aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-scalar-evolution.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-scalar-evolution.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-scalar-evolution.c3022
1 files changed, 0 insertions, 3022 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-scalar-evolution.c b/gcc-4.2.1-5666.3/gcc/tree-scalar-evolution.c
deleted file mode 100644
index 015162453..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-scalar-evolution.c
+++ /dev/null
@@ -1,3022 +0,0 @@
-/* Scalar evolution detector.
- Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
- Contributed by Sebastian Pop <s.pop@laposte.net>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-/*
- Description:
-
- This pass analyzes the evolution of scalar variables in loop
- structures. The algorithm is based on the SSA representation,
- and on the loop hierarchy tree. This algorithm is not based on
- the notion of versions of a variable, as it was the case for the
- previous implementations of the scalar evolution algorithm, but
- it assumes that each defined name is unique.
-
- The notation used in this file is called "chains of recurrences",
- and has been proposed by Eugene Zima, Robert Van Engelen, and
- others for describing induction variables in programs. For example
- "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
- when entering in the loop_1 and has a step 2 in this loop, in other
- words "for (b = 0; b < N; b+=2);". Note that the coefficients of
- this chain of recurrence (or chrec [shrek]) can contain the name of
- other variables, in which case they are called parametric chrecs.
- For example, "b -> {a, +, 2}_1" means that the initial value of "b"
- is the value of "a". In most of the cases these parametric chrecs
- are fully instantiated before their use because symbolic names can
- hide some difficult cases such as self-references described later
- (see the Fibonacci example).
-
- A short sketch of the algorithm is:
-
- Given a scalar variable to be analyzed, follow the SSA edge to
- its definition:
-
- - When the definition is a MODIFY_EXPR: if the right hand side
- (RHS) of the definition cannot be statically analyzed, the answer
- of the analyzer is: "don't know".
- Otherwise, for all the variables that are not yet analyzed in the
- RHS, try to determine their evolution, and finally try to
- evaluate the operation of the RHS that gives the evolution
- function of the analyzed variable.
-
- - When the definition is a condition-phi-node: determine the
- evolution function for all the branches of the phi node, and
- finally merge these evolutions (see chrec_merge).
-
- - When the definition is a loop-phi-node: determine its initial
- condition, that is the SSA edge defined in an outer loop, and
- keep it symbolic. Then determine the SSA edges that are defined
- in the body of the loop. Follow the inner edges until ending on
- another loop-phi-node of the same analyzed loop. If the reached
- loop-phi-node is not the starting loop-phi-node, then we keep
- this definition under a symbolic form. If the reached
- loop-phi-node is the same as the starting one, then we compute a
- symbolic stride on the return path. The result is then the
- symbolic chrec {initial_condition, +, symbolic_stride}_loop.
-
- Examples:
-
- Example 1: Illustration of the basic algorithm.
-
- | a = 3
- | loop_1
- | b = phi (a, c)
- | c = b + 1
- | if (c > 10) exit_loop
- | endloop
-
- Suppose that we want to know the number of iterations of the
- loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
- ask the scalar evolution analyzer two questions: what's the
- scalar evolution (scev) of "c", and what's the scev of "10". For
- "10" the answer is "10" since it is a scalar constant. For the
- scalar variable "c", it follows the SSA edge to its definition,
- "c = b + 1", and then asks again what's the scev of "b".
- Following the SSA edge, we end on a loop-phi-node "b = phi (a,
- c)", where the initial condition is "a", and the inner loop edge
- is "c". The initial condition is kept under a symbolic form (it
- may be the case that the copy constant propagation has done its
- work and we end with the constant "3" as one of the edges of the
- loop-phi-node). The update edge is followed to the end of the
- loop, and until reaching again the starting loop-phi-node: b -> c
- -> b. At this point we have drawn a path from "b" to "b" from
- which we compute the stride in the loop: in this example it is
- "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
- that the scev for "b" is known, it is possible to compute the
- scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
- determine the number of iterations in the loop_1, we have to
- instantiate_parameters ({a + 1, +, 1}_1), that gives after some
- more analysis the scev {4, +, 1}_1, or in other words, this is
- the function "f (x) = x + 4", where x is the iteration count of
- the loop_1. Now we have to solve the inequality "x + 4 > 10",
- and take the smallest iteration number for which the loop is
- exited: x = 7. This loop runs from x = 0 to x = 7, and in total
- there are 8 iterations. In terms of loop normalization, we have
- created a variable that is implicitly defined, "x" or just "_1",
- and all the other analyzed scalars of the loop are defined in
- function of this variable:
-
- a -> 3
- b -> {3, +, 1}_1
- c -> {4, +, 1}_1
-
- or in terms of a C program:
-
- | a = 3
- | for (x = 0; x <= 7; x++)
- | {
- | b = x + 3
- | c = x + 4
- | }
-
- Example 2: Illustration of the algorithm on nested loops.
-
- | loop_1
- | a = phi (1, b)
- | c = a + 2
- | loop_2 10 times
- | b = phi (c, d)
- | d = b + 3
- | endloop
- | endloop
-
- For analyzing the scalar evolution of "a", the algorithm follows
- the SSA edge into the loop's body: "a -> b". "b" is an inner
- loop-phi-node, and its analysis as in Example 1, gives:
-
- b -> {c, +, 3}_2
- d -> {c + 3, +, 3}_2
-
- Following the SSA edge for the initial condition, we end on "c = a
- + 2", and then on the starting loop-phi-node "a". From this point,
- the loop stride is computed: back on "c = a + 2" we get a "+2" in
- the loop_1, then on the loop-phi-node "b" we compute the overall
- effect of the inner loop that is "b = c + 30", and we get a "+30"
- in the loop_1. That means that the overall stride in loop_1 is
- equal to "+32", and the result is:
-
- a -> {1, +, 32}_1
- c -> {3, +, 32}_1
-
- Example 3: Higher degree polynomials.
-
- | loop_1
- | a = phi (2, b)
- | c = phi (5, d)
- | b = a + 1
- | d = c + a
- | endloop
-
- a -> {2, +, 1}_1
- b -> {3, +, 1}_1
- c -> {5, +, a}_1
- d -> {5 + a, +, a}_1
-
- instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
- instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
-
- Example 4: Lucas, Fibonacci, or mixers in general.
-
- | loop_1
- | a = phi (1, b)
- | c = phi (3, d)
- | b = c
- | d = c + a
- | endloop
-
- a -> (1, c)_1
- c -> {3, +, a}_1
-
- The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
- following semantics: during the first iteration of the loop_1, the
- variable contains the value 1, and then it contains the value "c".
- Note that this syntax is close to the syntax of the loop-phi-node:
- "a -> (1, c)_1" vs. "a = phi (1, c)".
-
- The symbolic chrec representation contains all the semantics of the
- original code. What is more difficult is to use this information.
-
- Example 5: Flip-flops, or exchangers.
-
- | loop_1
- | a = phi (1, b)
- | c = phi (3, d)
- | b = c
- | d = a
- | endloop
-
- a -> (1, c)_1
- c -> (3, a)_1
-
- Based on these symbolic chrecs, it is possible to refine this
- information into the more precise PERIODIC_CHRECs:
-
- a -> |1, 3|_1
- c -> |3, 1|_1
-
- This transformation is not yet implemented.
-
- Further readings:
-
- You can find a more detailed description of the algorithm in:
- http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
- http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
- this is a preliminary report and some of the details of the
- algorithm have changed. I'm working on a research report that
- updates the description of the algorithms to reflect the design
- choices used in this implementation.
-
- A set of slides show a high level overview of the algorithm and run
- an example through the scalar evolution analyzer:
- http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
-
- The slides that I have presented at the GCC Summit'04 are available
- at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
-*/
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "ggc.h"
-#include "tree.h"
-#include "real.h"
-
-/* These RTL headers are needed for basic-block.h. */
-#include "rtl.h"
-#include "basic-block.h"
-#include "diagnostic.h"
-#include "tree-flow.h"
-#include "tree-dump.h"
-#include "timevar.h"
-#include "cfgloop.h"
-#include "tree-chrec.h"
-#include "tree-scalar-evolution.h"
-#include "tree-pass.h"
-#include "flags.h"
-#include "params.h"
-
-static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
-static tree resolve_mixers (struct loop *, tree);
-
-/* The cached information about a ssa name VAR, claiming that inside LOOP,
- the value of VAR can be expressed as CHREC. */
-
-struct scev_info_str
-{
- tree var;
- tree chrec;
-};
-
-/* Counters for the scev database. */
-static unsigned nb_set_scev = 0;
-static unsigned nb_get_scev = 0;
-
-/* The following trees are unique elements. Thus the comparison of
- another element to these elements should be done on the pointer to
- these trees, and not on their value. */
-
-/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
-tree chrec_not_analyzed_yet;
-
-/* Reserved to the cases where the analyzer has detected an
- undecidable property at compile time. */
-tree chrec_dont_know;
-
-/* When the analyzer has detected that a property will never
- happen, then it qualifies it with chrec_known. */
-tree chrec_known;
-
-static bitmap already_instantiated;
-
-static htab_t scalar_evolution_info;
-
-
-/* Constructs a new SCEV_INFO_STR structure. */
-
-static inline struct scev_info_str *
-new_scev_info_str (tree var)
-{
- struct scev_info_str *res;
-
- res = XNEW (struct scev_info_str);
- res->var = var;
- res->chrec = chrec_not_analyzed_yet;
-
- return res;
-}
-
-/* Computes a hash function for database element ELT. */
-
-static hashval_t
-hash_scev_info (const void *elt)
-{
- return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
-}
-
-/* Compares database elements E1 and E2. */
-
-static int
-eq_scev_info (const void *e1, const void *e2)
-{
- const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
- const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
-
- return elt1->var == elt2->var;
-}
-
-/* Deletes database element E. */
-
-static void
-del_scev_info (void *e)
-{
- free (e);
-}
-
-/* Get the index corresponding to VAR in the current LOOP. If
- it's the first time we ask for this VAR, then we return
- chrec_not_analyzed_yet for this VAR and return its index. */
-
-static tree *
-find_var_scev_info (tree var)
-{
- struct scev_info_str *res;
- struct scev_info_str tmp;
- PTR *slot;
-
- tmp.var = var;
- slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
-
- if (!*slot)
- *slot = new_scev_info_str (var);
- res = (struct scev_info_str *) *slot;
-
- return &res->chrec;
-}
-
-/* Return true when CHREC contains symbolic names defined in
- LOOP_NB. */
-
-bool
-chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
-{
- if (chrec == NULL_TREE)
- return false;
-
- if (TREE_INVARIANT (chrec))
- return false;
-
- if (TREE_CODE (chrec) == VAR_DECL
- || TREE_CODE (chrec) == PARM_DECL
- || TREE_CODE (chrec) == FUNCTION_DECL
- || TREE_CODE (chrec) == LABEL_DECL
- || TREE_CODE (chrec) == RESULT_DECL
- || TREE_CODE (chrec) == FIELD_DECL)
- return true;
-
- if (TREE_CODE (chrec) == SSA_NAME)
- {
- tree def = SSA_NAME_DEF_STMT (chrec);
- struct loop *def_loop = loop_containing_stmt (def);
- struct loop *loop = current_loops->parray[loop_nb];
-
- if (def_loop == NULL)
- return false;
-
- if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
- return true;
-
- return false;
- }
-
- switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
- {
- case 3:
- if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
- loop_nb))
- return true;
-
- case 2:
- if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
- loop_nb))
- return true;
-
- case 1:
- if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
- loop_nb))
- return true;
-
- default:
- return false;
- }
-}
-
-/* Return true when PHI is a loop-phi-node. */
-
-static bool
-loop_phi_node_p (tree phi)
-{
- /* The implementation of this function is based on the following
- property: "all the loop-phi-nodes of a loop are contained in the
- loop's header basic block". */
-
- return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
-}
-
-/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
- In general, in the case of multivariate evolutions we want to get
- the evolution in different loops. LOOP specifies the level for
- which to get the evolution.
