aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-chrec.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-chrec.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-chrec.c1397
1 files changed, 1397 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-chrec.c b/gcc-4.2.1-5666.3/gcc/tree-chrec.c
new file mode 100644
index 000000000..a74a49c39
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-chrec.c
@@ -0,0 +1,1397 @@
+/* Chains of recurrences.
+ Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <pop@cri.ensmp.fr>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+/* This file implements operations on chains of recurrences. Chains
+ of recurrences are used for modeling evolution functions of scalar
+ variables.
+*/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "real.h"
+#include "diagnostic.h"
+#include "cfgloop.h"
+#include "tree-flow.h"
+#include "tree-chrec.h"
+#include "tree-pass.h"
+#include "params.h"
+#include "tree-scalar-evolution.h"
+
+
+
+/* Extended folder for chrecs. */
+
+/* Determines whether CST is not a constant evolution. */
+
+static inline bool
+is_not_constant_evolution (tree cst)
+{
+ return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
+}
+
+/* Fold CODE for a polynomial function and a constant. */
+
+static inline tree
+chrec_fold_poly_cst (enum tree_code code,
+ tree type,
+ tree poly,
+ tree cst)
+{
+ gcc_assert (poly);
+ gcc_assert (cst);
+ gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
+ gcc_assert (!is_not_constant_evolution (cst));
+ gcc_assert (type == chrec_type (poly));
+
+ switch (code)
+ {
+ case PLUS_EXPR:
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly),
+ chrec_fold_plus (type, CHREC_LEFT (poly), cst),
+ CHREC_RIGHT (poly));
+
+ case MINUS_EXPR:
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly),
+ chrec_fold_minus (type, CHREC_LEFT (poly), cst),
+ CHREC_RIGHT (poly));
+
+ case MULT_EXPR:
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly),
+ chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
+ chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
+
+ default:
+ return chrec_dont_know;
+ }
+}
+
+/* Fold the addition of two polynomial functions. */
+
+static inline tree
+chrec_fold_plus_poly_poly (enum tree_code code,
+ tree type,
+ tree poly0,
+ tree poly1)
+{
+ tree left, right;
+
+ gcc_assert (poly0);
+ gcc_assert (poly1);
+ gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
+ gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
+ gcc_assert (chrec_type (poly0) == chrec_type (poly1));
+ gcc_assert (type == chrec_type (poly0));
+
+ /*
+ {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
+ {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
+ {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
+ if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
+ {
+ if (code == PLUS_EXPR)
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly1),
+ chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
+ CHREC_RIGHT (poly1));
+ else
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly1),
+ chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
+ chrec_fold_multiply (type, CHREC_RIGHT (poly1),
+ SCALAR_FLOAT_TYPE_P (type)
+ ? build_real (type, dconstm1)
+ : build_int_cst_type (type, -1)));
+ }
+
+ if (CHREC_VARIABLE (poly0) > CHREC_VARIABLE (poly1))
+ {
+ if (code == PLUS_EXPR)
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly0),
+ chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
+ CHREC_RIGHT (poly0));
+ else
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly0),
+ chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
+ CHREC_RIGHT (poly0));
+ }
+
+ if (code == PLUS_EXPR)
+ {
+ left = chrec_fold_plus
+ (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
+ right = chrec_fold_plus
+ (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
+ }
+ else
+ {
+ left = chrec_fold_minus
+ (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
+ right = chrec_fold_minus
+ (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
+ }
+
+ if (chrec_zerop (right))
+ return left;
+ else
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly0), left, right);
+}
+
+
+
+/* Fold the multiplication of two polynomial functions. */
+
+static inline tree
+chrec_fold_multiply_poly_poly (tree type,
+ tree poly0,
+ tree poly1)
+{
+ tree t0, t1, t2;
+ int var;
+
+ gcc_assert (poly0);
+ gcc_assert (poly1);
+ gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
+ gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
+ gcc_assert (chrec_type (poly0) == chrec_type (poly1));
+ gcc_assert (type == chrec_type (poly0));
+
+ /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
+ {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
+ {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
+ if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
+ /* poly0 is a constant wrt. poly1. */
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly1),
+ chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
+ CHREC_RIGHT (poly1));
+
+ if (CHREC_VARIABLE (poly1) < CHREC_VARIABLE (poly0))
+ /* poly1 is a constant wrt. poly0. */
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (poly0),
+ chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
+ CHREC_RIGHT (poly0));
+
+ /* poly0 and poly1 are two polynomials in the same variable,
+ {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
+
+ /* "a*c". */
+ t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
+
+ /* "a*d + b*c + b*d". */
+ t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
+ t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
+ CHREC_RIGHT (poly0),
+ CHREC_LEFT (poly1)));
+ t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
+ CHREC_RIGHT (poly0),
+ CHREC_RIGHT (poly1)));
+ /* "2*b*d". */
+ t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
+ t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
+ ? build_real (type, dconst2)
+ : build_int_cst (type, 2), t2);
+
+ var = CHREC_VARIABLE (poly0);
+ return build_polynomial_chrec (var, t0,
+ build_polynomial_chrec (var, t1, t2));
+}
+
+/* When the operands are automatically_generated_chrec_p, the fold has
+ to respect the semantics of the operands. */
+
+static inline tree
+chrec_fold_automatically_generated_operands (tree op0,
+ tree op1)
+{
+ if (op0 == chrec_dont_know
+ || op1 == chrec_dont_know)
+ return chrec_dont_know;
+
+ if (op0 == chrec_known
+ || op1 == chrec_known)
+ return chrec_known;
+
+ if (op0 == chrec_not_analyzed_yet
+ || op1 == chrec_not_analyzed_yet)
+ return chrec_not_analyzed_yet;
+
+ /* The default case produces a safe result. */
+ return chrec_dont_know;
+}
+
+/* Fold the addition of two chrecs. */
+
+static tree
+chrec_fold_plus_1 (enum tree_code code, tree type,
+ tree op0, tree op1)
+{
+ if (automatically_generated_chrec_p (op0)
+ || automatically_generated_chrec_p (op1))
+ return chrec_fold_automatically_generated_operands (op0, op1);
+
+ switch (TREE_CODE (op0))
+ {
+ case POLYNOMIAL_CHREC:
+ switch (TREE_CODE (op1))
+ {
+ case POLYNOMIAL_CHREC:
+ return chrec_fold_plus_poly_poly (code, type, op0, op1);
+
+ default:
+ if (code == PLUS_EXPR)
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (op0),
+ chrec_fold_plus (type, CHREC_LEFT (op0), op1),
+ CHREC_RIGHT (op0));
+ else
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (op0),
+ chrec_fold_minus (type, CHREC_LEFT (op0), op1),
+ CHREC_RIGHT (op0));
+ }
+
+ default:
+ switch (TREE_CODE (op1))
+ {
+ case POLYNOMIAL_CHREC:
+ if (code == PLUS_EXPR)
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (op1),
+ chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
+ CHREC_RIGHT (op1));
+ else
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (op1),
+ chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
+ chrec_fold_multiply (type, CHREC_RIGHT (op1),
+ SCALAR_FLOAT_TYPE_P (type)
+ ? build_real (type, dconstm1)
+ : build_int_cst_type (type, -1)));
+
+ default:
+ {
+ int size = 0;
+ if ((tree_contains_chrecs (op0, &size)
+ || tree_contains_chrecs (op1, &size))
+ && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
+ return build2 (code, type, op0, op1);
+ else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
+ return fold_build2 (code, type,
+ fold_convert (type, op0),
+ fold_convert (type, op1));
+ else
+ return chrec_dont_know;
+ }
+ }
+ }
+}
+
+/* Fold the addition of two chrecs. */
+
+tree
+chrec_fold_plus (tree type,
+ tree op0,
+ tree op1)
+{
+ if (automatically_generated_chrec_p (op0)
+ || automatically_generated_chrec_p (op1))
+ return chrec_fold_automatically_generated_operands (op0, op1);
+
+ if (integer_zerop (op0))
+ return op1;
+ if (integer_zerop (op1))
+ return op0;
+
+ return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
+}
+
+/* Fold the subtraction of two chrecs. */
+
+tree
+chrec_fold_minus (tree type,
+ tree op0,
