NULL_TREE, aniter;
- struct tree_niter_desc desc;
-
- *exit = NULL;
- for (i = 0; i < n_exits; i++)
- {
- ex = exits[i];
- if (!just_once_each_iteration_p (loop, ex->src))
- continue;
-
- if (!number_of_iterations_exit (loop, ex, &desc, false))
- continue;
-
- if (nonzero_p (desc.may_be_zero))
- {
- /* We exit in the first iteration through this exit.
- We won't find anything better. */
- niter = build_int_cst (unsigned_type_node, 0);
- *exit = ex;
- break;
- }
-
- if (!zero_p (desc.may_be_zero))
- continue;
-
- aniter = desc.niter;
-
- if (!niter)
- {
- /* Nothing recorded yet. */
- niter = aniter;
- *exit = ex;
- continue;
- }
-
- /* Prefer constants, the lower the better. */
- if (TREE_CODE (aniter) != INTEGER_CST)
- continue;
-
- if (TREE_CODE (niter) != INTEGER_CST)
- {
- niter = aniter;
- *exit = ex;
- continue;
- }
-
- if (tree_int_cst_lt (aniter, niter))
- {
- niter = aniter;
- *exit = ex;
- continue;
- }
- }
- free (exits);
-
- return niter ? niter : chrec_dont_know;
-}
-
-/*
-
- Analysis of a number of iterations of a loop by a brute-force evaluation.
-
-*/
-
-/* Bound on the number of iterations we try to evaluate. */
-
-#define MAX_ITERATIONS_TO_TRACK \
- ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
-
-/* Returns the loop phi node of LOOP such that ssa name X is derived from its
- result by a chain of operations such that all but exactly one of their
- operands are constants. */
-
-static tree
-chain_of_csts_start (struct loop *loop, tree x)
-{
- tree stmt = SSA_NAME_DEF_STMT (x);
- tree use;
- basic_block bb = bb_for_stmt (stmt);
-
- if (!bb
- || !flow_bb_inside_loop_p (loop, bb))
- return NULL_TREE;
-
- if (TREE_CODE (stmt) == PHI_NODE)
- {
- if (bb == loop->header)
- return stmt;
-
- return NULL_TREE;
- }
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return NULL_TREE;
-
- if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
- return NULL_TREE;
- if (SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF) == NULL_DEF_OPERAND_P)
- return NULL_TREE;
-
- use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
- if (use == NULL_USE_OPERAND_P)
- return NULL_TREE;
-
- return chain_of_csts_start (loop, use);
-}
-
-/* Determines whether the expression X is derived from a result of a phi node
- in header of LOOP such that
-
- * the derivation of X consists only from operations with constants
- * the initial value of the phi node is constant
- * the value of the phi node in the next iteration can be derived from the
- value in the current iteration by a chain of operations with constants.
-
- If such phi node exists, it is returned. If X is a constant, X is returned
- unchanged. Otherwise NULL_TREE is returned. */
-
-static tree
-get_base_for (struct loop *loop, tree x)
-{
- tree phi, init, next;
-
- if (is_gimple_min_invariant (x))
- return x;
-
- phi = chain_of_csts_start (loop, x);
- if (!phi)
- return NULL_TREE;
-
- init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
- next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
-
- if (TREE_CODE (next) != SSA_NAME)
- return NULL_TREE;
-
- if (!is_gimple_min_invariant (init))
- return NULL_TREE;
-
- if (chain_of_csts_start (loop, next) != phi)
- return NULL_TREE;
-
- return phi;
-}
-
-/* Given an expression X, then
-
- * if X is NULL_TREE, we return the constant BASE.
