aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-ssa-dse.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-ssa-dse.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-ssa-dse.c483
1 files changed, 0 insertions, 483 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-ssa-dse.c b/gcc-4.2.1-5666.3/gcc/tree-ssa-dse.c
deleted file mode 100644
index fe6701594..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-ssa-dse.c
+++ /dev/null
@@ -1,483 +0,0 @@
-/* Dead store elimination
- Copyright (C) 2004, 2005 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to
-the Free Software Foundation, 51 Franklin Street, Fifth Floor,
-Boston, MA 02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "ggc.h"
-#include "tree.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "basic-block.h"
-#include "timevar.h"
-#include "diagnostic.h"
-#include "tree-flow.h"
-#include "tree-pass.h"
-#include "tree-dump.h"
-#include "domwalk.h"
-#include "flags.h"
-
-/* This file implements dead store elimination.
-
- A dead store is a store into a memory location which will later be
- overwritten by another store without any intervening loads. In this
- case the earlier store can be deleted.
-
- In our SSA + virtual operand world we use immediate uses of virtual
- operands to detect dead stores. If a store's virtual definition
- is used precisely once by a later store to the same location which
- post dominates the first store, then the first store is dead.
-
- The single use of the store's virtual definition ensures that
- there are no intervening aliased loads and the requirement that
- the second load post dominate the first ensures that if the earlier
- store executes, then the later stores will execute before the function
- exits.
-
- It may help to think of this as first moving the earlier store to
- the point immediately before the later store. Again, the single
- use of the virtual definition and the post-dominance relationship
- ensure that such movement would be safe. Clearly if there are
- back to back stores, then the second is redundant.
-
- Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
- may also help in understanding this code since it discusses the
- relationship between dead store and redundant load elimination. In
- fact, they are the same transformation applied to different views of
- the CFG. */
-
-
-struct dse_global_data
-{
- /* This is the global bitmap for store statements.
-
- Each statement has a unique ID. When we encounter a store statement
- that we want to record, set the bit corresponding to the statement's
- unique ID in this bitmap. */
- bitmap stores;
-};
-
-/* We allocate a bitmap-per-block for stores which are encountered
- during the scan of that block. This allows us to restore the
- global bitmap of stores when we finish processing a block. */
-struct dse_block_local_data
-{
- bitmap stores;
-};
-
-/* Basic blocks of the potentially dead store and the following
- store, for memory_address_same. */
-struct address_walk_data
-{
- basic_block store1_bb, store2_bb;
-};
-
-static bool gate_dse (void);
-static unsigned int tree_ssa_dse (void);
-static void dse_initialize_block_local_data (struct dom_walk_data *,
- basic_block,
- bool);
-static void dse_optimize_stmt (struct dom_walk_data *,
- basic_block,
- block_stmt_iterator);
-static void dse_record_phis (struct dom_walk_data *, basic_block);
-static void dse_finalize_block (struct dom_walk_data *, basic_block);
-static void record_voperand_set (bitmap, bitmap *, unsigned int);
-
-static unsigned max_stmt_uid; /* Maximal uid of a statement. Uids to phi
- nodes are assigned using the versions of
- ssa names they define. */
-
-/* Returns uid of statement STMT. */
-
-static unsigned
-get_stmt_uid (tree stmt)
-{
- if (TREE_CODE (stmt) == PHI_NODE)
- return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;
-
- return stmt_ann (stmt)->uid;
-}
-
-/* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
-
-static void
-record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
-{
- /* Lazily allocate the bitmap. Note that we do not get a notification
- when the block local data structures die, so we allocate the local
- bitmap backed by the GC system. */
- if (*local == NULL)
- *local = BITMAP_GGC_ALLOC ();
-
- /* Set the bit in the local and global bitmaps. */
- bitmap_set_bit (*local, uid);
- bitmap_set_bit (global, uid);
-}
-
-/* Initialize block local data structures. */
-
-static void
-dse_initialize_block_local_data (struct dom_walk_data *walk_data,
- basic_block bb ATTRIBUTE_UNUSED,
- bool recycled)
-{
- struct dse_block_local_data *bd
- = VEC_last (void_p, walk_data->block_data_stack);
-
- /* If we are given a recycled block local data structure, ensure any
- bitmap associated with the block is cleared. */
- if (recycled)
- {
- if (bd->stores)
- bitmap_clear (bd->stores);
- }
-}
-
-/* Helper function for memory_address_same via walk_tree. Returns
- non-NULL if it finds an SSA_NAME which is part of the address,
- such that the definition of the SSA_NAME post-dominates the store
- we want to delete but not the store that we believe makes it
- redundant. This indicates that the address may change between
- the two stores. */
-
-static tree
-memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
- void *data)
-{
- struct address_walk_data *walk_data = data;
- tree expr = *expr_p;
- tree def_stmt;
- basic_block def_bb;
-
- if (TREE_CODE (expr) != SSA_NAME)
- return NULL_TREE;
-
- /* If we've found a default definition, then there's no problem. Both
- stores will post-dominate it. And def_bb will be NULL. */
- if (expr == default_def (SSA_NAME_VAR (expr)))
- return NULL_TREE;
-
- def_stmt = SSA_NAME_DEF_STMT (expr);
- def_bb = bb_for_stmt (def_stmt);
-
- /* DEF_STMT must dominate both stores. So if it is in the same
- basic block as one, it does not post-dominate that store. */
- if (walk_data->store1_bb != def_bb
- && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
- {
- if (walk_data->store2_bb == def_bb
- || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
- def_bb))
- /* Return non-NULL to stop the walk. */
- return def_stmt;
- }
-
- return NULL_TREE;
-}
-
-/* Return TRUE if the destination memory address in STORE1 and STORE2
- might be modified after STORE1, before control reaches STORE2. */
-
-static bool
-memory_address_same (tree store1, tree store2)
-{
- struct address_walk_data walk_data;
-
- walk_data.store1_bb = bb_for_stmt (store1);
- walk_data.store2_bb = bb_for_stmt (store2);
-
- return (walk_tree (&TREE_OPERAND (store1, 0), memory_ssa_name_same,
- &walk_data, NULL)
- == NULL);
-}
-
-/* Attempt to eliminate dead stores in the statement referenced by BSI.
