aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-into-ssa.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-into-ssa.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-into-ssa.c3157
1 files changed, 3157 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-into-ssa.c b/gcc-4.2.1-5666.3/gcc/tree-into-ssa.c
new file mode 100644
index 000000000..14a50b62c
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-into-ssa.c
@@ -0,0 +1,3157 @@
+/* Rewrite a program in Normal form into SSA.
+ Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
+ Contributed by Diego Novillo <dnovillo@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to
+the Free Software Foundation, 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "flags.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "langhooks.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "output.h"
+#include "expr.h"
+#include "function.h"
+#include "diagnostic.h"
+#include "bitmap.h"
+#include "tree-flow.h"
+#include "tree-gimple.h"
+#include "tree-inline.h"
+#include "varray.h"
+#include "timevar.h"
+#include "hashtab.h"
+#include "tree-dump.h"
+#include "tree-pass.h"
+#include "cfgloop.h"
+#include "domwalk.h"
+#include "ggc.h"
+#include "params.h"
+#include "vecprim.h"
+
+/* This file builds the SSA form for a function as described in:
+ R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
+ Computing Static Single Assignment Form and the Control Dependence
+ Graph. ACM Transactions on Programming Languages and Systems,
+ 13(4):451-490, October 1991. */
+
+/* True if the code is in ssa form. */
+bool in_ssa_p;
+
+/* Structure to map a variable VAR to the set of blocks that contain
+ definitions for VAR. */
+struct def_blocks_d
+{
+ /* The variable. */
+ tree var;
+
+ /* Blocks that contain definitions of VAR. Bit I will be set if the
+ Ith block contains a definition of VAR. */
+ bitmap def_blocks;
+
+ /* Blocks that contain a PHI node for VAR. */
+ bitmap phi_blocks;
+
+ /* Blocks where VAR is live-on-entry. Similar semantics as
+ DEF_BLOCKS. */
+ bitmap livein_blocks;
+};
+
+
+/* Each entry in DEF_BLOCKS contains an element of type STRUCT
+ DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
+ basic blocks where VAR is defined (assigned a new value). It also
+ contains a bitmap of all the blocks where VAR is live-on-entry
+ (i.e., there is a use of VAR in block B without a preceding
+ definition in B). The live-on-entry information is used when
+ computing PHI pruning heuristics. */
+static htab_t def_blocks;
+
+/* Stack of trees used to restore the global currdefs to its original
+ state after completing rewriting of a block and its dominator
+ children. Its elements have the following properties:
+
+ - An SSA_NAME indicates that the current definition of the
+ underlying variable should be set to the given SSA_NAME.
+
+ - A _DECL node indicates that the underlying variable has no
+ current definition.
+
+ - A NULL node is used to mark the last node associated with the
+ current block.
+
+ - A NULL node at the top entry is used to mark the last node
+ associated with the current block. */
+static VEC(tree,heap) *block_defs_stack;
+
+/* Set of existing SSA names being replaced by update_ssa. */
+static sbitmap old_ssa_names;
+
+/* Set of new SSA names being added by update_ssa. Note that both
+ NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
+ the operations done on them are presence tests. */
+static sbitmap new_ssa_names;
+
+/* Symbols whose SSA form needs to be updated or created for the first
+ time. */
+static bitmap syms_to_rename;
+
+/* Set of SSA names that have been marked to be released after they
+ were registered in the replacement table. They will be finally
+ released after we finish updating the SSA web. */
+static bitmap names_to_release;
+
+/* For each block, the phi nodes that need to be rewritten are stored into
+ these vectors. */
+
+typedef VEC(tree, heap) *tree_vec;
+DEF_VEC_P (tree_vec);
+DEF_VEC_ALLOC_P (tree_vec, heap);
+
+static VEC(tree_vec, heap) *phis_to_rewrite;
+
+/* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
+
+static bitmap blocks_with_phis_to_rewrite;
+
+/* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
+ to grow as the callers to register_new_name_mapping will typically
+ create new names on the fly. FIXME. Currently set to 1/3 to avoid
+ frequent reallocations but still need to find a reasonable growth
+ strategy. */
+#define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
+
+/* Tuple used to represent replacement mappings. */
+struct repl_map_d
+{
+ tree name;
+ bitmap set;
+};
+
+/* NEW -> OLD_SET replacement table. If we are replacing several
+ existing SSA names O_1, O_2, ..., O_j with a new name N_i,
+ then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
+static htab_t repl_tbl;
+
+/* true if register_new_name_mapping needs to initialize the data
+ structures needed by update_ssa. */
+static bool need_to_initialize_update_ssa_p = true;
+
+/* true if update_ssa needs to update virtual operands. */
+static bool need_to_update_vops_p = false;
+
+/* Statistics kept by update_ssa to use in the virtual mapping
+ heuristic. If the number of virtual mappings is beyond certain
+ threshold, the updater will switch from using the mappings into
+ renaming the virtual symbols from scratch. In some cases, the
+ large number of name mappings for virtual names causes significant
+ slowdowns in the PHI insertion code. */
+struct update_ssa_stats_d
+{
+ unsigned num_virtual_mappings;
+ unsigned num_total_mappings;
+ bitmap virtual_symbols;
+ unsigned num_virtual_symbols;
+};
+static struct update_ssa_stats_d update_ssa_stats;
+
+/* Global data to attach to the main dominator walk structure. */
+struct mark_def_sites_global_data
+{
+ /* This bitmap contains the variables which are set before they
+ are used in a basic block. */
+ bitmap kills;
+
+ /* Bitmap of names to rename. */
+ sbitmap names_to_rename;
+
+ /* Set of blocks that mark_def_sites deems interesting for the
+ renamer to process. */
+ sbitmap interesting_blocks;
+};
+
+
+/* Information stored for SSA names. */
+struct ssa_name_info
+{
+ /* The actual definition of the ssa name. */
+ tree current_def;
+
+ /* This field indicates whether or not the variable may need PHI nodes.
+ See the enum's definition for more detailed information about the
+ states. */
+ ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
+
+ /* Age of this record (so that info_for_ssa_name table can be cleared
+ quicky); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
+ are assumed to be null. */
+ unsigned age;
+};
+
+/* The information associated with names. */
+typedef struct ssa_name_info *ssa_name_info_p;
+DEF_VEC_P (ssa_name_info_p);
+DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
+
+static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
+static unsigned current_info_for_ssa_name_age;
+
+/* The set of blocks affected by update_ssa. */
+
+static bitmap blocks_to_update;
+
+/* The main entry point to the SSA renamer (rewrite_blocks) may be
+ called several times to do different, but related, tasks.
+ Initially, we need it to rename the whole program into SSA form.
+ At other times, we may need it to only rename into SSA newly
+ exposed symbols. Finally, we can also call it to incrementally fix
+ an already built SSA web. */
+enum rewrite_mode {
+ /* Convert the whole function into SSA form. */
+ REWRITE_ALL,
+
+ /* Incrementally update the SSA web by replacing existing SSA
+ names with new ones. See update_ssa for details. */
+ REWRITE_UPDATE
+};
+
+
+/* Use TREE_VISITED to keep track of which statements we want to
+ rename. When renaming a subset of the variables, not all
+ statements will be processed. This is decided in mark_def_sites. */
+#define REWRITE_THIS_STMT(T) TREE_VISITED (T)
+
+/* Use the unsigned flag to keep track of which statements we want to
+ visit when marking new definition sites. This is slightly
+ different than REWRITE_THIS_STMT: it's used by update_ssa to
+ distinguish statements that need to have both uses and defs
+ processed from those that only need to have their defs processed.
+ Statements that define new SSA names only need to have their defs
+ registered, but they don't need to have their uses renamed. */
+#define REGISTER_DEFS_IN_THIS_STMT(T) (T)->common.unsigned_flag
+
+
+/* Prototypes for debugging functions. */
+extern void dump_tree_ssa (FILE *);
+extern void debug_tree_ssa (void);
+extern void debug_def_blocks (void);
+extern void dump_tree_ssa_stats (FILE *);
+extern void debug_tree_ssa_stats (void);
+void dump_update_ssa (FILE *);
+void debug_update_ssa (void);
+void dump_names_replaced_by (FILE *, tree);
+void debug_names_replaced_by (tree);
+
+/* Get the information associated with NAME. */
+
+static inline struct ssa_name_info *
+get_ssa_name_ann (tree name)
+{
+ unsigned ver = SSA_NAME_VERSION (name);
+ unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
+ struct ssa_name_info *info;
+
+ if (ver >= len)
+ {
+ unsigned new_len = num_ssa_names;
+
+ VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
+ while (len++ < new_len)
+ {
+ struct ssa_name_info *info = XCNEW (struct ssa_name_info);
+ info->age = current_info_for_ssa_name_age;
+ VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
+ }
+ }
+
+ info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
+ if (info->age < current_info_for_ssa_name_age)
+ {
+ info->need_phi_state = 0;
+ info->current_def = NULL_TREE;
+ info->age = current_info_for_ssa_name_age;
+ }
+
+ return info;
+}
+
+/* Clears info for ssa names. */
+
+static void
+clear_ssa_name_info (void)
+{
+ current_info_for_ssa_name_age++;
+}
+
+/* Gets phi_state field for VAR. */
+
+static inline enum need_phi_state
+get_phi_state (tree var)
+{
+ if (TREE_CODE (var) == SSA_NAME)
+ return get_ssa_name_ann (var)->need_phi_state;
+ else
+ return var_ann (var)->need_phi_state;
+}
+
+
+/* Sets phi_state field for VAR to STATE. */
+
+static inline void
+set_phi_state (tree var, enum need_phi_state state)
+{
+ if (TREE_CODE (var) == SSA_NAME)
+ get_ssa_name_ann (var)->need_phi_state = state;
+ else
+ var_ann (var)->need_phi_state = state;
+}
+
+
+/* Return the current definition for VAR. */
+
+tree
+get_current_def (tree var)
+{
+ if (TREE_CODE (var) == SSA_NAME)
+ return get_ssa_name_ann (var)->current_def;
+ else
+ return var_ann (var)->current_def;
+}
+
+
+/* Sets current definition of VAR to DEF. */
+
+void
+set_current_def (tree var, tree def)
+{
+ if (TREE_CODE (var) == SSA_NAME)
+ get_ssa_name_ann (var)->current_def = def;
+ else
+ var_ann (var)->current_def = def;
+}
+
+
+/* Compute global livein information given the set of blockx where
+ an object is locally live at the start of the block (LIVEIN)
+ and the set of blocks where the object is defined (DEF_BLOCKS).