- * otherwise X is a SSA name, whose value in the considered loop is derived
- by a chain of operations with constant from a result of a phi node in
- the header of the loop. Then we return value of X when the value of the
- result of this phi node is given by the constant BASE. */
-
-static tree
-get_val_for (tree x, tree base)
-{
- tree stmt, nx, val;
- use_operand_p op;
- ssa_op_iter iter;
-
- gcc_assert (is_gimple_min_invariant (base));
-
- if (!x)
- return base;
-
- stmt = SSA_NAME_DEF_STMT (x);
- if (TREE_CODE (stmt) == PHI_NODE)
- return base;
-
- FOR_EACH_SSA_USE_OPERAND (op, stmt, iter, SSA_OP_USE)
- {
- nx = USE_FROM_PTR (op);
- val = get_val_for (nx, base);
- SET_USE (op, val);
- val = fold (TREE_OPERAND (stmt, 1));
- SET_USE (op, nx);
- /* only iterate loop once. */
- return val;
- }
-
- /* Should never reach here. */
- gcc_unreachable();
-}
-
-/* Tries to count the number of iterations of LOOP till it exits by EXIT
- by brute force -- i.e. by determining the value of the operands of the
- condition at EXIT in first few iterations of the loop (assuming that
- these values are constant) and determining the first one in that the
- condition is not satisfied. Returns the constant giving the number
- of the iterations of LOOP if successful, chrec_dont_know otherwise. */
-
-tree
-loop_niter_by_eval (struct loop *loop, edge exit)
-{
- tree cond, cnd, acnd;
- tree op[2], val[2], next[2], aval[2], phi[2];
- unsigned i, j;
- enum tree_code cmp;
-
- cond = last_stmt (exit->src);
- if (!cond || TREE_CODE (cond) != COND_EXPR)
- return chrec_dont_know;
-
- cnd = COND_EXPR_COND (cond);
- if (exit->flags & EDGE_TRUE_VALUE)
- cnd = invert_truthvalue (cnd);
-
- cmp = TREE_CODE (cnd);
- switch (cmp)
- {
- case EQ_EXPR:
- case NE_EXPR:
- case GT_EXPR:
- case GE_EXPR:
- case LT_EXPR:
- case LE_EXPR:
- for (j = 0; j < 2; j++)
- op[j] = TREE_OPERAND (cnd, j);
- break;
-
- default:
- return chrec_dont_know;
- }
-
- for (j = 0; j < 2; j++)
- {
- phi[j] = get_base_for (loop, op[j]);
- if (!phi[j])
- return chrec_dont_know;
- }
-
- for (j = 0; j < 2; j++)
- {
- if (TREE_CODE (phi[j]) == PHI_NODE)
- {
- val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop));
- next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop));
- }
- else
- {
- val[j] = phi[j];
- next[j] = NULL_TREE;
- op[j] = NULL_TREE;
- }
- }
-
- /* Don't issue signed overflow warnings. */
- fold_defer_overflow_warnings ();
-
- for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
- {
- for (j = 0; j < 2; j++)
- aval[j] = get_val_for (op[j], val[j]);
-
- acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
- if (acnd && zero_p (acnd))
- {
- fold_undefer_and_ignore_overflow_warnings ();
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Proved that loop %d iterates %d times using brute force.\n",
- loop->num, i);
- return build_int_cst (unsigned_type_node, i);
- }
-
- for (j = 0; j < 2; j++)
- {
- val[j] = get_val_for (next[j], val[j]);
- if (!is_gimple_min_invariant (val[j]))
- {
- fold_undefer_and_ignore_overflow_warnings ();
- return chrec_dont_know;
- }
- }
- }
-
- fold_undefer_and_ignore_overflow_warnings ();
-
- return chrec_dont_know;
-}
-
-/* Finds the exit of the LOOP by that the loop exits after a constant
- number of iterations and stores the exit edge to *EXIT. The constant
- giving the number of iterations of LOOP is returned. The number of
- iterations is determined using loop_niter_by_eval (i.e. by brute force
- evaluation). If we are unable to find the exit for that loop_niter_by_eval
- determines the number of iterations, chrec_dont_know is returned. */
-
-tree
-find_loop_niter_by_eval (struct loop *loop, edge *exit)
-{
- unsigned n_exits, i;
- edge *exits = get_loop_exit_edges (loop, &n_exits);
- edge ex;
- tree niter = NULL_TREE, aniter;
-
- *exit = NULL;
- for (i = 0; i < n_exits; i++)
- {
- ex = exits[i];
- if (!just_once_each_iteration_p (loop, ex->src))
- continue;
-
- aniter = loop_niter_by_eval (loop, ex);
- if (chrec_contains_undetermined (aniter))
- continue;
-
- if (niter
- && !tree_int_cst_lt (aniter, niter))
- continue;
-
- niter = aniter;
- *exit = ex;
- }
- free (exits);
-
- return niter ? niter : chrec_dont_know;
-}
-
-/*
-
- Analysis of upper bounds on number of iterations of a loop.