-
- A dead store is a store into a memory location which will later be
- overwritten by another store without any intervening loads. In this
- case the earlier store can be deleted.
-
- In our SSA + virtual operand world we use immediate uses of virtual
- operands to detect dead stores. If a store's virtual definition
- is used precisely once by a later store to the same location which
- post dominates the first store, then the first store is dead. */
-
-static void
-dse_optimize_stmt (struct dom_walk_data *walk_data,
- basic_block bb ATTRIBUTE_UNUSED,
- block_stmt_iterator bsi)
-{
- struct dse_block_local_data *bd
- = VEC_last (void_p, walk_data->block_data_stack);
- struct dse_global_data *dse_gd = walk_data->global_data;
- tree stmt = bsi_stmt (bsi);
- stmt_ann_t ann = stmt_ann (stmt);
-
- /* If this statement has no virtual defs, then there is nothing
- to do. */
- if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF)))
- return;
-
- /* We know we have virtual definitions. If this is a MODIFY_EXPR that's
- not also a function call, then record it into our table. */
- if (get_call_expr_in (stmt))
- return;
-
- if (ann->has_volatile_ops)
- return;
-
- if (TREE_CODE (stmt) == MODIFY_EXPR)
- {
- use_operand_p first_use_p = NULL_USE_OPERAND_P;
- use_operand_p use_p = NULL;
- tree use_stmt, temp;
- tree defvar = NULL_TREE, usevar = NULL_TREE;
- bool fail = false;
- use_operand_p var2;
- def_operand_p var1;
- ssa_op_iter op_iter;
-
- /* We want to verify that each virtual definition in STMT has
- precisely one use and that all the virtual definitions are
- used by the same single statement. When complete, we
- want USE_STMT to refer to the one statement which uses
- all of the virtual definitions from STMT. */
- use_stmt = NULL;
- FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
- {
- defvar = DEF_FROM_PTR (var1);
- usevar = USE_FROM_PTR (var2);
-
- /* If this virtual def does not have precisely one use, then
- we will not be able to eliminate STMT. */
- if (! has_single_use (defvar))
- {
- fail = true;
- break;
- }
-
- /* Get the one and only immediate use of DEFVAR. */
- single_imm_use (defvar, &use_p, &temp);
- gcc_assert (use_p != NULL_USE_OPERAND_P);
- first_use_p = use_p;
-
- /* If the immediate use of DEF_VAR is not the same as the
- previously find immediate uses, then we will not be able
- to eliminate STMT. */
- if (use_stmt == NULL)
- use_stmt = temp;
- else if (temp != use_stmt)
- {
- fail = true;
- break;
- }
- }
-
- if (fail)
- {
- record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
- return;
- }
-
- /* Skip through any PHI nodes we have already seen if the PHI
- represents the only use of this store.
-
- Note this does not handle the case where the store has
- multiple V_{MAY,MUST}_DEFs which all reach a set of PHI nodes in the
- same block. */
- while (use_p != NULL_USE_OPERAND_P
- && TREE_CODE (use_stmt) == PHI_NODE
- && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt)))
- {
- /* A PHI node can both define and use the same SSA_NAME if
- the PHI is at the top of a loop and the PHI_RESULT is
- a loop invariant and copies have not been fully propagated.
