aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-data-ref.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-data-ref.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-data-ref.c4495
1 files changed, 4495 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-data-ref.c b/gcc-4.2.1-5666.3/gcc/tree-data-ref.c
new file mode 100644
index 000000000..75b57392a
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-data-ref.c
@@ -0,0 +1,4495 @@
+
+/* Data references and dependences detectors.
+ Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <pop@cri.ensmp.fr>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+/* This pass walks a given loop structure searching for array
+ references. The information about the array accesses is recorded
+ in DATA_REFERENCE structures.
+
+ The basic test for determining the dependences is:
+ given two access functions chrec1 and chrec2 to a same array, and
+ x and y two vectors from the iteration domain, the same element of
+ the array is accessed twice at iterations x and y if and only if:
+ | chrec1 (x) == chrec2 (y).
+
+ The goals of this analysis are:
+
+ - to determine the independence: the relation between two
+ independent accesses is qualified with the chrec_known (this
+ information allows a loop parallelization),
+
+ - when two data references access the same data, to qualify the
+ dependence relation with classic dependence representations:
+
+ - distance vectors
+ - direction vectors
+ - loop carried level dependence
+ - polyhedron dependence
+ or with the chains of recurrences based representation,
+
+ - to define a knowledge base for storing the data dependence
+ information,
+
+ - to define an interface to access this data.
+
+
+ Definitions:
+
+ - subscript: given two array accesses a subscript is the tuple
+ composed of the access functions for a given dimension. Example:
+ Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
+ (f1, g1), (f2, g2), (f3, g3).
+
+ - Diophantine equation: an equation whose coefficients and
+ solutions are integer constants, for example the equation
+ | 3*x + 2*y = 1
+ has an integer solution x = 1 and y = -1.
+
+ References:
+
+ - "Advanced Compilation for High Performance Computing" by Randy
+ Allen and Ken Kennedy.
+ http://citeseer.ist.psu.edu/goff91practical.html
+
+ - "Loop Transformations for Restructuring Compilers - The Foundations"
+ by Utpal Banerjee.
+
+
+*/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+
+/* These RTL headers are needed for basic-block.h. */
+#include "rtl.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "tree-pass.h"
+
+static struct datadep_stats
+{
+ int num_dependence_tests;
+ int num_dependence_dependent;
+ int num_dependence_independent;
+ int num_dependence_undetermined;
+
+ int num_subscript_tests;
+ int num_subscript_undetermined;
+ int num_same_subscript_function;
+
+ int num_ziv;
+ int num_ziv_independent;
+ int num_ziv_dependent;
+ int num_ziv_unimplemented;
+
+ int num_siv;
+ int num_siv_independent;
+ int num_siv_dependent;
+ int num_siv_unimplemented;
+
+ int num_miv;
+ int num_miv_independent;
+ int num_miv_dependent;
+ int num_miv_unimplemented;
+} dependence_stats;
+
+static tree object_analysis (tree, tree, bool, struct data_reference **,
+ tree *, tree *, tree *, tree *, tree *,
+ struct ptr_info_def **, subvar_t *);
+static struct data_reference * init_data_ref (tree, tree, tree, tree, bool,
+ tree, tree, tree, tree, tree,
+ struct ptr_info_def *,
+ enum data_ref_type);
+static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
+ struct data_reference *,
+ struct data_reference *);
+
+/* Determine if PTR and DECL may alias, the result is put in ALIASED.
+ Return FALSE if there is no symbol memory tag for PTR. */
+
+static bool
+ptr_decl_may_alias_p (tree ptr, tree decl,
+ struct data_reference *ptr_dr,
+ bool *aliased)
+{
+ tree tag = NULL_TREE;
+ struct ptr_info_def *pi = DR_PTR_INFO (ptr_dr);
+
+ gcc_assert (TREE_CODE (ptr) == SSA_NAME && DECL_P (decl));
+
+ if (pi)
+ tag = pi->name_mem_tag;
+ if (!tag)
+ tag = get_var_ann (SSA_NAME_VAR (ptr))->symbol_mem_tag;
+ if (!tag)
+ tag = DR_MEMTAG (ptr_dr);
+ if (!tag)
+ return false;
+
+ *aliased = is_aliased_with (tag, decl);
+ return true;
+}
+
+
+/* Determine if two pointers may alias, the result is put in ALIASED.
+ Return FALSE if there is no symbol memory tag for one of the pointers. */
+
+static bool
+ptr_ptr_may_alias_p (tree ptr_a, tree ptr_b,
+ struct data_reference *dra,
+ struct data_reference *drb,
+ bool *aliased)
+{
+ tree tag_a = NULL_TREE, tag_b = NULL_TREE;
+ struct ptr_info_def *pi_a = DR_PTR_INFO (dra);
+ struct ptr_info_def *pi_b = DR_PTR_INFO (drb);
+
+ if (pi_a && pi_a->name_mem_tag && pi_b && pi_b->name_mem_tag)
+ {
+ tag_a = pi_a->name_mem_tag;
+ tag_b = pi_b->name_mem_tag;
+ }
+ else
+ {
+ tag_a = get_var_ann (SSA_NAME_VAR (ptr_a))->symbol_mem_tag;
+ if (!tag_a)
+ tag_a = DR_MEMTAG (dra);
+ if (!tag_a)
+ return false;
+
+ tag_b = get_var_ann (SSA_NAME_VAR (ptr_b))->symbol_mem_tag;
+ if (!tag_b)
+ tag_b = DR_MEMTAG (drb);
+ if (!tag_b)
+ return false;
+ }
+
+ if (tag_a == tag_b)
+ *aliased = true;
+ else
+ *aliased = may_aliases_intersect (tag_a, tag_b);
+
+ return true;
+}
+
+
+/* Determine if BASE_A and BASE_B may alias, the result is put in ALIASED.
+ Return FALSE if there is no symbol memory tag for one of the symbols. */
+
+static bool
+may_alias_p (tree base_a, tree base_b,
+ struct data_reference *dra,
+ struct data_reference *drb,
+ bool *aliased)
+{
+ if (TREE_CODE (base_a) == ADDR_EXPR || TREE_CODE (base_b) == ADDR_EXPR)
+ {
+ if (TREE_CODE (base_a) == ADDR_EXPR && TREE_CODE (base_b) == ADDR_EXPR)
+ {
+ *aliased = (TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0));
+ return true;
+ }
+ if (TREE_CODE (base_a) == ADDR_EXPR)
+ return ptr_decl_may_alias_p (base_b, TREE_OPERAND (base_a, 0), drb,
+ aliased);
+ else
+ return ptr_decl_may_alias_p (base_a, TREE_OPERAND (base_b, 0), dra,
+ aliased);
+ }
+
+ return ptr_ptr_may_alias_p (base_a, base_b, dra, drb, aliased);
+}
+
+
+/* Determine if a pointer (BASE_A) and a record/union access (BASE_B)
+ are not aliased. Return TRUE if they differ. */
+static bool
+record_ptr_differ_p (struct data_reference *dra,
+ struct data_reference *drb)
+{
+ bool aliased;
+ tree base_a = DR_BASE_OBJECT (dra);
+ tree base_b = DR_BASE_OBJECT (drb);
+
+ if (TREE_CODE (base_b) != COMPONENT_REF)
+ return false;
+
+ /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
+ For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
+ Probably will be unnecessary with struct alias analysis. */
+ while (TREE_CODE (base_b) == COMPONENT_REF)
+ base_b = TREE_OPERAND (base_b, 0);
+ /* Compare a record/union access (b.c[i] or p->c[i]) and a pointer
+ ((*q)[i]). */
+ if (TREE_CODE (base_a) == INDIRECT_REF
+ && ((TREE_CODE (base_b) == VAR_DECL
+ && (ptr_decl_may_alias_p (TREE_OPERAND (base_a, 0), base_b, dra,
+ &aliased)
+ && !aliased))
+ || (TREE_CODE (base_b) == INDIRECT_REF
+ && (ptr_ptr_may_alias_p (TREE_OPERAND (base_a, 0),
+ TREE_OPERAND (base_b, 0), dra, drb,
+ &aliased)
+ && !aliased))))
+ return true;
+ else
+ return false;
+}
+
+/* Determine if two record/union accesses are aliased. Return TRUE if they
+ differ. */
+static bool
+record_record_differ_p (struct data_reference *dra,
+ struct data_reference *drb)
+{
+ bool aliased;
+ tree base_a = DR_BASE_OBJECT (dra);
+ tree base_b = DR_BASE_OBJECT (drb);
+
+ if (TREE_CODE (base_b) != COMPONENT_REF
+ || TREE_CODE (base_a) != COMPONENT_REF)
+ return false;
+
+ /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
+ For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
+ Probably will be unnecessary with struct alias analysis. */
+ while (TREE_CODE (base_b) == COMPONENT_REF)
+ base_b = TREE_OPERAND (base_b, 0);
+ while (TREE_CODE (base_a) == COMPONENT_REF)
+ base_a = TREE_OPERAND (base_a, 0);
+
+ if (TREE_CODE (base_a) == INDIRECT_REF
+ && TREE_CODE (base_b) == INDIRECT_REF
+ && ptr_ptr_may_alias_p (TREE_OPERAND (base_a, 0),
+ TREE_OPERAND (base_b, 0),
+ dra, drb, &aliased)
+ && !aliased)
+ return true;
+ else
+ return false;
+}
+
+/* Determine if an array access (BASE_A) and a record/union access (BASE_B)
+ are not aliased. Return TRUE if they differ. */
+static bool
+record_array_differ_p (struct data_reference *dra,
+ struct data_reference *drb)
+{
+ bool aliased;
+ tree base_a = DR_BASE_OBJECT (dra);
+ tree base_b = DR_BASE_OBJECT (drb);
+
+ if (TREE_CODE (base_b) != COMPONENT_REF)
+ return false;
+
+ /* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
+ For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
+ Probably will be unnecessary with struct alias analysis. */
+ while (TREE_CODE (base_b) == COMPONENT_REF)
+ base_b = TREE_OPERAND (base_b, 0);
+
+ /* Compare a record/union access (b.c[i] or p->c[i]) and an array access
+ (a[i]). In case of p->c[i] use alias analysis to verify that p is not
+ pointing to a. */
+ if (TREE_CODE (base_a) == VAR_DECL
+ && (TREE_CODE (base_b) == VAR_DECL
+ || (TREE_CODE (base_b) == INDIRECT_REF
+ && (ptr_decl_may_alias_p (TREE_OPERAND (base_b, 0), base_a, drb,
+ &aliased)
+ && !aliased))))
+ return true;
+ else
+ return false;
+}
+
+
+/* Determine if an array access (BASE_A) and a pointer (BASE_B)
+ are not aliased. Return TRUE if they differ. */
+static bool
+array_ptr_differ_p (tree base_a, tree base_b,
+ struct data_reference *drb)
+{
+ bool aliased;
+
+ /* In case one of the bases is a pointer (a[i] and (*p)[i]), we check with the
+ help of alias analysis that p is not pointing to a. */
+ if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == INDIRECT_REF
+ && (ptr_decl_may_alias_p (TREE_OPERAND (base_b, 0), base_a, drb, &aliased)
+ && !aliased))
+ return true;
+ else
+ return false;
+}
+
+
+/* This is the simplest data dependence test: determines whether the
+ data references A and B access the same array/region. Returns
+ false when the property is not computable at compile time.
+ Otherwise return true, and DIFFER_P will record the result. This
+ utility will not be necessary when alias_sets_conflict_p will be
+ less conservative. */
+
+static bool
+base_object_differ_p (struct data_reference *a,
+ struct data_reference *b,
+ bool *differ_p)
+{
+ tree base_a = DR_BASE_OBJECT (a);
+ tree base_b = DR_BASE_OBJECT (b);
+ bool aliased;
+
+ if (!base_a || !base_b)
+ return false;
+
+ /* Determine if same base. Example: for the array accesses
+ a[i], b[i] or pointer accesses *a, *b, bases are a, b. */
+ if (base_a == base_b)
+ {
+ *differ_p = false;
+ return true;
+ }
+
+ /* For pointer based accesses, (*p)[i], (*q)[j], the bases are (*p)
+ and (*q) */
+ if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
+ && TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0))
+ {
+ *differ_p = false;
+ return true;
+ }
+
+ /* Record/union based accesses - s.a[i], t.b[j]. bases are s.a,t.b. */
+ if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
+ && TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0)
+ && TREE_OPERAND (base_a, 1) == TREE_OPERAND (base_b, 1))
+ {
+ *differ_p = false;
+ return true;
+ }
+
+
+ /* Determine if different bases. */
+
+ /* At this point we know that base_a != base_b. However, pointer
+ accesses of the form x=(*p) and y=(*q), whose bases are p and q,
+ may still be pointing to the same base. In SSAed GIMPLE p and q will
+ be SSA_NAMES in this case. Therefore, here we check if they are
+ really two different declarations. */
+ if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == VAR_DECL)
+ {
+ *differ_p = true;
+ return true;
+ }
+
+ /* In case one of the bases is a pointer (a[i] and (*p)[i]), we check with the
+ help of alias analysis that p is not pointing to a. */
+ if (array_ptr_differ_p (base_a, base_b, b)
+ || array_ptr_differ_p (base_b, base_a, a))
+ {
+ *differ_p = true;
+ return true;
+ }
+
+ /* If the bases are pointers ((*q)[i] and (*p)[i]), we check with the
+ help of alias analysis they don't point to the same bases. */
+ if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
+ && (may_alias_p (TREE_OPERAND (base_a, 0), TREE_OPERAND (base_b, 0), a, b,
+ &aliased)
+ && !aliased))
+ {
+ *differ_p = true;
+ return true;
+ }
+
+ /* Compare two record/union bases s.a and t.b: s != t or (a != b and
+ s and t are not unions). */
+ if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
+ && ((TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL
+ && TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL
+ && TREE_OPERAND (base_a, 0) != TREE_OPERAND (base_b, 0))
+ || (TREE_CODE (TREE_TYPE (TREE_OPERAND (base_a, 0))) == RECORD_TYPE
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (base_b, 0))) == RECORD_TYPE
+ && TREE_OPERAND (base_a, 1) != TREE_OPERAND (base_b, 1))))
+ {
+ *differ_p = true;
+ return true;
+ }
+
+ /* Compare a record/union access (b.c[i] or p->c[i]) and a pointer
+ ((*q)[i]). */
+ if (record_ptr_differ_p (a, b) || record_ptr_differ_p (b, a))
+ {
+ *differ_p = true;
+ return true;
+ }
+
+ /* Compare a record/union access (b.c[i] or p->c[i]) and an array access
+ (a[i]). In case of p->c[i] use alias analysis to verify that p is not
+ pointing to a. */
+ if (record_array_differ_p (a, b) || record_array_differ_p (b, a))
+ {
+ *differ_p = true;
+ return true;
+ }
+
+ /* Compare two record/union accesses (b.c[i] or p->c[i]). */
+ if (record_record_differ_p (a, b))
+ {
+ *differ_p = true;
+ return true;
+ }
+
+ return false;
+}
+
+/* Function base_addr_differ_p.
+
+ This is the simplest data dependence test: determines whether the
+ data references DRA and DRB access the same array/region. Returns
+ false when the property is not computable at compile time.
+ Otherwise return true, and DIFFER_P will record the result.