-
-*/
-
-/* Returns true if we can prove that COND ==> VAL >= 0. */
-
-static bool
-implies_nonnegative_p (tree cond, tree val)
-{
- tree type = TREE_TYPE (val);
- tree compare;
-
- if (tree_expr_nonnegative_p (val))
- return true;
-
- if (nonzero_p (cond))
- return false;
-
- compare = fold_build2 (GE_EXPR,
- boolean_type_node, val, build_int_cst (type, 0));
- compare = tree_simplify_using_condition_1 (cond, compare);
-
- return nonzero_p (compare);
-}
-
-/* Returns true if we can prove that COND ==> A >= B. */
-
-static bool
-implies_ge_p (tree cond, tree a, tree b)
-{
- tree compare = fold_build2 (GE_EXPR, boolean_type_node, a, b);
-
- if (nonzero_p (compare))
- return true;
-
- if (nonzero_p (cond))
- return false;
-
- compare = tree_simplify_using_condition_1 (cond, compare);
-
- return nonzero_p (compare);
-}
-
-/* Returns a constant upper bound on the value of expression VAL. VAL
- is considered to be unsigned. If its type is signed, its value must
- be nonnegative.
-
- The condition ADDITIONAL must be satisfied (for example, if VAL is
- "(unsigned) n" and ADDITIONAL is "n > 0", then we can derive that
- VAL is at most (unsigned) MAX_INT). */
-
-static double_int
-derive_constant_upper_bound (tree val, tree additional)
-{
- tree type = TREE_TYPE (val);
- tree op0, op1, subtype, maxt;
- double_int bnd, max, mmax, cst;
-
- if (INTEGRAL_TYPE_P (type))
- maxt = TYPE_MAX_VALUE (type);
- else
- maxt = upper_bound_in_type (type, type);
-
- max = tree_to_double_int (maxt);
-
- switch (TREE_CODE (val))
- {
- case INTEGER_CST:
- return tree_to_double_int (val);
-
- case NOP_EXPR:
- case CONVERT_EXPR:
- op0 = TREE_OPERAND (val, 0);
- subtype = TREE_TYPE (op0);
- if (!TYPE_UNSIGNED (subtype)
- /* If TYPE is also signed, the fact that VAL is nonnegative implies
- that OP0 is nonnegative. */
- && TYPE_UNSIGNED (type)
- && !implies_nonnegative_p (additional, op0))
- {
- /* If we cannot prove that the casted expression is nonnegative,
- we cannot establish more useful upper bound than the precision
- of the type gives us. */
- return max;
- }
-
- /* We now know that op0 is an nonnegative value. Try deriving an upper
- bound for it. */
- bnd = derive_constant_upper_bound (op0, additional);
-
- /* If the bound does not fit in TYPE, max. value of TYPE could be
- attained. */
- if (double_int_ucmp (max, bnd) < 0)
- return max;
-
- return bnd;
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- op0 = TREE_OPERAND (val, 0);
- op1 = TREE_OPERAND (val, 1);
-
- if (TREE_CODE (op1) != INTEGER_CST
- || !implies_nonnegative_p (additional, op0))
- return max;
-
- /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
- choose the most logical way how to treat this constant regardless
- of the signedness of the type. */
- cst = tree_to_double_int (op1);
- cst = double_int_sext (cst, TYPE_PRECISION (type));
- if (TREE_CODE (val) == PLUS_EXPR)
- cst = double_int_neg (cst);
-
- bnd = derive_constant_upper_bound (op0, additional);
-
- if (double_int_negative_p (cst))
- {
- cst = double_int_neg (cst);
- /* Avoid CST == 0x80000... */
- if (double_int_negative_p (cst))
- return max;;
-
- /* OP0 + CST. We need to check that
- BND <= MAX (type) - CST. */
-
- mmax = double_int_add (max, double_int_neg (cst));
- if (double_int_ucmp (bnd, mmax) > 0)
- return max;
-
- return double_int_add (bnd, cst);
- }
- else
- {
- /* OP0 - CST, where CST >= 0.
