aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c5913
1 files changed, 0 insertions, 5913 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c b/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c
deleted file mode 100644
index 1d250d140..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c
+++ /dev/null
@@ -1,5913 +0,0 @@
-/* Induction variable optimizations.
- Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 2, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-/* This pass tries to find the optimal set of induction variables for the loop.
- It optimizes just the basic linear induction variables (although adding
- support for other types should not be too hard). It includes the
- optimizations commonly known as strength reduction, induction variable
- coalescing and induction variable elimination. It does it in the
- following steps:
-
- 1) The interesting uses of induction variables are found. This includes
-
- -- uses of induction variables in non-linear expressions
- -- addresses of arrays
- -- comparisons of induction variables
-
- 2) Candidates for the induction variables are found. This includes
-
- -- old induction variables
- -- the variables defined by expressions derived from the "interesting
- uses" above
-
- 3) The optimal (w.r. to a cost function) set of variables is chosen. The
- cost function assigns a cost to sets of induction variables and consists
- of three parts:
-
- -- The use costs. Each of the interesting uses chooses the best induction
- variable in the set and adds its cost to the sum. The cost reflects
- the time spent on modifying the induction variables value to be usable
- for the given purpose (adding base and offset for arrays, etc.).
- -- The variable costs. Each of the variables has a cost assigned that
- reflects the costs associated with incrementing the value of the
- variable. The original variables are somewhat preferred.
- -- The set cost. Depending on the size of the set, extra cost may be
- added to reflect register pressure.
-
- All the costs are defined in a machine-specific way, using the target
- hooks and machine descriptions to determine them.
-
- 4) The trees are transformed to use the new variables, the dead code is
- removed.
-
- All of this is done loop by loop. Doing it globally is theoretically
- possible, it might give a better performance and it might enable us
- to decide costs more precisely, but getting all the interactions right
- would be complicated. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "output.h"
-#include "diagnostic.h"
-#include "tree-flow.h"
-#include "tree-dump.h"
-#include "timevar.h"
-#include "cfgloop.h"
-#include "varray.h"
-#include "expr.h"
-#include "tree-pass.h"
-#include "ggc.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "hashtab.h"
-#include "tree-chrec.h"
-#include "tree-scalar-evolution.h"
-#include "cfgloop.h"
-#include "params.h"
-#include "langhooks.h"
-
-/* The infinite cost. */
-#define INFTY 10000000
-
-/* The expected number of loop iterations. TODO -- use profiling instead of
- this. */
-#define AVG_LOOP_NITER(LOOP) 5
-
-
-/* Representation of the induction variable. */
-struct iv
-{
- tree base; /* Initial value of the iv. */
- tree base_object; /* A memory object to that the induction variable points. */
- tree step; /* Step of the iv (constant only). */
- tree ssa_name; /* The ssa name with the value. */
- bool biv_p; /* Is it a biv? */
- bool have_use_for; /* Do we already have a use for it? */
- unsigned use_id; /* The identifier in the use if it is the case. */
-};
-
-/* Per-ssa version information (induction variable descriptions, etc.). */
-struct version_info
-{
- tree name; /* The ssa name. */
- struct iv *iv; /* Induction variable description. */
- bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
- an expression that is not an induction variable. */
- unsigned inv_id; /* Id of an invariant. */
- bool preserve_biv; /* For the original biv, whether to preserve it. */
-};
-
-/* Types of uses. */
-enum use_type
-{
- USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
- USE_ADDRESS, /* Use in an address. */
- USE_COMPARE /* Use is a compare. */
-};
-
-/* The candidate - cost pair. */
-struct cost_pair
-{
- struct iv_cand *cand; /* The candidate. */
- unsigned cost; /* The cost. */
- bitmap depends_on; /* The list of invariants that have to be
- preserved. */
- tree value; /* For final value elimination, the expression for
- the final value of the iv. For iv elimination,
- the new bound to compare with. */
-};
-
-/* Use. */
-struct iv_use
-{
- unsigned id; /* The id of the use. */
- enum use_type type; /* Type of the use. */
- struct iv *iv; /* The induction variable it is based on. */
- tree stmt; /* Statement in that it occurs. */
- tree *op_p; /* The place where it occurs. */
- bitmap related_cands; /* The set of "related" iv candidates, plus the common
- important ones. */
-
- unsigned n_map_members; /* Number of candidates in the cost_map list. */
- struct cost_pair *cost_map;
- /* The costs wrto the iv candidates. */
-
- struct iv_cand *selected;
- /* The selected candidate. */
-};
-
-/* The position where the iv is computed. */
-enum iv_position
-{
- IP_NORMAL, /* At the end, just before the exit condition. */
- IP_END, /* At the end of the latch block. */
- IP_ORIGINAL /* The original biv. */
-};
-
-/* The induction variable candidate. */
-struct iv_cand
-{
- unsigned id; /* The number of the candidate. */
- bool important; /* Whether this is an "important" candidate, i.e. such
- that it should be considered by all uses. */
- enum iv_position pos; /* Where it is computed. */
- tree incremented_at; /* For original biv, the statement where it is
- incremented. */
- tree var_before; /* The variable used for it before increment. */
- tree var_after; /* The variable used for it after increment. */
- struct iv *iv; /* The value of the candidate. NULL for
- "pseudocandidate" used to indicate the possibility
- to replace the final value of an iv by direct
- computation of the value. */
- unsigned cost; /* Cost of the candidate. */
- bitmap depends_on; /* The list of invariants that are used in step of the
- biv. */
-};
-
-/* The data used by the induction variable optimizations. */
-
-typedef struct iv_use *iv_use_p;
-DEF_VEC_P(iv_use_p);
-DEF_VEC_ALLOC_P(iv_use_p,heap);
-
-typedef struct iv_cand *iv_cand_p;
-DEF_VEC_P(iv_cand_p);
-DEF_VEC_ALLOC_P(iv_cand_p,heap);
-
-struct ivopts_data
-{
- /* The currently optimized loop. */
- struct loop *current_loop;
-
- /* Number of registers used in it. */
- unsigned regs_used;
-
- /* Numbers of iterations for all exits of the current loop. */
- htab_t niters;
-
- /* The size of version_info array allocated. */
- unsigned version_info_size;
-
- /* The array of information for the ssa names. */
- struct version_info *version_info;
-
- /* The bitmap of indices in version_info whose value was changed. */
- bitmap relevant;
-
- /* The maximum invariant id. */
- unsigned max_inv_id;
-
- /* The uses of induction variables. */
- VEC(iv_use_p,heap) *iv_uses;
-
- /* The candidates. */
- VEC(iv_cand_p,heap) *iv_candidates;
-
- /* A bitmap of important candidates. */
- bitmap important_candidates;
-
- /* Whether to consider just related and important candidates when replacing a
- use. */
- bool consider_all_candidates;
-};
-
-/* An assignment of iv candidates to uses. */
-
-struct iv_ca
-{
- /* The number of uses covered by the assignment. */
- unsigned upto;
-
- /* Number of uses that cannot be expressed by the candidates in the set. */
- unsigned bad_uses;
-
- /* Candidate assigned to a use, together with the related costs. */
- struct cost_pair **cand_for_use;
-
- /* Number of times each candidate is used. */
- unsigned *n_cand_uses;
-
- /* The candidates used. */
- bitmap cands;
-
- /* The number of candidates in the set. */
- unsigned n_cands;
-
- /* Total number of registers needed. */
- unsigned n_regs;
-
- /* Total cost of expressing uses. */
- unsigned cand_use_cost;
-
- /* Total cost of candidates. */
- unsigned cand_cost;
-
- /* Number of times each invariant is used. */
- unsigned *n_invariant_uses;
-
- /* Total cost of the assignment. */
- unsigned cost;
-};
-
-/* Difference of two iv candidate assignments. */
-
-struct iv_ca_delta
-{
- /* Changed use. */
- struct iv_use *use;
-
- /* An old assignment (for rollback purposes). */
- struct cost_pair *old_cp;
-
- /* A new assignment. */
- struct cost_pair *new_cp;
-
- /* Next change in the list. */
- struct iv_ca_delta *next_change;
-};
-
-/* Bound on number of candidates below that all candidates are considered. */
-
-#define CONSIDER_ALL_CANDIDATES_BOUND \
- ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
-
-/* If there are more iv occurrences, we just give up (it is quite unlikely that
- optimizing such a loop would help, and it would take ages). */
-
-#define MAX_CONSIDERED_USES \
- ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
-
-/* If there are at most this number of ivs in the set, try removing unnecessary
- ivs from the set always. */
-
-#define ALWAYS_PRUNE_CAND_SET_BOUND \
- ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
-
-/* The list of trees for that the decl_rtl field must be reset is stored
- here. */
-
-static VEC(tree,heap) *decl_rtl_to_reset;
-
-/* Number of uses recorded in DATA. */
-
-static inline unsigned
-n_iv_uses (struct ivopts_data *data)
-{
- return VEC_length (iv_use_p, data->iv_uses);
-}
-
-/* Ith use recorded in DATA. */
-
-static inline struct iv_use *
-iv_use (struct ivopts_data *data, unsigned i)
-{
- return VEC_index (iv_use_p, data->iv_uses, i);
-}
-
-/* Number of candidates recorded in DATA. */
-
-static inline unsigned
-n_iv_cands (struct ivopts_data *data)
-{
- return VEC_length (iv_cand_p, data->iv_candidates);
-}
-
-/* Ith candidate recorded in DATA. */
-
-static inline struct iv_cand *
-iv_cand (struct ivopts_data *data, unsigned i)
-{
- return VEC_index (iv_cand_p, data->iv_candidates, i);
-}
-
-/* The single loop exit if it dominates the latch, NULL otherwise. */
-
-edge
-single_dom_exit (struct loop *loop)
-{
- edge exit = loop->single_exit;
-
- if (!exit)
- return NULL;
-
- if (!just_once_each_iteration_p (loop, exit->src))
- return NULL;
-
- return exit;
-}
-
-/* Dumps information about the induction variable IV to FILE. */
-
-extern void dump_iv (FILE *, struct iv *);
-void
-dump_iv (FILE *file, struct iv *iv)
-{
- if (iv->ssa_name)
- {
- fprintf (file, "ssa name ");
- print_generic_expr (file, iv->ssa_name, TDF_SLIM);
- fprintf (file, "\n");
- }
-
- fprintf (file, " type ");
- print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
- fprintf (file, "\n");
-
- if (iv->step)
- {
- fprintf (file, " base ");
- print_generic_expr (file, iv->base, TDF_SLIM);
- fprintf (file, "\n");
-
- fprintf (file, " step ");
- print_generic_expr (file, iv->step, TDF_SLIM);
- fprintf (file, "\n");
- }
- else
- {
- fprintf (file, " invariant ");
- print_generic_expr (file, iv->base, TDF_SLIM);
- fprintf (file, "\n");
- }
-
- if (iv->base_object)
- {
- fprintf (file, " base object ");
- print_generic_expr (file, iv->base_object, TDF_SLIM);
- fprintf (file, "\n");
- }
-
- if (iv->biv_p)
- fprintf (file, " is a biv\n");
-}
-
-/* Dumps information about the USE to FILE. */
-
-extern void dump_use (FILE *, struct iv_use *);
-void
-dump_use (FILE *file, struct iv_use *use)
-{
- fprintf (file, "use %d\n", use->id);
-
- switch (use->type)
- {
- case USE_NONLINEAR_EXPR:
- fprintf (file, " generic\n");
- break;
-
- case USE_ADDRESS:
- fprintf (file, " address\n");
- break;
-
- case USE_COMPARE:
- fprintf (file, " compare\n");
- break;
-
- default:
- gcc_unreachable ();
- }
-
- fprintf (file, " in statement ");
- print_generic_expr (file, use->stmt, TDF_SLIM);
- fprintf (file, "\n");
-
- fprintf (file, " at position ");
- if (use->op_p)
- print_generic_expr (file, *use->op_p, TDF_SLIM);
- fprintf (file, "\n");
-
- dump_iv (file, use->iv);
-
- if (use->related_cands)
- {
- fprintf (file, " related candidates ");
- dump_bitmap (file, use->related_cands);
- }
-}
-
-/* Dumps information about the uses to FILE. */
-
-extern void dump_uses (FILE *, struct ivopts_data *);
-void
-dump_uses (FILE *file, struct ivopts_data *data)
-{
- unsigned i;
- struct iv_use *use;
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
-
- dump_use (file, use);
- fprintf (file, "\n");
- }
-}
-
-/* Dumps information about induction variable candidate CAND to FILE. */
-
-extern void dump_cand (FILE *, struct iv_cand *);
-void
-dump_cand (FILE *file, struct iv_cand *cand)
-{
- struct iv *iv = cand->iv;
-
- fprintf (file, "candidate %d%s\n",
- cand->id, cand->important ? " (important)" : "");
-
- if (cand->depends_on)
- {
- fprintf (file, " depends on ");
- dump_bitmap (file, cand->depends_on);
- }
-
- if (!iv)
- {
- fprintf (file, " final value replacement\n");
- return;
- }
-
- switch (cand->pos)
- {
- case IP_NORMAL:
- fprintf (file, " incremented before exit test\n");
- break;
-
- case IP_END:
- fprintf (file, " incremented at end\n");
- break;
-
- case IP_ORIGINAL:
- fprintf (file, " original biv\n");
- break;
- }
-
- dump_iv (file, iv);
-}
-
-/* Returns the info for ssa version VER. */
-
-static inline struct version_info *
-ver_info (struct ivopts_data *data, unsigned ver)
-{
- return data->version_info + ver;
-}
-
-/* Returns the info for ssa name NAME. */
-
-static inline struct version_info *
-name_info (struct ivopts_data *data, tree name)
-{
- return ver_info (data, SSA_NAME_VERSION (name));
-}
-
-/* Checks whether there exists number X such that X * B = A, counting modulo
- 2^BITS. */
-
-static bool
-divide (unsigned bits, unsigned HOST_WIDE_INT a, unsigned HOST_WIDE_INT b,
- HOST_WIDE_INT *x)
-{
- unsigned HOST_WIDE_INT mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
- unsigned HOST_WIDE_INT inv, ex, val;
- unsigned i;
-
- a &= mask;
- b &= mask;
-
- /* First divide the whole equation by 2 as long as possible. */
- while (!(a & 1) && !(b & 1))
- {
- a >>= 1;
- b >>= 1;
- bits--;
- mask >>= 1;
- }
-
- if (!(b & 1))
- {
- /* If b is still even, a is odd and there is no such x. */
- return false;
- }
-
- /* Find the inverse of b. We compute it as
- b^(2^(bits - 1) - 1) (mod 2^bits). */
- inv = 1;
- ex = b;
- for (i = 0; i < bits - 1; i++)
- {
- inv = (inv * ex) & mask;
- ex = (ex * ex) & mask;
- }
-
- val = (a * inv) & mask;
-
- gcc_assert (((val * b) & mask) == a);
-
- if ((val >> (bits - 1)) & 1)
- val |= ~mask;
-
- *x = val;
-
- return true;
-}
-
-/* Returns true if STMT is after the place where the IP_NORMAL ivs will be
- emitted in LOOP. */
-
-static bool
-stmt_after_ip_normal_pos (struct loop *loop, tree stmt)
-{
- basic_block bb = ip_normal_pos (loop), sbb = bb_for_stmt (stmt);
-
- gcc_assert (bb);
-
- if (sbb == loop->latch)
- return true;
-
- if (sbb != bb)
- return false;
-
- return stmt == last_stmt (bb);
-}
-
-/* Returns true if STMT if after the place where the original induction
- variable CAND is incremented. */
-
-static bool
-stmt_after_ip_original_pos (struct iv_cand *cand, tree stmt)
-{
- basic_block cand_bb = bb_for_stmt (cand->incremented_at);
- basic_block stmt_bb = bb_for_stmt (stmt);
- block_stmt_iterator bsi;
-
- if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
- return false;
-
- if (stmt_bb != cand_bb)
- return true;
-
- /* Scan the block from the end, since the original ivs are usually
- incremented at the end of the loop body. */
- for (bsi = bsi_last (stmt_bb); ; bsi_prev (&bsi))
- {
- if (bsi_stmt (bsi) == cand->incremented_at)
- return false;
- if (bsi_stmt (bsi) == stmt)
- return true;
- }
-}
-
-/* Returns true if STMT if after the place where the induction variable
- CAND is incremented in LOOP. */
-
-static bool
-stmt_after_increment (struct loop *loop, struct iv_cand *cand, tree stmt)
-{
- switch (cand->pos)
- {
- case IP_END:
- return false;
-
- case IP_NORMAL:
- return stmt_after_ip_normal_pos (loop, stmt);
-
- case IP_ORIGINAL:
- return stmt_after_ip_original_pos (cand, stmt);
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
-
-static bool
-abnormal_ssa_name_p (tree exp)
-{
- if (!exp)
- return false;
-
- if (TREE_CODE (exp) != SSA_NAME)
- return false;
-
- return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
-}
-
-/* Returns false if BASE or INDEX contains a ssa name that occurs in an
- abnormal phi node. Callback for for_each_index. */
-
-static bool
-idx_contains_abnormal_ssa_name_p (tree base, tree *index,
- void *data ATTRIBUTE_UNUSED)
-{
- if (TREE_CODE (base) == ARRAY_REF)
- {
- if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
- return false;
- if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
- return false;
- }
-
- return !abnormal_ssa_name_p (*index);
-}
-
-/* Returns true if EXPR contains a ssa name that occurs in an
- abnormal phi node. */
-
-bool
-contains_abnormal_ssa_name_p (tree expr)
-{
- enum tree_code code;
- enum tree_code_class class;
-
- if (!expr)
- return false;
-
- code = TREE_CODE (expr);
- class = TREE_CODE_CLASS (code);
-
- if (code == SSA_NAME)
- return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
-
- if (code == INTEGER_CST
- || is_gimple_min_invariant (expr))
- return false;
-
- if (code == ADDR_EXPR)
- return !for_each_index (&TREE_OPERAND (expr, 0),
- idx_contains_abnormal_ssa_name_p,
- NULL);
-
- switch (class)
- {
- case tcc_binary:
- case tcc_comparison:
- if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
- return true;
-
- /* Fallthru. */
- case tcc_unary:
- if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
- return true;
-
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return false;
-}
-
-/* Element of the table in that we cache the numbers of iterations obtained
- from exits of the loop. */
-
-struct nfe_cache_elt
-{
- /* The edge for that the number of iterations is cached. */
- edge exit;
-
- /* Number of iterations corresponding to this exit, or NULL if it cannot be
- determined. */
- tree niter;
-};
-
-/* Hash function for nfe_cache_elt E. */
-
-static hashval_t
-nfe_hash (const void *e)
-{
- const struct nfe_cache_elt *elt = e;
-
- return htab_hash_pointer (elt->exit);
-}
-
-/* Equality function for nfe_cache_elt E1 and edge E2. */
-
-static int
-nfe_eq (const void *e1, const void *e2)
-{
- const struct nfe_cache_elt *elt1 = e1;
-
- return elt1->exit == e2;
-}
-
-/* Returns tree describing number of iterations determined from
- EXIT of DATA->current_loop, or NULL if something goes wrong. */
-
-static tree
-niter_for_exit (struct ivopts_data *data, edge exit)
-{
- struct nfe_cache_elt *nfe_desc;
- struct tree_niter_desc desc;
- PTR *slot;
-
- slot = htab_find_slot_with_hash (data->niters, exit,
- htab_hash_pointer (exit),
- INSERT);
-
- if (!*slot)
- {
- nfe_desc = xmalloc (sizeof (struct nfe_cache_elt));
- nfe_desc->exit = exit;
-
- /* Try to determine number of iterations. We must know it
- unconditionally (i.e., without possibility of # of iterations
- being zero). Also, we cannot safely work with ssa names that
- appear in phi nodes on abnormal edges, so that we do not create
- overlapping life ranges for them (PR 27283). */
- if (number_of_iterations_exit (data->current_loop,
- exit, &desc, true)
- && zero_p (desc.may_be_zero)
- && !contains_abnormal_ssa_name_p (desc.niter))
- nfe_desc->niter = desc.niter;
- else
- nfe_desc->niter = NULL_TREE;
- }
- else
- nfe_desc = *slot;
-
- return nfe_desc->niter;
-}
-
-/* Returns tree describing number of iterations determined from
- single dominating exit of DATA->current_loop, or NULL if something
- goes wrong. */
-
-static tree
-niter_for_single_dom_exit (struct ivopts_data *data)
-{
- edge exit = single_dom_exit (data->current_loop);
-
- if (!exit)
- return NULL;
-
- return niter_for_exit (data, exit);
-}
-
-/* Initializes data structures used by the iv optimization pass, stored
- in DATA. */
-
-static void
-tree_ssa_iv_optimize_init (struct ivopts_data *data)
-{
- data->version_info_size = 2 * num_ssa_names;
- data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
- data->relevant = BITMAP_ALLOC (NULL);
- data->important_candidates = BITMAP_ALLOC (NULL);
- data->max_inv_id = 0;
- data->niters = htab_create (10, nfe_hash, nfe_eq, free);
- data->iv_uses = VEC_alloc (iv_use_p, heap, 20);
- data->iv_candidates = VEC_alloc (iv_cand_p, heap, 20);
- decl_rtl_to_reset = VEC_alloc (tree, heap, 20);
-}
-
-/* Returns a memory object to that EXPR points. In case we are able to
- determine that it does not point to any such object, NULL is returned. */
-
-static tree
-determine_base_object (tree expr)
-{
- enum tree_code code = TREE_CODE (expr);
- tree base, obj, op0, op1;
-
- /* If this is a pointer casted to any type, we need to determine
- the base object for the pointer; so handle conversions before
- throwing away non-pointer expressions. */
- if (TREE_CODE (expr) == NOP_EXPR
- || TREE_CODE (expr) == CONVERT_EXPR)
- return determine_base_object (TREE_OPERAND (expr, 0));
-
- if (!POINTER_TYPE_P (TREE_TYPE (expr)))
- return NULL_TREE;
-
- switch (code)
- {
- case INTEGER_CST:
- return NULL_TREE;
-
- case ADDR_EXPR:
- obj = TREE_OPERAND (expr, 0);
- base = get_base_address (obj);
-
- if (!base)
- return expr;
-
- if (TREE_CODE (base) == INDIRECT_REF)
- return determine_base_object (TREE_OPERAND (base, 0));
-
- return fold_convert (ptr_type_node,
- build_fold_addr_expr (base));
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- op0 = determine_base_object (TREE_OPERAND (expr, 0));
- op1 = determine_base_object (TREE_OPERAND (expr, 1));
-
- if (!op1)
- return op0;
-
- if (!op0)
- return (code == PLUS_EXPR
- ? op1
- : fold_build1 (NEGATE_EXPR, ptr_type_node, op1));
-
- return fold_build2 (code, ptr_type_node, op0, op1);
-
- default:
- return fold_convert (ptr_type_node, expr);
- }
-}
-
-/* Allocates an induction variable with given initial value BASE and step STEP
- for loop LOOP. */
-
-static struct iv *
-alloc_iv (tree base, tree step)
-{
- struct iv *iv = XCNEW (struct iv);
-
- if (step && integer_zerop (step))
- step = NULL_TREE;
-
- iv->base = base;
- iv->base_object = determine_base_object (base);
- iv->step = step;
- iv->biv_p = false;
- iv->have_use_for = false;
- iv->use_id = 0;
- iv->ssa_name = NULL_TREE;
-
- return iv;
-}
-
-/* Sets STEP and BASE for induction variable IV. */
-
-static void
-set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
-{
- struct version_info *info = name_info (data, iv);
-
- gcc_assert (!info->iv);
-
- bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
- info->iv = alloc_iv (base, step);
- info->iv->ssa_name = iv;
-}
-
-/* Finds induction variable declaration for VAR. */
-
-static struct iv *
-get_iv (struct ivopts_data *data, tree var)
-{
- basic_block bb;
-
- if (!name_info (data, var)->iv)
- {
- bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
-
- if (!bb
- || !flow_bb_inside_loop_p (data->current_loop, bb))
- set_iv (data, var, var, NULL_TREE);
- }
-
- return name_info (data, var)->iv;
-}
-
-/* Determines the step of a biv defined in PHI. Returns NULL if PHI does
- not define a simple affine biv with nonzero step. */
-
-static tree
-determine_biv_step (tree phi)
-{
- struct loop *loop = bb_for_stmt (phi)->loop_father;
- tree name = PHI_RESULT (phi);
- affine_iv iv;
-
- if (!is_gimple_reg (name))
- return NULL_TREE;
-
- if (!simple_iv (loop, phi, name, &iv, true))
- return NULL_TREE;
-
- return (zero_p (iv.step) ? NULL_TREE : iv.step);
-}
-
-/* Finds basic ivs. */
-
-static bool
-find_bivs (struct ivopts_data *data)
-{
- tree phi, step, type, base;
- bool found = false;
- struct loop *loop = data->current_loop;
-
- for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
- {
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
- continue;
-
- step = determine_biv_step (phi);
- if (!step)
- continue;
-
- base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
- base = expand_simple_operations (base);
- if (contains_abnormal_ssa_name_p (base)
- || contains_abnormal_ssa_name_p (step))
- continue;
-
- type = TREE_TYPE (PHI_RESULT (phi));
- base = fold_convert (type, base);
- if (step)
- step = fold_convert (type, step);
-
- set_iv (data, PHI_RESULT (phi), base, step);
- found = true;
- }
-
- return found;
-}
-
-/* Marks basic ivs. */
-
-static void
-mark_bivs (struct ivopts_data *data)
-{
- tree phi, var;
- struct iv *iv, *incr_iv;
- struct loop *loop = data->current_loop;
- basic_block incr_bb;
-
- for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
- {
- iv = get_iv (data, PHI_RESULT (phi));
- if (!iv)
- continue;
-
- var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
- incr_iv = get_iv (data, var);
- if (!incr_iv)
- continue;
-
- /* If the increment is in the subloop, ignore it. */
- incr_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
- if (incr_bb->loop_father != data->current_loop
- || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
- continue;
-
- iv->biv_p = true;
- incr_iv->biv_p = true;
- }
-}
-
-/* Checks whether STMT defines a linear induction variable and stores its
- parameters to IV. */
-
-static bool
-find_givs_in_stmt_scev (struct ivopts_data *data, tree stmt, affine_iv *iv)
-{
- tree lhs;
- struct loop *loop = data->current_loop;
-
- iv->base = NULL_TREE;
- iv->step = NULL_TREE;
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- return false;
-
- lhs = TREE_OPERAND (stmt, 0);
- if (TREE_CODE (lhs) != SSA_NAME)
- return false;
-
- if (!simple_iv (loop, stmt, TREE_OPERAND (stmt, 1), iv, true))
- return false;
- iv->base = expand_simple_operations (iv->base);
-
- if (contains_abnormal_ssa_name_p (iv->base)
- || contains_abnormal_ssa_name_p (iv->step))
- return false;
-
- return true;
-}
-
-/* Finds general ivs in statement STMT. */
-
-static void
-find_givs_in_stmt (struct ivopts_data *data, tree stmt)
-{
- affine_iv iv;
-
- if (!find_givs_in_stmt_scev (data, stmt, &iv))
- return;
-
- set_iv (data, TREE_OPERAND (stmt, 0), iv.base, iv.step);
-}
-
-/* Finds general ivs in basic block BB. */
-
-static void
-find_givs_in_bb (struct ivopts_data *data, basic_block bb)
-{
- block_stmt_iterator bsi;
-
- for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
- find_givs_in_stmt (data, bsi_stmt (bsi));
-}
-
-/* Finds general ivs. */
-
-static void
-find_givs (struct ivopts_data *data)
-{
- struct loop *loop = data->current_loop;
- basic_block *body = get_loop_body_in_dom_order (loop);
- unsigned i;
-
- for (i = 0; i < loop->num_nodes; i++)
- find_givs_in_bb (data, body[i]);
- free (body);
-}
-
-/* For each ssa name defined in LOOP determines whether it is an induction
- variable and if so, its initial value and step. */
-
-static bool
-find_induction_variables (struct ivopts_data *data)
-{
- unsigned i;
- bitmap_iterator bi;
-
- if (!find_bivs (data))
- return false;
-
- find_givs (data);
- mark_bivs (data);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- tree niter = niter_for_single_dom_exit (data);
-
- if (niter)
- {
- fprintf (dump_file, " number of iterations ");
- print_generic_expr (dump_file, niter, TDF_SLIM);
- fprintf (dump_file, "\n\n");
- };
-
- fprintf (dump_file, "Induction variables:\n\n");
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
- {
- if (ver_info (data, i)->iv)
- dump_iv (dump_file, ver_info (data, i)->iv);
- }
- }
-
- return true;
-}
-
-/* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
-
-static struct iv_use *
-record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
- tree stmt, enum use_type use_type)
-{
- struct iv_use *use = XCNEW (struct iv_use);
-
- use->id = n_iv_uses (data);
- use->type = use_type;
- use->iv = iv;
- use->stmt = stmt;
- use->op_p = use_p;
- use->related_cands = BITMAP_ALLOC (NULL);
-
- /* To avoid showing ssa name in the dumps, if it was not reset by the
- caller. */
- iv->ssa_name = NULL_TREE;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_use (dump_file, use);
-
- VEC_safe_push (iv_use_p, heap, data->iv_uses, use);
-
- return use;
-}
-
-/* Checks whether OP is a loop-level invariant and if so, records it.
- NONLINEAR_USE is true if the invariant is used in a way we do not
- handle specially. */
-
-static void
-record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
-{
- basic_block bb;
- struct version_info *info;
-
- if (TREE_CODE (op) != SSA_NAME
- || !is_gimple_reg (op))
- return;
-
- bb = bb_for_stmt (SSA_NAME_DEF_STMT (op));
- if (bb
- && flow_bb_inside_loop_p (data->current_loop, bb))
- return;
-
- info = name_info (data, op);
- info->name = op;
- info->has_nonlin_use |= nonlinear_use;
- if (!info->inv_id)
- info->inv_id = ++data->max_inv_id;
- bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
-}
-
-/* Checks whether the use OP is interesting and if so, records it. */
-
-static struct iv_use *
-find_interesting_uses_op (struct ivopts_data *data, tree op)
-{
- struct iv *iv;
- struct iv *civ;
- tree stmt;
- struct iv_use *use;
-
- if (TREE_CODE (op) != SSA_NAME)
- return NULL;
-
- iv = get_iv (data, op);
- if (!iv)
- return NULL;
-
- if (iv->have_use_for)
- {
- use = iv_use (data, iv->use_id);
-
- gcc_assert (use->type == USE_NONLINEAR_EXPR);
- return use;
- }
-
- if (zero_p (iv->step))
- {
- record_invariant (data, op, true);
- return NULL;
- }
- iv->have_use_for = true;
-
- civ = XNEW (struct iv);
- *civ = *iv;
-
- stmt = SSA_NAME_DEF_STMT (op);
- gcc_assert (TREE_CODE (stmt) == PHI_NODE
- || TREE_CODE (stmt) == MODIFY_EXPR);
-
- use = record_use (data, NULL, civ, stmt, USE_NONLINEAR_EXPR);
- iv->use_id = use->id;
-
- return use;
-}
-
-/* Checks whether the condition *COND_P in STMT is interesting
- and if so, records it. */
-
-static void
-find_interesting_uses_cond (struct ivopts_data *data, tree stmt, tree *cond_p)
-{
- tree *op0_p;
- tree *op1_p;
- struct iv *iv0 = NULL, *iv1 = NULL, *civ;
- struct iv const_iv;
- tree zero = integer_zero_node;
-
- const_iv.step = NULL_TREE;
-
- if (TREE_CODE (*cond_p) != SSA_NAME
- && !COMPARISON_CLASS_P (*cond_p))
- return;
-
- if (TREE_CODE (*cond_p) == SSA_NAME)
- {
- op0_p = cond_p;
- op1_p = &zero;
- }
- else
- {
- op0_p = &TREE_OPERAND (*cond_p, 0);
- op1_p = &TREE_OPERAND (*cond_p, 1);
- }
-
- if (TREE_CODE (*op0_p) == SSA_NAME)
- iv0 = get_iv (data, *op0_p);
- else
- iv0 = &const_iv;
-
- if (TREE_CODE (*op1_p) == SSA_NAME)
- iv1 = get_iv (data, *op1_p);
- else
- iv1 = &const_iv;
-
- if (/* When comparing with non-invariant value, we may not do any senseful
- induction variable elimination. */
- (!iv0 || !iv1)
- /* Eliminating condition based on two ivs would be nontrivial.
- ??? TODO -- it is not really important to handle this case. */
- || (!zero_p (iv0->step) && !zero_p (iv1->step)))
- {
- find_interesting_uses_op (data, *op0_p);
- find_interesting_uses_op (data, *op1_p);
- return;
- }
-
- if (zero_p (iv0->step) && zero_p (iv1->step))
- {
- /* If both are invariants, this is a work for unswitching. */
- return;
- }
-
- civ = XNEW (struct iv);
- *civ = zero_p (iv0->step) ? *iv1: *iv0;
- record_use (data, cond_p, civ, stmt, USE_COMPARE);
-}
-
-/* Returns true if expression EXPR is obviously invariant in LOOP,
- i.e. if all its operands are defined outside of the LOOP. */
-
-bool
-expr_invariant_in_loop_p (struct loop *loop, tree expr)
-{
- basic_block def_bb;
- unsigned i, len;
-
- if (is_gimple_min_invariant (expr))
- return true;
-
- if (TREE_CODE (expr) == SSA_NAME)
- {
- def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (expr));
- if (def_bb
- && flow_bb_inside_loop_p (loop, def_bb))
- return false;
-
- return true;
- }
-
- if (!EXPR_P (expr))
- return false;
-
- len = TREE_CODE_LENGTH (TREE_CODE (expr));
- for (i = 0; i < len; i++)
- if (!expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
- return false;
-
- return true;
-}
-
-/* Cumulates the steps of indices into DATA and replaces their values with the
- initial ones. Returns false when the value of the index cannot be determined.