+
+ The algorithm:
+ 1. if (both DRA and DRB are represented as arrays)
+ compare DRA.BASE_OBJECT and DRB.BASE_OBJECT
+ 2. else if (both DRA and DRB are represented as pointers)
+ try to prove that DRA.FIRST_LOCATION == DRB.FIRST_LOCATION
+ 3. else if (DRA and DRB are represented differently or 2. fails)
+ only try to prove that the bases are surely different
+*/
+
+static bool
+base_addr_differ_p (struct data_reference *dra,
+ struct data_reference *drb,
+ bool *differ_p)
+{
+ tree addr_a = DR_BASE_ADDRESS (dra);
+ tree addr_b = DR_BASE_ADDRESS (drb);
+ tree type_a, type_b;
+ bool aliased;
+
+ if (!addr_a || !addr_b)
+ return false;
+
+ type_a = TREE_TYPE (addr_a);
+ type_b = TREE_TYPE (addr_b);
+
+ gcc_assert (POINTER_TYPE_P (type_a) && POINTER_TYPE_P (type_b));
+
+ /* 1. if (both DRA and DRB are represented as arrays)
+ compare DRA.BASE_OBJECT and DRB.BASE_OBJECT. */
+ if (DR_TYPE (dra) == ARRAY_REF_TYPE && DR_TYPE (drb) == ARRAY_REF_TYPE)
+ return base_object_differ_p (dra, drb, differ_p);
+
+ /* 2. else if (both DRA and DRB are represented as pointers)
+ try to prove that DRA.FIRST_LOCATION == DRB.FIRST_LOCATION. */
+ /* If base addresses are the same, we check the offsets, since the access of
+ the data-ref is described by {base addr + offset} and its access function,
+ i.e., in order to decide whether the bases of data-refs are the same we
+ compare both base addresses and offsets. */
+ if (DR_TYPE (dra) == POINTER_REF_TYPE && DR_TYPE (drb) == POINTER_REF_TYPE
+ && (addr_a == addr_b
+ || (TREE_CODE (addr_a) == ADDR_EXPR && TREE_CODE (addr_b) == ADDR_EXPR
+ && TREE_OPERAND (addr_a, 0) == TREE_OPERAND (addr_b, 0))))
+ {
+ /* Compare offsets. */
+ tree offset_a = DR_OFFSET (dra);
+ tree offset_b = DR_OFFSET (drb);
+
+ STRIP_NOPS (offset_a);
+ STRIP_NOPS (offset_b);
+
+ /* FORNOW: we only compare offsets that are MULT_EXPR, i.e., we don't handle
+ PLUS_EXPR. */
+ if (offset_a == offset_b
+ || (TREE_CODE (offset_a) == MULT_EXPR
+ && TREE_CODE (offset_b) == MULT_EXPR
+ && TREE_OPERAND (offset_a, 0) == TREE_OPERAND (offset_b, 0)
+ && TREE_OPERAND (offset_a, 1) == TREE_OPERAND (offset_b, 1)))
+ {
+ *differ_p = false;
+ return true;
+ }
+ }
+
+ /* 3. else if (DRA and DRB are represented differently or 2. fails)
+ only try to prove that the bases are surely different. */
+
+ /* Apply alias analysis. */
+ if (may_alias_p (addr_a, addr_b, dra, drb, &aliased) && !aliased)
+ {
+ *differ_p = true;
+ return true;
+ }
+
+ /* An instruction writing through a restricted pointer is "independent" of any
+ instruction reading or writing through a different pointer, in the same
+ block/scope. */
+ else if ((TYPE_RESTRICT (type_a) && !DR_IS_READ (dra))
+ || (TYPE_RESTRICT (type_b) && !DR_IS_READ (drb)))
+ {
+ *differ_p = true;
+ return true;
+ }
+ return false;
+}
+
+/* Returns true iff A divides B. */
+
+static inline bool
+tree_fold_divides_p (tree a,
+ tree b)
+{
+ /* Determines whether (A == gcd (A, B)). */
+ return tree_int_cst_equal (a, tree_fold_gcd (a, b));
+}
+
+/* Returns true iff A divides B. */
+
+static inline bool
+int_divides_p (int a, int b)
+{
+ return ((b % a) == 0);
+}
+
+
+
+/* Dump into FILE all the data references from DATAREFS. */
+
+void
+dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
+{
+ unsigned int i;
+ struct data_reference *dr;
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ dump_data_reference (file, dr);
+}
+
+/* Dump into FILE all the dependence relations from DDRS. */
+
+void
+dump_data_dependence_relations (FILE *file,
+ VEC (ddr_p, heap) *ddrs)
+{
+ unsigned int i;
+ struct data_dependence_relation *ddr;
+
+ for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+ dump_data_dependence_relation (file, ddr);
+}
+
+/* Dump function for a DATA_REFERENCE structure. */
+
+void
+dump_data_reference (FILE *outf,
+ struct data_reference *dr)
+{
+ unsigned int i;
+
+ fprintf (outf, "(Data Ref: \n stmt: ");
+ print_generic_stmt (outf, DR_STMT (dr), 0);
+ fprintf (outf, " ref: ");
+ print_generic_stmt (outf, DR_REF (dr), 0);
+ fprintf (outf, " base_object: ");
+ print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
+
+ for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
+ {
+ fprintf (outf, " Access function %d: ", i);
+ print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
+ }
+ fprintf (outf, ")\n");
+}
+
+/* Dump function for a SUBSCRIPT structure. */
+
+void
+dump_subscript (FILE *outf, struct subscript *subscript)
+{
+ tree chrec = SUB_CONFLICTS_IN_A (subscript);
+
+ fprintf (outf, "\n (subscript \n");
+ fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
+ print_generic_stmt (outf, chrec, 0);
+ if (chrec == chrec_known)
+ fprintf (outf, " (no dependence)\n");
+ else if (chrec_contains_undetermined (chrec))
+ fprintf (outf, " (don't know)\n");
+ else
+ {
+ tree last_iteration = SUB_LAST_CONFLICT (subscript);
+ fprintf (outf, " last_conflict: ");
+ print_generic_stmt (outf, last_iteration, 0);
+ }
+
+ chrec = SUB_CONFLICTS_IN_B (subscript);
+ fprintf (outf, " iterations_that_access_an_element_twice_in_B: ");
+ print_generic_stmt (outf, chrec, 0);
+ if (chrec == chrec_known)
+ fprintf (outf, " (no dependence)\n");
+ else if (chrec_contains_undetermined (chrec))
+ fprintf (outf, " (don't know)\n");
+ else
+ {
+ tree last_iteration = SUB_LAST_CONFLICT (subscript);
+ fprintf (outf, " last_conflict: ");
+ print_generic_stmt (outf, last_iteration, 0);
+ }
+
+ fprintf (outf, " (Subscript distance: ");
+ print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
+ fprintf (outf, " )\n");
+ fprintf (outf, " )\n");
+}
+
+/* Print the classic direction vector DIRV to OUTF. */
+
+void
+print_direction_vector (FILE *outf,
+ lambda_vector dirv,
+ int length)
+{
+ int eq;
+
+ for (eq = 0; eq < length; eq++)
+ {
+ enum data_dependence_direction dir = dirv[eq];
+
+ switch (dir)
+ {
+ case dir_positive:
+ fprintf (outf, " +");
+ break;
+ case dir_negative:
+ fprintf (outf, " -");
+ break;
+ case dir_equal:
+ fprintf (outf, " =");
+ break;
+ case dir_positive_or_equal:
+ fprintf (outf, " +=");
+ break;
+ case dir_positive_or_negative:
+ fprintf (outf, " +-");
+ break;
+ case dir_negative_or_equal:
+ fprintf (outf, " -=");
+ break;
+ case dir_star:
+ fprintf (outf, " *");
+ break;
+ default:
+ fprintf (outf, "indep");
+ break;
+ }
+ }
+ fprintf (outf, "\n");
+}
+
+/* Print a vector of direction vectors. */
+
+void
+print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
+ int length)
+{
+ unsigned j;
+ lambda_vector v;
+
+ for (j = 0; VEC_iterate (lambda_vector, dir_vects, j, v); j++)
+ print_direction_vector (outf, v, length);
+}
+
+/* Print a vector of distance vectors. */
+
+void
+print_dist_vectors (FILE *outf, VEC (lambda_vector, heap) *dist_vects,
+ int length)
+{
+ unsigned j;
+ lambda_vector v;
+
+ for (j = 0; VEC_iterate (lambda_vector, dist_vects, j, v); j++)
+ print_lambda_vector (outf, v, length);
+}
+
+/* Debug version. */
+
+void
+debug_data_dependence_relation (struct data_dependence_relation *ddr)
+{
+ dump_data_dependence_relation (stderr, ddr);
+}
+
+/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
+
+void
+dump_data_dependence_relation (FILE *outf,
+ struct data_dependence_relation *ddr)
+{
+ struct data_reference *dra, *drb;
+
+ dra = DDR_A (ddr);
+ drb = DDR_B (ddr);
+ fprintf (outf, "(Data Dep: \n");
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ fprintf (outf, " (don't know)\n");
+
+ else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ fprintf (outf, " (no dependence)\n");
+
+ else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+ {
+ unsigned int i;
+ struct loop *loopi;
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ {
+ fprintf (outf, " access_fn_A: ");
+ print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
+ fprintf (outf, " access_fn_B: ");
+ print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
+ dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
+ }
+
+ fprintf (outf, " loop nest: (");
+ for (i = 0; VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
+ fprintf (outf, "%d ", loopi->num);
+ fprintf (outf, ")\n");
+
+ for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
+ {
+ fprintf (outf, " distance_vector: ");
+ print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
+ DDR_NB_LOOPS (ddr));
+ }
+
+ for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
+ {
+ fprintf (outf, " direction_vector: ");
+ print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
+ DDR_NB_LOOPS (ddr));
+ }
+ }
+
+ fprintf (outf, ")\n");
+}
+
+/* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */
+
+void
+dump_data_dependence_direction (FILE *file,
+ enum data_dependence_direction dir)
+{
+ switch (dir)
+ {
+ case dir_positive:
+ fprintf (file, "+");
+ break;
+
+ case dir_negative:
+ fprintf (file, "-");
+ break;
+
+ case dir_equal:
+ fprintf (file, "=");
+ break;
+
+ case dir_positive_or_negative:
+ fprintf (file, "+-");
+ break;
+
+ case dir_positive_or_equal:
+ fprintf (file, "+=");
+ break;
+
+ case dir_negative_or_equal:
+ fprintf (file, "-=");
+ break;
+
+ case dir_star:
+ fprintf (file, "*");
+ break;
+
+ default:
+ break;
+ }
+}
+
+/* Dumps the distance and direction vectors in FILE. DDRS contains
+ the dependence relations, and VECT_SIZE is the size of the
+ dependence vectors, or in other words the number of loops in the
+ considered nest. */
+
+void
+dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
+{
+ unsigned int i, j;
+ struct data_dependence_relation *ddr;
+ lambda_vector v;
+
+ for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+ if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
+ {
+ for (j = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), j, v); j++)
+ {
+ fprintf (file, "DISTANCE_V (");
+ print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
+ fprintf (file, ")\n");
+ }
+
+ for (j = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), j, v); j++)
+ {
+ fprintf (file, "DIRECTION_V (");
+ print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
+ fprintf (file, ")\n");
+ }
+ }
+
+ fprintf (file, "\n\n");
+}
+
+/* Dumps the data dependence relations DDRS in FILE. */
+
+void
+dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
+{
+ unsigned int i;
+ struct data_dependence_relation *ddr;
+
+ for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
+ dump_data_dependence_relation (file, ddr);
+
+ fprintf (file, "\n\n");
+}
+
+
+
+/* Estimate the number of iterations from the size of the data and the
+ access functions. */
+
+static void
+estimate_niter_from_size_of_data (struct loop *loop,
+ tree opnd0,
+ tree access_fn,
+ tree stmt)
+{
+ tree estimation = NULL_TREE;
+ tree array_size, data_size, element_size;
+ tree init, step;
+
+ init = initial_condition (access_fn);
+ step = evolution_part_in_loop_num (access_fn, loop->num);
+
+ array_size = TYPE_SIZE (TREE_TYPE (opnd0));
+ element_size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (opnd0)));
+ if (array_size == NULL_TREE
+ || TREE_CODE (array_size) != INTEGER_CST
+ || TREE_CODE (element_size) != INTEGER_CST)
+ return;
+
+ data_size = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
+ array_size, element_size);
+
+ if (init != NULL_TREE
+ && step != NULL_TREE
+ && TREE_CODE (init) == INTEGER_CST
+ && TREE_CODE (step) == INTEGER_CST)
+ {
+ tree i_plus_s = fold_build2 (PLUS_EXPR, integer_type_node, init, step);
+ tree sign = fold_binary (GT_EXPR, boolean_type_node, i_plus_s, init);
+
+ if (sign == boolean_true_node)
+ estimation = fold_build2 (CEIL_DIV_EXPR, integer_type_node,
+ fold_build2 (MINUS_EXPR, integer_type_node,
+ data_size, init), step);
+
+ /* When the step is negative, as in PR23386: (init = 3, step =
+ 0ffffffff, data_size = 100), we have to compute the
+ estimation as ceil_div (init, 0 - step) + 1. */
+ else if (sign == boolean_false_node)
+ estimation =
+ fold_build2 (PLUS_EXPR, integer_type_node,
+ fold_build2 (CEIL_DIV_EXPR, integer_type_node,
+ init,
+ fold_build2 (MINUS_EXPR, unsigned_type_node,
+ integer_zero_node, step)),
+ integer_one_node);
+
+ if (estimation)
+ record_estimate (loop, estimation, boolean_true_node, stmt);
+ }
+}
+
+/* Given an ARRAY_REF node REF, records its access functions.
+ Example: given A[i][3], record in ACCESS_FNS the opnd1 function,
+ i.e. the constant "3", then recursively call the function on opnd0,
+ i.e. the ARRAY_REF "A[i]".
+ If ESTIMATE_ONLY is true, we just set the estimated number of loop
+ iterations, we don't store the access function.
+ The function returns the base name: "A". */
+
+static tree
+analyze_array_indexes (struct loop *loop,
+ VEC(tree,heap) **access_fns,
+ tree ref, tree stmt,
+ bool estimate_only)
+{
+ tree opnd0, opnd1;
+ tree access_fn;
+
+ opnd0 = TREE_OPERAND (ref, 0);
+ opnd1 = TREE_OPERAND (ref, 1);
+
+ /* The detection of the evolution function for this data access is
+ postponed until the dependence test. This lazy strategy avoids
+ the computation of access functions that are of no interest for
+ the optimizers. */
+ access_fn = instantiate_parameters
+ (loop, analyze_scalar_evolution (loop, opnd1));
+
+ if (estimate_only
+ && chrec_contains_undetermined (loop->estimated_nb_iterations))
+ estimate_niter_from_size_of_data (loop, opnd0, access_fn, stmt);
+
+ if (!estimate_only)
+ VEC_safe_push (tree, heap, *access_fns, access_fn);
+
+ /* Recursively record other array access functions. */
+ if (TREE_CODE (opnd0) == ARRAY_REF)
+ return analyze_array_indexes (loop, access_fns, opnd0, stmt, estimate_only);
+
+ /* Return the base name of the data access. */
+ else
+ return opnd0;
+}
+
+/* For an array reference REF contained in STMT, attempt to bound the
+ number of iterations in the loop containing STMT */
+
+void
+estimate_iters_using_array (tree stmt, tree ref)
+{
+ analyze_array_indexes (loop_containing_stmt (stmt), NULL, ref, stmt,
+ true);
+}
+
+/* For a data reference REF contained in the statement STMT, initialize
+ a DATA_REFERENCE structure, and return it. IS_READ flag has to be
+ set to true when REF is in the right hand side of an
+ assignment. */
+
+struct data_reference *
+analyze_array (tree stmt, tree ref, bool is_read)
+{
+ struct data_reference *res;
+ VEC(tree,heap) *acc_fns;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "(analyze_array \n");
+ fprintf (dump_file, " (ref = ");
+ print_generic_stmt (dump_file, ref, 0);
+ fprintf (dump_file, ")\n");
+ }
+
+ res = XNEW (struct data_reference);
+
+ DR_STMT (res) = stmt;
+ DR_REF (res) = ref;
+ acc_fns = VEC_alloc (tree, heap, 3);
+ DR_BASE_OBJECT (res) = analyze_array_indexes
+ (loop_containing_stmt (stmt), &acc_fns, ref, stmt, false);
+ DR_TYPE (res) = ARRAY_REF_TYPE;
+ DR_SET_ACCESS_FNS (res, acc_fns);
+ DR_IS_READ (res) = is_read;
+ DR_BASE_ADDRESS (res) = NULL_TREE;
+ DR_OFFSET (res) = NULL_TREE;
+ DR_INIT (res) = NULL_TREE;
+ DR_STEP (res) = NULL_TREE;
+ DR_OFFSET_MISALIGNMENT (res) = NULL_TREE;
+ DR_MEMTAG (res) = NULL_TREE;
+ DR_PTR_INFO (res) = NULL;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+
+ return res;
+}
+
+/* Analyze an indirect memory reference, REF, that comes from STMT.
+ IS_READ is true if this is an indirect load, and false if it is
+ an indirect store.