-
- Example:
-
- | for (j = 0; j < 100; j++)
- | {
- | for (k = 0; k < 100; k++)
- | {
- | i = k + j; - Here the value of i is a function of j, k.
- | }
- | ... = i - Here the value of i is a function of j.
- | }
- | ... = i - Here the value of i is a scalar.
-
- Example:
-
- | i_0 = ...
- | loop_1 10 times
- | i_1 = phi (i_0, i_2)
- | i_2 = i_1 + 2
- | endloop
-
- This loop has the same effect as:
- LOOP_1 has the same effect as:
-
- | i_1 = i_0 + 20
-
- The overall effect of the loop, "i_0 + 20" in the previous example,
- is obtained by passing in the parameters: LOOP = 1,
- EVOLUTION_FN = {i_0, +, 2}_1.
-*/
-
-static tree
-compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
-{
- bool val = false;
-
- if (evolution_fn == chrec_dont_know)
- return chrec_dont_know;
-
- else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
- {
- if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
- {
- struct loop *inner_loop =
- current_loops->parray[CHREC_VARIABLE (evolution_fn)];
- tree nb_iter = number_of_iterations_in_loop (inner_loop);
-
- if (nb_iter == chrec_dont_know)
- return chrec_dont_know;
- else
- {
- tree res;
- tree type = chrec_type (nb_iter);
-
- /* Number of iterations is off by one (the ssa name we
- analyze must be defined before the exit). */
- nb_iter = chrec_fold_minus (type, nb_iter,
- build_int_cst (type, 1));
-
- /* evolution_fn is the evolution function in LOOP. Get
- its value in the nb_iter-th iteration. */
- res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
-
- /* Continue the computation until ending on a parent of LOOP. */
- return compute_overall_effect_of_inner_loop (loop, res);
- }
- }
- else
- return evolution_fn;
- }
-
- /* If the evolution function is an invariant, there is nothing to do. */
- else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
- return evolution_fn;
-
- else
- return chrec_dont_know;
-}
-
-/* Determine whether the CHREC is always positive/negative. If the expression
- cannot be statically analyzed, return false, otherwise set the answer into
- VALUE. */
-
-bool
-chrec_is_positive (tree chrec, bool *value)
-{
- bool value0, value1, value2;
- tree type, end_value, nb_iter;
-
- switch (TREE_CODE (chrec))
- {
- case POLYNOMIAL_CHREC:
- if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
- || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
- return false;
-
- /* FIXME -- overflows. */
- if (value0 == value1)
- {
- *value = value0;
- return true;
- }
-
- /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
- and the proof consists in showing that the sign never
- changes during the execution of the loop, from 0 to
- loop->nb_iterations. */
- if (!evolution_function_is_affine_p (chrec))
- return false;
-
- nb_iter = number_of_iterations_in_loop
- (current_loops->parray[CHREC_VARIABLE (chrec)]);
-
- if (chrec_contains_undetermined (nb_iter))
- return false;
-
- type = chrec_type (nb_iter);
- nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
-
-#if 0
- /* TODO -- If the test is after the exit, we may decrease the number of
- iterations by one. */
- if (after_exit)
- nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
-#endif
-
- end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
-
- if (!chrec_is_positive (end_value, &value2))
- return false;
-
- *value = value0;
- return value0 == value1;
-
- case INTEGER_CST:
- *value = (tree_int_cst_sgn (chrec) == 1);
- return true;
-
- default:
- return false;
- }
-}
-
-/* Associate CHREC to SCALAR. */
-
-static void
-set_scalar_evolution (tree scalar, tree chrec)
-{
- tree *scalar_info;
-
- if (TREE_CODE (scalar) != SSA_NAME)
- return;
-
- scalar_info = find_var_scev_info (scalar);
-
- if (dump_file)
- {
- if (dump_flags & TDF_DETAILS)
- {
- fprintf (dump_file, "(set_scalar_evolution \n");
- fprintf (dump_file, " (scalar = ");
- print_generic_expr (dump_file, scalar, 0);
- fprintf (dump_file, ")\n (scalar_evolution = ");
- print_generic_expr (dump_file, chrec, 0);
- fprintf (dump_file, "))\n");
- }
- if (dump_flags & TDF_STATS)
- nb_set_scev++;
- }
-
- *scalar_info = chrec;
-}
-
-/* Retrieve the chrec associated to SCALAR in the LOOP. */
-
-static tree
-get_scalar_evolution (tree scalar)
-{
- tree res;
-
- if (dump_file)
- {
- if (dump_flags & TDF_DETAILS)
- {
- fprintf (dump_file, "(get_scalar_evolution \n");
- fprintf (dump_file, " (scalar = ");
- print_generic_expr (dump_file, scalar, 0);
- fprintf (dump_file, ")\n");
- }
- if (dump_flags & TDF_STATS)
- nb_get_scev++;
- }
-
- switch (TREE_CODE (scalar))
- {
- case SSA_NAME:
- res = *find_var_scev_info (scalar);
- break;
-
- case REAL_CST:
- case INTEGER_CST:
- res = scalar;
- break;
-
- default:
- res = chrec_not_analyzed_yet;
- break;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " (scalar_evolution = ");
- print_generic_expr (dump_file, res, 0);
- fprintf (dump_file, "))\n");
- }
-
- return res;
-}
-
-/* Helper function for add_to_evolution. Returns the evolution
- function for an assignment of the form "a = b + c", where "a" and
- "b" are on the strongly connected component. CHREC_BEFORE is the
- information that we already have collected up to this point.
- TO_ADD is the evolution of "c".
-
- When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
- evolution the expression TO_ADD, otherwise construct an evolution
- part for this loop. */
-
-static tree
-add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
- tree at_stmt)
-{
- tree type, left, right;
-
- switch (TREE_CODE (chrec_before))
- {
- case POLYNOMIAL_CHREC:
- if (CHREC_VARIABLE (chrec_before) <= loop_nb)
- {
- unsigned var;
-
- type = chrec_type (chrec_before);
-
- /* When there is no evolution part in this loop, build it. */
- if (CHREC_VARIABLE (chrec_before) < loop_nb)
- {
- var = loop_nb;
- left = chrec_before;
- right = SCALAR_FLOAT_TYPE_P (type)
- ? build_real (type, dconst0)
- : build_int_cst (type, 0);
- }
- else
- {
- var = CHREC_VARIABLE (chrec_before);
- left = CHREC_LEFT (chrec_before);
- right = CHREC_RIGHT (chrec_before);
- }
-
- to_add = chrec_convert (type, to_add, at_stmt);
- right = chrec_convert (type, right, at_stmt);
- right = chrec_fold_plus (type, right, to_add);
- return build_polynomial_chrec (var, left, right);
- }
- else
- {
- /* Search the evolution in LOOP_NB. */
- left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
- to_add, at_stmt);
- right = CHREC_RIGHT (chrec_before);
- right = chrec_convert (chrec_type (left), right, at_stmt);
- return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
- left, right);
- }
-
- default:
- /* These nodes do not depend on a loop. */
- if (chrec_before == chrec_dont_know)
- return chrec_dont_know;
-
- left = chrec_before;
- right = chrec_convert (chrec_type (left), to_add, at_stmt);
- return build_polynomial_chrec (loop_nb, left, right);
- }
-}
-
-/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
- of LOOP_NB.
-
- Description (provided for completeness, for those who read code in
- a plane, and for my poor 62 bytes brain that would have forgotten
- all this in the next two or three months):
-
- The algorithm of translation of programs from the SSA representation
- into the chrecs syntax is based on a pattern matching. After having
- reconstructed the overall tree expression for a loop, there are only
- two cases that can arise:
-
- 1. a = loop-phi (init, a + expr)
- 2. a = loop-phi (init, expr)
-
- where EXPR is either a scalar constant with respect to the analyzed
- loop (this is a degree 0 polynomial), or an expression containing
- other loop-phi definitions (these are higher degree polynomials).
-
- Examples:
-
- 1.
- | init = ...
- | loop_1
- | a = phi (init, a + 5)
- | endloop
-
- 2.
- | inita = ...
- | initb = ...
