aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-flow-inline.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-flow-inline.h')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-flow-inline.h1623
1 files changed, 1623 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-flow-inline.h b/gcc-4.2.1-5666.3/gcc/tree-flow-inline.h
new file mode 100644
index 000000000..a3bb65272
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-flow-inline.h
@@ -0,0 +1,1623 @@
+/* Inline functions for tree-flow.h
+ Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
+ Contributed by Diego Novillo <dnovillo@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to
+the Free Software Foundation, 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA. */
+
+#ifndef _TREE_FLOW_INLINE_H
+#define _TREE_FLOW_INLINE_H 1
+
+/* Inline functions for manipulating various data structures defined in
+ tree-flow.h. See tree-flow.h for documentation. */
+
+/* Initialize the hashtable iterator HTI to point to hashtable TABLE */
+
+static inline void *
+first_htab_element (htab_iterator *hti, htab_t table)
+{
+ hti->htab = table;
+ hti->slot = table->entries;
+ hti->limit = hti->slot + htab_size (table);
+ do
+ {
+ PTR x = *(hti->slot);
+ if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
+ break;
+ } while (++(hti->slot) < hti->limit);
+
+ if (hti->slot < hti->limit)
+ return *(hti->slot);
+ return NULL;
+}
+
+/* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
+ or NULL if we have reached the end. */
+
+static inline bool
+end_htab_p (htab_iterator *hti)
+{
+ if (hti->slot >= hti->limit)
+ return true;
+ return false;
+}
+
+/* Advance the hashtable iterator pointed to by HTI to the next element of the
+ hashtable. */
+
+static inline void *
+next_htab_element (htab_iterator *hti)
+{
+ while (++(hti->slot) < hti->limit)
+ {
+ PTR x = *(hti->slot);
+ if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
+ return x;
+ };
+ return NULL;
+}
+
+/* Initialize ITER to point to the first referenced variable in the
+ referenced_vars hashtable, and return that variable. */
+
+static inline tree
+first_referenced_var (referenced_var_iterator *iter)
+{
+ struct int_tree_map *itm;
+ itm = (struct int_tree_map *) first_htab_element (&iter->hti,
+ referenced_vars);
+ if (!itm)
+ return NULL;
+ return itm->to;
+}
+
+/* Return true if we have hit the end of the referenced variables ITER is
+ iterating through. */
+
+static inline bool
+end_referenced_vars_p (referenced_var_iterator *iter)
+{
+ return end_htab_p (&iter->hti);
+}
+
+/* Make ITER point to the next referenced_var in the referenced_var hashtable,
+ and return that variable. */
+
+static inline tree
+next_referenced_var (referenced_var_iterator *iter)
+{
+ struct int_tree_map *itm;
+ itm = (struct int_tree_map *) next_htab_element (&iter->hti);
+ if (!itm)
+ return NULL;
+ return itm->to;
+}
+
+/* Fill up VEC with the variables in the referenced vars hashtable. */
+
+static inline void
+fill_referenced_var_vec (VEC (tree, heap) **vec)
+{
+ referenced_var_iterator rvi;
+ tree var;
+ *vec = NULL;
+ FOR_EACH_REFERENCED_VAR (var, rvi)
+ VEC_safe_push (tree, heap, *vec, var);
+}
+
+/* Return the variable annotation for T, which must be a _DECL node.
+ Return NULL if the variable annotation doesn't already exist. */
+static inline var_ann_t
+var_ann (tree t)
+{
+ gcc_assert (t);
+ gcc_assert (DECL_P (t));
+ gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
+ gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
+
+ return (var_ann_t) t->common.ann;
+}
+
+/* Return the variable annotation for T, which must be a _DECL node.
+ Create the variable annotation if it doesn't exist. */
+static inline var_ann_t
+get_var_ann (tree var)
+{
+ var_ann_t ann = var_ann (var);
+ return (ann) ? ann : create_var_ann (var);
+}
+
+/* Return the function annotation for T, which must be a FUNCTION_DECL node.
+ Return NULL if the function annotation doesn't already exist. */
+static inline function_ann_t
+function_ann (tree t)
+{
+ gcc_assert (t);
+ gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
+ gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN);
+
+ return (function_ann_t) t->common.ann;
+}
+
+/* Return the function annotation for T, which must be a FUNCTION_DECL node.