+ Return a new data reference structure representing the indirect_ref, or
+ NULL if we cannot describe the access function. */
+
+static struct data_reference *
+analyze_indirect_ref (tree stmt, tree ref, bool is_read)
+{
+ struct loop *loop = loop_containing_stmt (stmt);
+ tree ptr_ref = TREE_OPERAND (ref, 0);
+ tree access_fn = analyze_scalar_evolution (loop, ptr_ref);
+ tree init = initial_condition_in_loop_num (access_fn, loop->num);
+ tree base_address = NULL_TREE, evolution, step = NULL_TREE;
+ struct ptr_info_def *ptr_info = NULL;
+
+ if (TREE_CODE (ptr_ref) == SSA_NAME)
+ ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
+
+ STRIP_NOPS (init);
+ if (access_fn == chrec_dont_know || !init || init == chrec_dont_know)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nBad access function of ptr: ");
+ print_generic_expr (dump_file, ref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nAccess function of ptr: ");
+ print_generic_expr (dump_file, access_fn, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ if (!expr_invariant_in_loop_p (loop, init))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\ninitial condition is not loop invariant.\n");
+ }
+ else
+ {
+ base_address = init;
+ evolution = evolution_part_in_loop_num (access_fn, loop->num);
+ if (evolution != chrec_dont_know)
+ {
+ if (!evolution)
+ step = ssize_int (0);
+ else
+ {
+ if (TREE_CODE (evolution) == INTEGER_CST)
+ step = fold_convert (ssizetype, evolution);
+ else
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\nnon constant step for ptr access.\n");
+ }
+ }
+ else
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\nunknown evolution of ptr.\n");
+ }
+ return init_data_ref (stmt, ref, NULL_TREE, access_fn, is_read, base_address,
+ NULL_TREE, step, NULL_TREE, NULL_TREE,
+ ptr_info, POINTER_REF_TYPE);
+}
+
+/* For a data reference REF contained in the statement STMT, initialize
+ a DATA_REFERENCE structure, and return it. */
+
+struct data_reference *
+init_data_ref (tree stmt,
+ tree ref,
+ tree base,
+ tree access_fn,
+ bool is_read,
+ tree base_address,
+ tree init_offset,
+ tree step,
+ tree misalign,
+ tree memtag,
+ struct ptr_info_def *ptr_info,
+ enum data_ref_type type)
+{
+ struct data_reference *res;
+ VEC(tree,heap) *acc_fns;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "(init_data_ref \n");
+ fprintf (dump_file, " (ref = ");
+ print_generic_stmt (dump_file, ref, 0);
+ fprintf (dump_file, ")\n");
+ }
+
+ res = XNEW (struct data_reference);
+
+ DR_STMT (res) = stmt;
+ DR_REF (res) = ref;
+ DR_BASE_OBJECT (res) = base;
+ DR_TYPE (res) = type;
+ acc_fns = VEC_alloc (tree, heap, 3);
+ DR_SET_ACCESS_FNS (res, acc_fns);
+ VEC_quick_push (tree, DR_ACCESS_FNS (res), access_fn);
+ DR_IS_READ (res) = is_read;
+ DR_BASE_ADDRESS (res) = base_address;
+ DR_OFFSET (res) = init_offset;
+ DR_INIT (res) = NULL_TREE;
+ DR_STEP (res) = step;
+ DR_OFFSET_MISALIGNMENT (res) = misalign;
+ DR_MEMTAG (res) = memtag;
+ DR_PTR_INFO (res) = ptr_info;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+
+ return res;
+}
+
+/* Function strip_conversions
+
+ Strip conversions that don't narrow the mode. */
+
+static tree
+strip_conversion (tree expr)
+{
+ tree to, ti, oprnd0;
+
+ while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
+ {
+ to = TREE_TYPE (expr);
+ oprnd0 = TREE_OPERAND (expr, 0);
+ ti = TREE_TYPE (oprnd0);
+
+ if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti))
+ return NULL_TREE;
+ if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti)))
+ return NULL_TREE;
+
+ expr = oprnd0;
+ }
+ return expr;
+}
+
+
+/* Function analyze_offset_expr
+
+ Given an offset expression EXPR received from get_inner_reference, analyze
+ it and create an expression for INITIAL_OFFSET by substituting the variables
+ of EXPR with initial_condition of the corresponding access_fn in the loop.
+ E.g.,
+ for i
+ for (j = 3; j < N; j++)
+ a[j].b[i][j] = 0;
+
+ For a[j].b[i][j], EXPR will be 'i * C_i + j * C_j + C'. 'i' cannot be
+ substituted, since its access_fn in the inner loop is i. 'j' will be
+ substituted with 3. An INITIAL_OFFSET will be 'i * C_i + C`', where
+ C` = 3 * C_j + C.
+
+ Compute MISALIGN (the misalignment of the data reference initial access from
+ its base). Misalignment can be calculated only if all the variables can be
+ substituted with constants, otherwise, we record maximum possible alignment
+ in ALIGNED_TO. In the above example, since 'i' cannot be substituted, MISALIGN
+ will be NULL_TREE, and the biggest divider of C_i (a power of 2) will be
+ recorded in ALIGNED_TO.
+
+ STEP is an evolution of the data reference in this loop in bytes.
+ In the above example, STEP is C_j.
+
+ Return FALSE, if the analysis fails, e.g., there is no access_fn for a
+ variable. In this case, all the outputs (INITIAL_OFFSET, MISALIGN, ALIGNED_TO
+ and STEP) are NULL_TREEs. Otherwise, return TRUE.
+
+*/
+
+static bool
+analyze_offset_expr (tree expr,
+ struct loop *loop,
+ tree *initial_offset,
+ tree *misalign,
+ tree *aligned_to,
+ tree *step)
+{
+ tree oprnd0;
+ tree oprnd1;
+ tree left_offset = ssize_int (0);
+ tree right_offset = ssize_int (0);
+ tree left_misalign = ssize_int (0);
+ tree right_misalign = ssize_int (0);
+ tree left_step = ssize_int (0);
+ tree right_step = ssize_int (0);
+ enum tree_code code;
+ tree init, evolution;
+ tree left_aligned_to = NULL_TREE, right_aligned_to = NULL_TREE;
+
+ *step = NULL_TREE;
+ *misalign = NULL_TREE;
+ *aligned_to = NULL_TREE;
+ *initial_offset = NULL_TREE;
+
+ /* Strip conversions that don't narrow the mode. */
+ expr = strip_conversion (expr);
+ if (!expr)
+ return false;
+
+ /* Stop conditions:
+ 1. Constant. */
+ if (TREE_CODE (expr) == INTEGER_CST)
+ {
+ *initial_offset = fold_convert (ssizetype, expr);
+ *misalign = fold_convert (ssizetype, expr);
+ *step = ssize_int (0);
+ return true;
+ }
+
+ /* 2. Variable. Try to substitute with initial_condition of the corresponding
+ access_fn in the current loop. */
+ if (SSA_VAR_P (expr))
+ {
+ tree access_fn = analyze_scalar_evolution (loop, expr);
+
+ if (access_fn == chrec_dont_know)
+ /* No access_fn. */
+ return false;
+
+ init = initial_condition_in_loop_num (access_fn, loop->num);
+ if (!expr_invariant_in_loop_p (loop, init))
+ /* Not enough information: may be not loop invariant.
+ E.g., for a[b[i]], we get a[D], where D=b[i]. EXPR is D, its
+ initial_condition is D, but it depends on i - loop's induction
+ variable. */
+ return false;
+
+ evolution = evolution_part_in_loop_num (access_fn, loop->num);
+ if (evolution && TREE_CODE (evolution) != INTEGER_CST)
+ /* Evolution is not constant. */
+ return false;
+
+ if (TREE_CODE (init) == INTEGER_CST)
+ *misalign = fold_convert (ssizetype, init);
+ else
+ /* Not constant, misalignment cannot be calculated. */
+ *misalign = NULL_TREE;
+
+ *initial_offset = fold_convert (ssizetype, init);
+
+ *step = evolution ? fold_convert (ssizetype, evolution) : ssize_int (0);
+ return true;
+ }
+
+ /* Recursive computation. */
+ if (!BINARY_CLASS_P (expr))
+ {
+ /* We expect to get binary expressions (PLUS/MINUS and MULT). */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nNot binary expression ");
+ print_generic_expr (dump_file, expr, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return false;
+ }
+ oprnd0 = TREE_OPERAND (expr, 0);
+ oprnd1 = TREE_OPERAND (expr, 1);
+
+ if (!analyze_offset_expr (oprnd0, loop, &left_offset, &left_misalign,
+ &left_aligned_to, &left_step)
+ || !analyze_offset_expr (oprnd1, loop, &right_offset, &right_misalign,
+ &right_aligned_to, &right_step))
+ return false;
+
+ /* The type of the operation: plus, minus or mult. */
+ code = TREE_CODE (expr);
+ switch (code)
+ {
+ case MULT_EXPR:
+ if (TREE_CODE (right_offset) != INTEGER_CST)
+ /* RIGHT_OFFSET can be not constant. For example, for arrays of variable
+ sized types.
+ FORNOW: We don't support such cases. */
+ return false;
+
+ /* Strip conversions that don't narrow the mode. */
+ left_offset = strip_conversion (left_offset);
+ if (!left_offset)
+ return false;
+ /* Misalignment computation. */
+ if (SSA_VAR_P (left_offset))
+ {
+ /* If the left side contains variables that can't be substituted with
+ constants, the misalignment is unknown. However, if the right side
+ is a multiple of some alignment, we know that the expression is
+ aligned to it. Therefore, we record such maximum possible value.
+ */
+ *misalign = NULL_TREE;
+ *aligned_to = ssize_int (highest_pow2_factor (right_offset));
+ }
+ else
+ {
+ /* The left operand was successfully substituted with constant. */
+ if (left_misalign)
+ {
+ /* In case of EXPR '(i * C1 + j) * C2', LEFT_MISALIGN is
+ NULL_TREE. */
+ *misalign = size_binop (code, left_misalign, right_misalign);
+ if (left_aligned_to && right_aligned_to)
+ *aligned_to = size_binop (MIN_EXPR, left_aligned_to,
+ right_aligned_to);
+ else
+ *aligned_to = left_aligned_to ?
+ left_aligned_to : right_aligned_to;
+ }
+ else
+ *misalign = NULL_TREE;
+ }
+
+ /* Step calculation. */
+ /* Multiply the step by the right operand. */
+ *step = size_binop (MULT_EXPR, left_step, right_offset);
+ break;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ /* Combine the recursive calculations for step and misalignment. */
+ *step = size_binop (code, left_step, right_step);
+
+ /* Unknown alignment. */
+ if ((!left_misalign && !left_aligned_to)
+ || (!right_misalign && !right_aligned_to))
+ {
+ *misalign = NULL_TREE;
+ *aligned_to = NULL_TREE;
+ break;
+ }
+
+ if (left_misalign && right_misalign)
+ *misalign = size_binop (code, left_misalign, right_misalign);
+ else
+ *misalign = left_misalign ? left_misalign : right_misalign;
+
+ if (left_aligned_to && right_aligned_to)
+ *aligned_to = size_binop (MIN_EXPR, left_aligned_to, right_aligned_to);
+ else
+ *aligned_to = left_aligned_to ? left_aligned_to : right_aligned_to;
+
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Compute offset. */
+ *initial_offset = fold_convert (ssizetype,
+ fold_build2 (code, TREE_TYPE (left_offset),
+ left_offset,
+ right_offset));
+ return true;
+}
+
+/* Function address_analysis
+
+ Return the BASE of the address expression EXPR.
+ Also compute the OFFSET from BASE, MISALIGN and STEP.
+
+ Input:
+ EXPR - the address expression that is being analyzed
+ STMT - the statement that contains EXPR or its original memory reference
+ IS_READ - TRUE if STMT reads from EXPR, FALSE if writes to EXPR
+ DR - data_reference struct for the original memory reference
+
+ Output:
+ BASE (returned value) - the base of the data reference EXPR.
+ INITIAL_OFFSET - initial offset of EXPR from BASE (an expression)
+ MISALIGN - offset of EXPR from BASE in bytes (a constant) or NULL_TREE if the
+ computation is impossible
+ ALIGNED_TO - maximum alignment of EXPR or NULL_TREE if MISALIGN can be
+ calculated (doesn't depend on variables)
+ STEP - evolution of EXPR in the loop
+
+ If something unexpected is encountered (an unsupported form of data-ref),
+ then NULL_TREE is returned.
+ */
+
+static tree
+address_analysis (tree expr, tree stmt, bool is_read, struct data_reference *dr,
+ tree *offset, tree *misalign, tree *aligned_to, tree *step)
+{
+ tree oprnd0, oprnd1, base_address, offset_expr, base_addr0, base_addr1;
+ tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
+ tree dummy, address_aligned_to = NULL_TREE;
+ struct ptr_info_def *dummy1;
+ subvar_t dummy2;
+
+ switch (TREE_CODE (expr))
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ /* EXPR is of form {base +/- offset} (or {offset +/- base}). */
+ oprnd0 = TREE_OPERAND (expr, 0);
+ oprnd1 = TREE_OPERAND (expr, 1);
+
+ STRIP_NOPS (oprnd0);
+ STRIP_NOPS (oprnd1);
+
+ /* Recursively try to find the base of the address contained in EXPR.
+ For offset, the returned base will be NULL. */
+ base_addr0 = address_analysis (oprnd0, stmt, is_read, dr, &address_offset,
+ &address_misalign, &address_aligned_to,
+ step);
+
+ base_addr1 = address_analysis (oprnd1, stmt, is_read, dr, &address_offset,
+ &address_misalign, &address_aligned_to,
+ step);
+
+ /* We support cases where only one of the operands contains an
+ address. */
+ if ((base_addr0 && base_addr1) || (!base_addr0 && !base_addr1))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file,
+ "\neither more than one address or no addresses in expr ");
+ print_generic_expr (dump_file, expr, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+
+ /* To revert STRIP_NOPS. */
+ oprnd0 = TREE_OPERAND (expr, 0);
+ oprnd1 = TREE_OPERAND (expr, 1);
+
+ offset_expr = base_addr0 ?
+ fold_convert (ssizetype, oprnd1) : fold_convert (ssizetype, oprnd0);
+
+ /* EXPR is of form {base +/- offset} (or {offset +/- base}). If offset is
+ a number, we can add it to the misalignment value calculated for base,
+ otherwise, misalignment is NULL. */
+ if (TREE_CODE (offset_expr) == INTEGER_CST && address_misalign)
+ {
+ *misalign = size_binop (TREE_CODE (expr), address_misalign,
+ offset_expr);
+ *aligned_to = address_aligned_to;
+ }
+ else
+ {
+ *misalign = NULL_TREE;
+ *aligned_to = NULL_TREE;
+ }
+
+ /* Combine offset (from EXPR {base + offset}) with the offset calculated
+ for base. */
+ *offset = size_binop (TREE_CODE (expr), address_offset, offset_expr);
+ return base_addr0 ? base_addr0 : base_addr1;
+
+ case ADDR_EXPR:
+ base_address = object_analysis (TREE_OPERAND (expr, 0), stmt, is_read,
+ &dr, offset, misalign, aligned_to, step,
+ &dummy, &dummy1, &dummy2);
+ return base_address;
+
+ case SSA_NAME:
+ if (!POINTER_TYPE_P (TREE_TYPE (expr)))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nnot pointer SSA_NAME ");
+ print_generic_expr (dump_file, expr, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+ *aligned_to = ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (TREE_TYPE (expr))));
+ *misalign = ssize_int (0);
+ *offset = ssize_int (0);
+ *step = ssize_int (0);
+ return expr;
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+
+/* Function object_analysis
+
+ Create a data-reference structure DR for MEMREF.
+ Return the BASE of the data reference MEMREF if the analysis is possible.
+ Also compute the INITIAL_OFFSET from BASE, MISALIGN and STEP.
+ E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset
+ 'a.b[i] + 4B' from a (can be an expression), MISALIGN is an OFFSET
+ instantiated with initial_conditions of access_functions of variables,
+ and STEP is the evolution of the DR_REF in this loop.
+
+ Function get_inner_reference is used for the above in case of ARRAY_REF and
+ COMPONENT_REF.
+
+ The structure of the function is as follows:
+ Part 1:
+ Case 1. For handled_component_p refs
+ 1.1 build data-reference structure for MEMREF
+ 1.2 call get_inner_reference
+ 1.2.1 analyze offset expr received from get_inner_reference
+ (fall through with BASE)
+ Case 2. For declarations
+ 2.1 set MEMTAG
+ Case 3. For INDIRECT_REFs
+ 3.1 build data-reference structure for MEMREF
+ 3.2 analyze evolution and initial condition of MEMREF
+ 3.3 set data-reference structure for MEMREF
+ 3.4 call address_analysis to analyze INIT of the access function
+ 3.5 extract memory tag
+
+ Part 2:
+ Combine the results of object and address analysis to calculate
+ INITIAL_OFFSET, STEP and misalignment info.
+
+ Input:
+ MEMREF - the memory reference that is being analyzed
+ STMT - the statement that contains MEMREF
+ IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
+
+ Output:
+ BASE_ADDRESS (returned value) - the base address of the data reference MEMREF
+ E.g, if MEMREF is a.b[k].c[i][j] the returned
+ base is &a.
+ DR - data_reference struct for MEMREF
+ INITIAL_OFFSET - initial offset of MEMREF from BASE (an expression)
+ MISALIGN - offset of MEMREF from BASE in bytes (a constant) modulo alignment of
+ ALIGNMENT or NULL_TREE if the computation is impossible
+ ALIGNED_TO - maximum alignment of EXPR or NULL_TREE if MISALIGN can be
+ calculated (doesn't depend on variables)
+ STEP - evolution of the DR_REF in the loop
+ MEMTAG - memory tag for aliasing purposes
+ PTR_INFO - NULL or points-to aliasing info from a pointer SSA_NAME
+ SUBVARS - Sub-variables of the variable
+
+ If the analysis of MEMREF evolution in the loop fails, NULL_TREE is returned,
+ but DR can be created anyway.