+
+ Note: This routine augments the existing local livein information
+ to include global livein (i.e., it modifies the underlying bitmap
+ for LIVEIN). */
+
+void
+compute_global_livein (bitmap livein, bitmap def_blocks)
+{
+ basic_block bb, *worklist, *tos;
+ unsigned i;
+ bitmap_iterator bi;
+
+ tos = worklist
+ = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
+
+ EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
+ {
+ *tos++ = BASIC_BLOCK (i);
+ }
+
+ /* Iterate until the worklist is empty. */
+ while (tos != worklist)
+ {
+ edge e;
+ edge_iterator ei;
+
+ /* Pull a block off the worklist. */
+ bb = *--tos;
+
+ /* For each predecessor block. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ basic_block pred = e->src;
+ int pred_index = pred->index;
+
+ /* None of this is necessary for the entry block. */
+ if (pred != ENTRY_BLOCK_PTR
+ && ! bitmap_bit_p (livein, pred_index)
+ && ! bitmap_bit_p (def_blocks, pred_index))
+ {
+ *tos++ = pred;
+ bitmap_set_bit (livein, pred_index);
+ }
+ }
+ }
+
+ free (worklist);
+}
+
+
+/* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
+ all statements in basic block BB. */
+
+static void
+initialize_flags_in_bb (basic_block bb)
+{
+ tree phi, stmt;
+ block_stmt_iterator bsi;
+
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ REWRITE_THIS_STMT (phi) = 0;
+ REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
+ }
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ {
+ stmt = bsi_stmt (bsi);
+ /* We are going to use the operand cache API, such as
+ SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
+ cache for each statement should be up-to-date. */
+ gcc_assert (!stmt_modified_p (stmt));
+ REWRITE_THIS_STMT (stmt) = 0;
+ REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
+ }
+}
+
+/* Mark block BB as interesting for update_ssa. */
+
+static void
+mark_block_for_update (basic_block bb)
+{
+ gcc_assert (blocks_to_update != NULL);
+ if (bitmap_bit_p (blocks_to_update, bb->index))
+ return;
+ bitmap_set_bit (blocks_to_update, bb->index);
+ initialize_flags_in_bb (bb);
+}
+
+/* Return the set of blocks where variable VAR is defined and the blocks
+ where VAR is live on entry (livein). If no entry is found in
+ DEF_BLOCKS, a new one is created and returned. */
+
+static inline struct def_blocks_d *
+get_def_blocks_for (tree var)
+{
+ struct def_blocks_d db, *db_p;
+ void **slot;
+
+ db.var = var;
+ slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
+ if (*slot == NULL)
+ {
+ db_p = XNEW (struct def_blocks_d);
+ db_p->var = var;
+ db_p->def_blocks = BITMAP_ALLOC (NULL);
+ db_p->phi_blocks = BITMAP_ALLOC (NULL);
+ db_p->livein_blocks = BITMAP_ALLOC (NULL);
+ *slot = (void *) db_p;
+ }
+ else
+ db_p = (struct def_blocks_d *) *slot;
+
+ return db_p;
+}
+
+
+/* Mark block BB as the definition site for variable VAR. PHI_P is true if
+ VAR is defined by a PHI node. */
+
+static void
+set_def_block (tree var, basic_block bb, bool phi_p)
+{
+ struct def_blocks_d *db_p;
+ enum need_phi_state state;
+
+ state = get_phi_state (var);
+ db_p = get_def_blocks_for (var);
+
+ /* Set the bit corresponding to the block where VAR is defined. */
+ bitmap_set_bit (db_p->def_blocks, bb->index);
+ if (phi_p)
+ bitmap_set_bit (db_p->phi_blocks, bb->index);
+
+ /* Keep track of whether or not we may need to insert PHI nodes.
+
+ If we are in the UNKNOWN state, then this is the first definition
+ of VAR. Additionally, we have not seen any uses of VAR yet, so
+ we do not need a PHI node for this variable at this time (i.e.,
+ transition to NEED_PHI_STATE_NO).
+
+ If we are in any other state, then we either have multiple definitions
+ of this variable occurring in different blocks or we saw a use of the
+ variable which was not dominated by the block containing the
+ definition(s). In this case we may need a PHI node, so enter
+ state NEED_PHI_STATE_MAYBE. */
+ if (state == NEED_PHI_STATE_UNKNOWN)
+ set_phi_state (var, NEED_PHI_STATE_NO);
+ else
+ set_phi_state (var, NEED_PHI_STATE_MAYBE);
+}
+
+
+/* Mark block BB as having VAR live at the entry to BB. */
+
+static void
+set_livein_block (tree var, basic_block bb)
+{
+ struct def_blocks_d *db_p;
+ enum need_phi_state state = get_phi_state (var);
+
+ db_p = get_def_blocks_for (var);
+
+ /* Set the bit corresponding to the block where VAR is live in. */
+ bitmap_set_bit (db_p->livein_blocks, bb->index);
+
+ /* Keep track of whether or not we may need to insert PHI nodes.
+
+ If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
+ by the single block containing the definition(s) of this variable. If
+ it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
+ NEED_PHI_STATE_MAYBE. */
+ if (state == NEED_PHI_STATE_NO)
+ {
+ int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
+
+ if (def_block_index == -1
+ || ! dominated_by_p (CDI_DOMINATORS, bb,
+ BASIC_BLOCK (def_block_index)))
+ set_phi_state (var, NEED_PHI_STATE_MAYBE);
+ }
+ else
+ set_phi_state (var, NEED_PHI_STATE_MAYBE);
+}
+
+
+/* Return true if symbol SYM is marked for renaming. */
+
+static inline bool
+symbol_marked_for_renaming (tree sym)
+{
+ gcc_assert (DECL_P (sym));
+ return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
+}
+
+
+/* Return true if NAME is in OLD_SSA_NAMES. */
+
+static inline bool
+is_old_name (tree name)
+{
+ unsigned ver = SSA_NAME_VERSION (name);
+ return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
+}
+
+
+/* Return true if NAME is in NEW_SSA_NAMES. */
+
+static inline bool
+is_new_name (tree name)
+{
+ unsigned ver = SSA_NAME_VERSION (name);
+ return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
+}
+
+
+/* Hashing and equality functions for REPL_TBL. */
+
+static hashval_t
+repl_map_hash (const void *p)
+{
+ return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
+}
+
+static int
+repl_map_eq (const void *p1, const void *p2)
+{
+ return ((const struct repl_map_d *)p1)->name
+ == ((const struct repl_map_d *)p2)->name;
+}
+
+static void
+repl_map_free (void *p)
+{
+ BITMAP_FREE (((struct repl_map_d *)p)->set);
+ free (p);
+}
+
+
+/* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
+
+static inline bitmap
+names_replaced_by (tree new)
+{
+ struct repl_map_d m;
+ void **slot;
+
+ m.name = new;
+ slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
+
+ /* If N was not registered in the replacement table, return NULL. */
+ if (slot == NULL || *slot == NULL)
+ return NULL;
+
+ return ((struct repl_map_d *) *slot)->set;
+}
+
+
+/* Add OLD to REPL_TBL[NEW].SET. */
+
+static inline void
+add_to_repl_tbl (tree new, tree old)
+{
+ struct repl_map_d m, *mp;
+ void **slot;
+
+ m.name = new;
+ slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
+ if (*slot == NULL)
+ {
+ mp = XNEW (struct repl_map_d);
+ mp->name = new;
+ mp->set = BITMAP_ALLOC (NULL);
+ *slot = (void *) mp;
+ }
+ else
+ mp = (struct repl_map_d *) *slot;
+
+ bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
+}
+
+
+/* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
+ represents the set of names O_1 ... O_j replaced by N_i. This is
+ used by update_ssa and its helpers to introduce new SSA names in an
+ already formed SSA web. */
+
+static void
+add_new_name_mapping (tree new, tree old)
+{
+ timevar_push (TV_TREE_SSA_INCREMENTAL);
+
+ /* OLD and NEW must be different SSA names for the same symbol. */
+ gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));
+
+ /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
+ caller may have created new names since the set was created. */
+ if (new_ssa_names->n_bits <= num_ssa_names - 1)
+ {
+ unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
+ new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
+ old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
+ }
+
+ /* If this mapping is for virtual names, we will need to update
+ virtual operands. */
+ if (!is_gimple_reg (new))
+ {
+ tree sym;
+ size_t uid;
+
+ need_to_update_vops_p = true;
+
+ /* Keep counts of virtual mappings and symbols to use in the
+ virtual mapping heuristic. If we have large numbers of
+ virtual mappings for a relatively low number of symbols, it
+ will make more sense to rename the symbols from scratch.
+ Otherwise, the insertion of PHI nodes for each of the old
+ names in these mappings will be very slow. */
+ sym = SSA_NAME_VAR (new);
+ uid = DECL_UID (sym);
+ update_ssa_stats.num_virtual_mappings++;
+ if (!bitmap_bit_p (update_ssa_stats.virtual_symbols, uid))
+ {
+ bitmap_set_bit (update_ssa_stats.virtual_symbols, uid);
+ update_ssa_stats.num_virtual_symbols++;
+ }
+ }
+
+ /* Update the REPL_TBL table. */
+ add_to_repl_tbl (new, old);
+
+ /* If OLD had already been registered as a new name, then all the
+ names that OLD replaces should also be replaced by NEW. */
+ if (is_new_name (old))
+ bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
+
+ /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
+ respectively. */
+ SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
+ SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
+
+ /* Update mapping counter to use in the virtual mapping heuristic. */
+ update_ssa_stats.num_total_mappings++;
+
+ timevar_pop (TV_TREE_SSA_INCREMENTAL);
+}
+
+
+/* Call back for walk_dominator_tree used to collect definition sites
+ for every variable in the function. For every statement S in block
+ BB:
+
+ 1- Variables defined by S in the DEFS of S are marked in the bitmap
+ WALK_DATA->GLOBAL_DATA->KILLS.
+
+ 2- If S uses a variable VAR and there is no preceding kill of VAR,
+ then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
+
+ This information is used to determine which variables are live
+ across block boundaries to reduce the number of PHI nodes
+ we create. */
+
+static void
+mark_def_sites (struct dom_walk_data *walk_data,
+ basic_block bb,
+ block_stmt_iterator bsi)
+{
+ struct mark_def_sites_global_data *gd =
+ (struct mark_def_sites_global_data *) walk_data->global_data;
+ bitmap kills = gd->kills;
+ tree stmt, def;
+ use_operand_p use_p;
+ def_operand_p def_p;
+ ssa_op_iter iter;
+
+ stmt = bsi_stmt (bsi);
+ update_stmt_if_modified (stmt);
+
+ gcc_assert (blocks_to_update == NULL);
+ REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
+ REWRITE_THIS_STMT (stmt) = 0;
+
+ /* If a variable is used before being set, then the variable is live
+ across a block boundary, so mark it live-on-entry to BB. */
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
+ SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTKILL)
+ {
+ tree sym = USE_FROM_PTR (use_p);
+ gcc_assert (DECL_P (sym));
+ if (!bitmap_bit_p (kills, DECL_UID (sym)))
+ set_livein_block (sym, bb);
+ REWRITE_THIS_STMT (stmt) = 1;
+ }
+
+ /* Note that virtual definitions are irrelevant for computing KILLS
+ because a V_MAY_DEF does not constitute a killing definition of the
+ variable. However, the operand of a virtual definitions is a use
+ of the variable, so it may cause the variable to be considered
+ live-on-entry. */
+ FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
+ {
+ tree sym = USE_FROM_PTR (use_p);
+ gcc_assert (DECL_P (sym));
+ set_livein_block (sym, bb);
+ set_def_block (sym, bb, false);
+ REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
+ REWRITE_THIS_STMT (stmt) = 1;
+ }
+
+ /* Now process the defs and must-defs made by this statement. */
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
+ {
+ gcc_assert (DECL_P (def));
+ set_def_block (def, bb, false);
+ bitmap_set_bit (kills, DECL_UID (def));
+ REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
+ }
+
+ /* If we found the statement interesting then also mark the block BB
+ as interesting. */
+ if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
+ SET_BIT (gd->interesting_blocks, bb->index);
+}
+
+/* Structure used by prune_unused_phi_nodes to record bounds of the intervals
+ in the dfs numbering of the dominance tree. */
+
+struct dom_dfsnum
+{
+ /* Basic block whose index this entry corresponds to. */
+ unsigned bb_index;
+
+ /* The dfs number of this node. */
+ unsigned dfs_num;
+};
+
+/* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
+ for qsort. */
+
+static int
+cmp_dfsnum (const void *a, const void *b)
+{
+ const struct dom_dfsnum *da = a;
+ const struct dom_dfsnum *db = b;
+
+ return (int) da->dfs_num - (int) db->dfs_num;
+}
+
+/* Among the intervals starting at the N points specified in DEFS, find
+ the one that contains S, and return its bb_index. */
+
+static unsigned
+find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
+{
+ unsigned f = 0, t = n, m;
+
+ while (t > f + 1)
+ {
+ m = (f + t) / 2;
+ if (defs[m].dfs_num <= s)
+ f = m;
+ else
+ t = m;
+ }
+
+ return defs[f].bb_index;
+}
+
+/* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
+ KILLS is a bitmap of blocks where the value is defined before any use. */
+
+static void
+prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
+{
+ VEC(int, heap) *worklist;
+ bitmap_iterator bi;
+ unsigned i, b, p, u, top;
+ bitmap live_phis;
+ basic_block def_bb, use_bb;
+ edge e;
+ edge_iterator ei;
+ bitmap to_remove;
+ struct dom_dfsnum *defs;
+ unsigned n_defs, adef;
+
+ if (bitmap_empty_p (uses))
+ {
+ bitmap_clear (phis);
+ return;
+ }
+
+ /* The phi must dominate a use, or an argument of a live phi. Also, we
+ do not create any phi nodes in def blocks, unless they are also livein. */
+ to_remove = BITMAP_ALLOC (NULL);
+ bitmap_and_compl (to_remove, kills, uses);
+ bitmap_and_compl_into (phis, to_remove);
+ if (bitmap_empty_p (phis))
+ {
+ BITMAP_FREE (to_remove);
+ return;
+ }
+
+ /* We want to remove the unnecessary phi nodes, but we do not want to compute
+ liveness information, as that may be linear in the size of CFG, and if
+ there are lot of different variables to rewrite, this may lead to quadratic
+ behavior.