- Callback for for_each_index. */
-
-struct ifs_ivopts_data
-{
- struct ivopts_data *ivopts_data;
- tree stmt;
- tree *step_p;
-};
-
-static bool
-idx_find_step (tree base, tree *idx, void *data)
-{
- struct ifs_ivopts_data *dta = data;
- struct iv *iv;
- tree step, iv_base, iv_step, lbound, off;
- struct loop *loop = dta->ivopts_data->current_loop;
-
- if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
- || TREE_CODE (base) == ALIGN_INDIRECT_REF)
- return false;
-
- /* If base is a component ref, require that the offset of the reference
- be invariant. */
- if (TREE_CODE (base) == COMPONENT_REF)
- {
- off = component_ref_field_offset (base);
- return expr_invariant_in_loop_p (loop, off);
- }
-
- /* If base is array, first check whether we will be able to move the
- reference out of the loop (in order to take its address in strength
- reduction). In order for this to work we need both lower bound
- and step to be loop invariants. */
- if (TREE_CODE (base) == ARRAY_REF)
- {
- step = array_ref_element_size (base);
- lbound = array_ref_low_bound (base);
-
- if (!expr_invariant_in_loop_p (loop, step)
- || !expr_invariant_in_loop_p (loop, lbound))
- return false;
- }
-
- if (TREE_CODE (*idx) != SSA_NAME)
- return true;
-
- iv = get_iv (dta->ivopts_data, *idx);
- if (!iv)
- return false;
-
- /* XXX We produce for a base of *D42 with iv->base being &x[0]
- *&x[0], which is not folded and does not trigger the
- ARRAY_REF path below. */
- *idx = iv->base;
-
- if (!iv->step)
- return true;
-
- if (TREE_CODE (base) == ARRAY_REF)
- {
- step = array_ref_element_size (base);
-
- /* We only handle addresses whose step is an integer constant. */
- if (TREE_CODE (step) != INTEGER_CST)
- return false;
- }
- else
- /* The step for pointer arithmetics already is 1 byte. */
- step = build_int_cst (sizetype, 1);
-
- iv_base = iv->base;
- iv_step = iv->step;
- if (!convert_affine_scev (dta->ivopts_data->current_loop,
- sizetype, &iv_base, &iv_step, dta->stmt,
- false))
- {
- /* The index might wrap. */
- return false;
- }
-
- step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
-
- if (!*dta->step_p)
- *dta->step_p = step;
- else
- *dta->step_p = fold_build2 (PLUS_EXPR, sizetype, *dta->step_p, step);
-
- return true;
-}
-
-/* Records use in index IDX. Callback for for_each_index. Ivopts data
- object is passed to it in DATA. */
-
-static bool
-idx_record_use (tree base, tree *idx,
- void *data)
-{
- find_interesting_uses_op (data, *idx);
- if (TREE_CODE (base) == ARRAY_REF)
- {
- find_interesting_uses_op (data, array_ref_element_size (base));
- find_interesting_uses_op (data, array_ref_low_bound (base));
- }
- return true;
-}
-
-/* Returns true if memory reference REF may be unaligned. */
-
-static bool
-may_be_unaligned_p (tree ref)
-{
- tree base;
- tree base_type;
- HOST_WIDE_INT bitsize;
- HOST_WIDE_INT bitpos;
- tree toffset;
- enum machine_mode mode;
- int unsignedp, volatilep;
- unsigned base_align;
-
- /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
- thus they are not misaligned. */
- if (TREE_CODE (ref) == TARGET_MEM_REF)
- return false;
-
- /* The test below is basically copy of what expr.c:normal_inner_ref
- does to check whether the object must be loaded by parts when
- STRICT_ALIGNMENT is true. */
- base = get_inner_reference (ref, &bitsize, &bitpos, &toffset, &mode,
- &unsignedp, &volatilep, true);
- base_type = TREE_TYPE (base);
- base_align = TYPE_ALIGN (base_type);
-
- if (mode != BLKmode
- && (base_align < GET_MODE_ALIGNMENT (mode)
- || bitpos % GET_MODE_ALIGNMENT (mode) != 0
- || bitpos % BITS_PER_UNIT != 0))
- return true;
-
- return false;
-}
-
-/* Return true if EXPR may be non-addressable. */
-
-static bool
-may_be_nonaddressable_p (tree expr)
-{
- switch (TREE_CODE (expr))
- {
- case COMPONENT_REF:
- return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
- || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
-
- case VIEW_CONVERT_EXPR:
- /* This kind of view-conversions may wrap non-addressable objects
- and make them look addressable. After some processing the
- non-addressability may be uncovered again, causing ADDR_EXPRs
- of inappropriate objects to be built. */
- /* APPLE LOCAL begin 6187262 */
- return ((AGGREGATE_TYPE_P (TREE_TYPE (expr))
- || TREE_CODE (TREE_TYPE (expr)) == VECTOR_TYPE)
- && !(AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
- || TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE));
- /* APPLE LOCAL end 6187262 */
-
- default:
- break;
- }
-
- return false;
-}
-
-/* Finds addresses in *OP_P inside STMT. */
-
-static void
-find_interesting_uses_address (struct ivopts_data *data, tree stmt, tree *op_p)
-{
- tree base = *op_p, step = NULL;
- struct iv *civ;
- struct ifs_ivopts_data ifs_ivopts_data;
-
- /* Do not play with volatile memory references. A bit too conservative,
- perhaps, but safe. */
- if (stmt_ann (stmt)->has_volatile_ops)
- goto fail;
-
- /* Ignore bitfields for now. Not really something terribly complicated
- to handle. TODO. */
- if (TREE_CODE (base) == BIT_FIELD_REF)
- goto fail;
-
- if (may_be_nonaddressable_p (base))
- goto fail;
-
- if (STRICT_ALIGNMENT
- && may_be_unaligned_p (base))
- goto fail;
-
- base = unshare_expr (base);
-
- if (TREE_CODE (base) == TARGET_MEM_REF)
- {
- tree type = build_pointer_type (TREE_TYPE (base));
- tree astep;
-
- if (TMR_BASE (base)
- && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
- {
- civ = get_iv (data, TMR_BASE (base));
- if (!civ)
- goto fail;
-
- TMR_BASE (base) = civ->base;
- step = civ->step;
- }
- if (TMR_INDEX (base)
- && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
- {
- civ = get_iv (data, TMR_INDEX (base));
- if (!civ)
- goto fail;
-
- TMR_INDEX (base) = civ->base;
- astep = civ->step;
-
- if (astep)
- {
- if (TMR_STEP (base))
- astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
-
- if (step)
- step = fold_build2 (PLUS_EXPR, type, step, astep);
- else
- step = astep;
- }
- }
-
- if (zero_p (step))
- goto fail;
- base = tree_mem_ref_addr (type, base);
- }
- else
- {
- ifs_ivopts_data.ivopts_data = data;
- ifs_ivopts_data.stmt = stmt;
- ifs_ivopts_data.step_p = &step;
- if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
- || zero_p (step))
- goto fail;
-
- gcc_assert (TREE_CODE (base) != ALIGN_INDIRECT_REF);
- gcc_assert (TREE_CODE (base) != MISALIGNED_INDIRECT_REF);
-
- base = build_fold_addr_expr (base);
-
- /* Substituting bases of IVs into the base expression might
- have caused folding opportunities. */
- if (TREE_CODE (base) == ADDR_EXPR)
- {
- tree *ref = &TREE_OPERAND (base, 0);
- while (handled_component_p (*ref))
- ref = &TREE_OPERAND (*ref, 0);
- if (TREE_CODE (*ref) == INDIRECT_REF)
- *ref = fold_indirect_ref (*ref);
- }
- }
-
- civ = alloc_iv (base, step);
- record_use (data, op_p, civ, stmt, USE_ADDRESS);
- return;
-
-fail:
- for_each_index (op_p, idx_record_use, data);
-}
-
-/* Finds and records invariants used in STMT. */
-
-static void
-find_invariants_stmt (struct ivopts_data *data, tree stmt)
-{
- ssa_op_iter iter;
- use_operand_p use_p;
- tree op;
-
- FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
- {
- op = USE_FROM_PTR (use_p);
- record_invariant (data, op, false);
- }
-}
-
-/* Finds interesting uses of induction variables in the statement STMT. */
-
-static void
-find_interesting_uses_stmt (struct ivopts_data *data, tree stmt)
-{
- struct iv *iv;
- tree op, lhs, rhs;
- ssa_op_iter iter;
- use_operand_p use_p;
-
- find_invariants_stmt (data, stmt);
-
- if (TREE_CODE (stmt) == COND_EXPR)
- {
- find_interesting_uses_cond (data, stmt, &COND_EXPR_COND (stmt));
- return;
- }
-
- if (TREE_CODE (stmt) == MODIFY_EXPR)
- {
- lhs = TREE_OPERAND (stmt, 0);
- rhs = TREE_OPERAND (stmt, 1);
-
- if (TREE_CODE (lhs) == SSA_NAME)
- {
- /* If the statement defines an induction variable, the uses are not
- interesting by themselves. */
-
- iv = get_iv (data, lhs);
-
- if (iv && !zero_p (iv->step))
- return;
- }
-
- switch (TREE_CODE_CLASS (TREE_CODE (rhs)))
- {
- case tcc_comparison:
- find_interesting_uses_cond (data, stmt, &TREE_OPERAND (stmt, 1));
- return;
-
- case tcc_reference:
- find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 1));
- if (REFERENCE_CLASS_P (lhs))
- find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 0));
- return;
-
- default: ;
- }
-
- if (REFERENCE_CLASS_P (lhs)
- && is_gimple_val (rhs))
- {
- find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 0));
- find_interesting_uses_op (data, rhs);
- return;
- }
-
- /* TODO -- we should also handle address uses of type
-
- memory = call (whatever);
-
- and
-
- call (memory). */
- }
-
- if (TREE_CODE (stmt) == PHI_NODE
- && bb_for_stmt (stmt) == data->current_loop->header)
- {
- lhs = PHI_RESULT (stmt);
- iv = get_iv (data, lhs);
-
- if (iv && !zero_p (iv->step))
- return;
- }
-
- FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
- {
- op = USE_FROM_PTR (use_p);
-
- if (TREE_CODE (op) != SSA_NAME)
- continue;
-
- iv = get_iv (data, op);
- if (!iv)
- continue;
-
- find_interesting_uses_op (data, op);
- }
-}
-
-/* Finds interesting uses of induction variables outside of loops
- on loop exit edge EXIT. */
-
-static void
-find_interesting_uses_outside (struct ivopts_data *data, edge exit)
-{
- tree phi, def;
-
- for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
- {
- def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
- find_interesting_uses_op (data, def);
- }
-}
-
-/* Finds uses of the induction variables that are interesting. */
-
-static void
-find_interesting_uses (struct ivopts_data *data)
-{
- basic_block bb;
- block_stmt_iterator bsi;
- tree phi;
- basic_block *body = get_loop_body (data->current_loop);
- unsigned i;
- struct version_info *info;
- edge e;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Uses:\n\n");
-
- for (i = 0; i < data->current_loop->num_nodes; i++)
- {
- edge_iterator ei;
- bb = body[i];
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->dest != EXIT_BLOCK_PTR
- && !flow_bb_inside_loop_p (data->current_loop, e->dest))
- find_interesting_uses_outside (data, e);
-
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- find_interesting_uses_stmt (data, phi);
- for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
- find_interesting_uses_stmt (data, bsi_stmt (bsi));
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- bitmap_iterator bi;
-
- fprintf (dump_file, "\n");
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
- {
- info = ver_info (data, i);
- if (info->inv_id)
- {
- fprintf (dump_file, " ");
- print_generic_expr (dump_file, info->name, TDF_SLIM);
- fprintf (dump_file, " is invariant (%d)%s\n",
- info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
- }
- }
-
- fprintf (dump_file, "\n");
- }
-
- free (body);
-}
-
-/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
- is true, assume we are inside an address. If TOP_COMPREF is true, assume
- we are at the top-level of the processed address. */
-
-static tree
-strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
- unsigned HOST_WIDE_INT *offset)
-{
- tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
- enum tree_code code;
- tree type, orig_type = TREE_TYPE (expr);
- unsigned HOST_WIDE_INT off0, off1, st;
- tree orig_expr = expr;
-
- STRIP_NOPS (expr);
-
- type = TREE_TYPE (expr);
- code = TREE_CODE (expr);
- *offset = 0;
-
- switch (code)
- {
- case INTEGER_CST:
- if (!cst_and_fits_in_hwi (expr)
- || zero_p (expr))
- return orig_expr;
-
- *offset = int_cst_value (expr);
- return build_int_cst (orig_type, 0);
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- op0 = TREE_OPERAND (expr, 0);
- op1 = TREE_OPERAND (expr, 1);
-
- op0 = strip_offset_1 (op0, false, false, &off0);
- op1 = strip_offset_1 (op1, false, false, &off1);
-
- *offset = (code == PLUS_EXPR ? off0 + off1 : off0 - off1);
- if (op0 == TREE_OPERAND (expr, 0)
- && op1 == TREE_OPERAND (expr, 1))
- return orig_expr;
-
- if (zero_p (op1))
- expr = op0;
- else if (zero_p (op0))
- {
- if (code == PLUS_EXPR)
- expr = op1;
- else
- expr = fold_build1 (NEGATE_EXPR, type, op1);
- }
- else
- expr = fold_build2 (code, type, op0, op1);
-
- return fold_convert (orig_type, expr);
-
- case ARRAY_REF:
- if (!inside_addr)
- return orig_expr;
-
- step = array_ref_element_size (expr);
- if (!cst_and_fits_in_hwi (step))
- break;
-
- st = int_cst_value (step);
- op1 = TREE_OPERAND (expr, 1);
- op1 = strip_offset_1 (op1, false, false, &off1);
- *offset = off1 * st;
-
- if (top_compref
- && zero_p (op1))
- {
- /* Strip the component reference completely. */
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
- *offset += off0;
- return op0;
- }
- break;
-
- case COMPONENT_REF:
- if (!inside_addr)
- return orig_expr;
-
- tmp = component_ref_field_offset (expr);
- if (top_compref
- && cst_and_fits_in_hwi (tmp))
- {
- /* Strip the component reference completely. */
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
- *offset = off0 + int_cst_value (tmp);
- return op0;
- }
- break;
-
- case ADDR_EXPR:
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, true, true, &off0);
- *offset += off0;
-
- if (op0 == TREE_OPERAND (expr, 0))
- return orig_expr;
-
- expr = build_fold_addr_expr (op0);
- return fold_convert (orig_type, expr);
-
- case INDIRECT_REF:
- inside_addr = false;
- break;
-
- default:
- return orig_expr;
- }
-
- /* Default handling of expressions for that we want to recurse into
- the first operand. */
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, inside_addr, false, &off0);
- *offset += off0;
-
- if (op0 == TREE_OPERAND (expr, 0)
- && (!op1 || op1 == TREE_OPERAND (expr, 1)))
- return orig_expr;
-
- expr = copy_node (expr);
- TREE_OPERAND (expr, 0) = op0;
- if (op1)
- TREE_OPERAND (expr, 1) = op1;
-
- /* Inside address, we might strip the top level component references,
- thus changing type of the expression. Handling of ADDR_EXPR
- will fix that. */
- expr = fold_convert (orig_type, expr);
-
- return expr;
-}
-
-/* Strips constant offsets from EXPR and stores them to OFFSET. */
-
-static tree
-strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
-{
- return strip_offset_1 (expr, false, false, offset);
-}
-
-/* Returns variant of TYPE that can be used as base for different uses.
- We return unsigned type with the same precision, which avoids problems
- with overflows. */
-
-static tree
-generic_type_for (tree type)
-{
- if (POINTER_TYPE_P (type))
- return unsigned_type_for (type);
-
- if (TYPE_UNSIGNED (type))
- return type;
-
- return unsigned_type_for (type);
-}
-
-/* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
- the bitmap to that we should store it. */
-
-static struct ivopts_data *fd_ivopts_data;
-static tree
-find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
-{
- bitmap *depends_on = data;
- struct version_info *info;
-
- if (TREE_CODE (*expr_p) != SSA_NAME)
- return NULL_TREE;
- info = name_info (fd_ivopts_data, *expr_p);
-
- if (!info->inv_id || info->has_nonlin_use)
- return NULL_TREE;
-
- if (!*depends_on)
- *depends_on = BITMAP_ALLOC (NULL);
- bitmap_set_bit (*depends_on, info->inv_id);
-
- return NULL_TREE;
-}
-
-/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
- position to POS. If USE is not NULL, the candidate is set as related to
- it. If both BASE and STEP are NULL, we add a pseudocandidate for the
- replacement of the final value of the iv by a direct computation. */
-
-static struct iv_cand *
-add_candidate_1 (struct ivopts_data *data,
- tree base, tree step, bool important, enum iv_position pos,
- struct iv_use *use, tree incremented_at)
-{
- unsigned i;
- struct iv_cand *cand = NULL;
- tree type, orig_type;
-
- if (base)
- {
- orig_type = TREE_TYPE (base);
- type = generic_type_for (orig_type);
- if (type != orig_type)
- {
- base = fold_convert (type, base);
- if (step)
- step = fold_convert (type, step);
- }
- }
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- cand = iv_cand (data, i);
-
- if (cand->pos != pos)
- continue;
-
- if (cand->incremented_at != incremented_at)
- continue;
-
- if (!cand->iv)
- {
- if (!base && !step)
- break;
-
- continue;
- }
-
- if (!base && !step)
- continue;
-
- if (!operand_equal_p (base, cand->iv->base, 0))
- continue;
-
- if (zero_p (cand->iv->step))
- {
- if (zero_p (step))
- break;
- }
- else
- {
- if (step && operand_equal_p (step, cand->iv->step, 0))
- break;
- }
- }
-
- if (i == n_iv_cands (data))
- {
- cand = XCNEW (struct iv_cand);
- cand->id = i;
-
- if (!base && !step)
- cand->iv = NULL;
- else
- cand->iv = alloc_iv (base, step);
-
- cand->pos = pos;
- if (pos != IP_ORIGINAL && cand->iv)
- {
- cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
- cand->var_after = cand->var_before;
- }
- cand->important = important;
- cand->incremented_at = incremented_at;
- VEC_safe_push (iv_cand_p, heap, data->iv_candidates, cand);
-
- if (step
- && TREE_CODE (step) != INTEGER_CST)
- {
- fd_ivopts_data = data;
- walk_tree (&step, find_depends, &cand->depends_on, NULL);
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_cand (dump_file, cand);
- }
-
- if (important && !cand->important)
- {
- cand->important = true;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Candidate %d is important\n", cand->id);
- }
-
- if (use)
- {
- bitmap_set_bit (use->related_cands, i);
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Candidate %d is related to use %d\n",
- cand->id, use->id);
- }
-
- return cand;
-}
-
-/* Returns true if incrementing the induction variable at the end of the LOOP
- is allowed.
-
- The purpose is to avoid splitting latch edge with a biv increment, thus
- creating a jump, possibly confusing other optimization passes and leaving
- less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
- is not available (so we do not have a better alternative), or if the latch
- edge is already nonempty. */
-
-static bool
-allow_ip_end_pos_p (struct loop *loop)
-{
- if (!ip_normal_pos (loop))
- return true;
-
- if (!empty_block_p (ip_end_pos (loop)))
- return true;
-
- return false;
-}
-
-/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
- position to POS. If USE is not NULL, the candidate is set as related to
- it. The candidate computation is scheduled on all available positions. */
-
-static void
-add_candidate (struct ivopts_data *data,
- tree base, tree step, bool important, struct iv_use *use)
-{
- if (ip_normal_pos (data->current_loop))
- add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL_TREE);
- if (ip_end_pos (data->current_loop)
- && allow_ip_end_pos_p (data->current_loop))
- add_candidate_1 (data, base, step, important, IP_END, use, NULL_TREE);
-}
-
-/* Add a standard "0 + 1 * iteration" iv candidate for a
- type with SIZE bits. */
-
-static void
-add_standard_iv_candidates_for_size (struct ivopts_data *data,
- unsigned int size)
-{
- tree type = lang_hooks.types.type_for_size (size, true);
- add_candidate (data, build_int_cst (type, 0), build_int_cst (type, 1),
- true, NULL);
-}
-
-/* Adds standard iv candidates. */
-
-static void
-add_standard_iv_candidates (struct ivopts_data *data)
-{
- add_standard_iv_candidates_for_size (data, INT_TYPE_SIZE);
-
- /* The same for a double-integer type if it is still fast enough. */
- if (BITS_PER_WORD >= INT_TYPE_SIZE * 2)
- add_standard_iv_candidates_for_size (data, INT_TYPE_SIZE * 2);
-}
-
-
-/* Adds candidates bases on the old induction variable IV. */
-
-static void
-add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
-{
- tree phi, def;
- struct iv_cand *cand;
-
- add_candidate (data, iv->base, iv->step, true, NULL);
-
- /* The same, but with initial value zero. */
- add_candidate (data,
- build_int_cst (TREE_TYPE (iv->base), 0),
- iv->step, true, NULL);
-
- phi = SSA_NAME_DEF_STMT (iv->ssa_name);
- if (TREE_CODE (phi) == PHI_NODE)
- {
- /* Additionally record the possibility of leaving the original iv
- untouched. */
- def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
- cand = add_candidate_1 (data,
- iv->base, iv->step, true, IP_ORIGINAL, NULL,
- SSA_NAME_DEF_STMT (def));
- cand->var_before = iv->ssa_name;
- cand->var_after = def;
- }
-}
-
-/* Adds candidates based on the old induction variables. */
-
-static void
-add_old_ivs_candidates (struct ivopts_data *data)
-{
- unsigned i;
- struct iv *iv;
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
- {
- iv = ver_info (data, i)->iv;
- if (iv && iv->biv_p && !zero_p (iv->step))
- add_old_iv_candidates (data, iv);
- }
-}
-
-/* Adds candidates based on the value of the induction variable IV and USE. */
-
-static void
-add_iv_value_candidates (struct ivopts_data *data,
- struct iv *iv, struct iv_use *use)
-{
- unsigned HOST_WIDE_INT offset;
- tree base;
-
- add_candidate (data, iv->base, iv->step, false, use);
-
- /* The same, but with initial value zero. Make such variable important,
- since it is generic enough so that possibly many uses may be based
- on it. */
- add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
- iv->step, true, use);
-
- /* Third, try removing the constant offset. */
- base = strip_offset (iv->base, &offset);
- if (offset)
- add_candidate (data, base, iv->step, false, use);
-}
-
-/* Adds candidates based on the uses. */
-
-static void
-add_derived_ivs_candidates (struct ivopts_data *data)
-{
- unsigned i;
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- struct iv_use *use = iv_use (data, i);
-
- if (!use)
- continue;
-
- switch (use->type)
- {
- case USE_NONLINEAR_EXPR:
- case USE_COMPARE:
- case USE_ADDRESS:
- /* Just add the ivs based on the value of the iv used here. */
- add_iv_value_candidates (data, use->iv, use);
- break;
-
- default:
- gcc_unreachable ();
- }
- }
-}
-
-/* Record important candidates and add them to related_cands bitmaps
- if needed. */
-
-static void
-record_important_candidates (struct ivopts_data *data)
-{
- unsigned i;
- struct iv_use *use;
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- struct iv_cand *cand = iv_cand (data, i);
-
- if (cand->important)
- bitmap_set_bit (data->important_candidates, i);
- }
-
- data->consider_all_candidates = (n_iv_cands (data)
- <= CONSIDER_ALL_CANDIDATES_BOUND);
-
- if (data->consider_all_candidates)
- {
- /* We will not need "related_cands" bitmaps in this case,
- so release them to decrease peak memory consumption. */
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
- BITMAP_FREE (use->related_cands);
- }
- }
- else
- {
- /* Add important candidates to the related_cands bitmaps. */
- for (i = 0; i < n_iv_uses (data); i++)
- bitmap_ior_into (iv_use (data, i)->related_cands,
- data->important_candidates);
- }
-}
-
-/* Finds the candidates for the induction variables. */
-
-static void
-find_iv_candidates (struct ivopts_data *data)
-{
- /* Add commonly used ivs. */
- add_standard_iv_candidates (data);
-
- /* Add old induction variables. */
- add_old_ivs_candidates (data);
-
- /* Add induction variables derived from uses. */
- add_derived_ivs_candidates (data);
-
- /* Record the important candidates. */
- record_important_candidates (data);
-}
-
-/* Allocates the data structure mapping the (use, candidate) pairs to costs.