+
+*/
+
+static tree
+object_analysis (tree memref, tree stmt, bool is_read,
+ struct data_reference **dr, tree *offset, tree *misalign,
+ tree *aligned_to, tree *step, tree *memtag,
+ struct ptr_info_def **ptr_info, subvar_t *subvars)
+{
+ tree base = NULL_TREE, base_address = NULL_TREE;
+ tree object_offset = ssize_int (0), object_misalign = ssize_int (0);
+ tree object_step = ssize_int (0), address_step = ssize_int (0);
+ tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
+ HOST_WIDE_INT pbitsize, pbitpos;
+ tree poffset, bit_pos_in_bytes;
+ enum machine_mode pmode;
+ int punsignedp, pvolatilep;
+ tree ptr_step = ssize_int (0), ptr_init = NULL_TREE;
+ struct loop *loop = loop_containing_stmt (stmt);
+ struct data_reference *ptr_dr = NULL;
+ tree object_aligned_to = NULL_TREE, address_aligned_to = NULL_TREE;
+ tree comp_ref = NULL_TREE;
+
+ *ptr_info = NULL;
+
+ /* Part 1: */
+ /* Case 1. handled_component_p refs. */
+ if (handled_component_p (memref))
+ {
+ /* 1.1 build data-reference structure for MEMREF. */
+ if (!(*dr))
+ {
+ if (TREE_CODE (memref) == ARRAY_REF)
+ *dr = analyze_array (stmt, memref, is_read);
+ else if (TREE_CODE (memref) == COMPONENT_REF)
+ comp_ref = memref;
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\ndata-ref of unsupported type ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+ }
+
+ /* 1.2 call get_inner_reference. */
+ /* Find the base and the offset from it. */
+ base = get_inner_reference (memref, &pbitsize, &pbitpos, &poffset,
+ &pmode, &punsignedp, &pvolatilep, false);
+ if (!base)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nfailed to get inner ref for ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+
+ /* 1.2.1 analyze offset expr received from get_inner_reference. */
+ if (poffset
+ && !analyze_offset_expr (poffset, loop, &object_offset,
+ &object_misalign, &object_aligned_to,
+ &object_step))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nfailed to compute offset or step for ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+
+ /* Add bit position to OFFSET and MISALIGN. */
+
+ bit_pos_in_bytes = ssize_int (pbitpos/BITS_PER_UNIT);
+ /* Check that there is no remainder in bits. */
+ if (pbitpos%BITS_PER_UNIT)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\nbit offset alignment.\n");
+ return NULL_TREE;
+ }
+ object_offset = size_binop (PLUS_EXPR, bit_pos_in_bytes, object_offset);
+ if (object_misalign)
+ object_misalign = size_binop (PLUS_EXPR, object_misalign,
+ bit_pos_in_bytes);
+
+ memref = base; /* To continue analysis of BASE. */
+ /* fall through */
+ }
+
+ /* Part 1: Case 2. Declarations. */
+ if (DECL_P (memref))
+ {
+ /* We expect to get a decl only if we already have a DR, or with
+ COMPONENT_REFs of type 'a[i].b'. */
+ if (!(*dr))
+ {
+ if (comp_ref && TREE_CODE (TREE_OPERAND (comp_ref, 0)) == ARRAY_REF)
+ {
+ *dr = analyze_array (stmt, TREE_OPERAND (comp_ref, 0), is_read);
+ if (DR_NUM_DIMENSIONS (*dr) != 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\n multidimensional component ref ");
+ print_generic_expr (dump_file, comp_ref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+ }
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nunhandled decl ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+ }
+
+ /* TODO: if during the analysis of INDIRECT_REF we get to an object, put
+ the object in BASE_OBJECT field if we can prove that this is O.K.,
+ i.e., the data-ref access is bounded by the bounds of the BASE_OBJECT.
+ (e.g., if the object is an array base 'a', where 'a[N]', we must prove
+ that every access with 'p' (the original INDIRECT_REF based on '&a')
+ in the loop is within the array boundaries - from a[0] to a[N-1]).
+ Otherwise, our alias analysis can be incorrect.
+ Even if an access function based on BASE_OBJECT can't be build, update
+ BASE_OBJECT field to enable us to prove that two data-refs are
+ different (without access function, distance analysis is impossible).
+ */
+ if (SSA_VAR_P (memref) && var_can_have_subvars (memref))
+ *subvars = get_subvars_for_var (memref);
+ base_address = build_fold_addr_expr (memref);
+ /* 2.1 set MEMTAG. */
+ *memtag = memref;
+ }
+
+ /* Part 1: Case 3. INDIRECT_REFs. */
+ else if (TREE_CODE (memref) == INDIRECT_REF)
+ {
+ tree ptr_ref = TREE_OPERAND (memref, 0);
+ if (TREE_CODE (ptr_ref) == SSA_NAME)
+ *ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
+
+ /* 3.1 build data-reference structure for MEMREF. */
+ ptr_dr = analyze_indirect_ref (stmt, memref, is_read);
+ if (!ptr_dr)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nfailed to create dr for ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+
+ /* 3.2 analyze evolution and initial condition of MEMREF. */
+ ptr_step = DR_STEP (ptr_dr);
+ ptr_init = DR_BASE_ADDRESS (ptr_dr);
+ if (!ptr_init || !ptr_step || !POINTER_TYPE_P (TREE_TYPE (ptr_init)))
+ {
+ *dr = (*dr) ? *dr : ptr_dr;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nbad pointer access ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+
+ if (integer_zerop (ptr_step) && !(*dr))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\nptr is loop invariant.\n");
+ *dr = ptr_dr;
+ return NULL_TREE;
+
+ /* If there exists DR for MEMREF, we are analyzing the base of
+ handled component (PTR_INIT), which not necessary has evolution in
+ the loop. */
+ }
+ object_step = size_binop (PLUS_EXPR, object_step, ptr_step);
+
+ /* 3.3 set data-reference structure for MEMREF. */
+ if (!*dr)
+ *dr = ptr_dr;
+
+ /* 3.4 call address_analysis to analyze INIT of the access
+ function. */
+ base_address = address_analysis (ptr_init, stmt, is_read, *dr,
+ &address_offset, &address_misalign,
+ &address_aligned_to, &address_step);
+ if (!base_address)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nfailed to analyze address ");
+ print_generic_expr (dump_file, ptr_init, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+
+ /* 3.5 extract memory tag. */
+ switch (TREE_CODE (base_address))
+ {
+ case SSA_NAME:
+ *memtag = get_var_ann (SSA_NAME_VAR (base_address))->symbol_mem_tag;
+ if (!(*memtag) && TREE_CODE (TREE_OPERAND (memref, 0)) == SSA_NAME)
+ *memtag = get_var_ann (
+ SSA_NAME_VAR (TREE_OPERAND (memref, 0)))->symbol_mem_tag;
+ break;
+ case ADDR_EXPR:
+ *memtag = TREE_OPERAND (base_address, 0);
+ break;
+ default:
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nno memtag for ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ *memtag = NULL_TREE;
+ break;
+ }
+ }
+
+ if (!base_address)
+ {
+ /* MEMREF cannot be analyzed. */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\ndata-ref of unsupported type ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL_TREE;
+ }
+
+ if (comp_ref)
+ DR_REF (*dr) = comp_ref;
+
+ if (SSA_VAR_P (*memtag) && var_can_have_subvars (*memtag))
+ *subvars = get_subvars_for_var (*memtag);
+
+ /* Part 2: Combine the results of object and address analysis to calculate
+ INITIAL_OFFSET, STEP and misalignment info. */
+ *offset = size_binop (PLUS_EXPR, object_offset, address_offset);
+
+ if ((!object_misalign && !object_aligned_to)
+ || (!address_misalign && !address_aligned_to))
+ {
+ *misalign = NULL_TREE;
+ *aligned_to = NULL_TREE;
+ }
+ else
+ {
+ if (object_misalign && address_misalign)
+ *misalign = size_binop (PLUS_EXPR, object_misalign, address_misalign);
+ else
+ *misalign = object_misalign ? object_misalign : address_misalign;
+ if (object_aligned_to && address_aligned_to)
+ *aligned_to = size_binop (MIN_EXPR, object_aligned_to,
+ address_aligned_to);
+ else
+ *aligned_to = object_aligned_to ?
+ object_aligned_to : address_aligned_to;
+ }
+ *step = size_binop (PLUS_EXPR, object_step, address_step);
+
+ return base_address;
+}
+
+/* Function analyze_offset.
+
+ Extract INVARIANT and CONSTANT parts from OFFSET.
+
+*/
+static bool
+analyze_offset (tree offset, tree *invariant, tree *constant)
+{
+ tree op0, op1, constant_0, constant_1, invariant_0, invariant_1;
+ enum tree_code code = TREE_CODE (offset);
+
+ *invariant = NULL_TREE;
+ *constant = NULL_TREE;
+
+ /* Not PLUS/MINUS expression - recursion stop condition. */
+ if (code != PLUS_EXPR && code != MINUS_EXPR)
+ {
+ if (TREE_CODE (offset) == INTEGER_CST)
+ *constant = offset;
+ else
+ *invariant = offset;
+ return true;
+ }
+
+ op0 = TREE_OPERAND (offset, 0);
+ op1 = TREE_OPERAND (offset, 1);
+
+ /* Recursive call with the operands. */
+ if (!analyze_offset (op0, &invariant_0, &constant_0)
+ || !analyze_offset (op1, &invariant_1, &constant_1))
+ return false;
+
+ /* Combine the results. Add negation to the subtrahend in case of
+ subtraction. */
+ if (constant_0 && constant_1)
+ return false;
+ *constant = constant_0 ? constant_0 : constant_1;
+ if (code == MINUS_EXPR && constant_1)
+ *constant = fold_build1 (NEGATE_EXPR, TREE_TYPE (*constant), *constant);
+
+ if (invariant_0 && invariant_1)
+ *invariant =
+ fold_build2 (code, TREE_TYPE (invariant_0), invariant_0, invariant_1);
+ else
+ {
+ *invariant = invariant_0 ? invariant_0 : invariant_1;
+ if (code == MINUS_EXPR && invariant_1)
+ *invariant =
+ fold_build1 (NEGATE_EXPR, TREE_TYPE (*invariant), *invariant);
+ }
+ return true;
+}
+
+/* Free the memory used by the data reference DR. */
+
+static void
+free_data_ref (data_reference_p dr)
+{
+ DR_FREE_ACCESS_FNS (dr);
+ free (dr);
+}
+
+/* Function create_data_ref.
+
+ Create a data-reference structure for MEMREF. Set its DR_BASE_ADDRESS,
+ DR_OFFSET, DR_INIT, DR_STEP, DR_OFFSET_MISALIGNMENT, DR_ALIGNED_TO,
+ DR_MEMTAG, and DR_POINTSTO_INFO fields.
+
+ Input:
+ MEMREF - the memory reference that is being analyzed
+ STMT - the statement that contains MEMREF
+ IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
+
+ Output:
+ DR (returned value) - data_reference struct for MEMREF
+*/
+
+static struct data_reference *
+create_data_ref (tree memref, tree stmt, bool is_read)
+{
+ struct data_reference *dr = NULL;
+ tree base_address, offset, step, misalign, memtag;
+ struct loop *loop = loop_containing_stmt (stmt);
+ tree invariant = NULL_TREE, constant = NULL_TREE;
+ tree type_size, init_cond;
+ struct ptr_info_def *ptr_info;
+ subvar_t subvars = NULL;
+ tree aligned_to, type = NULL_TREE, orig_offset;
+
+ if (!memref)
+ return NULL;
+
+ base_address = object_analysis (memref, stmt, is_read, &dr, &offset,
+ &misalign, &aligned_to, &step, &memtag,
+ &ptr_info, &subvars);
+ if (!dr || !base_address)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\ncreate_data_ref: failed to create a dr for ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL;
+ }
+
+ DR_BASE_ADDRESS (dr) = base_address;
+ DR_OFFSET (dr) = offset;
+ DR_INIT (dr) = ssize_int (0);
+ DR_STEP (dr) = step;
+ DR_OFFSET_MISALIGNMENT (dr) = misalign;
+ DR_ALIGNED_TO (dr) = aligned_to;
+ DR_MEMTAG (dr) = memtag;
+ DR_PTR_INFO (dr) = ptr_info;
+ DR_SUBVARS (dr) = subvars;
+
+ type_size = fold_convert (ssizetype, TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
+
+ /* Extract CONSTANT and INVARIANT from OFFSET. */
+ /* Remove cast from OFFSET and restore it for INVARIANT part. */
+ orig_offset = offset;
+ STRIP_NOPS (offset);
+ if (offset != orig_offset)
+ type = TREE_TYPE (orig_offset);
+ if (!analyze_offset (offset, &invariant, &constant))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\ncreate_data_ref: failed to analyze dr's");
+ fprintf (dump_file, " offset for ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ return NULL;
+ }
+ if (type && invariant)
+ invariant = fold_convert (type, invariant);
+
+ /* Put CONSTANT part of OFFSET in DR_INIT and INVARIANT in DR_OFFSET field
+ of DR. */
+ if (constant)
+ {
+ DR_INIT (dr) = fold_convert (ssizetype, constant);
+ init_cond = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (constant),
+ constant, type_size);
+ }
+ else
+ DR_INIT (dr) = init_cond = ssize_int (0);
+
+ if (invariant)
+ DR_OFFSET (dr) = invariant;
+ else
+ DR_OFFSET (dr) = ssize_int (0);
+
+ /* Change the access function for INIDIRECT_REFs, according to
+ DR_BASE_ADDRESS. Analyze OFFSET calculated in object_analysis. OFFSET is
+ an expression that can contain loop invariant expressions and constants.
+ We put the constant part in the initial condition of the access function
+ (for data dependence tests), and in DR_INIT of the data-ref. The loop
+ invariant part is put in DR_OFFSET.
+ The evolution part of the access function is STEP calculated in
+ object_analysis divided by the size of data type.