+ Create the function annotation if it doesn't exist. */
+static inline function_ann_t
+get_function_ann (tree var)
+{
+ function_ann_t ann = function_ann (var);
+ gcc_assert (!var->common.ann || var->common.ann->common.type == FUNCTION_ANN);
+ return (ann) ? ann : create_function_ann (var);
+}
+
+/* Return the statement annotation for T, which must be a statement
+ node. Return NULL if the statement annotation doesn't exist. */
+static inline stmt_ann_t
+stmt_ann (tree t)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (is_gimple_stmt (t));
+#endif
+ gcc_assert (!t->common.ann || t->common.ann->common.type == STMT_ANN);
+ return (stmt_ann_t) t->common.ann;
+}
+
+/* Return the statement annotation for T, which must be a statement
+ node. Create the statement annotation if it doesn't exist. */
+static inline stmt_ann_t
+get_stmt_ann (tree stmt)
+{
+ stmt_ann_t ann = stmt_ann (stmt);
+ return (ann) ? ann : create_stmt_ann (stmt);
+}
+
+/* Return the annotation type for annotation ANN. */
+static inline enum tree_ann_type
+ann_type (tree_ann_t ann)
+{
+ return ann->common.type;
+}
+
+/* Return the basic block for statement T. */
+static inline basic_block
+bb_for_stmt (tree t)
+{
+ stmt_ann_t ann;
+
+ if (TREE_CODE (t) == PHI_NODE)
+ return PHI_BB (t);
+
+ ann = stmt_ann (t);
+ return ann ? ann->bb : NULL;
+}
+
+/* Return the may_aliases varray for variable VAR, or NULL if it has
+ no may aliases. */
+static inline VEC(tree, gc) *
+may_aliases (tree var)
+{
+ var_ann_t ann = var_ann (var);
+ return ann ? ann->may_aliases : NULL;
+}
+
+/* Return the line number for EXPR, or return -1 if we have no line
+ number information for it. */
+static inline int
+get_lineno (tree expr)
+{
+ if (expr == NULL_TREE)
+ return -1;
+
+ if (TREE_CODE (expr) == COMPOUND_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+
+ if (! EXPR_HAS_LOCATION (expr))
+ return -1;
+
+ return EXPR_LINENO (expr);
+}
+
+/* Return the file name for EXPR, or return "???" if we have no
+ filename information. */
+static inline const char *
+get_filename (tree expr)
+{
+ const char *filename;
+ if (expr == NULL_TREE)
+ return "???";
+
+ if (TREE_CODE (expr) == COMPOUND_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+
+ if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
+ return filename;
+ else
+ return "???";
+}
+
+/* Return true if T is a noreturn call. */
+static inline bool
+noreturn_call_p (tree t)
+{
+ tree call = get_call_expr_in (t);
+ return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
+}
+
+/* Mark statement T as modified. */
+static inline void
+mark_stmt_modified (tree t)
+{
+ stmt_ann_t ann;
+ if (TREE_CODE (t) == PHI_NODE)
+ return;
+
+ ann = stmt_ann (t);
+ if (ann == NULL)
+ ann = create_stmt_ann (t);
+ else if (noreturn_call_p (t))
+ VEC_safe_push (tree, gc, modified_noreturn_calls, t);
+ ann->modified = 1;
+}
+
+/* Mark statement T as modified, and update it. */
+static inline void
+update_stmt (tree t)
+{
+ if (TREE_CODE (t) == PHI_NODE)
+ return;
+ mark_stmt_modified (t);
+ update_stmt_operands (t);
+}
+
+static inline void
+update_stmt_if_modified (tree t)
+{
+ if (stmt_modified_p (t))
+ update_stmt_operands (t);
+}
+
+/* Return true if T is marked as modified, false otherwise. */
+static inline bool
+stmt_modified_p (tree t)
+{
+ stmt_ann_t ann = stmt_ann (t);
+
+ /* Note that if the statement doesn't yet have an annotation, we consider it
+ modified. This will force the next call to update_stmt_operands to scan
+ the statement. */
+ return ann ? ann->modified : true;
+}
+
+/* Delink an immediate_uses node from its chain. */
+static inline void
+delink_imm_use (ssa_use_operand_t *linknode)
+{
+ /* Return if this node is not in a list. */
+ if (linknode->prev == NULL)
+ return;
+
+ linknode->prev->next = linknode->next;
+ linknode->next->prev = linknode->prev;
+ linknode->prev = NULL;
+ linknode->next = NULL;
+}
+
+/* Link ssa_imm_use node LINKNODE into the chain for LIST. */
+static inline void
+link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
+{
+ /* Link the new node at the head of the list. If we are in the process of
+ traversing the list, we won't visit any new nodes added to it. */
+ linknode->prev = list;
+ linknode->next = list->next;
+ list->next->prev = linknode;
+ list->next = linknode;
+}
+
+/* Link ssa_imm_use node LINKNODE into the chain for DEF. */
+static inline void
+link_imm_use (ssa_use_operand_t *linknode, tree def)
+{
+ ssa_use_operand_t *root;
+
+ if (!def || TREE_CODE (def) != SSA_NAME)
+ linknode->prev = NULL;
+ else
+ {
+ root = &(SSA_NAME_IMM_USE_NODE (def));
+#ifdef ENABLE_CHECKING
+ if (linknode->use)
+ gcc_assert (*(linknode->use) == def);
+#endif
+ link_imm_use_to_list (linknode, root);
+ }
+}
+
+/* Set the value of a use pointed to by USE to VAL. */
+static inline void
+set_ssa_use_from_ptr (use_operand_p use, tree val)
+{
+ delink_imm_use (use);
+ *(use->use) = val;
+ link_imm_use (use, val);
+}
+
+/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
+ in STMT. */
+static inline void
+link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
+{
+ if (stmt)
+ link_imm_use (linknode, def);
