aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/reload.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/reload.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/reload.c7354
1 files changed, 7354 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/reload.c b/gcc-4.2.1-5666.3/gcc/reload.c
new file mode 100644
index 000000000..320cd59bb
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/reload.c
@@ -0,0 +1,7354 @@
+/* Search an insn for pseudo regs that must be in hard regs and are not.
+ Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
+ Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+/* This file contains subroutines used only from the file reload1.c.
+ It knows how to scan one insn for operands and values
+ that need to be copied into registers to make valid code.
+ It also finds other operands and values which are valid
+ but for which equivalent values in registers exist and
+ ought to be used instead.
+
+ Before processing the first insn of the function, call `init_reload'.
+ init_reload actually has to be called earlier anyway.
+
+ To scan an insn, call `find_reloads'. This does two things:
+ 1. sets up tables describing which values must be reloaded
+ for this insn, and what kind of hard regs they must be reloaded into;
+ 2. optionally record the locations where those values appear in
+ the data, so they can be replaced properly later.
+ This is done only if the second arg to `find_reloads' is nonzero.
+
+ The third arg to `find_reloads' specifies the number of levels
+ of indirect addressing supported by the machine. If it is zero,
+ indirect addressing is not valid. If it is one, (MEM (REG n))
+ is valid even if (REG n) did not get a hard register; if it is two,
+ (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
+ hard register, and similarly for higher values.
+
+ Then you must choose the hard regs to reload those pseudo regs into,
+ and generate appropriate load insns before this insn and perhaps
+ also store insns after this insn. Set up the array `reload_reg_rtx'
+ to contain the REG rtx's for the registers you used. In some
+ cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
+ for certain reloads. Then that tells you which register to use,
+ so you do not need to allocate one. But you still do need to add extra
+ instructions to copy the value into and out of that register.
+
+ Finally you must call `subst_reloads' to substitute the reload reg rtx's
+ into the locations already recorded.
+
+NOTE SIDE EFFECTS:
+
+ find_reloads can alter the operands of the instruction it is called on.
+
+ 1. Two operands of any sort may be interchanged, if they are in a
+ commutative instruction.
+ This happens only if find_reloads thinks the instruction will compile
+ better that way.
+
+ 2. Pseudo-registers that are equivalent to constants are replaced
+ with those constants if they are not in hard registers.
+
+1 happens every time find_reloads is called.
+2 happens only when REPLACE is 1, which is only when
+actually doing the reloads, not when just counting them.
+
+Using a reload register for several reloads in one insn:
+
+When an insn has reloads, it is considered as having three parts:
+the input reloads, the insn itself after reloading, and the output reloads.
+Reloads of values used in memory addresses are often needed for only one part.
+
+When this is so, reload_when_needed records which part needs the reload.
+Two reloads for different parts of the insn can share the same reload
+register.
+
+When a reload is used for addresses in multiple parts, or when it is
+an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
+a register with any other reload. */
+
+#define REG_OK_STRICT
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "insn-config.h"
+#include "expr.h"
+#include "optabs.h"
+#include "recog.h"
+#include "reload.h"
+#include "regs.h"
+#include "addresses.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "real.h"
+#include "output.h"
+#include "function.h"
+#include "toplev.h"
+#include "params.h"
+#include "target.h"
+
+/* True if X is a constant that can be forced into the constant pool. */
+#define CONST_POOL_OK_P(X) \
+ (CONSTANT_P (X) \
+ && GET_CODE (X) != HIGH \
+ && !targetm.cannot_force_const_mem (X))
+
+/* True if C is a non-empty register class that has too few registers
+ to be safely used as a reload target class. */
+#define SMALL_REGISTER_CLASS_P(C) \
+ (reg_class_size [(C)] == 1 \
+ || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
+
+
+/* All reloads of the current insn are recorded here. See reload.h for
+ comments. */
+int n_reloads;
+struct reload rld[MAX_RELOADS];
+
+/* All the "earlyclobber" operands of the current insn
+ are recorded here. */
+int n_earlyclobbers;
+rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
+
+int reload_n_operands;
+
+/* Replacing reloads.
+
+ If `replace_reloads' is nonzero, then as each reload is recorded
+ an entry is made for it in the table `replacements'.
+ Then later `subst_reloads' can look through that table and
+ perform all the replacements needed. */
+
+/* Nonzero means record the places to replace. */
+static int replace_reloads;
+
+/* Each replacement is recorded with a structure like this. */
+struct replacement
+{
+ rtx *where; /* Location to store in */
+ rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
+ a SUBREG; 0 otherwise. */
+ int what; /* which reload this is for */
+ enum machine_mode mode; /* mode it must have */
+};
+
+static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
+
+/* Number of replacements currently recorded. */
+static int n_replacements;
+
+/* Used to track what is modified by an operand. */
+struct decomposition
+{
+ int reg_flag; /* Nonzero if referencing a register. */
+ int safe; /* Nonzero if this can't conflict with anything. */
+ rtx base; /* Base address for MEM. */
+ HOST_WIDE_INT start; /* Starting offset or register number. */
+ HOST_WIDE_INT end; /* Ending offset or register number. */
+};
+
+#ifdef SECONDARY_MEMORY_NEEDED
+
+/* Save MEMs needed to copy from one class of registers to another. One MEM
+ is used per mode, but normally only one or two modes are ever used.
+
+ We keep two versions, before and after register elimination. The one
+ after register elimination is record separately for each operand. This
+ is done in case the address is not valid to be sure that we separately
+ reload each. */
+
+static rtx secondary_memlocs[NUM_MACHINE_MODES];
+static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
+static int secondary_memlocs_elim_used = 0;
+#endif
+
+/* The instruction we are doing reloads for;
+ so we can test whether a register dies in it. */
+static rtx this_insn;
+
+/* Nonzero if this instruction is a user-specified asm with operands. */
+static int this_insn_is_asm;
+
+/* If hard_regs_live_known is nonzero,
+ we can tell which hard regs are currently live,
+ at least enough to succeed in choosing dummy reloads. */
+static int hard_regs_live_known;
+
+/* Indexed by hard reg number,
+ element is nonnegative if hard reg has been spilled.
