aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-flow-inline.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-flow-inline.h')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-flow-inline.h1623
1 files changed, 0 insertions, 1623 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-flow-inline.h b/gcc-4.2.1-5666.3/gcc/tree-flow-inline.h
deleted file mode 100644
index a3bb65272..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-flow-inline.h
+++ /dev/null
@@ -1,1623 +0,0 @@
-/* Inline functions for tree-flow.h
- Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
- Contributed by Diego Novillo <dnovillo@redhat.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to
-the Free Software Foundation, 51 Franklin Street, Fifth Floor,
-Boston, MA 02110-1301, USA. */
-
-#ifndef _TREE_FLOW_INLINE_H
-#define _TREE_FLOW_INLINE_H 1
-
-/* Inline functions for manipulating various data structures defined in
- tree-flow.h. See tree-flow.h for documentation. */
-
-/* Initialize the hashtable iterator HTI to point to hashtable TABLE */
-
-static inline void *
-first_htab_element (htab_iterator *hti, htab_t table)
-{
- hti->htab = table;
- hti->slot = table->entries;
- hti->limit = hti->slot + htab_size (table);
- do
- {
- PTR x = *(hti->slot);
- if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
- break;
- } while (++(hti->slot) < hti->limit);
-
- if (hti->slot < hti->limit)
- return *(hti->slot);
- return NULL;
-}
-
-/* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
- or NULL if we have reached the end. */
-
-static inline bool
-end_htab_p (htab_iterator *hti)
-{
- if (hti->slot >= hti->limit)
- return true;
- return false;
-}
-
-/* Advance the hashtable iterator pointed to by HTI to the next element of the
- hashtable. */
-
-static inline void *
-next_htab_element (htab_iterator *hti)
-{
- while (++(hti->slot) < hti->limit)
- {
- PTR x = *(hti->slot);
- if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
- return x;
- };
- return NULL;
-}
-
-/* Initialize ITER to point to the first referenced variable in the
- referenced_vars hashtable, and return that variable. */
-
-static inline tree
-first_referenced_var (referenced_var_iterator *iter)
-{
- struct int_tree_map *itm;
- itm = (struct int_tree_map *) first_htab_element (&iter->hti,
- referenced_vars);
- if (!itm)
- return NULL;
- return itm->to;
-}
-
-/* Return true if we have hit the end of the referenced variables ITER is
- iterating through. */
-
-static inline bool
-end_referenced_vars_p (referenced_var_iterator *iter)
-{
- return end_htab_p (&iter->hti);
-}
-
-/* Make ITER point to the next referenced_var in the referenced_var hashtable,
- and return that variable. */
-
-static inline tree
-next_referenced_var (referenced_var_iterator *iter)
-{
- struct int_tree_map *itm;
- itm = (struct int_tree_map *) next_htab_element (&iter->hti);
- if (!itm)
- return NULL;
- return itm->to;
-}
-
-/* Fill up VEC with the variables in the referenced vars hashtable. */
-
-static inline void
-fill_referenced_var_vec (VEC (tree, heap) **vec)
-{
- referenced_var_iterator rvi;
- tree var;
- *vec = NULL;
- FOR_EACH_REFERENCED_VAR (var, rvi)
- VEC_safe_push (tree, heap, *vec, var);
-}
-
-/* Return the variable annotation for T, which must be a _DECL node.
- Return NULL if the variable annotation doesn't already exist. */
-static inline var_ann_t
-var_ann (tree t)
-{
- gcc_assert (t);
- gcc_assert (DECL_P (t));
- gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
- gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
-
- return (var_ann_t) t->common.ann;
-}
-
-/* Return the variable annotation for T, which must be a _DECL node.
- Create the variable annotation if it doesn't exist. */
-static inline var_ann_t
-get_var_ann (tree var)
-{
- var_ann_t ann = var_ann (var);
- return (ann) ? ann : create_var_ann (var);
-}
-
-/* Return the function annotation for T, which must be a FUNCTION_DECL node.
- Return NULL if the function annotation doesn't already exist. */
-static inline function_ann_t
-function_ann (tree t)
-{
- gcc_assert (t);
- gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
- gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN);
-
- return (function_ann_t) t->common.ann;
-}
-
-/* Return the function annotation for T, which must be a FUNCTION_DECL node.