+
+ Instead, we basically emulate standard dce. We put all uses to worklist,
+ then for each of them find the nearest def that dominates them. If this
+ def is a phi node, we mark it live, and if it was not live before, we
+ add the predecessors of its basic block to the worklist.
+
+ To quickly locate the nearest def that dominates use, we use dfs numbering
+ of the dominance tree (that is already available in order to speed up
+ queries). For each def, we have the interval given by the dfs number on
+ entry to and on exit from the corresponding subtree in the dominance tree.
+ The nearest dominator for a given use is the smallest of these intervals
+ that contains entry and exit dfs numbers for the basic block with the use.
+ If we store the bounds for all the uses to an array and sort it, we can
+ locate the nearest dominating def in logarithmic time by binary search.*/
+ bitmap_ior (to_remove, kills, phis);
+ n_defs = bitmap_count_bits (to_remove);
+ defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
+ defs[0].bb_index = 1;
+ defs[0].dfs_num = 0;
+ adef = 1;
+ EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
+ {
+ def_bb = BASIC_BLOCK (i);
+ defs[adef].bb_index = i;
+ defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
+ defs[adef + 1].bb_index = i;
+ defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
+ adef += 2;
+ }
+ BITMAP_FREE (to_remove);
+ gcc_assert (adef == 2 * n_defs + 1);
+ qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
+ gcc_assert (defs[0].bb_index == 1);
+
+ /* Now each DEFS entry contains the number of the basic block to that the
+ dfs number corresponds. Change them to the number of basic block that
+ corresponds to the interval following the dfs number. Also, for the
+ dfs_out numbers, increase the dfs number by one (so that it corresponds
+ to the start of the following interval, not to the end of the current
+ one). We use WORKLIST as a stack. */
+ worklist = VEC_alloc (int, heap, n_defs + 1);
+ VEC_quick_push (int, worklist, 1);
+ top = 1;
+ n_defs = 1;
+ for (i = 1; i < adef; i++)
+ {
+ b = defs[i].bb_index;
+ if (b == top)
+ {
+ /* This is a closing element. Interval corresponding to the top
+ of the stack after removing it follows. */
+ VEC_pop (int, worklist);
+ top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
+ defs[n_defs].bb_index = top;
+ defs[n_defs].dfs_num = defs[i].dfs_num + 1;
+ }
+ else
+ {
+ /* Opening element. Nothing to do, just push it to the stack and move
+ it to the correct position. */
+ defs[n_defs].bb_index = defs[i].bb_index;
+ defs[n_defs].dfs_num = defs[i].dfs_num;
+ VEC_quick_push (int, worklist, b);
+ top = b;
+ }
+
+ /* If this interval starts at the same point as the previous one, cancel
+ the previous one. */
+ if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
+ defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
+ else
+ n_defs++;
+ }
+ VEC_pop (int, worklist);
+ gcc_assert (VEC_empty (int, worklist));
+
+ /* Now process the uses. */
+ live_phis = BITMAP_ALLOC (NULL);
+ EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
+ {
+ VEC_safe_push (int, heap, worklist, i);
+ }
+
+ while (!VEC_empty (int, worklist))
+ {
+ b = VEC_pop (int, worklist);
+ if (b == ENTRY_BLOCK)
+ continue;
+
+ /* If there is a phi node in USE_BB, it is made live. Otherwise,
+ find the def that dominates the immediate dominator of USE_BB
+ (the kill in USE_BB does not dominate the use). */
+ if (bitmap_bit_p (phis, b))
+ p = b;
+ else
+ {
+ use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
+ p = find_dfsnum_interval (defs, n_defs,
+ bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
+ if (!bitmap_bit_p (phis, p))
+ continue;
+ }
+
+ /* If the phi node is already live, there is nothing to do. */
+ if (bitmap_bit_p (live_phis, p))
+ continue;
+
+ /* Mark the phi as live, and add the new uses to the worklist. */
+ bitmap_set_bit (live_phis, p);
+ def_bb = BASIC_BLOCK (p);
+ FOR_EACH_EDGE (e, ei, def_bb->preds)
+ {
+ u = e->src->index;
+ if (bitmap_bit_p (uses, u))
+ continue;
+
+ /* In case there is a kill directly in the use block, do not record
+ the use (this is also necessary for correctness, as we assume that
+ uses dominated by a def directly in their block have been filtered
+ out before). */
+ if (bitmap_bit_p (kills, u))
+ continue;
+
+ bitmap_set_bit (uses, u);
+ VEC_safe_push (int, heap, worklist, u);
+ }
+ }
+
+ VEC_free (int, heap, worklist);
+ bitmap_copy (phis, live_phis);
+ BITMAP_FREE (live_phis);
+ free (defs);
+}
+
+/* Given a set of blocks with variable definitions (DEF_BLOCKS),
+ return a bitmap with all the blocks in the iterated dominance
+ frontier of the blocks in DEF_BLOCKS. DFS contains dominance
+ frontier information as returned by compute_dominance_frontiers.
+
+ The resulting set of blocks are the potential sites where PHI nodes
+ are needed. The caller is responsible from freeing the memory
+ allocated for the return value. */
+
+static bitmap
+find_idf (bitmap def_blocks, bitmap *dfs)
+{
+ bitmap_iterator bi;
+ unsigned bb_index;
+ VEC(int,heap) *work_stack;
+ bitmap phi_insertion_points;
+
+ work_stack = VEC_alloc (int, heap, n_basic_blocks);
+ phi_insertion_points = BITMAP_ALLOC (NULL);
+
+ /* Seed the work list with all the blocks in DEF_BLOCKS. */
+ EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
+ /* We use VEC_quick_push here for speed. This is safe because we
+ know that the number of definition blocks is no greater than
+ the number of basic blocks, which is the initial capacity of
+ WORK_STACK. */
+ VEC_quick_push (int, work_stack, bb_index);
+
+ /* Pop a block off the worklist, add every block that appears in
+ the original block's DF that we have not already processed to
+ the worklist. Iterate until the worklist is empty. Blocks
+ which are added to the worklist are potential sites for
+ PHI nodes. */
+ while (VEC_length (int, work_stack) > 0)
+ {
+ bb_index = VEC_pop (int, work_stack);
+
+ /* Since the registration of NEW -> OLD name mappings is done
+ separately from the call to update_ssa, when updating the SSA
+ form, the basic blocks where new and/or old names are defined
+ may have disappeared by CFG cleanup calls. In this case,
+ we may pull a non-existing block from the work stack. */
+ gcc_assert (bb_index < (unsigned) last_basic_block);
+
+ EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
+ 0, bb_index, bi)
+ {
+ /* Use a safe push because if there is a definition of VAR
+ in every basic block, then WORK_STACK may eventually have
+ more than N_BASIC_BLOCK entries. */
+ VEC_safe_push (int, heap, work_stack, bb_index);
+ bitmap_set_bit (phi_insertion_points, bb_index);
+ }
+ }
+
+ VEC_free (int, heap, work_stack);
+
+ return phi_insertion_points;
+}
+
+
+/* Return the set of blocks where variable VAR is defined and the blocks
+ where VAR is live on entry (livein). Return NULL, if no entry is
+ found in DEF_BLOCKS. */
+
+static inline struct def_blocks_d *
+find_def_blocks_for (tree var)
+{
+ struct def_blocks_d dm;
+ dm.var = var;
+ return (struct def_blocks_d *) htab_find (def_blocks, &dm);
+}
+
+
+/* Retrieve or create a default definition for symbol SYM. */
+
+static inline tree
+get_default_def_for (tree sym)
+{
+ tree ddef = default_def (sym);
+
+ if (ddef == NULL_TREE)
+ {
+ ddef = make_ssa_name (sym, build_empty_stmt ());
+ set_default_def (sym, ddef);
+ }
+
+ return ddef;
+}
+
+
+/* Marks phi node PHI in basic block BB for rewrite. */
+
+static void
+mark_phi_for_rewrite (basic_block bb, tree phi)
+{
+ tree_vec phis;
+ unsigned i, idx = bb->index;
+
+ if (REWRITE_THIS_STMT (phi))
+ return;
+ REWRITE_THIS_STMT (phi) = 1;
+
+ if (!blocks_with_phis_to_rewrite)
+ return;
+
+ bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
+ VEC_reserve (tree_vec, heap, phis_to_rewrite, last_basic_block + 1);
+ for (i = VEC_length (tree_vec, phis_to_rewrite); i <= idx; i++)
+ VEC_quick_push (tree_vec, phis_to_rewrite, NULL);
+
+ phis = VEC_index (tree_vec, phis_to_rewrite, idx);
+ if (!phis)
+ phis = VEC_alloc (tree, heap, 10);
+
+ VEC_safe_push (tree, heap, phis, phi);
+ VEC_replace (tree_vec, phis_to_rewrite, idx, phis);
+}
+
+/* Insert PHI nodes for variable VAR using the iterated dominance
+ frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
+ function assumes that the caller is incrementally updating the SSA
+ form, in which case (1) VAR is assumed to be an SSA name, (2) a new
+ SSA name is created for VAR's symbol, and, (3) all the arguments
+ for the newly created PHI node are set to VAR.