+ This vector is passed to `find_reloads' as an argument
+ and is not changed here. */
+static short *static_reload_reg_p;
+
+/* Set to 1 in subst_reg_equivs if it changes anything. */
+static int subst_reg_equivs_changed;
+
+/* On return from push_reload, holds the reload-number for the OUT
+ operand, which can be different for that from the input operand. */
+static int output_reloadnum;
+
+ /* Compare two RTX's. */
+#define MATCHES(x, y) \
+ (x == y || (x != 0 && (REG_P (x) \
+ ? REG_P (y) && REGNO (x) == REGNO (y) \
+ : rtx_equal_p (x, y) && ! side_effects_p (x))))
+
+ /* Indicates if two reloads purposes are for similar enough things that we
+ can merge their reloads. */
+#define MERGABLE_RELOADS(when1, when2, op1, op2) \
+ ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
+ || ((when1) == (when2) && (op1) == (op2)) \
+ || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
+ || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
+ && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
+ || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
+ && (when2) == RELOAD_FOR_OTHER_ADDRESS))
+
+ /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
+#define MERGE_TO_OTHER(when1, when2, op1, op2) \
+ ((when1) != (when2) \
+ || ! ((op1) == (op2) \
+ || (when1) == RELOAD_FOR_INPUT \
+ || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
+ || (when1) == RELOAD_FOR_OTHER_ADDRESS))
+
+ /* If we are going to reload an address, compute the reload type to
+ use. */
+#define ADDR_TYPE(type) \
+ ((type) == RELOAD_FOR_INPUT_ADDRESS \
+ ? RELOAD_FOR_INPADDR_ADDRESS \
+ : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
+ ? RELOAD_FOR_OUTADDR_ADDRESS \
+ : (type)))
+
+static int push_secondary_reload (int, rtx, int, int, enum reg_class,
+ enum machine_mode, enum reload_type,
+ enum insn_code *, secondary_reload_info *);
+static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
+ int, unsigned int);
+static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
+static void push_replacement (rtx *, int, enum machine_mode);
+static void dup_replacements (rtx *, rtx *);
+static void combine_reloads (void);
+static int find_reusable_reload (rtx *, rtx, enum reg_class,
+ enum reload_type, int, int);
+static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
+ enum machine_mode, enum reg_class, int, int);
+static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
+static struct decomposition decompose (rtx);
+static int immune_p (rtx, rtx, struct decomposition);
+static int alternative_allows_memconst (const char *, int);
+static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
+ int *);
+static rtx make_memloc (rtx, int);
+static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
+static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
+ int, enum reload_type, int, rtx);
+static rtx subst_reg_equivs (rtx, rtx);
+static rtx subst_indexed_address (rtx);
+static void update_auto_inc_notes (rtx, int, int);
+static int find_reloads_address_1 (enum machine_mode, rtx, int,
+ enum rtx_code, enum rtx_code, rtx *,
+ int, enum reload_type,int, rtx);
+static void find_reloads_address_part (rtx, rtx *, enum reg_class,
+ enum machine_mode, int,
+ enum reload_type, int);
+static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
+ int, rtx);
+static void copy_replacements_1 (rtx *, rtx *, int);
+static int find_inc_amount (rtx, rtx);
+static int refers_to_mem_for_reload_p (rtx);
+static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
+ rtx, rtx *);
+
+/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
+ list yet. */
+
+static void
+push_reg_equiv_alt_mem (int regno, rtx mem)
+{
+ rtx it;
+
+ for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
+ if (rtx_equal_p (XEXP (it, 0), mem))
+ return;
+
+ reg_equiv_alt_mem_list [regno]
+ = alloc_EXPR_LIST (REG_EQUIV, mem,
+ reg_equiv_alt_mem_list [regno]);
+}
+
+/* Determine if any secondary reloads are needed for loading (if IN_P is
+ nonzero) or storing (if IN_P is zero) X to or from a reload register of
+ register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
+ are needed, push them.
+
+ Return the reload number of the secondary reload we made, or -1 if
+ we didn't need one. *PICODE is set to the insn_code to use if we do
+ need a secondary reload. */
+
+static int
+push_secondary_reload (int in_p, rtx x, int opnum, int optional,
+ enum reg_class reload_class,
+ enum machine_mode reload_mode, enum reload_type type,
+ enum insn_code *picode, secondary_reload_info *prev_sri)
+{
+ enum reg_class class = NO_REGS;
+ enum reg_class scratch_class;
+ enum machine_mode mode = reload_mode;
+ enum insn_code icode = CODE_FOR_nothing;
+ enum insn_code t_icode = CODE_FOR_nothing;
+ enum reload_type secondary_type;
+ int s_reload, t_reload = -1;
+ const char *scratch_constraint;
+ char letter;
+ secondary_reload_info sri;
+
+ if (type == RELOAD_FOR_INPUT_ADDRESS
+ || type == RELOAD_FOR_OUTPUT_ADDRESS
+ || type == RELOAD_FOR_INPADDR_ADDRESS
+ || type == RELOAD_FOR_OUTADDR_ADDRESS)
+ secondary_type = type;
+ else
+ secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
+
+ *picode = CODE_FOR_nothing;
+
+ /* If X is a paradoxical SUBREG, use the inner value to determine both the
+ mode and object being reloaded. */
+ if (GET_CODE (x) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (x))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
+ {
+ x = SUBREG_REG (x);
+ reload_mode = GET_MODE (x);
+ }
+
+ /* If X is a pseudo-register that has an equivalent MEM (actually, if it
+ is still a pseudo-register by now, it *must* have an equivalent MEM
+ but we don't want to assume that), use that equivalent when seeing if
+ a secondary reload is needed since whether or not a reload is needed
+ might be sensitive to the form of the MEM. */
+
+ if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_mem[REGNO (x)] != 0)
+ x = reg_equiv_mem[REGNO (x)];
+
+ sri.icode = CODE_FOR_nothing;
+ sri.prev_sri = prev_sri;
+ class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
+ icode = sri.icode;
+
+ /* If we don't need any secondary registers, done. */
+ if (class == NO_REGS && icode == CODE_FOR_nothing)
+ return -1;
+
+ if (class != NO_REGS)
+ t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
+ reload_mode, type, &t_icode, &sri);
+
+ /* If we will be using an insn, the secondary reload is for a
+ scratch register. */
+
+ if (icode != CODE_FOR_nothing)
+ {
+ /* If IN_P is nonzero, the reload register will be the output in
+ operand 0. If IN_P is zero, the reload register will be the input
+ in operand 1. Outputs should have an initial "=", which we must
+ skip. */
+
+ /* ??? It would be useful to be able to handle only two, or more than
+ three, operands, but for now we can only handle the case of having
+ exactly three: output, input and one temp/scratch. */
+ gcc_assert (insn_data[(int) icode].n_operands == 3);
+
+ /* ??? We currently have no way to represent a reload that needs
+ an icode to reload from an intermediate tertiary reload register.
+ We should probably have a new field in struct reload to tag a
+ chain of scratch operand reloads onto. */
+ gcc_assert (class == NO_REGS);
+
+ scratch_constraint = insn_data[(int) icode].operand[2].constraint;
+ gcc_assert (*scratch_constraint == '=');
+ scratch_constraint++;
+ if (*scratch_constraint == '&')
+ scratch_constraint++;
+ letter = *scratch_constraint;
+ scratch_class = (letter == 'r' ? GENERAL_REGS
+ : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
+ scratch_constraint));
+
+ class = scratch_class;
+ mode = insn_data[(int) icode].operand[2].mode;
+ }
+
+ /* This case isn't valid, so fail. Reload is allowed to use the same
+ register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
+ in the case of a secondary register, we actually need two different
+ registers for correct code. We fail here to prevent the possibility of
+ silently generating incorrect code later.
