aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c5913
1 files changed, 5913 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c b/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c
new file mode 100644
index 000000000..1d250d140
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-ssa-loop-ivopts.c
@@ -0,0 +1,5913 @@
+/* Induction variable optimizations.
+ Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+/* This pass tries to find the optimal set of induction variables for the loop.
+ It optimizes just the basic linear induction variables (although adding
+ support for other types should not be too hard). It includes the
+ optimizations commonly known as strength reduction, induction variable
+ coalescing and induction variable elimination. It does it in the
+ following steps:
+
+ 1) The interesting uses of induction variables are found. This includes
+
+ -- uses of induction variables in non-linear expressions
+ -- addresses of arrays
+ -- comparisons of induction variables
+
+ 2) Candidates for the induction variables are found. This includes
+
+ -- old induction variables
+ -- the variables defined by expressions derived from the "interesting
+ uses" above
+
+ 3) The optimal (w.r. to a cost function) set of variables is chosen. The
+ cost function assigns a cost to sets of induction variables and consists
+ of three parts:
+
+ -- The use costs. Each of the interesting uses chooses the best induction
+ variable in the set and adds its cost to the sum. The cost reflects
+ the time spent on modifying the induction variables value to be usable
+ for the given purpose (adding base and offset for arrays, etc.).
+ -- The variable costs. Each of the variables has a cost assigned that
+ reflects the costs associated with incrementing the value of the
+ variable. The original variables are somewhat preferred.
+ -- The set cost. Depending on the size of the set, extra cost may be
+ added to reflect register pressure.
+
+ All the costs are defined in a machine-specific way, using the target
+ hooks and machine descriptions to determine them.
+
+ 4) The trees are transformed to use the new variables, the dead code is
+ removed.
+
+ All of this is done loop by loop. Doing it globally is theoretically
+ possible, it might give a better performance and it might enable us
+ to decide costs more precisely, but getting all the interactions right
+ would be complicated. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "output.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "varray.h"
+#include "expr.h"
+#include "tree-pass.h"
+#include "ggc.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "hashtab.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+#include "cfgloop.h"
+#include "params.h"
+#include "langhooks.h"
+
+/* The infinite cost. */
+#define INFTY 10000000
+
+/* The expected number of loop iterations. TODO -- use profiling instead of
+ this. */
+#define AVG_LOOP_NITER(LOOP) 5
+
+
+/* Representation of the induction variable. */
+struct iv
+{
+ tree base; /* Initial value of the iv. */
+ tree base_object; /* A memory object to that the induction variable points. */
+ tree step; /* Step of the iv (constant only). */
+ tree ssa_name; /* The ssa name with the value. */
+ bool biv_p; /* Is it a biv? */
+ bool have_use_for; /* Do we already have a use for it? */
+ unsigned use_id; /* The identifier in the use if it is the case. */
+};
+
+/* Per-ssa version information (induction variable descriptions, etc.). */
+struct version_info
+{
+ tree name; /* The ssa name. */
+ struct iv *iv; /* Induction variable description. */
+ bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
+ an expression that is not an induction variable. */
+ unsigned inv_id; /* Id of an invariant. */
+ bool preserve_biv; /* For the original biv, whether to preserve it. */
+};
+
+/* Types of uses. */
+enum use_type
+{
+ USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
+ USE_ADDRESS, /* Use in an address. */
+ USE_COMPARE /* Use is a compare. */
+};
+
+/* The candidate - cost pair. */
+struct cost_pair
+{
+ struct iv_cand *cand; /* The candidate. */
+ unsigned cost; /* The cost. */
+ bitmap depends_on; /* The list of invariants that have to be
+ preserved. */
+ tree value; /* For final value elimination, the expression for
+ the final value of the iv. For iv elimination,
+ the new bound to compare with. */
+};
+
+/* Use. */
+struct iv_use
+{
+ unsigned id; /* The id of the use. */
+ enum use_type type; /* Type of the use. */
+ struct iv *iv; /* The induction variable it is based on. */
+ tree stmt; /* Statement in that it occurs. */
+ tree *op_p; /* The place where it occurs. */
+ bitmap related_cands; /* The set of "related" iv candidates, plus the common
+ important ones. */
+
+ unsigned n_map_members; /* Number of candidates in the cost_map list. */
+ struct cost_pair *cost_map;
+ /* The costs wrto the iv candidates. */
+
+ struct iv_cand *selected;
+ /* The selected candidate. */
+};
+
+/* The position where the iv is computed. */
+enum iv_position
+{
+ IP_NORMAL, /* At the end, just before the exit condition. */
+ IP_END, /* At the end of the latch block. */
+ IP_ORIGINAL /* The original biv. */
+};
+
+/* The induction variable candidate. */
+struct iv_cand
+{
+ unsigned id; /* The number of the candidate. */
+ bool important; /* Whether this is an "important" candidate, i.e. such
+ that it should be considered by all uses. */
+ enum iv_position pos; /* Where it is computed. */
+ tree incremented_at; /* For original biv, the statement where it is
+ incremented. */
+ tree var_before; /* The variable used for it before increment. */
+ tree var_after; /* The variable used for it after increment. */
+ struct iv *iv; /* The value of the candidate. NULL for
+ "pseudocandidate" used to indicate the possibility
+ to replace the final value of an iv by direct
+ computation of the value. */
+ unsigned cost; /* Cost of the candidate. */
+ bitmap depends_on; /* The list of invariants that are used in step of the
+ biv. */
+};
+
+/* The data used by the induction variable optimizations. */
+
+typedef struct iv_use *iv_use_p;
+DEF_VEC_P(iv_use_p);
+DEF_VEC_ALLOC_P(iv_use_p,heap);
+
+typedef struct iv_cand *iv_cand_p;
+DEF_VEC_P(iv_cand_p);
+DEF_VEC_ALLOC_P(iv_cand_p,heap);
+
+struct ivopts_data
+{
+ /* The currently optimized loop. */
+ struct loop *current_loop;
+
+ /* Number of registers used in it. */
+ unsigned regs_used;
+
+ /* Numbers of iterations for all exits of the current loop. */
+ htab_t niters;
+
+ /* The size of version_info array allocated. */
+ unsigned version_info_size;
+
+ /* The array of information for the ssa names. */
+ struct version_info *version_info;
+
+ /* The bitmap of indices in version_info whose value was changed. */
+ bitmap relevant;
+
+ /* The maximum invariant id. */
+ unsigned max_inv_id;
+
+ /* The uses of induction variables. */
+ VEC(iv_use_p,heap) *iv_uses;
+
+ /* The candidates. */
+ VEC(iv_cand_p,heap) *iv_candidates;
+
+ /* A bitmap of important candidates. */
+ bitmap important_candidates;
+
+ /* Whether to consider just related and important candidates when replacing a
+ use. */
+ bool consider_all_candidates;
+};
+
+/* An assignment of iv candidates to uses. */
+
+struct iv_ca
+{
+ /* The number of uses covered by the assignment. */
+ unsigned upto;
+
+ /* Number of uses that cannot be expressed by the candidates in the set. */
+ unsigned bad_uses;
+
+ /* Candidate assigned to a use, together with the related costs. */
+ struct cost_pair **cand_for_use;
+
+ /* Number of times each candidate is used. */
+ unsigned *n_cand_uses;
+
+ /* The candidates used. */
+ bitmap cands;
+
+ /* The number of candidates in the set. */
+ unsigned n_cands;
+
+ /* Total number of registers needed. */
+ unsigned n_regs;
+
+ /* Total cost of expressing uses. */
+ unsigned cand_use_cost;
+
+ /* Total cost of candidates. */
+ unsigned cand_cost;
+
+ /* Number of times each invariant is used. */
+ unsigned *n_invariant_uses;
+
+ /* Total cost of the assignment. */
+ unsigned cost;
+};
+
+/* Difference of two iv candidate assignments. */
+
+struct iv_ca_delta
+{
+ /* Changed use. */
+ struct iv_use *use;
+
+ /* An old assignment (for rollback purposes). */
+ struct cost_pair *old_cp;
+
+ /* A new assignment. */
+ struct cost_pair *new_cp;
+
+ /* Next change in the list. */
+ struct iv_ca_delta *next_change;
+};
+
+/* Bound on number of candidates below that all candidates are considered. */
+
+#define CONSIDER_ALL_CANDIDATES_BOUND \
+ ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
+
+/* If there are more iv occurrences, we just give up (it is quite unlikely that
+ optimizing such a loop would help, and it would take ages). */
+
+#define MAX_CONSIDERED_USES \
+ ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
+
+/* If there are at most this number of ivs in the set, try removing unnecessary
+ ivs from the set always. */
+
+#define ALWAYS_PRUNE_CAND_SET_BOUND \
+ ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
+
+/* The list of trees for that the decl_rtl field must be reset is stored
+ here. */
+
+static VEC(tree,heap) *decl_rtl_to_reset;
+
+/* Number of uses recorded in DATA. */
+
+static inline unsigned
+n_iv_uses (struct ivopts_data *data)
+{
+ return VEC_length (iv_use_p, data->iv_uses);
+}
+
+/* Ith use recorded in DATA. */
+
+static inline struct iv_use *
+iv_use (struct ivopts_data *data, unsigned i)
+{
+ return VEC_index (iv_use_p, data->iv_uses, i);
+}
+
+/* Number of candidates recorded in DATA. */
+
+static inline unsigned
+n_iv_cands (struct ivopts_data *data)
+{
+ return VEC_length (iv_cand_p, data->iv_candidates);
+}
+
+/* Ith candidate recorded in DATA. */
+
+static inline struct iv_cand *
+iv_cand (struct ivopts_data *data, unsigned i)
+{
+ return VEC_index (iv_cand_p, data->iv_candidates, i);
+}
+
+/* The single loop exit if it dominates the latch, NULL otherwise. */
+
+edge
+single_dom_exit (struct loop *loop)
+{
+ edge exit = loop->single_exit;
+
+ if (!exit)
+ return NULL;
+
+ if (!just_once_each_iteration_p (loop, exit->src))
+ return NULL;
+
+ return exit;
+}
+
+/* Dumps information about the induction variable IV to FILE. */
+
+extern void dump_iv (FILE *, struct iv *);
+void
+dump_iv (FILE *file, struct iv *iv)
+{
+ if (iv->ssa_name)
+ {
+ fprintf (file, "ssa name ");
+ print_generic_expr (file, iv->ssa_name, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ fprintf (file, " type ");
+ print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
+ fprintf (file, "\n");
+
+ if (iv->step)
+ {
+ fprintf (file, " base ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, " step ");
+ print_generic_expr (file, iv->step, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ else
+ {
+ fprintf (file, " invariant ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ if (iv->base_object)
+ {
+ fprintf (file, " base object ");
+ print_generic_expr (file, iv->base_object, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ if (iv->biv_p)
+ fprintf (file, " is a biv\n");
+}
+
+/* Dumps information about the USE to FILE. */
+
+extern void dump_use (FILE *, struct iv_use *);
+void
+dump_use (FILE *file, struct iv_use *use)
+{
+ fprintf (file, "use %d\n", use->id);
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ fprintf (file, " generic\n");
+ break;
+
+ case USE_ADDRESS:
+ fprintf (file, " address\n");
+ break;
+
+ case USE_COMPARE:
+ fprintf (file, " compare\n");
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ fprintf (file, " in statement ");
+ print_generic_expr (file, use->stmt, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, " at position ");
+ if (use->op_p)
+ print_generic_expr (file, *use->op_p, TDF_SLIM);
+ fprintf (file, "\n");
+
+ dump_iv (file, use->iv);
+
+ if (use->related_cands)
+ {
+ fprintf (file, " related candidates ");
+ dump_bitmap (file, use->related_cands);
+ }
+}
+
+/* Dumps information about the uses to FILE. */
+
+extern void dump_uses (FILE *, struct ivopts_data *);
+void
+dump_uses (FILE *file, struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ dump_use (file, use);
+ fprintf (file, "\n");
+ }
+}
+
+/* Dumps information about induction variable candidate CAND to FILE. */
+
+extern void dump_cand (FILE *, struct iv_cand *);
+void
+dump_cand (FILE *file, struct iv_cand *cand)
+{
+ struct iv *iv = cand->iv;
+
+ fprintf (file, "candidate %d%s\n",
+ cand->id, cand->important ? " (important)" : "");
+
+ if (cand->depends_on)
+ {
+ fprintf (file, " depends on ");
+ dump_bitmap (file, cand->depends_on);
+ }
+
+ if (!iv)
+ {
+ fprintf (file, " final value replacement\n");
+ return;
+ }
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ fprintf (file, " incremented before exit test\n");
+ break;
+
+ case IP_END:
+ fprintf (file, " incremented at end\n");
+ break;
+
+ case IP_ORIGINAL:
+ fprintf (file, " original biv\n");
+ break;
+ }
+
+ dump_iv (file, iv);
+}
+
+/* Returns the info for ssa version VER. */
+
+static inline struct version_info *
+ver_info (struct ivopts_data *data, unsigned ver)
+{
+ return data->version_info + ver;
+}
+
+/* Returns the info for ssa name NAME. */
+
+static inline struct version_info *
+name_info (struct ivopts_data *data, tree name)
+{
+ return ver_info (data, SSA_NAME_VERSION (name));
+}
+
+/* Checks whether there exists number X such that X * B = A, counting modulo
+ 2^BITS. */
+
+static bool
+divide (unsigned bits, unsigned HOST_WIDE_INT a, unsigned HOST_WIDE_INT b,
+ HOST_WIDE_INT *x)
+{
+ unsigned HOST_WIDE_INT mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
+ unsigned HOST_WIDE_INT inv, ex, val;
+ unsigned i;
+
+ a &= mask;
+ b &= mask;
+
+ /* First divide the whole equation by 2 as long as possible. */
+ while (!(a & 1) && !(b & 1))
+ {
+ a >>= 1;
+ b >>= 1;
+ bits--;
+ mask >>= 1;
+ }
+
+ if (!(b & 1))
+ {
+ /* If b is still even, a is odd and there is no such x. */
+ return false;
+ }
+
+ /* Find the inverse of b. We compute it as
+ b^(2^(bits - 1) - 1) (mod 2^bits). */
+ inv = 1;
+ ex = b;
+ for (i = 0; i < bits - 1; i++)
+ {
+ inv = (inv * ex) & mask;
+ ex = (ex * ex) & mask;
+ }
+
+ val = (a * inv) & mask;
+
+ gcc_assert (((val * b) & mask) == a);
+
+ if ((val >> (bits - 1)) & 1)
+ val |= ~mask;
+
+ *x = val;
+
+ return true;
+}
+
+/* Returns true if STMT is after the place where the IP_NORMAL ivs will be
+ emitted in LOOP. */
+
+static bool
+stmt_after_ip_normal_pos (struct loop *loop, tree stmt)
+{
+ basic_block bb = ip_normal_pos (loop), sbb = bb_for_stmt (stmt);
+
+ gcc_assert (bb);
+
+ if (sbb == loop->latch)
+ return true;
+
+ if (sbb != bb)
+ return false;
+
+ return stmt == last_stmt (bb);
+}
+
+/* Returns true if STMT if after the place where the original induction
+ variable CAND is incremented. */
+
+static bool
+stmt_after_ip_original_pos (struct iv_cand *cand, tree stmt)
+{
+ basic_block cand_bb = bb_for_stmt (cand->incremented_at);
+ basic_block stmt_bb = bb_for_stmt (stmt);
+ block_stmt_iterator bsi;
+
+ if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
+ return false;
+
+ if (stmt_bb != cand_bb)
+ return true;
+
+ /* Scan the block from the end, since the original ivs are usually
+ incremented at the end of the loop body. */
+ for (bsi = bsi_last (stmt_bb); ; bsi_prev (&bsi))
+ {
+ if (bsi_stmt (bsi) == cand->incremented_at)
+ return false;
+ if (bsi_stmt (bsi) == stmt)
+ return true;
+ }
+}
+
+/* Returns true if STMT if after the place where the induction variable
+ CAND is incremented in LOOP. */
+
+static bool
+stmt_after_increment (struct loop *loop, struct iv_cand *cand, tree stmt)
+{
+ switch (cand->pos)
+ {
+ case IP_END:
+ return false;
+
+ case IP_NORMAL:
+ return stmt_after_ip_normal_pos (loop, stmt);
+
+ case IP_ORIGINAL:
+ return stmt_after_ip_original_pos (cand, stmt);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
+
+static bool
+abnormal_ssa_name_p (tree exp)
+{
+ if (!exp)
+ return false;
+
+ if (TREE_CODE (exp) != SSA_NAME)
+ return false;
+
+ return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
+}
+
+/* Returns false if BASE or INDEX contains a ssa name that occurs in an
+ abnormal phi node. Callback for for_each_index. */
+
+static bool
+idx_contains_abnormal_ssa_name_p (tree base, tree *index,
+ void *data ATTRIBUTE_UNUSED)
+{
+ if (TREE_CODE (base) == ARRAY_REF)
+ {
+ if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
+ return false;
+ if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
+ return false;
+ }
+
+ return !abnormal_ssa_name_p (*index);
+}
+
+/* Returns true if EXPR contains a ssa name that occurs in an
+ abnormal phi node. */
+
+bool
+contains_abnormal_ssa_name_p (tree expr)
+{
+ enum tree_code code;
+ enum tree_code_class class;
+
+ if (!expr)
+ return false;
+
+ code = TREE_CODE (expr);
+ class = TREE_CODE_CLASS (code);
+
+ if (code == SSA_NAME)
+ return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
+
+ if (code == INTEGER_CST
+ || is_gimple_min_invariant (expr))
+ return false;
+
+ if (code == ADDR_EXPR)
+ return !for_each_index (&TREE_OPERAND (expr, 0),
+ idx_contains_abnormal_ssa_name_p,
+ NULL);
+
+ switch (class)
+ {
+ case tcc_binary:
+ case tcc_comparison:
+ if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
+ return true;
+
+ /* Fallthru. */
+ case tcc_unary:
+ if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
+ return true;
+
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return false;
+}
+
+/* Element of the table in that we cache the numbers of iterations obtained
+ from exits of the loop. */
+
+struct nfe_cache_elt
+{
+ /* The edge for that the number of iterations is cached. */
+ edge exit;
+
+ /* Number of iterations corresponding to this exit, or NULL if it cannot be
+ determined. */
+ tree niter;
+};
+
+/* Hash function for nfe_cache_elt E. */
+
+static hashval_t
+nfe_hash (const void *e)
+{
+ const struct nfe_cache_elt *elt = e;
+
+ return htab_hash_pointer (elt->exit);
+}
+
+/* Equality function for nfe_cache_elt E1 and edge E2. */
+
+static int
+nfe_eq (const void *e1, const void *e2)
+{
+ const struct nfe_cache_elt *elt1 = e1;
+
+ return elt1->exit == e2;
+}
+
+/* Returns tree describing number of iterations determined from
+ EXIT of DATA->current_loop, or NULL if something goes wrong. */
+
+static tree
+niter_for_exit (struct ivopts_data *data, edge exit)
+{
+ struct nfe_cache_elt *nfe_desc;
+ struct tree_niter_desc desc;
+ PTR *slot;
+
+ slot = htab_find_slot_with_hash (data->niters, exit,
+ htab_hash_pointer (exit),
+ INSERT);
+
+ if (!*slot)
+ {
+ nfe_desc = xmalloc (sizeof (struct nfe_cache_elt));
+ nfe_desc->exit = exit;
+
+ /* Try to determine number of iterations. We must know it
+ unconditionally (i.e., without possibility of # of iterations
+ being zero). Also, we cannot safely work with ssa names that
+ appear in phi nodes on abnormal edges, so that we do not create
+ overlapping life ranges for them (PR 27283). */
+ if (number_of_iterations_exit (data->current_loop,
+ exit, &desc, true)
+ && zero_p (desc.may_be_zero)
+ && !contains_abnormal_ssa_name_p (desc.niter))
+ nfe_desc->niter = desc.niter;
+ else
+ nfe_desc->niter = NULL_TREE;
+ }
+ else
+ nfe_desc = *slot;
+
+ return nfe_desc->niter;
+}
+
+/* Returns tree describing number of iterations determined from
+ single dominating exit of DATA->current_loop, or NULL if something
+ goes wrong. */
+
+static tree
+niter_for_single_dom_exit (struct ivopts_data *data)
+{
+ edge exit = single_dom_exit (data->current_loop);
+
+ if (!exit)
+ return NULL;
+
+ return niter_for_exit (data, exit);
+}
+
+/* Initializes data structures used by the iv optimization pass, stored
+ in DATA. */
+
+static void
+tree_ssa_iv_optimize_init (struct ivopts_data *data)
+{
+ data->version_info_size = 2 * num_ssa_names;
+ data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
+ data->relevant = BITMAP_ALLOC (NULL);
+ data->important_candidates = BITMAP_ALLOC (NULL);
+ data->max_inv_id = 0;
+ data->niters = htab_create (10, nfe_hash, nfe_eq, free);
+ data->iv_uses = VEC_alloc (iv_use_p, heap, 20);
+ data->iv_candidates = VEC_alloc (iv_cand_p, heap, 20);
+ decl_rtl_to_reset = VEC_alloc (tree, heap, 20);
+}
+
+/* Returns a memory object to that EXPR points. In case we are able to
+ determine that it does not point to any such object, NULL is returned. */
+
+static tree
+determine_base_object (tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+ tree base, obj, op0, op1;
+
+ /* If this is a pointer casted to any type, we need to determine
+ the base object for the pointer; so handle conversions before
+ throwing away non-pointer expressions. */
+ if (TREE_CODE (expr) == NOP_EXPR
+ || TREE_CODE (expr) == CONVERT_EXPR)
+ return determine_base_object (TREE_OPERAND (expr, 0));
+
+ if (!POINTER_TYPE_P (TREE_TYPE (expr)))
+ return NULL_TREE;
+
+ switch (code)
+ {
+ case INTEGER_CST:
+ return NULL_TREE;
+
+ case ADDR_EXPR:
+ obj = TREE_OPERAND (expr, 0);
+ base = get_base_address (obj);
+
+ if (!base)
+ return expr;
+
+ if (TREE_CODE (base) == INDIRECT_REF)
+ return determine_base_object (TREE_OPERAND (base, 0));
+
+ return fold_convert (ptr_type_node,
+ build_fold_addr_expr (base));
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ op0 = determine_base_object (TREE_OPERAND (expr, 0));
+ op1 = determine_base_object (TREE_OPERAND (expr, 1));
+
+ if (!op1)
+ return op0;
+
+ if (!op0)
+ return (code == PLUS_EXPR
+ ? op1
+ : fold_build1 (NEGATE_EXPR, ptr_type_node, op1));
+
+ return fold_build2 (code, ptr_type_node, op0, op1);
+
+ default:
+ return fold_convert (ptr_type_node, expr);
+ }
+}
+
+/* Allocates an induction variable with given initial value BASE and step STEP
+ for loop LOOP. */
+
+static struct iv *
+alloc_iv (tree base, tree step)
+{
+ struct iv *iv = XCNEW (struct iv);
+
+ if (step && integer_zerop (step))
+ step = NULL_TREE;
+
+ iv->base = base;
+ iv->base_object = determine_base_object (base);
+ iv->step = step;
+ iv->biv_p = false;
+ iv->have_use_for = false;
+ iv->use_id = 0;
+ iv->ssa_name = NULL_TREE;
+
+ return iv;
+}
+
+/* Sets STEP and BASE for induction variable IV. */
+
+static void
+set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
+{
+ struct version_info *info = name_info (data, iv);
+
+ gcc_assert (!info->iv);
+
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
+ info->iv = alloc_iv (base, step);
+ info->iv->ssa_name = iv;
+}
+
+/* Finds induction variable declaration for VAR. */
+
+static struct iv *
+get_iv (struct ivopts_data *data, tree var)
+{
+ basic_block bb;
+
+ if (!name_info (data, var)->iv)
+ {
+ bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
+
+ if (!bb
+ || !flow_bb_inside_loop_p (data->current_loop, bb))
+ set_iv (data, var, var, NULL_TREE);
+ }
+
+ return name_info (data, var)->iv;
+}
+
+/* Determines the step of a biv defined in PHI. Returns NULL if PHI does
+ not define a simple affine biv with nonzero step. */
+
+static tree
+determine_biv_step (tree phi)
+{
+ struct loop *loop = bb_for_stmt (phi)->loop_father;
+ tree name = PHI_RESULT (phi);
+ affine_iv iv;
+
+ if (!is_gimple_reg (name))
+ return NULL_TREE;
+
+ if (!simple_iv (loop, phi, name, &iv, true))
+ return NULL_TREE;
+
+ return (zero_p (iv.step) ? NULL_TREE : iv.step);
+}
+
+/* Finds basic ivs. */
+
+static bool
+find_bivs (struct ivopts_data *data)
+{
+ tree phi, step, type, base;
+ bool found = false;
+ struct loop *loop = data->current_loop;
+
+ for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
+ {
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
+ continue;
+
+ step = determine_biv_step (phi);
+ if (!step)
+ continue;
+
+ base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
+ base = expand_simple_operations (base);
+ if (contains_abnormal_ssa_name_p (base)
+ || contains_abnormal_ssa_name_p (step))
+ continue;
+
+ type = TREE_TYPE (PHI_RESULT (phi));
+ base = fold_convert (type, base);
+ if (step)
+ step = fold_convert (type, step);
+
+ set_iv (data, PHI_RESULT (phi), base, step);
+ found = true;
+ }
+
+ return found;
+}
+
+/* Marks basic ivs. */
+
+static void
+mark_bivs (struct ivopts_data *data)
+{
+ tree phi, var;
+ struct iv *iv, *incr_iv;
+ struct loop *loop = data->current_loop;
+ basic_block incr_bb;
+
+ for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
+ {
+ iv = get_iv (data, PHI_RESULT (phi));
+ if (!iv)
+ continue;
+
+ var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
+ incr_iv = get_iv (data, var);
+ if (!incr_iv)
+ continue;
+
+ /* If the increment is in the subloop, ignore it. */
+ incr_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
+ if (incr_bb->loop_father != data->current_loop
+ || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
+ continue;
+
+ iv->biv_p = true;
+ incr_iv->biv_p = true;
+ }
+}
+
+/* Checks whether STMT defines a linear induction variable and stores its
+ parameters to IV. */
+
+static bool
+find_givs_in_stmt_scev (struct ivopts_data *data, tree stmt, affine_iv *iv)
+{
+ tree lhs;
+ struct loop *loop = data->current_loop;
+
+ iv->base = NULL_TREE;
+ iv->step = NULL_TREE;
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ lhs = TREE_OPERAND (stmt, 0);
+ if (TREE_CODE (lhs) != SSA_NAME)
+ return false;
+
+ if (!simple_iv (loop, stmt, TREE_OPERAND (stmt, 1), iv, true))
+ return false;
+ iv->base = expand_simple_operations (iv->base);
+
+ if (contains_abnormal_ssa_name_p (iv->base)
+ || contains_abnormal_ssa_name_p (iv->step))
+ return false;
+
+ return true;
+}
+
+/* Finds general ivs in statement STMT. */
+
+static void
+find_givs_in_stmt (struct ivopts_data *data, tree stmt)
+{
+ affine_iv iv;
+
+ if (!find_givs_in_stmt_scev (data, stmt, &iv))
+ return;
+
+ set_iv (data, TREE_OPERAND (stmt, 0), iv.base, iv.step);
+}
+
+/* Finds general ivs in basic block BB. */
+
+static void
+find_givs_in_bb (struct ivopts_data *data, basic_block bb)
+{
+ block_stmt_iterator bsi;
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ find_givs_in_stmt (data, bsi_stmt (bsi));
+}
+
+/* Finds general ivs. */
+
+static void
+find_givs (struct ivopts_data *data)
+{
+ struct loop *loop = data->current_loop;
+ basic_block *body = get_loop_body_in_dom_order (loop);
+ unsigned i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ find_givs_in_bb (data, body[i]);
+ free (body);
+}
+
+/* For each ssa name defined in LOOP determines whether it is an induction
+ variable and if so, its initial value and step. */
+
+static bool
+find_induction_variables (struct ivopts_data *data)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ if (!find_bivs (data))
+ return false;
+
+ find_givs (data);
+ mark_bivs (data);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ tree niter = niter_for_single_dom_exit (data);
+
+ if (niter)
+ {
+ fprintf (dump_file, " number of iterations ");
+ print_generic_expr (dump_file, niter, TDF_SLIM);
+ fprintf (dump_file, "\n\n");
+ };
+
+ fprintf (dump_file, "Induction variables:\n\n");
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ if (ver_info (data, i)->iv)
+ dump_iv (dump_file, ver_info (data, i)->iv);
+ }
+ }
+
+ return true;
+}
+
+/* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
+
+static struct iv_use *
+record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
+ tree stmt, enum use_type use_type)
+{
+ struct iv_use *use = XCNEW (struct iv_use);
+
+ use->id = n_iv_uses (data);
+ use->type = use_type;
+ use->iv = iv;
+ use->stmt = stmt;
+ use->op_p = use_p;
+ use->related_cands = BITMAP_ALLOC (NULL);
+
+ /* To avoid showing ssa name in the dumps, if it was not reset by the
+ caller. */
+ iv->ssa_name = NULL_TREE;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_use (dump_file, use);
+
+ VEC_safe_push (iv_use_p, heap, data->iv_uses, use);
+
+ return use;
+}
+
+/* Checks whether OP is a loop-level invariant and if so, records it.
+ NONLINEAR_USE is true if the invariant is used in a way we do not
+ handle specially. */
+
+static void
+record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
+{
+ basic_block bb;
+ struct version_info *info;
+
+ if (TREE_CODE (op) != SSA_NAME
+ || !is_gimple_reg (op))
+ return;
+
+ bb = bb_for_stmt (SSA_NAME_DEF_STMT (op));
+ if (bb
+ && flow_bb_inside_loop_p (data->current_loop, bb))
+ return;
+
+ info = name_info (data, op);
+ info->name = op;
+ info->has_nonlin_use |= nonlinear_use;
+ if (!info->inv_id)
+ info->inv_id = ++data->max_inv_id;
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
+}
+
+/* Checks whether the use OP is interesting and if so, records it. */
+
+static struct iv_use *
+find_interesting_uses_op (struct ivopts_data *data, tree op)
+{
+ struct iv *iv;
+ struct iv *civ;
+ tree stmt;
+ struct iv_use *use;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ return NULL;
+
+ if (iv->have_use_for)
+ {
+ use = iv_use (data, iv->use_id);
+
+ gcc_assert (use->type == USE_NONLINEAR_EXPR);
+ return use;
+ }
+
+ if (zero_p (iv->step))
+ {
+ record_invariant (data, op, true);
+ return NULL;
+ }
+ iv->have_use_for = true;
+
+ civ = XNEW (struct iv);
+ *civ = *iv;
+
+ stmt = SSA_NAME_DEF_STMT (op);
+ gcc_assert (TREE_CODE (stmt) == PHI_NODE
+ || TREE_CODE (stmt) == MODIFY_EXPR);
+
+ use = record_use (data, NULL, civ, stmt, USE_NONLINEAR_EXPR);
+ iv->use_id = use->id;
+
+ return use;
+}
+
+/* Checks whether the condition *COND_P in STMT is interesting
+ and if so, records it. */
+
+static void
+find_interesting_uses_cond (struct ivopts_data *data, tree stmt, tree *cond_p)
+{
+ tree *op0_p;
+ tree *op1_p;
+ struct iv *iv0 = NULL, *iv1 = NULL, *civ;
+ struct iv const_iv;
+ tree zero = integer_zero_node;
+
+ const_iv.step = NULL_TREE;
+
+ if (TREE_CODE (*cond_p) != SSA_NAME
+ && !COMPARISON_CLASS_P (*cond_p))
+ return;
+
+ if (TREE_CODE (*cond_p) == SSA_NAME)
+ {
+ op0_p = cond_p;
+ op1_p = &zero;
+ }
+ else
+ {
+ op0_p = &TREE_OPERAND (*cond_p, 0);
+ op1_p = &TREE_OPERAND (*cond_p, 1);
+ }
+
+ if (TREE_CODE (*op0_p) == SSA_NAME)
+ iv0 = get_iv (data, *op0_p);
+ else
+ iv0 = &const_iv;
+
+ if (TREE_CODE (*op1_p) == SSA_NAME)
+ iv1 = get_iv (data, *op1_p);
+ else
+ iv1 = &const_iv;
+
+ if (/* When comparing with non-invariant value, we may not do any senseful
+ induction variable elimination. */
+ (!iv0 || !iv1)
+ /* Eliminating condition based on two ivs would be nontrivial.
+ ??? TODO -- it is not really important to handle this case. */
+ || (!zero_p (iv0->step) && !zero_p (iv1->step)))
+ {
+ find_interesting_uses_op (data, *op0_p);
+ find_interesting_uses_op (data, *op1_p);
+ return;
+ }
+
+ if (zero_p (iv0->step) && zero_p (iv1->step))
+ {
+ /* If both are invariants, this is a work for unswitching. */
+ return;
+ }
+
+ civ = XNEW (struct iv);
+ *civ = zero_p (iv0->step) ? *iv1: *iv0;
+ record_use (data, cond_p, civ, stmt, USE_COMPARE);
+}
+
+/* Returns true if expression EXPR is obviously invariant in LOOP,
+ i.e. if all its operands are defined outside of the LOOP. */
+
+bool
+expr_invariant_in_loop_p (struct loop *loop, tree expr)
+{
+ basic_block def_bb;
+ unsigned i, len;
+
+ if (is_gimple_min_invariant (expr))
+ return true;
+
+ if (TREE_CODE (expr) == SSA_NAME)
+ {
+ def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (expr));
+ if (def_bb
+ && flow_bb_inside_loop_p (loop, def_bb))
+ return false;
+
+ return true;
+ }
+
+ if (!EXPR_P (expr))
+ return false;
+
+ len = TREE_CODE_LENGTH (TREE_CODE (expr));
+ for (i = 0; i < len; i++)
+ if (!expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
+ return false;
+
+ return true;
+}
+
+/* Cumulates the steps of indices into DATA and replaces their values with the
+ initial ones. Returns false when the value of the index cannot be determined.