+ else
+ link_imm_use (linknode, NULL);
+ linknode->stmt = stmt;
+}
+
+/* Relink a new node in place of an old node in the list. */
+static inline void
+relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
+{
+ /* The node one had better be in the same list. */
+ gcc_assert (*(old->use) == *(node->use));
+ node->prev = old->prev;
+ node->next = old->next;
+ if (old->prev)
+ {
+ old->prev->next = node;
+ old->next->prev = node;
+ /* Remove the old node from the list. */
+ old->prev = NULL;
+ }
+}
+
+/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
+ in STMT. */
+static inline void
+relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
+{
+ if (stmt)
+ relink_imm_use (linknode, old);
+ else
+ link_imm_use (linknode, NULL);
+ linknode->stmt = stmt;
+}
+
+
+/* Return true is IMM has reached the end of the immediate use list. */
+static inline bool
+end_readonly_imm_use_p (imm_use_iterator *imm)
+{
+ return (imm->imm_use == imm->end_p);
+}
+
+/* Initialize iterator IMM to process the list for VAR. */
+static inline use_operand_p
+first_readonly_imm_use (imm_use_iterator *imm, tree var)
+{
+ gcc_assert (TREE_CODE (var) == SSA_NAME);
+
+ imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
+ imm->imm_use = imm->end_p->next;
+#ifdef ENABLE_CHECKING
+ imm->iter_node.next = imm->imm_use->next;
+#endif
+ if (end_readonly_imm_use_p (imm))
+ return NULL_USE_OPERAND_P;
+ return imm->imm_use;
+}
+
+/* Bump IMM to the next use in the list. */
+static inline use_operand_p
+next_readonly_imm_use (imm_use_iterator *imm)
+{
+ use_operand_p old = imm->imm_use;
+
+#ifdef ENABLE_CHECKING
+ /* If this assertion fails, it indicates the 'next' pointer has changed
+ since we the last bump. This indicates that the list is being modified
+ via stmt changes, or SET_USE, or somesuch thing, and you need to be
+ using the SAFE version of the iterator. */
+ gcc_assert (imm->iter_node.next == old->next);
+ imm->iter_node.next = old->next->next;
+#endif
+
+ imm->imm_use = old->next;
+ if (end_readonly_imm_use_p (imm))
+ return old;
+ return imm->imm_use;
+}
+
+/* Return true if VAR has no uses. */
+static inline bool
+has_zero_uses (tree var)
+{
+ ssa_use_operand_t *ptr;
+ ptr = &(SSA_NAME_IMM_USE_NODE (var));
+ /* A single use means there is no items in the list. */
+ return (ptr == ptr->next);
+}
+
+/* Return true if VAR has a single use. */
+static inline bool
+has_single_use (tree var)
+{
+ ssa_use_operand_t *ptr;
+ ptr = &(SSA_NAME_IMM_USE_NODE (var));
+ /* A single use means there is one item in the list. */
+ return (ptr != ptr->next && ptr == ptr->next->next);
+}
+
+/* If VAR has only a single immediate use, return true, and set USE_P and STMT
+ to the use pointer and stmt of occurrence. */
+static inline bool
+single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
+{
+ ssa_use_operand_t *ptr;
+
+ ptr = &(SSA_NAME_IMM_USE_NODE (var));
+ if (ptr != ptr->next && ptr == ptr->next->next)
+ {
+ *use_p = ptr->next;
+ *stmt = ptr->next->stmt;
+ return true;
+ }
+ *use_p = NULL_USE_OPERAND_P;
+ *stmt = NULL_TREE;
+ return false;
+}
+
+/* Return the number of immediate uses of VAR. */
+static inline unsigned int
+num_imm_uses (tree var)
+{
+ ssa_use_operand_t *ptr, *start;
+ unsigned int num;
+
+ start = &(SSA_NAME_IMM_USE_NODE (var));
+ num = 0;
+ for (ptr = start->next; ptr != start; ptr = ptr->next)
+ num++;
+
+ return num;
+}
+
+
+/* Return the tree pointer to by USE. */
+static inline tree
+get_use_from_ptr (use_operand_p use)
+{
+ return *(use->use);
+}
+
+/* Return the tree pointer to by DEF. */
+static inline tree
+get_def_from_ptr (def_operand_p def)
+{
+ return *def;
+}
+
+/* Return a def_operand_p pointer for the result of PHI. */
+static inline def_operand_p
+get_phi_result_ptr (tree phi)
+{
+ return &(PHI_RESULT_TREE (phi));
+}
+
+/* Return a use_operand_p pointer for argument I of phinode PHI. */
+static inline use_operand_p
+get_phi_arg_def_ptr (tree phi, int i)
+{
+ return &(PHI_ARG_IMM_USE_NODE (phi,i));
+}
+
+
+/* Return the bitmap of addresses taken by STMT, or NULL if it takes
+ no addresses. */
+static inline bitmap
+addresses_taken (tree stmt)
+{
+ stmt_ann_t ann = stmt_ann (stmt);
+ return ann ? ann->addresses_taken : NULL;
+}
+
+/* Return the PHI nodes for basic block BB, or NULL if there are no
+ PHI nodes. */
+static inline tree
+phi_nodes (basic_block bb)
+{
+ return bb->phi_nodes;
+}
+
+/* Set list of phi nodes of a basic block BB to L. */
+
+static inline void
+set_phi_nodes (basic_block bb, tree l)
+{
+ tree phi;
+
+ bb->phi_nodes = l;
+ for (phi = l; phi; phi = PHI_CHAIN (phi))
+ set_bb_for_stmt (phi, bb);
+}
+
+/* Return the phi argument which contains the specified use. */
+
+static inline int
+phi_arg_index_from_use (use_operand_p use)
+{
+ struct phi_arg_d *element, *root;
+ int index;
+ tree phi;
+
+ /* Since the use is the first thing in a PHI argument element, we can
+ calculate its index based on casting it to an argument, and performing
+ pointer arithmetic. */
+
+ phi = USE_STMT (use);
+ gcc_assert (TREE_CODE (phi) == PHI_NODE);
+
+ element = (struct phi_arg_d *)use;
+ root = &(PHI_ARG_ELT (phi, 0));