- If consider_all_candidates is true, we use a two-dimensional array, otherwise
- we allocate a simple list to every use. */
-
-static void
-alloc_use_cost_map (struct ivopts_data *data)
-{
- unsigned i, size, s, j;
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- struct iv_use *use = iv_use (data, i);
- bitmap_iterator bi;
-
- if (data->consider_all_candidates)
- size = n_iv_cands (data);
- else
- {
- s = 0;
- EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
- {
- s++;
- }
-
- /* Round up to the power of two, so that moduling by it is fast. */
- for (size = 1; size < s; size <<= 1)
- continue;
- }
-
- use->n_map_members = size;
- use->cost_map = XCNEWVEC (struct cost_pair, size);
- }
-}
-
-/* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
- on invariants DEPENDS_ON and that the value used in expressing it
- is VALUE.*/
-
-static void
-set_use_iv_cost (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand, unsigned cost,
- bitmap depends_on, tree value)
-{
- unsigned i, s;
-
- if (cost == INFTY)
- {
- BITMAP_FREE (depends_on);
- return;
- }
-
- if (data->consider_all_candidates)
- {
- use->cost_map[cand->id].cand = cand;
- use->cost_map[cand->id].cost = cost;
- use->cost_map[cand->id].depends_on = depends_on;
- use->cost_map[cand->id].value = value;
- return;
- }
-
- /* n_map_members is a power of two, so this computes modulo. */
- s = cand->id & (use->n_map_members - 1);
- for (i = s; i < use->n_map_members; i++)
- if (!use->cost_map[i].cand)
- goto found;
- for (i = 0; i < s; i++)
- if (!use->cost_map[i].cand)
- goto found;
-
- gcc_unreachable ();
-
-found:
- use->cost_map[i].cand = cand;
- use->cost_map[i].cost = cost;
- use->cost_map[i].depends_on = depends_on;
- use->cost_map[i].value = value;
-}
-
-/* Gets cost of (USE, CANDIDATE) pair. */
-
-static struct cost_pair *
-get_use_iv_cost (struct ivopts_data *data, struct iv_use *use,
- struct iv_cand *cand)
-{
- unsigned i, s;
- struct cost_pair *ret;
-
- if (!cand)
- return NULL;
-
- if (data->consider_all_candidates)
- {
- ret = use->cost_map + cand->id;
- if (!ret->cand)
- return NULL;
-
- return ret;
- }
-
- /* n_map_members is a power of two, so this computes modulo. */
- s = cand->id & (use->n_map_members - 1);
- for (i = s; i < use->n_map_members; i++)
- if (use->cost_map[i].cand == cand)
- return use->cost_map + i;
-
- for (i = 0; i < s; i++)
- if (use->cost_map[i].cand == cand)
- return use->cost_map + i;
-
- return NULL;
-}
-
-/* Returns estimate on cost of computing SEQ. */
-
-static unsigned
-seq_cost (rtx seq)
-{
- unsigned cost = 0;
- rtx set;
-
- for (; seq; seq = NEXT_INSN (seq))
- {
- set = single_set (seq);
- if (set)
- cost += rtx_cost (set, SET);
- else
- cost++;
- }
-
- return cost;
-}
-
-/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
-static rtx
-produce_memory_decl_rtl (tree obj, int *regno)
-{
- rtx x;
-
- gcc_assert (obj);
- if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
- {
- const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
- x = gen_rtx_SYMBOL_REF (Pmode, name);
- }
- else
- x = gen_raw_REG (Pmode, (*regno)++);
-
- return gen_rtx_MEM (DECL_MODE (obj), x);
-}
-
-/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
- walk_tree. DATA contains the actual fake register number. */
-
-static tree
-prepare_decl_rtl (tree *expr_p, int *ws, void *data)
-{
- tree obj = NULL_TREE;
- rtx x = NULL_RTX;
- int *regno = data;
-
- switch (TREE_CODE (*expr_p))
- {
- case ADDR_EXPR:
- for (expr_p = &TREE_OPERAND (*expr_p, 0);
- handled_component_p (*expr_p);
- expr_p = &TREE_OPERAND (*expr_p, 0))
- continue;
- obj = *expr_p;
- if (DECL_P (obj) && !DECL_RTL_SET_P (obj))
- x = produce_memory_decl_rtl (obj, regno);
- break;
-
- case SSA_NAME:
- *ws = 0;
- obj = SSA_NAME_VAR (*expr_p);
- if (!DECL_RTL_SET_P (obj))
- x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
- break;
-
- case VAR_DECL:
- case PARM_DECL:
- case RESULT_DECL:
- *ws = 0;
- obj = *expr_p;
-
- if (DECL_RTL_SET_P (obj))
- break;
-
- if (DECL_MODE (obj) == BLKmode)
- x = produce_memory_decl_rtl (obj, regno);
- else
- x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
-
- break;
-
- default:
- break;
- }
-
- if (x)
- {
- VEC_safe_push (tree, heap, decl_rtl_to_reset, obj);
- SET_DECL_RTL (obj, x);
- }
-
- return NULL_TREE;
-}
-
-/* Determines cost of the computation of EXPR. */
-
-static unsigned
-computation_cost (tree expr)
-{
- rtx seq, rslt;
- tree type = TREE_TYPE (expr);
- unsigned cost;
- /* Avoid using hard regs in ways which may be unsupported. */
- int regno = LAST_VIRTUAL_REGISTER + 1;
-
- walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
- start_sequence ();
- rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
- seq = get_insns ();
- end_sequence ();
-
- cost = seq_cost (seq);
- if (MEM_P (rslt))
- cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type));
-
- return cost;
-}
-
-/* Returns variable containing the value of candidate CAND at statement AT. */
-
-static tree
-var_at_stmt (struct loop *loop, struct iv_cand *cand, tree stmt)
-{
- if (stmt_after_increment (loop, cand, stmt))
- return cand->var_after;
- else
- return cand->var_before;
-}
-
-/* Return the most significant (sign) bit of T. Similar to tree_int_cst_msb,
- but the bit is determined from TYPE_PRECISION, not MODE_BITSIZE. */
-
-int
-tree_int_cst_sign_bit (tree t)
-{
- unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
- unsigned HOST_WIDE_INT w;
-
- if (bitno < HOST_BITS_PER_WIDE_INT)
- w = TREE_INT_CST_LOW (t);
- else
- {
- w = TREE_INT_CST_HIGH (t);
- bitno -= HOST_BITS_PER_WIDE_INT;
- }
-
- return (w >> bitno) & 1;
-}
-
-/* If we can prove that TOP = cst * BOT for some constant cst,
- store cst to MUL and return true. Otherwise return false.
- The returned value is always sign-extended, regardless of the
- signedness of TOP and BOT. */
-
-static bool
-constant_multiple_of (tree top, tree bot, double_int *mul)
-{
- tree mby;
- enum tree_code code;
- double_int res, p0, p1;
- unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
-
- STRIP_NOPS (top);
- STRIP_NOPS (bot);
-
- if (operand_equal_p (top, bot, 0))
- {
- *mul = double_int_one;
- return true;
- }
-
- code = TREE_CODE (top);
- switch (code)
- {
- case MULT_EXPR:
- mby = TREE_OPERAND (top, 1);
- if (TREE_CODE (mby) != INTEGER_CST)
- return false;
-
- if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
- return false;
-
- *mul = double_int_sext (double_int_mul (res, tree_to_double_int (mby)),
- precision);
- return true;
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
- || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
- return false;
-
- if (code == MINUS_EXPR)
- p1 = double_int_neg (p1);
- *mul = double_int_sext (double_int_add (p0, p1), precision);
- return true;
-
- case INTEGER_CST:
- if (TREE_CODE (bot) != INTEGER_CST)
- return false;
-
- p0 = double_int_sext (tree_to_double_int (bot), precision);
- p1 = double_int_sext (tree_to_double_int (top), precision);
- if (double_int_zero_p (p1))
- return false;
- *mul = double_int_sext (double_int_sdivmod (p0, p1, FLOOR_DIV_EXPR, &res),
- precision);
- return double_int_zero_p (res);
-
- default:
- return false;
- }
-}
-
-/* Sets COMB to CST. */
-
-static void
-aff_combination_const (struct affine_tree_combination *comb, tree type,
- unsigned HOST_WIDE_INT cst)
-{
- unsigned prec = TYPE_PRECISION (type);
-
- comb->type = type;
- comb->mask = (((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1);
-
- comb->n = 0;
- comb->rest = NULL_TREE;
- comb->offset = cst & comb->mask;
-}
-
-/* Sets COMB to single element ELT. */
-
-static void
-aff_combination_elt (struct affine_tree_combination *comb, tree type, tree elt)
-{
- unsigned prec = TYPE_PRECISION (type);
-
- comb->type = type;
- comb->mask = (((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1);
-
- comb->n = 1;
- comb->elts[0] = elt;
- comb->coefs[0] = 1;
- comb->rest = NULL_TREE;
- comb->offset = 0;
-}
-
-/* Scales COMB by SCALE. */
-
-static void
-aff_combination_scale (struct affine_tree_combination *comb,
- unsigned HOST_WIDE_INT scale)
-{
- unsigned i, j;
-
- if (scale == 1)
- return;
-
- if (scale == 0)
- {
- aff_combination_const (comb, comb->type, 0);
- return;
- }
-
- comb->offset = (scale * comb->offset) & comb->mask;
- for (i = 0, j = 0; i < comb->n; i++)
- {
- comb->coefs[j] = (scale * comb->coefs[i]) & comb->mask;
- comb->elts[j] = comb->elts[i];
- if (comb->coefs[j] != 0)
- j++;
- }
- comb->n = j;
-
- if (comb->rest)
- {
- if (comb->n < MAX_AFF_ELTS)
- {
- comb->coefs[comb->n] = scale;
- comb->elts[comb->n] = comb->rest;
- comb->rest = NULL_TREE;
- comb->n++;
- }
- else
- comb->rest = fold_build2 (MULT_EXPR, comb->type, comb->rest,
- build_int_cst_type (comb->type, scale));
- }
-}
-
-/* Adds ELT * SCALE to COMB. */
-
-static void
-aff_combination_add_elt (struct affine_tree_combination *comb, tree elt,
- unsigned HOST_WIDE_INT scale)
-{
- unsigned i;
-
- if (scale == 0)
- return;
-
- for (i = 0; i < comb->n; i++)
- if (operand_equal_p (comb->elts[i], elt, 0))
- {
- comb->coefs[i] = (comb->coefs[i] + scale) & comb->mask;
- if (comb->coefs[i])
- return;
-
- comb->n--;
- comb->coefs[i] = comb->coefs[comb->n];
- comb->elts[i] = comb->elts[comb->n];
-
- if (comb->rest)
- {
- gcc_assert (comb->n == MAX_AFF_ELTS - 1);
- comb->coefs[comb->n] = 1;
- comb->elts[comb->n] = comb->rest;
- comb->rest = NULL_TREE;
- comb->n++;
- }
- return;
- }
- if (comb->n < MAX_AFF_ELTS)
- {
- comb->coefs[comb->n] = scale;
- comb->elts[comb->n] = elt;
- comb->n++;
- return;
- }
-
- if (scale == 1)
- elt = fold_convert (comb->type, elt);
- else
- elt = fold_build2 (MULT_EXPR, comb->type,
- fold_convert (comb->type, elt),
- build_int_cst_type (comb->type, scale));
-
- if (comb->rest)
- comb->rest = fold_build2 (PLUS_EXPR, comb->type, comb->rest, elt);
- else
- comb->rest = elt;
-}
-
-/* Adds COMB2 to COMB1. */
-
-static void
-aff_combination_add (struct affine_tree_combination *comb1,
- struct affine_tree_combination *comb2)
-{
- unsigned i;
-
- comb1->offset = (comb1->offset + comb2->offset) & comb1->mask;
- for (i = 0; i < comb2->n; i++)
- aff_combination_add_elt (comb1, comb2->elts[i], comb2->coefs[i]);
- if (comb2->rest)
- aff_combination_add_elt (comb1, comb2->rest, 1);
-}
-
-/* Convert COMB to TYPE. */
-
-static void
-aff_combination_convert (tree type, struct affine_tree_combination *comb)
-{
- unsigned prec = TYPE_PRECISION (type);
- unsigned i;
-
- /* If the precision of both types is the same, it suffices to change the type
- of the whole combination -- the elements are allowed to have another type
- equivalent wrto STRIP_NOPS. */
- if (prec == TYPE_PRECISION (comb->type))
- {
- comb->type = type;
- return;
- }
-
- comb->mask = (((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1);
- comb->offset = comb->offset & comb->mask;
-
- /* The type of the elements can be different from comb->type only as
- much as what STRIP_NOPS would remove. We can just directly cast
- to TYPE. */
- for (i = 0; i < comb->n; i++)
- comb->elts[i] = fold_convert (type, comb->elts[i]);
- if (comb->rest)
- comb->rest = fold_convert (type, comb->rest);
-
- comb->type = type;
-}
-
-/* Splits EXPR into an affine combination of parts. */
-
-static void
-tree_to_aff_combination (tree expr, tree type,
- struct affine_tree_combination *comb)
-{
- struct affine_tree_combination tmp;
- enum tree_code code;
- tree cst, core, toffset;
- HOST_WIDE_INT bitpos, bitsize;
- enum machine_mode mode;
- int unsignedp, volatilep;
-
- STRIP_NOPS (expr);
-
- code = TREE_CODE (expr);
- switch (code)
- {
- case INTEGER_CST:
- aff_combination_const (comb, type, int_cst_value (expr));
- return;
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
- tree_to_aff_combination (TREE_OPERAND (expr, 1), type, &tmp);
- if (code == MINUS_EXPR)
- aff_combination_scale (&tmp, -1);
- aff_combination_add (comb, &tmp);
- return;
-
- case MULT_EXPR:
- cst = TREE_OPERAND (expr, 1);
- if (TREE_CODE (cst) != INTEGER_CST)
- break;
- tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
- aff_combination_scale (comb, int_cst_value (cst));
- return;
-
- case NEGATE_EXPR:
- tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
- aff_combination_scale (comb, -1);
- return;
-
- case ADDR_EXPR:
- core = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos,
- &toffset, &mode, &unsignedp, &volatilep,
- false);
- if (bitpos % BITS_PER_UNIT != 0)
- break;
- aff_combination_const (comb, type, bitpos / BITS_PER_UNIT);
- core = build_fold_addr_expr (core);
- if (TREE_CODE (core) == ADDR_EXPR)
- aff_combination_add_elt (comb, core, 1);
- else
- {
- tree_to_aff_combination (core, type, &tmp);
- aff_combination_add (comb, &tmp);
- }
- if (toffset)
- {
- tree_to_aff_combination (toffset, type, &tmp);
- aff_combination_add (comb, &tmp);
- }
- return;
-
- default:
- break;
- }
-
- aff_combination_elt (comb, type, expr);
-}
-
-/* Creates EXPR + ELT * SCALE in TYPE. MASK is the mask for width of TYPE. */
-
-static tree
-add_elt_to_tree (tree expr, tree type, tree elt, unsigned HOST_WIDE_INT scale,
- unsigned HOST_WIDE_INT mask)
-{
- enum tree_code code;
-
- scale &= mask;
- elt = fold_convert (type, elt);
-
- if (scale == 1)
- {
- if (!expr)
- return elt;
-
- return fold_build2 (PLUS_EXPR, type, expr, elt);
- }
-
- if (scale == mask)
- {
- if (!expr)
- return fold_build1 (NEGATE_EXPR, type, elt);
-
- return fold_build2 (MINUS_EXPR, type, expr, elt);
- }
-
- if (!expr)
- return fold_build2 (MULT_EXPR, type, elt,
- build_int_cst_type (type, scale));
-
- if ((scale | (mask >> 1)) == mask)
- {
- /* Scale is negative. */
- code = MINUS_EXPR;
- scale = (-scale) & mask;
- }
- else
- code = PLUS_EXPR;
-
- elt = fold_build2 (MULT_EXPR, type, elt,
- build_int_cst_type (type, scale));
- return fold_build2 (code, type, expr, elt);
-}
-
-/* Copies the tree elements of COMB to ensure that they are not shared. */
-
-static void
-unshare_aff_combination (struct affine_tree_combination *comb)
-{
- unsigned i;
-
- for (i = 0; i < comb->n; i++)
- comb->elts[i] = unshare_expr (comb->elts[i]);
- if (comb->rest)
- comb->rest = unshare_expr (comb->rest);
-}
-
-/* Makes tree from the affine combination COMB. */
-
-static tree
-aff_combination_to_tree (struct affine_tree_combination *comb)
-{
- tree type = comb->type;
- tree expr = comb->rest;
- unsigned i;
- unsigned HOST_WIDE_INT off, sgn;
-
- if (comb->n == 0 && comb->offset == 0)
- {
- if (expr)
- {
- /* Handle the special case produced by get_computation_aff when
- the type does not fit in HOST_WIDE_INT. */
- return fold_convert (type, expr);
- }
- else
- return build_int_cst (type, 0);
- }
-
- gcc_assert (comb->n == MAX_AFF_ELTS || comb->rest == NULL_TREE);
-
- for (i = 0; i < comb->n; i++)
- expr = add_elt_to_tree (expr, type, comb->elts[i], comb->coefs[i],
- comb->mask);
-
- /* APPLE LOCAL begin 6755006 */
- if (( ! TYPE_UNSIGNED (comb->type))
- && ((comb->offset | (comb->mask >> 1)) == comb->mask))
- /* APPLE LOCAL end 6755006 */
- {
- /* Offset is negative. */
- off = (-comb->offset) & comb->mask;
- sgn = comb->mask;
- }
- else
- {
- off = comb->offset;
- sgn = 1;
- }
- return add_elt_to_tree (expr, type, build_int_cst_type (type, off), sgn,
- comb->mask);
-}
-
-/* Folds EXPR using the affine expressions framework. */
-
-static tree
-fold_affine_expr (tree expr)
-{
- tree type = TREE_TYPE (expr);
- struct affine_tree_combination comb;
-
- if (TYPE_PRECISION (type) > HOST_BITS_PER_WIDE_INT)
- return expr;
-
- tree_to_aff_combination (expr, type, &comb);
- return aff_combination_to_tree (&comb);
-}
-
-/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
- same precision that is at least as wide as the precision of TYPE, stores
- BA to A and BB to B, and returns the type of BA. Otherwise, returns the
- type of A and B. */
-
-static tree
-determine_common_wider_type (tree *a, tree *b)
-{
- tree wider_type = NULL;
- tree suba, subb;
- tree atype = TREE_TYPE (*a);
-
- if ((TREE_CODE (*a) == NOP_EXPR
- || TREE_CODE (*a) == CONVERT_EXPR))
- {
- suba = TREE_OPERAND (*a, 0);
- wider_type = TREE_TYPE (suba);
- if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
- return atype;
- }
- else
- return atype;
-
- if ((TREE_CODE (*b) == NOP_EXPR
- || TREE_CODE (*b) == CONVERT_EXPR))
- {
- subb = TREE_OPERAND (*b, 0);
- if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
- return atype;
- }
- else
- return atype;
-
- *a = suba;
- *b = subb;
- return wider_type;
-}
-
-/* Determines the expression by that USE is expressed from induction variable
- CAND at statement AT in LOOP. The expression is stored in a decomposed
- form into AFF. Returns false if USE cannot be expressed using CAND. */
-
-static bool
-get_computation_aff (struct loop *loop,
- struct iv_use *use, struct iv_cand *cand, tree at,
- struct affine_tree_combination *aff)
-{
- tree ubase = use->iv->base;
- tree ustep = use->iv->step;
- tree cbase = cand->iv->base;
- tree cstep = cand->iv->step;
- tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
- tree common_type;
- tree uutype;
- tree expr, delta;
- tree ratio;
- unsigned HOST_WIDE_INT ustepi, cstepi;
- HOST_WIDE_INT ratioi;
- struct affine_tree_combination cbase_aff, expr_aff;
- tree cstep_orig = cstep, ustep_orig = ustep;
- double_int rat;
-
- if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
- {
- /* We do not have a precision to express the values of use. */
- return false;
- }
-
- expr = var_at_stmt (loop, cand, at);
-
- if (TREE_TYPE (expr) != ctype)
- {
- /* This may happen with the original ivs. */
- expr = fold_convert (ctype, expr);
- }
-
- if (TYPE_UNSIGNED (utype))
- uutype = utype;
- else
- {
- uutype = unsigned_type_for (utype);
- ubase = fold_convert (uutype, ubase);
- ustep = fold_convert (uutype, ustep);
- }
-
- if (uutype != ctype)
- {
- expr = fold_convert (uutype, expr);
- cbase = fold_convert (uutype, cbase);
- cstep = fold_convert (uutype, cstep);
-
- /* If the conversion is not noop, we must take it into account when
- considering the value of the step. */
- if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
- cstep_orig = cstep;
- }
-
- if (cst_and_fits_in_hwi (cstep_orig)
- && cst_and_fits_in_hwi (ustep_orig))
- {
- ustepi = int_cst_value (ustep_orig);
- cstepi = int_cst_value (cstep_orig);
-
- if (!divide (TYPE_PRECISION (uutype), ustepi, cstepi, &ratioi))
- {
- /* TODO maybe consider case when ustep divides cstep and the ratio is
- a power of 2 (so that the division is fast to execute)? We would
- need to be much more careful with overflows etc. then. */
- return false;
- }
-
- ratio = build_int_cst_type (uutype, ratioi);
- }
- else
- {
- if (!constant_multiple_of (ustep_orig, cstep_orig, &rat))
- return false;
- ratio = double_int_to_tree (uutype, rat);
-
- /* Ratioi is only used to detect special cases when the multiplicative
- factor is 1 or -1, so if rat does not fit to HOST_WIDE_INT, we may
- set it to 0. */
- if (double_int_fits_in_shwi_p (rat))
- ratioi = double_int_to_shwi (rat);
- else
- ratioi = 0;
- }
-
- /* In case both UBASE and CBASE are shortened to UUTYPE from some common
- type, we achieve better folding by computing their difference in this
- wider type, and cast the result to UUTYPE. We do not need to worry about
- overflows, as all the arithmetics will in the end be performed in UUTYPE
- anyway. */
- common_type = determine_common_wider_type (&ubase, &cbase);
-
- /* We may need to shift the value if we are after the increment. */
- if (stmt_after_increment (loop, cand, at))
- {
- if (uutype != common_type)
- cstep = fold_convert (common_type, cstep);
- cbase = fold_build2 (PLUS_EXPR, common_type, cbase, cstep);
- }
-
- /* use = ubase - ratio * cbase + ratio * var.