- | loop_1
- | a = phi (inita, 2 * b + 3)
- | b = phi (initb, b + 1)
- | endloop
-
- For the first case, the semantics of the SSA representation is:
-
- | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
-
- that is, there is a loop index "x" that determines the scalar value
- of the variable during the loop execution. During the first
- iteration, the value is that of the initial condition INIT, while
- during the subsequent iterations, it is the sum of the initial
- condition with the sum of all the values of EXPR from the initial
- iteration to the before last considered iteration.
-
- For the second case, the semantics of the SSA program is:
-
- | a (x) = init, if x = 0;
- | expr (x - 1), otherwise.
-
- The second case corresponds to the PEELED_CHREC, whose syntax is
- close to the syntax of a loop-phi-node:
-
- | phi (init, expr) vs. (init, expr)_x
-
- The proof of the translation algorithm for the first case is a
- proof by structural induction based on the degree of EXPR.
-
- Degree 0:
- When EXPR is a constant with respect to the analyzed loop, or in
- other words when EXPR is a polynomial of degree 0, the evolution of
- the variable A in the loop is an affine function with an initial
- condition INIT, and a step EXPR. In order to show this, we start
- from the semantics of the SSA representation:
-
- f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
-
- and since "expr (j)" is a constant with respect to "j",
-
- f (x) = init + x * expr
-
- Finally, based on the semantics of the pure sum chrecs, by
- identification we get the corresponding chrecs syntax:
-
- f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
- f (x) -> {init, +, expr}_x
-
- Higher degree:
- Suppose that EXPR is a polynomial of degree N with respect to the
- analyzed loop_x for which we have already determined that it is
- written under the chrecs syntax:
-
- | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
-
- We start from the semantics of the SSA program:
-
- | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
- |
- | f (x) = init + \sum_{j = 0}^{x - 1}
- | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
- |
- | f (x) = init + \sum_{j = 0}^{x - 1}
- | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
- |
- | f (x) = init + \sum_{k = 0}^{n - 1}
- | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
- |
- | f (x) = init + \sum_{k = 0}^{n - 1}
- | (b_k * \binom{x}{k + 1})
- |
- | f (x) = init + b_0 * \binom{x}{1} + ...
- | + b_{n-1} * \binom{x}{n}
- |
- | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
- | + b_{n-1} * \binom{x}{n}
- |
-
- And finally from the definition of the chrecs syntax, we identify:
- | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
-
- This shows the mechanism that stands behind the add_to_evolution
- function. An important point is that the use of symbolic
- parameters avoids the need of an analysis schedule.
-
- Example:
-
- | inita = ...
- | initb = ...
- | loop_1
- | a = phi (inita, a + 2 + b)
- | b = phi (initb, b + 1)
- | endloop
-
- When analyzing "a", the algorithm keeps "b" symbolically:
-
- | a -> {inita, +, 2 + b}_1
-
- Then, after instantiation, the analyzer ends on the evolution:
-
- | a -> {inita, +, 2 + initb, +, 1}_1
-
-*/
-
-static tree
-add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
- tree to_add, tree at_stmt)
-{
- tree type = chrec_type (to_add);
- tree res = NULL_TREE;
-
- if (to_add == NULL_TREE)
- return chrec_before;
-
- /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
- instantiated at this point. */
- if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
- /* This should not happen. */
- return chrec_dont_know;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "(add_to_evolution \n");
- fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
- fprintf (dump_file, " (chrec_before = ");
- print_generic_expr (dump_file, chrec_before, 0);
- fprintf (dump_file, ")\n (to_add = ");
- print_generic_expr (dump_file, to_add, 0);
- fprintf (dump_file, ")\n");
- }
-
- if (code == MINUS_EXPR)
- to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
- ? build_real (type, dconstm1)
- : build_int_cst_type (type, -1));
-
- res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " (res = ");
- print_generic_expr (dump_file, res, 0);
- fprintf (dump_file, "))\n");
- }
-
- return res;
-}
-
-/* Helper function. */
-
-static inline tree
-set_nb_iterations_in_loop (struct loop *loop,
- tree res)
-{
- tree type = chrec_type (res);
-
- res = chrec_fold_plus (type, res, build_int_cst (type, 1));
-
- /* FIXME HWI: However we want to store one iteration less than the
- count of the loop in order to be compatible with the other
- nb_iter computations in loop-iv. This also allows the
- representation of nb_iters that are equal to MAX_INT. */
- if (TREE_CODE (res) == INTEGER_CST
- && (TREE_INT_CST_LOW (res) == 0
- || TREE_OVERFLOW (res)))
- res = chrec_dont_know;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " (set_nb_iterations_in_loop = ");
- print_generic_expr (dump_file, res, 0);
- fprintf (dump_file, "))\n");
- }
-
- loop->nb_iterations = res;
- return res;
-}
-
-
-
-/* This section selects the loops that will be good candidates for the
- scalar evolution analysis. For the moment, greedily select all the
- loop nests we could analyze. */
-
-/* Return true when it is possible to analyze the condition expression
- EXPR. */
-
-static bool
-analyzable_condition (tree expr)
-{
- tree condition;
-
- if (TREE_CODE (expr) != COND_EXPR)
- return false;
-
- condition = TREE_OPERAND (expr, 0);
-
- switch (TREE_CODE (condition))
- {
- case SSA_NAME:
- return true;
-
- case LT_EXPR:
- case LE_EXPR:
- case GT_EXPR:
- case GE_EXPR:
- case EQ_EXPR:
- case NE_EXPR:
- return true;
-
- default:
- return false;
- }
-
- return false;
-}
-
-/* For a loop with a single exit edge, return the COND_EXPR that
- guards the exit edge. If the expression is too difficult to
- analyze, then give up. */
-
-tree
-get_loop_exit_condition (struct loop *loop)
-{
- tree res = NULL_TREE;
- edge exit_edge = loop->single_exit;
-
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "(get_loop_exit_condition \n ");
-
- if (exit_edge)
- {
- tree expr;
-
- expr = last_stmt (exit_edge->src);
- if (analyzable_condition (expr))
- res = expr;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- print_generic_expr (dump_file, res, 0);
- fprintf (dump_file, ")\n");
- }
-
- return res;
-}
-
-/* Recursively determine and enqueue the exit conditions for a loop. */
-
-static void
-get_exit_conditions_rec (struct loop *loop,
- VEC(tree,heap) **exit_conditions)
-{
- if (!loop)
- return;
-
- /* Recurse on the inner loops, then on the next (sibling) loops. */
- get_exit_conditions_rec (loop->inner, exit_conditions);
- get_exit_conditions_rec (loop->next, exit_conditions);
-
- if (loop->single_exit)
- {
- tree loop_condition = get_loop_exit_condition (loop);
-
- if (loop_condition)
- VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
- }
-}
-
-/* Select the candidate loop nests for the analysis. This function
- initializes the EXIT_CONDITIONS array. */
-
-static void
-select_loops_exit_conditions (struct loops *loops,
- VEC(tree,heap) **exit_conditions)
-{
- struct loop *function_body = loops->parray[0];
-
- get_exit_conditions_rec (function_body->inner, exit_conditions);
-}
-
-
-/* Depth first search algorithm. */
-
-typedef enum t_bool {
- t_false,
- t_true,
- t_dont_know
-} t_bool;
-
-
-static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
-
-/* Follow the ssa edge into the right hand side RHS of an assignment.