+
+ The convention is that secondary input reloads are valid only if the
+ secondary_class is different from class. If you have such a case, you
+ can not use secondary reloads, you must work around the problem some
+ other way.
+
+ Allow this when a reload_in/out pattern is being used. I.e. assume
+ that the generated code handles this case. */
+
+ gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
+ || t_icode != CODE_FOR_nothing);
+
+ /* See if we can reuse an existing secondary reload. */
+ for (s_reload = 0; s_reload < n_reloads; s_reload++)
+ if (rld[s_reload].secondary_p
+ && (reg_class_subset_p (class, rld[s_reload].class)
+ || reg_class_subset_p (rld[s_reload].class, class))
+ && ((in_p && rld[s_reload].inmode == mode)
+ || (! in_p && rld[s_reload].outmode == mode))
+ && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
+ || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
+ && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
+ || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
+ && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
+ && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
+ opnum, rld[s_reload].opnum))
+ {
+ if (in_p)
+ rld[s_reload].inmode = mode;
+ if (! in_p)
+ rld[s_reload].outmode = mode;
+
+ if (reg_class_subset_p (class, rld[s_reload].class))
+ rld[s_reload].class = class;
+
+ rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
+ rld[s_reload].optional &= optional;
+ rld[s_reload].secondary_p = 1;
+ if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
+ opnum, rld[s_reload].opnum))
+ rld[s_reload].when_needed = RELOAD_OTHER;
+ }
+
+ if (s_reload == n_reloads)
+ {
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* If we need a memory location to copy between the two reload regs,
+ set it up now. Note that we do the input case before making
+ the reload and the output case after. This is due to the
+ way reloads are output. */
+
+ if (in_p && icode == CODE_FOR_nothing
+ && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
+ {
+ get_secondary_mem (x, reload_mode, opnum, type);
+
+ /* We may have just added new reloads. Make sure we add
+ the new reload at the end. */
+ s_reload = n_reloads;
+ }
+#endif
+
+ /* We need to make a new secondary reload for this register class. */
+ rld[s_reload].in = rld[s_reload].out = 0;
+ rld[s_reload].class = class;
+
+ rld[s_reload].inmode = in_p ? mode : VOIDmode;
+ rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
+ rld[s_reload].reg_rtx = 0;
+ rld[s_reload].optional = optional;
+ rld[s_reload].inc = 0;
+ /* Maybe we could combine these, but it seems too tricky. */
+ rld[s_reload].nocombine = 1;
+ rld[s_reload].in_reg = 0;
+ rld[s_reload].out_reg = 0;
+ rld[s_reload].opnum = opnum;
+ rld[s_reload].when_needed = secondary_type;
+ rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
+ rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
+ rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
+ rld[s_reload].secondary_out_icode
+ = ! in_p ? t_icode : CODE_FOR_nothing;
+ rld[s_reload].secondary_p = 1;
+
+ n_reloads++;
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ if (! in_p && icode == CODE_FOR_nothing
+ && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
+ get_secondary_mem (x, mode, opnum, type);
+#endif
+ }
+
+ *picode = icode;
+ return s_reload;
+}
+
+/* If a secondary reload is needed, return its class. If both an intermediate
+ register and a scratch register is needed, we return the class of the
+ intermediate register. */
+enum reg_class
+secondary_reload_class (bool in_p, enum reg_class class,
+ enum machine_mode mode, rtx x)
+{
+ enum insn_code icode;
+ secondary_reload_info sri;
+
+ sri.icode = CODE_FOR_nothing;
+ sri.prev_sri = NULL;
+ class = targetm.secondary_reload (in_p, x, class, mode, &sri);
+ icode = sri.icode;
+
+ /* If there are no secondary reloads at all, we return NO_REGS.
+ If an intermediate register is needed, we return its class. */
+ if (icode == CODE_FOR_nothing || class != NO_REGS)
+ return class;
+
+ /* No intermediate register is needed, but we have a special reload
+ pattern, which we assume for now needs a scratch register. */
+ return scratch_reload_class (icode);
+}
+
+/* ICODE is the insn_code of a reload pattern. Check that it has exactly
+ three operands, verify that operand 2 is an output operand, and return
+ its register class.
+ ??? We'd like to be able to handle any pattern with at least 2 operands,
+ for zero or more scratch registers, but that needs more infrastructure. */
+enum reg_class
+scratch_reload_class (enum insn_code icode)
+{
+ const char *scratch_constraint;
+ char scratch_letter;
+ enum reg_class class;
+
+ gcc_assert (insn_data[(int) icode].n_operands == 3);
+ scratch_constraint = insn_data[(int) icode].operand[2].constraint;
+ gcc_assert (*scratch_constraint == '=');
+ scratch_constraint++;
+ if (*scratch_constraint == '&')
+ scratch_constraint++;
+ scratch_letter = *scratch_constraint;
+ if (scratch_letter == 'r')
+ return GENERAL_REGS;
+ class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
+ scratch_constraint);
+ gcc_assert (class != NO_REGS);
+ return class;
+}
+
+#ifdef SECONDARY_MEMORY_NEEDED
+
+/* Return a memory location that will be used to copy X in mode MODE.
+ If we haven't already made a location for this mode in this insn,
+ call find_reloads_address on the location being returned. */
+
+rtx
+get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
+ int opnum, enum reload_type type)
+{
+ rtx loc;
+ int mem_valid;
+
+ /* By default, if MODE is narrower than a word, widen it to a word.