-
- In general case ubase + ratio * (var - cbase) could be better (one less
- multiplication), but often it is possible to eliminate redundant parts
- of computations from (ubase - ratio * cbase) term, and if it does not
- happen, fold is able to apply the distributive law to obtain this form
- anyway. */
-
- if (TYPE_PRECISION (common_type) > HOST_BITS_PER_WIDE_INT)
- {
- /* Let's compute in trees and just return the result in AFF. This case
- should not be very common, and fold itself is not that bad either,
- so making the aff. functions more complicated to handle this case
- is not that urgent. */
- if (ratioi == 1)
- {
- delta = fold_build2 (MINUS_EXPR, common_type, ubase, cbase);
- if (uutype != common_type)
- delta = fold_convert (uutype, delta);
- expr = fold_build2 (PLUS_EXPR, uutype, expr, delta);
- }
- else if (ratioi == -1)
- {
- delta = fold_build2 (PLUS_EXPR, common_type, ubase, cbase);
- if (uutype != common_type)
- delta = fold_convert (uutype, delta);
- expr = fold_build2 (MINUS_EXPR, uutype, delta, expr);
- }
- else
- {
- delta = fold_build2 (MULT_EXPR, common_type, cbase, ratio);
- delta = fold_build2 (MINUS_EXPR, common_type, ubase, delta);
- if (uutype != common_type)
- delta = fold_convert (uutype, delta);
- expr = fold_build2 (MULT_EXPR, uutype, ratio, expr);
- expr = fold_build2 (PLUS_EXPR, uutype, delta, expr);
- }
-
- aff->type = uutype;
- aff->n = 0;
- aff->offset = 0;
- aff->mask = 0;
- aff->rest = expr;
- return true;
- }
-
- /* If we got here, the types fits in HOST_WIDE_INT, thus it must be
- possible to compute ratioi. */
- gcc_assert (ratioi);
-
- tree_to_aff_combination (ubase, common_type, aff);
- tree_to_aff_combination (cbase, common_type, &cbase_aff);
- tree_to_aff_combination (expr, uutype, &expr_aff);
- aff_combination_scale (&cbase_aff, -ratioi);
- aff_combination_scale (&expr_aff, ratioi);
- aff_combination_add (aff, &cbase_aff);
- if (common_type != uutype)
- aff_combination_convert (uutype, aff);
- aff_combination_add (aff, &expr_aff);
-
- return true;
-}
-
-/* Determines the expression by that USE is expressed from induction variable
- CAND at statement AT in LOOP. The computation is unshared. */
-
-static tree
-get_computation_at (struct loop *loop,
- struct iv_use *use, struct iv_cand *cand, tree at)
-{
- struct affine_tree_combination aff;
- tree type = TREE_TYPE (use->iv->base);
-
- if (!get_computation_aff (loop, use, cand, at, &aff))
- return NULL_TREE;
- unshare_aff_combination (&aff);
- return fold_convert (type, aff_combination_to_tree (&aff));
-}
-
-/* Determines the expression by that USE is expressed from induction variable
- CAND in LOOP. The computation is unshared. */
-
-static tree
-get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
-{
- return get_computation_at (loop, use, cand, use->stmt);
-}
-
-/* Returns cost of addition in MODE. */
-
-static unsigned
-add_cost (enum machine_mode mode)
-{
- static unsigned costs[NUM_MACHINE_MODES];
- rtx seq;
- unsigned cost;
-
- if (costs[mode])
- return costs[mode];
-
- start_sequence ();
- force_operand (gen_rtx_fmt_ee (PLUS, mode,
- gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1),
- gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 2)),
- NULL_RTX);
- seq = get_insns ();
- end_sequence ();
-
- cost = seq_cost (seq);
- if (!cost)
- cost = 1;
-
- costs[mode] = cost;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Addition in %s costs %d\n",
- GET_MODE_NAME (mode), cost);
- return cost;
-}
-
-/* Entry in a hashtable of already known costs for multiplication. */
-struct mbc_entry
-{
- HOST_WIDE_INT cst; /* The constant to multiply by. */
- enum machine_mode mode; /* In mode. */
- unsigned cost; /* The cost. */
-};
-
-/* Counts hash value for the ENTRY. */
-
-static hashval_t
-mbc_entry_hash (const void *entry)
-{
- const struct mbc_entry *e = entry;
-
- return 57 * (hashval_t) e->mode + (hashval_t) (e->cst % 877);
-}
-
-/* Compares the hash table entries ENTRY1 and ENTRY2. */
-
-static int
-mbc_entry_eq (const void *entry1, const void *entry2)
-{
- const struct mbc_entry *e1 = entry1;
- const struct mbc_entry *e2 = entry2;
-
- return (e1->mode == e2->mode
- && e1->cst == e2->cst);
-}
-
-/* Returns cost of multiplication by constant CST in MODE. */
-
-unsigned
-multiply_by_cost (HOST_WIDE_INT cst, enum machine_mode mode)
-{
- static htab_t costs;
- struct mbc_entry **cached, act;
- rtx seq;
- unsigned cost;
-
- if (!costs)
- costs = htab_create (100, mbc_entry_hash, mbc_entry_eq, free);
-
- act.mode = mode;
- act.cst = cst;
- cached = (struct mbc_entry **) htab_find_slot (costs, &act, INSERT);
- if (*cached)
- return (*cached)->cost;
-
- *cached = XNEW (struct mbc_entry);
- (*cached)->mode = mode;
- (*cached)->cst = cst;
-
- start_sequence ();
- expand_mult (mode, gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1),
- gen_int_mode (cst, mode), NULL_RTX, 0);
- seq = get_insns ();
- end_sequence ();
-
- cost = seq_cost (seq);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Multiplication by %d in %s costs %d\n",
- (int) cst, GET_MODE_NAME (mode), cost);
-
- (*cached)->cost = cost;
-
- return cost;
-}
-
-/* Returns true if multiplying by RATIO is allowed in address. */
-
-bool
-multiplier_allowed_in_address_p (HOST_WIDE_INT ratio)
-{
-#define MAX_RATIO 128
- static sbitmap valid_mult;
-
- if (!valid_mult)
- {
- rtx reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
- rtx addr;
- HOST_WIDE_INT i;
-
- valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
- sbitmap_zero (valid_mult);
- addr = gen_rtx_fmt_ee (MULT, Pmode, reg1, NULL_RTX);
- for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
- {
- XEXP (addr, 1) = gen_int_mode (i, Pmode);
- if (memory_address_p (Pmode, addr))
- SET_BIT (valid_mult, i + MAX_RATIO);
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " allowed multipliers:");
- for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
- if (TEST_BIT (valid_mult, i + MAX_RATIO))
- fprintf (dump_file, " %d", (int) i);
- fprintf (dump_file, "\n");
- fprintf (dump_file, "\n");
- }
- }
-
- if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
- return false;
-
- return TEST_BIT (valid_mult, ratio + MAX_RATIO);
-}
-
-/* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
- If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
- variable is omitted. The created memory accesses MODE.
-
- TODO -- there must be some better way. This all is quite crude. */
-
-static unsigned
-get_address_cost (bool symbol_present, bool var_present,
- unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio)
-{
- static bool initialized = false;
- static HOST_WIDE_INT rat, off;
- static HOST_WIDE_INT min_offset, max_offset;
- static unsigned costs[2][2][2][2];
- unsigned cost, acost;
- bool offset_p, ratio_p;
- HOST_WIDE_INT s_offset;
- unsigned HOST_WIDE_INT mask;
- unsigned bits;
-
- if (!initialized)
- {
- HOST_WIDE_INT i;
- int old_cse_not_expected;
- unsigned sym_p, var_p, off_p, rat_p, add_c;
- rtx seq, addr, base;
- rtx reg0, reg1;
-
- initialized = true;
-
- reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
-
- addr = gen_rtx_fmt_ee (PLUS, Pmode, reg1, NULL_RTX);
- for (i = 1; i <= 1 << 20; i <<= 1)
- {
- XEXP (addr, 1) = gen_int_mode (i, Pmode);
- if (!memory_address_p (Pmode, addr))
- break;
- }
- max_offset = i >> 1;
- off = max_offset;
-
- for (i = 1; i <= 1 << 20; i <<= 1)
- {
- XEXP (addr, 1) = gen_int_mode (-i, Pmode);
- if (!memory_address_p (Pmode, addr))
- break;
- }
- min_offset = -(i >> 1);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "get_address_cost:\n");
- fprintf (dump_file, " min offset %d\n", (int) min_offset);
- fprintf (dump_file, " max offset %d\n", (int) max_offset);
- }
-
- rat = 1;
- for (i = 2; i <= MAX_RATIO; i++)
- if (multiplier_allowed_in_address_p (i))
- {
- rat = i;
- break;
- }
-
- /* Compute the cost of various addressing modes. */
- acost = 0;
- reg0 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
- reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 2);
-
- for (i = 0; i < 16; i++)
- {
- sym_p = i & 1;
- var_p = (i >> 1) & 1;
- off_p = (i >> 2) & 1;
- rat_p = (i >> 3) & 1;
-
- addr = reg0;
- if (rat_p)
- addr = gen_rtx_fmt_ee (MULT, Pmode, addr, gen_int_mode (rat, Pmode));
-
- if (var_p)
- addr = gen_rtx_fmt_ee (PLUS, Pmode, addr, reg1);
-
- if (sym_p)
- {
- base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (""));
- if (off_p)
- base = gen_rtx_fmt_e (CONST, Pmode,
- gen_rtx_fmt_ee (PLUS, Pmode,
- base,
- gen_int_mode (off, Pmode)));
- }
- else if (off_p)
- base = gen_int_mode (off, Pmode);
- else
- base = NULL_RTX;
-
- if (base)
- addr = gen_rtx_fmt_ee (PLUS, Pmode, addr, base);
-
- start_sequence ();
- /* To avoid splitting addressing modes, pretend that no cse will
- follow. */
- old_cse_not_expected = cse_not_expected;
- cse_not_expected = true;
- addr = memory_address (Pmode, addr);
- cse_not_expected = old_cse_not_expected;
- seq = get_insns ();
- end_sequence ();
-
- acost = seq_cost (seq);
- acost += address_cost (addr, Pmode);
-
- if (!acost)
- acost = 1;
- costs[sym_p][var_p][off_p][rat_p] = acost;
- }
-
- /* On some targets, it is quite expensive to load symbol to a register,
- which makes addresses that contain symbols look much more expensive.
- However, the symbol will have to be loaded in any case before the
- loop (and quite likely we have it in register already), so it does not
- make much sense to penalize them too heavily. So make some final
- tweaks for the SYMBOL_PRESENT modes:
-
- If VAR_PRESENT is false, and the mode obtained by changing symbol to
- var is cheaper, use this mode with small penalty.