+ Callback for for_each_index. */
+
+struct ifs_ivopts_data
+{
+ struct ivopts_data *ivopts_data;
+ tree stmt;
+ tree *step_p;
+};
+
+static bool
+idx_find_step (tree base, tree *idx, void *data)
+{
+ struct ifs_ivopts_data *dta = data;
+ struct iv *iv;
+ tree step, iv_base, iv_step, lbound, off;
+ struct loop *loop = dta->ivopts_data->current_loop;
+
+ if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
+ || TREE_CODE (base) == ALIGN_INDIRECT_REF)
+ return false;
+
+ /* If base is a component ref, require that the offset of the reference
+ be invariant. */
+ if (TREE_CODE (base) == COMPONENT_REF)
+ {
+ off = component_ref_field_offset (base);
+ return expr_invariant_in_loop_p (loop, off);
+ }
+
+ /* If base is array, first check whether we will be able to move the
+ reference out of the loop (in order to take its address in strength
+ reduction). In order for this to work we need both lower bound
+ and step to be loop invariants. */
+ if (TREE_CODE (base) == ARRAY_REF)
+ {
+ step = array_ref_element_size (base);
+ lbound = array_ref_low_bound (base);
+
+ if (!expr_invariant_in_loop_p (loop, step)
+ || !expr_invariant_in_loop_p (loop, lbound))
+ return false;
+ }
+
+ if (TREE_CODE (*idx) != SSA_NAME)
+ return true;
+
+ iv = get_iv (dta->ivopts_data, *idx);
+ if (!iv)
+ return false;
+
+ /* XXX We produce for a base of *D42 with iv->base being &x[0]
+ *&x[0], which is not folded and does not trigger the
+ ARRAY_REF path below. */
+ *idx = iv->base;
+
+ if (!iv->step)
+ return true;
+
+ if (TREE_CODE (base) == ARRAY_REF)
+ {
+ step = array_ref_element_size (base);
+
+ /* We only handle addresses whose step is an integer constant. */
+ if (TREE_CODE (step) != INTEGER_CST)
+ return false;
+ }
+ else
+ /* The step for pointer arithmetics already is 1 byte. */
+ step = build_int_cst (sizetype, 1);
+
+ iv_base = iv->base;
+ iv_step = iv->step;
+ if (!convert_affine_scev (dta->ivopts_data->current_loop,
+ sizetype, &iv_base, &iv_step, dta->stmt,
+ false))
+ {
+ /* The index might wrap. */
+ return false;
+ }
+
+ step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
+
+ if (!*dta->step_p)
+ *dta->step_p = step;
+ else
+ *dta->step_p = fold_build2 (PLUS_EXPR, sizetype, *dta->step_p, step);
+
+ return true;
+}
+
+/* Records use in index IDX. Callback for for_each_index. Ivopts data
+ object is passed to it in DATA. */
+
+static bool
+idx_record_use (tree base, tree *idx,
+ void *data)
+{
+ find_interesting_uses_op (data, *idx);
+ if (TREE_CODE (base) == ARRAY_REF)
+ {
+ find_interesting_uses_op (data, array_ref_element_size (base));
+ find_interesting_uses_op (data, array_ref_low_bound (base));
+ }
+ return true;
+}
+
+/* Returns true if memory reference REF may be unaligned. */
+
+static bool
+may_be_unaligned_p (tree ref)
+{
+ tree base;
+ tree base_type;
+ HOST_WIDE_INT bitsize;
+ HOST_WIDE_INT bitpos;
+ tree toffset;
+ enum machine_mode mode;
+ int unsignedp, volatilep;
+ unsigned base_align;
+
+ /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
+ thus they are not misaligned. */
+ if (TREE_CODE (ref) == TARGET_MEM_REF)
+ return false;
+
+ /* The test below is basically copy of what expr.c:normal_inner_ref
+ does to check whether the object must be loaded by parts when
+ STRICT_ALIGNMENT is true. */
+ base = get_inner_reference (ref, &bitsize, &bitpos, &toffset, &mode,
+ &unsignedp, &volatilep, true);
+ base_type = TREE_TYPE (base);
+ base_align = TYPE_ALIGN (base_type);
+
+ if (mode != BLKmode
+ && (base_align < GET_MODE_ALIGNMENT (mode)
+ || bitpos % GET_MODE_ALIGNMENT (mode) != 0
+ || bitpos % BITS_PER_UNIT != 0))
+ return true;
+
+ return false;
+}
+
+/* Return true if EXPR may be non-addressable. */
+
+static bool
+may_be_nonaddressable_p (tree expr)
+{
+ switch (TREE_CODE (expr))
+ {
+ case COMPONENT_REF:
+ return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
+ || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ case VIEW_CONVERT_EXPR:
+ /* This kind of view-conversions may wrap non-addressable objects
+ and make them look addressable. After some processing the
+ non-addressability may be uncovered again, causing ADDR_EXPRs
+ of inappropriate objects to be built. */
+ /* APPLE LOCAL begin 6187262 */
+ return ((AGGREGATE_TYPE_P (TREE_TYPE (expr))
+ || TREE_CODE (TREE_TYPE (expr)) == VECTOR_TYPE)
+ && !(AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
+ || TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE));
+ /* APPLE LOCAL end 6187262 */
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Finds addresses in *OP_P inside STMT. */
+
+static void
+find_interesting_uses_address (struct ivopts_data *data, tree stmt, tree *op_p)
+{
+ tree base = *op_p, step = NULL;
+ struct iv *civ;
+ struct ifs_ivopts_data ifs_ivopts_data;
+
+ /* Do not play with volatile memory references. A bit too conservative,
+ perhaps, but safe. */
+ if (stmt_ann (stmt)->has_volatile_ops)
+ goto fail;
+
+ /* Ignore bitfields for now. Not really something terribly complicated
+ to handle. TODO. */
+ if (TREE_CODE (base) == BIT_FIELD_REF)
+ goto fail;
+
+ if (may_be_nonaddressable_p (base))
+ goto fail;
+
+ if (STRICT_ALIGNMENT
+ && may_be_unaligned_p (base))
+ goto fail;
+
+ base = unshare_expr (base);
+
+ if (TREE_CODE (base) == TARGET_MEM_REF)
+ {
+ tree type = build_pointer_type (TREE_TYPE (base));
+ tree astep;
+
+ if (TMR_BASE (base)
+ && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_BASE (base));
+ if (!civ)
+ goto fail;
+
+ TMR_BASE (base) = civ->base;
+ step = civ->step;
+ }
+ if (TMR_INDEX (base)
+ && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_INDEX (base));
+ if (!civ)
+ goto fail;
+
+ TMR_INDEX (base) = civ->base;
+ astep = civ->step;
+
+ if (astep)
+ {
+ if (TMR_STEP (base))
+ astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
+
+ if (step)
+ step = fold_build2 (PLUS_EXPR, type, step, astep);
+ else
+ step = astep;
+ }
+ }
+
+ if (zero_p (step))
+ goto fail;
+ base = tree_mem_ref_addr (type, base);
+ }
+ else
+ {
+ ifs_ivopts_data.ivopts_data = data;
+ ifs_ivopts_data.stmt = stmt;
+ ifs_ivopts_data.step_p = &step;
+ if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
+ || zero_p (step))
+ goto fail;
+
+ gcc_assert (TREE_CODE (base) != ALIGN_INDIRECT_REF);
+ gcc_assert (TREE_CODE (base) != MISALIGNED_INDIRECT_REF);
+
+ base = build_fold_addr_expr (base);
+
+ /* Substituting bases of IVs into the base expression might
+ have caused folding opportunities. */
+ if (TREE_CODE (base) == ADDR_EXPR)
+ {
+ tree *ref = &TREE_OPERAND (base, 0);
+ while (handled_component_p (*ref))
+ ref = &TREE_OPERAND (*ref, 0);
+ if (TREE_CODE (*ref) == INDIRECT_REF)
+ *ref = fold_indirect_ref (*ref);
+ }
+ }
+
+ civ = alloc_iv (base, step);
+ record_use (data, op_p, civ, stmt, USE_ADDRESS);
+ return;
+
+fail:
+ for_each_index (op_p, idx_record_use, data);
+}
+
+/* Finds and records invariants used in STMT. */
+
+static void
+find_invariants_stmt (struct ivopts_data *data, tree stmt)
+{
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ tree op;
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use_p);
+ record_invariant (data, op, false);
+ }
+}
+
+/* Finds interesting uses of induction variables in the statement STMT. */
+
+static void
+find_interesting_uses_stmt (struct ivopts_data *data, tree stmt)
+{
+ struct iv *iv;
+ tree op, lhs, rhs;
+ ssa_op_iter iter;
+ use_operand_p use_p;
+
+ find_invariants_stmt (data, stmt);
+
+ if (TREE_CODE (stmt) == COND_EXPR)
+ {
+ find_interesting_uses_cond (data, stmt, &COND_EXPR_COND (stmt));
+ return;
+ }
+
+ if (TREE_CODE (stmt) == MODIFY_EXPR)
+ {
+ lhs = TREE_OPERAND (stmt, 0);
+ rhs = TREE_OPERAND (stmt, 1);
+
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ /* If the statement defines an induction variable, the uses are not
+ interesting by themselves. */
+
+ iv = get_iv (data, lhs);
+
+ if (iv && !zero_p (iv->step))
+ return;
+ }
+
+ switch (TREE_CODE_CLASS (TREE_CODE (rhs)))
+ {
+ case tcc_comparison:
+ find_interesting_uses_cond (data, stmt, &TREE_OPERAND (stmt, 1));
+ return;
+
+ case tcc_reference:
+ find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 1));
+ if (REFERENCE_CLASS_P (lhs))
+ find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 0));
+ return;
+
+ default: ;
+ }
+
+ if (REFERENCE_CLASS_P (lhs)
+ && is_gimple_val (rhs))
+ {
+ find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 0));
+ find_interesting_uses_op (data, rhs);
+ return;
+ }
+
+ /* TODO -- we should also handle address uses of type
+
+ memory = call (whatever);
+
+ and
+
+ call (memory). */
+ }
+
+ if (TREE_CODE (stmt) == PHI_NODE
+ && bb_for_stmt (stmt) == data->current_loop->header)
+ {
+ lhs = PHI_RESULT (stmt);
+ iv = get_iv (data, lhs);
+
+ if (iv && !zero_p (iv->step))
+ return;
+ }
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use_p);
+
+ if (TREE_CODE (op) != SSA_NAME)
+ continue;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ continue;
+
+ find_interesting_uses_op (data, op);
+ }
+}
+
+/* Finds interesting uses of induction variables outside of loops
+ on loop exit edge EXIT. */
+
+static void
+find_interesting_uses_outside (struct ivopts_data *data, edge exit)
+{
+ tree phi, def;
+
+ for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
+ {
+ def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
+ find_interesting_uses_op (data, def);
+ }
+}
+
+/* Finds uses of the induction variables that are interesting. */
+
+static void
+find_interesting_uses (struct ivopts_data *data)
+{
+ basic_block bb;
+ block_stmt_iterator bsi;
+ tree phi;
+ basic_block *body = get_loop_body (data->current_loop);
+ unsigned i;
+ struct version_info *info;
+ edge e;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Uses:\n\n");
+
+ for (i = 0; i < data->current_loop->num_nodes; i++)
+ {
+ edge_iterator ei;
+ bb = body[i];
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->dest != EXIT_BLOCK_PTR
+ && !flow_bb_inside_loop_p (data->current_loop, e->dest))
+ find_interesting_uses_outside (data, e);
+
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ find_interesting_uses_stmt (data, phi);
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ find_interesting_uses_stmt (data, bsi_stmt (bsi));
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ bitmap_iterator bi;
+
+ fprintf (dump_file, "\n");
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ info = ver_info (data, i);
+ if (info->inv_id)
+ {
+ fprintf (dump_file, " ");
+ print_generic_expr (dump_file, info->name, TDF_SLIM);
+ fprintf (dump_file, " is invariant (%d)%s\n",
+ info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
+ }
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ free (body);
+}
+
+/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
+ is true, assume we are inside an address. If TOP_COMPREF is true, assume
+ we are at the top-level of the processed address. */
+
+static tree
+strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
+ unsigned HOST_WIDE_INT *offset)
+{
+ tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
+ enum tree_code code;
+ tree type, orig_type = TREE_TYPE (expr);
+ unsigned HOST_WIDE_INT off0, off1, st;
+ tree orig_expr = expr;
+
+ STRIP_NOPS (expr);
+
+ type = TREE_TYPE (expr);
+ code = TREE_CODE (expr);
+ *offset = 0;
+
+ switch (code)
+ {
+ case INTEGER_CST:
+ if (!cst_and_fits_in_hwi (expr)
+ || zero_p (expr))
+ return orig_expr;
+
+ *offset = int_cst_value (expr);
+ return build_int_cst (orig_type, 0);
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+
+ op0 = strip_offset_1 (op0, false, false, &off0);
+ op1 = strip_offset_1 (op1, false, false, &off1);
+
+ *offset = (code == PLUS_EXPR ? off0 + off1 : off0 - off1);
+ if (op0 == TREE_OPERAND (expr, 0)
+ && op1 == TREE_OPERAND (expr, 1))
+ return orig_expr;
+
+ if (zero_p (op1))
+ expr = op0;
+ else if (zero_p (op0))
+ {
+ if (code == PLUS_EXPR)
+ expr = op1;
+ else
+ expr = fold_build1 (NEGATE_EXPR, type, op1);
+ }
+ else
+ expr = fold_build2 (code, type, op0, op1);
+
+ return fold_convert (orig_type, expr);
+
+ case ARRAY_REF:
+ if (!inside_addr)
+ return orig_expr;
+
+ step = array_ref_element_size (expr);
+ if (!cst_and_fits_in_hwi (step))
+ break;
+
+ st = int_cst_value (step);
+ op1 = TREE_OPERAND (expr, 1);
+ op1 = strip_offset_1 (op1, false, false, &off1);
+ *offset = off1 * st;
+
+ if (top_compref
+ && zero_p (op1))
+ {
+ /* Strip the component reference completely. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
+ *offset += off0;
+ return op0;
+ }
+ break;
+
+ case COMPONENT_REF:
+ if (!inside_addr)
+ return orig_expr;
+
+ tmp = component_ref_field_offset (expr);
+ if (top_compref
+ && cst_and_fits_in_hwi (tmp))
+ {
+ /* Strip the component reference completely. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
+ *offset = off0 + int_cst_value (tmp);
+ return op0;
+ }
+ break;
+
+ case ADDR_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, true, true, &off0);
+ *offset += off0;
+
+ if (op0 == TREE_OPERAND (expr, 0))
+ return orig_expr;
+
+ expr = build_fold_addr_expr (op0);
+ return fold_convert (orig_type, expr);
+
+ case INDIRECT_REF:
+ inside_addr = false;
+ break;
+
+ default:
+ return orig_expr;
+ }
+
+ /* Default handling of expressions for that we want to recurse into
+ the first operand. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, false, &off0);
+ *offset += off0;
+
+ if (op0 == TREE_OPERAND (expr, 0)
+ && (!op1 || op1 == TREE_OPERAND (expr, 1)))
+ return orig_expr;
+
+ expr = copy_node (expr);
+ TREE_OPERAND (expr, 0) = op0;
+ if (op1)
+ TREE_OPERAND (expr, 1) = op1;
+
+ /* Inside address, we might strip the top level component references,
+ thus changing type of the expression. Handling of ADDR_EXPR
+ will fix that. */
+ expr = fold_convert (orig_type, expr);
+
+ return expr;
+}
+
+/* Strips constant offsets from EXPR and stores them to OFFSET. */
+
+static tree
+strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
+{
+ return strip_offset_1 (expr, false, false, offset);
+}
+
+/* Returns variant of TYPE that can be used as base for different uses.
+ We return unsigned type with the same precision, which avoids problems
+ with overflows. */
+
+static tree
+generic_type_for (tree type)
+{
+ if (POINTER_TYPE_P (type))
+ return unsigned_type_for (type);
+
+ if (TYPE_UNSIGNED (type))
+ return type;
+
+ return unsigned_type_for (type);
+}
+
+/* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
+ the bitmap to that we should store it. */
+
+static struct ivopts_data *fd_ivopts_data;
+static tree
+find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
+{
+ bitmap *depends_on = data;
+ struct version_info *info;
+
+ if (TREE_CODE (*expr_p) != SSA_NAME)
+ return NULL_TREE;
+ info = name_info (fd_ivopts_data, *expr_p);
+
+ if (!info->inv_id || info->has_nonlin_use)
+ return NULL_TREE;
+
+ if (!*depends_on)
+ *depends_on = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (*depends_on, info->inv_id);
+
+ return NULL_TREE;
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. If both BASE and STEP are NULL, we add a pseudocandidate for the
+ replacement of the final value of the iv by a direct computation. */
+
+static struct iv_cand *
+add_candidate_1 (struct ivopts_data *data,
+ tree base, tree step, bool important, enum iv_position pos,
+ struct iv_use *use, tree incremented_at)
+{
+ unsigned i;
+ struct iv_cand *cand = NULL;
+ tree type, orig_type;
+
+ if (base)
+ {
+ orig_type = TREE_TYPE (base);
+ type = generic_type_for (orig_type);
+ if (type != orig_type)
+ {
+ base = fold_convert (type, base);
+ if (step)
+ step = fold_convert (type, step);
+ }
+ }
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ cand = iv_cand (data, i);
+
+ if (cand->pos != pos)
+ continue;
+
+ if (cand->incremented_at != incremented_at)
+ continue;
+
+ if (!cand->iv)
+ {
+ if (!base && !step)
+ break;
+
+ continue;
+ }
+
+ if (!base && !step)
+ continue;
+
+ if (!operand_equal_p (base, cand->iv->base, 0))
+ continue;
+
+ if (zero_p (cand->iv->step))
+ {
+ if (zero_p (step))
+ break;
+ }
+ else
+ {
+ if (step && operand_equal_p (step, cand->iv->step, 0))
+ break;
+ }
+ }
+
+ if (i == n_iv_cands (data))
+ {
+ cand = XCNEW (struct iv_cand);
+ cand->id = i;
+
+ if (!base && !step)
+ cand->iv = NULL;
+ else
+ cand->iv = alloc_iv (base, step);
+
+ cand->pos = pos;
+ if (pos != IP_ORIGINAL && cand->iv)
+ {
+ cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
+ cand->var_after = cand->var_before;
+ }
+ cand->important = important;
+ cand->incremented_at = incremented_at;
+ VEC_safe_push (iv_cand_p, heap, data->iv_candidates, cand);
+
+ if (step
+ && TREE_CODE (step) != INTEGER_CST)
+ {
+ fd_ivopts_data = data;
+ walk_tree (&step, find_depends, &cand->depends_on, NULL);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_cand (dump_file, cand);
+ }
+
+ if (important && !cand->important)
+ {
+ cand->important = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Candidate %d is important\n", cand->id);
+ }
+
+ if (use)
+ {
+ bitmap_set_bit (use->related_cands, i);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Candidate %d is related to use %d\n",
+ cand->id, use->id);
+ }
+
+ return cand;
+}
+
+/* Returns true if incrementing the induction variable at the end of the LOOP
+ is allowed.
+
+ The purpose is to avoid splitting latch edge with a biv increment, thus
+ creating a jump, possibly confusing other optimization passes and leaving
+ less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
+ is not available (so we do not have a better alternative), or if the latch
+ edge is already nonempty. */
+
+static bool
+allow_ip_end_pos_p (struct loop *loop)
+{
+ if (!ip_normal_pos (loop))
+ return true;
+
+ if (!empty_block_p (ip_end_pos (loop)))
+ return true;
+
+ return false;
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. The candidate computation is scheduled on all available positions. */
+
+static void
+add_candidate (struct ivopts_data *data,
+ tree base, tree step, bool important, struct iv_use *use)
+{
+ if (ip_normal_pos (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL_TREE);
+ if (ip_end_pos (data->current_loop)
+ && allow_ip_end_pos_p (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_END, use, NULL_TREE);
+}
+
+/* Add a standard "0 + 1 * iteration" iv candidate for a
+ type with SIZE bits. */
+
+static void
+add_standard_iv_candidates_for_size (struct ivopts_data *data,
+ unsigned int size)
+{
+ tree type = lang_hooks.types.type_for_size (size, true);
+ add_candidate (data, build_int_cst (type, 0), build_int_cst (type, 1),
+ true, NULL);
+}
+
+/* Adds standard iv candidates. */
+
+static void
+add_standard_iv_candidates (struct ivopts_data *data)
+{
+ add_standard_iv_candidates_for_size (data, INT_TYPE_SIZE);
+
+ /* The same for a double-integer type if it is still fast enough. */
+ if (BITS_PER_WORD >= INT_TYPE_SIZE * 2)
+ add_standard_iv_candidates_for_size (data, INT_TYPE_SIZE * 2);
+}
+
+
+/* Adds candidates bases on the old induction variable IV. */
+
+static void
+add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
+{
+ tree phi, def;
+ struct iv_cand *cand;
+
+ add_candidate (data, iv->base, iv->step, true, NULL);
+
+ /* The same, but with initial value zero. */
+ add_candidate (data,
+ build_int_cst (TREE_TYPE (iv->base), 0),
+ iv->step, true, NULL);
+
+ phi = SSA_NAME_DEF_STMT (iv->ssa_name);
+ if (TREE_CODE (phi) == PHI_NODE)
+ {
+ /* Additionally record the possibility of leaving the original iv
+ untouched. */
+ def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
+ cand = add_candidate_1 (data,
+ iv->base, iv->step, true, IP_ORIGINAL, NULL,
+ SSA_NAME_DEF_STMT (def));
+ cand->var_before = iv->ssa_name;
+ cand->var_after = def;
+ }
+}
+
+/* Adds candidates based on the old induction variables. */
+
+static void
+add_old_ivs_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv *iv;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ iv = ver_info (data, i)->iv;
+ if (iv && iv->biv_p && !zero_p (iv->step))
+ add_old_iv_candidates (data, iv);
+ }
+}
+
+/* Adds candidates based on the value of the induction variable IV and USE. */
+
+static void
+add_iv_value_candidates (struct ivopts_data *data,
+ struct iv *iv, struct iv_use *use)
+{
+ unsigned HOST_WIDE_INT offset;
+ tree base;
+
+ add_candidate (data, iv->base, iv->step, false, use);
+
+ /* The same, but with initial value zero. Make such variable important,
+ since it is generic enough so that possibly many uses may be based
+ on it. */
+ add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
+ iv->step, true, use);
+
+ /* Third, try removing the constant offset. */
+ base = strip_offset (iv->base, &offset);
+ if (offset)
+ add_candidate (data, base, iv->step, false, use);
+}
+
+/* Adds candidates based on the uses. */
+
+static void
+add_derived_ivs_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ if (!use)
+ continue;
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ case USE_COMPARE:
+ case USE_ADDRESS:
+ /* Just add the ivs based on the value of the iv used here. */
+ add_iv_value_candidates (data, use->iv, use);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+}
+
+/* Record important candidates and add them to related_cands bitmaps
+ if needed. */
+
+static void
+record_important_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ if (cand->important)
+ bitmap_set_bit (data->important_candidates, i);
+ }
+
+ data->consider_all_candidates = (n_iv_cands (data)
+ <= CONSIDER_ALL_CANDIDATES_BOUND);
+
+ if (data->consider_all_candidates)
+ {
+ /* We will not need "related_cands" bitmaps in this case,
+ so release them to decrease peak memory consumption. */
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ BITMAP_FREE (use->related_cands);
+ }
+ }
+ else
+ {
+ /* Add important candidates to the related_cands bitmaps. */
+ for (i = 0; i < n_iv_uses (data); i++)
+ bitmap_ior_into (iv_use (data, i)->related_cands,
+ data->important_candidates);
+ }
+}
+
+/* Finds the candidates for the induction variables. */
+
+static void
+find_iv_candidates (struct ivopts_data *data)
+{
+ /* Add commonly used ivs. */
+ add_standard_iv_candidates (data);
+
+ /* Add old induction variables. */
+ add_old_ivs_candidates (data);
+
+ /* Add induction variables derived from uses. */
+ add_derived_ivs_candidates (data);
+
+ /* Record the important candidates. */
+ record_important_candidates (data);
+}
+
+/* Allocates the data structure mapping the (use, candidate) pairs to costs.