-
- If TYPE is signed, we have already verified that OP0 >= 0, and we
- know that the result is nonnegative. This implies that
- VAL <= BND - CST.
-
- If TYPE is unsigned, we must additionally know that OP0 >= CST,
- otherwise the operation underflows.
- */
-
- /* This should only happen if the type is unsigned; however, for
- programs that use overflowing signed arithmetics even with
- -fno-wrapv, this condition may also be true for signed values. */
- if (double_int_ucmp (bnd, cst) < 0)
- return max;
-
- if (TYPE_UNSIGNED (type)
- && !implies_ge_p (additional,
- op0, double_int_to_tree (type, cst)))
- return max;
-
- bnd = double_int_add (bnd, double_int_neg (cst));
- }
-
- return bnd;
-
- case FLOOR_DIV_EXPR:
- case EXACT_DIV_EXPR:
- op0 = TREE_OPERAND (val, 0);
- op1 = TREE_OPERAND (val, 1);
- if (TREE_CODE (op1) != INTEGER_CST
- || tree_int_cst_sign_bit (op1))
- return max;
-
- bnd = derive_constant_upper_bound (op0, additional);
- return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
-
- default:
- return max;
- }
-}
-
-/* Records that AT_STMT is executed at most BOUND times in LOOP. The
- additional condition ADDITIONAL is recorded with the bound. */
-
-void
-record_estimate (struct loop *loop, tree bound, tree additional, tree at_stmt)
-{
- struct nb_iter_bound *elt = xmalloc (sizeof (struct nb_iter_bound));
- double_int i_bound = derive_constant_upper_bound (bound, additional);
- tree c_bound = double_int_to_tree (unsigned_type_for (TREE_TYPE (bound)),
- i_bound);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Statements after ");
- print_generic_expr (dump_file, at_stmt, TDF_SLIM);
- fprintf (dump_file, " are executed at most ");
- print_generic_expr (dump_file, bound, TDF_SLIM);
- fprintf (dump_file, " (bounded by ");
- print_generic_expr (dump_file, c_bound, TDF_SLIM);
- fprintf (dump_file, ") times in loop %d.\n", loop->num);
- }
-
- elt->bound = c_bound;
- elt->at_stmt = at_stmt;
- elt->next = loop->bounds;
- loop->bounds = elt;
-}
-
-/* Initialize LOOP->ESTIMATED_NB_ITERATIONS with the lowest safe
- approximation of the number of iterations for LOOP. */
-
-static void
-compute_estimated_nb_iterations (struct loop *loop)
-{
- struct nb_iter_bound *bound;
-
- for (bound = loop->bounds; bound; bound = bound->next)
- {
- if (TREE_CODE (bound->bound) != INTEGER_CST)
- continue;
-
- /* Update only when there is no previous estimation, or when the current
- estimation is smaller. */
- if (chrec_contains_undetermined (loop->estimated_nb_iterations)
- || tree_int_cst_lt (bound->bound, loop->estimated_nb_iterations))
- loop->estimated_nb_iterations = bound->bound;
- }
-}
-
-/* The following analyzers are extracting informations on the bounds
- of LOOP from the following undefined behaviors:
-
- - data references should not access elements over the statically
- allocated size,
-
- - signed variables should not overflow when flag_wrapv is not set.