+ index = element - root;
+
+#ifdef ENABLE_CHECKING
+ /* Make sure the calculation doesn't have any leftover bytes. If it does,
+ then imm_use is likely not the first element in phi_arg_d. */
+ gcc_assert (
+ (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
+ gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
+#endif
+
+ return index;
+}
+
+/* Mark VAR as used, so that it'll be preserved during rtl expansion. */
+
+static inline void
+set_is_used (tree var)
+{
+ var_ann_t ann = get_var_ann (var);
+ ann->used = 1;
+}
+
+
+/* ----------------------------------------------------------------------- */
+
+/* Return true if T is an executable statement. */
+static inline bool
+is_exec_stmt (tree t)
+{
+ return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
+}
+
+
+/* Return true if this stmt can be the target of a control transfer stmt such
+ as a goto. */
+static inline bool
+is_label_stmt (tree t)
+{
+ if (t)
+ switch (TREE_CODE (t))
+ {
+ case LABEL_DECL:
+ case LABEL_EXPR:
+ case CASE_LABEL_EXPR:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+/* PHI nodes should contain only ssa_names and invariants. A test
+ for ssa_name is definitely simpler; don't let invalid contents
+ slip in in the meantime. */
+
+static inline bool
+phi_ssa_name_p (tree t)
+{
+ if (TREE_CODE (t) == SSA_NAME)
+ return true;
+#ifdef ENABLE_CHECKING
+ gcc_assert (is_gimple_min_invariant (t));
+#endif
+ return false;
+}
+
+/* ----------------------------------------------------------------------- */
+
+/* Return a block_stmt_iterator that points to beginning of basic
+ block BB. */
+static inline block_stmt_iterator
+bsi_start (basic_block bb)
+{
+ block_stmt_iterator bsi;
+ if (bb->stmt_list)
+ bsi.tsi = tsi_start (bb->stmt_list);
+ else
+ {
+ gcc_assert (bb->index < NUM_FIXED_BLOCKS);
+ bsi.tsi.ptr = NULL;
+ bsi.tsi.container = NULL;
+ }
+ bsi.bb = bb;
+ return bsi;
+}
+
+/* Return a block statement iterator that points to the first non-label
+ statement in block BB. */
+
+static inline block_stmt_iterator
+bsi_after_labels (basic_block bb)
+{
+ block_stmt_iterator bsi = bsi_start (bb);
+
+ while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
+ bsi_next (&bsi);
+
+ return bsi;
+}
+
+/* Return a block statement iterator that points to the end of basic
+ block BB. */
+static inline block_stmt_iterator
+bsi_last (basic_block bb)
+{
+ block_stmt_iterator bsi;
+ if (bb->stmt_list)
+ bsi.tsi = tsi_last (bb->stmt_list);
+ else
+ {
+ gcc_assert (bb->index < NUM_FIXED_BLOCKS);
+ bsi.tsi.ptr = NULL;
+ bsi.tsi.container = NULL;
+ }
+ bsi.bb = bb;
+ return bsi;
+}
+
+/* Return true if block statement iterator I has reached the end of
+ the basic block. */
+static inline bool
+bsi_end_p (block_stmt_iterator i)
+{
+ return tsi_end_p (i.tsi);
+}
+
+/* Modify block statement iterator I so that it is at the next
+ statement in the basic block. */
+static inline void
+bsi_next (block_stmt_iterator *i)
+{
+ tsi_next (&i->tsi);
+}
+
+/* Modify block statement iterator I so that it is at the previous
+ statement in the basic block. */
+static inline void
+bsi_prev (block_stmt_iterator *i)
+{
+ tsi_prev (&i->tsi);
+}
+
+/* Return the statement that block statement iterator I is currently
+ at. */
+static inline tree
+bsi_stmt (block_stmt_iterator i)
+{
+ return tsi_stmt (i.tsi);
+}
+
+/* Return a pointer to the statement that block statement iterator I
+ is currently at. */
+static inline tree *
+bsi_stmt_ptr (block_stmt_iterator i)
+{
+ return tsi_stmt_ptr (i.tsi);
+}
+
+/* Returns the loop of the statement STMT. */
+
+static inline struct loop *
+loop_containing_stmt (tree stmt)
+{
+ basic_block bb = bb_for_stmt (stmt);
+ if (!bb)
+ return NULL;
+
+ return bb->loop_father;
+}
+
+/* Return true if VAR is a clobbered by function calls. */
+static inline bool
+is_call_clobbered (tree var)
+{
+ if (!MTAG_P (var))
+ return DECL_CALL_CLOBBERED (var);
+ else
+ return bitmap_bit_p (call_clobbered_vars, DECL_UID (var));
+}
+
+/* Mark variable VAR as being clobbered by function calls. */
+static inline void
+mark_call_clobbered (tree var, unsigned int escape_type)
+{
+ var_ann (var)->escape_mask |= escape_type;
+ if (!MTAG_P (var))
+ DECL_CALL_CLOBBERED (var) = true;
+ bitmap_set_bit (call_clobbered_vars, DECL_UID (var));
+}
+
+/* Clear the call-clobbered attribute from variable VAR. */
+static inline void
+clear_call_clobbered (tree var)
+{
+ var_ann_t ann = var_ann (var);
+ ann->escape_mask = 0;
+ if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
+ MTAG_GLOBAL (var) = 0;
+ if (!MTAG_P (var))
+ DECL_CALL_CLOBBERED (var) = false;
+ bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
+}
+
+/* Mark variable VAR as being non-addressable. */
+static inline void
+mark_non_addressable (tree var)
+{
+ if (!MTAG_P (var))
+ DECL_CALL_CLOBBERED (var) = false;
+ bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
+ TREE_ADDRESSABLE (var) = 0;
+}
+
+/* Return the common annotation for T. Return NULL if the annotation
+ doesn't already exist. */
+static inline tree_ann_common_t
+tree_common_ann (tree t)
+{
+ return &t->common.ann->common;
+}
+