+ tree op1)
+{
+ if (automatically_generated_chrec_p (op0)
+ || automatically_generated_chrec_p (op1))
+ return chrec_fold_automatically_generated_operands (op0, op1);
+
+ if (integer_zerop (op1))
+ return op0;
+
+ return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
+}
+
+/* Fold the multiplication of two chrecs. */
+
+tree
+chrec_fold_multiply (tree type,
+ tree op0,
+ tree op1)
+{
+ if (automatically_generated_chrec_p (op0)
+ || automatically_generated_chrec_p (op1))
+ return chrec_fold_automatically_generated_operands (op0, op1);
+
+ switch (TREE_CODE (op0))
+ {
+ case POLYNOMIAL_CHREC:
+ switch (TREE_CODE (op1))
+ {
+ case POLYNOMIAL_CHREC:
+ return chrec_fold_multiply_poly_poly (type, op0, op1);
+
+ default:
+ if (integer_onep (op1))
+ return op0;
+ if (integer_zerop (op1))
+ return build_int_cst (type, 0);
+
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (op0),
+ chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
+ chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
+ }
+
+ default:
+ if (integer_onep (op0))
+ return op1;
+
+ if (integer_zerop (op0))
+ return build_int_cst (type, 0);
+
+ switch (TREE_CODE (op1))
+ {
+ case POLYNOMIAL_CHREC:
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (op1),
+ chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
+ chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
+
+ default:
+ if (integer_onep (op1))
+ return op0;
+ if (integer_zerop (op1))
+ return build_int_cst (type, 0);
+ return fold_build2 (MULT_EXPR, type, op0, op1);
+ }
+ }
+}
+
+
+
+/* Operations. */
+
+/* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
+ calculation overflows, otherwise return C(n,k) with type TYPE. */
+
+static tree
+tree_fold_binomial (tree type, tree n, unsigned int k)
+{
+ unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
+ HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
+ unsigned int i;
+ tree res;
+
+ /* Handle the most frequent cases. */
+ if (k == 0)
+ return build_int_cst (type, 1);
+ if (k == 1)
+ return fold_convert (type, n);
+
+ /* Check that k <= n. */
+ if (TREE_INT_CST_HIGH (n) == 0
+ && TREE_INT_CST_LOW (n) < k)
+ return NULL_TREE;
+
+ /* Numerator = n. */
+ lnum = TREE_INT_CST_LOW (n);
+ hnum = TREE_INT_CST_HIGH (n);
+
+ /* Denominator = 2. */
+ ldenom = 2;
+ hdenom = 0;
+
+ /* Index = Numerator-1. */
+ if (lnum == 0)
+ {
+ hidx = hnum - 1;
+ lidx = ~ (unsigned HOST_WIDE_INT) 0;
+ }
+ else
+ {
+ hidx = hnum;
+ lidx = lnum - 1;
+ }
+
+ /* Numerator = Numerator*Index = n*(n-1). */
+ if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
+ return NULL_TREE;
+
+ for (i = 3; i <= k; i++)
+ {
+ /* Index--. */
+ if (lidx == 0)
+ {
+ hidx--;
+ lidx = ~ (unsigned HOST_WIDE_INT) 0;
+ }
+ else
+ lidx--;
+
+ /* Numerator *= Index. */
+ if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
+ return NULL_TREE;
+
+ /* Denominator *= i. */
+ mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
+ }
+
+ /* Result = Numerator / Denominator. */
+ div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
+ &lres, &hres, &ldum, &hdum);
+
+ res = build_int_cst_wide (type, lres, hres);
+ return int_fits_type_p (res, type) ? res : NULL_TREE;
+}
+
+/* Helper function. Use the Newton's interpolating formula for
+ evaluating the value of the evolution function. */
+
+static tree
+chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
+{
+ tree arg0, arg1, binomial_n_k;
+ tree type = TREE_TYPE (chrec);
+
+ while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
+ && CHREC_VARIABLE (chrec) > var)
+ chrec = CHREC_LEFT (chrec);
+
+ if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
+ && CHREC_VARIABLE (chrec) == var)
+ {
+ arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
+ if (arg0 == chrec_dont_know)
+ return chrec_dont_know;
+ binomial_n_k = tree_fold_binomial (type, n, k);
+ if (!binomial_n_k)
+ return chrec_dont_know;
+ arg1 = fold_build2 (MULT_EXPR, type,
+ CHREC_LEFT (chrec), binomial_n_k);
+ return chrec_fold_plus (type, arg0, arg1);
+ }
+
+ binomial_n_k = tree_fold_binomial (type, n, k);
+ if (!binomial_n_k)
+ return chrec_dont_know;
+
+ return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
+}
+
+/* Evaluates "CHREC (X)" when the varying variable is VAR.
+ Example: Given the following parameters,
+
+ var = 1
+ chrec = {3, +, 4}_1
+ x = 10
+
+ The result is given by the Newton's interpolating formula:
+ 3 * \binom{10}{0} + 4 * \binom{10}{1}.