- Return true if the strongly connected component has been found. */
-
-static t_bool
-follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
- tree halting_phi, tree *evolution_of_loop, int limit)
-{
- t_bool res = t_false;
- tree rhs0, rhs1;
- tree type_rhs = TREE_TYPE (rhs);
- tree evol;
-
- /* The RHS is one of the following cases:
- - an SSA_NAME,
- - an INTEGER_CST,
- - a PLUS_EXPR,
- - a MINUS_EXPR,
- - an ASSERT_EXPR,
- - other cases are not yet handled. */
- switch (TREE_CODE (rhs))
- {
- case NOP_EXPR:
- /* This assignment is under the form "a_1 = (cast) rhs. */
- res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
- halting_phi, evolution_of_loop, limit);
- *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
- *evolution_of_loop, at_stmt);
- break;
-
- case INTEGER_CST:
- /* This assignment is under the form "a_1 = 7". */
- res = t_false;
- break;
-
- case SSA_NAME:
- /* This assignment is under the form: "a_1 = b_2". */
- res = follow_ssa_edge
- (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
- break;
-
- case PLUS_EXPR:
- /* This case is under the form "rhs0 + rhs1". */
- rhs0 = TREE_OPERAND (rhs, 0);
- rhs1 = TREE_OPERAND (rhs, 1);
- STRIP_TYPE_NOPS (rhs0);
- STRIP_TYPE_NOPS (rhs1);
-
- if (TREE_CODE (rhs0) == SSA_NAME)
- {
- if (TREE_CODE (rhs1) == SSA_NAME)
- {
- /* Match an assignment under the form:
- "a = b + c". */
- evol = *evolution_of_loop;
- res = follow_ssa_edge
- (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
- &evol, limit);
-
- if (res == t_true)
- *evolution_of_loop = add_to_evolution
- (loop->num,
- chrec_convert (type_rhs, evol, at_stmt),
- PLUS_EXPR, rhs1, at_stmt);
-
- else if (res == t_false)
- {
- res = follow_ssa_edge
- (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
- evolution_of_loop, limit);
-
- if (res == t_true)
- *evolution_of_loop = add_to_evolution
- (loop->num,
- chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
- PLUS_EXPR, rhs0, at_stmt);
-
- else if (res == t_dont_know)
- *evolution_of_loop = chrec_dont_know;
- }
-
- else if (res == t_dont_know)
- *evolution_of_loop = chrec_dont_know;
- }
-
- else
- {
- /* Match an assignment under the form:
- "a = b + ...". */
- res = follow_ssa_edge
- (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
- evolution_of_loop, limit);
- if (res == t_true)
- *evolution_of_loop = add_to_evolution
- (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
- at_stmt),
- PLUS_EXPR, rhs1, at_stmt);
-
- else if (res == t_dont_know)
- *evolution_of_loop = chrec_dont_know;
- }
- }
-
- else if (TREE_CODE (rhs1) == SSA_NAME)
- {
- /* Match an assignment under the form:
- "a = ... + c". */
- res = follow_ssa_edge
- (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
- evolution_of_loop, limit);
- if (res == t_true)
- *evolution_of_loop = add_to_evolution
- (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
- at_stmt),
- PLUS_EXPR, rhs0, at_stmt);
-
- else if (res == t_dont_know)
- *evolution_of_loop = chrec_dont_know;
- }
-
- else
- /* Otherwise, match an assignment under the form:
- "a = ... + ...". */
- /* And there is nothing to do. */
- res = t_false;
-
- break;
-
- case MINUS_EXPR:
- /* This case is under the form "opnd0 = rhs0 - rhs1". */
- rhs0 = TREE_OPERAND (rhs, 0);
- rhs1 = TREE_OPERAND (rhs, 1);
- STRIP_TYPE_NOPS (rhs0);
- STRIP_TYPE_NOPS (rhs1);
-
- if (TREE_CODE (rhs0) == SSA_NAME)
- {
- /* Match an assignment under the form:
- "a = b - ...". */
- res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
- evolution_of_loop, limit);
- if (res == t_true)
- *evolution_of_loop = add_to_evolution
- (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
- MINUS_EXPR, rhs1, at_stmt);
-
- else if (res == t_dont_know)
- *evolution_of_loop = chrec_dont_know;
- }
- else
- /* Otherwise, match an assignment under the form:
- "a = ... - ...". */
- /* And there is nothing to do. */
- res = t_false;
-
- break;
-
- case ASSERT_EXPR:
- {
- /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
- It must be handled as a copy assignment of the form a_1 = a_2. */
- tree op0 = ASSERT_EXPR_VAR (rhs);
- if (TREE_CODE (op0) == SSA_NAME)
- res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
- halting_phi, evolution_of_loop, limit);
- else
- res = t_false;
- break;
- }
-
-
- default:
- res = t_false;
- break;
- }
-
- return res;
-}
-
-/* Checks whether the I-th argument of a PHI comes from a backedge. */
-
-static bool
-backedge_phi_arg_p (tree phi, int i)
-{
- edge e = PHI_ARG_EDGE (phi, i);
-
- /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
- about updating it anywhere, and this should work as well most of the
- time. */
- if (e->flags & EDGE_IRREDUCIBLE_LOOP)
- return true;
-
- return false;
-}
-
-/* Helper function for one branch of the condition-phi-node. Return
- true if the strongly connected component has been found following
- this path. */
-
-static inline t_bool
-follow_ssa_edge_in_condition_phi_branch (int i,
- struct loop *loop,
- tree condition_phi,
- tree halting_phi,
- tree *evolution_of_branch,
- tree init_cond, int limit)
-{
- tree branch = PHI_ARG_DEF (condition_phi, i);
- *evolution_of_branch = chrec_dont_know;
-
- /* Do not follow back edges (they must belong to an irreducible loop, which
- we really do not want to worry about). */
- if (backedge_phi_arg_p (condition_phi, i))
- return t_false;
-
- if (TREE_CODE (branch) == SSA_NAME)
- {
- *evolution_of_branch = init_cond;
- return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
- evolution_of_branch, limit);
- }
-
- /* This case occurs when one of the condition branches sets
- the variable to a constant: i.e. a phi-node like
- "a_2 = PHI <a_7(5), 2(6)>;".
-
- FIXME: This case have to be refined correctly:
- in some cases it is possible to say something better than
- chrec_dont_know, for example using a wrap-around notation. */
- return t_false;
-}
-
-/* This function merges the branches of a condition-phi-node in a
- loop. */
-
-static t_bool
-follow_ssa_edge_in_condition_phi (struct loop *loop,
- tree condition_phi,
- tree halting_phi,
- tree *evolution_of_loop, int limit)
-{
- int i;
- tree init = *evolution_of_loop;
- tree evolution_of_branch;
- t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
- halting_phi,
- &evolution_of_branch,
- init, limit);
- if (res == t_false || res == t_dont_know)
- return res;
-
- *evolution_of_loop = evolution_of_branch;
-
- for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
- {
- /* Quickly give up when the evolution of one of the branches is
- not known. */
- if (*evolution_of_loop == chrec_dont_know)
- return t_true;
-
- res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
- halting_phi,
- &evolution_of_branch,
- init, limit);
- if (res == t_false || res == t_dont_know)
- return res;
-
- *evolution_of_loop = chrec_merge (*evolution_of_loop,
- evolution_of_branch);
- }
-
- return t_true;
-}
-
-/* Follow an SSA edge in an inner loop. It computes the overall
- effect of the loop, and following the symbolic initial conditions,
- it follows the edges in the parent loop. The inner loop is
- considered as a single statement. */
-
-static t_bool
-follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
- tree loop_phi_node,
- tree halting_phi,
- tree *evolution_of_loop, int limit)
-{
- struct loop *loop = loop_containing_stmt (loop_phi_node);
- tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
-
- /* Sometimes, the inner loop is too difficult to analyze, and the
- result of the analysis is a symbolic parameter. */
- if (ev == PHI_RESULT (loop_phi_node))
- {
- t_bool res = t_false;
- int i;
-
- for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
- {
- tree arg = PHI_ARG_DEF (loop_phi_node, i);
- basic_block bb;
-
- /* Follow the edges that exit the inner loop. */
- bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
- if (!flow_bb_inside_loop_p (loop, bb))
- res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
- arg, halting_phi,
- evolution_of_loop, limit);
- if (res == t_true)
- break;
- }
-
- /* If the path crosses this loop-phi, give up. */
- if (res == t_true)
- *evolution_of_loop = chrec_dont_know;
-
- return res;
- }
-
- /* Otherwise, compute the overall effect of the inner loop. */
- ev = compute_overall_effect_of_inner_loop (loop, ev);
- return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
- evolution_of_loop, limit);
-}
-
-/* Follow an SSA edge from a loop-phi-node to itself, constructing a
- path that is analyzed on the return walk. */
-
-static t_bool
-follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
- tree *evolution_of_loop, int limit)
-{
- struct loop *def_loop;
-
- if (TREE_CODE (def) == NOP_EXPR)
- return t_false;
-
- /* Give up if the path is longer than the MAX that we allow. */
- if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
- return t_dont_know;
-
- def_loop = loop_containing_stmt (def);
-
- switch (TREE_CODE (def))
- {
- case PHI_NODE:
- if (!loop_phi_node_p (def))
- /* DEF is a condition-phi-node. Follow the branches, and
- record their evolutions. Finally, merge the collected
- information and set the approximation to the main
- variable. */
- return follow_ssa_edge_in_condition_phi
- (loop, def, halting_phi, evolution_of_loop, limit);
-
- /* When the analyzed phi is the halting_phi, the
- depth-first search is over: we have found a path from
- the halting_phi to itself in the loop. */
- if (def == halting_phi)
- return t_true;
-
- /* Otherwise, the evolution of the HALTING_PHI depends
- on the evolution of another loop-phi-node, i.e. the
- evolution function is a higher degree polynomial. */
- if (def_loop == loop)
- return t_false;
-
- /* Inner loop. */
- if (flow_loop_nested_p (loop, def_loop))
- return follow_ssa_edge_inner_loop_phi
- (loop, def, halting_phi, evolution_of_loop, limit);
-
- /* Outer loop. */
- return t_false;
-
- case MODIFY_EXPR:
- return follow_ssa_edge_in_rhs (loop, def,
- TREE_OPERAND (def, 1),
- halting_phi,
- evolution_of_loop, limit);
-
- default:
- /* At this level of abstraction, the program is just a set
- of MODIFY_EXPRs and PHI_NODEs. In principle there is no
- other node to be handled. */
- return t_false;
- }
-}
-
-
-
-/* Given a LOOP_PHI_NODE, this function determines the evolution
- function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
-
-static tree
-analyze_evolution_in_loop (tree loop_phi_node,
- tree init_cond)
-{
- int i;
- tree evolution_function = chrec_not_analyzed_yet;
- struct loop *loop = loop_containing_stmt (loop_phi_node);
- basic_block bb;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "(analyze_evolution_in_loop \n");
- fprintf (dump_file, " (loop_phi_node = ");
- print_generic_expr (dump_file, loop_phi_node, 0);
- fprintf (dump_file, ")\n");
- }
-
- for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
- {
- tree arg = PHI_ARG_DEF (loop_phi_node, i);
- tree ssa_chain, ev_fn;
- t_bool res;
-
- /* Select the edges that enter the loop body. */
- bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
- if (!flow_bb_inside_loop_p (loop, bb))
- continue;
-
- if (TREE_CODE (arg) == SSA_NAME)
- {
- ssa_chain = SSA_NAME_DEF_STMT (arg);
-
- /* Pass in the initial condition to the follow edge function. */
- ev_fn = init_cond;
- res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
- }
- else
- res = t_false;
-
- /* When it is impossible to go back on the same
- loop_phi_node by following the ssa edges, the
- evolution is represented by a peeled chrec, i.e. the
- first iteration, EV_FN has the value INIT_COND, then
- all the other iterations it has the value of ARG.
- For the moment, PEELED_CHREC nodes are not built. */
- if (res != t_true)
- ev_fn = chrec_dont_know;
-
- /* When there are multiple back edges of the loop (which in fact never
- happens currently, but nevertheless), merge their evolutions. */
- evolution_function = chrec_merge (evolution_function, ev_fn);
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " (evolution_function = ");
- print_generic_expr (dump_file, evolution_function, 0);
- fprintf (dump_file, "))\n");
- }
-
- return evolution_function;
-}
-
-/* Given a loop-phi-node, return the initial conditions of the
- variable on entry of the loop. When the CCP has propagated
- constants into the loop-phi-node, the initial condition is
- instantiated, otherwise the initial condition is kept symbolic.