+/* Return a common annotation for T. Create the constant annotation if it
+ doesn't exist. */
+static inline tree_ann_common_t
+get_tree_common_ann (tree t)
+{
+ tree_ann_common_t ann = tree_common_ann (t);
+ return (ann) ? ann : create_tree_common_ann (t);
+}
+
+/* ----------------------------------------------------------------------- */
+
+/* The following set of routines are used to iterator over various type of
+ SSA operands. */
+
+/* Return true if PTR is finished iterating. */
+static inline bool
+op_iter_done (ssa_op_iter *ptr)
+{
+ return ptr->done;
+}
+
+/* Get the next iterator use value for PTR. */
+static inline use_operand_p
+op_iter_next_use (ssa_op_iter *ptr)
+{
+ use_operand_p use_p;
+#ifdef ENABLE_CHECKING
+ gcc_assert (ptr->iter_type == ssa_op_iter_use);
+#endif
+ if (ptr->uses)
+ {
+ use_p = USE_OP_PTR (ptr->uses);
+ ptr->uses = ptr->uses->next;
+ return use_p;
+ }
+ if (ptr->vuses)
+ {
+ use_p = VUSE_OP_PTR (ptr->vuses);
+ ptr->vuses = ptr->vuses->next;
+ return use_p;
+ }
+ if (ptr->mayuses)
+ {
+ use_p = MAYDEF_OP_PTR (ptr->mayuses);
+ ptr->mayuses = ptr->mayuses->next;
+ return use_p;
+ }
+ if (ptr->mustkills)
+ {
+ use_p = MUSTDEF_KILL_PTR (ptr->mustkills);
+ ptr->mustkills = ptr->mustkills->next;
+ return use_p;
+ }
+ if (ptr->phi_i < ptr->num_phi)
+ {
+ return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
+ }
+ ptr->done = true;
+ return NULL_USE_OPERAND_P;
+}
+
+/* Get the next iterator def value for PTR. */
+static inline def_operand_p
+op_iter_next_def (ssa_op_iter *ptr)
+{
+ def_operand_p def_p;
+#ifdef ENABLE_CHECKING
+ gcc_assert (ptr->iter_type == ssa_op_iter_def);
+#endif
+ if (ptr->defs)
+ {
+ def_p = DEF_OP_PTR (ptr->defs);
+ ptr->defs = ptr->defs->next;
+ return def_p;
+ }
+ if (ptr->mustdefs)
+ {
+ def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs);
+ ptr->mustdefs = ptr->mustdefs->next;
+ return def_p;
+ }
+ if (ptr->maydefs)
+ {
+ def_p = MAYDEF_RESULT_PTR (ptr->maydefs);
+ ptr->maydefs = ptr->maydefs->next;
+ return def_p;
+ }
+ ptr->done = true;
+ return NULL_DEF_OPERAND_P;
+}
+
+/* Get the next iterator tree value for PTR. */
+static inline tree
+op_iter_next_tree (ssa_op_iter *ptr)
+{
+ tree val;
+#ifdef ENABLE_CHECKING
+ gcc_assert (ptr->iter_type == ssa_op_iter_tree);
+#endif
+ if (ptr->uses)
+ {
+ val = USE_OP (ptr->uses);
+ ptr->uses = ptr->uses->next;
+ return val;
+ }
+ if (ptr->vuses)
+ {
+ val = VUSE_OP (ptr->vuses);
+ ptr->vuses = ptr->vuses->next;
+ return val;
+ }
+ if (ptr->mayuses)
+ {
+ val = MAYDEF_OP (ptr->mayuses);
+ ptr->mayuses = ptr->mayuses->next;
+ return val;
+ }
+ if (ptr->mustkills)
+ {
+ val = MUSTDEF_KILL (ptr->mustkills);
+ ptr->mustkills = ptr->mustkills->next;
+ return val;
+ }
+ if (ptr->defs)
+ {
+ val = DEF_OP (ptr->defs);
+ ptr->defs = ptr->defs->next;
+ return val;
+ }
+ if (ptr->mustdefs)
+ {
+ val = MUSTDEF_RESULT (ptr->mustdefs);
+ ptr->mustdefs = ptr->mustdefs->next;
+ return val;
+ }
+ if (ptr->maydefs)
+ {
+ val = MAYDEF_RESULT (ptr->maydefs);
+ ptr->maydefs = ptr->maydefs->next;
+ return val;
+ }
+
+ ptr->done = true;
+ return NULL_TREE;
+
+}
+
+
+/* This functions clears the iterator PTR, and marks it done. This is normally
+ used to prevent warnings in the compile about might be uninitialized
+ components. */
+
+static inline void
+clear_and_done_ssa_iter (ssa_op_iter *ptr)
+{
+ ptr->defs = NULL;
+ ptr->uses = NULL;
+ ptr->vuses = NULL;
+ ptr->maydefs = NULL;
+ ptr->mayuses = NULL;
+ ptr->mustdefs = NULL;
+ ptr->mustkills = NULL;
+ ptr->iter_type = ssa_op_iter_none;
+ ptr->phi_i = 0;
+ ptr->num_phi = 0;
+ ptr->phi_stmt = NULL_TREE;
+ ptr->done = true;
+}
+
+/* Initialize the iterator PTR to the virtual defs in STMT. */
+static inline void
+op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (stmt_ann (stmt));
+#endif
+
+ ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
+ ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
+ ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
+ ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL;
+ ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL;
+ ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL;
+ ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL;
+ ptr->done = false;
+
+ ptr->phi_i = 0;
+ ptr->num_phi = 0;
+ ptr->phi_stmt = NULL_TREE;
+}
+
+/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
+ the first use. */
+static inline use_operand_p
+op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
+{
+ gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
+ op_iter_init (ptr, stmt, flags);
+ ptr->iter_type = ssa_op_iter_use;
+ return op_iter_next_use (ptr);
+}
+
+/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
+ the first def. */
+static inline def_operand_p
+op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
+{
+ gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0);
+ op_iter_init (ptr, stmt, flags);
+ ptr->iter_type = ssa_op_iter_def;
+ return op_iter_next_def (ptr);
+}
+
+/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
+ the first operand as a tree. */
+static inline tree
+op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
+{