+*/
+
+tree
+chrec_apply (unsigned var,
+ tree chrec,
+ tree x)
+{
+ tree type = chrec_type (chrec);
+ tree res = chrec_dont_know;
+
+ if (automatically_generated_chrec_p (chrec)
+ || automatically_generated_chrec_p (x)
+
+ /* When the symbols are defined in an outer loop, it is possible
+ to symbolically compute the apply, since the symbols are
+ constants with respect to the varying loop. */
+ || chrec_contains_symbols_defined_in_loop (chrec, var))
+ return chrec_dont_know;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "(chrec_apply \n");
+
+ if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
+ x = build_real_from_int_cst (type, x);
+
+ if (evolution_function_is_affine_p (chrec))
+ {
+ /* "{a, +, b} (x)" -> "a + b*x". */
+ x = chrec_convert (type, x, NULL_TREE);
+ res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
+ if (!integer_zerop (CHREC_LEFT (chrec)))
+ res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
+ }
+
+ else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+ res = chrec;
+
+ else if (TREE_CODE (x) == INTEGER_CST
+ && tree_int_cst_sgn (x) == 1)
+ /* testsuite/.../ssa-chrec-38.c. */
+ res = chrec_evaluate (var, chrec, x, 0);
+ else
+ res = chrec_dont_know;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " (varying_loop = %d\n", var);
+ fprintf (dump_file, ")\n (chrec = ");
+ print_generic_expr (dump_file, chrec, 0);
+ fprintf (dump_file, ")\n (x = ");
+ print_generic_expr (dump_file, x, 0);
+ fprintf (dump_file, ")\n (res = ");
+ print_generic_expr (dump_file, res, 0);
+ fprintf (dump_file, "))\n");
+ }
+
+ return res;
+}
+
+/* Replaces the initial condition in CHREC with INIT_COND. */
+
+tree
+chrec_replace_initial_condition (tree chrec,
+ tree init_cond)
+{
+ if (automatically_generated_chrec_p (chrec))
+ return chrec;
+
+ gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
+
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ return build_polynomial_chrec
+ (CHREC_VARIABLE (chrec),
+ chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
+ CHREC_RIGHT (chrec));
+
+ default:
+ return init_cond;
+ }
+}
+
+/* Returns the initial condition of a given CHREC. */
+
+tree
+initial_condition (tree chrec)
+{
+ if (automatically_generated_chrec_p (chrec))
+ return chrec;
+
+ if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
+ return initial_condition (CHREC_LEFT (chrec));
+ else
+ return chrec;
+}
+
+/* Returns a univariate function that represents the evolution in
+ LOOP_NUM. Mask the evolution of any other loop. */
+
+tree
+hide_evolution_in_other_loops_than_loop (tree chrec,
+ unsigned loop_num)
+{
+ if (automatically_generated_chrec_p (chrec))
+ return chrec;
+
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ if (CHREC_VARIABLE (chrec) == loop_num)
+ return build_polynomial_chrec
+ (loop_num,
+ hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
+ loop_num),
+ CHREC_RIGHT (chrec));
+
+ else if (CHREC_VARIABLE (chrec) < loop_num)
+ /* There is no evolution in this loop. */
+ return initial_condition (chrec);
+
+ else
+ return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
+ loop_num);
+
+ default:
+ return chrec;
+ }
+}
+
+/* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
+ true, otherwise returns the initial condition in LOOP_NUM. */
+
+static tree
+chrec_component_in_loop_num (tree chrec,
+ unsigned loop_num,
+ bool right)
+{
+ tree component;
+
+ if (automatically_generated_chrec_p (chrec))
+ return chrec;
+
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ if (CHREC_VARIABLE (chrec) == loop_num)
+ {
+ if (right)
+ component = CHREC_RIGHT (chrec);
+ else
+ component = CHREC_LEFT (chrec);
+
+ if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
+ || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
+ return component;
+
+ else
+ return build_polynomial_chrec
+ (loop_num,
+ chrec_component_in_loop_num (CHREC_LEFT (chrec),
+ loop_num,
+ right),
+ component);
+ }
+
+ else if (CHREC_VARIABLE (chrec) < loop_num)
+ /* There is no evolution part in this loop. */
+ return NULL_TREE;
+
+ else
+ return chrec_component_in_loop_num (CHREC_LEFT (chrec),
+ loop_num,
+ right);
+
+ default:
+ if (right)
+ return NULL_TREE;
+ else
+ return chrec;
+ }
+}
+
+/* Returns the evolution part in LOOP_NUM. Example: the call
+ evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
+ {1, +, 2}_1 */
+
+tree
+evolution_part_in_loop_num (tree chrec,
+ unsigned loop_num)
+{
+ return chrec_component_in_loop_num (chrec, loop_num, true);
+}
+
+/* Returns the initial condition in LOOP_NUM. Example: the call
+ initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
+ {0, +, 1}_1 */
+
+tree
+initial_condition_in_loop_num (tree chrec,
+ unsigned loop_num)