+ If consider_all_candidates is true, we use a two-dimensional array, otherwise
+ we allocate a simple list to every use. */
+
+static void
+alloc_use_cost_map (struct ivopts_data *data)
+{
+ unsigned i, size, s, j;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+ bitmap_iterator bi;
+
+ if (data->consider_all_candidates)
+ size = n_iv_cands (data);
+ else
+ {
+ s = 0;
+ EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
+ {
+ s++;
+ }
+
+ /* Round up to the power of two, so that moduling by it is fast. */
+ for (size = 1; size < s; size <<= 1)
+ continue;
+ }
+
+ use->n_map_members = size;
+ use->cost_map = XCNEWVEC (struct cost_pair, size);
+ }
+}
+
+/* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
+ on invariants DEPENDS_ON and that the value used in expressing it
+ is VALUE.*/
+
+static void
+set_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand, unsigned cost,
+ bitmap depends_on, tree value)
+{
+ unsigned i, s;
+
+ if (cost == INFTY)
+ {
+ BITMAP_FREE (depends_on);
+ return;
+ }
+
+ if (data->consider_all_candidates)
+ {
+ use->cost_map[cand->id].cand = cand;
+ use->cost_map[cand->id].cost = cost;
+ use->cost_map[cand->id].depends_on = depends_on;
+ use->cost_map[cand->id].value = value;
+ return;
+ }
+
+ /* n_map_members is a power of two, so this computes modulo. */
+ s = cand->id & (use->n_map_members - 1);
+ for (i = s; i < use->n_map_members; i++)
+ if (!use->cost_map[i].cand)
+ goto found;
+ for (i = 0; i < s; i++)
+ if (!use->cost_map[i].cand)
+ goto found;
+
+ gcc_unreachable ();
+
+found:
+ use->cost_map[i].cand = cand;
+ use->cost_map[i].cost = cost;
+ use->cost_map[i].depends_on = depends_on;
+ use->cost_map[i].value = value;
+}
+
+/* Gets cost of (USE, CANDIDATE) pair. */
+
+static struct cost_pair *
+get_use_iv_cost (struct ivopts_data *data, struct iv_use *use,
+ struct iv_cand *cand)
+{
+ unsigned i, s;
+ struct cost_pair *ret;
+
+ if (!cand)
+ return NULL;
+
+ if (data->consider_all_candidates)
+ {
+ ret = use->cost_map + cand->id;
+ if (!ret->cand)
+ return NULL;
+
+ return ret;
+ }
+
+ /* n_map_members is a power of two, so this computes modulo. */
+ s = cand->id & (use->n_map_members - 1);
+ for (i = s; i < use->n_map_members; i++)
+ if (use->cost_map[i].cand == cand)
+ return use->cost_map + i;
+
+ for (i = 0; i < s; i++)
+ if (use->cost_map[i].cand == cand)
+ return use->cost_map + i;
+
+ return NULL;
+}
+
+/* Returns estimate on cost of computing SEQ. */
+
+static unsigned
+seq_cost (rtx seq)
+{
+ unsigned cost = 0;
+ rtx set;
+
+ for (; seq; seq = NEXT_INSN (seq))
+ {
+ set = single_set (seq);
+ if (set)
+ cost += rtx_cost (set, SET);
+ else
+ cost++;
+ }
+
+ return cost;
+}
+
+/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
+static rtx
+produce_memory_decl_rtl (tree obj, int *regno)
+{
+ rtx x;
+
+ gcc_assert (obj);
+ if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
+ {
+ const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
+ x = gen_rtx_SYMBOL_REF (Pmode, name);
+ }
+ else
+ x = gen_raw_REG (Pmode, (*regno)++);
+
+ return gen_rtx_MEM (DECL_MODE (obj), x);
+}
+
+/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
+ walk_tree. DATA contains the actual fake register number. */
+
+static tree
+prepare_decl_rtl (tree *expr_p, int *ws, void *data)
+{
+ tree obj = NULL_TREE;
+ rtx x = NULL_RTX;
+ int *regno = data;
+
+ switch (TREE_CODE (*expr_p))
+ {
+ case ADDR_EXPR:
+ for (expr_p = &TREE_OPERAND (*expr_p, 0);
+ handled_component_p (*expr_p);
+ expr_p = &TREE_OPERAND (*expr_p, 0))
+ continue;
+ obj = *expr_p;
+ if (DECL_P (obj) && !DECL_RTL_SET_P (obj))
+ x = produce_memory_decl_rtl (obj, regno);
+ break;
+
+ case SSA_NAME:
+ *ws = 0;
+ obj = SSA_NAME_VAR (*expr_p);
+ if (!DECL_RTL_SET_P (obj))
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+ break;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ *ws = 0;
+ obj = *expr_p;
+
+ if (DECL_RTL_SET_P (obj))
+ break;
+
+ if (DECL_MODE (obj) == BLKmode)
+ x = produce_memory_decl_rtl (obj, regno);
+ else
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+
+ break;
+
+ default:
+ break;
+ }
+
+ if (x)
+ {
+ VEC_safe_push (tree, heap, decl_rtl_to_reset, obj);
+ SET_DECL_RTL (obj, x);
+ }
+
+ return NULL_TREE;
+}
+
+/* Determines cost of the computation of EXPR. */
+
+static unsigned
+computation_cost (tree expr)
+{
+ rtx seq, rslt;
+ tree type = TREE_TYPE (expr);
+ unsigned cost;
+ /* Avoid using hard regs in ways which may be unsupported. */
+ int regno = LAST_VIRTUAL_REGISTER + 1;
+
+ walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
+ start_sequence ();
+ rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
+ seq = get_insns ();
+ end_sequence ();
+
+ cost = seq_cost (seq);
+ if (MEM_P (rslt))
+ cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type));
+
+ return cost;
+}
+
+/* Returns variable containing the value of candidate CAND at statement AT. */
+
+static tree
+var_at_stmt (struct loop *loop, struct iv_cand *cand, tree stmt)
+{
+ if (stmt_after_increment (loop, cand, stmt))
+ return cand->var_after;
+ else
+ return cand->var_before;
+}
+
+/* Return the most significant (sign) bit of T. Similar to tree_int_cst_msb,
+ but the bit is determined from TYPE_PRECISION, not MODE_BITSIZE. */
+
+int
+tree_int_cst_sign_bit (tree t)
+{
+ unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
+ unsigned HOST_WIDE_INT w;
+
+ if (bitno < HOST_BITS_PER_WIDE_INT)
+ w = TREE_INT_CST_LOW (t);
+ else
+ {
+ w = TREE_INT_CST_HIGH (t);
+ bitno -= HOST_BITS_PER_WIDE_INT;
+ }
+
+ return (w >> bitno) & 1;
+}
+
+/* If we can prove that TOP = cst * BOT for some constant cst,
+ store cst to MUL and return true. Otherwise return false.
+ The returned value is always sign-extended, regardless of the
+ signedness of TOP and BOT. */
+
+static bool
+constant_multiple_of (tree top, tree bot, double_int *mul)
+{
+ tree mby;
+ enum tree_code code;
+ double_int res, p0, p1;
+ unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
+
+ STRIP_NOPS (top);
+ STRIP_NOPS (bot);
+
+ if (operand_equal_p (top, bot, 0))
+ {
+ *mul = double_int_one;
+ return true;
+ }
+
+ code = TREE_CODE (top);
+ switch (code)
+ {
+ case MULT_EXPR:
+ mby = TREE_OPERAND (top, 1);
+ if (TREE_CODE (mby) != INTEGER_CST)
+ return false;
+
+ if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
+ return false;
+
+ *mul = double_int_sext (double_int_mul (res, tree_to_double_int (mby)),
+ precision);
+ return true;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
+ || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
+ return false;
+
+ if (code == MINUS_EXPR)
+ p1 = double_int_neg (p1);
+ *mul = double_int_sext (double_int_add (p0, p1), precision);
+ return true;
+
+ case INTEGER_CST:
+ if (TREE_CODE (bot) != INTEGER_CST)
+ return false;
+
+ p0 = double_int_sext (tree_to_double_int (bot), precision);
+ p1 = double_int_sext (tree_to_double_int (top), precision);
+ if (double_int_zero_p (p1))
+ return false;
+ *mul = double_int_sext (double_int_sdivmod (p0, p1, FLOOR_DIV_EXPR, &res),
+ precision);
+ return double_int_zero_p (res);
+
+ default:
+ return false;
+ }
+}
+
+/* Sets COMB to CST. */
+
+static void
+aff_combination_const (struct affine_tree_combination *comb, tree type,
+ unsigned HOST_WIDE_INT cst)
+{
+ unsigned prec = TYPE_PRECISION (type);
+
+ comb->type = type;
+ comb->mask = (((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1);
+
+ comb->n = 0;
+ comb->rest = NULL_TREE;
+ comb->offset = cst & comb->mask;
+}
+
+/* Sets COMB to single element ELT. */
+
+static void
+aff_combination_elt (struct affine_tree_combination *comb, tree type, tree elt)
+{
+ unsigned prec = TYPE_PRECISION (type);
+
+ comb->type = type;
+ comb->mask = (((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1);
+
+ comb->n = 1;
+ comb->elts[0] = elt;
+ comb->coefs[0] = 1;
+ comb->rest = NULL_TREE;
+ comb->offset = 0;
+}
+
+/* Scales COMB by SCALE. */
+
+static void
+aff_combination_scale (struct affine_tree_combination *comb,
+ unsigned HOST_WIDE_INT scale)
+{
+ unsigned i, j;
+
+ if (scale == 1)
+ return;
+
+ if (scale == 0)
+ {
+ aff_combination_const (comb, comb->type, 0);
+ return;
+ }
+
+ comb->offset = (scale * comb->offset) & comb->mask;
+ for (i = 0, j = 0; i < comb->n; i++)
+ {
+ comb->coefs[j] = (scale * comb->coefs[i]) & comb->mask;
+ comb->elts[j] = comb->elts[i];
+ if (comb->coefs[j] != 0)
+ j++;
+ }
+ comb->n = j;
+
+ if (comb->rest)
+ {
+ if (comb->n < MAX_AFF_ELTS)
+ {
+ comb->coefs[comb->n] = scale;
+ comb->elts[comb->n] = comb->rest;
+ comb->rest = NULL_TREE;
+ comb->n++;
+ }
+ else
+ comb->rest = fold_build2 (MULT_EXPR, comb->type, comb->rest,
+ build_int_cst_type (comb->type, scale));
+ }
+}
+
+/* Adds ELT * SCALE to COMB. */
+
+static void
+aff_combination_add_elt (struct affine_tree_combination *comb, tree elt,
+ unsigned HOST_WIDE_INT scale)
+{
+ unsigned i;
+
+ if (scale == 0)
+ return;
+
+ for (i = 0; i < comb->n; i++)
+ if (operand_equal_p (comb->elts[i], elt, 0))
+ {
+ comb->coefs[i] = (comb->coefs[i] + scale) & comb->mask;
+ if (comb->coefs[i])
+ return;
+
+ comb->n--;
+ comb->coefs[i] = comb->coefs[comb->n];
+ comb->elts[i] = comb->elts[comb->n];
+
+ if (comb->rest)
+ {
+ gcc_assert (comb->n == MAX_AFF_ELTS - 1);
+ comb->coefs[comb->n] = 1;
+ comb->elts[comb->n] = comb->rest;
+ comb->rest = NULL_TREE;
+ comb->n++;
+ }
+ return;
+ }
+ if (comb->n < MAX_AFF_ELTS)
+ {
+ comb->coefs[comb->n] = scale;
+ comb->elts[comb->n] = elt;
+ comb->n++;
+ return;
+ }
+
+ if (scale == 1)
+ elt = fold_convert (comb->type, elt);
+ else
+ elt = fold_build2 (MULT_EXPR, comb->type,
+ fold_convert (comb->type, elt),
+ build_int_cst_type (comb->type, scale));
+
+ if (comb->rest)
+ comb->rest = fold_build2 (PLUS_EXPR, comb->type, comb->rest, elt);
+ else
+ comb->rest = elt;
+}
+
+/* Adds COMB2 to COMB1. */
+
+static void
+aff_combination_add (struct affine_tree_combination *comb1,
+ struct affine_tree_combination *comb2)
+{
+ unsigned i;
+
+ comb1->offset = (comb1->offset + comb2->offset) & comb1->mask;
+ for (i = 0; i < comb2->n; i++)
+ aff_combination_add_elt (comb1, comb2->elts[i], comb2->coefs[i]);
+ if (comb2->rest)
+ aff_combination_add_elt (comb1, comb2->rest, 1);
+}
+
+/* Convert COMB to TYPE. */
+
+static void
+aff_combination_convert (tree type, struct affine_tree_combination *comb)
+{
+ unsigned prec = TYPE_PRECISION (type);
+ unsigned i;
+
+ /* If the precision of both types is the same, it suffices to change the type
+ of the whole combination -- the elements are allowed to have another type
+ equivalent wrto STRIP_NOPS. */
+ if (prec == TYPE_PRECISION (comb->type))
+ {
+ comb->type = type;
+ return;
+ }
+
+ comb->mask = (((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1);
+ comb->offset = comb->offset & comb->mask;
+
+ /* The type of the elements can be different from comb->type only as
+ much as what STRIP_NOPS would remove. We can just directly cast
+ to TYPE. */
+ for (i = 0; i < comb->n; i++)
+ comb->elts[i] = fold_convert (type, comb->elts[i]);
+ if (comb->rest)
+ comb->rest = fold_convert (type, comb->rest);
+
+ comb->type = type;
+}
+
+/* Splits EXPR into an affine combination of parts. */
+
+static void
+tree_to_aff_combination (tree expr, tree type,
+ struct affine_tree_combination *comb)
+{
+ struct affine_tree_combination tmp;
+ enum tree_code code;
+ tree cst, core, toffset;
+ HOST_WIDE_INT bitpos, bitsize;
+ enum machine_mode mode;
+ int unsignedp, volatilep;
+
+ STRIP_NOPS (expr);
+
+ code = TREE_CODE (expr);
+ switch (code)
+ {
+ case INTEGER_CST:
+ aff_combination_const (comb, type, int_cst_value (expr));
+ return;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
+ tree_to_aff_combination (TREE_OPERAND (expr, 1), type, &tmp);
+ if (code == MINUS_EXPR)
+ aff_combination_scale (&tmp, -1);
+ aff_combination_add (comb, &tmp);
+ return;
+
+ case MULT_EXPR:
+ cst = TREE_OPERAND (expr, 1);
+ if (TREE_CODE (cst) != INTEGER_CST)
+ break;
+ tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
+ aff_combination_scale (comb, int_cst_value (cst));
+ return;
+
+ case NEGATE_EXPR:
+ tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
+ aff_combination_scale (comb, -1);
+ return;
+
+ case ADDR_EXPR:
+ core = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos,
+ &toffset, &mode, &unsignedp, &volatilep,
+ false);
+ if (bitpos % BITS_PER_UNIT != 0)
+ break;
+ aff_combination_const (comb, type, bitpos / BITS_PER_UNIT);
+ core = build_fold_addr_expr (core);
+ if (TREE_CODE (core) == ADDR_EXPR)
+ aff_combination_add_elt (comb, core, 1);
+ else
+ {
+ tree_to_aff_combination (core, type, &tmp);
+ aff_combination_add (comb, &tmp);
+ }
+ if (toffset)
+ {
+ tree_to_aff_combination (toffset, type, &tmp);
+ aff_combination_add (comb, &tmp);
+ }
+ return;
+
+ default:
+ break;
+ }
+
+ aff_combination_elt (comb, type, expr);
+}
+
+/* Creates EXPR + ELT * SCALE in TYPE. MASK is the mask for width of TYPE. */
+
+static tree
+add_elt_to_tree (tree expr, tree type, tree elt, unsigned HOST_WIDE_INT scale,
+ unsigned HOST_WIDE_INT mask)
+{
+ enum tree_code code;
+
+ scale &= mask;
+ elt = fold_convert (type, elt);
+
+ if (scale == 1)
+ {
+ if (!expr)
+ return elt;
+
+ return fold_build2 (PLUS_EXPR, type, expr, elt);
+ }
+
+ if (scale == mask)
+ {
+ if (!expr)
+ return fold_build1 (NEGATE_EXPR, type, elt);
+
+ return fold_build2 (MINUS_EXPR, type, expr, elt);
+ }
+
+ if (!expr)
+ return fold_build2 (MULT_EXPR, type, elt,
+ build_int_cst_type (type, scale));
+
+ if ((scale | (mask >> 1)) == mask)
+ {
+ /* Scale is negative. */
+ code = MINUS_EXPR;
+ scale = (-scale) & mask;
+ }
+ else
+ code = PLUS_EXPR;
+
+ elt = fold_build2 (MULT_EXPR, type, elt,
+ build_int_cst_type (type, scale));
+ return fold_build2 (code, type, expr, elt);
+}
+
+/* Copies the tree elements of COMB to ensure that they are not shared. */
+
+static void
+unshare_aff_combination (struct affine_tree_combination *comb)
+{
+ unsigned i;
+
+ for (i = 0; i < comb->n; i++)
+ comb->elts[i] = unshare_expr (comb->elts[i]);
+ if (comb->rest)
+ comb->rest = unshare_expr (comb->rest);
+}
+
+/* Makes tree from the affine combination COMB. */
+
+static tree
+aff_combination_to_tree (struct affine_tree_combination *comb)
+{
+ tree type = comb->type;
+ tree expr = comb->rest;
+ unsigned i;
+ unsigned HOST_WIDE_INT off, sgn;
+
+ if (comb->n == 0 && comb->offset == 0)
+ {
+ if (expr)
+ {
+ /* Handle the special case produced by get_computation_aff when
+ the type does not fit in HOST_WIDE_INT. */
+ return fold_convert (type, expr);
+ }
+ else
+ return build_int_cst (type, 0);
+ }
+
+ gcc_assert (comb->n == MAX_AFF_ELTS || comb->rest == NULL_TREE);
+
+ for (i = 0; i < comb->n; i++)
+ expr = add_elt_to_tree (expr, type, comb->elts[i], comb->coefs[i],
+ comb->mask);
+
+ /* APPLE LOCAL begin 6755006 */
+ if (( ! TYPE_UNSIGNED (comb->type))
+ && ((comb->offset | (comb->mask >> 1)) == comb->mask))
+ /* APPLE LOCAL end 6755006 */
+ {
+ /* Offset is negative. */
+ off = (-comb->offset) & comb->mask;
+ sgn = comb->mask;
+ }
+ else
+ {
+ off = comb->offset;
+ sgn = 1;
+ }
+ return add_elt_to_tree (expr, type, build_int_cst_type (type, off), sgn,
+ comb->mask);
+}
+
+/* Folds EXPR using the affine expressions framework. */
+
+static tree
+fold_affine_expr (tree expr)
+{
+ tree type = TREE_TYPE (expr);
+ struct affine_tree_combination comb;
+
+ if (TYPE_PRECISION (type) > HOST_BITS_PER_WIDE_INT)
+ return expr;
+
+ tree_to_aff_combination (expr, type, &comb);
+ return aff_combination_to_tree (&comb);
+}
+
+/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
+ same precision that is at least as wide as the precision of TYPE, stores
+ BA to A and BB to B, and returns the type of BA. Otherwise, returns the
+ type of A and B. */
+
+static tree
+determine_common_wider_type (tree *a, tree *b)
+{
+ tree wider_type = NULL;
+ tree suba, subb;
+ tree atype = TREE_TYPE (*a);
+
+ if ((TREE_CODE (*a) == NOP_EXPR
+ || TREE_CODE (*a) == CONVERT_EXPR))
+ {
+ suba = TREE_OPERAND (*a, 0);
+ wider_type = TREE_TYPE (suba);
+ if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
+ return atype;
+ }
+ else
+ return atype;
+
+ if ((TREE_CODE (*b) == NOP_EXPR
+ || TREE_CODE (*b) == CONVERT_EXPR))
+ {
+ subb = TREE_OPERAND (*b, 0);
+ if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
+ return atype;
+ }
+ else
+ return atype;
+
+ *a = suba;
+ *b = subb;
+ return wider_type;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The expression is stored in a decomposed
+ form into AFF. Returns false if USE cannot be expressed using CAND. */
+
+static bool
+get_computation_aff (struct loop *loop,
+ struct iv_use *use, struct iv_cand *cand, tree at,
+ struct affine_tree_combination *aff)
+{
+ tree ubase = use->iv->base;
+ tree ustep = use->iv->step;
+ tree cbase = cand->iv->base;
+ tree cstep = cand->iv->step;
+ tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
+ tree common_type;
+ tree uutype;
+ tree expr, delta;
+ tree ratio;
+ unsigned HOST_WIDE_INT ustepi, cstepi;
+ HOST_WIDE_INT ratioi;
+ struct affine_tree_combination cbase_aff, expr_aff;
+ tree cstep_orig = cstep, ustep_orig = ustep;
+ double_int rat;
+
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ {
+ /* We do not have a precision to express the values of use. */
+ return false;
+ }
+
+ expr = var_at_stmt (loop, cand, at);
+
+ if (TREE_TYPE (expr) != ctype)
+ {
+ /* This may happen with the original ivs. */
+ expr = fold_convert (ctype, expr);
+ }
+
+ if (TYPE_UNSIGNED (utype))
+ uutype = utype;
+ else
+ {
+ uutype = unsigned_type_for (utype);
+ ubase = fold_convert (uutype, ubase);
+ ustep = fold_convert (uutype, ustep);
+ }
+
+ if (uutype != ctype)
+ {
+ expr = fold_convert (uutype, expr);
+ cbase = fold_convert (uutype, cbase);
+ cstep = fold_convert (uutype, cstep);
+
+ /* If the conversion is not noop, we must take it into account when
+ considering the value of the step. */
+ if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
+ cstep_orig = cstep;
+ }
+
+ if (cst_and_fits_in_hwi (cstep_orig)
+ && cst_and_fits_in_hwi (ustep_orig))
+ {
+ ustepi = int_cst_value (ustep_orig);
+ cstepi = int_cst_value (cstep_orig);
+
+ if (!divide (TYPE_PRECISION (uutype), ustepi, cstepi, &ratioi))
+ {
+ /* TODO maybe consider case when ustep divides cstep and the ratio is
+ a power of 2 (so that the division is fast to execute)? We would
+ need to be much more careful with overflows etc. then. */
+ return false;
+ }
+
+ ratio = build_int_cst_type (uutype, ratioi);
+ }
+ else
+ {
+ if (!constant_multiple_of (ustep_orig, cstep_orig, &rat))
+ return false;
+ ratio = double_int_to_tree (uutype, rat);
+
+ /* Ratioi is only used to detect special cases when the multiplicative
+ factor is 1 or -1, so if rat does not fit to HOST_WIDE_INT, we may
+ set it to 0. */
+ if (double_int_fits_in_shwi_p (rat))
+ ratioi = double_int_to_shwi (rat);
+ else
+ ratioi = 0;
+ }
+
+ /* In case both UBASE and CBASE are shortened to UUTYPE from some common
+ type, we achieve better folding by computing their difference in this
+ wider type, and cast the result to UUTYPE. We do not need to worry about
+ overflows, as all the arithmetics will in the end be performed in UUTYPE
+ anyway. */
+ common_type = determine_common_wider_type (&ubase, &cbase);
+
+ /* We may need to shift the value if we are after the increment. */
+ if (stmt_after_increment (loop, cand, at))
+ {
+ if (uutype != common_type)
+ cstep = fold_convert (common_type, cstep);
+ cbase = fold_build2 (PLUS_EXPR, common_type, cbase, cstep);
+ }
+
+ /* use = ubase - ratio * cbase + ratio * var.