-*/
-
-static void
-infer_loop_bounds_from_undefined (struct loop *loop)
-{
- unsigned i;
- basic_block bb, *bbs;
- block_stmt_iterator bsi;
-
- bbs = get_loop_body (loop);
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- bb = bbs[i];
-
- /* If BB is not executed in each iteration of the loop, we cannot
- use the operations in it to infer reliable upper bound on the
- # of iterations of the loop. */
- if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
- continue;
-
- for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
- {
- tree stmt = bsi_stmt (bsi);
-
- switch (TREE_CODE (stmt))
- {
- case MODIFY_EXPR:
- {
- tree op0 = TREE_OPERAND (stmt, 0);
- tree op1 = TREE_OPERAND (stmt, 1);
-
- /* For each array access, analyze its access function
- and record a bound on the loop iteration domain. */
- if (TREE_CODE (op1) == ARRAY_REF
- && !array_ref_contains_indirect_ref (op1))
- estimate_iters_using_array (stmt, op1);
-
- if (TREE_CODE (op0) == ARRAY_REF
- && !array_ref_contains_indirect_ref (op0))
- estimate_iters_using_array (stmt, op0);
-
- /* For each signed type variable in LOOP, analyze its
- scalar evolution and record a bound of the loop
- based on the type's ranges. */
- else if (!flag_wrapv && TREE_CODE (op0) == SSA_NAME)
- {
- tree init, step, diff, estimation;
- tree scev = instantiate_parameters
- (loop, analyze_scalar_evolution (loop, op0));
- tree type = chrec_type (scev);
-
- if (chrec_contains_undetermined (scev)
- || TYPE_OVERFLOW_WRAPS (type))
- break;
-
- init = initial_condition_in_loop_num (scev, loop->num);
- step = evolution_part_in_loop_num (scev, loop->num);
-
- if (init == NULL_TREE
- || step == NULL_TREE
- || TREE_CODE (init) != INTEGER_CST
- || TREE_CODE (step) != INTEGER_CST
- || TYPE_MIN_VALUE (type) == NULL_TREE
- || TYPE_MAX_VALUE (type) == NULL_TREE)
- break;
-
- if (integer_nonzerop (step))
- {
- tree utype;
-
- if (tree_int_cst_lt (step, integer_zero_node))
- diff = fold_build2 (MINUS_EXPR, type, init,
- TYPE_MIN_VALUE (type));
- else
- diff = fold_build2 (MINUS_EXPR, type,
- TYPE_MAX_VALUE (type), init);
-
- utype = unsigned_type_for (type);
- estimation = fold_build2 (CEIL_DIV_EXPR, type, diff,
- step);
- record_estimate (loop,
- fold_convert (utype, estimation),
- boolean_true_node, stmt);
- }
- }
-
- break;
- }
-
- case CALL_EXPR:
- {
- tree args;
-
- for (args = TREE_OPERAND (stmt, 1); args;
- args = TREE_CHAIN (args))
- if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF
- && !array_ref_contains_indirect_ref (TREE_VALUE (args)))
- estimate_iters_using_array (stmt, TREE_VALUE (args));
-
- break;
- }
-
- default:
- break;
- }
- }
- }
-
- compute_estimated_nb_iterations (loop);
- free (bbs);
-}
-
-/* Records estimates on numbers of iterations of LOOP. */
-
-static void
-estimate_numbers_of_iterations_loop (struct loop *loop)
-{
- edge *exits;
- tree niter, type;
- unsigned i, n_exits;
- struct tree_niter_desc niter_desc;
-
- /* Give up if we already have tried to compute an estimation. */
- if (loop->estimated_nb_iterations == chrec_dont_know
- /* Or when we already have an estimation. */
- || (loop->estimated_nb_iterations != NULL_TREE
- && TREE_CODE (loop->estimated_nb_iterations) == INTEGER_CST))
- return;
- else
- loop->estimated_nb_iterations = chrec_dont_know;
-
- exits = get_loop_exit_edges (loop, &n_exits);