- If VAR_PRESENT is true, try whether the mode with
- SYMBOL_PRESENT = false is cheaper even with cost of addition, and
- if this is the case, use it. */
- add_c = add_cost (Pmode);
- for (i = 0; i < 8; i++)
- {
- var_p = i & 1;
- off_p = (i >> 1) & 1;
- rat_p = (i >> 2) & 1;
-
- acost = costs[0][1][off_p][rat_p] + 1;
- if (var_p)
- acost += add_c;
-
- if (acost < costs[1][var_p][off_p][rat_p])
- costs[1][var_p][off_p][rat_p] = acost;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Address costs:\n");
-
- for (i = 0; i < 16; i++)
- {
- sym_p = i & 1;
- var_p = (i >> 1) & 1;
- off_p = (i >> 2) & 1;
- rat_p = (i >> 3) & 1;
-
- fprintf (dump_file, " ");
- if (sym_p)
- fprintf (dump_file, "sym + ");
- if (var_p)
- fprintf (dump_file, "var + ");
- if (off_p)
- fprintf (dump_file, "cst + ");
- if (rat_p)
- fprintf (dump_file, "rat * ");
-
- acost = costs[sym_p][var_p][off_p][rat_p];
- fprintf (dump_file, "index costs %d\n", acost);
- }
- fprintf (dump_file, "\n");
- }
- }
-
- bits = GET_MODE_BITSIZE (Pmode);
- mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
- offset &= mask;
- if ((offset >> (bits - 1) & 1))
- offset |= ~mask;
- s_offset = offset;
-
- cost = 0;
- offset_p = (s_offset != 0
- && min_offset <= s_offset && s_offset <= max_offset);
- ratio_p = (ratio != 1
- && multiplier_allowed_in_address_p (ratio));
-
- if (ratio != 1 && !ratio_p)
- cost += multiply_by_cost (ratio, Pmode);
-
- if (s_offset && !offset_p && !symbol_present)
- {
- cost += add_cost (Pmode);
- var_present = true;
- }
-
- acost = costs[symbol_present][var_present][offset_p][ratio_p];
- return cost + acost;
-}
-
-/* Estimates cost of forcing expression EXPR into a variable. */
-
-unsigned
-force_expr_to_var_cost (tree expr)
-{
- static bool costs_initialized = false;
- static unsigned integer_cost;
- static unsigned symbol_cost;
- static unsigned address_cost;
- tree op0, op1;
- unsigned cost0, cost1, cost;
- enum machine_mode mode;
-
- if (!costs_initialized)
- {
- tree var = create_tmp_var_raw (integer_type_node, "test_var");
- rtx x = gen_rtx_MEM (DECL_MODE (var),
- gen_rtx_SYMBOL_REF (Pmode, "test_var"));
- tree addr;
- tree type = build_pointer_type (integer_type_node);
-
- integer_cost = computation_cost (build_int_cst (integer_type_node,
- 2000));
-
- SET_DECL_RTL (var, x);
- TREE_STATIC (var) = 1;
- addr = build1 (ADDR_EXPR, type, var);
- symbol_cost = computation_cost (addr) + 1;
-
- address_cost
- = computation_cost (build2 (PLUS_EXPR, type,
- addr,
- build_int_cst (type, 2000))) + 1;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "force_expr_to_var_cost:\n");
- fprintf (dump_file, " integer %d\n", (int) integer_cost);
- fprintf (dump_file, " symbol %d\n", (int) symbol_cost);
- fprintf (dump_file, " address %d\n", (int) address_cost);
- fprintf (dump_file, " other %d\n", (int) target_spill_cost);
- fprintf (dump_file, "\n");
- }
-
- costs_initialized = true;
- }
-
- STRIP_NOPS (expr);
-
- if (SSA_VAR_P (expr))
- return 0;
-
- if (TREE_INVARIANT (expr))
- {
- if (TREE_CODE (expr) == INTEGER_CST)
- return integer_cost;
-
- if (TREE_CODE (expr) == ADDR_EXPR)
- {
- tree obj = TREE_OPERAND (expr, 0);
-
- if (TREE_CODE (obj) == VAR_DECL
- || TREE_CODE (obj) == PARM_DECL
- || TREE_CODE (obj) == RESULT_DECL)
- return symbol_cost;
- }
-
- return address_cost;
- }
-
- switch (TREE_CODE (expr))
- {
- case PLUS_EXPR:
- case MINUS_EXPR:
- case MULT_EXPR:
- op0 = TREE_OPERAND (expr, 0);
- op1 = TREE_OPERAND (expr, 1);
- STRIP_NOPS (op0);
- STRIP_NOPS (op1);
-
- if (is_gimple_val (op0))
- cost0 = 0;
- else
- cost0 = force_expr_to_var_cost (op0);
-
- if (is_gimple_val (op1))
- cost1 = 0;
- else
- cost1 = force_expr_to_var_cost (op1);
-
- break;
-
- default:
- /* Just an arbitrary value, FIXME. */
- return target_spill_cost;
- }
-
- mode = TYPE_MODE (TREE_TYPE (expr));
- switch (TREE_CODE (expr))
- {
- case PLUS_EXPR:
- case MINUS_EXPR:
- cost = add_cost (mode);
- break;
-
- case MULT_EXPR:
- if (cst_and_fits_in_hwi (op0))
- cost = multiply_by_cost (int_cst_value (op0), mode);
- else if (cst_and_fits_in_hwi (op1))
- cost = multiply_by_cost (int_cst_value (op1), mode);
- else
- return target_spill_cost;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- cost += cost0;
- cost += cost1;
-
- /* Bound the cost by target_spill_cost. The parts of complicated
- computations often are either loop invariant or at least can
- be shared between several iv uses, so letting this grow without
- limits would not give reasonable results. */
- return cost < target_spill_cost ? cost : target_spill_cost;
-}
-
-/* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
- invariants the computation depends on. */
-
-static unsigned
-force_var_cost (struct ivopts_data *data,
- tree expr, bitmap *depends_on)
-{
- if (depends_on)
- {
- fd_ivopts_data = data;
- walk_tree (&expr, find_depends, depends_on, NULL);
- }
-
- return force_expr_to_var_cost (expr);
-}
-
-/* Estimates cost of expressing address ADDR as var + symbol + offset. The
- value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
- to false if the corresponding part is missing. DEPENDS_ON is a set of the
- invariants the computation depends on. */
-
-static unsigned
-split_address_cost (struct ivopts_data *data,
- tree addr, bool *symbol_present, bool *var_present,
- unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
-{
- tree core;
- HOST_WIDE_INT bitsize;
- HOST_WIDE_INT bitpos;
- tree toffset;
- enum machine_mode mode;
- int unsignedp, volatilep;
-
- core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
- &unsignedp, &volatilep, false);
-
- if (toffset != 0
- || bitpos % BITS_PER_UNIT != 0
- || TREE_CODE (core) != VAR_DECL)
- {
- *symbol_present = false;
- *var_present = true;
- fd_ivopts_data = data;
- walk_tree (&addr, find_depends, depends_on, NULL);
- return target_spill_cost;
- }
-
- *offset += bitpos / BITS_PER_UNIT;
- if (TREE_STATIC (core)
- || DECL_EXTERNAL (core))
- {
- *symbol_present = true;
- *var_present = false;
- return 0;
- }
-
- *symbol_present = false;
- *var_present = true;
- return 0;
-}
-
-/* Estimates cost of expressing difference of addresses E1 - E2 as
- var + symbol + offset. The value of offset is added to OFFSET,
- SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
- part is missing. DEPENDS_ON is a set of the invariants the computation
- depends on. */
-
-static unsigned
-ptr_difference_cost (struct ivopts_data *data,
- tree e1, tree e2, bool *symbol_present, bool *var_present,
- unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
-{
- HOST_WIDE_INT diff = 0;
- unsigned cost;
-
- gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
-
- if (ptr_difference_const (e1, e2, &diff))
- {
- *offset += diff;
- *symbol_present = false;
- *var_present = false;
- return 0;
- }
-
- if (e2 == integer_zero_node)
- return split_address_cost (data, TREE_OPERAND (e1, 0),
- symbol_present, var_present, offset, depends_on);
-
- *symbol_present = false;
- *var_present = true;
-
- cost = force_var_cost (data, e1, depends_on);
- cost += force_var_cost (data, e2, depends_on);
- cost += add_cost (Pmode);
-
- return cost;
-}
-
-/* Estimates cost of expressing difference E1 - E2 as
- var + symbol + offset. The value of offset is added to OFFSET,
- SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
- part is missing. DEPENDS_ON is a set of the invariants the computation
- depends on. */
-
-static unsigned
-difference_cost (struct ivopts_data *data,
- tree e1, tree e2, bool *symbol_present, bool *var_present,
- unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
-{
- unsigned cost;
- enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
- unsigned HOST_WIDE_INT off1, off2;
-
- e1 = strip_offset (e1, &off1);
- e2 = strip_offset (e2, &off2);
- *offset += off1 - off2;
-
- STRIP_NOPS (e1);
- STRIP_NOPS (e2);
-
- if (TREE_CODE (e1) == ADDR_EXPR)
- return ptr_difference_cost (data, e1, e2, symbol_present, var_present, offset,
- depends_on);
- *symbol_present = false;
-
- if (operand_equal_p (e1, e2, 0))
- {
- *var_present = false;
- return 0;
- }
- *var_present = true;
- if (zero_p (e2))
- return force_var_cost (data, e1, depends_on);
-
- if (zero_p (e1))
- {
- cost = force_var_cost (data, e2, depends_on);
- cost += multiply_by_cost (-1, mode);
-
- return cost;
- }
-
- cost = force_var_cost (data, e1, depends_on);
- cost += force_var_cost (data, e2, depends_on);
- cost += add_cost (mode);
-
- return cost;
-}
-
-/* Determines the cost of the computation by that USE is expressed
- from induction variable CAND. If ADDRESS_P is true, we just need
- to create an address from it, otherwise we want to get it into
- register. A set of invariants we depend on is stored in
- DEPENDS_ON. AT is the statement at that the value is computed. */
-
-static unsigned
-get_computation_cost_at (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand,
- bool address_p, bitmap *depends_on, tree at)
-{
- tree ubase = use->iv->base, ustep = use->iv->step;
- tree cbase, cstep;
- tree utype = TREE_TYPE (ubase), ctype;
- unsigned HOST_WIDE_INT ustepi, cstepi, offset = 0;
- HOST_WIDE_INT ratio, aratio;
- bool var_present, symbol_present;
- unsigned cost = 0, n_sums;
-
- *depends_on = NULL;
-
- /* Only consider real candidates. */
- if (!cand->iv)
- return INFTY;
-
- cbase = cand->iv->base;
- cstep = cand->iv->step;
- ctype = TREE_TYPE (cbase);
-
- if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
- {
- /* We do not have a precision to express the values of use. */
- return INFTY;
- }
-
- if (address_p)
- {
- /* Do not try to express address of an object with computation based
- on address of a different object. This may cause problems in rtl
- level alias analysis (that does not expect this to be happening,
- as this is illegal in C), and would be unlikely to be useful
- anyway. */
- if (use->iv->base_object
- && cand->iv->base_object
- && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
- return INFTY;
- }
-
- if (TYPE_PRECISION (utype) != TYPE_PRECISION (ctype))
- {
- /* TODO -- add direct handling of this case. */
- goto fallback;
- }
-
- /* CSTEPI is removed from the offset in case statement is after the
- increment. If the step is not constant, we use zero instead.
- This is a bit imprecise (there is the extra addition), but
- redundancy elimination is likely to transform the code so that
- it uses value of the variable before increment anyway,
- so it is not that much unrealistic. */
- if (cst_and_fits_in_hwi (cstep))
- cstepi = int_cst_value (cstep);
- else
- cstepi = 0;
-
- if (cst_and_fits_in_hwi (ustep)
- && cst_and_fits_in_hwi (cstep))
- {
- ustepi = int_cst_value (ustep);
-
- if (!divide (TYPE_PRECISION (utype), ustepi, cstepi, &ratio))
- return INFTY;
- }
- else
- {
- double_int rat;
-
- if (!constant_multiple_of (ustep, cstep, &rat))
- return INFTY;
-
- if (double_int_fits_in_shwi_p (rat))
- ratio = double_int_to_shwi (rat);
- else
- return INFTY;
- }
-
- /* use = ubase + ratio * (var - cbase). If either cbase is a constant
- or ratio == 1, it is better to handle this like
-
- ubase - ratio * cbase + ratio * var
-
- (also holds in the case ratio == -1, TODO. */
-
- if (cst_and_fits_in_hwi (cbase))
- {
- offset = - ratio * int_cst_value (cbase);
- cost += difference_cost (data,
- ubase, integer_zero_node,
- &symbol_present, &var_present, &offset,
- depends_on);
- }
- else if (ratio == 1)
- {
- cost += difference_cost (data,
- ubase, cbase,
- &symbol_present, &var_present, &offset,
- depends_on);
- }
- else
- {
- cost += force_var_cost (data, cbase, depends_on);
- cost += add_cost (TYPE_MODE (ctype));
- cost += difference_cost (data,
- ubase, integer_zero_node,
- &symbol_present, &var_present, &offset,
- depends_on);
- }
-
- /* If we are after the increment, the value of the candidate is higher by
- one iteration. */
- if (stmt_after_increment (data->current_loop, cand, at))
- offset -= ratio * cstepi;
-
- /* Now the computation is in shape symbol + var1 + const + ratio * var2.
- (symbol/var/const parts may be omitted). If we are looking for an address,
- find the cost of addressing this. */
- if (address_p)
- return cost + get_address_cost (symbol_present, var_present, offset, ratio);
-
- /* Otherwise estimate the costs for computing the expression. */
- aratio = ratio > 0 ? ratio : -ratio;
- if (!symbol_present && !var_present && !offset)
- {
- if (ratio != 1)
- cost += multiply_by_cost (ratio, TYPE_MODE (ctype));
-
- return cost;
- }
-
- if (aratio != 1)
- cost += multiply_by_cost (aratio, TYPE_MODE (ctype));
-
- n_sums = 1;
- if (var_present
- /* Symbol + offset should be compile-time computable. */
- && (symbol_present || offset))
- n_sums++;
-
- return cost + n_sums * add_cost (TYPE_MODE (ctype));
-
-fallback:
- {
- /* Just get the expression, expand it and measure the cost. */
- tree comp = get_computation_at (data->current_loop, use, cand, at);
-
- if (!comp)
- return INFTY;
-
- if (address_p)
- comp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (comp)), comp);
-
- return computation_cost (comp);
- }
-}
-
-/* Determines the cost of the computation by that USE is expressed
- from induction variable CAND. If ADDRESS_P is true, we just need
- to create an address from it, otherwise we want to get it into
- register. A set of invariants we depend on is stored in
- DEPENDS_ON. */
-
-static unsigned
-get_computation_cost (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand,
- bool address_p, bitmap *depends_on)
-{
- return get_computation_cost_at (data,
- use, cand, address_p, depends_on, use->stmt);
-}
-
-/* Determines cost of basing replacement of USE on CAND in a generic
- expression. */
-
-static bool
-determine_use_iv_cost_generic (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- bitmap depends_on;
- unsigned cost;
-
- /* The simple case first -- if we need to express value of the preserved
- original biv, the cost is 0. This also prevents us from counting the
- cost of increment twice -- once at this use and once in the cost of
- the candidate. */
- if (cand->pos == IP_ORIGINAL
- && cand->incremented_at == use->stmt)
- {
- set_use_iv_cost (data, use, cand, 0, NULL, NULL_TREE);
- return true;
- }
-
- cost = get_computation_cost (data, use, cand, false, &depends_on);
- set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE);
-
- return cost != INFTY;
-}
-
-/* Determines cost of basing replacement of USE on CAND in an address. */
-
-static bool
-determine_use_iv_cost_address (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- bitmap depends_on;
- unsigned cost = get_computation_cost (data, use, cand, true, &depends_on);
-
- set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE);
-
- return cost != INFTY;
-}
-
-/* Computes value of induction variable IV in iteration NITER. */
-
-static tree
-iv_value (struct iv *iv, tree niter)
-{
- tree val;
- tree type = TREE_TYPE (iv->base);
-
- niter = fold_convert (type, niter);
- val = fold_build2 (MULT_EXPR, type, iv->step, niter);
-
- return fold_build2 (PLUS_EXPR, type, iv->base, val);
-}
-
-/* Computes value of candidate CAND at position AT in iteration NITER. */
-
-static tree
-cand_value_at (struct loop *loop, struct iv_cand *cand, tree at, tree niter)
-{
- tree val = iv_value (cand->iv, niter);
- tree type = TREE_TYPE (cand->iv->base);
-
- if (stmt_after_increment (loop, cand, at))
- val = fold_build2 (PLUS_EXPR, type, val, cand->iv->step);
-
- return val;
-}
-
-/* Returns period of induction variable iv. */
-
-static tree
-iv_period (struct iv *iv)
-{
- tree step = iv->step, period, type;
- tree pow2div;
-
- gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
-
- /* Period of the iv is gcd (step, type range). Since type range is power
- of two, it suffices to determine the maximum power of two that divides
- step. */
- pow2div = num_ending_zeros (step);
- type = unsigned_type_for (TREE_TYPE (step));
-
- period = build_low_bits_mask (type,
- (TYPE_PRECISION (type)
- - tree_low_cst (pow2div, 1)));
-
- return period;
-}
-
-/* Returns the comparison operator used when eliminating the iv USE. */
-
-static enum tree_code
-iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
-{
- struct loop *loop = data->current_loop;
- basic_block ex_bb;
- edge exit;
-
- ex_bb = bb_for_stmt (use->stmt);
- exit = EDGE_SUCC (ex_bb, 0);
- if (flow_bb_inside_loop_p (loop, exit->dest))
- exit = EDGE_SUCC (ex_bb, 1);
-
- return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
-}
-
-/* Check whether it is possible to express the condition in USE by comparison
- of candidate CAND. If so, store the value compared with to BOUND. */
-
-static bool
-may_eliminate_iv (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand, tree *bound)
-{
- basic_block ex_bb;
- edge exit;
- tree nit, nit_type;
- tree wider_type, period, per_type;
- struct loop *loop = data->current_loop;
-
- if (TREE_CODE (cand->iv->step) != INTEGER_CST)
- return false;
-
- /* For now works only for exits that dominate the loop latch. TODO -- extend
- for other conditions inside loop body. */
- ex_bb = bb_for_stmt (use->stmt);
- if (use->stmt != last_stmt (ex_bb)
- || TREE_CODE (use->stmt) != COND_EXPR)
- return false;
- if (!dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
- return false;
-
- exit = EDGE_SUCC (ex_bb, 0);
- if (flow_bb_inside_loop_p (loop, exit->dest))
- exit = EDGE_SUCC (ex_bb, 1);
- if (flow_bb_inside_loop_p (loop, exit->dest))
- return false;
-
- nit = niter_for_exit (data, exit);
- if (!nit)
- return false;
-
- nit_type = TREE_TYPE (nit);
-
- /* Determine whether we may use the variable to test whether niter iterations
- elapsed. This is the case iff the period of the induction variable is
- greater than the number of iterations. */
- period = iv_period (cand->iv);
- if (!period)
- return false;
- per_type = TREE_TYPE (period);
-
- wider_type = TREE_TYPE (period);
- if (TYPE_PRECISION (nit_type) < TYPE_PRECISION (per_type))
- wider_type = per_type;
- else
- wider_type = nit_type;
-
- if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
- fold_convert (wider_type, period),
- fold_convert (wider_type, nit))))
- return false;
-
- *bound = fold_affine_expr (cand_value_at (loop, cand, use->stmt, nit));
- return true;
-}
-
-/* Determines cost of basing replacement of USE on CAND in a condition. */
-
-static bool
-determine_use_iv_cost_condition (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- tree bound = NULL_TREE, op, cond;
- bitmap depends_on = NULL;
- unsigned cost;
-
- /* Only consider real candidates. */
- if (!cand->iv)
- {
- set_use_iv_cost (data, use, cand, INFTY, NULL, NULL_TREE);
- return false;
- }
-
- if (may_eliminate_iv (data, use, cand, &bound))
- {
- cost = force_var_cost (data, bound, &depends_on);
-
- set_use_iv_cost (data, use, cand, cost, depends_on, bound);
- return cost != INFTY;
- }
-
- /* The induction variable elimination failed; just express the original
- giv. If it is compared with an invariant, note that we cannot get
- rid of it. */
- cost = get_computation_cost (data, use, cand, false, &depends_on);
-
- cond = *use->op_p;
- if (TREE_CODE (cond) != SSA_NAME)
- {
- op = TREE_OPERAND (cond, 0);
- if (TREE_CODE (op) == SSA_NAME && !zero_p (get_iv (data, op)->step))
- op = TREE_OPERAND (cond, 1);
- if (TREE_CODE (op) == SSA_NAME)
- {
- op = get_iv (data, op)->base;
- fd_ivopts_data = data;
- walk_tree (&op, find_depends, &depends_on, NULL);
- }
- }
-
- set_use_iv_cost (data, use, cand, cost, depends_on, NULL);
- return cost != INFTY;
-}
-
-/* Determines cost of basing replacement of USE on CAND. Returns false
- if USE cannot be based on CAND. */
-
-static bool
-determine_use_iv_cost (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- switch (use->type)
- {
- case USE_NONLINEAR_EXPR:
- return determine_use_iv_cost_generic (data, use, cand);
-
- case USE_ADDRESS:
- return determine_use_iv_cost_address (data, use, cand);
-
- case USE_COMPARE:
- return determine_use_iv_cost_condition (data, use, cand);
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Determines costs of basing the use of the iv on an iv candidate. */
-
-static void
-determine_use_iv_costs (struct ivopts_data *data)
-{
- unsigned i, j;
- struct iv_use *use;
- struct iv_cand *cand;
- bitmap to_clear = BITMAP_ALLOC (NULL);
-
- alloc_use_cost_map (data);
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
-
- if (data->consider_all_candidates)
- {
- for (j = 0; j < n_iv_cands (data); j++)
- {
- cand = iv_cand (data, j);
- determine_use_iv_cost (data, use, cand);
- }
- }
- else
- {
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
- {
- cand = iv_cand (data, j);
- if (!determine_use_iv_cost (data, use, cand))
- bitmap_set_bit (to_clear, j);
- }
-
- /* Remove the candidates for that the cost is infinite from
- the list of related candidates. */
- bitmap_and_compl_into (use->related_cands, to_clear);
- bitmap_clear (to_clear);
- }
- }
-
- BITMAP_FREE (to_clear);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Use-candidate costs:\n");
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
-
- fprintf (dump_file, "Use %d:\n", i);
- fprintf (dump_file, " cand\tcost\tdepends on\n");
- for (j = 0; j < use->n_map_members; j++)
- {
- if (!use->cost_map[j].cand
- || use->cost_map[j].cost == INFTY)
- continue;
-
- fprintf (dump_file, " %d\t%d\t",
- use->cost_map[j].cand->id,
- use->cost_map[j].cost);
- if (use->cost_map[j].depends_on)
- bitmap_print (dump_file,
- use->cost_map[j].depends_on, "","");
- fprintf (dump_file, "\n");
- }
-
- fprintf (dump_file, "\n");
- }
- fprintf (dump_file, "\n");
- }
-}
-
-/* Determines cost of the candidate CAND. */
-
-static void
-determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
-{
- unsigned cost_base, cost_step;
- tree base;
-
- if (!cand->iv)
- {
- cand->cost = 0;
- return;
- }
-
- /* There are two costs associated with the candidate -- its increment
- and its initialization. The second is almost negligible for any loop
- that rolls enough, so we take it just very little into account. */
-
- base = cand->iv->base;
- cost_base = force_var_cost (data, base, NULL);
- cost_step = add_cost (TYPE_MODE (TREE_TYPE (base)));
-
- cand->cost = cost_step + cost_base / AVG_LOOP_NITER (current_loop);
-
- /* Prefer the original iv unless we may gain something by replacing it;
- this is not really relevant for artificial ivs created by other
- passes. */
- if (cand->pos == IP_ORIGINAL
- && !DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
- cand->cost--;
-
- /* Prefer not to insert statements into latch unless there are some
- already (so that we do not create unnecessary jumps). */
- if (cand->pos == IP_END
- && empty_block_p (ip_end_pos (data->current_loop)))
- cand->cost++;
-}
-
-/* Determines costs of computation of the candidates. */
-
-static void
-determine_iv_costs (struct ivopts_data *data)
-{
- unsigned i;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Candidate costs:\n");
- fprintf (dump_file, " cand\tcost\n");
- }
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- struct iv_cand *cand = iv_cand (data, i);
-
- determine_iv_cost (data, cand);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " %d\t%d\n", i, cand->cost);
- }
-
-if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "\n");
-}
-
-/* Calculates cost for having SIZE induction variables. */
-
-static unsigned
-ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
-{
- return global_cost_for_size (size, data->regs_used, n_iv_uses (data));
-}
-
-/* For each size of the induction variable set determine the penalty. */
-
-static void
-determine_set_costs (struct ivopts_data *data)
-{
- unsigned j, n;
- tree phi, op;
- struct loop *loop = data->current_loop;
- bitmap_iterator bi;
-
- /* We use the following model (definitely improvable, especially the
- cost function -- TODO):
-
- We estimate the number of registers available (using MD data), name it A.