- This analyzer does not analyze the evolution outside the current
- loop, and leaves this task to the on-demand tree reconstructor. */
-
-static tree
-analyze_initial_condition (tree loop_phi_node)
-{
- int i;
- tree init_cond = chrec_not_analyzed_yet;
- struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "(analyze_initial_condition \n");
- fprintf (dump_file, " (loop_phi_node = \n");
- print_generic_expr (dump_file, loop_phi_node, 0);
- fprintf (dump_file, ")\n");
- }
-
- for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
- {
- tree branch = PHI_ARG_DEF (loop_phi_node, i);
- basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
-
- /* When the branch is oriented to the loop's body, it does
- not contribute to the initial condition. */
- if (flow_bb_inside_loop_p (loop, bb))
- continue;
-
- if (init_cond == chrec_not_analyzed_yet)
- {
- init_cond = branch;
- continue;
- }
-
- if (TREE_CODE (branch) == SSA_NAME)
- {
- init_cond = chrec_dont_know;
- break;
- }
-
- init_cond = chrec_merge (init_cond, branch);
- }
-
- /* Ooops -- a loop without an entry??? */
- if (init_cond == chrec_not_analyzed_yet)
- init_cond = chrec_dont_know;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " (init_cond = ");
- print_generic_expr (dump_file, init_cond, 0);
- fprintf (dump_file, "))\n");
- }
-
- return init_cond;
-}
-
-/* Analyze the scalar evolution for LOOP_PHI_NODE. */
-
-static tree
-interpret_loop_phi (struct loop *loop, tree loop_phi_node)
-{
- tree res;
- struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
- tree init_cond;
-
- if (phi_loop != loop)
- {
- struct loop *subloop;
- tree evolution_fn = analyze_scalar_evolution
- (phi_loop, PHI_RESULT (loop_phi_node));
-
- /* Dive one level deeper. */
- subloop = superloop_at_depth (phi_loop, loop->depth + 1);
-
- /* Interpret the subloop. */
- res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
- return res;
- }
-
- /* Otherwise really interpret the loop phi. */
- init_cond = analyze_initial_condition (loop_phi_node);
- res = analyze_evolution_in_loop (loop_phi_node, init_cond);
-
- return res;
-}
-
-/* This function merges the branches of a condition-phi-node,
- contained in the outermost loop, and whose arguments are already
- analyzed. */
-
-static tree
-interpret_condition_phi (struct loop *loop, tree condition_phi)
-{
- int i;
- tree res = chrec_not_analyzed_yet;
-
- for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
- {
- tree branch_chrec;
-
- if (backedge_phi_arg_p (condition_phi, i))
- {
- res = chrec_dont_know;
- break;
- }
-
- branch_chrec = analyze_scalar_evolution
- (loop, PHI_ARG_DEF (condition_phi, i));
-
- res = chrec_merge (res, branch_chrec);
- }
-
- return res;
-}
-
-/* Interpret the right hand side of a modify_expr OPND1. If we didn't
- analyze this node before, follow the definitions until ending
- either on an analyzed modify_expr, or on a loop-phi-node. On the
- return path, this function propagates evolutions (ala constant copy
- propagation). OPND1 is not a GIMPLE expression because we could
- analyze the effect of an inner loop: see interpret_loop_phi. */
-
-static tree
-interpret_rhs_modify_expr (struct loop *loop, tree at_stmt,
- tree opnd1, tree type)
-{
- tree res, opnd10, opnd11, chrec10, chrec11;
-
- if (is_gimple_min_invariant (opnd1))
- return chrec_convert (type, opnd1, at_stmt);
-
- switch (TREE_CODE (opnd1))
- {
- case PLUS_EXPR:
- opnd10 = TREE_OPERAND (opnd1, 0);
- opnd11 = TREE_OPERAND (opnd1, 1);
- chrec10 = analyze_scalar_evolution (loop, opnd10);
- chrec11 = analyze_scalar_evolution (loop, opnd11);
- chrec10 = chrec_convert (type, chrec10, at_stmt);
- chrec11 = chrec_convert (type, chrec11, at_stmt);
- res = chrec_fold_plus (type, chrec10, chrec11);
- break;
-
- case MINUS_EXPR:
- opnd10 = TREE_OPERAND (opnd1, 0);
- opnd11 = TREE_OPERAND (opnd1, 1);
- chrec10 = analyze_scalar_evolution (loop, opnd10);
- chrec11 = analyze_scalar_evolution (loop, opnd11);
- chrec10 = chrec_convert (type, chrec10, at_stmt);
- chrec11 = chrec_convert (type, chrec11, at_stmt);
- res = chrec_fold_minus (type, chrec10, chrec11);
- break;
-
- case NEGATE_EXPR:
- opnd10 = TREE_OPERAND (opnd1, 0);
- chrec10 = analyze_scalar_evolution (loop, opnd10);
- chrec10 = chrec_convert (type, chrec10, at_stmt);
- /* TYPE may be integer, real or complex, so use fold_convert. */
- res = chrec_fold_multiply (type, chrec10,
- fold_convert (type, integer_minus_one_node));
- break;
-
- case MULT_EXPR:
- opnd10 = TREE_OPERAND (opnd1, 0);
- opnd11 = TREE_OPERAND (opnd1, 1);
- chrec10 = analyze_scalar_evolution (loop, opnd10);
- chrec11 = analyze_scalar_evolution (loop, opnd11);
- chrec10 = chrec_convert (type, chrec10, at_stmt);
- chrec11 = chrec_convert (type, chrec11, at_stmt);
- res = chrec_fold_multiply (type, chrec10, chrec11);
- break;
-
- case SSA_NAME:
- res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
- at_stmt);
- break;
-
- case ASSERT_EXPR:
- opnd10 = ASSERT_EXPR_VAR (opnd1);
- res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
- at_stmt);
- break;
-
- case NOP_EXPR:
- case CONVERT_EXPR:
- opnd10 = TREE_OPERAND (opnd1, 0);
- chrec10 = analyze_scalar_evolution (loop, opnd10);
- res = chrec_convert (type, chrec10, at_stmt);
- break;
-
- default:
- res = chrec_dont_know;
- break;
- }
-
- return res;
-}
-
-
-
-/* This section contains all the entry points:
- - number_of_iterations_in_loop,
- - analyze_scalar_evolution,
- - instantiate_parameters.
-*/
-
-/* Compute and return the evolution function in WRTO_LOOP, the nearest
- common ancestor of DEF_LOOP and USE_LOOP. */
-
-static tree
-compute_scalar_evolution_in_loop (struct loop *wrto_loop,
- struct loop *def_loop,
- tree ev)
-{
- tree res;
- if (def_loop == wrto_loop)
- return ev;
-
- def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
- res = compute_overall_effect_of_inner_loop (def_loop, ev);
-
- return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
-}
-
-/* Folds EXPR, if it is a cast to pointer, assuming that the created
- polynomial_chrec does not wrap. */
-
-static tree
-fold_used_pointer_cast (tree expr)
-{
- tree op;
- tree type, inner_type;
-
- if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
- return expr;
-
- op = TREE_OPERAND (expr, 0);
- if (TREE_CODE (op) != POLYNOMIAL_CHREC)
- return expr;
-
- type = TREE_TYPE (expr);
- inner_type = TREE_TYPE (op);
-
- if (!INTEGRAL_TYPE_P (inner_type)
- || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
- return expr;
-
- return build_polynomial_chrec (CHREC_VARIABLE (op),
- chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
- chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
-}
-
-/* Returns true if EXPR is an expression corresponding to offset of pointer
- in p + offset. */
-
-static bool
-pointer_offset_p (tree expr)
-{
- if (TREE_CODE (expr) == INTEGER_CST)
- return true;
-
- if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
- && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
- return true;
-
- return false;
-}
-
-/* EXPR is a scalar evolution of a pointer that is dereferenced or used in
- comparison. This means that it must point to a part of some object in
- memory, which enables us to argue about overflows and possibly simplify
- the EXPR. AT_STMT is the statement in which this conversion has to be
- performed. Returns the simplified value.
-
- Currently, for
-
- int i, n;
- int *p;
-
- for (i = -n; i < n; i++)
- *(p + i) = ...;
-
- We generate the following code (assuming that size of int and size_t is
- 4 bytes):
-
- for (i = -n; i < n; i++)
- {
- size_t tmp1, tmp2;
- int *tmp3, *tmp4;
-
- tmp1 = (size_t) i; (1)
- tmp2 = 4 * tmp1; (2)
- tmp3 = (int *) tmp2; (3)
- tmp4 = p + tmp3; (4)
-
- *tmp4 = ...;
- }
-
- We in general assume that pointer arithmetics does not overflow (since its
- behavior is undefined in that case). One of the problems is that our
- translation does not capture this property very well -- (int *) is
- considered unsigned, hence the computation in (4) does overflow if i is
- negative.
-
- This impreciseness creates complications in scev analysis. The scalar
- evolution of i is [-n, +, 1]. Since int and size_t have the same precision
- (in this example), and size_t is unsigned (so we do not care about
- overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
- and scev of tmp2 is [4 * (size_t) -n, +, 4]. With tmp3, we run into
- problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
- places assume that this is not the case for scevs with pointer type, we
- cannot use this scev for tmp3; hence, its scev is
- (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
- p + (int *) [(4 * (size_t) -n), +, 4]. Most of the optimizers are unable to
- work with scevs of this shape.
-
- However, since tmp4 is dereferenced, all its values must belong to a single
- object, and taking into account that the precision of int * and size_t is
- the same, it is impossible for its scev to wrap. Hence, we can derive that
- its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
- can work with.