- Create the function annotation if it doesn't exist. */
-static inline function_ann_t
-get_function_ann (tree var)
-{
- function_ann_t ann = function_ann (var);
- gcc_assert (!var->common.ann || var->common.ann->common.type == FUNCTION_ANN);
- return (ann) ? ann : create_function_ann (var);
-}
-
-/* Return the statement annotation for T, which must be a statement
- node. Return NULL if the statement annotation doesn't exist. */
-static inline stmt_ann_t
-stmt_ann (tree t)
-{
-#ifdef ENABLE_CHECKING
- gcc_assert (is_gimple_stmt (t));
-#endif
- gcc_assert (!t->common.ann || t->common.ann->common.type == STMT_ANN);
- return (stmt_ann_t) t->common.ann;
-}
-
-/* Return the statement annotation for T, which must be a statement
- node. Create the statement annotation if it doesn't exist. */
-static inline stmt_ann_t
-get_stmt_ann (tree stmt)
-{
- stmt_ann_t ann = stmt_ann (stmt);
- return (ann) ? ann : create_stmt_ann (stmt);
-}
-
-/* Return the annotation type for annotation ANN. */
-static inline enum tree_ann_type
-ann_type (tree_ann_t ann)
-{
- return ann->common.type;
-}
-
-/* Return the basic block for statement T. */
-static inline basic_block
-bb_for_stmt (tree t)
-{
- stmt_ann_t ann;
-
- if (TREE_CODE (t) == PHI_NODE)
- return PHI_BB (t);
-
- ann = stmt_ann (t);
- return ann ? ann->bb : NULL;
-}
-
-/* Return the may_aliases varray for variable VAR, or NULL if it has
- no may aliases. */
-static inline VEC(tree, gc) *
-may_aliases (tree var)
-{
- var_ann_t ann = var_ann (var);
- return ann ? ann->may_aliases : NULL;
-}
-
-/* Return the line number for EXPR, or return -1 if we have no line
- number information for it. */
-static inline int
-get_lineno (tree expr)
-{
- if (expr == NULL_TREE)
- return -1;
-
- if (TREE_CODE (expr) == COMPOUND_EXPR)
- expr = TREE_OPERAND (expr, 0);
-
- if (! EXPR_HAS_LOCATION (expr))
- return -1;
-
- return EXPR_LINENO (expr);
-}
-
-/* Return the file name for EXPR, or return "???" if we have no
- filename information. */
-static inline const char *
-get_filename (tree expr)
-{
- const char *filename;
- if (expr == NULL_TREE)
- return "???";
-
- if (TREE_CODE (expr) == COMPOUND_EXPR)
- expr = TREE_OPERAND (expr, 0);
-
- if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
- return filename;
- else
- return "???";
-}
-
-/* Return true if T is a noreturn call. */
-static inline bool
-noreturn_call_p (tree t)
-{
- tree call = get_call_expr_in (t);
- return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
-}
-
-/* Mark statement T as modified. */
-static inline void
-mark_stmt_modified (tree t)
-{
- stmt_ann_t ann;
- if (TREE_CODE (t) == PHI_NODE)
- return;
-
- ann = stmt_ann (t);
- if (ann == NULL)
- ann = create_stmt_ann (t);
- else if (noreturn_call_p (t))
- VEC_safe_push (tree, gc, modified_noreturn_calls, t);
- ann->modified = 1;
-}
-
-/* Mark statement T as modified, and update it. */
-static inline void
-update_stmt (tree t)
-{
- if (TREE_CODE (t) == PHI_NODE)
- return;
- mark_stmt_modified (t);
- update_stmt_operands (t);
-}
-
-static inline void
-update_stmt_if_modified (tree t)
-{
- if (stmt_modified_p (t))
- update_stmt_operands (t);
-}
-
-/* Return true if T is marked as modified, false otherwise. */
-static inline bool
-stmt_modified_p (tree t)
-{
- stmt_ann_t ann = stmt_ann (t);
-
- /* Note that if the statement doesn't yet have an annotation, we consider it
- modified. This will force the next call to update_stmt_operands to scan
- the statement. */
- return ann ? ann->modified : true;
-}
-
-/* Delink an immediate_uses node from its chain. */
-static inline void
-delink_imm_use (ssa_use_operand_t *linknode)
-{
- /* Return if this node is not in a list. */
- if (linknode->prev == NULL)
- return;
-
- linknode->prev->next = linknode->next;
- linknode->next->prev = linknode->prev;
- linknode->prev = NULL;
- linknode->next = NULL;
-}
-
-/* Link ssa_imm_use node LINKNODE into the chain for LIST. */
-static inline void
-link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
-{
- /* Link the new node at the head of the list. If we are in the process of
- traversing the list, we won't visit any new nodes added to it. */
- linknode->prev = list;
- linknode->next = list->next;
- list->next->prev = linknode;
- list->next = linknode;
-}
-
-/* Link ssa_imm_use node LINKNODE into the chain for DEF. */
-static inline void
-link_imm_use (ssa_use_operand_t *linknode, tree def)
-{
- ssa_use_operand_t *root;
-
- if (!def || TREE_CODE (def) != SSA_NAME)
- linknode->prev = NULL;
- else
- {
- root = &(SSA_NAME_IMM_USE_NODE (def));
-#ifdef ENABLE_CHECKING
- if (linknode->use)
- gcc_assert (*(linknode->use) == def);
-#endif
- link_imm_use_to_list (linknode, root);
- }
-}
-
-/* Set the value of a use pointed to by USE to VAL. */
-static inline void
-set_ssa_use_from_ptr (use_operand_p use, tree val)
-{
- delink_imm_use (use);
- *(use->use) = val;
- link_imm_use (use, val);
-}
-
-/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
- in STMT. */
-static inline void
-link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
-{
- if (stmt)
- link_imm_use (linknode, def);
- else
- link_imm_use (linknode, NULL);