+ op_iter_init (ptr, stmt, flags);
+ ptr->iter_type = ssa_op_iter_tree;
+ return op_iter_next_tree (ptr);
+}
+
+/* Get the next iterator mustdef value for PTR, returning the mustdef values in
+ KILL and DEF. */
+static inline void
+op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def,
+ ssa_op_iter *ptr)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef);
+#endif
+ if (ptr->mayuses)
+ {
+ *def = MAYDEF_RESULT_PTR (ptr->mayuses);
+ *use = MAYDEF_OP_PTR (ptr->mayuses);
+ ptr->mayuses = ptr->mayuses->next;
+ return;
+ }
+
+ if (ptr->mustkills)
+ {
+ *def = MUSTDEF_RESULT_PTR (ptr->mustkills);
+ *use = MUSTDEF_KILL_PTR (ptr->mustkills);
+ ptr->mustkills = ptr->mustkills->next;
+ return;
+ }
+
+ *def = NULL_DEF_OPERAND_P;
+ *use = NULL_USE_OPERAND_P;
+ ptr->done = true;
+ return;
+}
+
+
+/* Initialize iterator PTR to the operands in STMT. Return the first operands
+ in USE and DEF. */
+static inline void
+op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
+ def_operand_p *def)
+{
+ gcc_assert (TREE_CODE (stmt) != PHI_NODE);
+
+ op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
+ ptr->iter_type = ssa_op_iter_maymustdef;
+ op_iter_next_maymustdef (use, def, ptr);
+}
+
+
+/* Initialize iterator PTR to the operands in STMT. Return the first operands
+ in KILL and DEF. */
+static inline void
+op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
+ def_operand_p *def)
+{
+ gcc_assert (TREE_CODE (stmt) != PHI_NODE);
+
+ op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL);
+ ptr->iter_type = ssa_op_iter_maymustdef;
+ op_iter_next_maymustdef (kill, def, ptr);
+}
+
+/* Initialize iterator PTR to the operands in STMT. Return the first operands
+ in KILL and DEF. */
+static inline void
+op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
+ use_operand_p *kill, def_operand_p *def)
+{
+ gcc_assert (TREE_CODE (stmt) != PHI_NODE);
+
+ op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE);
+ ptr->iter_type = ssa_op_iter_maymustdef;
+ op_iter_next_maymustdef (kill, def, ptr);
+}
+
+
+/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
+ return NULL. */
+static inline tree
+single_ssa_tree_operand (tree stmt, int flags)
+{
+ tree var;
+ ssa_op_iter iter;
+
+ var = op_iter_init_tree (&iter, stmt, flags);
+ if (op_iter_done (&iter))
+ return NULL_TREE;
+ op_iter_next_tree (&iter);
+ if (op_iter_done (&iter))
+ return var;
+ return NULL_TREE;
+}
+
+
+/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
+ return NULL. */
+static inline use_operand_p
+single_ssa_use_operand (tree stmt, int flags)
+{
+ use_operand_p var;
+ ssa_op_iter iter;
+
+ var = op_iter_init_use (&iter, stmt, flags);
+ if (op_iter_done (&iter))
+ return NULL_USE_OPERAND_P;
+ op_iter_next_use (&iter);
+ if (op_iter_done (&iter))
+ return var;
+ return NULL_USE_OPERAND_P;
+}
+
+
+
+/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
+ return NULL. */
+static inline def_operand_p
+single_ssa_def_operand (tree stmt, int flags)
+{
+ def_operand_p var;
+ ssa_op_iter iter;
+
+ var = op_iter_init_def (&iter, stmt, flags);
+ if (op_iter_done (&iter))
+ return NULL_DEF_OPERAND_P;
+ op_iter_next_def (&iter);
+ if (op_iter_done (&iter))
+ return var;
+ return NULL_DEF_OPERAND_P;
+}
+
+
+/* Return true if there are zero operands in STMT matching the type
+ given in FLAGS. */
+static inline bool
+zero_ssa_operands (tree stmt, int flags)
+{
+ ssa_op_iter iter;
+
+ op_iter_init_tree (&iter, stmt, flags);
+ return op_iter_done (&iter);
+}
+
+
+/* Return the number of operands matching FLAGS in STMT. */
+static inline int
+num_ssa_operands (tree stmt, int flags)
+{
+ ssa_op_iter iter;
+ tree t;
+ int num = 0;
+
+ FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
+ num++;
+ return num;
+}
+
+
+/* Delink all immediate_use information for STMT. */
+static inline void
+delink_stmt_imm_use (tree stmt)
+{
+ ssa_op_iter iter;
+ use_operand_p use_p;
+
+ if (ssa_operands_active ())
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
+ (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
+ delink_imm_use (use_p);
+}
+
+
+/* This routine will compare all the operands matching FLAGS in STMT1 to those
+ in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
+static inline bool
+compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
+{
+ ssa_op_iter iter1, iter2;
+ tree op1 = NULL_TREE;
+ tree op2 = NULL_TREE;
+ bool look1, look2;
+
+ if (stmt1 == stmt2)
+ return true;
+
+ look1 = stmt1 && stmt_ann (stmt1);
+ look2 = stmt2 && stmt_ann (stmt2);
+
+ if (look1)
+ {
+ op1 = op_iter_init_tree (&iter1, stmt1, flags);
+ if (!look2)
+ return op_iter_done (&iter1);
+ }
+ else
+ clear_and_done_ssa_iter (&iter1);
+
+ if (look2)
+ {
+ op2 = op_iter_init_tree (&iter2, stmt2, flags);
+ if (!look1)
+ return op_iter_done (&iter2);
+ }
+ else
+ clear_and_done_ssa_iter (&iter2);
+
+ while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
+ {
+ if (op1 != op2)
+ return false;
+ op1 = op_iter_next_tree (&iter1);
+ op2 = op_iter_next_tree (&iter2);
+ }
+
+ return (op_iter_done (&iter1) && op_iter_done (&iter2));
+}
+
+
+/* If there is a single DEF in the PHI node which matches FLAG, return it.