+ This is required because most machines that require these memory
+ locations do not support short load and stores from all registers
+ (e.g., FP registers). */
+
+#ifdef SECONDARY_MEMORY_NEEDED_MODE
+ mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
+#else
+ if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
+ mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
+#endif
+
+ /* If we already have made a MEM for this operand in MODE, return it. */
+ if (secondary_memlocs_elim[(int) mode][opnum] != 0)
+ return secondary_memlocs_elim[(int) mode][opnum];
+
+ /* If this is the first time we've tried to get a MEM for this mode,
+ allocate a new one. `something_changed' in reload will get set
+ by noticing that the frame size has changed. */
+
+ if (secondary_memlocs[(int) mode] == 0)
+ {
+#ifdef SECONDARY_MEMORY_NEEDED_RTX
+ secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
+#else
+ secondary_memlocs[(int) mode]
+ = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
+#endif
+ }
+
+ /* Get a version of the address doing any eliminations needed. If that
+ didn't give us a new MEM, make a new one if it isn't valid. */
+
+ loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
+ mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
+
+ if (! mem_valid && loc == secondary_memlocs[(int) mode])
+ loc = copy_rtx (loc);
+
+ /* The only time the call below will do anything is if the stack
+ offset is too large. In that case IND_LEVELS doesn't matter, so we
+ can just pass a zero. Adjust the type to be the address of the
+ corresponding object. If the address was valid, save the eliminated
+ address. If it wasn't valid, we need to make a reload each time, so
+ don't save it. */
+
+ if (! mem_valid)
+ {
+ type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
+ : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
+ : RELOAD_OTHER);
+
+ find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
+ opnum, type, 0, 0);
+ }
+
+ secondary_memlocs_elim[(int) mode][opnum] = loc;
+ if (secondary_memlocs_elim_used <= (int)mode)
+ secondary_memlocs_elim_used = (int)mode + 1;
+ return loc;
+}
+
+/* Clear any secondary memory locations we've made. */
+
+void
+clear_secondary_mem (void)
+{
+ memset (secondary_memlocs, 0, sizeof secondary_memlocs);
+}
+#endif /* SECONDARY_MEMORY_NEEDED */
+
+
+/* Find the largest class which has at least one register valid in
+ mode INNER, and which for every such register, that register number
+ plus N is also valid in OUTER (if in range) and is cheap to move
+ into REGNO. Such a class must exist. */
+
+static enum reg_class
+find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
+ enum machine_mode inner ATTRIBUTE_UNUSED, int n,
+ unsigned int dest_regno ATTRIBUTE_UNUSED)
+{
+ int best_cost = -1;
+ int class;
+ int regno;
+ enum reg_class best_class = NO_REGS;
+ enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
+ unsigned int best_size = 0;
+ int cost;
+
+ for (class = 1; class < N_REG_CLASSES; class++)
+ {
+ int bad = 0;
+ int good = 0;
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
+ {
+ if (HARD_REGNO_MODE_OK (regno, inner))
+ {
+ good = 1;
+ if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
+ || ! HARD_REGNO_MODE_OK (regno + n, outer))
+ bad = 1;
+ }
+ }
+
+ if (bad || !good)
+ continue;
+ cost = REGISTER_MOVE_COST (outer, class, dest_class);
+
+ if ((reg_class_size[class] > best_size
+ && (best_cost < 0 || best_cost >= cost))
+ || best_cost > cost)
+ {
+ best_class = class;
+ best_size = reg_class_size[class];
+ best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
+ }
+ }
+
+ gcc_assert (best_size != 0);
+
+ return best_class;
+}
+
+/* Return the number of a previously made reload that can be combined with
+ a new one, or n_reloads if none of the existing reloads can be used.
+ OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
+ push_reload, they determine the kind of the new reload that we try to
+ combine. P_IN points to the corresponding value of IN, which can be
+ modified by this function.
+ DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
+
+static int
+find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
+ enum reload_type type, int opnum, int dont_share)
+{
+ rtx in = *p_in;
+ int i;
+ /* We can't merge two reloads if the output of either one is
+ earlyclobbered. */
+
+ if (earlyclobber_operand_p (out))
+ return n_reloads;
+
+ /* We can use an existing reload if the class is right
+ and at least one of IN and OUT is a match
+ and the other is at worst neutral.
+ (A zero compared against anything is neutral.)
+
+ If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
+ for the same thing since that can cause us to need more reload registers
+ than we otherwise would. */
+
+ for (i = 0; i < n_reloads; i++)
+ if ((reg_class_subset_p (class, rld[i].class)
+ || reg_class_subset_p (rld[i].class, class))
+ /* If the existing reload has a register, it must fit our class. */
+ && (rld[i].reg_rtx == 0
+ || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ true_regnum (rld[i].reg_rtx)))
+ && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
+ && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
+ || (out != 0 && MATCHES (rld[i].out, out)
+ && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
+ && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
+ && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
+ && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
+ return i;
+
+ /* Reloading a plain reg for input can match a reload to postincrement
+ that reg, since the postincrement's value is the right value.
+ Likewise, it can match a preincrement reload, since we regard
+ the preincrementation as happening before any ref in this insn
+ to that register. */
+ for (i = 0; i < n_reloads; i++)
+ if ((reg_class_subset_p (class, rld[i].class)
+ || reg_class_subset_p (rld[i].class, class))
+ /* If the existing reload has a register, it must fit our
+ class. */
+ && (rld[i].reg_rtx == 0
+ || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ true_regnum (rld[i].reg_rtx)))
+ && out == 0 && rld[i].out == 0 && rld[i].in != 0
+ && ((REG_P (in)
+ && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
+ && MATCHES (XEXP (rld[i].in, 0), in))
+ || (REG_P (rld[i].in)
+ && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
+ && MATCHES (XEXP (in, 0), rld[i].in)))
+ && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
+ && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
+ && MERGABLE_RELOADS (type, rld[i].when_needed,
+ opnum, rld[i].opnum))
+ {
+ /* Make sure reload_in ultimately has the increment,
+ not the plain register. */
+ if (REG_P (in))
+ *p_in = rld[i].in;
+ return i;
+ }
+ return n_reloads;
+}
+
+/* Return nonzero if X is a SUBREG which will require reloading of its
+ SUBREG_REG expression. */
+
+static int
+reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
+{
+ rtx inner;
+
+ /* Only SUBREGs are problematical. */
+ if (GET_CODE (x) != SUBREG)
+ return 0;
+
+ inner = SUBREG_REG (x);
+
+ /* If INNER is a constant or PLUS, then INNER must be reloaded. */
+ if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
+ return 1;
+
+ /* If INNER is not a hard register, then INNER will not need to
+ be reloaded. */
+ if (!REG_P (inner)
+ || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
+ return 0;
+
+ /* If INNER is not ok for MODE, then INNER will need reloading. */
+ if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
+ return 1;
+
+ /* If the outer part is a word or smaller, INNER larger than a
+ word and the number of regs for INNER is not the same as the
+ number of words in INNER, then INNER will need reloading. */
+ return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
+ && output
+ && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
+ && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
+ != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
+}
+
+/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
+ requiring an extra reload register. The caller has already found that
+ IN contains some reference to REGNO, so check that we can produce the
+ new value in a single step. E.g. if we have
+ (set (reg r13) (plus (reg r13) (const int 1))), and there is an
+ instruction that adds one to a register, this should succeed.
+ However, if we have something like
+ (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
+ needs to be loaded into a register first, we need a separate reload
+ register.
+ Such PLUS reloads are generated by find_reload_address_part.
+ The out-of-range PLUS expressions are usually introduced in the instruction
+ patterns by register elimination and substituting pseudos without a home
+ by their function-invariant equivalences. */
+static int
+can_reload_into (rtx in, int regno, enum machine_mode mode)
+{
+ rtx dst, test_insn;
+ int r = 0;
+ struct recog_data save_recog_data;
+
+ /* For matching constraints, we often get notional input reloads where
+ we want to use the original register as the reload register. I.e.
+ technically this is a non-optional input-output reload, but IN is
+ already a valid register, and has been chosen as the reload register.
+ Speed this up, since it trivially works. */
+ if (REG_P (in))
+ return 1;
+
+ /* To test MEMs properly, we'd have to take into account all the reloads
+ that are already scheduled, which can become quite complicated.