+
+ PHI_INSERTION_POINTS is updated to reflect nodes that already had a
+ PHI node for VAR. On exit, only the nodes that received a PHI node
+ for VAR will be present in PHI_INSERTION_POINTS. */
+
+static void
+insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
+{
+ unsigned bb_index;
+ edge e;
+ tree phi;
+ basic_block bb;
+ bitmap_iterator bi;
+ struct def_blocks_d *def_map;
+
+ def_map = find_def_blocks_for (var);
+ gcc_assert (def_map);
+
+ /* Remove the blocks where we already have PHI nodes for VAR. */
+ bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
+
+ /* Remove obviously useless phi nodes. */
+ prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
+ def_map->livein_blocks);
+
+ /* And insert the PHI nodes. */
+ EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
+ {
+ bb = BASIC_BLOCK (bb_index);
+ if (update_p)
+ mark_block_for_update (bb);
+
+ if (update_p && TREE_CODE (var) == SSA_NAME)
+ {
+ /* If we are rewriting SSA names, create the LHS of the PHI
+ node by duplicating VAR. This is useful in the case of
+ pointers, to also duplicate pointer attributes (alias
+ information, in particular). */
+ edge_iterator ei;
+ tree new_lhs;
+
+ phi = create_phi_node (var, bb);
+ new_lhs = duplicate_ssa_name (var, phi);
+ SET_PHI_RESULT (phi, new_lhs);
+ add_new_name_mapping (new_lhs, var);
+
+ /* Add VAR to every argument slot of PHI. We need VAR in
+ every argument so that rewrite_update_phi_arguments knows
+ which name is this PHI node replacing. If VAR is a
+ symbol marked for renaming, this is not necessary, the
+ renamer will use the symbol on the LHS to get its
+ reaching definition. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ add_phi_arg (phi, var, e);
+ }
+ else
+ {
+ tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
+ phi = create_phi_node (sym, bb);
+ }
+
+ /* Mark this PHI node as interesting for update_ssa. */
+ REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
+ mark_phi_for_rewrite (bb, phi);
+ }
+}
+
+
+/* Insert PHI nodes at the dominance frontier of blocks with variable
+ definitions. DFS contains the dominance frontier information for
+ the flowgraph. PHI nodes will only be inserted at the dominance
+ frontier of definition blocks for variables whose NEED_PHI_STATE
+ annotation is marked as ``maybe'' or ``unknown'' (computed by
+ mark_def_sites). */
+
+static void
+insert_phi_nodes (bitmap *dfs)
+{
+ referenced_var_iterator rvi;
+ tree var;
+
+ timevar_push (TV_TREE_INSERT_PHI_NODES);
+
+ FOR_EACH_REFERENCED_VAR (var, rvi)
+ {
+ struct def_blocks_d *def_map;
+ bitmap idf;
+
+ def_map = find_def_blocks_for (var);
+ if (def_map == NULL)
+ continue;
+
+ if (get_phi_state (var) != NEED_PHI_STATE_NO)
+ {
+ idf = find_idf (def_map->def_blocks, dfs);
+ insert_phi_nodes_for (var, idf, false);
+ BITMAP_FREE (idf);
+ }
+ }
+
+ timevar_pop (TV_TREE_INSERT_PHI_NODES);
+}
+
+
+/* Register DEF (an SSA_NAME) to be a new definition for its underlying
+ variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
+ into the stack pointed to by BLOCK_DEFS_P. */
+
+void
+register_new_def (tree def, VEC(tree,heap) **block_defs_p)
+{
+ tree var = SSA_NAME_VAR (def);
+ tree currdef;
+
+ /* If this variable is set in a single basic block and all uses are
+ dominated by the set(s) in that single basic block, then there is
+ no reason to record anything for this variable in the block local
+ definition stacks. Doing so just wastes time and memory.
+
+ This is the same test to prune the set of variables which may
+ need PHI nodes. So we just use that information since it's already
+ computed and available for us to use. */
+ if (get_phi_state (var) == NEED_PHI_STATE_NO)
+ {
+ set_current_def (var, def);
+ return;
+ }
+
+ currdef = get_current_def (var);
+
+ /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
+ later used by the dominator tree callbacks to restore the reaching
+ definitions for all the variables defined in the block after a recursive
+ visit to all its immediately dominated blocks. If there is no current
+ reaching definition, then just record the underlying _DECL node. */
+ VEC_safe_push (tree, heap, *block_defs_p, currdef ? currdef : var);
+
+ /* Set the current reaching definition for VAR to be DEF. */
+ set_current_def (var, def);
+}
+
+
+/* Perform a depth-first traversal of the dominator tree looking for
+ variables to rename. BB is the block where to start searching.
+ Renaming is a five step process:
+
+ 1- Every definition made by PHI nodes at the start of the blocks is
+ registered as the current definition for the corresponding variable.
+
+ 2- Every statement in BB is rewritten. USE and VUSE operands are
+ rewritten with their corresponding reaching definition. DEF and
+ VDEF targets are registered as new definitions.
+
+ 3- All the PHI nodes in successor blocks of BB are visited. The
+ argument corresponding to BB is replaced with its current reaching
+ definition.
+
+ 4- Recursively rewrite every dominator child block of BB.
+
+ 5- Restore (in reverse order) the current reaching definition for every
+ new definition introduced in this block. This is done so that when
+ we return from the recursive call, all the current reaching
+ definitions are restored to the names that were valid in the
+ dominator parent of BB. */
+
+/* SSA Rewriting Step 1. Initialization, create a block local stack
+ of reaching definitions for new SSA names produced in this block
+ (BLOCK_DEFS). Register new definitions for every PHI node in the
+ block. */
+
+static void
+rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb)
+{
+ tree phi;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
+
+ /* Mark the unwind point for this block. */
+ VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
+
+ /* Step 1. Register new definitions for every PHI node in the block.
+ Conceptually, all the PHI nodes are executed in parallel and each PHI
+ node introduces a new version for the associated variable. */
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ tree result = PHI_RESULT (phi);
+ register_new_def (result, &block_defs_stack);
+ }
+}
+
+
+/* Return the current definition for variable VAR. If none is found,
+ create a new SSA name to act as the zeroth definition for VAR. If VAR
+ is call clobbered and there exists a more recent definition of
+ GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
+ has been clobbered by a function call since its last assignment. */
+
+static tree
+get_reaching_def (tree var)
+{
+ tree currdef_var, avar;
+
+ /* Lookup the current reaching definition for VAR. */
+ currdef_var = get_current_def (var);
+
+ /* If there is no reaching definition for VAR, create and register a
+ default definition for it (if needed). */
+ if (currdef_var == NULL_TREE)
+ {
+ avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
+ currdef_var = get_default_def_for (avar);
+ set_current_def (var, currdef_var);
+ }
+
+ /* Return the current reaching definition for VAR, or the default
+ definition, if we had to create one. */
+ return currdef_var;
+}
+
+
+/* SSA Rewriting Step 2. Rewrite every variable used in each statement in
+ the block with its immediate reaching definitions. Update the current
+ definition of a variable when a new real or virtual definition is found. */
+
+static void
+rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb ATTRIBUTE_UNUSED,
+ block_stmt_iterator si)
+{
+ tree stmt;
+ use_operand_p use_p;
+ def_operand_p def_p;
+ ssa_op_iter iter;
+
+ stmt = bsi_stmt (si);
+
+ /* If mark_def_sites decided that we don't need to rewrite this
+ statement, ignore it. */
+ gcc_assert (blocks_to_update == NULL);
+ if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
+ return;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Renaming statement ");
+ print_generic_stmt (dump_file, stmt, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ /* Step 1. Rewrite USES and VUSES in the statement. */
+ if (REWRITE_THIS_STMT (stmt))
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
+ SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
+ {
+ tree var = USE_FROM_PTR (use_p);
+ gcc_assert (DECL_P (var));
+ SET_USE (use_p, get_reaching_def (var));
+ }
+
+ /* Step 2. Register the statement's DEF and VDEF operands. */
+ if (REGISTER_DEFS_IN_THIS_STMT (stmt))
+ FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
+ {
+ tree var = DEF_FROM_PTR (def_p);
+ gcc_assert (DECL_P (var));
+ SET_DEF (def_p, make_ssa_name (var, stmt));
+ register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
+ }
+}
+
+
+/* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
+ PHI nodes. For every PHI node found, add a new argument containing the
+ current reaching definition for the variable and the edge through which
+ that definition is reaching the PHI node. */
+
+static void
+rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ tree phi;
+
+ for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
+ {
+ tree currdef;
+ currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
+ add_phi_arg (phi, currdef, e);
+ }
+ }
+}
+
+
+/* Called after visiting basic block BB. Restore CURRDEFS to its
+ original value. */
+
+static void
+rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb ATTRIBUTE_UNUSED)
+{
+ /* Restore CURRDEFS to its original state. */
+ while (VEC_length (tree, block_defs_stack) > 0)
+ {
+ tree tmp = VEC_pop (tree, block_defs_stack);
+ tree saved_def, var;
+
+ if (tmp == NULL_TREE)
+ break;
+
+ /* If we recorded an SSA_NAME, then make the SSA_NAME the current
+ definition of its underlying variable. If we recorded anything
+ else, it must have been an _DECL node and its current reaching
+ definition must have been NULL. */
+ if (TREE_CODE (tmp) == SSA_NAME)
+ {
+ saved_def = tmp;
+ var = SSA_NAME_VAR (saved_def);
+ }
+ else
+ {
+ saved_def = NULL;
+ var = tmp;
+ }
+
+ set_current_def (var, saved_def);
+ }
+}
+
+
+/* Dump SSA information to FILE. */
+
+void
+dump_tree_ssa (FILE *file)
+{
+ basic_block bb;
+ const char *funcname
+ = lang_hooks.decl_printable_name (current_function_decl, 2);
+
+ fprintf (file, "SSA information for %s\n\n", funcname);
+
+ FOR_EACH_BB (bb)
+ {
+ dump_bb (bb, file, 0);
+ fputs (" ", file);
+ print_generic_stmt (file, phi_nodes (bb), dump_flags);
+ fputs ("\n\n", file);
+ }
+}
+
+
+/* Dump SSA information to stderr. */
+
+void
+debug_tree_ssa (void)
+{
+ dump_tree_ssa (stderr);
+}
+
+
+/* Dump statistics for the hash table HTAB. */
+
+static void
+htab_statistics (FILE *file, htab_t htab)
+{
+ fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
+ (long) htab_size (htab),
+ (long) htab_elements (htab),
+ htab_collisions (htab));
+}
+
+
+/* Dump SSA statistics on FILE. */
+
+void
+dump_tree_ssa_stats (FILE *file)
+{
+ fprintf (file, "\nHash table statistics:\n");
+
+ fprintf (file, " def_blocks: ");
+ htab_statistics (file, def_blocks);
+
+ fprintf (file, "\n");
+}
+
+
+/* Dump SSA statistics on stderr. */
+
+void
+debug_tree_ssa_stats (void)
+{
+ dump_tree_ssa_stats (stderr);
+}
+
+
+/* Hashing and equality functions for DEF_BLOCKS. */
+
+static hashval_t
+def_blocks_hash (const void *p)
+{
+ return htab_hash_pointer
+ ((const void *)((const struct def_blocks_d *)p)->var);
+}
+
+static int
+def_blocks_eq (const void *p1, const void *p2)
+{
+ return ((const struct def_blocks_d *)p1)->var
+ == ((const struct def_blocks_d *)p2)->var;
+}
+
+
+/* Free memory allocated by one entry in DEF_BLOCKS. */
+
+static void
+def_blocks_free (void *p)
+{
+ struct def_blocks_d *entry = (struct def_blocks_d *) p;
+ BITMAP_FREE (entry->def_blocks);
+ BITMAP_FREE (entry->phi_blocks);
+ BITMAP_FREE (entry->livein_blocks);
+ free (entry);
+}
+
+
+/* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
+
+static int
+debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
+
+ fprintf (stderr, "VAR: ");
+ print_generic_expr (stderr, db_p->var, dump_flags);
+ bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
+ bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");
+
+ return 1;
+}
+
+
+/* Dump the DEF_BLOCKS hash table on stderr. */
+
+void
+debug_def_blocks (void)
+{
+ htab_traverse (def_blocks, debug_def_blocks_r, NULL);
+}
+
+
+/* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
+
+static inline void
+register_new_update_single (tree new_name, tree old_name)
+{
+ tree currdef = get_current_def (old_name);
+
+ /* Push the current reaching definition into *BLOCK_DEFS_P.