+{
+ return chrec_component_in_loop_num (chrec, loop_num, false);
+}
+
+/* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
+ This function is essentially used for setting the evolution to
+ chrec_dont_know, for example after having determined that it is
+ impossible to say how many times a loop will execute. */
+
+tree
+reset_evolution_in_loop (unsigned loop_num,
+ tree chrec,
+ tree new_evol)
+{
+ gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
+
+ if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
+ && CHREC_VARIABLE (chrec) > loop_num)
+ {
+ tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
+ new_evol);
+ tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
+ new_evol);
+ return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
+ build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
+ left, right);
+ }
+
+ while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
+ && CHREC_VARIABLE (chrec) == loop_num)
+ chrec = CHREC_LEFT (chrec);
+
+ return build_polynomial_chrec (loop_num, chrec, new_evol);
+}
+
+/* Merges two evolution functions that were found by following two
+ alternate paths of a conditional expression. */
+
+tree
+chrec_merge (tree chrec1,
+ tree chrec2)
+{
+ if (chrec1 == chrec_dont_know
+ || chrec2 == chrec_dont_know)
+ return chrec_dont_know;
+
+ if (chrec1 == chrec_known
+ || chrec2 == chrec_known)
+ return chrec_known;
+
+ if (chrec1 == chrec_not_analyzed_yet)
+ return chrec2;
+ if (chrec2 == chrec_not_analyzed_yet)
+ return chrec1;
+
+ if (eq_evolutions_p (chrec1, chrec2))
+ return chrec1;
+
+ return chrec_dont_know;
+}
+
+
+
+/* Observers. */
+
+/* Helper function for is_multivariate_chrec. */
+
+static bool
+is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
+{
+ if (chrec == NULL_TREE)
+ return false;
+
+ if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
+ {
+ if (CHREC_VARIABLE (chrec) != rec_var)
+ return true;
+ else
+ return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
+ || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
+ }
+ else
+ return false;
+}
+
+/* Determine whether the given chrec is multivariate or not. */
+
+bool
+is_multivariate_chrec (tree chrec)
+{
+ if (chrec == NULL_TREE)
+ return false;
+
+ if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
+ return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
+ CHREC_VARIABLE (chrec))
+ || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
+ CHREC_VARIABLE (chrec)));
+ else
+ return false;
+}
+
+/* Determines whether the chrec contains symbolic names or not. */
+
+bool
+chrec_contains_symbols (tree chrec)
+{
+ if (chrec == NULL_TREE)
+ return false;
+
+ if (TREE_CODE (chrec) == SSA_NAME
+ || TREE_CODE (chrec) == VAR_DECL
+ || TREE_CODE (chrec) == PARM_DECL
+ || TREE_CODE (chrec) == FUNCTION_DECL
+ || TREE_CODE (chrec) == LABEL_DECL
+ || TREE_CODE (chrec) == RESULT_DECL
+ || TREE_CODE (chrec) == FIELD_DECL)
+ return true;
+
+ switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
+ {
+ case 3:
+ if (chrec_contains_symbols (TREE_OPERAND (chrec, 2)))
+ return true;
+
+ case 2:
+ if (chrec_contains_symbols (TREE_OPERAND (chrec, 1)))
+ return true;
+
+ case 1:
+ if (chrec_contains_symbols (TREE_OPERAND (chrec, 0)))
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Determines whether the chrec contains undetermined coefficients. */
+
+bool
+chrec_contains_undetermined (tree chrec)
+{
+ if (chrec == chrec_dont_know
+ || chrec == chrec_not_analyzed_yet
+ || chrec == NULL_TREE)
+ return true;
+
+ switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
+ {
+ case 3:
+ if (chrec_contains_undetermined (TREE_OPERAND (chrec, 2)))
+ return true;
+
+ case 2:
+ if (chrec_contains_undetermined (TREE_OPERAND (chrec, 1)))
+ return true;
+
+ case 1:
+ if (chrec_contains_undetermined (TREE_OPERAND (chrec, 0)))
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Determines whether the tree EXPR contains chrecs, and increment
+ SIZE if it is not a NULL pointer by an estimation of the depth of
+ the tree. */
+
+bool
+tree_contains_chrecs (tree expr, int *size)
+{
+ if (expr == NULL_TREE)
+ return false;
+
+ if (size)
+ (*size)++;
+
+ if (tree_is_chrec (expr))
+ return true;
+
+ switch (TREE_CODE_LENGTH (TREE_CODE (expr)))
+ {
+ case 3:
+ if (tree_contains_chrecs (TREE_OPERAND (expr, 2), size))
+ return true;
+
+ case 2:
+ if (tree_contains_chrecs (TREE_OPERAND (expr, 1), size))
+ return true;
+
+ case 1:
+ if (tree_contains_chrecs (TREE_OPERAND (expr, 0), size))
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Recursive helper function. */
+
+static bool
+evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
+{
+ if (evolution_function_is_constant_p (chrec))