+ And since we've already handled address reloads for this MEM, it
+ should always succeed anyway. */
+ if (MEM_P (in))
+ return 1;
+
+ /* If we can make a simple SET insn that does the job, everything should
+ be fine. */
+ dst = gen_rtx_REG (mode, regno);
+ test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
+ save_recog_data = recog_data;
+ if (recog_memoized (test_insn) >= 0)
+ {
+ extract_insn (test_insn);
+ r = constrain_operands (1);
+ }
+ recog_data = save_recog_data;
+ return r;
+}
+
+/* Record one reload that needs to be performed.
+ IN is an rtx saying where the data are to be found before this instruction.
+ OUT says where they must be stored after the instruction.
+ (IN is zero for data not read, and OUT is zero for data not written.)
+ INLOC and OUTLOC point to the places in the instructions where
+ IN and OUT were found.
+ If IN and OUT are both nonzero, it means the same register must be used
+ to reload both IN and OUT.
+
+ CLASS is a register class required for the reloaded data.
+ INMODE is the machine mode that the instruction requires
+ for the reg that replaces IN and OUTMODE is likewise for OUT.
+
+ If IN is zero, then OUT's location and mode should be passed as
+ INLOC and INMODE.
+
+ STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
+
+ OPTIONAL nonzero means this reload does not need to be performed:
+ it can be discarded if that is more convenient.
+
+ OPNUM and TYPE say what the purpose of this reload is.
+
+ The return value is the reload-number for this reload.
+
+ If both IN and OUT are nonzero, in some rare cases we might
+ want to make two separate reloads. (Actually we never do this now.)
+ Therefore, the reload-number for OUT is stored in
+ output_reloadnum when we return; the return value applies to IN.
+ Usually (presently always), when IN and OUT are nonzero,
+ the two reload-numbers are equal, but the caller should be careful to
+ distinguish them. */
+
+int
+push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
+ enum reg_class class, enum machine_mode inmode,
+ enum machine_mode outmode, int strict_low, int optional,
+ int opnum, enum reload_type type)
+{
+ int i;
+ int dont_share = 0;
+ int dont_remove_subreg = 0;
+ rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
+ int secondary_in_reload = -1, secondary_out_reload = -1;
+ enum insn_code secondary_in_icode = CODE_FOR_nothing;
+ enum insn_code secondary_out_icode = CODE_FOR_nothing;
+
+ /* INMODE and/or OUTMODE could be VOIDmode if no mode
+ has been specified for the operand. In that case,
+ use the operand's mode as the mode to reload. */
+ if (inmode == VOIDmode && in != 0)
+ inmode = GET_MODE (in);
+ if (outmode == VOIDmode && out != 0)
+ outmode = GET_MODE (out);
+
+ /* If IN is a pseudo register everywhere-equivalent to a constant, and
+ it is not in a hard register, reload straight from the constant,
+ since we want to get rid of such pseudo registers.
+ Often this is done earlier, but not always in find_reloads_address. */
+ if (in != 0 && REG_P (in))
+ {
+ int regno = REGNO (in);
+
+ if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ in = reg_equiv_constant[regno];
+ }
+
+ /* Likewise for OUT. Of course, OUT will never be equivalent to
+ an actual constant, but it might be equivalent to a memory location
+ (in the case of a parameter). */
+ if (out != 0 && REG_P (out))
+ {
+ int regno = REGNO (out);
+
+ if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ out = reg_equiv_constant[regno];
+ }
+
+ /* If we have a read-write operand with an address side-effect,
+ change either IN or OUT so the side-effect happens only once. */
+ if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
+ switch (GET_CODE (XEXP (in, 0)))
+ {
+ case POST_INC: case POST_DEC: case POST_MODIFY:
+ in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
+ break;
+
+ case PRE_INC: case PRE_DEC: case PRE_MODIFY:
+ out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
+ break;
+
+ default:
+ break;
+ }
+
+ /* If we are reloading a (SUBREG constant ...), really reload just the
+ inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
+ If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
+ a pseudo and hence will become a MEM) with M1 wider than M2 and the
+ register is a pseudo, also reload the inside expression.
+ For machines that extend byte loads, do this for any SUBREG of a pseudo
+ where both M1 and M2 are a word or smaller, M1 is wider than M2, and
+ M2 is an integral mode that gets extended when loaded.
+ Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
+ either M1 is not valid for R or M2 is wider than a word but we only
+ need one word to store an M2-sized quantity in R.
+ (However, if OUT is nonzero, we need to reload the reg *and*
+ the subreg, so do nothing here, and let following statement handle it.)
+
+ Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
+ we can't handle it here because CONST_INT does not indicate a mode.
+
+ Similarly, we must reload the inside expression if we have a
+ STRICT_LOW_PART (presumably, in == out in the cas).
+
+ Also reload the inner expression if it does not require a secondary
+ reload but the SUBREG does.
+
+ Finally, reload the inner expression if it is a register that is in
+ the class whose registers cannot be referenced in a different size
+ and M1 is not the same size as M2. If subreg_lowpart_p is false, we
+ cannot reload just the inside since we might end up with the wrong
+ register class. But if it is inside a STRICT_LOW_PART, we have
+ no choice, so we hope we do get the right register class there. */
+
+ if (in != 0 && GET_CODE (in) == SUBREG
+ && (subreg_lowpart_p (in) || strict_low)
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
+#endif
+ && (CONSTANT_P (SUBREG_REG (in))
+ || GET_CODE (SUBREG_REG (in)) == PLUS
+ || strict_low
+ || (((REG_P (SUBREG_REG (in))
+ && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
+ || MEM_P (SUBREG_REG (in)))
+ && ((GET_MODE_SIZE (inmode)
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
+#ifdef LOAD_EXTEND_OP
+ || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ <= UNITS_PER_WORD)
+ && (GET_MODE_SIZE (inmode)
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
+ && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
+ && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
+#endif
+#ifdef WORD_REGISTER_OPERATIONS
+ || ((GET_MODE_SIZE (inmode)
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
+ && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
+ ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
+ / UNITS_PER_WORD)))
+#endif
+ ))
+ || (REG_P (SUBREG_REG (in))
+ && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
+ /* The case where out is nonzero
+ is handled differently in the following statement. */
+ && (out == 0 || subreg_lowpart_p (in))
+ && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ > UNITS_PER_WORD)
+ && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ / UNITS_PER_WORD)
+ != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
+ [GET_MODE (SUBREG_REG (in))]))
+ || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
+ || (secondary_reload_class (1, class, inmode, in) != NO_REGS
+ && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
+ SUBREG_REG (in))
+ == NO_REGS))
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ || (REG_P (SUBREG_REG (in))
+ && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
+ && REG_CANNOT_CHANGE_MODE_P
+ (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
+#endif
+ ))
+ {
+ in_subreg_loc = inloc;
+ inloc = &SUBREG_REG (in);
+ in = *inloc;
+#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
+ if (MEM_P (in))
+ /* This is supposed to happen only for paradoxical subregs made by
+ combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
+ gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
+#endif
+ inmode = GET_MODE (in);
+ }
+
+ /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
+ either M1 is not valid for R or M2 is wider than a word but we only
+ need one word to store an M2-sized quantity in R.