-
- ??? Maybe we should use different representation for pointer arithmetics,
- however that is a long-term project with a lot of potential for creating
- bugs. */
-
-static tree
-fold_used_pointer (tree expr, tree at_stmt)
-{
- tree op0, op1, new0, new1;
- enum tree_code code = TREE_CODE (expr);
-
- if (code == PLUS_EXPR
- || code == MINUS_EXPR)
- {
- op0 = TREE_OPERAND (expr, 0);
- op1 = TREE_OPERAND (expr, 1);
-
- if (pointer_offset_p (op1))
- {
- new0 = fold_used_pointer (op0, at_stmt);
- new1 = fold_used_pointer_cast (op1);
- }
- else if (code == PLUS_EXPR && pointer_offset_p (op0))
- {
- new0 = fold_used_pointer_cast (op0);
- new1 = fold_used_pointer (op1, at_stmt);
- }
- else
- return expr;
-
- if (new0 == op0 && new1 == op1)
- return expr;
-
- new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
- new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
-
- if (code == PLUS_EXPR)
- expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
- else
- expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
-
- return expr;
- }
- else
- return fold_used_pointer_cast (expr);
-}
-
-/* Returns true if PTR is dereferenced, or used in comparison. */
-
-static bool
-pointer_used_p (tree ptr)
-{
- use_operand_p use_p;
- imm_use_iterator imm_iter;
- tree stmt, rhs;
- struct ptr_info_def *pi = get_ptr_info (ptr);
- var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
-
- /* Check whether the pointer has a memory tag; if it does, it is
- (or at least used to be) dereferenced. */
- if ((pi != NULL && pi->name_mem_tag != NULL)
- || v_ann->symbol_mem_tag)
- return true;
-
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
- {
- stmt = USE_STMT (use_p);
- if (TREE_CODE (stmt) == COND_EXPR)
- return true;
-
- if (TREE_CODE (stmt) != MODIFY_EXPR)
- continue;
-
- rhs = TREE_OPERAND (stmt, 1);
- if (!COMPARISON_CLASS_P (rhs))
- continue;
-
- if (TREE_OPERAND (stmt, 0) == ptr
- || TREE_OPERAND (stmt, 1) == ptr)
- return true;
- }
-
- return false;
-}
-
-/* Helper recursive function. */
-
-static tree
-analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
-{
- tree def, type = TREE_TYPE (var);
- basic_block bb;
- struct loop *def_loop;
-
- if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
- return chrec_dont_know;
-
- if (TREE_CODE (var) != SSA_NAME)
- return interpret_rhs_modify_expr (loop, NULL_TREE, var, type);
-
- def = SSA_NAME_DEF_STMT (var);
- bb = bb_for_stmt (def);
- def_loop = bb ? bb->loop_father : NULL;
-
- if (bb == NULL
- || !flow_bb_inside_loop_p (loop, bb))
- {
- /* Keep the symbolic form. */
- res = var;
- goto set_and_end;
- }
-
- if (res != chrec_not_analyzed_yet)
- {
- if (loop != bb->loop_father)
- res = compute_scalar_evolution_in_loop
- (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
-
- goto set_and_end;
- }
-
- if (loop != def_loop)
- {
- res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
- res = compute_scalar_evolution_in_loop (loop, def_loop, res);
-
- goto set_and_end;
- }
-
- switch (TREE_CODE (def))
- {
- case MODIFY_EXPR:
- res = interpret_rhs_modify_expr (loop, def, TREE_OPERAND (def, 1), type);
-
- if (POINTER_TYPE_P (type)
- && !automatically_generated_chrec_p (res)
- && pointer_used_p (var))
- res = fold_used_pointer (res, def);
- break;
-
- case PHI_NODE:
- if (loop_phi_node_p (def))
- res = interpret_loop_phi (loop, def);
- else
- res = interpret_condition_phi (loop, def);
- break;
-
- default:
- res = chrec_dont_know;
- break;
- }
-
- set_and_end:
-
- /* Keep the symbolic form. */
- if (res == chrec_dont_know)
- res = var;
-
- if (loop == def_loop)
- set_scalar_evolution (var, res);
-
- return res;
-}
-
-/* Entry point for the scalar evolution analyzer.
- Analyzes and returns the scalar evolution of the ssa_name VAR.
- LOOP_NB is the identifier number of the loop in which the variable
- is used.
-
- Example of use: having a pointer VAR to a SSA_NAME node, STMT a
- pointer to the statement that uses this variable, in order to
- determine the evolution function of the variable, use the following
- calls:
-
- unsigned loop_nb = loop_containing_stmt (stmt)->num;
- tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
- tree chrec_instantiated = instantiate_parameters
- (loop_nb, chrec_with_symbols);
-*/
-
-tree
-analyze_scalar_evolution (struct loop *loop, tree var)
-{
- tree res;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "(analyze_scalar_evolution \n");
- fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
- fprintf (dump_file, " (scalar = ");
- print_generic_expr (dump_file, var, 0);
- fprintf (dump_file, ")\n");
- }
-
- res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
-
- if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
- res = var;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, ")\n");
-
- return res;
-}
-
-/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
- WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
- of VERSION).
-
- FOLDED_CASTS is set to true if resolve_mixers used
- chrec_convert_aggressive (TODO -- not really, we are way too conservative
- at the moment in order to keep things simple). */
-
-static tree
-analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
- tree version, bool *folded_casts)
-{
- bool val = false;
- tree ev = version, tmp;
-
- if (folded_casts)
- *folded_casts = false;
- while (1)
- {
- tmp = analyze_scalar_evolution (use_loop, ev);
- ev = resolve_mixers (use_loop, tmp);
-
- if (folded_casts && tmp != ev)
- *folded_casts = true;
-
- if (use_loop == wrto_loop)
- return ev;
-
- /* If the value of the use changes in the inner loop, we cannot express
- its value in the outer loop (we might try to return interval chrec,
- but we do not have a user for it anyway) */
- if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
- || !val)
- return chrec_dont_know;
-
- use_loop = use_loop->outer;
- }
-}
-
-/* Returns instantiated value for VERSION in CACHE. */
-
-static tree
-get_instantiated_value (htab_t cache, tree version)
-{
- struct scev_info_str *info, pattern;
-
- pattern.var = version;
- info = (struct scev_info_str *) htab_find (cache, &pattern);
-
- if (info)
- return info->chrec;
- else
- return NULL_TREE;
-}
-
-/* Sets instantiated value for VERSION to VAL in CACHE. */
-
-static void
-set_instantiated_value (htab_t cache, tree version, tree val)
-{
- struct scev_info_str *info, pattern;
- PTR *slot;
-
- pattern.var = version;
- slot = htab_find_slot (cache, &pattern, INSERT);
-
- if (!*slot)
- *slot = new_scev_info_str (version);
- info = (struct scev_info_str *) *slot;
- info->chrec = val;
-}
-
-/* Return the closed_loop_phi node for VAR. If there is none, return
- NULL_TREE. */
-
-static tree
-loop_closed_phi_def (tree var)
-{
- struct loop *loop;
- edge exit;
- tree phi;
-
- if (var == NULL_TREE
- || TREE_CODE (var) != SSA_NAME)
- return NULL_TREE;
-
- loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
- exit = loop->single_exit;
- if (!exit)
- return NULL_TREE;
-
- for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
- if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
- return PHI_RESULT (phi);
-
- return NULL_TREE;
-}
-
-/* Analyze all the parameters of the chrec that were left under a symbolic form,
- with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
- of already instantiated values. FLAGS modify the way chrecs are
- instantiated. SIZE_EXPR is used for computing the size of the expression to
- be instantiated, and to stop if it exceeds some limit. */
-
-/* Values for FLAGS. */
-enum
-{
- INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
- in outer loops. */
- FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
- signed/pointer type are folded, as long as the
- value of the chrec is preserved. */
-};
-
-static tree
-instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
- int size_expr)
-{
- tree res, op0, op1, op2;
- basic_block def_bb;
- struct loop *def_loop;
- tree type = chrec_type (chrec);
-
- /* Give up if the expression is larger than the MAX that we allow. */
- if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
- return chrec_dont_know;
-
- if (automatically_generated_chrec_p (chrec)
- || is_gimple_min_invariant (chrec))
- return chrec;
-
- switch (TREE_CODE (chrec))
- {
- case SSA_NAME:
- def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
-
- /* A parameter (or loop invariant and we do not want to include
- evolutions in outer loops), nothing to do. */
- if (!def_bb
- || (!(flags & INSERT_SUPERLOOP_CHRECS)
- && !flow_bb_inside_loop_p (loop, def_bb)))
- return chrec;
-
- /* We cache the value of instantiated variable to avoid exponential
- time complexity due to reevaluations. We also store the convenient
- value in the cache in order to prevent infinite recursion -- we do
- not want to instantiate the SSA_NAME if it is in a mixer
- structure. This is used for avoiding the instantiation of
- recursively defined functions, such as:
-
- | a_2 -> {0, +, 1, +, a_2}_1 */
-
- res = get_instantiated_value (cache, chrec);
- if (res)
- return res;
-
- /* Store the convenient value for chrec in the structure. If it
- is defined outside of the loop, we may just leave it in symbolic
- form, otherwise we need to admit that we do not know its behavior
- inside the loop. */
- res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
- set_instantiated_value (cache, chrec, res);
-
- /* To make things even more complicated, instantiate_parameters_1
- calls analyze_scalar_evolution that may call # of iterations
- analysis that may in turn call instantiate_parameters_1 again.