- linknode->stmt = stmt;
-}
-
-/* Relink a new node in place of an old node in the list. */
-static inline void
-relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
-{
- /* The node one had better be in the same list. */
- gcc_assert (*(old->use) == *(node->use));
- node->prev = old->prev;
- node->next = old->next;
- if (old->prev)
- {
- old->prev->next = node;
- old->next->prev = node;
- /* Remove the old node from the list. */
- old->prev = NULL;
- }
-}
-
-/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
- in STMT. */
-static inline void
-relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
-{
- if (stmt)
- relink_imm_use (linknode, old);
- else
- link_imm_use (linknode, NULL);
- linknode->stmt = stmt;
-}
-
-
-/* Return true is IMM has reached the end of the immediate use list. */
-static inline bool
-end_readonly_imm_use_p (imm_use_iterator *imm)
-{
- return (imm->imm_use == imm->end_p);
-}
-
-/* Initialize iterator IMM to process the list for VAR. */
-static inline use_operand_p
-first_readonly_imm_use (imm_use_iterator *imm, tree var)
-{
- gcc_assert (TREE_CODE (var) == SSA_NAME);
-
- imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
- imm->imm_use = imm->end_p->next;
-#ifdef ENABLE_CHECKING
- imm->iter_node.next = imm->imm_use->next;
-#endif
- if (end_readonly_imm_use_p (imm))
- return NULL_USE_OPERAND_P;
- return imm->imm_use;
-}
-
-/* Bump IMM to the next use in the list. */
-static inline use_operand_p
-next_readonly_imm_use (imm_use_iterator *imm)
-{
- use_operand_p old = imm->imm_use;
-
-#ifdef ENABLE_CHECKING
- /* If this assertion fails, it indicates the 'next' pointer has changed
- since we the last bump. This indicates that the list is being modified
- via stmt changes, or SET_USE, or somesuch thing, and you need to be
- using the SAFE version of the iterator. */
- gcc_assert (imm->iter_node.next == old->next);
- imm->iter_node.next = old->next->next;
-#endif
-
- imm->imm_use = old->next;
- if (end_readonly_imm_use_p (imm))
- return old;
- return imm->imm_use;
-}
-
-/* Return true if VAR has no uses. */
-static inline bool
-has_zero_uses (tree var)
-{
- ssa_use_operand_t *ptr;
- ptr = &(SSA_NAME_IMM_USE_NODE (var));
- /* A single use means there is no items in the list. */
- return (ptr == ptr->next);
-}
-
-/* Return true if VAR has a single use. */
-static inline bool
-has_single_use (tree var)
-{
- ssa_use_operand_t *ptr;
- ptr = &(SSA_NAME_IMM_USE_NODE (var));
- /* A single use means there is one item in the list. */
- return (ptr != ptr->next && ptr == ptr->next->next);
-}
-
-/* If VAR has only a single immediate use, return true, and set USE_P and STMT
- to the use pointer and stmt of occurrence. */
-static inline bool
-single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
-{
- ssa_use_operand_t *ptr;
-
- ptr = &(SSA_NAME_IMM_USE_NODE (var));
- if (ptr != ptr->next && ptr == ptr->next->next)
- {
- *use_p = ptr->next;
- *stmt = ptr->next->stmt;
- return true;
- }
- *use_p = NULL_USE_OPERAND_P;
- *stmt = NULL_TREE;
- return false;
-}
-
-/* Return the number of immediate uses of VAR. */
-static inline unsigned int
-num_imm_uses (tree var)
-{
- ssa_use_operand_t *ptr, *start;
- unsigned int num;
-
- start = &(SSA_NAME_IMM_USE_NODE (var));
- num = 0;
- for (ptr = start->next; ptr != start; ptr = ptr->next)
- num++;
-
- return num;
-}
-
-
-/* Return the tree pointer to by USE. */
-static inline tree
-get_use_from_ptr (use_operand_p use)
-{
- return *(use->use);
-}
-
-/* Return the tree pointer to by DEF. */
-static inline tree
-get_def_from_ptr (def_operand_p def)
-{
- return *def;
-}
-
-/* Return a def_operand_p pointer for the result of PHI. */
-static inline def_operand_p
-get_phi_result_ptr (tree phi)
-{
- return &(PHI_RESULT_TREE (phi));
-}
-
-/* Return a use_operand_p pointer for argument I of phinode PHI. */
-static inline use_operand_p
-get_phi_arg_def_ptr (tree phi, int i)
-{
- return &(PHI_ARG_IMM_USE_NODE (phi,i));
-}
-
-
-/* Return the bitmap of addresses taken by STMT, or NULL if it takes
- no addresses. */
-static inline bitmap
-addresses_taken (tree stmt)
-{
- stmt_ann_t ann = stmt_ann (stmt);
- return ann ? ann->addresses_taken : NULL;
-}
-
-/* Return the PHI nodes for basic block BB, or NULL if there are no
- PHI nodes. */
-static inline tree
-phi_nodes (basic_block bb)
-{
- return bb->phi_nodes;
-}
-
-/* Set list of phi nodes of a basic block BB to L. */
-
-static inline void
-set_phi_nodes (basic_block bb, tree l)
-{
- tree phi;
-
- bb->phi_nodes = l;
- for (phi = l; phi; phi = PHI_CHAIN (phi))
- set_bb_for_stmt (phi, bb);
-}
-
-/* Return the phi argument which contains the specified use. */
-
-static inline int
-phi_arg_index_from_use (use_operand_p use)
-{
- struct phi_arg_d *element, *root;
- int index;
- tree phi;
-
- /* Since the use is the first thing in a PHI argument element, we can
- calculate its index based on casting it to an argument, and performing
- pointer arithmetic. */
-
- phi = USE_STMT (use);
- gcc_assert (TREE_CODE (phi) == PHI_NODE);
-
- element = (struct phi_arg_d *)use;
- root = &(PHI_ARG_ELT (phi, 0));
- index = element - root;
-
-#ifdef ENABLE_CHECKING