+
+ However, we must reload the inner reg *as well as* the subreg in
+ that case. */
+
+ /* Similar issue for (SUBREG constant ...) if it was not handled by the
+ code above. This can happen if SUBREG_BYTE != 0. */
+
+ if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
+ {
+ enum reg_class in_class = class;
+
+ if (REG_P (SUBREG_REG (in)))
+ in_class
+ = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
+ subreg_regno_offset (REGNO (SUBREG_REG (in)),
+ GET_MODE (SUBREG_REG (in)),
+ SUBREG_BYTE (in),
+ GET_MODE (in)),
+ REGNO (SUBREG_REG (in)));
+
+ /* This relies on the fact that emit_reload_insns outputs the
+ instructions for input reloads of type RELOAD_OTHER in the same
+ order as the reloads. Thus if the outer reload is also of type
+ RELOAD_OTHER, we are guaranteed that this inner reload will be
+ output before the outer reload. */
+ push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
+ in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
+ dont_remove_subreg = 1;
+ }
+
+ /* Similarly for paradoxical and problematical SUBREGs on the output.
+ Note that there is no reason we need worry about the previous value
+ of SUBREG_REG (out); even if wider than out,
+ storing in a subreg is entitled to clobber it all
+ (except in the case of STRICT_LOW_PART,
+ and in that case the constraint should label it input-output.) */
+ if (out != 0 && GET_CODE (out) == SUBREG
+ && (subreg_lowpart_p (out) || strict_low)
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
+#endif
+ && (CONSTANT_P (SUBREG_REG (out))
+ || strict_low
+ || (((REG_P (SUBREG_REG (out))
+ && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
+ || MEM_P (SUBREG_REG (out)))
+ && ((GET_MODE_SIZE (outmode)
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
+#ifdef WORD_REGISTER_OPERATIONS
+ || ((GET_MODE_SIZE (outmode)
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
+ && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
+ ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
+ / UNITS_PER_WORD)))
+#endif
+ ))
+ || (REG_P (SUBREG_REG (out))
+ && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
+ && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
+ > UNITS_PER_WORD)
+ && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
+ / UNITS_PER_WORD)
+ != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
+ [GET_MODE (SUBREG_REG (out))]))
+ || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
+ || (secondary_reload_class (0, class, outmode, out) != NO_REGS
+ && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
+ SUBREG_REG (out))
+ == NO_REGS))
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ || (REG_P (SUBREG_REG (out))
+ && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
+ && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
+ GET_MODE (SUBREG_REG (out)),
+ outmode))
+#endif
+ ))
+ {
+ out_subreg_loc = outloc;
+ outloc = &SUBREG_REG (out);
+ out = *outloc;
+#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
+ gcc_assert (!MEM_P (out)
+ || GET_MODE_SIZE (GET_MODE (out))
+ <= GET_MODE_SIZE (outmode));
+#endif
+ outmode = GET_MODE (out);
+ }
+
+ /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
+ either M1 is not valid for R or M2 is wider than a word but we only
+ need one word to store an M2-sized quantity in R.
+
+ However, we must reload the inner reg *as well as* the subreg in
+ that case. In this case, the inner reg is an in-out reload. */
+
+ if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
+ {
+ /* This relies on the fact that emit_reload_insns outputs the
+ instructions for output reloads of type RELOAD_OTHER in reverse
+ order of the reloads. Thus if the outer reload is also of type
+ RELOAD_OTHER, we are guaranteed that this inner reload will be
+ output after the outer reload. */
+ dont_remove_subreg = 1;
+ push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
+ &SUBREG_REG (out),
+ find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
+ subreg_regno_offset (REGNO (SUBREG_REG (out)),
+ GET_MODE (SUBREG_REG (out)),
+ SUBREG_BYTE (out),
+ GET_MODE (out)),
+ REGNO (SUBREG_REG (out))),
+ VOIDmode, VOIDmode, 0, 0,
+ opnum, RELOAD_OTHER);
+ }
+
+ /* If IN appears in OUT, we can't share any input-only reload for IN. */
+ if (in != 0 && out != 0 && MEM_P (out)
+ && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
+ && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
+ dont_share = 1;
+
+ /* If IN is a SUBREG of a hard register, make a new REG. This
+ simplifies some of the cases below. */
+
+ if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
+ && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
+ && ! dont_remove_subreg)
+ in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
+
+ /* Similarly for OUT. */
+ if (out != 0 && GET_CODE (out) == SUBREG
+ && REG_P (SUBREG_REG (out))
+ && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
+ && ! dont_remove_subreg)
+ out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
+
+ /* Narrow down the class of register wanted if that is
+ desirable on this machine for efficiency. */
+ {
+ enum reg_class preferred_class = class;
+
+ if (in != 0)
+ preferred_class = PREFERRED_RELOAD_CLASS (in, class);
+
+ /* Output reloads may need analogous treatment, different in detail. */
+#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
+ if (out != 0)
+ preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
+#endif
+
+ /* Discard what the target said if we cannot do it. */
+ if (preferred_class != NO_REGS
+ || (optional && type == RELOAD_FOR_OUTPUT))
+ class = preferred_class;
+ }
+
+ /* Make sure we use a class that can handle the actual pseudo
+ inside any subreg. For example, on the 386, QImode regs
+ can appear within SImode subregs. Although GENERAL_REGS
+ can handle SImode, QImode needs a smaller class. */
+#ifdef LIMIT_RELOAD_CLASS
+ if (in_subreg_loc)
+ class = LIMIT_RELOAD_CLASS (inmode, class);
+ else if (in != 0 && GET_CODE (in) == SUBREG)
+ class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
+
+ if (out_subreg_loc)
+ class = LIMIT_RELOAD_CLASS (outmode, class);
+ if (out != 0 && GET_CODE (out) == SUBREG)
+ class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
+#endif
+
+ /* Verify that this class is at least possible for the mode that
+ is specified. */
+ if (this_insn_is_asm)
+ {
+ enum machine_mode mode;
+ if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
+ mode = inmode;
+ else
+ mode = outmode;
+ if (mode == VOIDmode)
+ {
+ error_for_asm (this_insn, "cannot reload integer constant "
+ "operand in %<asm%>");
+ mode = word_mode;
+ if (in != 0)
+ inmode = word_mode;
+ if (out != 0)
+ outmode = word_mode;
+ }
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (HARD_REGNO_MODE_OK (i, mode)
+ && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
+ {
+ int nregs = hard_regno_nregs[i][mode];
+
+ int j;
+ for (j = 1; j < nregs; j++)
+ if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
+ break;
+ if (j == nregs)
+ break;
+ }
+ if (i == FIRST_PSEUDO_REGISTER)
+ {
+ error_for_asm (this_insn, "impossible register constraint "
+ "in %<asm%>");
+ /* Avoid further trouble with this insn. */
+ PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
+ /* We used to continue here setting class to ALL_REGS, but it triggers
+ sanity check on i386 for:
+ void foo(long double d)
+ {
+ asm("" :: "a" (d));
+ }
+ Returning zero here ought to be safe as we take care in
+ find_reloads to not process the reloads when instruction was
+ replaced by USE. */
+
+ return 0;
+ }
+ }
+
+ /* Optional output reloads are always OK even if we have no register class,
+ since the function of these reloads is only to have spill_reg_store etc.