+ Otherwise return NULL_DEF_OPERAND_P. */
+static inline tree
+single_phi_def (tree stmt, int flags)
+{
+ tree def = PHI_RESULT (stmt);
+ if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
+ return def;
+ if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
+ return def;
+ return NULL_TREE;
+}
+
+/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
+ be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
+static inline use_operand_p
+op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
+{
+ tree phi_def = PHI_RESULT (phi);
+ int comp;
+
+ clear_and_done_ssa_iter (ptr);
+ ptr->done = false;
+
+ gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
+
+ comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
+
+ /* If the PHI node doesn't the operand type we care about, we're done. */
+ if ((flags & comp) == 0)
+ {
+ ptr->done = true;
+ return NULL_USE_OPERAND_P;
+ }
+
+ ptr->phi_stmt = phi;
+ ptr->num_phi = PHI_NUM_ARGS (phi);
+ ptr->iter_type = ssa_op_iter_use;
+ return op_iter_next_use (ptr);
+}
+
+
+/* Start an iterator for a PHI definition. */
+
+static inline def_operand_p
+op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
+{
+ tree phi_def = PHI_RESULT (phi);
+ int comp;
+
+ clear_and_done_ssa_iter (ptr);
+ ptr->done = false;
+
+ gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
+
+ comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
+
+ /* If the PHI node doesn't the operand type we care about, we're done. */
+ if ((flags & comp) == 0)
+ {
+ ptr->done = true;
+ return NULL_USE_OPERAND_P;
+ }
+
+ ptr->iter_type = ssa_op_iter_def;
+ /* The first call to op_iter_next_def will terminate the iterator since
+ all the fields are NULL. Simply return the result here as the first and
+ therefore only result. */
+ return PHI_RESULT_PTR (phi);
+}
+
+/* Return true is IMM has reached the end of the immediate use stmt list. */
+
+static inline bool
+end_imm_use_stmt_p (imm_use_iterator *imm)
+{
+ return (imm->imm_use == imm->end_p);
+}
+
+/* Finished the traverse of an immediate use stmt list IMM by removing the
+ placeholder node from the list. */
+
+static inline void
+end_imm_use_stmt_traverse (imm_use_iterator *imm)
+{
+ delink_imm_use (&(imm->iter_node));
+}
+
+/* Immediate use traversal of uses within a stmt require that all the
+ uses on a stmt be sequentially listed. This routine is used to build up
+ this sequential list by adding USE_P to the end of the current list
+ currently delimited by HEAD and LAST_P. The new LAST_P value is
+ returned. */
+
+static inline use_operand_p
+move_use_after_head (use_operand_p use_p, use_operand_p head,
+ use_operand_p last_p)
+{
+ gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
+ /* Skip head when we find it. */
+ if (use_p != head)
+ {
+ /* If use_p is already linked in after last_p, continue. */
+ if (last_p->next == use_p)
+ last_p = use_p;
+ else
+ {
+ /* Delink from current location, and link in at last_p. */
+ delink_imm_use (use_p);
+ link_imm_use_to_list (use_p, last_p);
+ last_p = use_p;
+ }
+ }
+ return last_p;
+}
+
+
+/* This routine will relink all uses with the same stmt as HEAD into the list
+ immediately following HEAD for iterator IMM. */
+
+static inline void
+link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
+{
+ use_operand_p use_p;
+ use_operand_p last_p = head;
+ tree head_stmt = USE_STMT (head);
+ tree use = USE_FROM_PTR (head);
+ ssa_op_iter op_iter;
+ int flag;
+
+ /* Only look at virtual or real uses, depending on the type of HEAD. */
+ flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
+
+ if (TREE_CODE (head_stmt) == PHI_NODE)
+ {
+ FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
+ if (USE_FROM_PTR (use_p) == use)
+ last_p = move_use_after_head (use_p, head, last_p);
+ }
+ else
+ {
+ FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
+ if (USE_FROM_PTR (use_p) == use)
+ last_p = move_use_after_head (use_p, head, last_p);
+ }
+ /* LInk iter node in after last_p. */
+ if (imm->iter_node.prev != NULL)
+ delink_imm_use (&imm->iter_node);
+ link_imm_use_to_list (&(imm->iter_node), last_p);
+}
+
+/* Initialize IMM to traverse over uses of VAR. Return the first statement. */
+static inline tree
+first_imm_use_stmt (imm_use_iterator *imm, tree var)
+{
+ gcc_assert (TREE_CODE (var) == SSA_NAME);
+
+ imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
+ imm->imm_use = imm->end_p->next;
+ imm->next_imm_name = NULL_USE_OPERAND_P;
+
+ /* iter_node is used as a marker within the immediate use list to indicate
+ where the end of the current stmt's uses are. Initialize it to NULL
+ stmt and use, which indicates a marker node. */
+ imm->iter_node.prev = NULL_USE_OPERAND_P;
+ imm->iter_node.next = NULL_USE_OPERAND_P;
+ imm->iter_node.stmt = NULL_TREE;
+ imm->iter_node.use = NULL_USE_OPERAND_P;
+
+ if (end_imm_use_stmt_p (imm))
+ return NULL_TREE;
+
+ link_use_stmts_after (imm->imm_use, imm);
+
+ return USE_STMT (imm->imm_use);
+}
+
+/* Bump IMM to the next stmt which has a use of var. */