- /* Make sure the calculation doesn't have any leftover bytes. If it does,
- then imm_use is likely not the first element in phi_arg_d. */
- gcc_assert (
- (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
- gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
-#endif
-
- return index;
-}
-
-/* Mark VAR as used, so that it'll be preserved during rtl expansion. */
-
-static inline void
-set_is_used (tree var)
-{
- var_ann_t ann = get_var_ann (var);
- ann->used = 1;
-}
-
-
-/* ----------------------------------------------------------------------- */
-
-/* Return true if T is an executable statement. */
-static inline bool
-is_exec_stmt (tree t)
-{
- return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
-}
-
-
-/* Return true if this stmt can be the target of a control transfer stmt such
- as a goto. */
-static inline bool
-is_label_stmt (tree t)
-{
- if (t)
- switch (TREE_CODE (t))
- {
- case LABEL_DECL:
- case LABEL_EXPR:
- case CASE_LABEL_EXPR:
- return true;
- default:
- return false;
- }
- return false;
-}
-
-/* PHI nodes should contain only ssa_names and invariants. A test
- for ssa_name is definitely simpler; don't let invalid contents
- slip in in the meantime. */
-
-static inline bool
-phi_ssa_name_p (tree t)
-{
- if (TREE_CODE (t) == SSA_NAME)
- return true;
-#ifdef ENABLE_CHECKING
- gcc_assert (is_gimple_min_invariant (t));
-#endif
- return false;
-}
-
-/* ----------------------------------------------------------------------- */
-
-/* Return a block_stmt_iterator that points to beginning of basic
- block BB. */
-static inline block_stmt_iterator
-bsi_start (basic_block bb)
-{
- block_stmt_iterator bsi;
- if (bb->stmt_list)
- bsi.tsi = tsi_start (bb->stmt_list);
- else
- {
- gcc_assert (bb->index < NUM_FIXED_BLOCKS);
- bsi.tsi.ptr = NULL;
- bsi.tsi.container = NULL;
- }
- bsi.bb = bb;
- return bsi;
-}
-
-/* Return a block statement iterator that points to the first non-label
- statement in block BB. */
-
-static inline block_stmt_iterator
-bsi_after_labels (basic_block bb)
-{
- block_stmt_iterator bsi = bsi_start (bb);
-
- while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
- bsi_next (&bsi);
-
- return bsi;
-}
-
-/* Return a block statement iterator that points to the end of basic
- block BB. */
-static inline block_stmt_iterator
-bsi_last (basic_block bb)
-{
- block_stmt_iterator bsi;
- if (bb->stmt_list)
- bsi.tsi = tsi_last (bb->stmt_list);
- else
- {
- gcc_assert (bb->index < NUM_FIXED_BLOCKS);
- bsi.tsi.ptr = NULL;
- bsi.tsi.container = NULL;
- }
- bsi.bb = bb;
- return bsi;
-}
-
-/* Return true if block statement iterator I has reached the end of
- the basic block. */
-static inline bool
-bsi_end_p (block_stmt_iterator i)
-{
- return tsi_end_p (i.tsi);
-}
-
-/* Modify block statement iterator I so that it is at the next
- statement in the basic block. */
-static inline void
-bsi_next (block_stmt_iterator *i)
-{
- tsi_next (&i->tsi);
-}
-
-/* Modify block statement iterator I so that it is at the previous
- statement in the basic block. */
-static inline void
-bsi_prev (block_stmt_iterator *i)
-{
- tsi_prev (&i->tsi);
-}
-
-/* Return the statement that block statement iterator I is currently
- at. */
-static inline tree
-bsi_stmt (block_stmt_iterator i)
-{
- return tsi_stmt (i.tsi);
-}
-
-/* Return a pointer to the statement that block statement iterator I
- is currently at. */
-static inline tree *
-bsi_stmt_ptr (block_stmt_iterator i)
-{
- return tsi_stmt_ptr (i.tsi);
-}
-
-/* Returns the loop of the statement STMT. */
-
-static inline struct loop *
-loop_containing_stmt (tree stmt)
-{
- basic_block bb = bb_for_stmt (stmt);
- if (!bb)
- return NULL;
-
- return bb->loop_father;
-}
-
-/* Return true if VAR is a clobbered by function calls. */
-static inline bool
-is_call_clobbered (tree var)
-{
- if (!MTAG_P (var))
- return DECL_CALL_CLOBBERED (var);
- else
- return bitmap_bit_p (call_clobbered_vars, DECL_UID (var));
-}
-
-/* Mark variable VAR as being clobbered by function calls. */
-static inline void
-mark_call_clobbered (tree var, unsigned int escape_type)
-{
- var_ann (var)->escape_mask |= escape_type;
- if (!MTAG_P (var))
- DECL_CALL_CLOBBERED (var) = true;
- bitmap_set_bit (call_clobbered_vars, DECL_UID (var));
-}
-
-/* Clear the call-clobbered attribute from variable VAR. */
-static inline void
-clear_call_clobbered (tree var)
-{
- var_ann_t ann = var_ann (var);
- ann->escape_mask = 0;
- if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
- MTAG_GLOBAL (var) = 0;
- if (!MTAG_P (var))
- DECL_CALL_CLOBBERED (var) = false;
- bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
-}
-
-/* Mark variable VAR as being non-addressable. */
-static inline void
-mark_non_addressable (tree var)
-{
- if (!MTAG_P (var))
- DECL_CALL_CLOBBERED (var) = false;
- bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
- TREE_ADDRESSABLE (var) = 0;
-}
-
-/* Return the common annotation for T. Return NULL if the annotation
- doesn't already exist. */
-static inline tree_ann_common_t
-tree_common_ann (tree t)
-{
- return &t->common.ann->common;
-}
-
-/* Return a common annotation for T. Create the constant annotation if it