+ set, so that the storing insn can be deleted later. */
+ gcc_assert (class != NO_REGS
+ || (optional != 0 && type == RELOAD_FOR_OUTPUT));
+
+ i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
+
+ if (i == n_reloads)
+ {
+ /* See if we need a secondary reload register to move between CLASS
+ and IN or CLASS and OUT. Get the icode and push any required reloads
+ needed for each of them if so. */
+
+ /* APPLE LOCAL begin restoration of inmode/outmode */
+ if (in != 0)
+ {
+ secondary_in_reload
+ = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
+ &secondary_in_icode, NULL);
+#ifdef TARGET_POWERPC
+ if ( secondary_in_reload != -1 && in_subreg_loc )
+ inmode = GET_MODE (*in_subreg_loc);
+#endif
+ }
+
+ if (out != 0 && GET_CODE (out) != SCRATCH)
+ {
+ secondary_out_reload
+ = push_secondary_reload (0, out, opnum, optional, class, outmode,
+ type, &secondary_out_icode, NULL);
+#ifdef TARGET_POWERPC
+ if ( secondary_out_reload != -1 && out_subreg_loc )
+ outmode = GET_MODE (*out_subreg_loc);
+#endif
+ }
+ /* APPLE LOCAL end restoration of inmode/outmode */
+
+ /* We found no existing reload suitable for re-use.
+ So add an additional reload. */
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* If a memory location is needed for the copy, make one. */
+ if (in != 0
+ && (REG_P (in)
+ || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
+ && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
+ && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
+ class, inmode))
+ get_secondary_mem (in, inmode, opnum, type);
+#endif
+
+ i = n_reloads;
+ rld[i].in = in;
+ rld[i].out = out;
+ rld[i].class = class;
+ rld[i].inmode = inmode;
+ rld[i].outmode = outmode;
+ rld[i].reg_rtx = 0;
+ rld[i].optional = optional;
+ rld[i].inc = 0;
+ rld[i].nocombine = 0;
+ rld[i].in_reg = inloc ? *inloc : 0;
+ rld[i].out_reg = outloc ? *outloc : 0;
+ rld[i].opnum = opnum;
+ rld[i].when_needed = type;
+ rld[i].secondary_in_reload = secondary_in_reload;
+ rld[i].secondary_out_reload = secondary_out_reload;
+ rld[i].secondary_in_icode = secondary_in_icode;
+ rld[i].secondary_out_icode = secondary_out_icode;
+ rld[i].secondary_p = 0;
+
+ n_reloads++;
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ if (out != 0
+ && (REG_P (out)
+ || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
+ && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
+ && SECONDARY_MEMORY_NEEDED (class,
+ REGNO_REG_CLASS (reg_or_subregno (out)),
+ outmode))
+ get_secondary_mem (out, outmode, opnum, type);
+#endif
+ }
+ else
+ {
+ /* We are reusing an existing reload,
+ but we may have additional information for it.
+ For example, we may now have both IN and OUT
+ while the old one may have just one of them. */
+
+ /* The modes can be different. If they are, we want to reload in
+ the larger mode, so that the value is valid for both modes. */
+ if (inmode != VOIDmode
+ && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
+ rld[i].inmode = inmode;
+ if (outmode != VOIDmode
+ && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
+ rld[i].outmode = outmode;
+ if (in != 0)
+ {
+ rtx in_reg = inloc ? *inloc : 0;
+ /* If we merge reloads for two distinct rtl expressions that
+ are identical in content, there might be duplicate address
+ reloads. Remove the extra set now, so that if we later find
+ that we can inherit this reload, we can get rid of the
+ address reloads altogether.
+
+ Do not do this if both reloads are optional since the result
+ would be an optional reload which could potentially leave
+ unresolved address replacements.
+
+ It is not sufficient to call transfer_replacements since
+ choose_reload_regs will remove the replacements for address
+ reloads of inherited reloads which results in the same
+ problem. */
+ if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
+ && ! (rld[i].optional && optional))
+ {
+ /* We must keep the address reload with the lower operand
+ number alive. */
+ if (opnum > rld[i].opnum)
+ {
+ remove_address_replacements (in);
+ in = rld[i].in;
+ in_reg = rld[i].in_reg;
+ }
+ else
+ remove_address_replacements (rld[i].in);
+ }
+ rld[i].in = in;
+ rld[i].in_reg = in_reg;
+ }
+ if (out != 0)
+ {
+ rld[i].out = out;
+ rld[i].out_reg = outloc ? *outloc : 0;
+ }
+ if (reg_class_subset_p (class, rld[i].class))
+ rld[i].class = class;
+ rld[i].optional &= optional;
+ if (MERGE_TO_OTHER (type, rld[i].when_needed,
+ opnum, rld[i].opnum))
+ rld[i].when_needed = RELOAD_OTHER;
+ rld[i].opnum = MIN (rld[i].opnum, opnum);
+ }
+
+ /* If the ostensible rtx being reloaded differs from the rtx found
+ in the location to substitute, this reload is not safe to combine
+ because we cannot reliably tell whether it appears in the insn. */
+
+ if (in != 0 && in != *inloc)
+ rld[i].nocombine = 1;
+
+#if 0
+ /* This was replaced by changes in find_reloads_address_1 and the new
+ function inc_for_reload, which go with a new meaning of reload_inc. */
+
+ /* If this is an IN/OUT reload in an insn that sets the CC,
+ it must be for an autoincrement. It doesn't work to store
+ the incremented value after the insn because that would clobber the CC.
+ So we must do the increment of the value reloaded from,
+ increment it, store it back, then decrement again. */
+ if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
+ {
+ out = 0;
+ rld[i].out = 0;
+ rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
+ /* If we did not find a nonzero amount-to-increment-by,
+ that contradicts the belief that IN is being incremented
+ in an address in this insn. */
+ gcc_assert (rld[i].inc != 0);
+ }
+#endif
+
+ /* If we will replace IN and OUT with the reload-reg,
+ record where they are located so that substitution need
+ not do a tree walk. */
+
+ if (replace_reloads)
+ {
+ if (inloc != 0)
+ {
+ struct replacement *r = &replacements[n_replacements++];
+ r->what = i;
+ r->subreg_loc = in_subreg_loc;
+ r->where = inloc;
+ r->mode = inmode;
+ }
+ if (outloc != 0 && outloc != inloc)
+ {
+ struct replacement *r = &replacements[n_replacements++];
+ r->what = i;
+ r->where = outloc;
+ r->subreg_loc = out_subreg_loc;
+ r->mode = outmode;
+ }
+ }
+
+ /* If this reload is just being introduced and it has both
+ an incoming quantity and an outgoing quantity that are
+ supposed to be made to match, see if either one of the two
+ can serve as the place to reload into.