- for (i = 0; i < n_exits; i++)
- {
- if (!number_of_iterations_exit (loop, exits[i], &niter_desc, false))
- continue;
-
- niter = niter_desc.niter;
- type = TREE_TYPE (niter);
- if (!zero_p (niter_desc.may_be_zero)
- && !nonzero_p (niter_desc.may_be_zero))
- niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
- build_int_cst (type, 0),
- niter);
- record_estimate (loop, niter,
- niter_desc.additional_info,
- last_stmt (exits[i]->src));
- }
- free (exits);
-
- if (chrec_contains_undetermined (loop->estimated_nb_iterations))
- infer_loop_bounds_from_undefined (loop);
-}
-
-/* Records estimates on numbers of iterations of LOOPS. */
-
-void
-estimate_numbers_of_iterations (struct loops *loops)
-{
- unsigned i;
- struct loop *loop;
-
- /* We don't want to issue signed overflow warnings while getting
- loop iteration estimates. */
- fold_defer_overflow_warnings ();
-
- for (i = 1; i < loops->num; i++)
- {
- loop = loops->parray[i];
- if (loop)
- estimate_numbers_of_iterations_loop (loop);
- }
-
- fold_undefer_and_ignore_overflow_warnings ();
-}
-
-/* Returns true if statement S1 dominates statement S2. */
-
-static bool
-stmt_dominates_stmt_p (tree s1, tree s2)
-{
- basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2);
-
- if (!bb1
- || s1 == s2)
- return true;
-
- if (bb1 == bb2)
- {
- block_stmt_iterator bsi;
-
- for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi))
- if (bsi_stmt (bsi) == s1)
- return true;
-
- return false;
- }
-
- return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
-}
-
-/* Returns true when we can prove that the number of executions of
- STMT in the loop is at most NITER, according to the fact
- that the statement NITER_BOUND->at_stmt is executed at most
- NITER_BOUND->bound times. */
-
-static bool
-n_of_executions_at_most (tree stmt,
- struct nb_iter_bound *niter_bound,
- tree niter)
-{
- tree cond;
- tree bound = niter_bound->bound;
- tree bound_type = TREE_TYPE (bound);
- tree nit_type = TREE_TYPE (niter);
- enum tree_code cmp;
-
- gcc_assert (TYPE_UNSIGNED (bound_type)
- && TYPE_UNSIGNED (nit_type)
- && is_gimple_min_invariant (bound));
- if (TYPE_PRECISION (nit_type) > TYPE_PRECISION (bound_type))
- bound = fold_convert (nit_type, bound);
- else
- niter = fold_convert (bound_type, niter);
-
- /* After the statement niter_bound->at_stmt we know that anything is
- executed at most BOUND times. */
- if (stmt && stmt_dominates_stmt_p (niter_bound->at_stmt, stmt))
- cmp = GE_EXPR;
- /* Before the statement niter_bound->at_stmt we know that anything
- is executed at most BOUND + 1 times. */
- else
- cmp = GT_EXPR;
-
- cond = fold_binary (cmp, boolean_type_node, niter, bound);
- return nonzero_p (cond);
-}
-
-/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
-
-bool
-nowrap_type_p (tree type)
-{
- if (INTEGRAL_TYPE_P (type)
- && TYPE_OVERFLOW_UNDEFINED (type))
- return true;
-
- if (POINTER_TYPE_P (type))
- return true;
-
- return false;
-}
-
-/* Return false only when the induction variable BASE + STEP * I is
- known to not overflow: i.e. when the number of iterations is small
- enough with respect to the step and initial condition in order to
- keep the evolution confined in TYPEs bounds. Return true when the
- iv is known to overflow or when the property is not computable.