+
+ In general case ubase + ratio * (var - cbase) could be better (one less
+ multiplication), but often it is possible to eliminate redundant parts
+ of computations from (ubase - ratio * cbase) term, and if it does not
+ happen, fold is able to apply the distributive law to obtain this form
+ anyway. */
+
+ if (TYPE_PRECISION (common_type) > HOST_BITS_PER_WIDE_INT)
+ {
+ /* Let's compute in trees and just return the result in AFF. This case
+ should not be very common, and fold itself is not that bad either,
+ so making the aff. functions more complicated to handle this case
+ is not that urgent. */
+ if (ratioi == 1)
+ {
+ delta = fold_build2 (MINUS_EXPR, common_type, ubase, cbase);
+ if (uutype != common_type)
+ delta = fold_convert (uutype, delta);
+ expr = fold_build2 (PLUS_EXPR, uutype, expr, delta);
+ }
+ else if (ratioi == -1)
+ {
+ delta = fold_build2 (PLUS_EXPR, common_type, ubase, cbase);
+ if (uutype != common_type)
+ delta = fold_convert (uutype, delta);
+ expr = fold_build2 (MINUS_EXPR, uutype, delta, expr);
+ }
+ else
+ {
+ delta = fold_build2 (MULT_EXPR, common_type, cbase, ratio);
+ delta = fold_build2 (MINUS_EXPR, common_type, ubase, delta);
+ if (uutype != common_type)
+ delta = fold_convert (uutype, delta);
+ expr = fold_build2 (MULT_EXPR, uutype, ratio, expr);
+ expr = fold_build2 (PLUS_EXPR, uutype, delta, expr);
+ }
+
+ aff->type = uutype;
+ aff->n = 0;
+ aff->offset = 0;
+ aff->mask = 0;
+ aff->rest = expr;
+ return true;
+ }
+
+ /* If we got here, the types fits in HOST_WIDE_INT, thus it must be
+ possible to compute ratioi. */
+ gcc_assert (ratioi);
+
+ tree_to_aff_combination (ubase, common_type, aff);
+ tree_to_aff_combination (cbase, common_type, &cbase_aff);
+ tree_to_aff_combination (expr, uutype, &expr_aff);
+ aff_combination_scale (&cbase_aff, -ratioi);
+ aff_combination_scale (&expr_aff, ratioi);
+ aff_combination_add (aff, &cbase_aff);
+ if (common_type != uutype)
+ aff_combination_convert (uutype, aff);
+ aff_combination_add (aff, &expr_aff);
+
+ return true;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The computation is unshared. */
+
+static tree
+get_computation_at (struct loop *loop,
+ struct iv_use *use, struct iv_cand *cand, tree at)
+{
+ struct affine_tree_combination aff;
+ tree type = TREE_TYPE (use->iv->base);
+
+ if (!get_computation_aff (loop, use, cand, at, &aff))
+ return NULL_TREE;
+ unshare_aff_combination (&aff);
+ return fold_convert (type, aff_combination_to_tree (&aff));
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND in LOOP. The computation is unshared. */
+
+static tree
+get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
+{
+ return get_computation_at (loop, use, cand, use->stmt);
+}
+
+/* Returns cost of addition in MODE. */
+
+static unsigned
+add_cost (enum machine_mode mode)
+{
+ static unsigned costs[NUM_MACHINE_MODES];
+ rtx seq;
+ unsigned cost;
+
+ if (costs[mode])
+ return costs[mode];
+
+ start_sequence ();
+ force_operand (gen_rtx_fmt_ee (PLUS, mode,
+ gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1),
+ gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 2)),
+ NULL_RTX);
+ seq = get_insns ();
+ end_sequence ();
+
+ cost = seq_cost (seq);
+ if (!cost)
+ cost = 1;
+
+ costs[mode] = cost;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Addition in %s costs %d\n",
+ GET_MODE_NAME (mode), cost);
+ return cost;
+}
+
+/* Entry in a hashtable of already known costs for multiplication. */
+struct mbc_entry
+{
+ HOST_WIDE_INT cst; /* The constant to multiply by. */
+ enum machine_mode mode; /* In mode. */
+ unsigned cost; /* The cost. */
+};
+
+/* Counts hash value for the ENTRY. */
+
+static hashval_t
+mbc_entry_hash (const void *entry)
+{
+ const struct mbc_entry *e = entry;
+
+ return 57 * (hashval_t) e->mode + (hashval_t) (e->cst % 877);
+}
+
+/* Compares the hash table entries ENTRY1 and ENTRY2. */
+
+static int
+mbc_entry_eq (const void *entry1, const void *entry2)
+{
+ const struct mbc_entry *e1 = entry1;
+ const struct mbc_entry *e2 = entry2;
+
+ return (e1->mode == e2->mode
+ && e1->cst == e2->cst);
+}
+
+/* Returns cost of multiplication by constant CST in MODE. */
+
+unsigned
+multiply_by_cost (HOST_WIDE_INT cst, enum machine_mode mode)
+{
+ static htab_t costs;
+ struct mbc_entry **cached, act;
+ rtx seq;
+ unsigned cost;
+
+ if (!costs)
+ costs = htab_create (100, mbc_entry_hash, mbc_entry_eq, free);
+
+ act.mode = mode;
+ act.cst = cst;
+ cached = (struct mbc_entry **) htab_find_slot (costs, &act, INSERT);
+ if (*cached)
+ return (*cached)->cost;
+
+ *cached = XNEW (struct mbc_entry);
+ (*cached)->mode = mode;
+ (*cached)->cst = cst;
+
+ start_sequence ();
+ expand_mult (mode, gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1),
+ gen_int_mode (cst, mode), NULL_RTX, 0);
+ seq = get_insns ();
+ end_sequence ();
+
+ cost = seq_cost (seq);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Multiplication by %d in %s costs %d\n",
+ (int) cst, GET_MODE_NAME (mode), cost);
+
+ (*cached)->cost = cost;
+
+ return cost;
+}
+
+/* Returns true if multiplying by RATIO is allowed in address. */
+
+bool
+multiplier_allowed_in_address_p (HOST_WIDE_INT ratio)
+{
+#define MAX_RATIO 128
+ static sbitmap valid_mult;
+
+ if (!valid_mult)
+ {
+ rtx reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
+ rtx addr;
+ HOST_WIDE_INT i;
+
+ valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
+ sbitmap_zero (valid_mult);
+ addr = gen_rtx_fmt_ee (MULT, Pmode, reg1, NULL_RTX);
+ for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
+ {
+ XEXP (addr, 1) = gen_int_mode (i, Pmode);
+ if (memory_address_p (Pmode, addr))
+ SET_BIT (valid_mult, i + MAX_RATIO);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " allowed multipliers:");
+ for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
+ if (TEST_BIT (valid_mult, i + MAX_RATIO))
+ fprintf (dump_file, " %d", (int) i);
+ fprintf (dump_file, "\n");
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
+ return false;
+
+ return TEST_BIT (valid_mult, ratio + MAX_RATIO);
+}
+
+/* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
+ If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
+ variable is omitted. The created memory accesses MODE.
+
+ TODO -- there must be some better way. This all is quite crude. */
+
+static unsigned
+get_address_cost (bool symbol_present, bool var_present,
+ unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio)
+{
+ static bool initialized = false;
+ static HOST_WIDE_INT rat, off;
+ static HOST_WIDE_INT min_offset, max_offset;
+ static unsigned costs[2][2][2][2];
+ unsigned cost, acost;
+ bool offset_p, ratio_p;
+ HOST_WIDE_INT s_offset;
+ unsigned HOST_WIDE_INT mask;
+ unsigned bits;
+
+ if (!initialized)
+ {
+ HOST_WIDE_INT i;
+ int old_cse_not_expected;
+ unsigned sym_p, var_p, off_p, rat_p, add_c;
+ rtx seq, addr, base;
+ rtx reg0, reg1;
+
+ initialized = true;
+
+ reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
+
+ addr = gen_rtx_fmt_ee (PLUS, Pmode, reg1, NULL_RTX);
+ for (i = 1; i <= 1 << 20; i <<= 1)
+ {
+ XEXP (addr, 1) = gen_int_mode (i, Pmode);
+ if (!memory_address_p (Pmode, addr))
+ break;
+ }
+ max_offset = i >> 1;
+ off = max_offset;
+
+ for (i = 1; i <= 1 << 20; i <<= 1)
+ {
+ XEXP (addr, 1) = gen_int_mode (-i, Pmode);
+ if (!memory_address_p (Pmode, addr))
+ break;
+ }
+ min_offset = -(i >> 1);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "get_address_cost:\n");
+ fprintf (dump_file, " min offset %d\n", (int) min_offset);
+ fprintf (dump_file, " max offset %d\n", (int) max_offset);
+ }
+
+ rat = 1;
+ for (i = 2; i <= MAX_RATIO; i++)
+ if (multiplier_allowed_in_address_p (i))
+ {
+ rat = i;
+ break;
+ }
+
+ /* Compute the cost of various addressing modes. */
+ acost = 0;
+ reg0 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
+ reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 2);
+
+ for (i = 0; i < 16; i++)
+ {
+ sym_p = i & 1;
+ var_p = (i >> 1) & 1;
+ off_p = (i >> 2) & 1;
+ rat_p = (i >> 3) & 1;
+
+ addr = reg0;
+ if (rat_p)
+ addr = gen_rtx_fmt_ee (MULT, Pmode, addr, gen_int_mode (rat, Pmode));
+
+ if (var_p)
+ addr = gen_rtx_fmt_ee (PLUS, Pmode, addr, reg1);
+
+ if (sym_p)
+ {
+ base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (""));
+ if (off_p)
+ base = gen_rtx_fmt_e (CONST, Pmode,
+ gen_rtx_fmt_ee (PLUS, Pmode,
+ base,
+ gen_int_mode (off, Pmode)));
+ }
+ else if (off_p)
+ base = gen_int_mode (off, Pmode);
+ else
+ base = NULL_RTX;
+
+ if (base)
+ addr = gen_rtx_fmt_ee (PLUS, Pmode, addr, base);
+
+ start_sequence ();
+ /* To avoid splitting addressing modes, pretend that no cse will
+ follow. */
+ old_cse_not_expected = cse_not_expected;
+ cse_not_expected = true;
+ addr = memory_address (Pmode, addr);
+ cse_not_expected = old_cse_not_expected;
+ seq = get_insns ();
+ end_sequence ();
+
+ acost = seq_cost (seq);
+ acost += address_cost (addr, Pmode);
+
+ if (!acost)
+ acost = 1;
+ costs[sym_p][var_p][off_p][rat_p] = acost;
+ }
+
+ /* On some targets, it is quite expensive to load symbol to a register,
+ which makes addresses that contain symbols look much more expensive.
+ However, the symbol will have to be loaded in any case before the
+ loop (and quite likely we have it in register already), so it does not
+ make much sense to penalize them too heavily. So make some final
+ tweaks for the SYMBOL_PRESENT modes:
+
+ If VAR_PRESENT is false, and the mode obtained by changing symbol to
+ var is cheaper, use this mode with small penalty.