+
+static inline tree
+next_imm_use_stmt (imm_use_iterator *imm)
+{
+ imm->imm_use = imm->iter_node.next;
+ if (end_imm_use_stmt_p (imm))
+ {
+ if (imm->iter_node.prev != NULL)
+ delink_imm_use (&imm->iter_node);
+ return NULL_TREE;
+ }
+
+ link_use_stmts_after (imm->imm_use, imm);
+ return USE_STMT (imm->imm_use);
+
+}
+
+/* This routine will return the first use on the stmt IMM currently refers
+ to. */
+
+static inline use_operand_p
+first_imm_use_on_stmt (imm_use_iterator *imm)
+{
+ imm->next_imm_name = imm->imm_use->next;
+ return imm->imm_use;
+}
+
+/* Return TRUE if the last use on the stmt IMM refers to has been visited. */
+
+static inline bool
+end_imm_use_on_stmt_p (imm_use_iterator *imm)
+{
+ return (imm->imm_use == &(imm->iter_node));
+}
+
+/* Bump to the next use on the stmt IMM refers to, return NULL if done. */
+
+static inline use_operand_p
+next_imm_use_on_stmt (imm_use_iterator *imm)
+{
+ imm->imm_use = imm->next_imm_name;
+ if (end_imm_use_on_stmt_p (imm))
+ return NULL_USE_OPERAND_P;
+ else
+ {
+ imm->next_imm_name = imm->imm_use->next;
+ return imm->imm_use;
+ }
+}
+
+/* Return true if VAR cannot be modified by the program. */
+
+static inline bool
+unmodifiable_var_p (tree var)
+{
+ if (TREE_CODE (var) == SSA_NAME)
+ var = SSA_NAME_VAR (var);
+
+ if (MTAG_P (var))
+ return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
+
+ return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
+}
+
+/* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
+
+static inline bool
+array_ref_contains_indirect_ref (tree ref)
+{
+ gcc_assert (TREE_CODE (ref) == ARRAY_REF);
+
+ do {
+ ref = TREE_OPERAND (ref, 0);
+ } while (handled_component_p (ref));
+
+ return TREE_CODE (ref) == INDIRECT_REF;
+}
+
+/* Return true if REF, a handled component reference, has an ARRAY_REF
+ somewhere in it. */
+
+static inline bool
+ref_contains_array_ref (tree ref)
+{
+ gcc_assert (handled_component_p (ref));
+
+ do {
+ if (TREE_CODE (ref) == ARRAY_REF)
+ return true;
+ ref = TREE_OPERAND (ref, 0);
+ } while (handled_component_p (ref));
+
+ return false;
+}
+
+/* Given a variable VAR, lookup and return a pointer to the list of
+ subvariables for it. */
+
+static inline subvar_t *
+lookup_subvars_for_var (tree var)
+{
+ var_ann_t ann = var_ann (var);
+ gcc_assert (ann);
+ return &ann->subvars;
+}
+
+/* Given a variable VAR, return a linked list of subvariables for VAR, or
+ NULL, if there are no subvariables. */
+
+static inline subvar_t
+get_subvars_for_var (tree var)
+{
+ subvar_t subvars;
+
+ gcc_assert (SSA_VAR_P (var));
+
+ if (TREE_CODE (var) == SSA_NAME)
+ subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
+ else
+ subvars = *(lookup_subvars_for_var (var));
+ return subvars;
+}
+
+/* Return the subvariable of VAR at offset OFFSET. */
+
+static inline tree
+get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
+{
+ subvar_t sv;
+
+ for (sv = get_subvars_for_var (var); sv; sv = sv->next)
+ if (SFT_OFFSET (sv->var) == offset)
+ return sv->var;
+
+ return NULL_TREE;
+}
+
+/* Return true if V is a tree that we can have subvars for.
+ Normally, this is any aggregate type. Also complex
+ types which are not gimple registers can have subvars. */
+
+static inline bool
+var_can_have_subvars (tree v)
+{
+ /* Volatile variables should never have subvars. */
+ if (TREE_THIS_VOLATILE (v))
+ return false;
+
+ /* Non decls or memory tags can never have subvars. */
+ if (!DECL_P (v) || MTAG_P (v))
+ return false;
+
+ /* Aggregates can have subvars. */
+ if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
+ return true;
+
+ /* Complex types variables which are not also a gimple register can
+ have subvars. */
+ if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
+ && !DECL_COMPLEX_GIMPLE_REG_P (v))
+ return true;
+
+ return false;
+}
+
+
+/* Return true if OFFSET and SIZE define a range that overlaps with some
+ portion of the range of SV, a subvar. If there was an exact overlap,
+ *EXACT will be set to true upon return. */
+
+static inline bool
+overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
+ tree sv, bool *exact)
+{
+ /* There are three possible cases of overlap.
+ 1. We can have an exact overlap, like so:
+ |offset, offset + size |
+ |sv->offset, sv->offset + sv->size |
+
+ 2. We can have offset starting after sv->offset, like so:
+
+ |offset, offset + size |
+ |sv->offset, sv->offset + sv->size |
+
+ 3. We can have offset starting before sv->offset, like so:
+
+ |offset, offset + size |
+ |sv->offset, sv->offset + sv->size|
+ */
+
+ if (exact)
+ *exact = false;
+ if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
+ {
+ if (exact)
+ *exact = true;
+ return true;
+ }
+ else if (offset >= SFT_OFFSET (sv)
+ && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
+ {
+ return true;
+ }
+ else if (offset < SFT_OFFSET (sv)
+ && (size > SFT_OFFSET (sv) - offset))
+ {
+ return true;
+ }
+ return false;
+
+}
+
+#endif /* _TREE_FLOW_INLINE_H */