+ */
+ if (!DR_BASE_OBJECT (dr)
+ || (TREE_CODE (memref) == COMPONENT_REF && DR_NUM_DIMENSIONS (dr) == 1))
+ {
+ tree access_fn;
+ tree new_step;
+
+ /* Update access function. */
+ access_fn = DR_ACCESS_FN (dr, 0);
+ if (automatically_generated_chrec_p (access_fn))
+ {
+ free_data_ref (dr);
+ return NULL;
+ }
+
+ new_step = size_binop (TRUNC_DIV_EXPR,
+ fold_convert (ssizetype, step), type_size);
+
+ init_cond = chrec_convert (chrec_type (access_fn), init_cond, stmt);
+ new_step = chrec_convert (chrec_type (access_fn), new_step, stmt);
+ if (automatically_generated_chrec_p (init_cond)
+ || automatically_generated_chrec_p (new_step))
+ {
+ free_data_ref (dr);
+ return NULL;
+ }
+ access_fn = chrec_replace_initial_condition (access_fn, init_cond);
+ access_fn = reset_evolution_in_loop (loop->num, access_fn, new_step);
+
+ VEC_replace (tree, DR_ACCESS_FNS (dr), 0, access_fn);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ struct ptr_info_def *pi = DR_PTR_INFO (dr);
+
+ fprintf (dump_file, "\nCreated dr for ");
+ print_generic_expr (dump_file, memref, TDF_SLIM);
+ fprintf (dump_file, "\n\tbase_address: ");
+ print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
+ fprintf (dump_file, "\n\toffset from base address: ");
+ print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
+ fprintf (dump_file, "\n\tconstant offset from base address: ");
+ print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
+ fprintf (dump_file, "\n\tbase_object: ");
+ print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
+ fprintf (dump_file, "\n\tstep: ");
+ print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
+ fprintf (dump_file, "B\n\tmisalignment from base: ");
+ print_generic_expr (dump_file, DR_OFFSET_MISALIGNMENT (dr), TDF_SLIM);
+ if (DR_OFFSET_MISALIGNMENT (dr))
+ fprintf (dump_file, "B");
+ if (DR_ALIGNED_TO (dr))
+ {
+ fprintf (dump_file, "\n\taligned to: ");
+ print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
+ }
+ fprintf (dump_file, "\n\tmemtag: ");
+ print_generic_expr (dump_file, DR_MEMTAG (dr), TDF_SLIM);
+ fprintf (dump_file, "\n");
+ if (pi && pi->name_mem_tag)
+ {
+ fprintf (dump_file, "\n\tnametag: ");
+ print_generic_expr (dump_file, pi->name_mem_tag, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ }
+ return dr;
+}
+
+
+/* Returns true when all the functions of a tree_vec CHREC are the
+ same. */
+
+static bool
+all_chrecs_equal_p (tree chrec)
+{
+ int j;
+
+ for (j = 0; j < TREE_VEC_LENGTH (chrec) - 1; j++)
+ if (!eq_evolutions_p (TREE_VEC_ELT (chrec, j),
+ TREE_VEC_ELT (chrec, j + 1)))
+ return false;
+
+ return true;
+}
+
+/* Determine for each subscript in the data dependence relation DDR
+ the distance. */
+
+static void
+compute_subscript_distance (struct data_dependence_relation *ddr)
+{
+ if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+ {
+ unsigned int i;
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ {
+ tree conflicts_a, conflicts_b, difference;
+ struct subscript *subscript;
+
+ subscript = DDR_SUBSCRIPT (ddr, i);
+ conflicts_a = SUB_CONFLICTS_IN_A (subscript);
+ conflicts_b = SUB_CONFLICTS_IN_B (subscript);
+
+ if (TREE_CODE (conflicts_a) == TREE_VEC)
+ {
+ if (!all_chrecs_equal_p (conflicts_a))
+ {
+ SUB_DISTANCE (subscript) = chrec_dont_know;
+ return;
+ }
+ else
+ conflicts_a = TREE_VEC_ELT (conflicts_a, 0);
+ }
+
+ if (TREE_CODE (conflicts_b) == TREE_VEC)
+ {
+ if (!all_chrecs_equal_p (conflicts_b))
+ {
+ SUB_DISTANCE (subscript) = chrec_dont_know;
+ return;
+ }
+ else
+ conflicts_b = TREE_VEC_ELT (conflicts_b, 0);
+ }
+
+ conflicts_b = chrec_convert (integer_type_node, conflicts_b,
+ NULL_TREE);
+ conflicts_a = chrec_convert (integer_type_node, conflicts_a,
+ NULL_TREE);
+ difference = chrec_fold_minus
+ (integer_type_node, conflicts_b, conflicts_a);
+
+ if (evolution_function_is_constant_p (difference))
+ SUB_DISTANCE (subscript) = difference;
+
+ else
+ SUB_DISTANCE (subscript) = chrec_dont_know;
+ }
+ }
+}
+
+/* Initialize a data dependence relation between data accesses A and
+ B. NB_LOOPS is the number of loops surrounding the references: the
+ size of the classic distance/direction vectors. */
+
+static struct data_dependence_relation *
+initialize_data_dependence_relation (struct data_reference *a,
+ struct data_reference *b,
+ VEC (loop_p, heap) *loop_nest)
+{
+ struct data_dependence_relation *res;
+ bool differ_p, known_dependence;
+ unsigned int i;
+
+ res = XNEW (struct data_dependence_relation);
+ DDR_A (res) = a;
+ DDR_B (res) = b;
+ DDR_LOOP_NEST (res) = NULL;
+
+ if (a == NULL || b == NULL)
+ {
+ DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+ return res;
+ }
+
+ /* When A and B are arrays and their dimensions differ, we directly
+ initialize the relation to "there is no dependence": chrec_known. */
+ if (DR_BASE_OBJECT (a) && DR_BASE_OBJECT (b)
+ && DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
+ {
+ DDR_ARE_DEPENDENT (res) = chrec_known;
+ return res;
+ }
+
+ if (DR_BASE_ADDRESS (a) && DR_BASE_ADDRESS (b))
+ known_dependence = base_addr_differ_p (a, b, &differ_p);
+ else
+ known_dependence = base_object_differ_p (a, b, &differ_p);
+
+ if (!known_dependence)
+ {
+ /* Can't determine whether the data-refs access the same memory
+ region. */
+ DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+ return res;
+ }
+
+ if (differ_p)
+ {
+ DDR_ARE_DEPENDENT (res) = chrec_known;
+ return res;
+ }
+
+ DDR_AFFINE_P (res) = true;
+ DDR_ARE_DEPENDENT (res) = NULL_TREE;
+ DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
+ DDR_LOOP_NEST (res) = loop_nest;
+ DDR_DIR_VECTS (res) = NULL;
+ DDR_DIST_VECTS (res) = NULL;
+
+ for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
+ {
+ struct subscript *subscript;
+
+ subscript = XNEW (struct subscript);
+ SUB_CONFLICTS_IN_A (subscript) = chrec_dont_know;
+ SUB_CONFLICTS_IN_B (subscript) = chrec_dont_know;
+ SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
+ SUB_DISTANCE (subscript) = chrec_dont_know;
+ VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript);
+ }
+
+ return res;
+}
+
+/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
+ description. */
+
+static inline void
+finalize_ddr_dependent (struct data_dependence_relation *ddr,
+ tree chrec)
+{
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "(dependence classified: ");
+ print_generic_expr (dump_file, chrec, 0);
+ fprintf (dump_file, ")\n");
+ }
+
+ DDR_ARE_DEPENDENT (ddr) = chrec;
+ VEC_free (subscript_p, heap, DDR_SUBSCRIPTS (ddr));
+}
+
+/* The dependence relation DDR cannot be represented by a distance
+ vector. */
+
+static inline void
+non_affine_dependence_relation (struct data_dependence_relation *ddr)
+{
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
+
+ DDR_AFFINE_P (ddr) = false;
+}
+
+
+
+/* This section contains the classic Banerjee tests. */
+
+/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
+ variables, i.e., if the ZIV (Zero Index Variable) test is true. */
+
+static inline bool
+ziv_subscript_p (tree chrec_a,
+ tree chrec_b)
+{
+ return (evolution_function_is_constant_p (chrec_a)
+ && evolution_function_is_constant_p (chrec_b));
+}
+
+/* Returns true iff CHREC_A and CHREC_B are dependent on an index
+ variable, i.e., if the SIV (Single Index Variable) test is true. */
+
+static bool
+siv_subscript_p (tree chrec_a,
+ tree chrec_b)
+{
+ if ((evolution_function_is_constant_p (chrec_a)
+ && evolution_function_is_univariate_p (chrec_b))
+ || (evolution_function_is_constant_p (chrec_b)
+ && evolution_function_is_univariate_p (chrec_a)))
+ return true;
+
+ if (evolution_function_is_univariate_p (chrec_a)
+ && evolution_function_is_univariate_p (chrec_b))
+ {
+ switch (TREE_CODE (chrec_a))
+ {
+ case POLYNOMIAL_CHREC:
+ switch (TREE_CODE (chrec_b))
+ {
+ case POLYNOMIAL_CHREC:
+ if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
+ return false;
+
+ default:
+ return true;
+ }
+
+ default:
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
+ *OVERLAPS_B are initialized to the functions that describe the
+ relation between the elements accessed twice by CHREC_A and
+ CHREC_B. For k >= 0, the following property is verified:
+
+ CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
+
+static void
+analyze_ziv_subscript (tree chrec_a,
+ tree chrec_b,
+ tree *overlaps_a,
+ tree *overlaps_b,
+ tree *last_conflicts)
+{
+ tree difference;
+ dependence_stats.num_ziv++;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(analyze_ziv_subscript \n");
+
+ chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
+ chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
+ difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
+
+ switch (TREE_CODE (difference))
+ {
+ case INTEGER_CST:
+ if (integer_zerop (difference))
+ {
+ /* The difference is equal to zero: the accessed index
+ overlaps for each iteration in the loop. */
+ *overlaps_a = integer_zero_node;
+ *overlaps_b = integer_zero_node;
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_ziv_dependent++;
+ }
+ else
+ {
+ /* The accesses do not overlap. */
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_ziv_independent++;
+ }
+ break;
+
+ default:
+ /* We're not sure whether the indexes overlap. For the moment,
+ conservatively answer "don't know". */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
+
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_ziv_unimplemented++;
+ break;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+}
+
+/* Get the real or estimated number of iterations for LOOPNUM, whichever is
+ available. Return the number of iterations as a tree, or NULL_TREE if
+ we don't know. */
+
+static tree
+get_number_of_iters_for_loop (int loopnum)
+{
+ tree numiter = number_of_iterations_in_loop (current_loops->parray[loopnum]);
+
+ if (TREE_CODE (numiter) != INTEGER_CST)
+ numiter = current_loops->parray[loopnum]->estimated_nb_iterations;
+ if (chrec_contains_undetermined (numiter))
+ return NULL_TREE;
+ return numiter;
+}
+
+/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
+ constant, and CHREC_B is an affine function. *OVERLAPS_A and
+ *OVERLAPS_B are initialized to the functions that describe the
+ relation between the elements accessed twice by CHREC_A and
+ CHREC_B. For k >= 0, the following property is verified:
+
+ CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
+
+static void
+analyze_siv_subscript_cst_affine (tree chrec_a,
+ tree chrec_b,
+ tree *overlaps_a,
+ tree *overlaps_b,
+ tree *last_conflicts)
+{
+ bool value0, value1, value2;
+ tree difference;
+
+ chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
+ chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
+ difference = chrec_fold_minus
+ (integer_type_node, initial_condition (chrec_b), chrec_a);
+
+ if (!chrec_is_positive (initial_condition (difference), &value0))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "siv test failed: chrec is not positive.\n");
+
+ dependence_stats.num_siv_unimplemented++;
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ return;
+ }
+ else
+ {
+ if (value0 == false)
+ {
+ if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "siv test failed: chrec not positive.\n");
+
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_siv_unimplemented++;
+ return;
+ }
+ else
+ {
+ if (value1 == true)
+ {
+ /* Example:
+ chrec_a = 12
+ chrec_b = {10, +, 1}
+ */
+
+ if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
+ {
+ tree numiter;
+ int loopnum = CHREC_VARIABLE (chrec_b);
+
+ *overlaps_a = integer_zero_node;
+ *overlaps_b = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
+ fold_build1 (ABS_EXPR,
+ integer_type_node,
+ difference),
+ CHREC_RIGHT (chrec_b));
+ *last_conflicts = integer_one_node;
+
+
+ /* Perform weak-zero siv test to see if overlap is
+ outside the loop bounds. */
+ numiter = get_number_of_iters_for_loop (loopnum);
+
+ if (numiter != NULL_TREE
+ && TREE_CODE (*overlaps_b) == INTEGER_CST
+ && tree_int_cst_lt (numiter, *overlaps_b))
+ {
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ dependence_stats.num_siv_dependent++;
+ return;
+ }
+
+ /* When the step does not divide the difference, there are
+ no overlaps. */
+ else
+ {
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ }
+
+ else
+ {
+ /* Example:
+ chrec_a = 12
+ chrec_b = {10, +, -1}
+
+ In this case, chrec_a will not overlap with chrec_b. */
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ }
+ }
+ else
+ {
+ if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "siv test failed: chrec not positive.\n");
+
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_siv_unimplemented++;
+ return;
+ }
+ else
+ {
+ if (value2 == false)
+ {
+ /* Example:
+ chrec_a = 3
+ chrec_b = {10, +, -1}
+ */
+ if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
+ {
+ tree numiter;
+ int loopnum = CHREC_VARIABLE (chrec_b);
+
+ *overlaps_a = integer_zero_node;
+ *overlaps_b = fold_build2 (EXACT_DIV_EXPR,
+ integer_type_node, difference,
+ CHREC_RIGHT (chrec_b));
+ *last_conflicts = integer_one_node;
+
+ /* Perform weak-zero siv test to see if overlap is
+ outside the loop bounds. */
+ numiter = get_number_of_iters_for_loop (loopnum);
+
+ if (numiter != NULL_TREE
+ && TREE_CODE (*overlaps_b) == INTEGER_CST
+ && tree_int_cst_lt (numiter, *overlaps_b))
+ {
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ dependence_stats.num_siv_dependent++;
+ return;
+ }
+
+ /* When the step does not divide the difference, there
+ are no overlaps. */
+ else
+ {
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ }
+ else
+ {
+ /* Example:
+ chrec_a = 3
+ chrec_b = {4, +, 1}
+
+ In this case, chrec_a will not overlap with chrec_b. */
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_siv_independent++;
+ return;
+ }
+ }
+ }
+ }
+}
+
+/* Helper recursive function for initializing the matrix A. Returns
+ the initial value of CHREC. */
+
+static int
+initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
+{
+ gcc_assert (chrec);
+
+ if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+ return int_cst_value (chrec);
+
+ A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
+ return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
+}
+
+#define FLOOR_DIV(x,y) ((x) / (y))
+
+/* Solves the special case of the Diophantine equation:
+ | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
+
+ Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
+ number of iterations that loops X and Y run. The overlaps will be
+ constructed as evolutions in dimension DIM. */
+
+static void
+compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
+ tree *overlaps_a, tree *overlaps_b,
+ tree *last_conflicts, int dim)
+{
+ if (((step_a > 0 && step_b > 0)
+ || (step_a < 0 && step_b < 0)))
+ {
+ int step_overlaps_a, step_overlaps_b;
+ int gcd_steps_a_b, last_conflict, tau2;
+
+ gcd_steps_a_b = gcd (step_a, step_b);
+ step_overlaps_a = step_b / gcd_steps_a_b;
+ step_overlaps_b = step_a / gcd_steps_a_b;
+
+ tau2 = FLOOR_DIV (niter, step_overlaps_a);
+ tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
+ last_conflict = tau2;
+
+ *overlaps_a = build_polynomial_chrec
+ (dim, integer_zero_node,
+ build_int_cst (NULL_TREE, step_overlaps_a));
+ *overlaps_b = build_polynomial_chrec
+ (dim, integer_zero_node,
+ build_int_cst (NULL_TREE, step_overlaps_b));
+ *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
+ }
+
+ else
+ {
+ *overlaps_a = integer_zero_node;
+ *overlaps_b = integer_zero_node;
+ *last_conflicts = integer_zero_node;
+ }
+}
+
+
+/* Solves the special case of a Diophantine equation where CHREC_A is
+ an affine bivariate function, and CHREC_B is an affine univariate
+ function. For example,
+
+ | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
+
+ has the following overlapping functions:
+
+ | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
+ | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
+ | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
+
+ FORNOW: This is a specialized implementation for a case occurring in
+ a common benchmark. Implement the general algorithm. */
+
+static void
+compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
+ tree *overlaps_a, tree *overlaps_b,
+ tree *last_conflicts)
+{
+ bool xz_p, yz_p, xyz_p;
+ int step_x, step_y, step_z;
+ int niter_x, niter_y, niter_z, niter;
+ tree numiter_x, numiter_y, numiter_z;
+ tree overlaps_a_xz, overlaps_b_xz, last_conflicts_xz;
+ tree overlaps_a_yz, overlaps_b_yz, last_conflicts_yz;
+ tree overlaps_a_xyz, overlaps_b_xyz, last_conflicts_xyz;
+
+ step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
+ step_y = int_cst_value (CHREC_RIGHT (chrec_a));
+ step_z = int_cst_value (CHREC_RIGHT (chrec_b));
+
+ numiter_x = get_number_of_iters_for_loop (CHREC_VARIABLE (CHREC_LEFT (chrec_a)));
+ numiter_y = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
+ numiter_z = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
+
+ if (numiter_x == NULL_TREE || numiter_y == NULL_TREE
+ || numiter_z == NULL_TREE)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
+
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ return;
+ }
+
+ niter_x = int_cst_value (numiter_x);
+ niter_y = int_cst_value (numiter_y);
+ niter_z = int_cst_value (numiter_z);
+
+ niter = MIN (niter_x, niter_z);
+ compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
+ &overlaps_a_xz,
+ &overlaps_b_xz,
+ &last_conflicts_xz, 1);
+ niter = MIN (niter_y, niter_z);
+ compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
+ &overlaps_a_yz,
+ &overlaps_b_yz,
+ &last_conflicts_yz, 2);
+ niter = MIN (niter_x, niter_z);
+ niter = MIN (niter_y, niter);
+ compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
+ &overlaps_a_xyz,
+ &overlaps_b_xyz,
+ &last_conflicts_xyz, 3);
+
+ xz_p = !integer_zerop (last_conflicts_xz);
+ yz_p = !integer_zerop (last_conflicts_yz);
+ xyz_p = !integer_zerop (last_conflicts_xyz);
+
+ if (xz_p || yz_p || xyz_p)
+ {
+ *overlaps_a = make_tree_vec (2);
+ TREE_VEC_ELT (*overlaps_a, 0) = integer_zero_node;
+ TREE_VEC_ELT (*overlaps_a, 1) = integer_zero_node;
+ *overlaps_b = integer_zero_node;
+ if (xz_p)
+ {
+ tree t0 = chrec_convert (integer_type_node,
+ TREE_VEC_ELT (*overlaps_a, 0), NULL_TREE);
+ tree t1 = chrec_convert (integer_type_node, overlaps_a_xz,
+ NULL_TREE);
+ tree t2 = chrec_convert (integer_type_node, *overlaps_b,
+ NULL_TREE);
+ tree t3 = chrec_convert (integer_type_node, overlaps_b_xz,
+ NULL_TREE);
+
+ TREE_VEC_ELT (*overlaps_a, 0) = chrec_fold_plus (integer_type_node,
+ t0, t1);
+ *overlaps_b = chrec_fold_plus (integer_type_node, t2, t3);
+ *last_conflicts = last_conflicts_xz;
+ }
+ if (yz_p)
+ {
+ tree t0 = chrec_convert (integer_type_node,
+ TREE_VEC_ELT (*overlaps_a, 1), NULL_TREE);
+ tree t1 = chrec_convert (integer_type_node, overlaps_a_yz, NULL_TREE);
+ tree t2 = chrec_convert (integer_type_node, *overlaps_b, NULL_TREE);
+ tree t3 = chrec_convert (integer_type_node, overlaps_b_yz, NULL_TREE);
+
+ TREE_VEC_ELT (*overlaps_a, 1) = chrec_fold_plus (integer_type_node,
+ t0, t1);
+ *overlaps_b = chrec_fold_plus (integer_type_node, t2, t3);
+ *last_conflicts = last_conflicts_yz;
+ }
+ if (xyz_p)
+ {
+ tree t0 = chrec_convert (integer_type_node,
+ TREE_VEC_ELT (*overlaps_a, 0), NULL_TREE);
+ tree t1 = chrec_convert (integer_type_node, overlaps_a_xyz,
+ NULL_TREE);
+ tree t2 = chrec_convert (integer_type_node,
+ TREE_VEC_ELT (*overlaps_a, 1), NULL_TREE);
+ tree t3 = chrec_convert (integer_type_node, overlaps_a_xyz,
+ NULL_TREE);
+ tree t4 = chrec_convert (integer_type_node, *overlaps_b, NULL_TREE);
+ tree t5 = chrec_convert (integer_type_node, overlaps_b_xyz,
+ NULL_TREE);
+
+ TREE_VEC_ELT (*overlaps_a, 0) = chrec_fold_plus (integer_type_node,
+ t0, t1);
+ TREE_VEC_ELT (*overlaps_a, 1) = chrec_fold_plus (integer_type_node,
+ t2, t3);
+ *overlaps_b = chrec_fold_plus (integer_type_node, t4, t5);
+ *last_conflicts = last_conflicts_xyz;
+ }
+ }
+ else
+ {
+ *overlaps_a = integer_zero_node;
+ *overlaps_b = integer_zero_node;
+ *last_conflicts = integer_zero_node;
+ }
+}
+
+/* Determines the overlapping elements due to accesses CHREC_A and
+ CHREC_B, that are affine functions. This function cannot handle
+ symbolic evolution functions, ie. when initial conditions are
+ parameters, because it uses lambda matrices of integers. */
+
+static void
+analyze_subscript_affine_affine (tree chrec_a,
+ tree chrec_b,
+ tree *overlaps_a,
+ tree *overlaps_b,
+ tree *last_conflicts)
+{
+ unsigned nb_vars_a, nb_vars_b, dim;
+ int init_a, init_b, gamma, gcd_alpha_beta;
+ int tau1, tau2;
+ lambda_matrix A, U, S;
+
+ if (eq_evolutions_p (chrec_a, chrec_b))
+ {
+ /* The accessed index overlaps for each iteration in the
+ loop. */
+ *overlaps_a = integer_zero_node;
+ *overlaps_b = integer_zero_node;
+ *last_conflicts = chrec_dont_know;
+ return;
+ }
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(analyze_subscript_affine_affine \n");
+
+ /* For determining the initial intersection, we have to solve a
+ Diophantine equation. This is the most time consuming part.