+ If VAR_PRESENT is true, try whether the mode with
+ SYMBOL_PRESENT = false is cheaper even with cost of addition, and
+ if this is the case, use it. */
+ add_c = add_cost (Pmode);
+ for (i = 0; i < 8; i++)
+ {
+ var_p = i & 1;
+ off_p = (i >> 1) & 1;
+ rat_p = (i >> 2) & 1;
+
+ acost = costs[0][1][off_p][rat_p] + 1;
+ if (var_p)
+ acost += add_c;
+
+ if (acost < costs[1][var_p][off_p][rat_p])
+ costs[1][var_p][off_p][rat_p] = acost;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Address costs:\n");
+
+ for (i = 0; i < 16; i++)
+ {
+ sym_p = i & 1;
+ var_p = (i >> 1) & 1;
+ off_p = (i >> 2) & 1;
+ rat_p = (i >> 3) & 1;
+
+ fprintf (dump_file, " ");
+ if (sym_p)
+ fprintf (dump_file, "sym + ");
+ if (var_p)
+ fprintf (dump_file, "var + ");
+ if (off_p)
+ fprintf (dump_file, "cst + ");
+ if (rat_p)
+ fprintf (dump_file, "rat * ");
+
+ acost = costs[sym_p][var_p][off_p][rat_p];
+ fprintf (dump_file, "index costs %d\n", acost);
+ }
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ bits = GET_MODE_BITSIZE (Pmode);
+ mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
+ offset &= mask;
+ if ((offset >> (bits - 1) & 1))
+ offset |= ~mask;
+ s_offset = offset;
+
+ cost = 0;
+ offset_p = (s_offset != 0
+ && min_offset <= s_offset && s_offset <= max_offset);
+ ratio_p = (ratio != 1
+ && multiplier_allowed_in_address_p (ratio));
+
+ if (ratio != 1 && !ratio_p)
+ cost += multiply_by_cost (ratio, Pmode);
+
+ if (s_offset && !offset_p && !symbol_present)
+ {
+ cost += add_cost (Pmode);
+ var_present = true;
+ }
+
+ acost = costs[symbol_present][var_present][offset_p][ratio_p];
+ return cost + acost;
+}
+
+/* Estimates cost of forcing expression EXPR into a variable. */
+
+unsigned
+force_expr_to_var_cost (tree expr)
+{
+ static bool costs_initialized = false;
+ static unsigned integer_cost;
+ static unsigned symbol_cost;
+ static unsigned address_cost;
+ tree op0, op1;
+ unsigned cost0, cost1, cost;
+ enum machine_mode mode;
+
+ if (!costs_initialized)
+ {
+ tree var = create_tmp_var_raw (integer_type_node, "test_var");
+ rtx x = gen_rtx_MEM (DECL_MODE (var),
+ gen_rtx_SYMBOL_REF (Pmode, "test_var"));
+ tree addr;
+ tree type = build_pointer_type (integer_type_node);
+
+ integer_cost = computation_cost (build_int_cst (integer_type_node,
+ 2000));
+
+ SET_DECL_RTL (var, x);
+ TREE_STATIC (var) = 1;
+ addr = build1 (ADDR_EXPR, type, var);
+ symbol_cost = computation_cost (addr) + 1;
+
+ address_cost
+ = computation_cost (build2 (PLUS_EXPR, type,
+ addr,
+ build_int_cst (type, 2000))) + 1;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "force_expr_to_var_cost:\n");
+ fprintf (dump_file, " integer %d\n", (int) integer_cost);
+ fprintf (dump_file, " symbol %d\n", (int) symbol_cost);
+ fprintf (dump_file, " address %d\n", (int) address_cost);
+ fprintf (dump_file, " other %d\n", (int) target_spill_cost);
+ fprintf (dump_file, "\n");
+ }
+
+ costs_initialized = true;
+ }
+
+ STRIP_NOPS (expr);
+
+ if (SSA_VAR_P (expr))
+ return 0;
+
+ if (TREE_INVARIANT (expr))
+ {
+ if (TREE_CODE (expr) == INTEGER_CST)
+ return integer_cost;
+
+ if (TREE_CODE (expr) == ADDR_EXPR)
+ {
+ tree obj = TREE_OPERAND (expr, 0);
+
+ if (TREE_CODE (obj) == VAR_DECL
+ || TREE_CODE (obj) == PARM_DECL
+ || TREE_CODE (obj) == RESULT_DECL)
+ return symbol_cost;
+ }
+
+ return address_cost;
+ }
+
+ switch (TREE_CODE (expr))
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+ STRIP_NOPS (op0);
+ STRIP_NOPS (op1);
+
+ if (is_gimple_val (op0))
+ cost0 = 0;
+ else
+ cost0 = force_expr_to_var_cost (op0);
+
+ if (is_gimple_val (op1))
+ cost1 = 0;
+ else
+ cost1 = force_expr_to_var_cost (op1);
+
+ break;
+
+ default:
+ /* Just an arbitrary value, FIXME. */
+ return target_spill_cost;
+ }
+
+ mode = TYPE_MODE (TREE_TYPE (expr));
+ switch (TREE_CODE (expr))
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ cost = add_cost (mode);
+ break;
+
+ case MULT_EXPR:
+ if (cst_and_fits_in_hwi (op0))
+ cost = multiply_by_cost (int_cst_value (op0), mode);
+ else if (cst_and_fits_in_hwi (op1))
+ cost = multiply_by_cost (int_cst_value (op1), mode);
+ else
+ return target_spill_cost;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ cost += cost0;
+ cost += cost1;
+
+ /* Bound the cost by target_spill_cost. The parts of complicated
+ computations often are either loop invariant or at least can
+ be shared between several iv uses, so letting this grow without
+ limits would not give reasonable results. */
+ return cost < target_spill_cost ? cost : target_spill_cost;
+}
+
+/* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
+ invariants the computation depends on. */
+
+static unsigned
+force_var_cost (struct ivopts_data *data,
+ tree expr, bitmap *depends_on)
+{
+ if (depends_on)
+ {
+ fd_ivopts_data = data;
+ walk_tree (&expr, find_depends, depends_on, NULL);
+ }
+
+ return force_expr_to_var_cost (expr);
+}
+
+/* Estimates cost of expressing address ADDR as var + symbol + offset. The
+ value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
+ to false if the corresponding part is missing. DEPENDS_ON is a set of the
+ invariants the computation depends on. */
+
+static unsigned
+split_address_cost (struct ivopts_data *data,
+ tree addr, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ tree core;
+ HOST_WIDE_INT bitsize;
+ HOST_WIDE_INT bitpos;
+ tree toffset;
+ enum machine_mode mode;
+ int unsignedp, volatilep;
+
+ core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
+ &unsignedp, &volatilep, false);
+
+ if (toffset != 0
+ || bitpos % BITS_PER_UNIT != 0
+ || TREE_CODE (core) != VAR_DECL)
+ {
+ *symbol_present = false;
+ *var_present = true;
+ fd_ivopts_data = data;
+ walk_tree (&addr, find_depends, depends_on, NULL);
+ return target_spill_cost;
+ }
+
+ *offset += bitpos / BITS_PER_UNIT;
+ if (TREE_STATIC (core)
+ || DECL_EXTERNAL (core))
+ {
+ *symbol_present = true;
+ *var_present = false;
+ return 0;
+ }
+
+ *symbol_present = false;
+ *var_present = true;
+ return 0;
+}
+
+/* Estimates cost of expressing difference of addresses E1 - E2 as
+ var + symbol + offset. The value of offset is added to OFFSET,
+ SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
+ part is missing. DEPENDS_ON is a set of the invariants the computation
+ depends on. */
+
+static unsigned
+ptr_difference_cost (struct ivopts_data *data,
+ tree e1, tree e2, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ HOST_WIDE_INT diff = 0;
+ unsigned cost;
+
+ gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
+
+ if (ptr_difference_const (e1, e2, &diff))
+ {
+ *offset += diff;
+ *symbol_present = false;
+ *var_present = false;
+ return 0;
+ }
+
+ if (e2 == integer_zero_node)
+ return split_address_cost (data, TREE_OPERAND (e1, 0),
+ symbol_present, var_present, offset, depends_on);
+
+ *symbol_present = false;
+ *var_present = true;
+
+ cost = force_var_cost (data, e1, depends_on);
+ cost += force_var_cost (data, e2, depends_on);
+ cost += add_cost (Pmode);
+
+ return cost;
+}
+
+/* Estimates cost of expressing difference E1 - E2 as
+ var + symbol + offset. The value of offset is added to OFFSET,
+ SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
+ part is missing. DEPENDS_ON is a set of the invariants the computation
+ depends on. */
+
+static unsigned
+difference_cost (struct ivopts_data *data,
+ tree e1, tree e2, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ unsigned cost;
+ enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
+ unsigned HOST_WIDE_INT off1, off2;
+
+ e1 = strip_offset (e1, &off1);
+ e2 = strip_offset (e2, &off2);
+ *offset += off1 - off2;
+
+ STRIP_NOPS (e1);
+ STRIP_NOPS (e2);
+
+ if (TREE_CODE (e1) == ADDR_EXPR)
+ return ptr_difference_cost (data, e1, e2, symbol_present, var_present, offset,
+ depends_on);
+ *symbol_present = false;
+
+ if (operand_equal_p (e1, e2, 0))
+ {
+ *var_present = false;
+ return 0;
+ }
+ *var_present = true;
+ if (zero_p (e2))
+ return force_var_cost (data, e1, depends_on);
+
+ if (zero_p (e1))
+ {
+ cost = force_var_cost (data, e2, depends_on);
+ cost += multiply_by_cost (-1, mode);
+
+ return cost;
+ }
+
+ cost = force_var_cost (data, e1, depends_on);
+ cost += force_var_cost (data, e2, depends_on);
+ cost += add_cost (mode);
+
+ return cost;
+}
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in
+ DEPENDS_ON. AT is the statement at that the value is computed. */
+
+static unsigned
+get_computation_cost_at (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ bool address_p, bitmap *depends_on, tree at)
+{
+ tree ubase = use->iv->base, ustep = use->iv->step;
+ tree cbase, cstep;
+ tree utype = TREE_TYPE (ubase), ctype;
+ unsigned HOST_WIDE_INT ustepi, cstepi, offset = 0;
+ HOST_WIDE_INT ratio, aratio;
+ bool var_present, symbol_present;
+ unsigned cost = 0, n_sums;
+
+ *depends_on = NULL;
+
+ /* Only consider real candidates. */
+ if (!cand->iv)
+ return INFTY;
+
+ cbase = cand->iv->base;
+ cstep = cand->iv->step;
+ ctype = TREE_TYPE (cbase);
+
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ {
+ /* We do not have a precision to express the values of use. */
+ return INFTY;
+ }
+
+ if (address_p)
+ {
+ /* Do not try to express address of an object with computation based
+ on address of a different object. This may cause problems in rtl
+ level alias analysis (that does not expect this to be happening,
+ as this is illegal in C), and would be unlikely to be useful
+ anyway. */
+ if (use->iv->base_object
+ && cand->iv->base_object
+ && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
+ return INFTY;
+ }
+
+ if (TYPE_PRECISION (utype) != TYPE_PRECISION (ctype))
+ {
+ /* TODO -- add direct handling of this case. */
+ goto fallback;
+ }
+
+ /* CSTEPI is removed from the offset in case statement is after the
+ increment. If the step is not constant, we use zero instead.
+ This is a bit imprecise (there is the extra addition), but
+ redundancy elimination is likely to transform the code so that
+ it uses value of the variable before increment anyway,
+ so it is not that much unrealistic. */
+ if (cst_and_fits_in_hwi (cstep))
+ cstepi = int_cst_value (cstep);
+ else
+ cstepi = 0;
+
+ if (cst_and_fits_in_hwi (ustep)
+ && cst_and_fits_in_hwi (cstep))
+ {
+ ustepi = int_cst_value (ustep);
+
+ if (!divide (TYPE_PRECISION (utype), ustepi, cstepi, &ratio))
+ return INFTY;
+ }
+ else
+ {
+ double_int rat;
+
+ if (!constant_multiple_of (ustep, cstep, &rat))
+ return INFTY;
+
+ if (double_int_fits_in_shwi_p (rat))
+ ratio = double_int_to_shwi (rat);
+ else
+ return INFTY;
+ }
+
+ /* use = ubase + ratio * (var - cbase). If either cbase is a constant
+ or ratio == 1, it is better to handle this like
+
+ ubase - ratio * cbase + ratio * var
+
+ (also holds in the case ratio == -1, TODO. */
+
+ if (cst_and_fits_in_hwi (cbase))
+ {
+ offset = - ratio * int_cst_value (cbase);
+ cost += difference_cost (data,
+ ubase, integer_zero_node,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ }
+ else if (ratio == 1)
+ {
+ cost += difference_cost (data,
+ ubase, cbase,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ }
+ else
+ {
+ cost += force_var_cost (data, cbase, depends_on);
+ cost += add_cost (TYPE_MODE (ctype));
+ cost += difference_cost (data,
+ ubase, integer_zero_node,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ }
+
+ /* If we are after the increment, the value of the candidate is higher by
+ one iteration. */
+ if (stmt_after_increment (data->current_loop, cand, at))
+ offset -= ratio * cstepi;
+
+ /* Now the computation is in shape symbol + var1 + const + ratio * var2.
+ (symbol/var/const parts may be omitted). If we are looking for an address,
+ find the cost of addressing this. */
+ if (address_p)
+ return cost + get_address_cost (symbol_present, var_present, offset, ratio);
+
+ /* Otherwise estimate the costs for computing the expression. */
+ aratio = ratio > 0 ? ratio : -ratio;
+ if (!symbol_present && !var_present && !offset)
+ {
+ if (ratio != 1)
+ cost += multiply_by_cost (ratio, TYPE_MODE (ctype));
+
+ return cost;
+ }
+
+ if (aratio != 1)
+ cost += multiply_by_cost (aratio, TYPE_MODE (ctype));
+
+ n_sums = 1;
+ if (var_present
+ /* Symbol + offset should be compile-time computable. */
+ && (symbol_present || offset))
+ n_sums++;
+
+ return cost + n_sums * add_cost (TYPE_MODE (ctype));
+
+fallback:
+ {
+ /* Just get the expression, expand it and measure the cost. */
+ tree comp = get_computation_at (data->current_loop, use, cand, at);
+
+ if (!comp)
+ return INFTY;
+
+ if (address_p)
+ comp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (comp)), comp);
+
+ return computation_cost (comp);
+ }
+}
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in
+ DEPENDS_ON. */
+
+static unsigned
+get_computation_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ bool address_p, bitmap *depends_on)
+{
+ return get_computation_cost_at (data,
+ use, cand, address_p, depends_on, use->stmt);
+}
+
+/* Determines cost of basing replacement of USE on CAND in a generic
+ expression. */
+
+static bool
+determine_use_iv_cost_generic (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ unsigned cost;
+
+ /* The simple case first -- if we need to express value of the preserved
+ original biv, the cost is 0. This also prevents us from counting the
+ cost of increment twice -- once at this use and once in the cost of
+ the candidate. */
+ if (cand->pos == IP_ORIGINAL
+ && cand->incremented_at == use->stmt)
+ {
+ set_use_iv_cost (data, use, cand, 0, NULL, NULL_TREE);
+ return true;
+ }
+
+ cost = get_computation_cost (data, use, cand, false, &depends_on);
+ set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE);
+
+ return cost != INFTY;
+}
+
+/* Determines cost of basing replacement of USE on CAND in an address. */
+
+static bool
+determine_use_iv_cost_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ unsigned cost = get_computation_cost (data, use, cand, true, &depends_on);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE);
+
+ return cost != INFTY;
+}
+
+/* Computes value of induction variable IV in iteration NITER. */
+
+static tree
+iv_value (struct iv *iv, tree niter)
+{
+ tree val;
+ tree type = TREE_TYPE (iv->base);
+
+ niter = fold_convert (type, niter);
+ val = fold_build2 (MULT_EXPR, type, iv->step, niter);
+
+ return fold_build2 (PLUS_EXPR, type, iv->base, val);
+}
+
+/* Computes value of candidate CAND at position AT in iteration NITER. */
+
+static tree
+cand_value_at (struct loop *loop, struct iv_cand *cand, tree at, tree niter)
+{
+ tree val = iv_value (cand->iv, niter);
+ tree type = TREE_TYPE (cand->iv->base);
+
+ if (stmt_after_increment (loop, cand, at))
+ val = fold_build2 (PLUS_EXPR, type, val, cand->iv->step);
+
+ return val;
+}
+
+/* Returns period of induction variable iv. */
+
+static tree
+iv_period (struct iv *iv)
+{
+ tree step = iv->step, period, type;
+ tree pow2div;
+
+ gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
+
+ /* Period of the iv is gcd (step, type range). Since type range is power
+ of two, it suffices to determine the maximum power of two that divides
+ step. */
+ pow2div = num_ending_zeros (step);
+ type = unsigned_type_for (TREE_TYPE (step));
+
+ period = build_low_bits_mask (type,
+ (TYPE_PRECISION (type)
+ - tree_low_cst (pow2div, 1)));
+
+ return period;
+}
+
+/* Returns the comparison operator used when eliminating the iv USE. */
+
+static enum tree_code
+iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
+{
+ struct loop *loop = data->current_loop;
+ basic_block ex_bb;
+ edge exit;
+
+ ex_bb = bb_for_stmt (use->stmt);
+ exit = EDGE_SUCC (ex_bb, 0);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ exit = EDGE_SUCC (ex_bb, 1);
+
+ return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
+}
+
+/* Check whether it is possible to express the condition in USE by comparison
+ of candidate CAND. If so, store the value compared with to BOUND. */
+
+static bool
+may_eliminate_iv (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand, tree *bound)
+{
+ basic_block ex_bb;
+ edge exit;
+ tree nit, nit_type;
+ tree wider_type, period, per_type;
+ struct loop *loop = data->current_loop;
+
+ if (TREE_CODE (cand->iv->step) != INTEGER_CST)
+ return false;
+
+ /* For now works only for exits that dominate the loop latch. TODO -- extend
+ for other conditions inside loop body. */
+ ex_bb = bb_for_stmt (use->stmt);
+ if (use->stmt != last_stmt (ex_bb)
+ || TREE_CODE (use->stmt) != COND_EXPR)
+ return false;
+ if (!dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
+ return false;
+
+ exit = EDGE_SUCC (ex_bb, 0);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ exit = EDGE_SUCC (ex_bb, 1);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ return false;
+
+ nit = niter_for_exit (data, exit);
+ if (!nit)
+ return false;
+
+ nit_type = TREE_TYPE (nit);
+
+ /* Determine whether we may use the variable to test whether niter iterations
+ elapsed. This is the case iff the period of the induction variable is
+ greater than the number of iterations. */
+ period = iv_period (cand->iv);
+ if (!period)
+ return false;
+ per_type = TREE_TYPE (period);
+
+ wider_type = TREE_TYPE (period);
+ if (TYPE_PRECISION (nit_type) < TYPE_PRECISION (per_type))
+ wider_type = per_type;
+ else
+ wider_type = nit_type;
+
+ if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
+ fold_convert (wider_type, period),
+ fold_convert (wider_type, nit))))
+ return false;
+
+ *bound = fold_affine_expr (cand_value_at (loop, cand, use->stmt, nit));
+ return true;
+}
+
+/* Determines cost of basing replacement of USE on CAND in a condition. */
+
+static bool
+determine_use_iv_cost_condition (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree bound = NULL_TREE, op, cond;
+ bitmap depends_on = NULL;
+ unsigned cost;
+
+ /* Only consider real candidates. */
+ if (!cand->iv)
+ {
+ set_use_iv_cost (data, use, cand, INFTY, NULL, NULL_TREE);
+ return false;
+ }
+
+ if (may_eliminate_iv (data, use, cand, &bound))
+ {
+ cost = force_var_cost (data, bound, &depends_on);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on, bound);
+ return cost != INFTY;
+ }
+
+ /* The induction variable elimination failed; just express the original
+ giv. If it is compared with an invariant, note that we cannot get
+ rid of it. */
+ cost = get_computation_cost (data, use, cand, false, &depends_on);
+
+ cond = *use->op_p;
+ if (TREE_CODE (cond) != SSA_NAME)
+ {
+ op = TREE_OPERAND (cond, 0);
+ if (TREE_CODE (op) == SSA_NAME && !zero_p (get_iv (data, op)->step))
+ op = TREE_OPERAND (cond, 1);
+ if (TREE_CODE (op) == SSA_NAME)
+ {
+ op = get_iv (data, op)->base;
+ fd_ivopts_data = data;
+ walk_tree (&op, find_depends, &depends_on, NULL);
+ }
+ }
+
+ set_use_iv_cost (data, use, cand, cost, depends_on, NULL);
+ return cost != INFTY;
+}
+
+/* Determines cost of basing replacement of USE on CAND. Returns false
+ if USE cannot be based on CAND. */
+
+static bool
+determine_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ return determine_use_iv_cost_generic (data, use, cand);
+
+ case USE_ADDRESS:
+ return determine_use_iv_cost_address (data, use, cand);
+
+ case USE_COMPARE:
+ return determine_use_iv_cost_condition (data, use, cand);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Determines costs of basing the use of the iv on an iv candidate. */
+
+static void
+determine_use_iv_costs (struct ivopts_data *data)
+{
+ unsigned i, j;
+ struct iv_use *use;
+ struct iv_cand *cand;
+ bitmap to_clear = BITMAP_ALLOC (NULL);
+
+ alloc_use_cost_map (data);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ if (data->consider_all_candidates)
+ {
+ for (j = 0; j < n_iv_cands (data); j++)
+ {
+ cand = iv_cand (data, j);
+ determine_use_iv_cost (data, use, cand);
+ }
+ }
+ else
+ {
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
+ {
+ cand = iv_cand (data, j);
+ if (!determine_use_iv_cost (data, use, cand))
+ bitmap_set_bit (to_clear, j);
+ }
+
+ /* Remove the candidates for that the cost is infinite from
+ the list of related candidates. */
+ bitmap_and_compl_into (use->related_cands, to_clear);
+ bitmap_clear (to_clear);
+ }
+ }
+
+ BITMAP_FREE (to_clear);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Use-candidate costs:\n");
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ fprintf (dump_file, "Use %d:\n", i);
+ fprintf (dump_file, " cand\tcost\tdepends on\n");
+ for (j = 0; j < use->n_map_members; j++)
+ {
+ if (!use->cost_map[j].cand
+ || use->cost_map[j].cost == INFTY)
+ continue;
+
+ fprintf (dump_file, " %d\t%d\t",
+ use->cost_map[j].cand->id,
+ use->cost_map[j].cost);
+ if (use->cost_map[j].depends_on)
+ bitmap_print (dump_file,
+ use->cost_map[j].depends_on, "","");
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Determines cost of the candidate CAND. */
+
+static void
+determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
+{
+ unsigned cost_base, cost_step;
+ tree base;
+
+ if (!cand->iv)
+ {
+ cand->cost = 0;
+ return;
+ }
+
+ /* There are two costs associated with the candidate -- its increment
+ and its initialization. The second is almost negligible for any loop
+ that rolls enough, so we take it just very little into account. */
+
+ base = cand->iv->base;
+ cost_base = force_var_cost (data, base, NULL);
+ cost_step = add_cost (TYPE_MODE (TREE_TYPE (base)));
+
+ cand->cost = cost_step + cost_base / AVG_LOOP_NITER (current_loop);
+
+ /* Prefer the original iv unless we may gain something by replacing it;
+ this is not really relevant for artificial ivs created by other
+ passes. */
+ if (cand->pos == IP_ORIGINAL
+ && !DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
+ cand->cost--;
+
+ /* Prefer not to insert statements into latch unless there are some
+ already (so that we do not create unnecessary jumps). */
+ if (cand->pos == IP_END
+ && empty_block_p (ip_end_pos (data->current_loop)))
+ cand->cost++;
+}
+
+/* Determines costs of computation of the candidates. */
+
+static void
+determine_iv_costs (struct ivopts_data *data)
+{
+ unsigned i;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Candidate costs:\n");
+ fprintf (dump_file, " cand\tcost\n");
+ }
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ determine_iv_cost (data, cand);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " %d\t%d\n", i, cand->cost);
+ }
+
+if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n");
+}
+
+/* Calculates cost for having SIZE induction variables. */
+
+static unsigned
+ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
+{
+ return global_cost_for_size (size, data->regs_used, n_iv_uses (data));
+}
+
+/* For each size of the induction variable set determine the penalty. */
+
+static void
+determine_set_costs (struct ivopts_data *data)
+{
+ unsigned j, n;
+ tree phi, op;
+ struct loop *loop = data->current_loop;
+ bitmap_iterator bi;
+
+ /* We use the following model (definitely improvable, especially the
+ cost function -- TODO):
+
+ We estimate the number of registers available (using MD data), name it A.