- To prevent the infinite recursion, keep also the bitmap of
- ssa names that are being instantiated globally. */
- if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
- return res;
-
- def_loop = find_common_loop (loop, def_bb->loop_father);
-
- /* If the analysis yields a parametric chrec, instantiate the
- result again. */
- bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
- res = analyze_scalar_evolution (def_loop, chrec);
-
- /* Don't instantiate loop-closed-ssa phi nodes. */
- if (TREE_CODE (res) == SSA_NAME
- && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
- || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
- > def_loop->depth)))
- {
- if (res == chrec)
- res = loop_closed_phi_def (chrec);
- else
- res = chrec;
-
- if (res == NULL_TREE)
- res = chrec_dont_know;
- }
-
- else if (res != chrec_dont_know)
- res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
-
- bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
-
- /* Store the correct value to the cache. */
- set_instantiated_value (cache, chrec, res);
- return res;
-
- case POLYNOMIAL_CHREC:
- op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
- flags, cache, size_expr);
- if (op0 == chrec_dont_know)
- return chrec_dont_know;
-
- op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
- flags, cache, size_expr);
- if (op1 == chrec_dont_know)
- return chrec_dont_know;
-
- if (CHREC_LEFT (chrec) != op0
- || CHREC_RIGHT (chrec) != op1)
- {
- op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
- chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
- }
- return chrec;
-
- case PLUS_EXPR:
- op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
- flags, cache, size_expr);
- if (op0 == chrec_dont_know)
- return chrec_dont_know;
-
- op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
- flags, cache, size_expr);
- if (op1 == chrec_dont_know)
- return chrec_dont_know;
-
- if (TREE_OPERAND (chrec, 0) != op0
- || TREE_OPERAND (chrec, 1) != op1)
- {
- op0 = chrec_convert (type, op0, NULL_TREE);
- op1 = chrec_convert (type, op1, NULL_TREE);
- chrec = chrec_fold_plus (type, op0, op1);
- }
- return chrec;
-
- case MINUS_EXPR:
- op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
- flags, cache, size_expr);
- if (op0 == chrec_dont_know)
- return chrec_dont_know;
-
- op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
- flags, cache, size_expr);
- if (op1 == chrec_dont_know)
- return chrec_dont_know;
-
- if (TREE_OPERAND (chrec, 0) != op0
- || TREE_OPERAND (chrec, 1) != op1)
- {
- op0 = chrec_convert (type, op0, NULL_TREE);
- op1 = chrec_convert (type, op1, NULL_TREE);
- chrec = chrec_fold_minus (type, op0, op1);
- }
- return chrec;
-
- case MULT_EXPR:
- op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
- flags, cache, size_expr);
- if (op0 == chrec_dont_know)
- return chrec_dont_know;
-
- op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
- flags, cache, size_expr);
- if (op1 == chrec_dont_know)
- return chrec_dont_know;
-
- if (TREE_OPERAND (chrec, 0) != op0
- || TREE_OPERAND (chrec, 1) != op1)
- {
- op0 = chrec_convert (type, op0, NULL_TREE);
- op1 = chrec_convert (type, op1, NULL_TREE);
- chrec = chrec_fold_multiply (type, op0, op1);
- }
- return chrec;
-
- case NOP_EXPR:
- case CONVERT_EXPR:
- case NON_LVALUE_EXPR:
- op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
- flags, cache, size_expr);
- if (op0 == chrec_dont_know)
- return chrec_dont_know;
-
- if (flags & FOLD_CONVERSIONS)
- {
- tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
- if (tmp)
- return tmp;
- }
-
- if (op0 == TREE_OPERAND (chrec, 0))
- return chrec;
-
- /* If we used chrec_convert_aggressive, we can no longer assume that
- signed chrecs do not overflow, as chrec_convert does, so avoid
- calling it in that case. */
- if (flags & FOLD_CONVERSIONS)
- return fold_convert (TREE_TYPE (chrec), op0);
-
- return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
-
- case SCEV_NOT_KNOWN:
- return chrec_dont_know;
-
- case SCEV_KNOWN:
- return chrec_known;
-
- default:
- break;
- }
-
- switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
- {
- case 3:
- op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
- flags, cache, size_expr);
- if (op0 == chrec_dont_know)
- return chrec_dont_know;
-
- op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
- flags, cache, size_expr);
- if (op1 == chrec_dont_know)
- return chrec_dont_know;
-
- op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
- flags, cache, size_expr);
- if (op2 == chrec_dont_know)
- return chrec_dont_know;
-
- if (op0 == TREE_OPERAND (chrec, 0)
- && op1 == TREE_OPERAND (chrec, 1)
- && op2 == TREE_OPERAND (chrec, 2))
- return chrec;
-
- return fold_build3 (TREE_CODE (chrec),
- TREE_TYPE (chrec), op0, op1, op2);
-
- case 2:
- op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
- flags, cache, size_expr);
- if (op0 == chrec_dont_know)
- return chrec_dont_know;
-
- op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
- flags, cache, size_expr);
- if (op1 == chrec_dont_know)
- return chrec_dont_know;
-
- if (op0 == TREE_OPERAND (chrec, 0)
- && op1 == TREE_OPERAND (chrec, 1))
- return chrec;
- return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
-
- case 1:
- op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
- flags, cache, size_expr);
- if (op0 == chrec_dont_know)
- return chrec_dont_know;
- if (op0 == TREE_OPERAND (chrec, 0))
- return chrec;
- return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
-
- case 0:
- return chrec;
-
- default:
- break;
- }
-
- /* Too complicated to handle. */
- return chrec_dont_know;
-}
-
-/* Analyze all the parameters of the chrec that were left under a
- symbolic form. LOOP is the loop in which symbolic names have to
- be analyzed and instantiated. */
-
-tree
-instantiate_parameters (struct loop *loop,
- tree chrec)
-{
- tree res;
- htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "(instantiate_parameters \n");
- fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
- fprintf (dump_file, " (chrec = ");
- print_generic_expr (dump_file, chrec, 0);
- fprintf (dump_file, ")\n");
- }
-
- res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
- 0);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " (res = ");
- print_generic_expr (dump_file, res, 0);
- fprintf (dump_file, "))\n");
- }
-
- htab_delete (cache);
-
- return res;
-}
-
-/* Similar to instantiate_parameters, but does not introduce the
- evolutions in outer loops for LOOP invariants in CHREC, and does not
- care about causing overflows, as long as they do not affect value
- of an expression. */
-
-static tree
-resolve_mixers (struct loop *loop, tree chrec)
-{
- htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
- tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
- htab_delete (cache);
- return ret;
-}
-
-/* Entry point for the analysis of the number of iterations pass.
- This function tries to safely approximate the number of iterations
- the loop will run. When this property is not decidable at compile
- time, the result is chrec_dont_know. Otherwise the result is
- a scalar or a symbolic parameter.
-
- Example of analysis: suppose that the loop has an exit condition:
-
- "if (b > 49) goto end_loop;"
-
- and that in a previous analysis we have determined that the
- variable 'b' has an evolution function:
-
- "EF = {23, +, 5}_2".
-
- When we evaluate the function at the point 5, i.e. the value of the
- variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
- and EF (6) = 53. In this case the value of 'b' on exit is '53' and
- the loop body has been executed 6 times. */
-
-tree
-number_of_iterations_in_loop (struct loop *loop)
-{
- tree res, type;
- edge exit;
- struct tree_niter_desc niter_desc;
-
- /* Determine whether the number_of_iterations_in_loop has already
- been computed. */
- res = loop->nb_iterations;
- if (res)
- return res;
- res = chrec_dont_know;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "(number_of_iterations_in_loop\n");
-
- exit = loop->single_exit;
- if (!exit)
- goto end;
-
- if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
- goto end;
-
- type = TREE_TYPE (niter_desc.niter);
- if (integer_nonzerop (niter_desc.may_be_zero))
- res = build_int_cst (type, 0);
- else if (integer_zerop (niter_desc.may_be_zero))
- res = niter_desc.niter;
- else
- res = chrec_dont_know;
-
-end:
- return set_nb_iterations_in_loop (loop, res);
-}
-
-/* One of the drivers for testing the scalar evolutions analysis.
- This function computes the number of iterations for all the loops
- from the EXIT_CONDITIONS array. */
-
-static void
-number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
-{
- unsigned int i;
- unsigned nb_chrec_dont_know_loops = 0;
- unsigned nb_static_loops = 0;
- tree cond;
-
- for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
- {
- tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
- if (chrec_contains_undetermined (res))
- nb_chrec_dont_know_loops++;
- else
- nb_static_loops++;
- }
-
- if (dump_file)
- {
- fprintf (dump_file, "\n(\n");
- fprintf (dump_file, "-----------------------------------------\n");
- fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
- fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
- fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
- fprintf (dump_file, "-----------------------------------------\n");
- fprintf (dump_file, ")\n\n");
-
- print_loop_ir (dump_file);
- }
-}
-
-
-
-/* Counters for the stats. */
-
-struct chrec_stats
-{
- unsigned nb_chrecs;
- unsigned nb_affine;
- unsigned nb_affine_multivar;
- unsigned nb_higher_poly;
- unsigned nb_chrec_dont_know;
- unsigned nb_undetermined;
-};
-
-/* Reset the counters. */
-
-static inline void
-reset_chrecs_counters (struct chrec_stats *stats)
-{
- stats->nb_chrecs = 0;
- stats->nb_affine = 0;
- stats->nb_affine_multivar = 0;
- stats->nb_higher_poly = 0;
- stats->nb_chrec_dont_know = 0;
- stats->nb_undetermined = 0;
-}
-
-/* Dump the contents of a CHREC_STATS structure. */
-
-static void
-dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
-{
- fprintf (file, "\n(\n");
- fprintf (file, "-----------------------------------------\n");
- fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
- fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
- fprintf (file, "%d\tdegree greater than 2 polynomials\n",
- stats->nb_higher_poly);
- fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
- fprintf (file, "-----------------------------------------\n");
- fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
- fprintf (file, "%d\twith undetermined coefficients\n",
- stats->nb_undetermined);
- fprintf (file, "-----------------------------------------\n");
- fprintf (file, "%d\tchrecs in the scev database\n",
- (int) htab_elements (scalar_evolution_info));
- fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
- fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
- fprintf (file, "-----------------------------------------\n");
- fprintf (file, ")\n\n");
-}
-
-/* Gather statistics about CHREC. */
-
-static void
-gather_chrec_stats (tree chrec, struct chrec_stats *stats)
-{
- if (dump_file && (dump_flags & TDF_STATS))
- {
- fprintf (dump_file, "(classify_chrec ");
- print_generic_expr (dump_file, chrec, 0);
- fprintf (dump_file, "\n");
- }
-
- stats->nb_chrecs++;
-
- if (chrec == NULL_TREE)
- {
- stats->nb_undetermined++;
- return;
- }
-
- switch (TREE_CODE (chrec))
- {
- case POLYNOMIAL_CHREC:
- if (evolution_function_is_affine_p (chrec))
- {
- if (dump_file && (dump_flags & TDF_STATS))
- fprintf (dump_file, " affine_univariate\n");
- stats->nb_affine++;
- }
- else if (evolution_function_is_affine_multivariate_p (chrec))
- {
- if (dump_file && (dump_flags & TDF_STATS))
- fprintf (dump_file, " affine_multivariate\n");
- stats->nb_affine_multivar++;
- }
- else
- {
- if (dump_file && (dump_flags & TDF_STATS))
- fprintf (dump_file, " higher_degree_polynomial\n");
- stats->nb_higher_poly++;
- }
-
- break;
-
- default:
- break;
- }
-
- if (chrec_contains_undetermined (chrec))
- {
- if (dump_file && (dump_flags & TDF_STATS))
- fprintf (dump_file, " undetermined\n");
- stats->nb_undetermined++;
- }
-
- if (dump_file && (dump_flags & TDF_STATS))
- fprintf (dump_file, ")\n");
-}
-
-/* One of the drivers for testing the scalar evolutions analysis.