+
+ For answering to the question: "Is there a dependence?" we have
+ to prove that there exists a solution to the Diophantine
+ equation, and that the solution is in the iteration domain,
+ i.e. the solution is positive or zero, and that the solution
+ happens before the upper bound loop.nb_iterations. Otherwise
+ there is no dependence. This function outputs a description of
+ the iterations that hold the intersections. */
+
+ nb_vars_a = nb_vars_in_chrec (chrec_a);
+ nb_vars_b = nb_vars_in_chrec (chrec_b);
+
+ dim = nb_vars_a + nb_vars_b;
+ U = lambda_matrix_new (dim, dim);
+ A = lambda_matrix_new (dim, 1);
+ S = lambda_matrix_new (dim, 1);
+
+ init_a = initialize_matrix_A (A, chrec_a, 0, 1);
+ init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
+ gamma = init_b - init_a;
+
+ /* Don't do all the hard work of solving the Diophantine equation
+ when we already know the solution: for example,
+ | {3, +, 1}_1
+ | {3, +, 4}_2
+ | gamma = 3 - 3 = 0.
+ Then the first overlap occurs during the first iterations:
+ | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
+ */
+ if (gamma == 0)
+ {
+ if (nb_vars_a == 1 && nb_vars_b == 1)
+ {
+ int step_a, step_b;
+ int niter, niter_a, niter_b;
+ tree numiter_a, numiter_b;
+
+ numiter_a = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
+ numiter_b = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
+ if (numiter_a == NULL_TREE || numiter_b == NULL_TREE)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ goto end_analyze_subs_aa;
+ }
+
+ niter_a = int_cst_value (numiter_a);
+ niter_b = int_cst_value (numiter_b);
+ niter = MIN (niter_a, niter_b);
+
+ step_a = int_cst_value (CHREC_RIGHT (chrec_a));
+ step_b = int_cst_value (CHREC_RIGHT (chrec_b));
+
+ compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
+ overlaps_a, overlaps_b,
+ last_conflicts, 1);
+ }
+
+ else if (nb_vars_a == 2 && nb_vars_b == 1)
+ compute_overlap_steps_for_affine_1_2
+ (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
+
+ else if (nb_vars_a == 1 && nb_vars_b == 2)
+ compute_overlap_steps_for_affine_1_2
+ (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
+
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: too many variables.\n");
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ }
+ goto end_analyze_subs_aa;
+ }
+
+ /* U.A = S */
+ lambda_matrix_right_hermite (A, dim, 1, S, U);
+
+ if (S[0][0] < 0)
+ {
+ S[0][0] *= -1;
+ lambda_matrix_row_negate (U, dim, 0);
+ }
+ gcd_alpha_beta = S[0][0];
+
+ /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
+ but that is a quite strange case. Instead of ICEing, answer
+ don't know. */
+ if (gcd_alpha_beta == 0)
+ {
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ goto end_analyze_subs_aa;
+ }
+
+ /* The classic "gcd-test". */
+ if (!int_divides_p (gcd_alpha_beta, gamma))
+ {
+ /* The "gcd-test" has determined that there is no integer
+ solution, i.e. there is no dependence. */
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ }
+
+ /* Both access functions are univariate. This includes SIV and MIV cases. */
+ else if (nb_vars_a == 1 && nb_vars_b == 1)
+ {
+ /* Both functions should have the same evolution sign. */
+ if (((A[0][0] > 0 && -A[1][0] > 0)
+ || (A[0][0] < 0 && -A[1][0] < 0)))
+ {
+ /* The solutions are given by:
+ |
+ | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
+ | [u21 u22] [y0]
+
+ For a given integer t. Using the following variables,
+
+ | i0 = u11 * gamma / gcd_alpha_beta
+ | j0 = u12 * gamma / gcd_alpha_beta
+ | i1 = u21
+ | j1 = u22
+
+ the solutions are:
+
+ | x0 = i0 + i1 * t,
+ | y0 = j0 + j1 * t. */
+
+ int i0, j0, i1, j1;
+
+ /* X0 and Y0 are the first iterations for which there is a
+ dependence. X0, Y0 are two solutions of the Diophantine
+ equation: chrec_a (X0) = chrec_b (Y0). */
+ int x0, y0;
+ int niter, niter_a, niter_b;
+ tree numiter_a, numiter_b;
+
+ numiter_a = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
+ numiter_b = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
+
+ if (numiter_a == NULL_TREE || numiter_b == NULL_TREE)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ goto end_analyze_subs_aa;
+ }
+
+ niter_a = int_cst_value (numiter_a);
+ niter_b = int_cst_value (numiter_b);
+ niter = MIN (niter_a, niter_b);
+
+ i0 = U[0][0] * gamma / gcd_alpha_beta;
+ j0 = U[0][1] * gamma / gcd_alpha_beta;
+ i1 = U[1][0];
+ j1 = U[1][1];
+
+ if ((i1 == 0 && i0 < 0)
+ || (j1 == 0 && j0 < 0))
+ {
+ /* There is no solution.
+ FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
+ falls in here, but for the moment we don't look at the
+ upper bound of the iteration domain. */
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ }
+
+ else
+ {
+ if (i1 > 0)
+ {
+ tau1 = CEIL (-i0, i1);
+ tau2 = FLOOR_DIV (niter - i0, i1);
+
+ if (j1 > 0)
+ {
+ int last_conflict, min_multiple;
+ tau1 = MAX (tau1, CEIL (-j0, j1));
+ tau2 = MIN (tau2, FLOOR_DIV (niter - j0, j1));
+
+ x0 = i1 * tau1 + i0;
+ y0 = j1 * tau1 + j0;
+
+ /* At this point (x0, y0) is one of the
+ solutions to the Diophantine equation. The
+ next step has to compute the smallest
+ positive solution: the first conflicts. */
+ min_multiple = MIN (x0 / i1, y0 / j1);
+ x0 -= i1 * min_multiple;
+ y0 -= j1 * min_multiple;
+
+ tau1 = (x0 - i0)/i1;
+ last_conflict = tau2 - tau1;
+
+ /* If the overlap occurs outside of the bounds of the
+ loop, there is no dependence. */
+ if (x0 > niter || y0 > niter)
+ {
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ }
+ else
+ {
+ *overlaps_a = build_polynomial_chrec
+ (1,
+ build_int_cst (NULL_TREE, x0),
+ build_int_cst (NULL_TREE, i1));
+ *overlaps_b = build_polynomial_chrec
+ (1,
+ build_int_cst (NULL_TREE, y0),
+ build_int_cst (NULL_TREE, j1));
+ *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
+ }
+ }
+ else
+ {
+ /* FIXME: For the moment, the upper bound of the
+ iteration domain for j is not checked. */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ }
+ }
+
+ else
+ {
+ /* FIXME: For the moment, the upper bound of the
+ iteration domain for i is not checked. */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ }
+ }
+ }
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ }
+ }
+
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ }
+
+end_analyze_subs_aa:
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " (overlaps_a = ");
+ print_generic_expr (dump_file, *overlaps_a, 0);
+ fprintf (dump_file, ")\n (overlaps_b = ");
+ print_generic_expr (dump_file, *overlaps_b, 0);
+ fprintf (dump_file, ")\n");
+ fprintf (dump_file, ")\n");
+ }
+}
+
+/* Returns true when analyze_subscript_affine_affine can be used for
+ determining the dependence relation between chrec_a and chrec_b,
+ that contain symbols. This function modifies chrec_a and chrec_b
+ such that the analysis result is the same, and such that they don't
+ contain symbols, and then can safely be passed to the analyzer.
+
+ Example: The analysis of the following tuples of evolutions produce
+ the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
+ vs. {0, +, 1}_1
+
+ {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
+ {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
+*/
+
+static bool
+can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
+{
+ tree diff, type, left_a, left_b, right_b;
+
+ if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
+ || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
+ /* FIXME: For the moment not handled. Might be refined later. */
+ return false;
+
+ type = chrec_type (*chrec_a);
+ left_a = CHREC_LEFT (*chrec_a);
+ left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL_TREE);
+ diff = chrec_fold_minus (type, left_a, left_b);
+
+ if (!evolution_function_is_constant_p (diff))
+ return false;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
+
+ *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
+ diff, CHREC_RIGHT (*chrec_a));
+ right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL_TREE);
+ *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
+ build_int_cst (type, 0),
+ right_b);
+ return true;
+}
+
+/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
+ *OVERLAPS_B are initialized to the functions that describe the
+ relation between the elements accessed twice by CHREC_A and
+ CHREC_B. For k >= 0, the following property is verified:
+
+ CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
+
+static void
+analyze_siv_subscript (tree chrec_a,
+ tree chrec_b,
+ tree *overlaps_a,
+ tree *overlaps_b,
+ tree *last_conflicts)
+{
+ dependence_stats.num_siv++;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(analyze_siv_subscript \n");
+
+ if (evolution_function_is_constant_p (chrec_a)
+ && evolution_function_is_affine_p (chrec_b))
+ analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
+ overlaps_a, overlaps_b, last_conflicts);
+
+ else if (evolution_function_is_affine_p (chrec_a)
+ && evolution_function_is_constant_p (chrec_b))
+ analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
+ overlaps_b, overlaps_a, last_conflicts);
+
+ else if (evolution_function_is_affine_p (chrec_a)
+ && evolution_function_is_affine_p (chrec_b))
+ {
+ if (!chrec_contains_symbols (chrec_a)
+ && !chrec_contains_symbols (chrec_b))
+ {
+ analyze_subscript_affine_affine (chrec_a, chrec_b,
+ overlaps_a, overlaps_b,
+ last_conflicts);
+
+ if (*overlaps_a == chrec_dont_know
+ || *overlaps_b == chrec_dont_know)
+ dependence_stats.num_siv_unimplemented++;
+ else if (*overlaps_a == chrec_known
+ || *overlaps_b == chrec_known)
+ dependence_stats.num_siv_independent++;
+ else
+ dependence_stats.num_siv_dependent++;
+ }
+ else if (can_use_analyze_subscript_affine_affine (&chrec_a,
+ &chrec_b))
+ {
+ analyze_subscript_affine_affine (chrec_a, chrec_b,
+ overlaps_a, overlaps_b,
+ last_conflicts);
+ /* FIXME: The number of iterations is a symbolic expression.
+ Compute it properly. */
+ *last_conflicts = chrec_dont_know;
+
+ if (*overlaps_a == chrec_dont_know
+ || *overlaps_b == chrec_dont_know)
+ dependence_stats.num_siv_unimplemented++;
+ else if (*overlaps_a == chrec_known
+ || *overlaps_b == chrec_known)
+ dependence_stats.num_siv_independent++;
+ else
+ dependence_stats.num_siv_dependent++;
+ }
+ else
+ goto siv_subscript_dontknow;
+ }
+
+ else
+ {
+ siv_subscript_dontknow:;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "siv test failed: unimplemented.\n");
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_siv_unimplemented++;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+}
+
+/* Return true when the property can be computed. RES should contain
+ true when calling the first time this function, then it is set to
+ false when one of the evolution steps of an affine CHREC does not
+ divide the constant CST. */
+
+static bool
+chrec_steps_divide_constant_p (tree chrec,
+ tree cst,
+ bool *res)
+{
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
+ {
+ if (tree_fold_divides_p (CHREC_RIGHT (chrec), cst))
+ /* Keep RES to true, and iterate on other dimensions. */
+ return chrec_steps_divide_constant_p (CHREC_LEFT (chrec), cst, res);
+
+ *res = false;
+ return true;
+ }
+ else
+ /* When the step is a parameter the result is undetermined. */
+ return false;
+
+ default:
+ /* On the initial condition, return true. */
+ return true;
+ }
+}
+
+/* Analyze a MIV (Multiple Index Variable) subscript. *OVERLAPS_A and
+ *OVERLAPS_B are initialized to the functions that describe the
+ relation between the elements accessed twice by CHREC_A and
+ CHREC_B. For k >= 0, the following property is verified:
+
+ CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
+
+static void
+analyze_miv_subscript (tree chrec_a,
+ tree chrec_b,
+ tree *overlaps_a,
+ tree *overlaps_b,
+ tree *last_conflicts)
+{
+ /* FIXME: This is a MIV subscript, not yet handled.
+ Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from
+ (A[i] vs. A[j]).
+
+ In the SIV test we had to solve a Diophantine equation with two
+ variables. In the MIV case we have to solve a Diophantine
+ equation with 2*n variables (if the subscript uses n IVs).