- doesn't exist. */
-static inline tree_ann_common_t
-get_tree_common_ann (tree t)
-{
- tree_ann_common_t ann = tree_common_ann (t);
- return (ann) ? ann : create_tree_common_ann (t);
-}
-
-/* ----------------------------------------------------------------------- */
-
-/* The following set of routines are used to iterator over various type of
- SSA operands. */
-
-/* Return true if PTR is finished iterating. */
-static inline bool
-op_iter_done (ssa_op_iter *ptr)
-{
- return ptr->done;
-}
-
-/* Get the next iterator use value for PTR. */
-static inline use_operand_p
-op_iter_next_use (ssa_op_iter *ptr)
-{
- use_operand_p use_p;
-#ifdef ENABLE_CHECKING
- gcc_assert (ptr->iter_type == ssa_op_iter_use);
-#endif
- if (ptr->uses)
- {
- use_p = USE_OP_PTR (ptr->uses);
- ptr->uses = ptr->uses->next;
- return use_p;
- }
- if (ptr->vuses)
- {
- use_p = VUSE_OP_PTR (ptr->vuses);
- ptr->vuses = ptr->vuses->next;
- return use_p;
- }
- if (ptr->mayuses)
- {
- use_p = MAYDEF_OP_PTR (ptr->mayuses);
- ptr->mayuses = ptr->mayuses->next;
- return use_p;
- }
- if (ptr->mustkills)
- {
- use_p = MUSTDEF_KILL_PTR (ptr->mustkills);
- ptr->mustkills = ptr->mustkills->next;
- return use_p;
- }
- if (ptr->phi_i < ptr->num_phi)
- {
- return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
- }
- ptr->done = true;
- return NULL_USE_OPERAND_P;
-}
-
-/* Get the next iterator def value for PTR. */
-static inline def_operand_p
-op_iter_next_def (ssa_op_iter *ptr)
-{
- def_operand_p def_p;
-#ifdef ENABLE_CHECKING
- gcc_assert (ptr->iter_type == ssa_op_iter_def);
-#endif
- if (ptr->defs)
- {
- def_p = DEF_OP_PTR (ptr->defs);
- ptr->defs = ptr->defs->next;
- return def_p;
- }
- if (ptr->mustdefs)
- {
- def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs);
- ptr->mustdefs = ptr->mustdefs->next;
- return def_p;
- }
- if (ptr->maydefs)
- {
- def_p = MAYDEF_RESULT_PTR (ptr->maydefs);
- ptr->maydefs = ptr->maydefs->next;
- return def_p;
- }
- ptr->done = true;
- return NULL_DEF_OPERAND_P;
-}
-
-/* Get the next iterator tree value for PTR. */
-static inline tree
-op_iter_next_tree (ssa_op_iter *ptr)
-{
- tree val;
-#ifdef ENABLE_CHECKING
- gcc_assert (ptr->iter_type == ssa_op_iter_tree);
-#endif
- if (ptr->uses)
- {
- val = USE_OP (ptr->uses);
- ptr->uses = ptr->uses->next;
- return val;
- }
- if (ptr->vuses)
- {
- val = VUSE_OP (ptr->vuses);
- ptr->vuses = ptr->vuses->next;
- return val;
- }
- if (ptr->mayuses)
- {
- val = MAYDEF_OP (ptr->mayuses);
- ptr->mayuses = ptr->mayuses->next;
- return val;
- }
- if (ptr->mustkills)
- {
- val = MUSTDEF_KILL (ptr->mustkills);
- ptr->mustkills = ptr->mustkills->next;
- return val;
- }
- if (ptr->defs)
- {
- val = DEF_OP (ptr->defs);
- ptr->defs = ptr->defs->next;
- return val;
- }
- if (ptr->mustdefs)
- {
- val = MUSTDEF_RESULT (ptr->mustdefs);
- ptr->mustdefs = ptr->mustdefs->next;
- return val;
- }
- if (ptr->maydefs)
- {
- val = MAYDEF_RESULT (ptr->maydefs);
- ptr->maydefs = ptr->maydefs->next;
- return val;
- }
-
- ptr->done = true;
- return NULL_TREE;
-
-}
-
-
-/* This functions clears the iterator PTR, and marks it done. This is normally
- used to prevent warnings in the compile about might be uninitialized
- components. */
-
-static inline void
-clear_and_done_ssa_iter (ssa_op_iter *ptr)
-{
- ptr->defs = NULL;
- ptr->uses = NULL;
- ptr->vuses = NULL;
- ptr->maydefs = NULL;
- ptr->mayuses = NULL;
- ptr->mustdefs = NULL;
- ptr->mustkills = NULL;
- ptr->iter_type = ssa_op_iter_none;
- ptr->phi_i = 0;
- ptr->num_phi = 0;
- ptr->phi_stmt = NULL_TREE;
- ptr->done = true;
-}
-
-/* Initialize the iterator PTR to the virtual defs in STMT. */
-static inline void
-op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
-{
-#ifdef ENABLE_CHECKING
- gcc_assert (stmt_ann (stmt));
-#endif
-
- ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
- ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
- ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
- ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL;
- ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL;
- ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL;
- ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL;
- ptr->done = false;
-
- ptr->phi_i = 0;
- ptr->num_phi = 0;
- ptr->phi_stmt = NULL_TREE;
-}
-
-/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
- the first use. */
-static inline use_operand_p
-op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
-{
- gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
- op_iter_init (ptr, stmt, flags);
- ptr->iter_type = ssa_op_iter_use;
- return op_iter_next_use (ptr);
-}
-
-/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
- the first def. */
-static inline def_operand_p
-op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
-{
- gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0);
- op_iter_init (ptr, stmt, flags);
- ptr->iter_type = ssa_op_iter_def;
- return op_iter_next_def (ptr);
-}
-
-/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
- the first operand as a tree. */
-static inline tree
-op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
-{
- op_iter_init (ptr, stmt, flags);