+ This stack is later used by the dominator tree callbacks to
+ restore the reaching definitions for all the variables
+ defined in the block after a recursive visit to all its
+ immediately dominated blocks. */
+ VEC_reserve (tree, heap, block_defs_stack, 2);
+ VEC_quick_push (tree, block_defs_stack, currdef);
+ VEC_quick_push (tree, block_defs_stack, old_name);
+
+ /* Set the current reaching definition for OLD_NAME to be
+ NEW_NAME. */
+ set_current_def (old_name, new_name);
+}
+
+
+/* Register NEW_NAME to be the new reaching definition for all the
+ names in OLD_NAMES. Used by the incremental SSA update routines to
+ replace old SSA names with new ones. */
+
+static inline void
+register_new_update_set (tree new_name, bitmap old_names)
+{
+ bitmap_iterator bi;
+ unsigned i;
+
+ EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
+ register_new_update_single (new_name, ssa_name (i));
+}
+
+
+/* Initialization of block data structures for the incremental SSA
+ update pass. Create a block local stack of reaching definitions
+ for new SSA names produced in this block (BLOCK_DEFS). Register
+ new definitions for every PHI node in the block. */
+
+static void
+rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+ tree phi;
+ bool is_abnormal_phi;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
+ bb->index);
+
+ /* Mark the unwind point for this block. */
+ VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
+
+ if (!bitmap_bit_p (blocks_to_update, bb->index))
+ return;
+
+ /* Mark the LHS if any of the arguments flows through an abnormal
+ edge. */
+ is_abnormal_phi = false;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (e->flags & EDGE_ABNORMAL)
+ {
+ is_abnormal_phi = true;
+ break;
+ }
+
+ /* If any of the PHI nodes is a replacement for a name in
+ OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
+ register it as a new definition for its corresponding name. Also
+ register definitions for names whose underlying symbols are
+ marked for renaming. */
+
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ tree lhs, lhs_sym;
+
+ if (!REGISTER_DEFS_IN_THIS_STMT (phi))
+ continue;
+
+ lhs = PHI_RESULT (phi);
+ lhs_sym = SSA_NAME_VAR (lhs);
+
+ if (symbol_marked_for_renaming (lhs_sym))
+ register_new_update_single (lhs, lhs_sym);
+ else
+ {
+ /* If LHS is a new name, register a new definition for all
+ the names replaced by LHS. */
+ if (is_new_name (lhs))
+ register_new_update_set (lhs, names_replaced_by (lhs));
+
+ /* If LHS is an OLD name, register it as a new definition
+ for itself. */
+ if (is_old_name (lhs))
+ register_new_update_single (lhs, lhs);
+ }
+
+ if (is_abnormal_phi)
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
+ }
+}
+
+
+/* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
+ the current reaching definition of every name re-written in BB to
+ the original reaching definition before visiting BB. This
+ unwinding must be done in the opposite order to what is done in
+ register_new_update_set. */
+
+static void
+rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb ATTRIBUTE_UNUSED)
+{
+ while (VEC_length (tree, block_defs_stack) > 0)
+ {
+ tree var = VEC_pop (tree, block_defs_stack);
+ tree saved_def;
+
+ /* NULL indicates the unwind stop point for this block (see
+ rewrite_update_init_block). */
+ if (var == NULL)
+ return;
+
+ saved_def = VEC_pop (tree, block_defs_stack);
+ set_current_def (var, saved_def);
+ }
+}
+
+
+/* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
+ it is a symbol marked for renaming, replace it with USE_P's current
+ reaching definition. */
+
+static inline void
+maybe_replace_use (use_operand_p use_p)
+{
+ tree rdef = NULL_TREE;
+ tree use = USE_FROM_PTR (use_p);
+ tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
+
+ if (symbol_marked_for_renaming (sym))
+ rdef = get_reaching_def (sym);
+ else if (is_old_name (use))
+ rdef = get_reaching_def (use);
+
+ if (rdef && rdef != use)
+ SET_USE (use_p, rdef);
+}
+
+
+/* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
+ or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
+ register it as the current definition for the names replaced by
+ DEF_P. */
+
+static inline void
+maybe_register_def (def_operand_p def_p, tree stmt)
+{
+ tree def = DEF_FROM_PTR (def_p);
+ tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
+
+ /* If DEF is a naked symbol that needs renaming, create a
+ new name for it. */
+ if (symbol_marked_for_renaming (sym))
+ {
+ if (DECL_P (def))
+ {
+ def = make_ssa_name (def, stmt);
+ SET_DEF (def_p, def);
+ }
+
+ register_new_update_single (def, sym);
+ }
+ else
+ {
+ /* If DEF is a new name, register it as a new definition
+ for all the names replaced by DEF. */
+ if (is_new_name (def))
+ register_new_update_set (def, names_replaced_by (def));
+
+ /* If DEF is an old name, register DEF as a new
+ definition for itself. */
+ if (is_old_name (def))
+ register_new_update_single (def, def);
+ }
+}
+
+
+/* Update every variable used in the statement pointed-to by SI. The
+ statement is assumed to be in SSA form already. Names in
+ OLD_SSA_NAMES used by SI will be updated to their current reaching
+ definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
+ will be registered as a new definition for their corresponding name
+ in OLD_SSA_NAMES. */
+
+static void
+rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb ATTRIBUTE_UNUSED,
+ block_stmt_iterator si)
+{
+ stmt_ann_t ann;
+ tree stmt;
+ use_operand_p use_p;
+ def_operand_p def_p;
+ ssa_op_iter iter;
+
+ stmt = bsi_stmt (si);
+ ann = stmt_ann (stmt);
+
+ gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
+
+ /* Only update marked statements. */
+ if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
+ return;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Updating SSA information for statement ");
+ print_generic_stmt (dump_file, stmt, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
+ symbol is marked for renaming. */
+ if (REWRITE_THIS_STMT (stmt))
+ {
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
+ maybe_replace_use (use_p);
+
+ if (need_to_update_vops_p)
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
+ SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
+ maybe_replace_use (use_p);
+ }
+
+ /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
+ Also register definitions for names whose underlying symbol is
+ marked for renaming. */
+ if (REGISTER_DEFS_IN_THIS_STMT (stmt))
+ {
+ FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
+ maybe_register_def (def_p, stmt);
+
+ if (need_to_update_vops_p)
+ FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
+ maybe_register_def (def_p, stmt);
+ }
+}
+
+
+/* Replace the operand pointed to by USE_P with USE's current reaching
+ definition. */
+
+static inline void
+replace_use (use_operand_p use_p, tree use)
+{
+ tree rdef = get_reaching_def (use);
+ if (rdef != use)
+ SET_USE (use_p, rdef);
+}
+
+
+/* Visit all the successor blocks of BB looking for PHI nodes. For
+ every PHI node found, check if any of its arguments is in
+ OLD_SSA_NAMES. If so, and if the argument has a current reaching
+ definition, replace it. */
+
+static void
+rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+ unsigned i;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ tree phi;
+ tree_vec phis;
+
+ if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
+ continue;
+
+ phis = VEC_index (tree_vec, phis_to_rewrite, e->dest->index);
+ for (i = 0; VEC_iterate (tree, phis, i, phi); i++)
+ {
+ tree arg;
+ use_operand_p arg_p;
+
+ gcc_assert (REWRITE_THIS_STMT (phi));
+
+ arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
+ arg = USE_FROM_PTR (arg_p);
+
+ if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
+ continue;
+
+ if (arg == NULL_TREE)
+ {
+ /* When updating a PHI node for a recently introduced
+ symbol we may find NULL arguments. That's why we
+ take the symbol from the LHS of the PHI node. */
+ replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
+ }
+ else
+ {
+ tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
+
+ if (symbol_marked_for_renaming (sym))
+ replace_use (arg_p, sym);
+ else if (is_old_name (arg))
+ replace_use (arg_p, arg);
+ }
+
+ if (e->flags & EDGE_ABNORMAL)
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
+ }
+ }
+}
+
+
+/* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
+ form.
+
+ ENTRY indicates the block where to start. Every block dominated by
+ ENTRY will be rewritten.
+
+ WHAT indicates what actions will be taken by the renamer (see enum
+ rewrite_mode).
+
+ BLOCKS are the set of interesting blocks for the dominator walker
+ to process. If this set is NULL, then all the nodes dominated
+ by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
+ are not present in BLOCKS are ignored. */
+
+static void
+rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
+{
+ struct dom_walk_data walk_data;
+
+ /* Rewrite all the basic blocks in the program. */
+ timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
+
+ /* Setup callbacks for the generic dominator tree walker. */
+ memset (&walk_data, 0, sizeof (walk_data));
+
+ walk_data.dom_direction = CDI_DOMINATORS;
+ walk_data.interesting_blocks = blocks;
+
+ if (what == REWRITE_UPDATE)
+ walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
+ else
+ walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
+
+ if (what == REWRITE_ALL)
+ walk_data.before_dom_children_walk_stmts = rewrite_stmt;
+ else if (what == REWRITE_UPDATE)
+ walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
+ else
+ gcc_unreachable ();
+
+ if (what == REWRITE_ALL)
+ walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
+ else if (what == REWRITE_UPDATE)
+ walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
+ else
+ gcc_unreachable ();
+
+ if (what == REWRITE_ALL)
+ walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
+ else if (what == REWRITE_UPDATE)
+ walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
+ else
+ gcc_unreachable ();
+
+ block_defs_stack = VEC_alloc (tree, heap, 10);
+
+ /* Initialize the dominator walker. */
+ init_walk_dominator_tree (&walk_data);
+
+ /* Recursively walk the dominator tree rewriting each statement in
+ each basic block. */
+ walk_dominator_tree (&walk_data, entry);
+
+ /* Finalize the dominator walker. */
+ fini_walk_dominator_tree (&walk_data);
+
+ /* Debugging dumps. */
+ if (dump_file && (dump_flags & TDF_STATS))
+ {
+ dump_dfa_stats (dump_file);
+ if (def_blocks)
+ dump_tree_ssa_stats (dump_file);
+ }
+
+ if (def_blocks)
+ {
+ htab_delete (def_blocks);
+ def_blocks = NULL;
+ }
+
+ VEC_free (tree, heap, block_defs_stack);
+
+ timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
+}
+
+
+/* Block initialization routine for mark_def_sites. Clear the
+ KILLS bitmap at the start of each block. */
+
+static void
+mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
+ basic_block bb ATTRIBUTE_UNUSED)
+{
+ struct mark_def_sites_global_data *gd =
+ (struct mark_def_sites_global_data *) walk_data->global_data;
+ bitmap kills = gd->kills;
+ bitmap_clear (kills);
+}
+
+
+/* Mark the definition site blocks for each variable, so that we know
+ where the variable is actually live.