-
- The safe thing to do is exit assuming no optimization is
- possible. */
- if (SSA_NAME_DEF_STMT (PHI_RESULT (use_stmt)) == use_stmt)
- return;
-
- /* Skip past this PHI and loop again in case we had a PHI
- chain. */
- single_imm_use (PHI_RESULT (use_stmt), &use_p, &use_stmt);
- }
-
- /* If we have precisely one immediate use at this point, then we may
- have found redundant store. Make sure that the stores are to
- the same memory location. This includes checking that any
- SSA-form variables in the address will have the same values. */
- if (use_p != NULL_USE_OPERAND_P
- && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
- && operand_equal_p (TREE_OPERAND (stmt, 0),
- TREE_OPERAND (use_stmt, 0), 0)
- && memory_address_same (stmt, use_stmt))
- {
- /* Make sure we propagate the ABNORMAL bit setting. */
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (first_use_p)))
- SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " Deleted dead store '");
- print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
- fprintf (dump_file, "'\n");
- }
- /* Then we need to fix the operand of the consuming stmt. */
- FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
- {
- single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
- SET_USE (use_p, USE_FROM_PTR (var2));
- }
- /* Remove the dead store. */
- bsi_remove (&bsi, true);
-
- /* And release any SSA_NAMEs set in this statement back to the
- SSA_NAME manager. */
- release_defs (stmt);
- }
-
- record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
- }
-}
-
-/* Record that we have seen the PHIs at the start of BB which correspond
- to virtual operands. */
-static void
-dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
-{
- struct dse_block_local_data *bd
- = VEC_last (void_p, walk_data->block_data_stack);
- struct dse_global_data *dse_gd = walk_data->global_data;
- tree phi;
-
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- if (!is_gimple_reg (PHI_RESULT (phi)))
- record_voperand_set (dse_gd->stores,
- &bd->stores,
- get_stmt_uid (phi));
-}
-
-static void
-dse_finalize_block (struct dom_walk_data *walk_data,
- basic_block bb ATTRIBUTE_UNUSED)
-{
- struct dse_block_local_data *bd
- = VEC_last (void_p, walk_data->block_data_stack);
- struct dse_global_data *dse_gd = walk_data->global_data;
- bitmap stores = dse_gd->stores;
- unsigned int i;
- bitmap_iterator bi;
-
- /* Unwind the stores noted in this basic block. */
- if (bd->stores)
- EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
- {
- bitmap_clear_bit (stores, i);
- }
-}
-
-static unsigned int
-tree_ssa_dse (void)
-{
- struct dom_walk_data walk_data;
- struct dse_global_data dse_gd;
- basic_block bb;
-
- /* Create a UID for each statement in the function. Ordering of the
- UIDs is not important for this pass. */
- max_stmt_uid = 0;
- FOR_EACH_BB (bb)
- {
- block_stmt_iterator bsi;
-
- for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
- stmt_ann (bsi_stmt (bsi))->uid = max_stmt_uid++;
- }
-
- /* We might consider making this a property of each pass so that it
- can be [re]computed on an as-needed basis. Particularly since
- this pass could be seen as an extension of DCE which needs post
- dominators. */
- calculate_dominance_info (CDI_POST_DOMINATORS);
-
- /* Dead store elimination is fundamentally a walk of the post-dominator
- tree and a backwards walk of statements within each block. */
- walk_data.walk_stmts_backward = true;
- walk_data.dom_direction = CDI_POST_DOMINATORS;
- walk_data.initialize_block_local_data = dse_initialize_block_local_data;
- walk_data.before_dom_children_before_stmts = NULL;
- walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
- walk_data.before_dom_children_after_stmts = dse_record_phis;
- walk_data.after_dom_children_before_stmts = NULL;
- walk_data.after_dom_children_walk_stmts = NULL;
- walk_data.after_dom_children_after_stmts = dse_finalize_block;
- walk_data.interesting_blocks = NULL;
-
- walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
-
- /* This is the main hash table for the dead store elimination pass. */
- dse_gd.stores = BITMAP_ALLOC (NULL);
- walk_data.global_data = &dse_gd;
-
- /* Initialize the dominator walker. */
- init_walk_dominator_tree (&walk_data);
-
- /* Recursively walk the dominator tree. */
- walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
-
- /* Finalize the dominator walker. */
- fini_walk_dominator_tree (&walk_data);
-
- /* Release the main bitmap. */
- BITMAP_FREE (dse_gd.stores);
-
- /* For now, just wipe the post-dominator information. */
- free_dominance_info (CDI_POST_DOMINATORS);
- return 0;
-}
-
-static bool
-gate_dse (void)
-{
- return flag_tree_dse != 0;
-}
-
-struct tree_opt_pass pass_dse = {
- "dse", /* name */
- gate_dse, /* gate */
- tree_ssa_dse, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_TREE_DSE, /* tv_id */
- PROP_cfg
- | PROP_ssa
- | PROP_alias, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_dump_func
- | TODO_ggc_collect
- | TODO_verify_ssa, /* todo_flags_finish */
- 0 /* letter */
-};