- ptr->iter_type = ssa_op_iter_tree;
- return op_iter_next_tree (ptr);
-}
-
-/* Get the next iterator mustdef value for PTR, returning the mustdef values in
- KILL and DEF. */
-static inline void
-op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def,
- ssa_op_iter *ptr)
-{
-#ifdef ENABLE_CHECKING
- gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef);
-#endif
- if (ptr->mayuses)
- {
- *def = MAYDEF_RESULT_PTR (ptr->mayuses);
- *use = MAYDEF_OP_PTR (ptr->mayuses);
- ptr->mayuses = ptr->mayuses->next;
- return;
- }
-
- if (ptr->mustkills)
- {
- *def = MUSTDEF_RESULT_PTR (ptr->mustkills);
- *use = MUSTDEF_KILL_PTR (ptr->mustkills);
- ptr->mustkills = ptr->mustkills->next;
- return;
- }
-
- *def = NULL_DEF_OPERAND_P;
- *use = NULL_USE_OPERAND_P;
- ptr->done = true;
- return;
-}
-
-
-/* Initialize iterator PTR to the operands in STMT. Return the first operands
- in USE and DEF. */
-static inline void
-op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
- def_operand_p *def)
-{
- gcc_assert (TREE_CODE (stmt) != PHI_NODE);
-
- op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
- ptr->iter_type = ssa_op_iter_maymustdef;
- op_iter_next_maymustdef (use, def, ptr);
-}
-
-
-/* Initialize iterator PTR to the operands in STMT. Return the first operands
- in KILL and DEF. */
-static inline void
-op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
- def_operand_p *def)
-{
- gcc_assert (TREE_CODE (stmt) != PHI_NODE);
-
- op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL);
- ptr->iter_type = ssa_op_iter_maymustdef;
- op_iter_next_maymustdef (kill, def, ptr);
-}
-
-/* Initialize iterator PTR to the operands in STMT. Return the first operands
- in KILL and DEF. */
-static inline void
-op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
- use_operand_p *kill, def_operand_p *def)
-{
- gcc_assert (TREE_CODE (stmt) != PHI_NODE);
-
- op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE);
- ptr->iter_type = ssa_op_iter_maymustdef;
- op_iter_next_maymustdef (kill, def, ptr);
-}
-
-
-/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
- return NULL. */
-static inline tree
-single_ssa_tree_operand (tree stmt, int flags)
-{
- tree var;
- ssa_op_iter iter;
-
- var = op_iter_init_tree (&iter, stmt, flags);
- if (op_iter_done (&iter))
- return NULL_TREE;
- op_iter_next_tree (&iter);
- if (op_iter_done (&iter))
- return var;
- return NULL_TREE;
-}
-
-
-/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
- return NULL. */
-static inline use_operand_p
-single_ssa_use_operand (tree stmt, int flags)
-{
- use_operand_p var;
- ssa_op_iter iter;
-
- var = op_iter_init_use (&iter, stmt, flags);
- if (op_iter_done (&iter))
- return NULL_USE_OPERAND_P;
- op_iter_next_use (&iter);
- if (op_iter_done (&iter))
- return var;
- return NULL_USE_OPERAND_P;
-}
-
-
-
-/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
- return NULL. */
-static inline def_operand_p
-single_ssa_def_operand (tree stmt, int flags)
-{
- def_operand_p var;
- ssa_op_iter iter;
-
- var = op_iter_init_def (&iter, stmt, flags);
- if (op_iter_done (&iter))
- return NULL_DEF_OPERAND_P;
- op_iter_next_def (&iter);
- if (op_iter_done (&iter))
- return var;
- return NULL_DEF_OPERAND_P;
-}
-
-
-/* Return true if there are zero operands in STMT matching the type
- given in FLAGS. */
-static inline bool
-zero_ssa_operands (tree stmt, int flags)
-{
- ssa_op_iter iter;
-
- op_iter_init_tree (&iter, stmt, flags);
- return op_iter_done (&iter);
-}
-
-
-/* Return the number of operands matching FLAGS in STMT. */
-static inline int
-num_ssa_operands (tree stmt, int flags)
-{
- ssa_op_iter iter;
- tree t;
- int num = 0;
-
- FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
- num++;
- return num;
-}
-
-
-/* Delink all immediate_use information for STMT. */
-static inline void
-delink_stmt_imm_use (tree stmt)
-{
- ssa_op_iter iter;
- use_operand_p use_p;
-
- if (ssa_operands_active ())
- FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
- (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
- delink_imm_use (use_p);
-}
-
-
-/* This routine will compare all the operands matching FLAGS in STMT1 to those
- in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
-static inline bool
-compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
-{
- ssa_op_iter iter1, iter2;
- tree op1 = NULL_TREE;
- tree op2 = NULL_TREE;
- bool look1, look2;
-
- if (stmt1 == stmt2)
- return true;
-
- look1 = stmt1 && stmt_ann (stmt1);
- look2 = stmt2 && stmt_ann (stmt2);
-
- if (look1)
- {
- op1 = op_iter_init_tree (&iter1, stmt1, flags);
- if (!look2)
- return op_iter_done (&iter1);
- }
- else
- clear_and_done_ssa_iter (&iter1);
-
- if (look2)
- {
- op2 = op_iter_init_tree (&iter2, stmt2, flags);
- if (!look1)
- return op_iter_done (&iter2);
- }
- else
- clear_and_done_ssa_iter (&iter2);
-
- while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
- {
- if (op1 != op2)
- return false;
- op1 = op_iter_next_tree (&iter1);
- op2 = op_iter_next_tree (&iter2);
- }
-
- return (op_iter_done (&iter1) && op_iter_done (&iter2));
-}
-
-
-/* If there is a single DEF in the PHI node which matches FLAG, return it.