+ return true;
+
+ if (TREE_CODE (chrec) == SSA_NAME
+ && expr_invariant_in_loop_p (current_loops->parray[loopnum],
+ chrec))
+ return true;
+
+ if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
+ {
+ if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
+ || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
+ loopnum)
+ || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
+ loopnum))
+ return false;
+ return true;
+ }
+
+ switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
+ {
+ case 2:
+ if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
+ loopnum))
+ return false;
+
+ case 1:
+ if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
+ loopnum))
+ return false;
+ return true;
+
+ default:
+ return false;
+ }
+
+ return false;
+}
+
+/* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
+
+bool
+evolution_function_is_invariant_p (tree chrec, int loopnum)
+{
+ if (evolution_function_is_constant_p (chrec))
+ return true;
+
+ if (current_loops != NULL)
+ return evolution_function_is_invariant_rec_p (chrec, loopnum);
+
+ return false;
+}
+
+/* Determine whether the given tree is an affine multivariate
+ evolution. */
+
+bool
+evolution_function_is_affine_multivariate_p (tree chrec)
+{
+ if (chrec == NULL_TREE)
+ return false;
+
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ if (evolution_function_is_constant_p (CHREC_LEFT (chrec)))
+ {
+ if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
+ return true;
+ else
+ {
+ if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
+ && CHREC_VARIABLE (CHREC_RIGHT (chrec))
+ != CHREC_VARIABLE (chrec)
+ && evolution_function_is_affine_multivariate_p
+ (CHREC_RIGHT (chrec)))
+ return true;
+ else
+ return false;
+ }
+ }
+ else
+ {
+ if (evolution_function_is_constant_p (CHREC_RIGHT (chrec))
+ && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
+ && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
+ && evolution_function_is_affine_multivariate_p
+ (CHREC_LEFT (chrec)))
+ return true;
+ else
+ return false;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/* Determine whether the given tree is a function in zero or one
+ variables. */
+
+bool
+evolution_function_is_univariate_p (tree chrec)
+{
+ if (chrec == NULL_TREE)
+ return true;
+
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ switch (TREE_CODE (CHREC_LEFT (chrec)))
+ {
+ case POLYNOMIAL_CHREC:
+ if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
+ return false;
+ if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
+ return false;
+ break;
+
+ default:
+ break;
+ }
+
+ switch (TREE_CODE (CHREC_RIGHT (chrec)))
+ {
+ case POLYNOMIAL_CHREC:
+ if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
+ return false;
+ if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
+ return false;
+ break;
+
+ default:
+ break;
+ }
+
+ default:
+ return true;
+ }
+}
+
+/* Returns the number of variables of CHREC. Example: the call
+ nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
+
+unsigned
+nb_vars_in_chrec (tree chrec)
+{
+ if (chrec == NULL_TREE)
+ return 0;
+
+ switch (TREE_CODE (chrec))
+ {
+ case POLYNOMIAL_CHREC:
+ return 1 + nb_vars_in_chrec
+ (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
+
+ default:
+ return 0;
+ }
+}
+
+/* Returns true if TYPE is a type in that we cannot directly perform
+ arithmetics, even though it is a scalar type. */
+
+static bool
+avoid_arithmetics_in_type_p (tree type)
+{
+ /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
+ in the subtype, but a base type must be used, and the result then can
+ be casted to the subtype. */
+ if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
+ return true;
+
+ return false;
+}
+
+static tree chrec_convert_1 (tree, tree, tree, bool);
+
+/* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
+ the scev corresponds to. AT_STMT is the statement at that the scev is
+ evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
+ the rules for overflow of the given language apply (e.g., that signed
+ arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
+ tests, but also to enforce that the result follows them. Returns true if the
+ conversion succeeded, false otherwise. */
+
+bool
+convert_affine_scev (struct loop *loop, tree type,
+ tree *base, tree *step, tree at_stmt,
+ bool use_overflow_semantics)
+{
+ tree ct = TREE_TYPE (*step);
+ bool enforce_overflow_semantics;
+ bool must_check_src_overflow, must_check_rslt_overflow;
+ tree new_base, new_step;
+
+ /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
+ if (avoid_arithmetics_in_type_p (type))
+ return false;
+
+ /* In general,
+ (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
+ but we must check some assumptions.