-
- USE_OVERFLOW_SEMANTICS is true if this function should assume that
- the rules for overflow of the given language apply (e.g., that signed
- arithmetics in C does not overflow). */
-
-bool
-scev_probably_wraps_p (tree base, tree step,
- tree at_stmt, struct loop *loop,
- bool use_overflow_semantics)
-{
- struct nb_iter_bound *bound;
- tree delta, step_abs;
- tree unsigned_type, valid_niter;
- tree type = TREE_TYPE (step);
-
- /* FIXME: We really need something like
- http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
-
- We used to test for the following situation that frequently appears
- during address arithmetics:
-
- D.1621_13 = (long unsigned intD.4) D.1620_12;
- D.1622_14 = D.1621_13 * 8;
- D.1623_15 = (doubleD.29 *) D.1622_14;
-
- And derived that the sequence corresponding to D_14
- can be proved to not wrap because it is used for computing a
- memory access; however, this is not really the case -- for example,
- if D_12 = (unsigned char) [254,+,1], then D_14 has values
- 2032, 2040, 0, 8, ..., but the code is still legal. */
-
- if (chrec_contains_undetermined (base)
- || chrec_contains_undetermined (step)
- || TREE_CODE (step) != INTEGER_CST)
- return true;
-
- if (zero_p (step))
- return false;
-
- /* If we can use the fact that signed and pointer arithmetics does not
- wrap, we are done. */
- if (use_overflow_semantics && nowrap_type_p (type))
- return false;
-
- /* Don't issue signed overflow warnings. */
- fold_defer_overflow_warnings ();
-
- /* Otherwise, compute the number of iterations before we reach the
- bound of the type, and verify that the loop is exited before this
- occurs. */
- unsigned_type = unsigned_type_for (type);
- base = fold_convert (unsigned_type, base);
-
- if (tree_int_cst_sign_bit (step))
- {
- tree extreme = fold_convert (unsigned_type,
- lower_bound_in_type (type, type));
- delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
- step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
- fold_convert (unsigned_type, step));
- }
- else
- {
- tree extreme = fold_convert (unsigned_type,
- upper_bound_in_type (type, type));
- delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
- step_abs = fold_convert (unsigned_type, step);
- }
-
- valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
-
- estimate_numbers_of_iterations_loop (loop);
- for (bound = loop->bounds; bound; bound = bound->next)
- {
- if (n_of_executions_at_most (at_stmt, bound, valid_niter))
- {
- fold_undefer_and_ignore_overflow_warnings ();
- return false;
- }
- }
-
- fold_undefer_and_ignore_overflow_warnings ();
-
- /* At this point we still don't have a proof that the iv does not
- overflow: give up. */
- return true;
-}
-
-/* Frees the information on upper bounds on numbers of iterations of LOOP. */
-
-void
-free_numbers_of_iterations_estimates_loop (struct loop *loop)
-{
- struct nb_iter_bound *bound, *next;
-
- loop->nb_iterations = NULL;
- loop->estimated_nb_iterations = NULL;
- for (bound = loop->bounds; bound; bound = next)
- {
- next = bound->next;
- free (bound);
- }
-
- loop->bounds = NULL;
-}
-
-/* Frees the information on upper bounds on numbers of iterations of LOOPS. */
-
-void
-free_numbers_of_iterations_estimates (struct loops *loops)
-{
- unsigned i;
- struct loop *loop;
-
- for (i = 1; i < loops->num; i++)
- {
- loop = loops->parray[i];
- if (loop)
- free_numbers_of_iterations_estimates_loop (loop);
- }
-}
-
-/* Substitute value VAL for ssa name NAME inside expressions held
- at LOOP. */
-
-void
-substitute_in_loop_info (struct loop *loop, tree name, tree val)
-{
- loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
- loop->estimated_nb_iterations
- = simplify_replace_tree (loop->estimated_nb_iterations, name, val);
-}