+
+ INTERESTING_BLOCKS will be filled in with all the blocks that
+ should be processed by the renamer. It is assumed to be
+ initialized and zeroed by the caller. */
+
+static void
+mark_def_site_blocks (sbitmap interesting_blocks)
+{
+ struct dom_walk_data walk_data;
+ struct mark_def_sites_global_data mark_def_sites_global_data;
+ referenced_var_iterator rvi;
+ tree var;
+
+ /* Allocate memory for the DEF_BLOCKS hash table. */
+ def_blocks = htab_create (num_referenced_vars,
+ def_blocks_hash, def_blocks_eq, def_blocks_free);
+ FOR_EACH_REFERENCED_VAR(var, rvi)
+ set_current_def (var, NULL_TREE);
+
+ /* Setup callbacks for the generic dominator tree walker to find and
+ mark definition sites. */
+ walk_data.walk_stmts_backward = false;
+ walk_data.dom_direction = CDI_DOMINATORS;
+ walk_data.initialize_block_local_data = NULL;
+ walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
+ walk_data.before_dom_children_walk_stmts = mark_def_sites;
+ walk_data.before_dom_children_after_stmts = NULL;
+ walk_data.after_dom_children_before_stmts = NULL;
+ walk_data.after_dom_children_walk_stmts = NULL;
+ walk_data.after_dom_children_after_stmts = NULL;
+ walk_data.interesting_blocks = NULL;
+
+ /* Notice that this bitmap is indexed using variable UIDs, so it must be
+ large enough to accommodate all the variables referenced in the
+ function, not just the ones we are renaming. */
+ mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
+
+ /* Create the set of interesting blocks that will be filled by
+ mark_def_sites. */
+ mark_def_sites_global_data.interesting_blocks = interesting_blocks;
+ walk_data.global_data = &mark_def_sites_global_data;
+
+ /* We do not have any local data. */
+ walk_data.block_local_data_size = 0;
+
+ /* Initialize the dominator walker. */
+ init_walk_dominator_tree (&walk_data);
+
+ /* Recursively walk the dominator tree. */
+ walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
+
+ /* Finalize the dominator walker. */
+ fini_walk_dominator_tree (&walk_data);
+
+ /* We no longer need this bitmap, clear and free it. */
+ BITMAP_FREE (mark_def_sites_global_data.kills);
+}
+
+
+/* Main entry point into the SSA builder. The renaming process
+ proceeds in four main phases:
+
+ 1- Compute dominance frontier and immediate dominators, needed to
+ insert PHI nodes and rename the function in dominator tree
+ order.
+
+ 2- Find and mark all the blocks that define variables
+ (mark_def_site_blocks).
+
+ 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
+
+ 4- Rename all the blocks (rewrite_blocks) and statements in the program.
+
+ Steps 3 and 4 are done using the dominator tree walker
+ (walk_dominator_tree). */
+
+static unsigned int
+rewrite_into_ssa (void)
+{
+ bitmap *dfs;
+ basic_block bb;
+ sbitmap interesting_blocks;
+
+ timevar_push (TV_TREE_SSA_OTHER);
+
+ /* Initialize operand data structures. */
+ init_ssa_operands ();
+
+ /* Initialize the set of interesting blocks. The callback
+ mark_def_sites will add to this set those blocks that the renamer
+ should process. */
+ interesting_blocks = sbitmap_alloc (last_basic_block);
+ sbitmap_zero (interesting_blocks);
+
+ /* Initialize dominance frontier. */
+ dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap));
+ FOR_EACH_BB (bb)
+ dfs[bb->index] = BITMAP_ALLOC (NULL);
+
+ /* 1- Compute dominance frontiers. */
+ calculate_dominance_info (CDI_DOMINATORS);
+ compute_dominance_frontiers (dfs);
+
+ /* 2- Find and mark definition sites. */
+ mark_def_site_blocks (interesting_blocks);
+
+ /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
+ insert_phi_nodes (dfs);
+
+ /* 4- Rename all the blocks. */
+ rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
+
+ /* Free allocated memory. */
+ FOR_EACH_BB (bb)
+ BITMAP_FREE (dfs[bb->index]);
+ free (dfs);
+ sbitmap_free (interesting_blocks);
+
+ timevar_pop (TV_TREE_SSA_OTHER);
+ in_ssa_p = true;
+ return 0;
+}
+
+
+struct tree_opt_pass pass_build_ssa =
+{
+ "ssa", /* name */
+ NULL, /* gate */
+ rewrite_into_ssa, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ PROP_cfg | PROP_referenced_vars, /* properties_required */
+ PROP_ssa, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func
+ | TODO_verify_ssa
+ | TODO_remove_unused_locals, /* todo_flags_finish */
+ 0 /* letter */
+};
+
+
+/* Mark the definition of VAR at STMT and BB as interesting for the
+ renamer. BLOCKS is the set of blocks that need updating. */
+
+static void
+mark_def_interesting (tree var, tree stmt, basic_block bb, bool insert_phi_p)
+{
+ gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
+ REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
+
+ if (insert_phi_p)
+ {
+ bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;
+
+ set_def_block (var, bb, is_phi_p);
+
+ /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
+ site for both itself and all the old names replaced by it. */
+ if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
+ {
+ bitmap_iterator bi;
+ unsigned i;
+ bitmap set = names_replaced_by (var);
+ if (set)
+ EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
+ set_def_block (ssa_name (i), bb, is_phi_p);
+ }
+ }
+}
+
+
+/* Mark the use of VAR at STMT and BB as interesting for the
+ renamer. INSERT_PHI_P is true if we are going to insert new PHI
+ nodes. */
+
+static inline void
+mark_use_interesting (tree var, tree stmt, basic_block bb, bool insert_phi_p)
+{
+ basic_block def_bb = bb_for_stmt (stmt);
+
+ mark_block_for_update (def_bb);
+ mark_block_for_update (bb);
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ mark_phi_for_rewrite (def_bb, stmt);
+ else
+ REWRITE_THIS_STMT (stmt) = 1;
+
+ /* If VAR has not been defined in BB, then it is live-on-entry
+ to BB. Note that we cannot just use the block holding VAR's
+ definition because if VAR is one of the names in OLD_SSA_NAMES,
+ it will have several definitions (itself and all the names that
+ replace it). */
+ if (insert_phi_p)
+ {
+ struct def_blocks_d *db_p = get_def_blocks_for (var);
+ if (!bitmap_bit_p (db_p->def_blocks, bb->index))
+ set_livein_block (var, bb);
+ }
+}
+
+
+/* Do a dominator walk starting at BB processing statements that
+ reference symbols in SYMS_TO_RENAME. This is very similar to
+ mark_def_sites, but the scan handles statements whose operands may
+ already be SSA names.
+
+ If INSERT_PHI_P is true, mark those uses as live in the
+ corresponding block. This is later used by the PHI placement
+ algorithm to make PHI pruning decisions. */
+
+static void
+prepare_block_for_update (basic_block bb, bool insert_phi_p)
+{
+ basic_block son;
+ block_stmt_iterator si;
+ tree phi;
+ edge e;
+ edge_iterator ei;
+
+ mark_block_for_update (bb);
+
+ /* Process PHI nodes marking interesting those that define or use
+ the symbols that we are interested in. */
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ tree lhs_sym, lhs = PHI_RESULT (phi);
+
+ lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
+
+ if (!symbol_marked_for_renaming (lhs_sym))
+ continue;
+ mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
+
+ /* Mark the uses in phi nodes as interesting. It would be more correct
+ to process the arguments of the phi nodes of the successor edges of
+ BB at the end of prepare_block_for_update, however, that turns out
+ to be significantly more expensive. Doing it here is conservatively
+ correct -- it may only cause us to believe a value to be live in a
+ block that also contains its definition, and thus insert a few more
+ phi nodes for it. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
+ }
+ }
+
+ /* Process the statements. */
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ tree stmt;
+ ssa_op_iter i;
+ use_operand_p use_p;
+ def_operand_p def_p;
+
+ stmt = bsi_stmt (si);
+
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
+ {
+ tree use = USE_FROM_PTR (use_p);
+ tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
+ if (symbol_marked_for_renaming (sym))
+ mark_use_interesting (use, stmt, bb, insert_phi_p);
+ }
+
+ FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
+ {
+ tree def = DEF_FROM_PTR (def_p);
+ tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
+
+ if (symbol_marked_for_renaming (sym))
+ mark_def_interesting (def, stmt, bb, insert_phi_p);
+ }
+
+ FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
+ {
+ tree def = DEF_FROM_PTR (def_p);
+ tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
+
+ if (symbol_marked_for_renaming (sym))
+ {
+ mark_use_interesting (sym, stmt, bb, insert_phi_p);
+ mark_def_interesting (sym, stmt, bb, insert_phi_p);
+ }
+ }
+
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
+ {
+ tree use = USE_FROM_PTR (use_p);
+ tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
+
+ if (symbol_marked_for_renaming (sym))
+ mark_use_interesting (sym, stmt, bb, insert_phi_p);
+ }
+ }
+
+ /* Now visit all the blocks dominated by BB. */
+ for (son = first_dom_son (CDI_DOMINATORS, bb);
+ son;
+ son = next_dom_son (CDI_DOMINATORS, son))
+ prepare_block_for_update (son, insert_phi_p);
+}
+
+
+/* Helper for prepare_names_to_update. Mark all the use sites for
+ NAME as interesting. BLOCKS and INSERT_PHI_P are as in
+ prepare_names_to_update. */
+
+static void
+prepare_use_sites_for (tree name, bool insert_phi_p)
+{
+ use_operand_p use_p;
+ imm_use_iterator iter;
+
+ FOR_EACH_IMM_USE_FAST (use_p, iter, name)
+ {
+ tree stmt = USE_STMT (use_p);
+ basic_block bb = bb_for_stmt (stmt);
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ {
+ int ix = PHI_ARG_INDEX_FROM_USE (use_p);
+ edge e = PHI_ARG_EDGE (stmt, ix);
+ mark_use_interesting (name, stmt, e->src, insert_phi_p);
+ }
+ else
+ {
+ /* For regular statements, mark this as an interesting use
+ for NAME. */
+ mark_use_interesting (name, stmt, bb, insert_phi_p);
+ }
+ }
+}
+
+
+/* Helper for prepare_names_to_update. Mark the definition site for
+ NAME as interesting. BLOCKS and INSERT_PHI_P are as in
+ prepare_names_to_update. */
+
+static void
+prepare_def_site_for (tree name, bool insert_phi_p)
+{
+ tree stmt;
+ basic_block bb;
+
+ gcc_assert (names_to_release == NULL
+ || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
+
+ stmt = SSA_NAME_DEF_STMT (name);
+ bb = bb_for_stmt (stmt);
+ if (bb)
+ {
+ gcc_assert (bb->index < last_basic_block);
+ mark_block_for_update (bb);
+ mark_def_interesting (name, stmt, bb, insert_phi_p);
+ }
+}
+
+
+/* Mark definition and use sites of names in NEW_SSA_NAMES and
+ OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
+ PHI nodes for newly created names. */
+
+static void
+prepare_names_to_update (bool insert_phi_p)
+{
+ unsigned i = 0;
+ bitmap_iterator bi;
+ sbitmap_iterator sbi;
+
+ /* If a name N from NEW_SSA_NAMES is also marked to be released,
+ remove it from NEW_SSA_NAMES so that we don't try to visit its
+ defining basic block (which most likely doesn't exist). Notice
+ that we cannot do the same with names in OLD_SSA_NAMES because we
+ want to replace existing instances. */
+ if (names_to_release)
+ EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