-
- We estimate the number of registers used by the loop, name it U. This
- number is obtained as the number of loop phi nodes (not counting virtual
- registers and bivs) + the number of variables from outside of the loop.
-
- We set a reserve R (free regs that are used for temporary computations,
- etc.). For now the reserve is a constant 3.
-
- Let I be the number of induction variables.
-
- -- if U + I + R <= A, the cost is I * SMALL_COST (just not to encourage
- make a lot of ivs without a reason).
- -- if A - R < U + I <= A, the cost is I * PRES_COST
- -- if U + I > A, the cost is I * PRES_COST and
- number of uses * SPILL_COST * (U + I - A) / (U + I) is added. */
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Global costs:\n");
- fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
- fprintf (dump_file, " target_small_cost %d\n", target_small_cost);
- fprintf (dump_file, " target_pres_cost %d\n", target_pres_cost);
- fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost);
- }
-
- n = 0;
- for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
- {
- op = PHI_RESULT (phi);
-
- if (!is_gimple_reg (op))
- continue;
-
- if (get_iv (data, op))
- continue;
-
- n++;
- }
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
- {
- struct version_info *info = ver_info (data, j);
-
- if (info->inv_id && info->has_nonlin_use)
- n++;
- }
-
- data->regs_used = n;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " regs_used %d\n", n);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " cost for size:\n");
- fprintf (dump_file, " ivs\tcost\n");
- for (j = 0; j <= 2 * target_avail_regs; j++)
- fprintf (dump_file, " %d\t%d\n", j,
- ivopts_global_cost_for_size (data, j));
- fprintf (dump_file, "\n");
- }
-}
-
-/* Returns true if A is a cheaper cost pair than B. */
-
-static bool
-cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
-{
- if (!a)
- return false;
-
- if (!b)
- return true;
-
- if (a->cost < b->cost)
- return true;
-
- if (a->cost > b->cost)
- return false;
-
- /* In case the costs are the same, prefer the cheaper candidate. */
- if (a->cand->cost < b->cand->cost)
- return true;
-
- return false;
-}
-
-/* Computes the cost field of IVS structure. */
-
-static void
-iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
-{
- unsigned cost = 0;
-
- cost += ivs->cand_use_cost;
- cost += ivs->cand_cost;
- cost += ivopts_global_cost_for_size (data, ivs->n_regs);
-
- ivs->cost = cost;
-}
-
-/* Remove invariants in set INVS to set IVS. */
-
-static void
-iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
-{
- bitmap_iterator bi;
- unsigned iid;
-
- if (!invs)
- return;
-
- EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
- {
- ivs->n_invariant_uses[iid]--;
- if (ivs->n_invariant_uses[iid] == 0)
- ivs->n_regs--;
- }
-}
-
-/* Set USE not to be expressed by any candidate in IVS. */
-
-static void
-iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_use *use)
-{
- unsigned uid = use->id, cid;
- struct cost_pair *cp;
-
- cp = ivs->cand_for_use[uid];
- if (!cp)
- return;
- cid = cp->cand->id;
-
- ivs->bad_uses++;
- ivs->cand_for_use[uid] = NULL;
- ivs->n_cand_uses[cid]--;
-
- if (ivs->n_cand_uses[cid] == 0)
- {
- bitmap_clear_bit (ivs->cands, cid);
- /* Do not count the pseudocandidates. */
- if (cp->cand->iv)
- ivs->n_regs--;
- ivs->n_cands--;
- ivs->cand_cost -= cp->cand->cost;
-
- iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
- }
-
- ivs->cand_use_cost -= cp->cost;
-
- iv_ca_set_remove_invariants (ivs, cp->depends_on);
- iv_ca_recount_cost (data, ivs);
-}
-
-/* Add invariants in set INVS to set IVS. */
-
-static void
-iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
-{
- bitmap_iterator bi;
- unsigned iid;
-
- if (!invs)
- return;
-
- EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
- {
- ivs->n_invariant_uses[iid]++;
- if (ivs->n_invariant_uses[iid] == 1)
- ivs->n_regs++;
- }
-}
-
-/* Set cost pair for USE in set IVS to CP. */
-
-static void
-iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_use *use, struct cost_pair *cp)
-{
- unsigned uid = use->id, cid;
-
- if (ivs->cand_for_use[uid] == cp)
- return;
-
- if (ivs->cand_for_use[uid])
- iv_ca_set_no_cp (data, ivs, use);
-
- if (cp)
- {
- cid = cp->cand->id;
-
- ivs->bad_uses--;
- ivs->cand_for_use[uid] = cp;
- ivs->n_cand_uses[cid]++;
- if (ivs->n_cand_uses[cid] == 1)
- {
- bitmap_set_bit (ivs->cands, cid);
- /* Do not count the pseudocandidates. */
- if (cp->cand->iv)
- ivs->n_regs++;
- ivs->n_cands++;
- ivs->cand_cost += cp->cand->cost;
-
- iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
- }
-
- ivs->cand_use_cost += cp->cost;
- iv_ca_set_add_invariants (ivs, cp->depends_on);
- iv_ca_recount_cost (data, ivs);
- }
-}
-
-/* Extend set IVS by expressing USE by some of the candidates in it
- if possible. */
-
-static void
-iv_ca_add_use (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_use *use)
-{
- struct cost_pair *best_cp = NULL, *cp;
- bitmap_iterator bi;
- unsigned i;
-
- gcc_assert (ivs->upto >= use->id);
-
- if (ivs->upto == use->id)
- {
- ivs->upto++;
- ivs->bad_uses++;
- }
-
- EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
- {
- cp = get_use_iv_cost (data, use, iv_cand (data, i));
-
- if (cheaper_cost_pair (cp, best_cp))
- best_cp = cp;
- }
-
- iv_ca_set_cp (data, ivs, use, best_cp);
-}
-
-/* Get cost for assignment IVS. */
-
-static unsigned
-iv_ca_cost (struct iv_ca *ivs)
-{
- return (ivs->bad_uses ? INFTY : ivs->cost);
-}
-
-/* Returns true if all dependences of CP are among invariants in IVS. */
-
-static bool
-iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
-{
- unsigned i;
- bitmap_iterator bi;
-
- if (!cp->depends_on)
- return true;
-
- EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
- {
- if (ivs->n_invariant_uses[i] == 0)
- return false;
- }
-
- return true;
-}
-
-/* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
- it before NEXT_CHANGE. */
-
-static struct iv_ca_delta *
-iv_ca_delta_add (struct iv_use *use, struct cost_pair *old_cp,
- struct cost_pair *new_cp, struct iv_ca_delta *next_change)
-{
- struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
-
- change->use = use;
- change->old_cp = old_cp;
- change->new_cp = new_cp;
- change->next_change = next_change;
-
- return change;
-}
-
-/* Joins two lists of changes L1 and L2. Destructive -- old lists
- are rewritten. */
-
-static struct iv_ca_delta *
-iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
-{
- struct iv_ca_delta *last;
-
- if (!l2)
- return l1;
-
- if (!l1)
- return l2;
-
- for (last = l1; last->next_change; last = last->next_change)
- continue;
- last->next_change = l2;
-
- return l1;
-}
-
-/* Returns candidate by that USE is expressed in IVS. */
-
-static struct cost_pair *
-iv_ca_cand_for_use (struct iv_ca *ivs, struct iv_use *use)
-{
- return ivs->cand_for_use[use->id];
-}
-
-/* Reverse the list of changes DELTA, forming the inverse to it. */
-
-static struct iv_ca_delta *
-iv_ca_delta_reverse (struct iv_ca_delta *delta)
-{
- struct iv_ca_delta *act, *next, *prev = NULL;
- struct cost_pair *tmp;
-
- for (act = delta; act; act = next)
- {
- next = act->next_change;
- act->next_change = prev;
- prev = act;
-
- tmp = act->old_cp;
- act->old_cp = act->new_cp;
- act->new_cp = tmp;
- }
-
- return prev;
-}
-
-/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
- reverted instead. */
-
-static void
-iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_ca_delta *delta, bool forward)
-{
- struct cost_pair *from, *to;
- struct iv_ca_delta *act;
-
- if (!forward)
- delta = iv_ca_delta_reverse (delta);
-
- for (act = delta; act; act = act->next_change)
- {
- from = act->old_cp;
- to = act->new_cp;
- gcc_assert (iv_ca_cand_for_use (ivs, act->use) == from);
- iv_ca_set_cp (data, ivs, act->use, to);
- }
-
- if (!forward)
- iv_ca_delta_reverse (delta);
-}
-
-/* Returns true if CAND is used in IVS. */
-
-static bool
-iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
-{
- return ivs->n_cand_uses[cand->id] > 0;
-}
-
-/* Returns number of induction variable candidates in the set IVS. */
-
-static unsigned
-iv_ca_n_cands (struct iv_ca *ivs)
-{
- return ivs->n_cands;
-}
-
-/* Free the list of changes DELTA. */
-
-static void
-iv_ca_delta_free (struct iv_ca_delta **delta)
-{
- struct iv_ca_delta *act, *next;
-
- for (act = *delta; act; act = next)
- {
- next = act->next_change;
- free (act);
- }
-
- *delta = NULL;
-}
-
-/* Allocates new iv candidates assignment. */
-
-static struct iv_ca *
-iv_ca_new (struct ivopts_data *data)
-{
- struct iv_ca *nw = XNEW (struct iv_ca);
-
- nw->upto = 0;
- nw->bad_uses = 0;
- nw->cand_for_use = XCNEWVEC (struct cost_pair *, n_iv_uses (data));
- nw->n_cand_uses = XCNEWVEC (unsigned, n_iv_cands (data));
- nw->cands = BITMAP_ALLOC (NULL);
- nw->n_cands = 0;
- nw->n_regs = 0;
- nw->cand_use_cost = 0;
- nw->cand_cost = 0;
- nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
- nw->cost = 0;
-
- return nw;
-}
-
-/* Free memory occupied by the set IVS. */
-
-static void
-iv_ca_free (struct iv_ca **ivs)
-{
- free ((*ivs)->cand_for_use);
- free ((*ivs)->n_cand_uses);
- BITMAP_FREE ((*ivs)->cands);
- free ((*ivs)->n_invariant_uses);
- free (*ivs);
- *ivs = NULL;
-}
-
-/* Dumps IVS to FILE. */
-
-static void
-iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
-{
- const char *pref = " invariants ";
- unsigned i;
-
- fprintf (file, " cost %d\n", iv_ca_cost (ivs));
- bitmap_print (file, ivs->cands, " candidates ","\n");
-
- for (i = 1; i <= data->max_inv_id; i++)
- if (ivs->n_invariant_uses[i])
- {
- fprintf (file, "%s%d", pref, i);
- pref = ", ";
- }
- fprintf (file, "\n");
-}
-
-/* Try changing candidate in IVS to CAND for each use. Return cost of the
- new set, and store differences in DELTA. Number of induction variables
- in the new set is stored to N_IVS. */
-
-static unsigned
-iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_cand *cand, struct iv_ca_delta **delta,
- unsigned *n_ivs)
-{
- unsigned i, cost;
- struct iv_use *use;
- struct cost_pair *old_cp, *new_cp;
-
- *delta = NULL;
- for (i = 0; i < ivs->upto; i++)
- {
- use = iv_use (data, i);
- old_cp = iv_ca_cand_for_use (ivs, use);
-
- if (old_cp
- && old_cp->cand == cand)
- continue;
-
- new_cp = get_use_iv_cost (data, use, cand);
- if (!new_cp)
- continue;
-
- if (!iv_ca_has_deps (ivs, new_cp))
- continue;
-
- if (!cheaper_cost_pair (new_cp, old_cp))
- continue;
-
- *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
- }
-
- iv_ca_delta_commit (data, ivs, *delta, true);
- cost = iv_ca_cost (ivs);
- if (n_ivs)
- *n_ivs = iv_ca_n_cands (ivs);
- iv_ca_delta_commit (data, ivs, *delta, false);
-
- return cost;
-}
-
-/* Try narrowing set IVS by removing CAND. Return the cost of
- the new set and store the differences in DELTA. */
-
-static unsigned
-iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_cand *cand, struct iv_ca_delta **delta)
-{
- unsigned i, ci;
- struct iv_use *use;
- struct cost_pair *old_cp, *new_cp, *cp;
- bitmap_iterator bi;
- struct iv_cand *cnd;
- unsigned cost;
-
- *delta = NULL;
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
-
- old_cp = iv_ca_cand_for_use (ivs, use);
- if (old_cp->cand != cand)
- continue;
-
- new_cp = NULL;
-
- if (data->consider_all_candidates)
- {
- EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
- {
- if (ci == cand->id)
- continue;
-
- cnd = iv_cand (data, ci);
-
- cp = get_use_iv_cost (data, use, cnd);
- if (!cp)
- continue;
- if (!iv_ca_has_deps (ivs, cp))
- continue;
-
- if (!cheaper_cost_pair (cp, new_cp))
- continue;
-
- new_cp = cp;
- }
- }
- else
- {
- EXECUTE_IF_AND_IN_BITMAP (use->related_cands, ivs->cands, 0, ci, bi)
- {
- if (ci == cand->id)
- continue;
-
- cnd = iv_cand (data, ci);
-
- cp = get_use_iv_cost (data, use, cnd);
- if (!cp)
- continue;
- if (!iv_ca_has_deps (ivs, cp))
- continue;
-
- if (!cheaper_cost_pair (cp, new_cp))
- continue;
-
- new_cp = cp;
- }
- }
-
- if (!new_cp)
- {
- iv_ca_delta_free (delta);
- return INFTY;
- }
-
- *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
- }
-
- iv_ca_delta_commit (data, ivs, *delta, true);
- cost = iv_ca_cost (ivs);
- iv_ca_delta_commit (data, ivs, *delta, false);
-
- return cost;
-}
-
-/* Try optimizing the set of candidates IVS by removing candidates different
- from to EXCEPT_CAND from it. Return cost of the new set, and store
- differences in DELTA. */
-
-static unsigned
-iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_cand *except_cand, struct iv_ca_delta **delta)
-{
- bitmap_iterator bi;
- struct iv_ca_delta *act_delta, *best_delta;
- unsigned i, best_cost, acost;
- struct iv_cand *cand;
-
- best_delta = NULL;
- best_cost = iv_ca_cost (ivs);
-
- EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
- {
- cand = iv_cand (data, i);
-
- if (cand == except_cand)
- continue;
-
- acost = iv_ca_narrow (data, ivs, cand, &act_delta);
-
- if (acost < best_cost)
- {
- best_cost = acost;
- iv_ca_delta_free (&best_delta);
- best_delta = act_delta;
- }
- else
- iv_ca_delta_free (&act_delta);
- }
-
- if (!best_delta)
- {
- *delta = NULL;
- return best_cost;
- }
-
- /* Recurse to possibly remove other unnecessary ivs. */
- iv_ca_delta_commit (data, ivs, best_delta, true);
- best_cost = iv_ca_prune (data, ivs, except_cand, delta);
- iv_ca_delta_commit (data, ivs, best_delta, false);
- *delta = iv_ca_delta_join (best_delta, *delta);
- return best_cost;
-}
-
-/* Tries to extend the sets IVS in the best possible way in order
- to express the USE. */
-
-static bool
-try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_use *use)
-{
- unsigned best_cost, act_cost;
- unsigned i;
- bitmap_iterator bi;
- struct iv_cand *cand;
- struct iv_ca_delta *best_delta = NULL, *act_delta;
- struct cost_pair *cp;
-
- iv_ca_add_use (data, ivs, use);
- best_cost = iv_ca_cost (ivs);
-
- cp = iv_ca_cand_for_use (ivs, use);
- if (cp)
- {
- best_delta = iv_ca_delta_add (use, NULL, cp, NULL);
- iv_ca_set_no_cp (data, ivs, use);
- }
-
- /* First try important candidates. Only if it fails, try the specific ones.