+
+ We estimate the number of registers used by the loop, name it U. This
+ number is obtained as the number of loop phi nodes (not counting virtual
+ registers and bivs) + the number of variables from outside of the loop.
+
+ We set a reserve R (free regs that are used for temporary computations,
+ etc.). For now the reserve is a constant 3.
+
+ Let I be the number of induction variables.
+
+ -- if U + I + R <= A, the cost is I * SMALL_COST (just not to encourage
+ make a lot of ivs without a reason).
+ -- if A - R < U + I <= A, the cost is I * PRES_COST
+ -- if U + I > A, the cost is I * PRES_COST and
+ number of uses * SPILL_COST * (U + I - A) / (U + I) is added. */
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Global costs:\n");
+ fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
+ fprintf (dump_file, " target_small_cost %d\n", target_small_cost);
+ fprintf (dump_file, " target_pres_cost %d\n", target_pres_cost);
+ fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost);
+ }
+
+ n = 0;
+ for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
+ {
+ op = PHI_RESULT (phi);
+
+ if (!is_gimple_reg (op))
+ continue;
+
+ if (get_iv (data, op))
+ continue;
+
+ n++;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
+ {
+ struct version_info *info = ver_info (data, j);
+
+ if (info->inv_id && info->has_nonlin_use)
+ n++;
+ }
+
+ data->regs_used = n;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " regs_used %d\n", n);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " cost for size:\n");
+ fprintf (dump_file, " ivs\tcost\n");
+ for (j = 0; j <= 2 * target_avail_regs; j++)
+ fprintf (dump_file, " %d\t%d\n", j,
+ ivopts_global_cost_for_size (data, j));
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Returns true if A is a cheaper cost pair than B. */
+
+static bool
+cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
+{
+ if (!a)
+ return false;
+
+ if (!b)
+ return true;
+
+ if (a->cost < b->cost)
+ return true;
+
+ if (a->cost > b->cost)
+ return false;
+
+ /* In case the costs are the same, prefer the cheaper candidate. */
+ if (a->cand->cost < b->cand->cost)
+ return true;
+
+ return false;
+}
+
+/* Computes the cost field of IVS structure. */
+
+static void
+iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
+{
+ unsigned cost = 0;
+
+ cost += ivs->cand_use_cost;
+ cost += ivs->cand_cost;
+ cost += ivopts_global_cost_for_size (data, ivs->n_regs);
+
+ ivs->cost = cost;
+}
+
+/* Remove invariants in set INVS to set IVS. */
+
+static void
+iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
+{
+ bitmap_iterator bi;
+ unsigned iid;
+
+ if (!invs)
+ return;
+
+ EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
+ {
+ ivs->n_invariant_uses[iid]--;
+ if (ivs->n_invariant_uses[iid] == 0)
+ ivs->n_regs--;
+ }
+}
+
+/* Set USE not to be expressed by any candidate in IVS. */
+
+static void
+iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use)
+{
+ unsigned uid = use->id, cid;
+ struct cost_pair *cp;
+
+ cp = ivs->cand_for_use[uid];
+ if (!cp)
+ return;
+ cid = cp->cand->id;
+
+ ivs->bad_uses++;
+ ivs->cand_for_use[uid] = NULL;
+ ivs->n_cand_uses[cid]--;
+
+ if (ivs->n_cand_uses[cid] == 0)
+ {
+ bitmap_clear_bit (ivs->cands, cid);
+ /* Do not count the pseudocandidates. */
+ if (cp->cand->iv)
+ ivs->n_regs--;
+ ivs->n_cands--;
+ ivs->cand_cost -= cp->cand->cost;
+
+ iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
+ }
+
+ ivs->cand_use_cost -= cp->cost;
+
+ iv_ca_set_remove_invariants (ivs, cp->depends_on);
+ iv_ca_recount_cost (data, ivs);
+}
+
+/* Add invariants in set INVS to set IVS. */
+
+static void
+iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
+{
+ bitmap_iterator bi;
+ unsigned iid;
+
+ if (!invs)
+ return;
+
+ EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
+ {
+ ivs->n_invariant_uses[iid]++;
+ if (ivs->n_invariant_uses[iid] == 1)
+ ivs->n_regs++;
+ }
+}
+
+/* Set cost pair for USE in set IVS to CP. */
+
+static void
+iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use, struct cost_pair *cp)
+{
+ unsigned uid = use->id, cid;
+
+ if (ivs->cand_for_use[uid] == cp)
+ return;
+
+ if (ivs->cand_for_use[uid])
+ iv_ca_set_no_cp (data, ivs, use);
+
+ if (cp)
+ {
+ cid = cp->cand->id;
+
+ ivs->bad_uses--;
+ ivs->cand_for_use[uid] = cp;
+ ivs->n_cand_uses[cid]++;
+ if (ivs->n_cand_uses[cid] == 1)
+ {
+ bitmap_set_bit (ivs->cands, cid);
+ /* Do not count the pseudocandidates. */
+ if (cp->cand->iv)
+ ivs->n_regs++;
+ ivs->n_cands++;
+ ivs->cand_cost += cp->cand->cost;
+
+ iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
+ }
+
+ ivs->cand_use_cost += cp->cost;
+ iv_ca_set_add_invariants (ivs, cp->depends_on);
+ iv_ca_recount_cost (data, ivs);
+ }
+}
+
+/* Extend set IVS by expressing USE by some of the candidates in it
+ if possible. */
+
+static void
+iv_ca_add_use (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use)
+{
+ struct cost_pair *best_cp = NULL, *cp;
+ bitmap_iterator bi;
+ unsigned i;
+
+ gcc_assert (ivs->upto >= use->id);
+
+ if (ivs->upto == use->id)
+ {
+ ivs->upto++;
+ ivs->bad_uses++;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
+ {
+ cp = get_use_iv_cost (data, use, iv_cand (data, i));
+
+ if (cheaper_cost_pair (cp, best_cp))
+ best_cp = cp;
+ }
+
+ iv_ca_set_cp (data, ivs, use, best_cp);
+}
+
+/* Get cost for assignment IVS. */
+
+static unsigned
+iv_ca_cost (struct iv_ca *ivs)
+{
+ return (ivs->bad_uses ? INFTY : ivs->cost);
+}
+
+/* Returns true if all dependences of CP are among invariants in IVS. */
+
+static bool
+iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ if (!cp->depends_on)
+ return true;
+
+ EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
+ {
+ if (ivs->n_invariant_uses[i] == 0)
+ return false;
+ }
+
+ return true;
+}
+
+/* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
+ it before NEXT_CHANGE. */
+
+static struct iv_ca_delta *
+iv_ca_delta_add (struct iv_use *use, struct cost_pair *old_cp,
+ struct cost_pair *new_cp, struct iv_ca_delta *next_change)
+{
+ struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
+
+ change->use = use;
+ change->old_cp = old_cp;
+ change->new_cp = new_cp;
+ change->next_change = next_change;
+
+ return change;
+}
+
+/* Joins two lists of changes L1 and L2. Destructive -- old lists
+ are rewritten. */
+
+static struct iv_ca_delta *
+iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
+{
+ struct iv_ca_delta *last;
+
+ if (!l2)
+ return l1;
+
+ if (!l1)
+ return l2;
+
+ for (last = l1; last->next_change; last = last->next_change)
+ continue;
+ last->next_change = l2;
+
+ return l1;
+}
+
+/* Returns candidate by that USE is expressed in IVS. */
+
+static struct cost_pair *
+iv_ca_cand_for_use (struct iv_ca *ivs, struct iv_use *use)
+{
+ return ivs->cand_for_use[use->id];
+}
+
+/* Reverse the list of changes DELTA, forming the inverse to it. */
+
+static struct iv_ca_delta *
+iv_ca_delta_reverse (struct iv_ca_delta *delta)
+{
+ struct iv_ca_delta *act, *next, *prev = NULL;
+ struct cost_pair *tmp;
+
+ for (act = delta; act; act = next)
+ {
+ next = act->next_change;
+ act->next_change = prev;
+ prev = act;
+
+ tmp = act->old_cp;
+ act->old_cp = act->new_cp;
+ act->new_cp = tmp;
+ }
+
+ return prev;
+}
+
+/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
+ reverted instead. */
+
+static void
+iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_ca_delta *delta, bool forward)
+{
+ struct cost_pair *from, *to;
+ struct iv_ca_delta *act;
+
+ if (!forward)
+ delta = iv_ca_delta_reverse (delta);
+
+ for (act = delta; act; act = act->next_change)
+ {
+ from = act->old_cp;
+ to = act->new_cp;
+ gcc_assert (iv_ca_cand_for_use (ivs, act->use) == from);
+ iv_ca_set_cp (data, ivs, act->use, to);
+ }
+
+ if (!forward)
+ iv_ca_delta_reverse (delta);
+}
+
+/* Returns true if CAND is used in IVS. */
+
+static bool
+iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
+{
+ return ivs->n_cand_uses[cand->id] > 0;
+}
+
+/* Returns number of induction variable candidates in the set IVS. */
+
+static unsigned
+iv_ca_n_cands (struct iv_ca *ivs)
+{
+ return ivs->n_cands;
+}
+
+/* Free the list of changes DELTA. */
+
+static void
+iv_ca_delta_free (struct iv_ca_delta **delta)
+{
+ struct iv_ca_delta *act, *next;
+
+ for (act = *delta; act; act = next)
+ {
+ next = act->next_change;
+ free (act);
+ }
+
+ *delta = NULL;
+}
+
+/* Allocates new iv candidates assignment. */
+
+static struct iv_ca *
+iv_ca_new (struct ivopts_data *data)
+{
+ struct iv_ca *nw = XNEW (struct iv_ca);
+
+ nw->upto = 0;
+ nw->bad_uses = 0;
+ nw->cand_for_use = XCNEWVEC (struct cost_pair *, n_iv_uses (data));
+ nw->n_cand_uses = XCNEWVEC (unsigned, n_iv_cands (data));
+ nw->cands = BITMAP_ALLOC (NULL);
+ nw->n_cands = 0;
+ nw->n_regs = 0;
+ nw->cand_use_cost = 0;
+ nw->cand_cost = 0;
+ nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
+ nw->cost = 0;
+
+ return nw;
+}
+
+/* Free memory occupied by the set IVS. */
+
+static void
+iv_ca_free (struct iv_ca **ivs)
+{
+ free ((*ivs)->cand_for_use);
+ free ((*ivs)->n_cand_uses);
+ BITMAP_FREE ((*ivs)->cands);
+ free ((*ivs)->n_invariant_uses);
+ free (*ivs);
+ *ivs = NULL;
+}
+
+/* Dumps IVS to FILE. */
+
+static void
+iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
+{
+ const char *pref = " invariants ";
+ unsigned i;
+
+ fprintf (file, " cost %d\n", iv_ca_cost (ivs));
+ bitmap_print (file, ivs->cands, " candidates ","\n");
+
+ for (i = 1; i <= data->max_inv_id; i++)
+ if (ivs->n_invariant_uses[i])
+ {
+ fprintf (file, "%s%d", pref, i);
+ pref = ", ";
+ }
+ fprintf (file, "\n");
+}
+
+/* Try changing candidate in IVS to CAND for each use. Return cost of the
+ new set, and store differences in DELTA. Number of induction variables
+ in the new set is stored to N_IVS. */
+
+static unsigned
+iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *cand, struct iv_ca_delta **delta,
+ unsigned *n_ivs)
+{
+ unsigned i, cost;
+ struct iv_use *use;
+ struct cost_pair *old_cp, *new_cp;
+
+ *delta = NULL;
+ for (i = 0; i < ivs->upto; i++)
+ {
+ use = iv_use (data, i);
+ old_cp = iv_ca_cand_for_use (ivs, use);
+
+ if (old_cp
+ && old_cp->cand == cand)
+ continue;
+
+ new_cp = get_use_iv_cost (data, use, cand);
+ if (!new_cp)
+ continue;
+
+ if (!iv_ca_has_deps (ivs, new_cp))
+ continue;
+
+ if (!cheaper_cost_pair (new_cp, old_cp))
+ continue;
+
+ *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
+ }
+
+ iv_ca_delta_commit (data, ivs, *delta, true);
+ cost = iv_ca_cost (ivs);
+ if (n_ivs)
+ *n_ivs = iv_ca_n_cands (ivs);
+ iv_ca_delta_commit (data, ivs, *delta, false);
+
+ return cost;
+}
+
+/* Try narrowing set IVS by removing CAND. Return the cost of
+ the new set and store the differences in DELTA. */
+
+static unsigned
+iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *cand, struct iv_ca_delta **delta)
+{
+ unsigned i, ci;
+ struct iv_use *use;
+ struct cost_pair *old_cp, *new_cp, *cp;
+ bitmap_iterator bi;
+ struct iv_cand *cnd;
+ unsigned cost;
+
+ *delta = NULL;
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ old_cp = iv_ca_cand_for_use (ivs, use);
+ if (old_cp->cand != cand)
+ continue;
+
+ new_cp = NULL;
+
+ if (data->consider_all_candidates)
+ {
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
+ {
+ if (ci == cand->id)
+ continue;
+
+ cnd = iv_cand (data, ci);
+
+ cp = get_use_iv_cost (data, use, cnd);
+ if (!cp)
+ continue;
+ if (!iv_ca_has_deps (ivs, cp))
+ continue;
+
+ if (!cheaper_cost_pair (cp, new_cp))
+ continue;
+
+ new_cp = cp;
+ }
+ }
+ else
+ {
+ EXECUTE_IF_AND_IN_BITMAP (use->related_cands, ivs->cands, 0, ci, bi)
+ {
+ if (ci == cand->id)
+ continue;
+
+ cnd = iv_cand (data, ci);
+
+ cp = get_use_iv_cost (data, use, cnd);
+ if (!cp)
+ continue;
+ if (!iv_ca_has_deps (ivs, cp))
+ continue;
+
+ if (!cheaper_cost_pair (cp, new_cp))
+ continue;
+
+ new_cp = cp;
+ }
+ }
+
+ if (!new_cp)
+ {
+ iv_ca_delta_free (delta);
+ return INFTY;
+ }
+
+ *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
+ }
+
+ iv_ca_delta_commit (data, ivs, *delta, true);
+ cost = iv_ca_cost (ivs);
+ iv_ca_delta_commit (data, ivs, *delta, false);
+
+ return cost;
+}
+
+/* Try optimizing the set of candidates IVS by removing candidates different
+ from to EXCEPT_CAND from it. Return cost of the new set, and store
+ differences in DELTA. */
+
+static unsigned
+iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *except_cand, struct iv_ca_delta **delta)
+{
+ bitmap_iterator bi;
+ struct iv_ca_delta *act_delta, *best_delta;
+ unsigned i, best_cost, acost;
+ struct iv_cand *cand;
+
+ best_delta = NULL;
+ best_cost = iv_ca_cost (ivs);
+
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+
+ if (cand == except_cand)
+ continue;
+
+ acost = iv_ca_narrow (data, ivs, cand, &act_delta);
+
+ if (acost < best_cost)
+ {
+ best_cost = acost;
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (!best_delta)
+ {
+ *delta = NULL;
+ return best_cost;
+ }
+
+ /* Recurse to possibly remove other unnecessary ivs. */
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ best_cost = iv_ca_prune (data, ivs, except_cand, delta);
+ iv_ca_delta_commit (data, ivs, best_delta, false);
+ *delta = iv_ca_delta_join (best_delta, *delta);
+ return best_cost;
+}
+
+/* Tries to extend the sets IVS in the best possible way in order
+ to express the USE. */
+
+static bool
+try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use)
+{
+ unsigned best_cost, act_cost;
+ unsigned i;
+ bitmap_iterator bi;
+ struct iv_cand *cand;
+ struct iv_ca_delta *best_delta = NULL, *act_delta;
+ struct cost_pair *cp;
+
+ iv_ca_add_use (data, ivs, use);
+ best_cost = iv_ca_cost (ivs);
+
+ cp = iv_ca_cand_for_use (ivs, use);
+ if (cp)
+ {
+ best_delta = iv_ca_delta_add (use, NULL, cp, NULL);
+ iv_ca_set_no_cp (data, ivs, use);
+ }
+
+ /* First try important candidates. Only if it fails, try the specific ones.