+ RESET_BIT (new_ssa_names, i);
+
+ /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
+ names may be considered to be live-in on blocks that contain
+ definitions for their replacements. */
+ EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
+ prepare_def_site_for (ssa_name (i), insert_phi_p);
+
+ /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
+ OLD_SSA_NAMES, but we have to ignore its definition site. */
+ EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
+ {
+ if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
+ prepare_def_site_for (ssa_name (i), insert_phi_p);
+ prepare_use_sites_for (ssa_name (i), insert_phi_p);
+ }
+}
+
+
+/* Dump all the names replaced by NAME to FILE. */
+
+void
+dump_names_replaced_by (FILE *file, tree name)
+{
+ unsigned i;
+ bitmap old_set;
+ bitmap_iterator bi;
+
+ print_generic_expr (file, name, 0);
+ fprintf (file, " -> { ");
+
+ old_set = names_replaced_by (name);
+ EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
+ {
+ print_generic_expr (file, ssa_name (i), 0);
+ fprintf (file, " ");
+ }
+
+ fprintf (file, "}\n");
+}
+
+
+/* Dump all the names replaced by NAME to stderr. */
+
+void
+debug_names_replaced_by (tree name)
+{
+ dump_names_replaced_by (stderr, name);
+}
+
+
+/* Dump SSA update information to FILE. */
+
+void
+dump_update_ssa (FILE *file)
+{
+ unsigned i = 0;
+ bitmap_iterator bi;
+
+ if (!need_ssa_update_p ())
+ return;
+
+ if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
+ {
+ sbitmap_iterator sbi;
+
+ fprintf (file, "\nSSA replacement table\n");
+ fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
+ "O_1, ..., O_j\n\n");
+
+ EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
+ dump_names_replaced_by (file, ssa_name (i));
+
+ fprintf (file, "\n");
+ fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
+ update_ssa_stats.num_virtual_mappings);
+ fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
+ update_ssa_stats.num_total_mappings
+ - update_ssa_stats.num_virtual_mappings);
+ fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
+ update_ssa_stats.num_total_mappings);
+
+ fprintf (file, "\nNumber of virtual symbols: %u\n",
+ update_ssa_stats.num_virtual_symbols);
+ }
+
+ if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
+ {
+ fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
+ EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
+ {
+ print_generic_expr (file, referenced_var (i), 0);
+ fprintf (file, " ");
+ }
+ }
+
+ if (names_to_release && !bitmap_empty_p (names_to_release))
+ {
+ fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
+ EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
+ {
+ print_generic_expr (file, ssa_name (i), 0);
+ fprintf (file, " ");
+ }
+ }
+
+ fprintf (file, "\n\n");
+}
+
+
+/* Dump SSA update information to stderr. */
+
+void
+debug_update_ssa (void)
+{
+ dump_update_ssa (stderr);
+}
+
+
+/* Initialize data structures used for incremental SSA updates. */
+
+static void
+init_update_ssa (void)
+{
+ /* Reserve more space than the current number of names. The calls to
+ add_new_name_mapping are typically done after creating new SSA
+ names, so we'll need to reallocate these arrays. */
+ old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
+ sbitmap_zero (old_ssa_names);
+
+ new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
+ sbitmap_zero (new_ssa_names);
+
+ repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
+ need_to_initialize_update_ssa_p = false;
+ need_to_update_vops_p = false;
+ syms_to_rename = BITMAP_ALLOC (NULL);
+ names_to_release = NULL;
+ memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
+ update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
+}
+
+
+/* Deallocate data structures used for incremental SSA updates. */
+
+void
+delete_update_ssa (void)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ sbitmap_free (old_ssa_names);
+ old_ssa_names = NULL;
+
+ sbitmap_free (new_ssa_names);
+ new_ssa_names = NULL;
+
+ htab_delete (repl_tbl);
+ repl_tbl = NULL;
+
+ need_to_initialize_update_ssa_p = true;
+ need_to_update_vops_p = false;
+ BITMAP_FREE (syms_to_rename);
+ BITMAP_FREE (update_ssa_stats.virtual_symbols);
+
+ if (names_to_release)
+ {
+ EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
+ release_ssa_name (ssa_name (i));
+ BITMAP_FREE (names_to_release);
+ }
+
+ clear_ssa_name_info ();
+}
+
+
+/* Create a new name for OLD_NAME in statement STMT and replace the
+ operand pointed to by DEF_P with the newly created name. Return
+ the new name and register the replacement mapping <NEW, OLD> in
+ update_ssa's tables. */
+
+tree
+create_new_def_for (tree old_name, tree stmt, def_operand_p def)
+{
+ tree new_name = duplicate_ssa_name (old_name, stmt);
+
+ SET_DEF (def, new_name);
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ {
+ edge e;
+ edge_iterator ei;
+ basic_block bb = bb_for_stmt (stmt);
+
+ /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (e->flags & EDGE_ABNORMAL)
+ {
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
+ break;
+ }
+ }
+
+ register_new_name_mapping (new_name, old_name);
+
+ /* For the benefit of passes that will be updating the SSA form on
+ their own, set the current reaching definition of OLD_NAME to be
+ NEW_NAME. */
+ set_current_def (old_name, new_name);
+
+ return new_name;
+}
+
+
+/* Register name NEW to be a replacement for name OLD. This function
+ must be called for every replacement that should be performed by
+ update_ssa. */
+
+void
+register_new_name_mapping (tree new, tree old)
+{
+ if (need_to_initialize_update_ssa_p)
+ init_update_ssa ();
+
+ add_new_name_mapping (new, old);
+}
+
+
+/* Register symbol SYM to be renamed by update_ssa. */
+
+void
+mark_sym_for_renaming (tree sym)
+{
+ if (need_to_initialize_update_ssa_p)
+ init_update_ssa ();
+
+ bitmap_set_bit (syms_to_rename, DECL_UID (sym));
+
+ if (!is_gimple_reg (sym))
+ need_to_update_vops_p = true;
+}
+
+
+/* Register all the symbols in SET to be renamed by update_ssa. */
+
+void
+mark_set_for_renaming (bitmap set)
+{
+ bitmap_iterator bi;
+ unsigned i;
+
+ if (bitmap_empty_p (set))
+ return;
+
+ if (need_to_initialize_update_ssa_p)
+ init_update_ssa ();
+
+ bitmap_ior_into (syms_to_rename, set);
+
+ EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
+ if (!is_gimple_reg (referenced_var (i)))
+ {
+ need_to_update_vops_p = true;
+ break;
+ }
+}
+
+
+/* Return true if there is any work to be done by update_ssa. */
+
+bool
+need_ssa_update_p (void)
+{
+ return syms_to_rename || old_ssa_names || new_ssa_names;
+}
+
+
+/* Return true if name N has been registered in the replacement table. */
+
+bool
+name_registered_for_update_p (tree n)
+{
+ if (!need_ssa_update_p ())
+ return false;
+
+ return is_new_name (n)
+ || is_old_name (n)
+ || symbol_marked_for_renaming (SSA_NAME_VAR (n));
+}
+
+
+/* Return the set of all the SSA names marked to be replaced. */
+
+bitmap
+ssa_names_to_replace (void)
+{
+ unsigned i = 0;
+ bitmap ret;
+ sbitmap_iterator sbi;
+
+ ret = BITMAP_ALLOC (NULL);
+ EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
+ bitmap_set_bit (ret, i);
+
+ return ret;
+}
+
+
+/* Mark NAME to be released after update_ssa has finished. */
+
+void
+release_ssa_name_after_update_ssa (tree name)
+{
+ gcc_assert (!need_to_initialize_update_ssa_p);
+
+ if (names_to_release == NULL)
+ names_to_release = BITMAP_ALLOC (NULL);
+
+ bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
+}
+
+
+/* Insert new PHI nodes to replace VAR. DFS contains dominance
+ frontier information. BLOCKS is the set of blocks to be updated.
+
+ This is slightly different than the regular PHI insertion
+ algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
+ real names (i.e., GIMPLE registers) are inserted:
+
+ - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
+ nodes inside the region affected by the block that defines VAR
+ and the blocks that define all its replacements. All these
+ definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
+
+ First, we compute the entry point to the region (ENTRY). This is
+ given by the nearest common dominator to all the definition
+ blocks. When computing the iterated dominance frontier (IDF), any
+ block not strictly dominated by ENTRY is ignored.
+
+ We then call the standard PHI insertion algorithm with the pruned
+ IDF.
+
+ - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
+ names is not pruned. PHI nodes are inserted at every IDF block. */
+
+static void
+insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
+ unsigned update_flags)
+{
+ basic_block entry;
+ struct def_blocks_d *db;
+ bitmap idf, pruned_idf;
+ bitmap_iterator bi;
+ unsigned i;
+
+#if defined ENABLE_CHECKING
+ if (TREE_CODE (var) == SSA_NAME)
+ gcc_assert (is_old_name (var));
+ else
+ gcc_assert (symbol_marked_for_renaming (var));
+#endif
+
+ /* Get all the definition sites for VAR. */
+ db = find_def_blocks_for (var);
+
+ /* No need to do anything if there were no definitions to VAR. */
+ if (db == NULL || bitmap_empty_p (db->def_blocks))
+ return;
+
+ /* Compute the initial iterated dominance frontier. */
+ idf = find_idf (db->def_blocks, dfs);
+ pruned_idf = BITMAP_ALLOC (NULL);
+
+ if (TREE_CODE (var) == SSA_NAME)
+ {
+ if (update_flags == TODO_update_ssa)
+ {
+ /* If doing regular SSA updates for GIMPLE registers, we are
+ only interested in IDF blocks dominated by the nearest
+ common dominator of all the definition blocks. */
+ entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
+ db->def_blocks);
+
+ if (entry != ENTRY_BLOCK_PTR)
+ EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
+ if (BASIC_BLOCK (i) != entry
+ && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
+ bitmap_set_bit (pruned_idf, i);
+ }
+ else
+ {
+ /* Otherwise, do not prune the IDF for VAR. */
+ gcc_assert (update_flags == TODO_update_ssa_full_phi);
+ bitmap_copy (pruned_idf, idf);
+ }
+ }
+ else
+ {
+ /* Otherwise, VAR is a symbol that needs to be put into SSA form
+ for the first time, so we need to compute the full IDF for
+ it. */
+ bitmap_copy (pruned_idf, idf);
+ }
+
+ if (!bitmap_empty_p (pruned_idf))
+ {
+ /* Make sure that PRUNED_IDF blocks and all their feeding blocks
+ are included in the region to be updated. The feeding blocks
+ are important to guarantee that the PHI arguments are renamed
+ properly. */
+ bitmap_ior_into (blocks, pruned_idf);
+ EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
+ {
+ edge e;
+ edge_iterator ei;
+ basic_block bb = BASIC_BLOCK (i);
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (e->src->index >= 0)
+ bitmap_set_bit (blocks, e->src->index);
+ }
+
+ insert_phi_nodes_for (var, pruned_idf, true);
+ }
+
+ BITMAP_FREE (pruned_idf);
+ BITMAP_FREE (idf);
+}
+
+
+/* Heuristic to determine whether SSA name mappings for virtual names
+ should be discarded and their symbols rewritten from scratch. When
+ there is a large number of mappings for virtual names, the
+ insertion of PHI nodes for the old names in the mappings takes
+ considerable more time than if we inserted PHI nodes for the
+ symbols instead.