- Otherwise return NULL_DEF_OPERAND_P. */
-static inline tree
-single_phi_def (tree stmt, int flags)
-{
- tree def = PHI_RESULT (stmt);
- if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
- return def;
- if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
- return def;
- return NULL_TREE;
-}
-
-/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
- be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
-static inline use_operand_p
-op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
-{
- tree phi_def = PHI_RESULT (phi);
- int comp;
-
- clear_and_done_ssa_iter (ptr);
- ptr->done = false;
-
- gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
-
- comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
-
- /* If the PHI node doesn't the operand type we care about, we're done. */
- if ((flags & comp) == 0)
- {
- ptr->done = true;
- return NULL_USE_OPERAND_P;
- }
-
- ptr->phi_stmt = phi;
- ptr->num_phi = PHI_NUM_ARGS (phi);
- ptr->iter_type = ssa_op_iter_use;
- return op_iter_next_use (ptr);
-}
-
-
-/* Start an iterator for a PHI definition. */
-
-static inline def_operand_p
-op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
-{
- tree phi_def = PHI_RESULT (phi);
- int comp;
-
- clear_and_done_ssa_iter (ptr);
- ptr->done = false;
-
- gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
-
- comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
-
- /* If the PHI node doesn't the operand type we care about, we're done. */
- if ((flags & comp) == 0)
- {
- ptr->done = true;
- return NULL_USE_OPERAND_P;
- }
-
- ptr->iter_type = ssa_op_iter_def;
- /* The first call to op_iter_next_def will terminate the iterator since
- all the fields are NULL. Simply return the result here as the first and
- therefore only result. */
- return PHI_RESULT_PTR (phi);
-}
-
-/* Return true is IMM has reached the end of the immediate use stmt list. */
-
-static inline bool
-end_imm_use_stmt_p (imm_use_iterator *imm)
-{
- return (imm->imm_use == imm->end_p);
-}
-
-/* Finished the traverse of an immediate use stmt list IMM by removing the
- placeholder node from the list. */
-
-static inline void
-end_imm_use_stmt_traverse (imm_use_iterator *imm)
-{
- delink_imm_use (&(imm->iter_node));
-}
-
-/* Immediate use traversal of uses within a stmt require that all the
- uses on a stmt be sequentially listed. This routine is used to build up
- this sequential list by adding USE_P to the end of the current list
- currently delimited by HEAD and LAST_P. The new LAST_P value is
- returned. */
-
-static inline use_operand_p
-move_use_after_head (use_operand_p use_p, use_operand_p head,
- use_operand_p last_p)
-{
- gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
- /* Skip head when we find it. */
- if (use_p != head)
- {
- /* If use_p is already linked in after last_p, continue. */
- if (last_p->next == use_p)
- last_p = use_p;
- else
- {
- /* Delink from current location, and link in at last_p. */
- delink_imm_use (use_p);
- link_imm_use_to_list (use_p, last_p);
- last_p = use_p;
- }
- }
- return last_p;
-}
-
-
-/* This routine will relink all uses with the same stmt as HEAD into the list
- immediately following HEAD for iterator IMM. */
-
-static inline void
-link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
-{
- use_operand_p use_p;
- use_operand_p last_p = head;
- tree head_stmt = USE_STMT (head);
- tree use = USE_FROM_PTR (head);
- ssa_op_iter op_iter;
- int flag;
-
- /* Only look at virtual or real uses, depending on the type of HEAD. */
- flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
-
- if (TREE_CODE (head_stmt) == PHI_NODE)
- {
- FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
- if (USE_FROM_PTR (use_p) == use)
- last_p = move_use_after_head (use_p, head, last_p);
- }
- else
- {
- FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
- if (USE_FROM_PTR (use_p) == use)
- last_p = move_use_after_head (use_p, head, last_p);
- }
- /* LInk iter node in after last_p. */
- if (imm->iter_node.prev != NULL)
- delink_imm_use (&imm->iter_node);
- link_imm_use_to_list (&(imm->iter_node), last_p);
-}
-
-/* Initialize IMM to traverse over uses of VAR. Return the first statement. */
-static inline tree
-first_imm_use_stmt (imm_use_iterator *imm, tree var)
-{
- gcc_assert (TREE_CODE (var) == SSA_NAME);
-
- imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
- imm->imm_use = imm->end_p->next;
- imm->next_imm_name = NULL_USE_OPERAND_P;
-
- /* iter_node is used as a marker within the immediate use list to indicate
- where the end of the current stmt's uses are. Initialize it to NULL
- stmt and use, which indicates a marker node. */
- imm->iter_node.prev = NULL_USE_OPERAND_P;
- imm->iter_node.next = NULL_USE_OPERAND_P;
- imm->iter_node.stmt = NULL_TREE;
- imm->iter_node.use = NULL_USE_OPERAND_P;
-
- if (end_imm_use_stmt_p (imm))
- return NULL_TREE;
-
- link_use_stmts_after (imm->imm_use, imm);
-
- return USE_STMT (imm->imm_use);
-}
-
-/* Bump IMM to the next stmt which has a use of var. */