- Rationale -- in loops with many variables the best choice often is to use
- just one generic biv. If we added here many ivs specific to the uses,
- the optimization algorithm later would be likely to get stuck in a local
- minimum, thus causing us to create too many ivs. The approach from
- few ivs to more seems more likely to be successful -- starting from few
- ivs, replacing an expensive use by a specific iv should always be a
- win. */
- EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
- {
- cand = iv_cand (data, i);
-
- if (iv_ca_cand_used_p (ivs, cand))
- continue;
-
- cp = get_use_iv_cost (data, use, cand);
- if (!cp)
- continue;
-
- iv_ca_set_cp (data, ivs, use, cp);
- act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL);
- iv_ca_set_no_cp (data, ivs, use);
- act_delta = iv_ca_delta_add (use, NULL, cp, act_delta);
-
- if (act_cost < best_cost)
- {
- best_cost = act_cost;
-
- iv_ca_delta_free (&best_delta);
- best_delta = act_delta;
- }
- else
- iv_ca_delta_free (&act_delta);
- }
-
- if (best_cost == INFTY)
- {
- for (i = 0; i < use->n_map_members; i++)
- {
- cp = use->cost_map + i;
- cand = cp->cand;
- if (!cand)
- continue;
-
- /* Already tried this. */
- if (cand->important)
- continue;
-
- if (iv_ca_cand_used_p (ivs, cand))
- continue;
-
- act_delta = NULL;
- iv_ca_set_cp (data, ivs, use, cp);
- act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL);
- iv_ca_set_no_cp (data, ivs, use);
- act_delta = iv_ca_delta_add (use, iv_ca_cand_for_use (ivs, use),
- cp, act_delta);
-
- if (act_cost < best_cost)
- {
- best_cost = act_cost;
-
- if (best_delta)
- iv_ca_delta_free (&best_delta);
- best_delta = act_delta;
- }
- else
- iv_ca_delta_free (&act_delta);
- }
- }
-
- iv_ca_delta_commit (data, ivs, best_delta, true);
- iv_ca_delta_free (&best_delta);
-
- return (best_cost != INFTY);
-}
-
-/* Finds an initial assignment of candidates to uses. */
-
-static struct iv_ca *
-get_initial_solution (struct ivopts_data *data)
-{
- struct iv_ca *ivs = iv_ca_new (data);
- unsigned i;
-
- for (i = 0; i < n_iv_uses (data); i++)
- if (!try_add_cand_for (data, ivs, iv_use (data, i)))
- {
- iv_ca_free (&ivs);
- return NULL;
- }
-
- return ivs;
-}
-
-/* Tries to improve set of induction variables IVS. */
-
-static bool
-try_improve_iv_set (struct ivopts_data *data, struct iv_ca *ivs)
-{
- unsigned i, acost, best_cost = iv_ca_cost (ivs), n_ivs;
- struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
- struct iv_cand *cand;
-
- /* Try extending the set of induction variables by one. */
- for (i = 0; i < n_iv_cands (data); i++)
- {
- cand = iv_cand (data, i);
-
- if (iv_ca_cand_used_p (ivs, cand))
- continue;
-
- acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs);
- if (!act_delta)
- continue;
-
- /* If we successfully added the candidate and the set is small enough,
- try optimizing it by removing other candidates. */
- if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
- {
- iv_ca_delta_commit (data, ivs, act_delta, true);
- acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
- iv_ca_delta_commit (data, ivs, act_delta, false);
- act_delta = iv_ca_delta_join (act_delta, tmp_delta);
- }
-
- if (acost < best_cost)
- {
- best_cost = acost;
- iv_ca_delta_free (&best_delta);
- best_delta = act_delta;
- }
- else
- iv_ca_delta_free (&act_delta);
- }
-
- if (!best_delta)
- {
- /* Try removing the candidates from the set instead. */
- best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
-
- /* Nothing more we can do. */
- if (!best_delta)
- return false;
- }
-
- iv_ca_delta_commit (data, ivs, best_delta, true);
- gcc_assert (best_cost == iv_ca_cost (ivs));
- iv_ca_delta_free (&best_delta);
- return true;
-}
-
-/* Attempts to find the optimal set of induction variables. We do simple
- greedy heuristic -- we try to replace at most one candidate in the selected
- solution and remove the unused ivs while this improves the cost. */
-
-static struct iv_ca *
-find_optimal_iv_set (struct ivopts_data *data)
-{
- unsigned i;
- struct iv_ca *set;
- struct iv_use *use;
-
- /* Get the initial solution. */
- set = get_initial_solution (data);
- if (!set)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
- return NULL;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Initial set of candidates:\n");
- iv_ca_dump (data, dump_file, set);
- }
-
- while (try_improve_iv_set (data, set))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Improved to:\n");
- iv_ca_dump (data, dump_file, set);
- }
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Final cost %d\n\n", iv_ca_cost (set));
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
- use->selected = iv_ca_cand_for_use (set, use)->cand;
- }
-
- return set;
-}
-
-/* Creates a new induction variable corresponding to CAND. */
-
-static void
-create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
-{
- block_stmt_iterator incr_pos;
- tree base;
- bool after = false;
-
- if (!cand->iv)
- return;
-
- switch (cand->pos)
- {
- case IP_NORMAL:
- incr_pos = bsi_last (ip_normal_pos (data->current_loop));
- break;
-
- case IP_END:
- incr_pos = bsi_last (ip_end_pos (data->current_loop));
- after = true;
- break;
-
- case IP_ORIGINAL:
- /* Mark that the iv is preserved. */
- name_info (data, cand->var_before)->preserve_biv = true;
- name_info (data, cand->var_after)->preserve_biv = true;
-
- /* Rewrite the increment so that it uses var_before directly. */
- find_interesting_uses_op (data, cand->var_after)->selected = cand;
-
- return;
- }
-
- gimple_add_tmp_var (cand->var_before);
- add_referenced_var (cand->var_before);
-
- base = unshare_expr (cand->iv->base);
-
- create_iv (base, unshare_expr (cand->iv->step),
- cand->var_before, data->current_loop,
- &incr_pos, after, &cand->var_before, &cand->var_after);
-}
-
-/* Creates new induction variables described in SET. */
-
-static void
-create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
-{
- unsigned i;
- struct iv_cand *cand;
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
- {
- cand = iv_cand (data, i);
- create_new_iv (data, cand);
- }
-}
-
-/* Removes statement STMT (real or a phi node). If INCLUDING_DEFINED_NAME
- is true, remove also the ssa name defined by the statement. */
-
-static void
-remove_statement (tree stmt, bool including_defined_name)
-{
- if (TREE_CODE (stmt) == PHI_NODE)
- {
- if (!including_defined_name)
- {
- /* Prevent the ssa name defined by the statement from being removed. */
- SET_PHI_RESULT (stmt, NULL);
- }
- remove_phi_node (stmt, NULL_TREE);
- }
- else
- {
- block_stmt_iterator bsi = bsi_for_stmt (stmt);
-
- bsi_remove (&bsi, true);
- }
-}
-
-/* Rewrites USE (definition of iv used in a nonlinear expression)
- using candidate CAND. */
-
-static void
-rewrite_use_nonlinear_expr (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- tree comp;
- tree op, stmts, tgt, ass;
- block_stmt_iterator bsi, pbsi;
-
- /* An important special case -- if we are asked to express value of
- the original iv by itself, just exit; there is no need to
- introduce a new computation (that might also need casting the
- variable to unsigned and back). */
- if (cand->pos == IP_ORIGINAL
- && cand->incremented_at == use->stmt)
- {
- tree step, ctype, utype;
- enum tree_code incr_code = PLUS_EXPR;
-
- gcc_assert (TREE_CODE (use->stmt) == MODIFY_EXPR);
- gcc_assert (TREE_OPERAND (use->stmt, 0) == cand->var_after);
-
- step = cand->iv->step;
- ctype = TREE_TYPE (step);
- utype = TREE_TYPE (cand->var_after);
- if (TREE_CODE (step) == NEGATE_EXPR)
- {
- incr_code = MINUS_EXPR;
- step = TREE_OPERAND (step, 0);
- }
-
- /* Check whether we may leave the computation unchanged.
- This is the case only if it does not rely on other
- computations in the loop -- otherwise, the computation
- we rely upon may be removed in remove_unused_ivs,
- thus leading to ICE. */
- op = TREE_OPERAND (use->stmt, 1);
- if (TREE_CODE (op) == PLUS_EXPR
- || TREE_CODE (op) == MINUS_EXPR)
- {
- if (TREE_OPERAND (op, 0) == cand->var_before)
- op = TREE_OPERAND (op, 1);
- else if (TREE_CODE (op) == PLUS_EXPR
- && TREE_OPERAND (op, 1) == cand->var_before)
- op = TREE_OPERAND (op, 0);
- else
- op = NULL_TREE;
- }
- else
- op = NULL_TREE;
-
- if (op
- && (TREE_CODE (op) == INTEGER_CST
- || operand_equal_p (op, step, 0)))
- return;
-
- /* Otherwise, add the necessary computations to express
- the iv. */
- op = fold_convert (ctype, cand->var_before);
- comp = fold_convert (utype,
- build2 (incr_code, ctype, op,
- unshare_expr (step)));
- }
- else
- comp = get_computation (data->current_loop, use, cand);
-
- switch (TREE_CODE (use->stmt))
- {
- case PHI_NODE:
- tgt = PHI_RESULT (use->stmt);
-
- /* If we should keep the biv, do not replace it. */
- if (name_info (data, tgt)->preserve_biv)
- return;
-
- pbsi = bsi = bsi_start (bb_for_stmt (use->stmt));
- while (!bsi_end_p (pbsi)
- && TREE_CODE (bsi_stmt (pbsi)) == LABEL_EXPR)
- {
- bsi = pbsi;
- bsi_next (&pbsi);
- }
- break;
-
- case MODIFY_EXPR:
- tgt = TREE_OPERAND (use->stmt, 0);
- bsi = bsi_for_stmt (use->stmt);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- op = force_gimple_operand (comp, &stmts, false, SSA_NAME_VAR (tgt));
-
- if (TREE_CODE (use->stmt) == PHI_NODE)
- {
- if (stmts)
- bsi_insert_after (&bsi, stmts, BSI_CONTINUE_LINKING);
- ass = build2 (MODIFY_EXPR, TREE_TYPE (tgt), tgt, op);
- bsi_insert_after (&bsi, ass, BSI_NEW_STMT);
- remove_statement (use->stmt, false);
- SSA_NAME_DEF_STMT (tgt) = ass;
- }
- else
- {
- if (stmts)
- bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
- TREE_OPERAND (use->stmt, 1) = op;
- }
-}
-
-/* Replaces ssa name in index IDX by its basic variable. Callback for
- for_each_index. */
-
-static bool
-idx_remove_ssa_names (tree base, tree *idx,
- void *data ATTRIBUTE_UNUSED)
-{
- tree *op;
-
- if (TREE_CODE (*idx) == SSA_NAME)
- *idx = SSA_NAME_VAR (*idx);
-
- if (TREE_CODE (base) == ARRAY_REF)
- {
- op = &TREE_OPERAND (base, 2);
- if (*op
- && TREE_CODE (*op) == SSA_NAME)
- *op = SSA_NAME_VAR (*op);
- op = &TREE_OPERAND (base, 3);
- if (*op
- && TREE_CODE (*op) == SSA_NAME)
- *op = SSA_NAME_VAR (*op);
- }
-
- return true;
-}
-
-/* Unshares REF and replaces ssa names inside it by their basic variables. */
-
-static tree
-unshare_and_remove_ssa_names (tree ref)
-{
- ref = unshare_expr (ref);
- for_each_index (&ref, idx_remove_ssa_names, NULL);
-
- return ref;
-}
-
-/* Extract the alias analysis info for the memory reference REF. There are
- several ways how this information may be stored and what precisely is
- its semantics depending on the type of the reference, but there always is
- somewhere hidden one _DECL node that is used to determine the set of
- virtual operands for the reference. The code below deciphers this jungle
- and extracts this single useful piece of information. */
-
-static tree
-get_ref_tag (tree ref, tree orig)
-{
- tree var = get_base_address (ref);
- tree aref = NULL_TREE, tag, sv;
- HOST_WIDE_INT offset, size, maxsize;
-
- for (sv = orig; handled_component_p (sv); sv = TREE_OPERAND (sv, 0))
- {
- aref = get_ref_base_and_extent (sv, &offset, &size, &maxsize);
- if (ref)
- break;
- }
-
- if (aref && SSA_VAR_P (aref) && get_subvars_for_var (aref))
- return unshare_expr (sv);
-
- if (!var)
- return NULL_TREE;
-
- if (TREE_CODE (var) == INDIRECT_REF)
- {
- /* If the base is a dereference of a pointer, first check its name memory
- tag. If it does not have one, use its symbol memory tag. */
- var = TREE_OPERAND (var, 0);
- if (TREE_CODE (var) != SSA_NAME)
- return NULL_TREE;
-
- if (SSA_NAME_PTR_INFO (var))
- {
- tag = SSA_NAME_PTR_INFO (var)->name_mem_tag;
- if (tag)
- return tag;
- }
-
- var = SSA_NAME_VAR (var);
- tag = var_ann (var)->symbol_mem_tag;
- gcc_assert (tag != NULL_TREE);
- return tag;
- }
- else
- {
- if (!DECL_P (var))
- return NULL_TREE;
-
- tag = var_ann (var)->symbol_mem_tag;
- if (tag)
- return tag;
-
- return var;
- }
-}
-
-/* Copies the reference information from OLD_REF to NEW_REF. */
-
-static void
-copy_ref_info (tree new_ref, tree old_ref)
-{
- if (TREE_CODE (old_ref) == TARGET_MEM_REF)
- copy_mem_ref_info (new_ref, old_ref);
- else
- {
- TMR_ORIGINAL (new_ref) = unshare_and_remove_ssa_names (old_ref);
- TMR_TAG (new_ref) = get_ref_tag (old_ref, TMR_ORIGINAL (new_ref));
- }
-}
-
-/* Rewrites USE (address that is an iv) using candidate CAND. */
-
-static void
-rewrite_use_address (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- struct affine_tree_combination aff;
- block_stmt_iterator bsi = bsi_for_stmt (use->stmt);
- tree ref;
-
- get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
- unshare_aff_combination (&aff);
-
- ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff);
- copy_ref_info (ref, *use->op_p);
- *use->op_p = ref;
-}
-
-/* Rewrites USE (the condition such that one of the arguments is an iv) using
- candidate CAND. */
-
-static void
-rewrite_use_compare (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- tree comp;
- tree *op_p, cond, op, stmts, bound;
- block_stmt_iterator bsi = bsi_for_stmt (use->stmt);
- enum tree_code compare;
- struct cost_pair *cp = get_use_iv_cost (data, use, cand);
-
- bound = cp->value;
- if (bound)
- {
- tree var = var_at_stmt (data->current_loop, cand, use->stmt);
- tree var_type = TREE_TYPE (var);
-
- compare = iv_elimination_compare (data, use);
- bound = fold_convert (var_type, bound);
- op = force_gimple_operand (unshare_expr (bound), &stmts,
- true, NULL_TREE);
-
- if (stmts)
- bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
-
- *use->op_p = build2 (compare, boolean_type_node, var, op);
- update_stmt (use->stmt);
- return;
- }
-
- /* The induction variable elimination failed; just express the original
- giv. */
- comp = get_computation (data->current_loop, use, cand);
-
- cond = *use->op_p;
- op_p = &TREE_OPERAND (cond, 0);
- if (TREE_CODE (*op_p) != SSA_NAME
- || zero_p (get_iv (data, *op_p)->step))
- op_p = &TREE_OPERAND (cond, 1);
-
- op = force_gimple_operand (comp, &stmts, true, SSA_NAME_VAR (*op_p));
- if (stmts)
- bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
-
- *op_p = op;
-}
-
-/* Rewrites USE using candidate CAND. */
-
-static void
-rewrite_use (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- switch (use->type)
- {
- case USE_NONLINEAR_EXPR:
- rewrite_use_nonlinear_expr (data, use, cand);
- break;
-
- case USE_ADDRESS:
- rewrite_use_address (data, use, cand);
- break;
-
- case USE_COMPARE:
- rewrite_use_compare (data, use, cand);
- break;
-
- default:
- gcc_unreachable ();
- }
- mark_new_vars_to_rename (use->stmt);
-}
-
-/* Rewrite the uses using the selected induction variables. */
-
-static void
-rewrite_uses (struct ivopts_data *data)
-{
- unsigned i;
- struct iv_cand *cand;
- struct iv_use *use;
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
- cand = use->selected;
- gcc_assert (cand);
-
- rewrite_use (data, use, cand);
- }
-}
-
-/* Removes the ivs that are not used after rewriting. */
-
-static void
-remove_unused_ivs (struct ivopts_data *data)
-{
- unsigned j;
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
- {
- struct version_info *info;
-
- info = ver_info (data, j);
- if (info->iv
- && !zero_p (info->iv->step)
- && !info->inv_id
- && !info->iv->have_use_for
- && !info->preserve_biv)
- remove_statement (SSA_NAME_DEF_STMT (info->iv->ssa_name), true);
- }
-}
-
-/* Frees data allocated by the optimization of a single loop. */
-
-static void
-free_loop_data (struct ivopts_data *data)
-{
- unsigned i, j;
- bitmap_iterator bi;
- tree obj;
-
- htab_empty (data->niters);
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
- {
- struct version_info *info;
-
- info = ver_info (data, i);
- if (info->iv)
- free (info->iv);
- info->iv = NULL;
- info->has_nonlin_use = false;
- info->preserve_biv = false;
- info->inv_id = 0;
- }
- bitmap_clear (data->relevant);
- bitmap_clear (data->important_candidates);
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- struct iv_use *use = iv_use (data, i);
-
- free (use->iv);
- BITMAP_FREE (use->related_cands);
- for (j = 0; j < use->n_map_members; j++)
- if (use->cost_map[j].depends_on)
- BITMAP_FREE (use->cost_map[j].depends_on);
- free (use->cost_map);
- free (use);
- }
- VEC_truncate (iv_use_p, data->iv_uses, 0);
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- struct iv_cand *cand = iv_cand (data, i);
-
- if (cand->iv)
- free (cand->iv);
- if (cand->depends_on)
- BITMAP_FREE (cand->depends_on);
- free (cand);
- }
- VEC_truncate (iv_cand_p, data->iv_candidates, 0);
-
- if (data->version_info_size < num_ssa_names)
- {
- data->version_info_size = 2 * num_ssa_names;
- free (data->version_info);
- data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
- }
-
- data->max_inv_id = 0;
-
- for (i = 0; VEC_iterate (tree, decl_rtl_to_reset, i, obj); i++)
- SET_DECL_RTL (obj, NULL_RTX);
-
- VEC_truncate (tree, decl_rtl_to_reset, 0);
-}
-
-/* Finalizes data structures used by the iv optimization pass. LOOPS is the
- loop tree. */
-
-static void
-tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
-{
- free_loop_data (data);
- free (data->version_info);
- BITMAP_FREE (data->relevant);
- BITMAP_FREE (data->important_candidates);
- htab_delete (data->niters);
-
- VEC_free (tree, heap, decl_rtl_to_reset);
- VEC_free (iv_use_p, heap, data->iv_uses);
- VEC_free (iv_cand_p, heap, data->iv_candidates);
-}
-
-/* Optimizes the LOOP. Returns true if anything changed. */
-
-static bool
-tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
-{
- bool changed = false;
- struct iv_ca *iv_ca;
- edge exit;
-
- data->current_loop = loop;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Processing loop %d\n", loop->num);
-
- exit = single_dom_exit (loop);
- if (exit)
- {
- fprintf (dump_file, " single exit %d -> %d, exit condition ",
- exit->src->index, exit->dest->index);
- print_generic_expr (dump_file, last_stmt (exit->src), TDF_SLIM);
- fprintf (dump_file, "\n");
- }
-
- fprintf (dump_file, "\n");
- }
-
- /* For each ssa name determines whether it behaves as an induction variable
- in some loop. */
- if (!find_induction_variables (data))
- goto finish;
-
- /* Finds interesting uses (item 1). */
- find_interesting_uses (data);
- if (n_iv_uses (data) > MAX_CONSIDERED_USES)
- goto finish;
-
- /* Finds candidates for the induction variables (item 2). */
- find_iv_candidates (data);
-
- /* Calculates the costs (item 3, part 1). */
- determine_use_iv_costs (data);
- determine_iv_costs (data);
- determine_set_costs (data);
-
- /* Find the optimal set of induction variables (item 3, part 2). */
- iv_ca = find_optimal_iv_set (data);
- if (!iv_ca)
- goto finish;
- changed = true;
-
- /* Create the new induction variables (item 4, part 1). */
- create_new_ivs (data, iv_ca);
- iv_ca_free (&iv_ca);
-
- /* Rewrite the uses (item 4, part 2). */
- rewrite_uses (data);
-
- /* Remove the ivs that are unused after rewriting. */
- remove_unused_ivs (data);
-
- /* We have changed the structure of induction variables; it might happen
- that definitions in the scev database refer to some of them that were
- eliminated. */
- scev_reset ();
-
-finish:
- free_loop_data (data);
-
- return changed;
-}
-
-/* Main entry point. Optimizes induction variables in LOOPS. */
-
-void
-tree_ssa_iv_optimize (struct loops *loops)
-{
- struct loop *loop;
- struct ivopts_data data;
-
- tree_ssa_iv_optimize_init (&data);
-
- /* Optimize the loops starting with the innermost ones. */
- loop = loops->tree_root;
- while (loop->inner)
- loop = loop->inner;
-
- /* Scan the loops, inner ones first. */
- while (loop != loops->tree_root)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- flow_loop_dump (loop, dump_file, NULL, 1);
-
- tree_ssa_iv_optimize_loop (&data, loop);
-
- if (loop->next)
- {
- loop = loop->next;
- while (loop->inner)
- loop = loop->inner;
- }
- else
- loop = loop->outer;
- }
-
- tree_ssa_iv_optimize_finalize (&data);
-}