+ Rationale -- in loops with many variables the best choice often is to use
+ just one generic biv. If we added here many ivs specific to the uses,
+ the optimization algorithm later would be likely to get stuck in a local
+ minimum, thus causing us to create too many ivs. The approach from
+ few ivs to more seems more likely to be successful -- starting from few
+ ivs, replacing an expensive use by a specific iv should always be a
+ win. */
+ EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ cp = get_use_iv_cost (data, use, cand);
+ if (!cp)
+ continue;
+
+ iv_ca_set_cp (data, ivs, use, cp);
+ act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL);
+ iv_ca_set_no_cp (data, ivs, use);
+ act_delta = iv_ca_delta_add (use, NULL, cp, act_delta);
+
+ if (act_cost < best_cost)
+ {
+ best_cost = act_cost;
+
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (best_cost == INFTY)
+ {
+ for (i = 0; i < use->n_map_members; i++)
+ {
+ cp = use->cost_map + i;
+ cand = cp->cand;
+ if (!cand)
+ continue;
+
+ /* Already tried this. */
+ if (cand->important)
+ continue;
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ act_delta = NULL;
+ iv_ca_set_cp (data, ivs, use, cp);
+ act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL);
+ iv_ca_set_no_cp (data, ivs, use);
+ act_delta = iv_ca_delta_add (use, iv_ca_cand_for_use (ivs, use),
+ cp, act_delta);
+
+ if (act_cost < best_cost)
+ {
+ best_cost = act_cost;
+
+ if (best_delta)
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+ }
+
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ iv_ca_delta_free (&best_delta);
+
+ return (best_cost != INFTY);
+}
+
+/* Finds an initial assignment of candidates to uses. */
+
+static struct iv_ca *
+get_initial_solution (struct ivopts_data *data)
+{
+ struct iv_ca *ivs = iv_ca_new (data);
+ unsigned i;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ if (!try_add_cand_for (data, ivs, iv_use (data, i)))
+ {
+ iv_ca_free (&ivs);
+ return NULL;
+ }
+
+ return ivs;
+}
+
+/* Tries to improve set of induction variables IVS. */
+
+static bool
+try_improve_iv_set (struct ivopts_data *data, struct iv_ca *ivs)
+{
+ unsigned i, acost, best_cost = iv_ca_cost (ivs), n_ivs;
+ struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
+ struct iv_cand *cand;
+
+ /* Try extending the set of induction variables by one. */
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ cand = iv_cand (data, i);
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs);
+ if (!act_delta)
+ continue;
+
+ /* If we successfully added the candidate and the set is small enough,
+ try optimizing it by removing other candidates. */
+ if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
+ {
+ iv_ca_delta_commit (data, ivs, act_delta, true);
+ acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
+ iv_ca_delta_commit (data, ivs, act_delta, false);
+ act_delta = iv_ca_delta_join (act_delta, tmp_delta);
+ }
+
+ if (acost < best_cost)
+ {
+ best_cost = acost;
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (!best_delta)
+ {
+ /* Try removing the candidates from the set instead. */
+ best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
+
+ /* Nothing more we can do. */
+ if (!best_delta)
+ return false;
+ }
+
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ gcc_assert (best_cost == iv_ca_cost (ivs));
+ iv_ca_delta_free (&best_delta);
+ return true;
+}
+
+/* Attempts to find the optimal set of induction variables. We do simple
+ greedy heuristic -- we try to replace at most one candidate in the selected
+ solution and remove the unused ivs while this improves the cost. */
+
+static struct iv_ca *
+find_optimal_iv_set (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_ca *set;
+ struct iv_use *use;
+
+ /* Get the initial solution. */
+ set = get_initial_solution (data);
+ if (!set)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
+ return NULL;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Initial set of candidates:\n");
+ iv_ca_dump (data, dump_file, set);
+ }
+
+ while (try_improve_iv_set (data, set))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Improved to:\n");
+ iv_ca_dump (data, dump_file, set);
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Final cost %d\n\n", iv_ca_cost (set));
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ use->selected = iv_ca_cand_for_use (set, use)->cand;
+ }
+
+ return set;
+}
+
+/* Creates a new induction variable corresponding to CAND. */
+
+static void
+create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
+{
+ block_stmt_iterator incr_pos;
+ tree base;
+ bool after = false;
+
+ if (!cand->iv)
+ return;
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ incr_pos = bsi_last (ip_normal_pos (data->current_loop));
+ break;
+
+ case IP_END:
+ incr_pos = bsi_last (ip_end_pos (data->current_loop));
+ after = true;
+ break;
+
+ case IP_ORIGINAL:
+ /* Mark that the iv is preserved. */
+ name_info (data, cand->var_before)->preserve_biv = true;
+ name_info (data, cand->var_after)->preserve_biv = true;
+
+ /* Rewrite the increment so that it uses var_before directly. */
+ find_interesting_uses_op (data, cand->var_after)->selected = cand;
+
+ return;
+ }
+
+ gimple_add_tmp_var (cand->var_before);
+ add_referenced_var (cand->var_before);
+
+ base = unshare_expr (cand->iv->base);
+
+ create_iv (base, unshare_expr (cand->iv->step),
+ cand->var_before, data->current_loop,
+ &incr_pos, after, &cand->var_before, &cand->var_after);
+}
+
+/* Creates new induction variables described in SET. */
+
+static void
+create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+ create_new_iv (data, cand);
+ }
+}
+
+/* Removes statement STMT (real or a phi node). If INCLUDING_DEFINED_NAME
+ is true, remove also the ssa name defined by the statement. */
+
+static void
+remove_statement (tree stmt, bool including_defined_name)
+{
+ if (TREE_CODE (stmt) == PHI_NODE)
+ {
+ if (!including_defined_name)
+ {
+ /* Prevent the ssa name defined by the statement from being removed. */
+ SET_PHI_RESULT (stmt, NULL);
+ }
+ remove_phi_node (stmt, NULL_TREE);
+ }
+ else
+ {
+ block_stmt_iterator bsi = bsi_for_stmt (stmt);
+
+ bsi_remove (&bsi, true);
+ }
+}
+
+/* Rewrites USE (definition of iv used in a nonlinear expression)
+ using candidate CAND. */
+
+static void
+rewrite_use_nonlinear_expr (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp;
+ tree op, stmts, tgt, ass;
+ block_stmt_iterator bsi, pbsi;
+
+ /* An important special case -- if we are asked to express value of
+ the original iv by itself, just exit; there is no need to
+ introduce a new computation (that might also need casting the
+ variable to unsigned and back). */
+ if (cand->pos == IP_ORIGINAL
+ && cand->incremented_at == use->stmt)
+ {
+ tree step, ctype, utype;
+ enum tree_code incr_code = PLUS_EXPR;
+
+ gcc_assert (TREE_CODE (use->stmt) == MODIFY_EXPR);
+ gcc_assert (TREE_OPERAND (use->stmt, 0) == cand->var_after);
+
+ step = cand->iv->step;
+ ctype = TREE_TYPE (step);
+ utype = TREE_TYPE (cand->var_after);
+ if (TREE_CODE (step) == NEGATE_EXPR)
+ {
+ incr_code = MINUS_EXPR;
+ step = TREE_OPERAND (step, 0);
+ }
+
+ /* Check whether we may leave the computation unchanged.
+ This is the case only if it does not rely on other
+ computations in the loop -- otherwise, the computation
+ we rely upon may be removed in remove_unused_ivs,
+ thus leading to ICE. */
+ op = TREE_OPERAND (use->stmt, 1);
+ if (TREE_CODE (op) == PLUS_EXPR
+ || TREE_CODE (op) == MINUS_EXPR)
+ {
+ if (TREE_OPERAND (op, 0) == cand->var_before)
+ op = TREE_OPERAND (op, 1);
+ else if (TREE_CODE (op) == PLUS_EXPR
+ && TREE_OPERAND (op, 1) == cand->var_before)
+ op = TREE_OPERAND (op, 0);
+ else
+ op = NULL_TREE;
+ }
+ else
+ op = NULL_TREE;
+
+ if (op
+ && (TREE_CODE (op) == INTEGER_CST
+ || operand_equal_p (op, step, 0)))
+ return;
+
+ /* Otherwise, add the necessary computations to express
+ the iv. */
+ op = fold_convert (ctype, cand->var_before);
+ comp = fold_convert (utype,
+ build2 (incr_code, ctype, op,
+ unshare_expr (step)));
+ }
+ else
+ comp = get_computation (data->current_loop, use, cand);
+
+ switch (TREE_CODE (use->stmt))
+ {
+ case PHI_NODE:
+ tgt = PHI_RESULT (use->stmt);
+
+ /* If we should keep the biv, do not replace it. */
+ if (name_info (data, tgt)->preserve_biv)
+ return;
+
+ pbsi = bsi = bsi_start (bb_for_stmt (use->stmt));
+ while (!bsi_end_p (pbsi)
+ && TREE_CODE (bsi_stmt (pbsi)) == LABEL_EXPR)
+ {
+ bsi = pbsi;
+ bsi_next (&pbsi);
+ }
+ break;
+
+ case MODIFY_EXPR:
+ tgt = TREE_OPERAND (use->stmt, 0);
+ bsi = bsi_for_stmt (use->stmt);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ op = force_gimple_operand (comp, &stmts, false, SSA_NAME_VAR (tgt));
+
+ if (TREE_CODE (use->stmt) == PHI_NODE)
+ {
+ if (stmts)
+ bsi_insert_after (&bsi, stmts, BSI_CONTINUE_LINKING);
+ ass = build2 (MODIFY_EXPR, TREE_TYPE (tgt), tgt, op);
+ bsi_insert_after (&bsi, ass, BSI_NEW_STMT);
+ remove_statement (use->stmt, false);
+ SSA_NAME_DEF_STMT (tgt) = ass;
+ }
+ else
+ {
+ if (stmts)
+ bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
+ TREE_OPERAND (use->stmt, 1) = op;
+ }
+}
+
+/* Replaces ssa name in index IDX by its basic variable. Callback for
+ for_each_index. */
+
+static bool
+idx_remove_ssa_names (tree base, tree *idx,
+ void *data ATTRIBUTE_UNUSED)
+{
+ tree *op;
+
+ if (TREE_CODE (*idx) == SSA_NAME)
+ *idx = SSA_NAME_VAR (*idx);
+
+ if (TREE_CODE (base) == ARRAY_REF)
+ {
+ op = &TREE_OPERAND (base, 2);
+ if (*op
+ && TREE_CODE (*op) == SSA_NAME)
+ *op = SSA_NAME_VAR (*op);
+ op = &TREE_OPERAND (base, 3);
+ if (*op
+ && TREE_CODE (*op) == SSA_NAME)
+ *op = SSA_NAME_VAR (*op);
+ }
+
+ return true;
+}
+
+/* Unshares REF and replaces ssa names inside it by their basic variables. */
+
+static tree
+unshare_and_remove_ssa_names (tree ref)
+{
+ ref = unshare_expr (ref);
+ for_each_index (&ref, idx_remove_ssa_names, NULL);
+
+ return ref;
+}
+
+/* Extract the alias analysis info for the memory reference REF. There are
+ several ways how this information may be stored and what precisely is
+ its semantics depending on the type of the reference, but there always is
+ somewhere hidden one _DECL node that is used to determine the set of
+ virtual operands for the reference. The code below deciphers this jungle
+ and extracts this single useful piece of information. */
+
+static tree
+get_ref_tag (tree ref, tree orig)
+{
+ tree var = get_base_address (ref);
+ tree aref = NULL_TREE, tag, sv;
+ HOST_WIDE_INT offset, size, maxsize;
+
+ for (sv = orig; handled_component_p (sv); sv = TREE_OPERAND (sv, 0))
+ {
+ aref = get_ref_base_and_extent (sv, &offset, &size, &maxsize);
+ if (ref)
+ break;
+ }
+
+ if (aref && SSA_VAR_P (aref) && get_subvars_for_var (aref))
+ return unshare_expr (sv);
+
+ if (!var)
+ return NULL_TREE;
+
+ if (TREE_CODE (var) == INDIRECT_REF)
+ {
+ /* If the base is a dereference of a pointer, first check its name memory
+ tag. If it does not have one, use its symbol memory tag. */
+ var = TREE_OPERAND (var, 0);
+ if (TREE_CODE (var) != SSA_NAME)
+ return NULL_TREE;
+
+ if (SSA_NAME_PTR_INFO (var))
+ {
+ tag = SSA_NAME_PTR_INFO (var)->name_mem_tag;
+ if (tag)
+ return tag;
+ }
+
+ var = SSA_NAME_VAR (var);
+ tag = var_ann (var)->symbol_mem_tag;
+ gcc_assert (tag != NULL_TREE);
+ return tag;
+ }
+ else
+ {
+ if (!DECL_P (var))
+ return NULL_TREE;
+
+ tag = var_ann (var)->symbol_mem_tag;
+ if (tag)
+ return tag;
+
+ return var;
+ }
+}
+
+/* Copies the reference information from OLD_REF to NEW_REF. */
+
+static void
+copy_ref_info (tree new_ref, tree old_ref)
+{
+ if (TREE_CODE (old_ref) == TARGET_MEM_REF)
+ copy_mem_ref_info (new_ref, old_ref);
+ else
+ {
+ TMR_ORIGINAL (new_ref) = unshare_and_remove_ssa_names (old_ref);
+ TMR_TAG (new_ref) = get_ref_tag (old_ref, TMR_ORIGINAL (new_ref));
+ }
+}
+
+/* Rewrites USE (address that is an iv) using candidate CAND. */
+
+static void
+rewrite_use_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ struct affine_tree_combination aff;
+ block_stmt_iterator bsi = bsi_for_stmt (use->stmt);
+ tree ref;
+
+ get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
+ unshare_aff_combination (&aff);
+
+ ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff);
+ copy_ref_info (ref, *use->op_p);
+ *use->op_p = ref;
+}
+
+/* Rewrites USE (the condition such that one of the arguments is an iv) using
+ candidate CAND. */
+
+static void
+rewrite_use_compare (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp;
+ tree *op_p, cond, op, stmts, bound;
+ block_stmt_iterator bsi = bsi_for_stmt (use->stmt);
+ enum tree_code compare;
+ struct cost_pair *cp = get_use_iv_cost (data, use, cand);
+
+ bound = cp->value;
+ if (bound)
+ {
+ tree var = var_at_stmt (data->current_loop, cand, use->stmt);
+ tree var_type = TREE_TYPE (var);
+
+ compare = iv_elimination_compare (data, use);
+ bound = fold_convert (var_type, bound);
+ op = force_gimple_operand (unshare_expr (bound), &stmts,
+ true, NULL_TREE);
+
+ if (stmts)
+ bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
+
+ *use->op_p = build2 (compare, boolean_type_node, var, op);
+ update_stmt (use->stmt);
+ return;
+ }
+
+ /* The induction variable elimination failed; just express the original
+ giv. */
+ comp = get_computation (data->current_loop, use, cand);
+
+ cond = *use->op_p;
+ op_p = &TREE_OPERAND (cond, 0);
+ if (TREE_CODE (*op_p) != SSA_NAME
+ || zero_p (get_iv (data, *op_p)->step))
+ op_p = &TREE_OPERAND (cond, 1);
+
+ op = force_gimple_operand (comp, &stmts, true, SSA_NAME_VAR (*op_p));
+ if (stmts)
+ bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
+
+ *op_p = op;
+}
+
+/* Rewrites USE using candidate CAND. */
+
+static void
+rewrite_use (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ rewrite_use_nonlinear_expr (data, use, cand);
+ break;
+
+ case USE_ADDRESS:
+ rewrite_use_address (data, use, cand);
+ break;
+
+ case USE_COMPARE:
+ rewrite_use_compare (data, use, cand);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ mark_new_vars_to_rename (use->stmt);
+}
+
+/* Rewrite the uses using the selected induction variables. */
+
+static void
+rewrite_uses (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ cand = use->selected;
+ gcc_assert (cand);
+
+ rewrite_use (data, use, cand);
+ }
+}
+
+/* Removes the ivs that are not used after rewriting. */
+
+static void
+remove_unused_ivs (struct ivopts_data *data)
+{
+ unsigned j;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
+ {
+ struct version_info *info;
+
+ info = ver_info (data, j);
+ if (info->iv
+ && !zero_p (info->iv->step)
+ && !info->inv_id
+ && !info->iv->have_use_for
+ && !info->preserve_biv)
+ remove_statement (SSA_NAME_DEF_STMT (info->iv->ssa_name), true);
+ }
+}
+
+/* Frees data allocated by the optimization of a single loop. */
+
+static void
+free_loop_data (struct ivopts_data *data)
+{
+ unsigned i, j;
+ bitmap_iterator bi;
+ tree obj;
+
+ htab_empty (data->niters);
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ struct version_info *info;
+
+ info = ver_info (data, i);
+ if (info->iv)
+ free (info->iv);
+ info->iv = NULL;
+ info->has_nonlin_use = false;
+ info->preserve_biv = false;
+ info->inv_id = 0;
+ }
+ bitmap_clear (data->relevant);
+ bitmap_clear (data->important_candidates);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ free (use->iv);
+ BITMAP_FREE (use->related_cands);
+ for (j = 0; j < use->n_map_members; j++)
+ if (use->cost_map[j].depends_on)
+ BITMAP_FREE (use->cost_map[j].depends_on);
+ free (use->cost_map);
+ free (use);
+ }
+ VEC_truncate (iv_use_p, data->iv_uses, 0);
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ if (cand->iv)
+ free (cand->iv);
+ if (cand->depends_on)
+ BITMAP_FREE (cand->depends_on);
+ free (cand);
+ }
+ VEC_truncate (iv_cand_p, data->iv_candidates, 0);
+
+ if (data->version_info_size < num_ssa_names)
+ {
+ data->version_info_size = 2 * num_ssa_names;
+ free (data->version_info);
+ data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
+ }
+
+ data->max_inv_id = 0;
+
+ for (i = 0; VEC_iterate (tree, decl_rtl_to_reset, i, obj); i++)
+ SET_DECL_RTL (obj, NULL_RTX);
+
+ VEC_truncate (tree, decl_rtl_to_reset, 0);
+}
+
+/* Finalizes data structures used by the iv optimization pass. LOOPS is the
+ loop tree. */
+
+static void
+tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
+{
+ free_loop_data (data);
+ free (data->version_info);
+ BITMAP_FREE (data->relevant);
+ BITMAP_FREE (data->important_candidates);
+ htab_delete (data->niters);
+
+ VEC_free (tree, heap, decl_rtl_to_reset);
+ VEC_free (iv_use_p, heap, data->iv_uses);
+ VEC_free (iv_cand_p, heap, data->iv_candidates);
+}
+
+/* Optimizes the LOOP. Returns true if anything changed. */
+
+static bool
+tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
+{
+ bool changed = false;
+ struct iv_ca *iv_ca;
+ edge exit;
+
+ data->current_loop = loop;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Processing loop %d\n", loop->num);
+
+ exit = single_dom_exit (loop);
+ if (exit)
+ {
+ fprintf (dump_file, " single exit %d -> %d, exit condition ",
+ exit->src->index, exit->dest->index);
+ print_generic_expr (dump_file, last_stmt (exit->src), TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ /* For each ssa name determines whether it behaves as an induction variable
+ in some loop. */
+ if (!find_induction_variables (data))
+ goto finish;
+
+ /* Finds interesting uses (item 1). */
+ find_interesting_uses (data);
+ if (n_iv_uses (data) > MAX_CONSIDERED_USES)
+ goto finish;
+
+ /* Finds candidates for the induction variables (item 2). */
+ find_iv_candidates (data);
+
+ /* Calculates the costs (item 3, part 1). */
+ determine_use_iv_costs (data);
+ determine_iv_costs (data);
+ determine_set_costs (data);
+
+ /* Find the optimal set of induction variables (item 3, part 2). */
+ iv_ca = find_optimal_iv_set (data);
+ if (!iv_ca)
+ goto finish;
+ changed = true;
+
+ /* Create the new induction variables (item 4, part 1). */
+ create_new_ivs (data, iv_ca);
+ iv_ca_free (&iv_ca);
+
+ /* Rewrite the uses (item 4, part 2). */
+ rewrite_uses (data);
+
+ /* Remove the ivs that are unused after rewriting. */
+ remove_unused_ivs (data);
+
+ /* We have changed the structure of induction variables; it might happen
+ that definitions in the scev database refer to some of them that were
+ eliminated. */
+ scev_reset ();
+
+finish:
+ free_loop_data (data);
+
+ return changed;
+}
+
+/* Main entry point. Optimizes induction variables in LOOPS. */
+
+void
+tree_ssa_iv_optimize (struct loops *loops)
+{
+ struct loop *loop;
+ struct ivopts_data data;
+
+ tree_ssa_iv_optimize_init (&data);
+
+ /* Optimize the loops starting with the innermost ones. */
+ loop = loops->tree_root;
+ while (loop->inner)
+ loop = loop->inner;
+
+ /* Scan the loops, inner ones first. */
+ while (loop != loops->tree_root)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ flow_loop_dump (loop, dump_file, NULL, 1);
+
+ tree_ssa_iv_optimize_loop (&data, loop);
+
+ if (loop->next)
+ {
+ loop = loop->next;
+ while (loop->inner)
+ loop = loop->inner;
+ }
+ else
+ loop = loop->outer;
+ }
+
+ tree_ssa_iv_optimize_finalize (&data);
+}