+
+ Currently the heuristic takes these stats into account:
+
+ - Number of mappings for virtual SSA names.
+ - Number of distinct virtual symbols involved in those mappings.
+
+ If the number of virtual mappings is much larger than the number of
+ virtual symbols, then it will be faster to compute PHI insertion
+ spots for the symbols. Even if this involves traversing the whole
+ CFG, which is what happens when symbols are renamed from scratch. */
+
+static bool
+switch_virtuals_to_full_rewrite_p (void)
+{
+ if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
+ return false;
+
+ if (update_ssa_stats.num_virtual_mappings
+ > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
+ * update_ssa_stats.num_virtual_symbols)
+ return true;
+
+ return false;
+}
+
+
+/* Remove every virtual mapping and mark all the affected virtual
+ symbols for renaming. */
+
+static void
+switch_virtuals_to_full_rewrite (void)
+{
+ unsigned i = 0;
+ sbitmap_iterator sbi;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
+ fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
+ update_ssa_stats.num_virtual_mappings);
+ fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
+ update_ssa_stats.num_virtual_symbols);
+ fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
+ "faster than processing\nthe name mappings.\n\n");
+ }
+
+ /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
+ Note that it is not really necessary to remove the mappings from
+ REPL_TBL, that would only waste time. */
+ EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
+ if (!is_gimple_reg (ssa_name (i)))
+ RESET_BIT (new_ssa_names, i);
+
+ EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
+ if (!is_gimple_reg (ssa_name (i)))
+ RESET_BIT (old_ssa_names, i);
+
+ bitmap_ior_into (syms_to_rename, update_ssa_stats.virtual_symbols);
+}
+
+
+/* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
+ existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
+
+ 1- The names in OLD_SSA_NAMES dominated by the definitions of
+ NEW_SSA_NAMES are all re-written to be reached by the
+ appropriate definition from NEW_SSA_NAMES.
+
+ 2- If needed, new PHI nodes are added to the iterated dominance
+ frontier of the blocks where each of NEW_SSA_NAMES are defined.
+
+ The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
+ calling register_new_name_mapping for every pair of names that the
+ caller wants to replace.
+
+ The caller identifies the new names that have been inserted and the
+ names that need to be replaced by calling register_new_name_mapping
+ for every pair <NEW, OLD>. Note that the function assumes that the
+ new names have already been inserted in the IL.
+
+ For instance, given the following code:
+
+ 1 L0:
+ 2 x_1 = PHI (0, x_5)
+ 3 if (x_1 < 10)
+ 4 if (x_1 > 7)
+ 5 y_2 = 0
+ 6 else
+ 7 y_3 = x_1 + x_7
+ 8 endif
+ 9 x_5 = x_1 + 1
+ 10 goto L0;
+ 11 endif
+
+ Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
+
+ 1 L0:
+ 2 x_1 = PHI (0, x_5)
+ 3 if (x_1 < 10)
+ 4 x_10 = ...
+ 5 if (x_1 > 7)
+ 6 y_2 = 0
+ 7 else
+ 8 x_11 = ...
+ 9 y_3 = x_1 + x_7
+ 10 endif
+ 11 x_5 = x_1 + 1
+ 12 goto L0;
+ 13 endif
+
+ We want to replace all the uses of x_1 with the new definitions of
+ x_10 and x_11. Note that the only uses that should be replaced are
+ those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
+ *not* be replaced (this is why we cannot just mark symbol 'x' for
+ renaming).
+
+ Additionally, we may need to insert a PHI node at line 11 because
+ that is a merge point for x_10 and x_11. So the use of x_1 at line
+ 11 will be replaced with the new PHI node. The insertion of PHI
+ nodes is optional. They are not strictly necessary to preserve the
+ SSA form, and depending on what the caller inserted, they may not
+ even be useful for the optimizers. UPDATE_FLAGS controls various
+ aspects of how update_ssa operates, see the documentation for
+ TODO_update_ssa*. */
+
+void
+update_ssa (unsigned update_flags)
+{
+ basic_block bb, start_bb;
+ bitmap_iterator bi;
+ unsigned i = 0;
+ sbitmap tmp;
+ bool insert_phi_p;
+ sbitmap_iterator sbi;
+
+ if (!need_ssa_update_p ())
+ return;
+
+ timevar_push (TV_TREE_SSA_INCREMENTAL);
+
+ blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
+ if (!phis_to_rewrite)
+ phis_to_rewrite = VEC_alloc (tree_vec, heap, last_basic_block);
+ blocks_to_update = BITMAP_ALLOC (NULL);
+
+ /* Ensure that the dominance information is up-to-date. */
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ /* Only one update flag should be set. */
+ gcc_assert (update_flags == TODO_update_ssa
+ || update_flags == TODO_update_ssa_no_phi
+ || update_flags == TODO_update_ssa_full_phi
+ || update_flags == TODO_update_ssa_only_virtuals);
+
+ /* If we only need to update virtuals, remove all the mappings for
+ real names before proceeding. The caller is responsible for
+ having dealt with the name mappings before calling update_ssa. */
+ if (update_flags == TODO_update_ssa_only_virtuals)
+ {
+ sbitmap_zero (old_ssa_names);
+ sbitmap_zero (new_ssa_names);
+ htab_empty (repl_tbl);
+ }
+
+ insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
+
+ if (insert_phi_p)
+ {
+ /* If the caller requested PHI nodes to be added, initialize
+ live-in information data structures (DEF_BLOCKS). */
+
+ /* For each SSA name N, the DEF_BLOCKS table describes where the
+ name is defined, which blocks have PHI nodes for N, and which
+ blocks have uses of N (i.e., N is live-on-entry in those
+ blocks). */
+ def_blocks = htab_create (num_ssa_names, def_blocks_hash,
+ def_blocks_eq, def_blocks_free);
+ }
+ else
+ {
+ def_blocks = NULL;
+ }
+
+ /* Heuristic to avoid massive slow downs when the replacement
+ mappings include lots of virtual names. */
+ if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
+ switch_virtuals_to_full_rewrite ();
+
+ /* If there are names defined in the replacement table, prepare
+ definition and use sites for all the names in NEW_SSA_NAMES and
+ OLD_SSA_NAMES. */
+ if (sbitmap_first_set_bit (new_ssa_names) >= 0)
+ {
+ prepare_names_to_update (insert_phi_p);
+
+ /* If all the names in NEW_SSA_NAMES had been marked for
+ removal, and there are no symbols to rename, then there's
+ nothing else to do. */
+ if (sbitmap_first_set_bit (new_ssa_names) < 0
+ && bitmap_empty_p (syms_to_rename))
+ goto done;
+ }
+
+ /* Next, determine the block at which to start the renaming process. */
+ if (!bitmap_empty_p (syms_to_rename))
+ {
+ /* If we have to rename some symbols from scratch, we need to
+ start the process at the root of the CFG. FIXME, it should
+ be possible to determine the nearest block that had a
+ definition for each of the symbols that are marked for
+ updating. For now this seems more work than it's worth. */
+ start_bb = ENTRY_BLOCK_PTR;
+
+ /* Traverse the CFG looking for definitions and uses of symbols
+ in SYMS_TO_RENAME. Mark interesting blocks and statements
+ and set local live-in information for the PHI placement
+ heuristics. */
+ prepare_block_for_update (start_bb, insert_phi_p);
+ }
+ else
+ {
+ /* Otherwise, the entry block to the region is the nearest
+ common dominator for the blocks in BLOCKS. */
+ start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
+ blocks_to_update);
+ }
+
+ /* If requested, insert PHI nodes at the iterated dominance frontier
+ of every block, creating new definitions for names in OLD_SSA_NAMES
+ and for symbols in SYMS_TO_RENAME. */
+ if (insert_phi_p)
+ {
+ bitmap *dfs;
+
+ /* If the caller requested PHI nodes to be added, compute
+ dominance frontiers. */
+ dfs = XNEWVEC (bitmap, last_basic_block);
+ FOR_EACH_BB (bb)
+ dfs[bb->index] = BITMAP_ALLOC (NULL);
+ compute_dominance_frontiers (dfs);
+
+ if (sbitmap_first_set_bit (old_ssa_names) >= 0)
+ {
+ sbitmap_iterator sbi;
+
+ /* insert_update_phi_nodes_for will call add_new_name_mapping
+ when inserting new PHI nodes, so the set OLD_SSA_NAMES
+ will grow while we are traversing it (but it will not
+ gain any new members). Copy OLD_SSA_NAMES to a temporary
+ for traversal. */
+ sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
+ sbitmap_copy (tmp, old_ssa_names);
+ EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
+ insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
+ update_flags);
+ sbitmap_free (tmp);
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
+ insert_updated_phi_nodes_for (referenced_var (i), dfs,
+ blocks_to_update, update_flags);
+
+ FOR_EACH_BB (bb)
+ BITMAP_FREE (dfs[bb->index]);
+ free (dfs);
+
+ /* Insertion of PHI nodes may have added blocks to the region.
+ We need to re-compute START_BB to include the newly added
+ blocks. */
+ if (start_bb != ENTRY_BLOCK_PTR)
+ start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
+ blocks_to_update);
+ }
+
+ /* Reset the current definition for name and symbol before renaming
+ the sub-graph. */
+ EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
+ set_current_def (ssa_name (i), NULL_TREE);
+
+ EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
+ set_current_def (referenced_var (i), NULL_TREE);
+
+ /* Now start the renaming process at START_BB. */
+ tmp = sbitmap_alloc (last_basic_block);
+ sbitmap_zero (tmp);
+ EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
+ SET_BIT (tmp, i);
+
+ rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
+
+ sbitmap_free (tmp);
+
+ /* Debugging dumps. */
+ if (dump_file)
+ {
+ int c;
+ unsigned i;
+
+ dump_update_ssa (dump_file);
+
+ fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
+ start_bb->index);
+
+ c = 0;
+ EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
+ c++;
+ fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
+ fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
+ c, PERCENT (c, last_basic_block));
+
+ if (dump_flags & TDF_DETAILS)
+ {
+ fprintf (dump_file, "Affected blocks: ");
+ EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
+ fprintf (dump_file, "%u ", i);
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n\n");
+ }
+
+ /* Free allocated memory. */
+done:
+ EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
+ {
+ tree_vec phis = VEC_index (tree_vec, phis_to_rewrite, i);
+
+ VEC_free (tree, heap, phis);
+ VEC_replace (tree_vec, phis_to_rewrite, i, NULL);
+ }
+ BITMAP_FREE (blocks_with_phis_to_rewrite);
+ BITMAP_FREE (blocks_to_update);
+ delete_update_ssa ();
+
+ timevar_pop (TV_TREE_SSA_INCREMENTAL);
+}