-
-static inline tree
-next_imm_use_stmt (imm_use_iterator *imm)
-{
- imm->imm_use = imm->iter_node.next;
- if (end_imm_use_stmt_p (imm))
- {
- if (imm->iter_node.prev != NULL)
- delink_imm_use (&imm->iter_node);
- return NULL_TREE;
- }
-
- link_use_stmts_after (imm->imm_use, imm);
- return USE_STMT (imm->imm_use);
-
-}
-
-/* This routine will return the first use on the stmt IMM currently refers
- to. */
-
-static inline use_operand_p
-first_imm_use_on_stmt (imm_use_iterator *imm)
-{
- imm->next_imm_name = imm->imm_use->next;
- return imm->imm_use;
-}
-
-/* Return TRUE if the last use on the stmt IMM refers to has been visited. */
-
-static inline bool
-end_imm_use_on_stmt_p (imm_use_iterator *imm)
-{
- return (imm->imm_use == &(imm->iter_node));
-}
-
-/* Bump to the next use on the stmt IMM refers to, return NULL if done. */
-
-static inline use_operand_p
-next_imm_use_on_stmt (imm_use_iterator *imm)
-{
- imm->imm_use = imm->next_imm_name;
- if (end_imm_use_on_stmt_p (imm))
- return NULL_USE_OPERAND_P;
- else
- {
- imm->next_imm_name = imm->imm_use->next;
- return imm->imm_use;
- }
-}
-
-/* Return true if VAR cannot be modified by the program. */
-
-static inline bool
-unmodifiable_var_p (tree var)
-{
- if (TREE_CODE (var) == SSA_NAME)
- var = SSA_NAME_VAR (var);
-
- if (MTAG_P (var))
- return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
-
- return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
-}
-
-/* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
-
-static inline bool
-array_ref_contains_indirect_ref (tree ref)
-{
- gcc_assert (TREE_CODE (ref) == ARRAY_REF);
-
- do {
- ref = TREE_OPERAND (ref, 0);
- } while (handled_component_p (ref));
-
- return TREE_CODE (ref) == INDIRECT_REF;
-}
-
-/* Return true if REF, a handled component reference, has an ARRAY_REF
- somewhere in it. */
-
-static inline bool
-ref_contains_array_ref (tree ref)
-{
- gcc_assert (handled_component_p (ref));
-
- do {
- if (TREE_CODE (ref) == ARRAY_REF)
- return true;
- ref = TREE_OPERAND (ref, 0);
- } while (handled_component_p (ref));
-
- return false;
-}
-
-/* Given a variable VAR, lookup and return a pointer to the list of
- subvariables for it. */
-
-static inline subvar_t *
-lookup_subvars_for_var (tree var)
-{
- var_ann_t ann = var_ann (var);
- gcc_assert (ann);
- return &ann->subvars;
-}
-
-/* Given a variable VAR, return a linked list of subvariables for VAR, or
- NULL, if there are no subvariables. */
-
-static inline subvar_t
-get_subvars_for_var (tree var)
-{
- subvar_t subvars;
-
- gcc_assert (SSA_VAR_P (var));
-
- if (TREE_CODE (var) == SSA_NAME)
- subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
- else
- subvars = *(lookup_subvars_for_var (var));
- return subvars;
-}
-
-/* Return the subvariable of VAR at offset OFFSET. */
-
-static inline tree
-get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
-{
- subvar_t sv;
-
- for (sv = get_subvars_for_var (var); sv; sv = sv->next)
- if (SFT_OFFSET (sv->var) == offset)
- return sv->var;
-
- return NULL_TREE;
-}
-
-/* Return true if V is a tree that we can have subvars for.
- Normally, this is any aggregate type. Also complex
- types which are not gimple registers can have subvars. */
-
-static inline bool
-var_can_have_subvars (tree v)
-{
- /* Volatile variables should never have subvars. */
- if (TREE_THIS_VOLATILE (v))
- return false;
-
- /* Non decls or memory tags can never have subvars. */
- if (!DECL_P (v) || MTAG_P (v))
- return false;
-
- /* Aggregates can have subvars. */
- if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
- return true;
-
- /* Complex types variables which are not also a gimple register can
- have subvars. */
- if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
- && !DECL_COMPLEX_GIMPLE_REG_P (v))
- return true;
-
- return false;
-}
-
-
-/* Return true if OFFSET and SIZE define a range that overlaps with some
- portion of the range of SV, a subvar. If there was an exact overlap,
- *EXACT will be set to true upon return. */
-
-static inline bool
-overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
- tree sv, bool *exact)
-{
- /* There are three possible cases of overlap.
- 1. We can have an exact overlap, like so:
- |offset, offset + size |
- |sv->offset, sv->offset + sv->size |
-
- 2. We can have offset starting after sv->offset, like so:
-
- |offset, offset + size |
- |sv->offset, sv->offset + sv->size |
-
- 3. We can have offset starting before sv->offset, like so:
-
- |offset, offset + size |
- |sv->offset, sv->offset + sv->size|
- */
-
- if (exact)
- *exact = false;
- if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
- {
- if (exact)
- *exact = true;
- return true;
- }
- else if (offset >= SFT_OFFSET (sv)
- && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
- {
- return true;
- }
- else if (offset < SFT_OFFSET (sv)
- && (size > SFT_OFFSET (sv) - offset))
- {
- return true;
- }
- return false;
-
-}
-
-#endif /* _TREE_FLOW_INLINE_H */