+ */
+ bool divide_p = true;
+ tree difference;
+ dependence_stats.num_miv++;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(analyze_miv_subscript \n");
+
+ chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
+ chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
+ difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
+
+ if (eq_evolutions_p (chrec_a, chrec_b))
+ {
+ /* Access functions are the same: all the elements are accessed
+ in the same order. */
+ *overlaps_a = integer_zero_node;
+ *overlaps_b = integer_zero_node;
+ *last_conflicts = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
+ dependence_stats.num_miv_dependent++;
+ }
+
+ else if (evolution_function_is_constant_p (difference)
+ /* For the moment, the following is verified:
+ evolution_function_is_affine_multivariate_p (chrec_a) */
+ && chrec_steps_divide_constant_p (chrec_a, difference, &divide_p)
+ && !divide_p)
+ {
+ /* testsuite/.../ssa-chrec-33.c
+ {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
+
+ The difference is 1, and the evolution steps are equal to 2,
+ consequently there are no overlapping elements. */
+ *overlaps_a = chrec_known;
+ *overlaps_b = chrec_known;
+ *last_conflicts = integer_zero_node;
+ dependence_stats.num_miv_independent++;
+ }
+
+ else if (evolution_function_is_affine_multivariate_p (chrec_a)
+ && !chrec_contains_symbols (chrec_a)
+ && evolution_function_is_affine_multivariate_p (chrec_b)
+ && !chrec_contains_symbols (chrec_b))
+ {
+ /* testsuite/.../ssa-chrec-35.c
+ {0, +, 1}_2 vs. {0, +, 1}_3
+ the overlapping elements are respectively located at iterations:
+ {0, +, 1}_x and {0, +, 1}_x,
+ in other words, we have the equality:
+ {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
+
+ Other examples:
+ {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
+ {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
+
+ {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
+ {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
+ */
+ analyze_subscript_affine_affine (chrec_a, chrec_b,
+ overlaps_a, overlaps_b, last_conflicts);
+
+ if (*overlaps_a == chrec_dont_know
+ || *overlaps_b == chrec_dont_know)
+ dependence_stats.num_miv_unimplemented++;
+ else if (*overlaps_a == chrec_known
+ || *overlaps_b == chrec_known)
+ dependence_stats.num_miv_independent++;
+ else
+ dependence_stats.num_miv_dependent++;
+ }
+
+ else
+ {
+ /* When the analysis is too difficult, answer "don't know". */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
+
+ *overlaps_a = chrec_dont_know;
+ *overlaps_b = chrec_dont_know;
+ *last_conflicts = chrec_dont_know;
+ dependence_stats.num_miv_unimplemented++;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+}
+
+/* Determines the iterations for which CHREC_A is equal to CHREC_B.
+ OVERLAP_ITERATIONS_A and OVERLAP_ITERATIONS_B are initialized with
+ two functions that describe the iterations that contain conflicting
+ elements.
+
+ Remark: For an integer k >= 0, the following equality is true:
+
+ CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
+*/
+
+static void
+analyze_overlapping_iterations (tree chrec_a,
+ tree chrec_b,
+ tree *overlap_iterations_a,
+ tree *overlap_iterations_b,
+ tree *last_conflicts)
+{
+ dependence_stats.num_subscript_tests++;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "(analyze_overlapping_iterations \n");
+ fprintf (dump_file, " (chrec_a = ");
+ print_generic_expr (dump_file, chrec_a, 0);
+ fprintf (dump_file, ")\n (chrec_b = ");
+ print_generic_expr (dump_file, chrec_b, 0);
+ fprintf (dump_file, ")\n");
+ }
+
+ if (chrec_a == NULL_TREE
+ || chrec_b == NULL_TREE
+ || chrec_contains_undetermined (chrec_a)
+ || chrec_contains_undetermined (chrec_b))
+ {
+ dependence_stats.num_subscript_undetermined++;
+
+ *overlap_iterations_a = chrec_dont_know;
+ *overlap_iterations_b = chrec_dont_know;
+ }
+
+ /* If they are the same chrec, and are affine, they overlap
+ on every iteration. */
+ else if (eq_evolutions_p (chrec_a, chrec_b)
+ && evolution_function_is_affine_multivariate_p (chrec_a))
+ {
+ dependence_stats.num_same_subscript_function++;
+ *overlap_iterations_a = integer_zero_node;
+ *overlap_iterations_b = integer_zero_node;
+ *last_conflicts = chrec_dont_know;
+ }
+
+ /* If they aren't the same, and aren't affine, we can't do anything
+ yet. */
+ else if ((chrec_contains_symbols (chrec_a)
+ || chrec_contains_symbols (chrec_b))
+ && (!evolution_function_is_affine_multivariate_p (chrec_a)
+ || !evolution_function_is_affine_multivariate_p (chrec_b)))
+ {
+ dependence_stats.num_subscript_undetermined++;
+ *overlap_iterations_a = chrec_dont_know;
+ *overlap_iterations_b = chrec_dont_know;
+ }
+
+ else if (ziv_subscript_p (chrec_a, chrec_b))
+ analyze_ziv_subscript (chrec_a, chrec_b,
+ overlap_iterations_a, overlap_iterations_b,
+ last_conflicts);
+
+ else if (siv_subscript_p (chrec_a, chrec_b))
+ analyze_siv_subscript (chrec_a, chrec_b,
+ overlap_iterations_a, overlap_iterations_b,
+ last_conflicts);
+
+ else
+ analyze_miv_subscript (chrec_a, chrec_b,
+ overlap_iterations_a, overlap_iterations_b,
+ last_conflicts);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " (overlap_iterations_a = ");
+ print_generic_expr (dump_file, *overlap_iterations_a, 0);
+ fprintf (dump_file, ")\n (overlap_iterations_b = ");
+ print_generic_expr (dump_file, *overlap_iterations_b, 0);
+ fprintf (dump_file, ")\n");
+ fprintf (dump_file, ")\n");
+ }
+}
+
+/* Helper function for uniquely inserting distance vectors. */
+
+static void
+save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
+{
+ unsigned i;
+ lambda_vector v;
+
+ for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, v); i++)
+ if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
+ return;
+
+ VEC_safe_push (lambda_vector, heap, DDR_DIST_VECTS (ddr), dist_v);
+}
+
+/* Helper function for uniquely inserting direction vectors. */
+
+static void
+save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
+{
+ unsigned i;
+ lambda_vector v;
+
+ for (i = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), i, v); i++)
+ if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
+ return;
+
+ VEC_safe_push (lambda_vector, heap, DDR_DIR_VECTS (ddr), dir_v);
+}
+
+/* Add a distance of 1 on all the loops outer than INDEX. If we
+ haven't yet determined a distance for this outer loop, push a new
+ distance vector composed of the previous distance, and a distance
+ of 1 for this outer loop. Example:
+
+ | loop_1
+ | loop_2
+ | A[10]
+ | endloop_2
+ | endloop_1
+
+ Saved vectors are of the form (dist_in_1, dist_in_2). First, we
+ save (0, 1), then we have to save (1, 0). */
+
+static void
+add_outer_distances (struct data_dependence_relation *ddr,
+ lambda_vector dist_v, int index)
+{
+ /* For each outer loop where init_v is not set, the accesses are
+ in dependence of distance 1 in the loop. */
+ while (--index >= 0)
+ {
+ lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
+ save_v[index] = 1;
+ save_dist_v (ddr, save_v);
+ }
+}
+
+/* Return false when fail to represent the data dependence as a
+ distance vector. INIT_B is set to true when a component has been
+ added to the distance vector DIST_V. INDEX_CARRY is then set to
+ the index in DIST_V that carries the dependence. */
+
+static bool
+build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
+ struct data_reference *ddr_a,
+ struct data_reference *ddr_b,
+ lambda_vector dist_v, bool *init_b,
+ int *index_carry)
+{
+ unsigned i;
+ lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ {
+ tree access_fn_a, access_fn_b;
+ struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
+
+ if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
+ {
+ non_affine_dependence_relation (ddr);
+ return false;
+ }
+
+ access_fn_a = DR_ACCESS_FN (ddr_a, i);
+ access_fn_b = DR_ACCESS_FN (ddr_b, i);
+
+ if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
+ && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
+ {
+ int dist, index;
+ int index_a = index_in_loop_nest (CHREC_VARIABLE (access_fn_a),
+ DDR_LOOP_NEST (ddr));
+ int index_b = index_in_loop_nest (CHREC_VARIABLE (access_fn_b),
+ DDR_LOOP_NEST (ddr));
+
+ /* The dependence is carried by the outermost loop. Example:
+ | loop_1
+ | A[{4, +, 1}_1]
+ | loop_2
+ | A[{5, +, 1}_2]
+ | endloop_2
+ | endloop_1
+ In this case, the dependence is carried by loop_1. */
+ index = index_a < index_b ? index_a : index_b;
+ *index_carry = MIN (index, *index_carry);
+
+ if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
+ {
+ non_affine_dependence_relation (ddr);
+ return false;
+ }
+
+ dist = int_cst_value (SUB_DISTANCE (subscript));
+
+ /* This is the subscript coupling test. If we have already
+ recorded a distance for this loop (a distance coming from
+ another subscript), it should be the same. For example,
+ in the following code, there is no dependence:
+
+ | loop i = 0, N, 1
+ | T[i+1][i] = ...
+ | ... = T[i][i]
+ | endloop
+ */
+ if (init_v[index] != 0 && dist_v[index] != dist)
+ {
+ finalize_ddr_dependent (ddr, chrec_known);
+ return false;
+ }
+
+ dist_v[index] = dist;
+ init_v[index] = 1;
+ *init_b = true;
+ }
+ else
+ {
+ /* This can be for example an affine vs. constant dependence
+ (T[i] vs. T[3]) that is not an affine dependence and is
+ not representable as a distance vector. */
+ non_affine_dependence_relation (ddr);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* Return true when the DDR contains two data references that have the
+ same access functions. */
+
+static bool
+same_access_functions (struct data_dependence_relation *ddr)
+{
+ unsigned i;
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
+ DR_ACCESS_FN (DDR_B (ddr), i)))
+ return false;
+
+ return true;
+}
+
+/* Helper function for the case where DDR_A and DDR_B are the same
+ multivariate access function. */
+
+static void
+add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
+{
+ int x_1, x_2;
+ tree c_1 = CHREC_LEFT (c_2);
+ tree c_0 = CHREC_LEFT (c_1);
+ lambda_vector dist_v;
+
+ /* Polynomials with more than 2 variables are not handled yet. */
+ if (TREE_CODE (c_0) != INTEGER_CST)
+ {
+ DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
+ return;
+ }
+
+ x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
+ x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
+
+ /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
+ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ dist_v[x_1] = int_cst_value (CHREC_RIGHT (c_2));
+ dist_v[x_2] = -int_cst_value (CHREC_RIGHT (c_1));
+ save_dist_v (ddr, dist_v);
+
+ add_outer_distances (ddr, dist_v, x_1);
+}
+
+/* Helper function for the case where DDR_A and DDR_B are the same
+ access functions. */
+
+static void
+add_other_self_distances (struct data_dependence_relation *ddr)
+{
+ lambda_vector dist_v;
+ unsigned i;
+ int index_carry = DDR_NB_LOOPS (ddr);
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ {
+ tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
+
+ if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
+ {
+ if (!evolution_function_is_univariate_p (access_fun))
+ {
+ if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
+ {
+ DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
+ return;
+ }
+
+ add_multivariate_self_dist (ddr, DR_ACCESS_FN (DDR_A (ddr), 0));
+ return;
+ }
+
+ index_carry = MIN (index_carry,
+ index_in_loop_nest (CHREC_VARIABLE (access_fun),
+ DDR_LOOP_NEST (ddr)));
+ }
+ }
+
+ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ add_outer_distances (ddr, dist_v, index_carry);
+}
+
+/* Compute the classic per loop distance vector. DDR is the data
+ dependence relation to build a vector from. Return false when fail
+ to represent the data dependence as a distance vector. */
+
+static bool
+build_classic_dist_vector (struct data_dependence_relation *ddr)
+{
+ bool init_b = false;
+ int index_carry = DDR_NB_LOOPS (ddr);
+ lambda_vector dist_v;
+
+ if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
+ return true;
+
+ if (same_access_functions (ddr))
+ {
+ /* Save the 0 vector. */
+ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ save_dist_v (ddr, dist_v);
+
+ if (DDR_NB_LOOPS (ddr) > 1)
+ add_other_self_distances (ddr);
+
+ return true;
+ }
+
+ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
+ dist_v, &init_b, &index_carry))
+ return false;
+
+ /* Save the distance vector if we initialized one. */
+ if (init_b)
+ {
+ /* Verify a basic constraint: classic distance vectors should
+ always be lexicographically positive.
+
+ Data references are collected in the order of execution of
+ the program, thus for the following loop
+
+ | for (i = 1; i < 100; i++)
+ | for (j = 1; j < 100; j++)
+ | {
+ | t = T[j+1][i-1]; // A
+ | T[j][i] = t + 2; // B
+ | }
+
+ references are collected following the direction of the wind:
+ A then B. The data dependence tests are performed also
+ following this order, such that we're looking at the distance
+ separating the elements accessed by A from the elements later
+ accessed by B. But in this example, the distance returned by
+ test_dep (A, B) is lexicographically negative (-1, 1), that
+ means that the access A occurs later than B with respect to
+ the outer loop, ie. we're actually looking upwind. In this
+ case we solve test_dep (B, A) looking downwind to the
+ lexicographically positive solution, that returns the
+ distance vector (1, -1). */
+ if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
+ {
+ lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr));
+ compute_subscript_distance (ddr);
+ build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
+ save_v, &init_b, &index_carry);
+ save_dist_v (ddr, save_v);
+
+ /* In this case there is a dependence forward for all the
+ outer loops:
+
+ | for (k = 1; k < 100; k++)
+ | for (i = 1; i < 100; i++)
+ | for (j = 1; j < 100; j++)
+ | {
+ | t = T[j+1][i-1]; // A
+ | T[j][i] = t + 2; // B
+ | }
+
+ the vectors are:
+ (0, 1, -1)
+ (1, 1, -1)
+ (1, -1, 1)
+ */
+ if (DDR_NB_LOOPS (ddr) > 1)
+ {
+ add_outer_distances (ddr, save_v, index_carry);
+ add_outer_distances (ddr, dist_v, index_carry);
+ }
+ }
+ else
+ {
+ lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+ lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
+ save_dist_v (ddr, save_v);
+
+ if (DDR_NB_LOOPS (ddr) > 1)
+ {
+ lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+
+ subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr));
+ compute_subscript_distance (ddr);
+ build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
+ opposite_v, &init_b, &index_carry);
+
+ add_outer_distances (ddr, dist_v, index_carry);
+ add_outer_distances (ddr, opposite_v, index_carry);
+ }
+ }
+ }
+ else
+ {
+ /* There is a distance of 1 on all the outer loops: Example:
+ there is a dependence of distance 1 on loop_1 for the array A.
+
+ | loop_1
+ | A[5] = ...
+ | endloop
+ */
+ add_outer_distances (ddr, dist_v,
+ lambda_vector_first_nz (dist_v,
+ DDR_NB_LOOPS (ddr), 0));
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ unsigned i;
+
+ fprintf (dump_file, "(build_classic_dist_vector\n");
+ for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
+ {
+ fprintf (dump_file, " dist_vector = (");
+ print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
+ DDR_NB_LOOPS (ddr));
+ fprintf (dump_file, " )\n");
+ }
+ fprintf (dump_file, ")\n");
+ }
+
+ return true;
+}
+
+/* Return the direction for a given distance.
+ FIXME: Computing dir this way is suboptimal, since dir can catch
+ cases that dist is unable to represent. */
+
+static inline enum data_dependence_direction
+dir_from_dist (int dist)
+{
+ if (dist > 0)
+ return dir_positive;
+ else if (dist < 0)
+ return dir_negative;
+ else
+ return dir_equal;
+}
+
+/* Compute the classic per loop direction vector. DDR is the data
+ dependence relation to build a vector from. */
+
+static void
+build_classic_dir_vector (struct data_dependence_relation *ddr)
+{
+ unsigned i, j;
+ lambda_vector dist_v;
+
+ for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
+ {
+ lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
+
+ for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
+ dir_v[j] = dir_from_dist (dist_v[j]);
+
+ save_dir_v (ddr, dir_v);
+ }
+}
+
+/* Helper function. Returns true when there is a dependence between
+ data references DRA and DRB. */
+
+static bool
+subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
+ struct data_reference *dra,
+ struct data_reference *drb)
+{
+ unsigned int i;
+ tree last_conflicts;
+ struct subscript *subscript;
+
+ for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
+ i++)
+ {
+ tree overlaps_a, overlaps_b;
+
+ analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
+ DR_ACCESS_FN (drb, i),
+ &overlaps_a, &overlaps_b,
+ &last_conflicts);
+
+ if (chrec_contains_undetermined (overlaps_a)
+ || chrec_contains_undetermined (overlaps_b))
+ {
+ finalize_ddr_dependent (ddr, chrec_dont_know);
+ dependence_stats.num_dependence_undetermined++;
+ return false;
+ }
+
+ else if (overlaps_a == chrec_known
+ || overlaps_b == chrec_known)
+ {
+ finalize_ddr_dependent (ddr, chrec_known);
+ dependence_stats.num_dependence_independent++;
+ return false;
+ }
+
+ else
+ {
+ SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
+ SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
+ SUB_LAST_CONFLICT (subscript) = last_conflicts;
+ }
+ }
+
+ return true;
+}
+
+/* Computes the conflicting iterations, and initialize DDR. */
+
+static void
+subscript_dependence_tester (struct data_dependence_relation *ddr)
+{
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(subscript_dependence_tester \n");
+
+ if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr)))
+ dependence_stats.num_dependence_dependent++;
+
+ compute_subscript_distance (ddr);
+ if (build_classic_dist_vector (ddr))
+ build_classic_dir_vector (ddr);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+}
+
+/* Returns true when all the access functions of A are affine or
+ constant. */
+
+static bool
+access_functions_are_affine_or_constant_p (struct data_reference *a)
+{
+ unsigned int i;
+ VEC(tree,heap) **fns = DR_ACCESS_FNS_ADDR (a);
+ tree t;
+
+ for (i = 0; VEC_iterate (tree, *fns, i, t); i++)
+ if (!evolution_function_is_constant_p (t)
+ && !evolution_function_is_affine_multivariate_p (t))
+ return false;
+
+ return true;
+}
+
+/* This computes the affine dependence relation between A and B.