- This function analyzes the scalar evolution of all the scalars
- defined as loop phi nodes in one of the loops from the
- EXIT_CONDITIONS array.
-
- TODO Optimization: A loop is in canonical form if it contains only
- a single scalar loop phi node. All the other scalars that have an
- evolution in the loop are rewritten in function of this single
- index. This allows the parallelization of the loop. */
-
-static void
-analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
-{
- unsigned int i;
- struct chrec_stats stats;
- tree cond;
-
- reset_chrecs_counters (&stats);
-
- for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
- {
- struct loop *loop;
- basic_block bb;
- tree phi, chrec;
-
- loop = loop_containing_stmt (cond);
- bb = loop->header;
-
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- if (is_gimple_reg (PHI_RESULT (phi)))
- {
- chrec = instantiate_parameters
- (loop,
- analyze_scalar_evolution (loop, PHI_RESULT (phi)));
-
- if (dump_file && (dump_flags & TDF_STATS))
- gather_chrec_stats (chrec, &stats);
- }
- }
-
- if (dump_file && (dump_flags & TDF_STATS))
- dump_chrecs_stats (dump_file, &stats);
-}
-
-/* Callback for htab_traverse, gathers information on chrecs in the
- hashtable. */
-
-static int
-gather_stats_on_scev_database_1 (void **slot, void *stats)
-{
- struct scev_info_str *entry = (struct scev_info_str *) *slot;
-
- gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
-
- return 1;
-}
-
-/* Classify the chrecs of the whole database. */
-
-void
-gather_stats_on_scev_database (void)
-{
- struct chrec_stats stats;
-
- if (!dump_file)
- return;
-
- reset_chrecs_counters (&stats);
-
- htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
- &stats);
-
- dump_chrecs_stats (dump_file, &stats);
-}
-
-
-
-/* Initializer. */
-
-static void
-initialize_scalar_evolutions_analyzer (void)
-{
- /* The elements below are unique. */
- if (chrec_dont_know == NULL_TREE)
- {
- chrec_not_analyzed_yet = NULL_TREE;
- chrec_dont_know = make_node (SCEV_NOT_KNOWN);
- chrec_known = make_node (SCEV_KNOWN);
- TREE_TYPE (chrec_dont_know) = void_type_node;
- TREE_TYPE (chrec_known) = void_type_node;
- }
-}
-
-/* Initialize the analysis of scalar evolutions for LOOPS. */
-
-void
-scev_initialize (struct loops *loops)
-{
- unsigned i;
- current_loops = loops;
-
- scalar_evolution_info = htab_create (100, hash_scev_info,
- eq_scev_info, del_scev_info);
- already_instantiated = BITMAP_ALLOC (NULL);
-
- initialize_scalar_evolutions_analyzer ();
-
- for (i = 1; i < loops->num; i++)
- if (loops->parray[i])
- loops->parray[i]->nb_iterations = NULL_TREE;
-}
-
-/* Cleans up the information cached by the scalar evolutions analysis. */
-
-void
-scev_reset (void)
-{
- unsigned i;
- struct loop *loop;
-
- if (!scalar_evolution_info || !current_loops)
- return;
-
- htab_empty (scalar_evolution_info);
- for (i = 1; i < current_loops->num; i++)
- {
- loop = current_loops->parray[i];
- if (loop)
- loop->nb_iterations = NULL_TREE;
- }
-}
-
-/* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
- its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
- want step to be invariant in LOOP. Otherwise we require it to be an
- integer constant. IV->no_overflow is set to true if we are sure the iv cannot
- overflow (e.g. because it is computed in signed arithmetics). */
-
-bool
-simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
- bool allow_nonconstant_step)
-{
- basic_block bb = bb_for_stmt (stmt);
- tree type, ev;
- bool folded_casts;
-
- iv->base = NULL_TREE;
- iv->step = NULL_TREE;
- iv->no_overflow = false;
-
- type = TREE_TYPE (op);
- if (TREE_CODE (type) != INTEGER_TYPE
- && TREE_CODE (type) != POINTER_TYPE)
- return false;
-
- ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
- &folded_casts);
- if (chrec_contains_undetermined (ev))
- return false;
-
- if (tree_does_not_contain_chrecs (ev)
- && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
- {
- iv->base = ev;
- iv->no_overflow = true;
- return true;
- }
-
- if (TREE_CODE (ev) != POLYNOMIAL_CHREC
- || CHREC_VARIABLE (ev) != (unsigned) loop->num)
- return false;
-
- iv->step = CHREC_RIGHT (ev);
- if (allow_nonconstant_step)
- {
- if (tree_contains_chrecs (iv->step, NULL)
- || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
- return false;
- }
- else if (TREE_CODE (iv->step) != INTEGER_CST)
- return false;
-
- iv->base = CHREC_LEFT (ev);
- if (tree_contains_chrecs (iv->base, NULL)
- || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
- return false;
-
- iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
-
- return true;
-}
-
-/* Runs the analysis of scalar evolutions. */
-
-void
-scev_analysis (void)
-{
- VEC(tree,heap) *exit_conditions;
-
- exit_conditions = VEC_alloc (tree, heap, 37);
- select_loops_exit_conditions (current_loops, &exit_conditions);
-
- if (dump_file && (dump_flags & TDF_STATS))
- analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
-
- number_of_iterations_for_all_loops (&exit_conditions);
- VEC_free (tree, heap, exit_conditions);
-}
-
-/* Finalize the scalar evolution analysis. */
-
-void
-scev_finalize (void)
-{
- htab_delete (scalar_evolution_info);
- BITMAP_FREE (already_instantiated);
-}
-
-/* Returns true if EXPR looks expensive. */
-
-static bool
-expression_expensive_p (tree expr)
-{
- return force_expr_to_var_cost (expr) >= target_spill_cost;
-}
-
-/* Replace ssa names for that scev can prove they are constant by the
- appropriate constants. Also perform final value replacement in loops,
- in case the replacement expressions are cheap.
-
- We only consider SSA names defined by phi nodes; rest is left to the
- ordinary constant propagation pass. */
-
-unsigned int
-scev_const_prop (void)
-{
- basic_block bb;
- tree name, phi, next_phi, type, ev;
- struct loop *loop, *ex_loop;
- bitmap ssa_names_to_remove = NULL;
- unsigned i;
-
- if (!current_loops)
- return 0;
-
- FOR_EACH_BB (bb)
- {
- loop = bb->loop_father;
-
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- {
- name = PHI_RESULT (phi);
-
- if (!is_gimple_reg (name))
- continue;
-
- type = TREE_TYPE (name);
-
- if (!POINTER_TYPE_P (type)
- && !INTEGRAL_TYPE_P (type))
- continue;
-
- ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
- if (!is_gimple_min_invariant (ev)
- || !may_propagate_copy (name, ev))
- continue;
-
- /* Replace the uses of the name. */
- if (name != ev)
- replace_uses_by (name, ev);
-
- if (!ssa_names_to_remove)
- ssa_names_to_remove = BITMAP_ALLOC (NULL);
- bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
- }
- }
-
- /* Remove the ssa names that were replaced by constants. We do not remove them
- directly in the previous cycle, since this invalidates scev cache. */
- if (ssa_names_to_remove)
- {
- bitmap_iterator bi;
- unsigned i;
-
- EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
- {
- name = ssa_name (i);
- phi = SSA_NAME_DEF_STMT (name);
-
- gcc_assert (TREE_CODE (phi) == PHI_NODE);
- remove_phi_node (phi, NULL);
- }
-
- BITMAP_FREE (ssa_names_to_remove);
- scev_reset ();
- }
-
- /* Now the regular final value replacement. */
- for (i = current_loops->num - 1; i > 0; i--)
- {
- edge exit;
- tree def, rslt, ass, niter;
- block_stmt_iterator bsi;
-
- loop = current_loops->parray[i];
- if (!loop)
- continue;
-
- /* If we do not know exact number of iterations of the loop, we cannot
- replace the final value. */
- exit = loop->single_exit;
- if (!exit)
- continue;
-
- niter = number_of_iterations_in_loop (loop);
- if (niter == chrec_dont_know
- /* If computing the number of iterations is expensive, it may be
- better not to introduce computations involving it. */
- || expression_expensive_p (niter))
- continue;
-
- /* Ensure that it is possible to insert new statements somewhere. */
- if (!single_pred_p (exit->dest))
- split_loop_exit_edge (exit);
- tree_block_label (exit->dest);
- bsi = bsi_after_labels (exit->dest);
-
- ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
-
- for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
- {
- next_phi = PHI_CHAIN (phi);
- rslt = PHI_RESULT (phi);
- def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
- if (!is_gimple_reg (def))
- continue;
-
- if (!POINTER_TYPE_P (TREE_TYPE (def))
- && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
- continue;
-
- def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
- def = compute_overall_effect_of_inner_loop (ex_loop, def);
- if (!tree_does_not_contain_chrecs (def)
- || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
- /* Moving the computation from the loop may prolong life range
- of some ssa names, which may cause problems if they appear
- on abnormal edges. */
- || contains_abnormal_ssa_name_p (def))
- continue;
-
- /* Eliminate the phi node and replace it by a computation outside
- the loop. */
- def = unshare_expr (def);
- SET_PHI_RESULT (phi, NULL_TREE);
- remove_phi_node (phi, NULL_TREE);
-
- ass = build2 (MODIFY_EXPR, void_type_node, rslt, NULL_TREE);
- SSA_NAME_DEF_STMT (rslt) = ass;
- {
- block_stmt_iterator dest = bsi;
- bsi_insert_before (&dest, ass, BSI_NEW_STMT);
- def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
- }
- TREE_OPERAND (ass, 1) = def;
- update_stmt (ass);
- }
- }
- return 0;
-}