+
+ 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
+ of CT is smaller than the precision of TYPE. For example, when we
+ cast unsigned char [254, +, 1] to unsigned, the values on left side
+ are 254, 255, 0, 1, ..., but those on the right side are
+ 254, 255, 256, 257, ...
+ 2) In case that we must also preserve the fact that signed ivs do not
+ overflow, we must additionally check that the new iv does not wrap.
+ For example, unsigned char [125, +, 1] casted to signed char could
+ become a wrapping variable with values 125, 126, 127, -128, -127, ...,
+ which would confuse optimizers that assume that this does not
+ happen. */
+ must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
+
+ enforce_overflow_semantics = (use_overflow_semantics
+ && nowrap_type_p (type));
+ if (enforce_overflow_semantics)
+ {
+ /* We can avoid checking whether the result overflows in the following
+ cases:
+
+ -- must_check_src_overflow is true, and the range of TYPE is superset
+ of the range of CT -- i.e., in all cases except if CT signed and
+ TYPE unsigned.
+ -- both CT and TYPE have the same precision and signedness, and we
+ verify instead that the source does not overflow (this may be
+ easier than verifying it for the result, as we may use the
+ information about the semantics of overflow in CT). */
+ if (must_check_src_overflow)
+ {
+ if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
+ must_check_rslt_overflow = true;
+ else
+ must_check_rslt_overflow = false;
+ }
+ else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
+ && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
+ {
+ must_check_rslt_overflow = false;
+ must_check_src_overflow = true;
+ }
+ else
+ must_check_rslt_overflow = true;
+ }
+ else
+ must_check_rslt_overflow = false;
+
+ if (must_check_src_overflow
+ && scev_probably_wraps_p (*base, *step, at_stmt, loop,
+ use_overflow_semantics))
+ return false;
+
+ new_base = chrec_convert_1 (type, *base, at_stmt,
+ use_overflow_semantics);
+ /* The step must be sign extended, regardless of the signedness
+ of CT and TYPE. This only needs to be handled specially when
+ CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
+ (with values 100, 99, 98, ...) from becoming signed or unsigned
+ [100, +, 255] with values 100, 355, ...; the sign-extension is
+ performed by default when CT is signed. */
+ new_step = *step;
+ if (TYPE_PRECISION (type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
+ new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
+ use_overflow_semantics);
+ new_step = chrec_convert_1 (type, new_step, at_stmt, use_overflow_semantics);
+
+ if (automatically_generated_chrec_p (new_base)
+ || automatically_generated_chrec_p (new_step))
+ return false;
+
+ if (must_check_rslt_overflow
+ /* Note that in this case we cannot use the fact that signed variables
+ do not overflow, as this is what we are verifying for the new iv. */
+ && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
+ return false;
+
+ *base = new_base;
+ *step = new_step;
+ return true;
+}
+
+
+/* Convert CHREC to TYPE. When the analyzer knows the context in
+ which the CHREC is built, it sets AT_STMT to the statement that
+ contains the definition of the analyzed variable, otherwise the
+ conversion is less accurate: the information is used for
+ determining a more accurate estimation of the number of iterations.
+ By default AT_STMT could be safely set to NULL_TREE.
+
+ The following rule is always true: TREE_TYPE (chrec) ==
+ TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
+ An example of what could happen when adding two chrecs and the type
+ of the CHREC_RIGHT is different than CHREC_LEFT is:
+
+ {(uint) 0, +, (uchar) 10} +
+ {(uint) 0, +, (uchar) 250}
+
+ that would produce a wrong result if CHREC_RIGHT is not (uint):
+
+ {(uint) 0, +, (uchar) 4}
+
+ instead of
+
+ {(uint) 0, +, (uint) 260}
+*/
+
+tree
+chrec_convert (tree type, tree chrec, tree at_stmt)
+{
+ return chrec_convert_1 (type, chrec, at_stmt, true);
+}
+
+/* Convert CHREC to TYPE. When the analyzer knows the context in
+ which the CHREC is built, it sets AT_STMT to the statement that
+ contains the definition of the analyzed variable, otherwise the
+ conversion is less accurate: the information is used for
+ determining a more accurate estimation of the number of iterations.