+ CHREC_KNOWN is used for representing the independence between two
+ accesses, while CHREC_DONT_KNOW is used for representing the unknown
+ relation.
+
+ Note that it is possible to stop the computation of the dependence
+ relation the first time we detect a CHREC_KNOWN element for a given
+ subscript. */
+
+static void
+compute_affine_dependence (struct data_dependence_relation *ddr)
+{
+ struct data_reference *dra = DDR_A (ddr);
+ struct data_reference *drb = DDR_B (ddr);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "(compute_affine_dependence\n");
+ fprintf (dump_file, " (stmt_a = \n");
+ print_generic_expr (dump_file, DR_STMT (dra), 0);
+ fprintf (dump_file, ")\n (stmt_b = \n");
+ print_generic_expr (dump_file, DR_STMT (drb), 0);
+ fprintf (dump_file, ")\n");
+ }
+
+ /* Analyze only when the dependence relation is not yet known. */
+ if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+ {
+ dependence_stats.num_dependence_tests++;
+
+ if (access_functions_are_affine_or_constant_p (dra)
+ && access_functions_are_affine_or_constant_p (drb))
+ subscript_dependence_tester (ddr);
+
+ /* As a last case, if the dependence cannot be determined, or if
+ the dependence is considered too difficult to determine, answer
+ "don't know". */
+ else
+ {
+ dependence_stats.num_dependence_undetermined++;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Data ref a:\n");
+ dump_data_reference (dump_file, dra);
+ fprintf (dump_file, "Data ref b:\n");
+ dump_data_reference (dump_file, drb);
+ fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
+ }
+ finalize_ddr_dependent (ddr, chrec_dont_know);
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, ")\n");
+}
+
+/* This computes the dependence relation for the same data
+ reference into DDR. */
+
+static void
+compute_self_dependence (struct data_dependence_relation *ddr)
+{
+ unsigned int i;
+ struct subscript *subscript;
+
+ for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
+ i++)
+ {
+ /* The accessed index overlaps for each iteration. */
+ SUB_CONFLICTS_IN_A (subscript) = integer_zero_node;
+ SUB_CONFLICTS_IN_B (subscript) = integer_zero_node;
+ SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
+ }
+
+ /* The distance vector is the zero vector. */
+ save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
+ save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
+}
+
+/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
+ the data references in DATAREFS, in the LOOP_NEST. When
+ COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
+ relations. */
+
+static void
+compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
+ VEC (ddr_p, heap) **dependence_relations,
+ VEC (loop_p, heap) *loop_nest,
+ bool compute_self_and_rr)
+{
+ struct data_dependence_relation *ddr;
+ struct data_reference *a, *b;
+ unsigned int i, j;
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
+ for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++)
+ if (!DR_IS_READ (a) || !DR_IS_READ (b) || compute_self_and_rr)
+ {
+ ddr = initialize_data_dependence_relation (a, b, loop_nest);
+ VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
+ compute_affine_dependence (ddr);
+ }
+
+ if (compute_self_and_rr)
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
+ {
+ ddr = initialize_data_dependence_relation (a, a, loop_nest);
+ VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
+ compute_self_dependence (ddr);
+ }
+}
+
+/* Search the data references in LOOP, and record the information into
+ DATAREFS. Returns chrec_dont_know when failing to analyze a
+ difficult case, returns NULL_TREE otherwise.
+
+ TODO: This function should be made smarter so that it can handle address
+ arithmetic as if they were array accesses, etc. */
+
+tree
+find_data_references_in_loop (struct loop *loop,
+ VEC (data_reference_p, heap) **datarefs)
+{
+ basic_block bb, *bbs;
+ unsigned int i;
+ block_stmt_iterator bsi;
+ struct data_reference *dr;
+
+ bbs = get_loop_body (loop);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ bb = bbs[i];
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ {
+ tree stmt = bsi_stmt (bsi);
+
+ /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
+ Calls have side-effects, except those to const or pure
+ functions. */
+ if ((TREE_CODE (stmt) == CALL_EXPR
+ && !(call_expr_flags (stmt) & (ECF_CONST | ECF_PURE)))
+ || (TREE_CODE (stmt) == ASM_EXPR
+ && ASM_VOLATILE_P (stmt)))
+ goto insert_dont_know_node;
+
+ if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+ continue;
+
+ switch (TREE_CODE (stmt))
+ {
+ case MODIFY_EXPR:
+ {
+ bool one_inserted = false;
+ tree opnd0 = TREE_OPERAND (stmt, 0);
+ tree opnd1 = TREE_OPERAND (stmt, 1);
+
+ if (TREE_CODE (opnd0) == ARRAY_REF
+ || TREE_CODE (opnd0) == INDIRECT_REF
+ || TREE_CODE (opnd0) == COMPONENT_REF)
+ {
+ dr = create_data_ref (opnd0, stmt, false);
+ if (dr)
+ {
+ VEC_safe_push (data_reference_p, heap, *datarefs, dr);
+ one_inserted = true;
+ }
+ }
+
+ if (TREE_CODE (opnd1) == ARRAY_REF
+ || TREE_CODE (opnd1) == INDIRECT_REF
+ || TREE_CODE (opnd1) == COMPONENT_REF)
+ {
+ dr = create_data_ref (opnd1, stmt, true);
+ if (dr)
+ {
+ VEC_safe_push (data_reference_p, heap, *datarefs, dr);
+ one_inserted = true;
+ }
+ }
+
+ if (!one_inserted)
+ goto insert_dont_know_node;
+
+ break;
+ }
+
+ case CALL_EXPR:
+ {
+ tree args;
+ bool one_inserted = false;
+
+ for (args = TREE_OPERAND (stmt, 1); args;
+ args = TREE_CHAIN (args))
+ if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF
+ || TREE_CODE (TREE_VALUE (args)) == INDIRECT_REF
+ || TREE_CODE (TREE_VALUE (args)) == COMPONENT_REF)
+ {
+ dr = create_data_ref (TREE_VALUE (args), stmt, true);
+ if (dr)
+ {
+ VEC_safe_push (data_reference_p, heap, *datarefs, dr);
+ one_inserted = true;
+ }
+ }
+
+ if (!one_inserted)
+ goto insert_dont_know_node;
+
+ break;
+ }
+
+ default:
+ {
+ struct data_reference *res;
+
+ insert_dont_know_node:;
+ res = XNEW (struct data_reference);
+ DR_STMT (res) = NULL_TREE;
+ DR_REF (res) = NULL_TREE;
+ DR_BASE_OBJECT (res) = NULL;
+ DR_TYPE (res) = ARRAY_REF_TYPE;
+ DR_SET_ACCESS_FNS (res, NULL);
+ DR_BASE_OBJECT (res) = NULL;
+ DR_IS_READ (res) = false;
+ DR_BASE_ADDRESS (res) = NULL_TREE;
+ DR_OFFSET (res) = NULL_TREE;
+ DR_INIT (res) = NULL_TREE;
+ DR_STEP (res) = NULL_TREE;
+ DR_OFFSET_MISALIGNMENT (res) = NULL_TREE;
+ DR_MEMTAG (res) = NULL_TREE;
+ DR_PTR_INFO (res) = NULL;
+ VEC_safe_push (data_reference_p, heap, *datarefs, res);
+
+ free (bbs);
+ return chrec_dont_know;
+ }
+ }
+
+ /* When there are no defs in the loop, the loop is parallel. */
+ if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
+ loop->parallel_p = false;
+ }
+ }
+
+ free (bbs);
+
+ return NULL_TREE;
+}
+
+/* Recursive helper function. */
+
+static bool
+find_loop_nest_1 (struct loop *loop, VEC (loop_p, heap) **loop_nest)
+{
+ /* Inner loops of the nest should not contain siblings. Example:
+ when there are two consecutive loops,
+
+ | loop_0
+ | loop_1
+ | A[{0, +, 1}_1]
+ | endloop_1
+ | loop_2
+ | A[{0, +, 1}_2]
+ | endloop_2
+ | endloop_0
+
+ the dependence relation cannot be captured by the distance
+ abstraction. */
+ if (loop->next)
+ return false;
+
+ VEC_safe_push (loop_p, heap, *loop_nest, loop);
+ if (loop->inner)
+ return find_loop_nest_1 (loop->inner, loop_nest);
+ return true;
+}
+
+/* Return false when the LOOP is not well nested. Otherwise return
+ true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
+ contain the loops from the outermost to the innermost, as they will
+ appear in the classic distance vector. */
+
+static bool
+find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
+{
+ VEC_safe_push (loop_p, heap, *loop_nest, loop);
+ if (loop->inner)
+ return find_loop_nest_1 (loop->inner, loop_nest);
+ return true;
+}
+
+/* Given a loop nest LOOP, the following vectors are returned:
+ DATAREFS is initialized to all the array elements contained in this loop,
+ DEPENDENCE_RELATIONS contains the relations between the data references.
+ Compute read-read and self relations if
+ COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
+
+void
+compute_data_dependences_for_loop (struct loop *loop,
+ bool compute_self_and_read_read_dependences,
+ VEC (data_reference_p, heap) **datarefs,
+ VEC (ddr_p, heap) **dependence_relations)
+{
+ struct loop *loop_nest = loop;
+ VEC (loop_p, heap) *vloops = VEC_alloc (loop_p, heap, 3);
+
+ memset (&dependence_stats, 0, sizeof (dependence_stats));
+
+ /* If the loop nest is not well formed, or one of the data references
+ is not computable, give up without spending time to compute other
+ dependences. */
+ if (!loop_nest
+ || !find_loop_nest (loop_nest, &vloops)
+ || find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
+ {
+ struct data_dependence_relation *ddr;
+
+ /* Insert a single relation into dependence_relations:
+ chrec_dont_know. */
+ ddr = initialize_data_dependence_relation (NULL, NULL, vloops);
+ VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
+ }
+ else
+ compute_all_dependences (*datarefs, dependence_relations, vloops,
+ compute_self_and_read_read_dependences);
+
+ if (dump_file && (dump_flags & TDF_STATS))
+ {
+ fprintf (dump_file, "Dependence tester statistics:\n");
+
+ fprintf (dump_file, "Number of dependence tests: %d\n",
+ dependence_stats.num_dependence_tests);
+ fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
+ dependence_stats.num_dependence_dependent);
+ fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
+ dependence_stats.num_dependence_independent);
+ fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
+ dependence_stats.num_dependence_undetermined);
+
+ fprintf (dump_file, "Number of subscript tests: %d\n",
+ dependence_stats.num_subscript_tests);
+ fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
+ dependence_stats.num_subscript_undetermined);
+ fprintf (dump_file, "Number of same subscript function: %d\n",
+ dependence_stats.num_same_subscript_function);
+
+ fprintf (dump_file, "Number of ziv tests: %d\n",
+ dependence_stats.num_ziv);
+ fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
+ dependence_stats.num_ziv_dependent);
+ fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
+ dependence_stats.num_ziv_independent);
+ fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
+ dependence_stats.num_ziv_unimplemented);
+
+ fprintf (dump_file, "Number of siv tests: %d\n",
+ dependence_stats.num_siv);
+ fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
+ dependence_stats.num_siv_dependent);
+ fprintf (dump_file, "Number of siv tests returning independent: %d\n",
+ dependence_stats.num_siv_independent);
+ fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
+ dependence_stats.num_siv_unimplemented);
+
+ fprintf (dump_file, "Number of miv tests: %d\n",
+ dependence_stats.num_miv);
+ fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
+ dependence_stats.num_miv_dependent);
+ fprintf (dump_file, "Number of miv tests returning independent: %d\n",
+ dependence_stats.num_miv_independent);
+ fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
+ dependence_stats.num_miv_unimplemented);
+ }
+}
+
+/* Entry point (for testing only). Analyze all the data references
+ and the dependence relations.
+
+ The data references are computed first.
+
+ A relation on these nodes is represented by a complete graph. Some
+ of the relations could be of no interest, thus the relations can be
+ computed on demand.
+
+ In the following function we compute all the relations. This is
+ just a first implementation that is here for:
+ - for showing how to ask for the dependence relations,
+ - for the debugging the whole dependence graph,
+ - for the dejagnu testcases and maintenance.
+
+ It is possible to ask only for a part of the graph, avoiding to
+ compute the whole dependence graph. The computed dependences are
+ stored in a knowledge base (KB) such that later queries don't
+ recompute the same information. The implementation of this KB is
+ transparent to the optimizer, and thus the KB can be changed with a
+ more efficient implementation, or the KB could be disabled. */
+#if 0
+static void
+analyze_all_data_dependences (struct loops *loops)
+{
+ unsigned int i;
+ int nb_data_refs = 10;
+ VEC (data_reference_p, heap) *datarefs =
+ VEC_alloc (data_reference_p, heap, nb_data_refs);
+ VEC (ddr_p, heap) *dependence_relations =
+ VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs);
+
+ /* Compute DDs on the whole function. */
+ compute_data_dependences_for_loop (loops->parray[0], false,
+ &datarefs, &dependence_relations);
+
+ if (dump_file)
+ {
+ dump_data_dependence_relations (dump_file, dependence_relations);
+ fprintf (dump_file, "\n\n");
+
+ if (dump_flags & TDF_DETAILS)
+ dump_dist_dir_vectors (dump_file, dependence_relations);
+
+ if (dump_flags & TDF_STATS)
+ {
+ unsigned nb_top_relations = 0;
+ unsigned nb_bot_relations = 0;
+ unsigned nb_basename_differ = 0;
+ unsigned nb_chrec_relations = 0;
+ struct data_dependence_relation *ddr;
+
+ for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
+ {
+ if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
+ nb_top_relations++;
+
+ else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ {
+ struct data_reference *a = DDR_A (ddr);
+ struct data_reference *b = DDR_B (ddr);
+ bool differ_p;
+
+ if ((DR_BASE_OBJECT (a) && DR_BASE_OBJECT (b)
+ && DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
+ || (base_object_differ_p (a, b, &differ_p)
+ && differ_p))
+ nb_basename_differ++;
+ else
+ nb_bot_relations++;
+ }
+
+ else
+ nb_chrec_relations++;
+ }
+
+ gather_stats_on_scev_database ();
+ }
+ }
+
+ free_dependence_relations (dependence_relations);
+ free_data_refs (datarefs);
+}
+#endif
+
+/* Free the memory used by a data dependence relation DDR. */
+
+void
+free_dependence_relation (struct data_dependence_relation *ddr)
+{
+ if (ddr == NULL)
+ return;
+
+ if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_SUBSCRIPTS (ddr))
+ VEC_free (subscript_p, heap, DDR_SUBSCRIPTS (ddr));
+
+ free (ddr);
+}
+
+/* Free the memory used by the data dependence relations from
+ DEPENDENCE_RELATIONS. */
+
+void
+free_dependence_relations (VEC (ddr_p, heap) *dependence_relations)
+{
+ unsigned int i;
+ struct data_dependence_relation *ddr;
+ VEC (loop_p, heap) *loop_nest = NULL;
+
+ for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
+ {
+ if (ddr == NULL)
+ continue;
+ if (loop_nest == NULL)
+ loop_nest = DDR_LOOP_NEST (ddr);
+ else
+ gcc_assert (DDR_LOOP_NEST (ddr) == NULL
+ || DDR_LOOP_NEST (ddr) == loop_nest);
+ free_dependence_relation (ddr);
+ }
+
+ if (loop_nest)
+ VEC_free (loop_p, heap, loop_nest);
+ VEC_free (ddr_p, heap, dependence_relations);
+}
+
+/* Free the memory used by the data references from DATAREFS. */
+
+void
+free_data_refs (VEC (data_reference_p, heap) *datarefs)
+{
+ unsigned int i;
+ struct data_reference *dr;
+
+ for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
+ free_data_ref (dr);
+ VEC_free (data_reference_p, heap, datarefs);
+}
+