+ By default AT_STMT could be safely set to NULL_TREE.
+
+ USE_OVERFLOW_SEMANTICS is true if this function should assume that
+ the rules for overflow of the given language apply (e.g., that signed
+ arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
+ tests, but also to enforce that the result follows them. */
+
+static tree
+chrec_convert_1 (tree type, tree chrec, tree at_stmt,
+ bool use_overflow_semantics)
+{
+ tree ct, res;
+ tree base, step;
+ struct loop *loop;
+
+ if (automatically_generated_chrec_p (chrec))
+ return chrec;
+
+ ct = chrec_type (chrec);
+ if (ct == type)
+ return chrec;
+
+ if (!evolution_function_is_affine_p (chrec))
+ goto keep_cast;
+
+ loop = current_loops->parray[CHREC_VARIABLE (chrec)];
+ base = CHREC_LEFT (chrec);
+ step = CHREC_RIGHT (chrec);
+
+ if (convert_affine_scev (loop, type, &base, &step, at_stmt,
+ use_overflow_semantics))
+ return build_polynomial_chrec (loop->num, base, step);
+
+ /* If we cannot propagate the cast inside the chrec, just keep the cast. */
+keep_cast:
+ res = fold_convert (type, chrec);
+
+ /* Don't propagate overflows. */
+ if (CONSTANT_CLASS_P (res))
+ {
+ TREE_CONSTANT_OVERFLOW (res) = 0;
+ TREE_OVERFLOW (res) = 0;
+ }
+
+ /* But reject constants that don't fit in their type after conversion.
+ This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
+ natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
+ and can cause problems later when computing niters of loops. Note
+ that we don't do the check before converting because we don't want
+ to reject conversions of negative chrecs to unsigned types. */
+ if (TREE_CODE (res) == INTEGER_CST
+ && TREE_CODE (type) == INTEGER_TYPE
+ && !int_fits_type_p (res, type))
+ res = chrec_dont_know;
+
+ return res;
+}
+
+/* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
+ chrec if something else than what chrec_convert would do happens, NULL_TREE
+ otherwise. */
+
+tree
+chrec_convert_aggressive (tree type, tree chrec)
+{
+ tree inner_type, left, right, lc, rc;
+
+ if (automatically_generated_chrec_p (chrec)
+ || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+ return NULL_TREE;
+
+ inner_type = TREE_TYPE (chrec);
+ if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
+ return NULL_TREE;
+
+ /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
+ if (avoid_arithmetics_in_type_p (type))
+ return NULL_TREE;
+
+ left = CHREC_LEFT (chrec);
+ right = CHREC_RIGHT (chrec);
+ lc = chrec_convert_aggressive (type, left);
+ if (!lc)
+ lc = chrec_convert (type, left, NULL_TREE);
+ rc = chrec_convert_aggressive (type, right);
+ if (!rc)
+ rc = chrec_convert (type, right, NULL_TREE);
+
+ return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
+}
+
+/* Returns true when CHREC0 == CHREC1. */
+
+bool
+eq_evolutions_p (tree chrec0,
+ tree chrec1)
+{
+ if (chrec0 == NULL_TREE
+ || chrec1 == NULL_TREE
+ || TREE_CODE (chrec0) != TREE_CODE (chrec1))
+ return false;
+
+ if (chrec0 == chrec1)
+ return true;
+
+ switch (TREE_CODE (chrec0))
+ {
+ case INTEGER_CST:
+ return operand_equal_p (chrec0, chrec1, 0);
+
+ case POLYNOMIAL_CHREC:
+ return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
+ && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
+ && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
+ default:
+ return false;
+ }
+}
+
+/* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
+ EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
+ which of these cases happens. */
+
+enum ev_direction
+scev_direction (tree chrec)
+{
+ tree step;
+
+ if (!evolution_function_is_affine_p (chrec))
+ return EV_DIR_UNKNOWN;
+
+ step = CHREC_RIGHT (chrec);
+ if (TREE_CODE (step) != INTEGER_CST)
+ return EV_DIR_UNKNOWN;
+
+ if (tree_int_cst_sign_bit (step))
+ return EV_DIR_DECREASES;
+ else
+ return EV_DIR_GROWS;
+}