+
+ If one of them is acceptable, set rld[i].reg_rtx
+ to that one. */
+
+ if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
+ {
+ rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
+ inmode, outmode,
+ rld[i].class, i,
+ earlyclobber_operand_p (out));
+
+ /* If the outgoing register already contains the same value
+ as the incoming one, we can dispense with loading it.
+ The easiest way to tell the caller that is to give a phony
+ value for the incoming operand (same as outgoing one). */
+ if (rld[i].reg_rtx == out
+ && (REG_P (in) || CONSTANT_P (in))
+ && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
+ static_reload_reg_p, i, inmode))
+ rld[i].in = out;
+ }
+
+ /* If this is an input reload and the operand contains a register that
+ dies in this insn and is used nowhere else, see if it is the right class
+ to be used for this reload. Use it if so. (This occurs most commonly
+ in the case of paradoxical SUBREGs and in-out reloads). We cannot do
+ this if it is also an output reload that mentions the register unless
+ the output is a SUBREG that clobbers an entire register.
+
+ Note that the operand might be one of the spill regs, if it is a
+ pseudo reg and we are in a block where spilling has not taken place.
+ But if there is no spilling in this block, that is OK.
+ An explicitly used hard reg cannot be a spill reg. */
+
+ if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
+ {
+ rtx note;
+ int regno;
+ enum machine_mode rel_mode = inmode;
+
+ if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
+ rel_mode = outmode;
+
+ for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_DEAD
+ && REG_P (XEXP (note, 0))
+ && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
+ && reg_mentioned_p (XEXP (note, 0), in)
+ /* Check that we don't use a hardreg for an uninitialized
+ pseudo. See also find_dummy_reload(). */
+ && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
+ || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
+ ORIGINAL_REGNO (XEXP (note, 0))))
+ && ! refers_to_regno_for_reload_p (regno,
+ (regno
+ + hard_regno_nregs[regno]
+ [rel_mode]),
+ PATTERN (this_insn), inloc)
+ /* If this is also an output reload, IN cannot be used as
+ the reload register if it is set in this insn unless IN
+ is also OUT. */
+ && (out == 0 || in == out
+ || ! hard_reg_set_here_p (regno,
+ (regno
+ + hard_regno_nregs[regno]
+ [rel_mode]),
+ PATTERN (this_insn)))
+ /* ??? Why is this code so different from the previous?
+ Is there any simple coherent way to describe the two together?
+ What's going on here. */
+ && (in != out
+ || (GET_CODE (in) == SUBREG
+ && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
+ / UNITS_PER_WORD)
+ == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
+ /* Make sure the operand fits in the reg that dies. */
+ && (GET_MODE_SIZE (rel_mode)
+ <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
+ && HARD_REGNO_MODE_OK (regno, inmode)
+ && HARD_REGNO_MODE_OK (regno, outmode))
+ {
+ unsigned int offs;
+ unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
+ hard_regno_nregs[regno][outmode]);
+
+ for (offs = 0; offs < nregs; offs++)
+ if (fixed_regs[regno + offs]
+ || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ regno + offs))
+ break;
+
+ if (offs == nregs
+ && (! (refers_to_regno_for_reload_p
+ (regno, (regno + hard_regno_nregs[regno][inmode]),
+ in, (rtx *)0))
+ || can_reload_into (in, regno, inmode)))
+ {
+ rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
+ break;
+ }
+ }
+ }
+
+ if (out)
+ output_reloadnum = i;
+
+ return i;
+}
+
+/* Record an additional place we must replace a value
+ for which we have already recorded a reload.
+ RELOADNUM is the value returned by push_reload
+ when the reload was recorded.
+ This is used in insn patterns that use match_dup. */
+
+static void
+push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
+{
+ if (replace_reloads)
+ {
+ struct replacement *r = &replacements[n_replacements++];
+ r->what = reloadnum;
+ r->where = loc;
+ r->subreg_loc = 0;
+ r->mode = mode;
+ }
+}
+
+/* Duplicate any replacement we have recorded to apply at
+ location ORIG_LOC to also be performed at DUP_LOC.
+ This is used in insn patterns that use match_dup. */
+
+static void
+dup_replacements (rtx *dup_loc, rtx *orig_loc)
+{
+ int i, n = n_replacements;
+
+ for (i = 0; i < n; i++)
+ {
+ struct replacement *r = &replacements[i];
+ if (r->where == orig_loc)
+ push_replacement (dup_loc, r->what, r->mode);
+ }
+}
+
+/* Transfer all replacements that used to be in reload FROM to be in
+ reload TO. */
+
+void
+transfer_replacements (int to, int from)
+{
+ int i;
+
+ for (i = 0; i < n_replacements; i++)
+ if (replacements[i].what == from)
+ replacements[i].what = to;
+}
+
+/* IN_RTX is the value loaded by a reload that we now decided to inherit,
+ or a subpart of it. If we have any replacements registered for IN_RTX,
+ cancel the reloads that were supposed to load them.
+ Return nonzero if we canceled any reloads. */
+int
+remove_address_replacements (rtx in_rtx)
+{
+ int i, j;
+ char reload_flags[MAX_RELOADS];
+ int something_changed = 0;
+
+ memset (reload_flags, 0, sizeof reload_flags);
+ for (i = 0, j = 0; i < n_replacements; i++)
+ {
+ if (loc_mentioned_in_p (replacements[i].where, in_rtx))
+ reload_flags[replacements[i].what] |= 1;
+ else
+ {
+ replacements[j++] = replacements[i];
+ reload_flags[replacements[i].what] |= 2;
+ }
+ }
+ /* Note that the following store must be done before the recursive calls. */
+ n_replacements = j;
+
+ for (i = n_reloads - 1; i >= 0; i--)
+ {
+ if (reload_flags[i] == 1)
+ {
+ deallocate_reload_reg (i);
+ remove_address_replacements (rld[i].in);
+ rld[i].in = 0;
+ something_changed = 1;
+ }
+ }
+ return something_changed;
+}
+
+/* If there is only one output reload, and it is not for an earlyclobber
+ operand, try to combine it with a (logically unrelated) input reload
+ to reduce the number of reload registers needed.
+
+ This is safe if the input reload does not appear in
+ the value being output-reloaded, because this implies
+ it is not needed any more once the original insn completes.
+
+ If that doesn't work, see we can use any of the registers that
+ die in this insn as a reload register. We can if it is of the right
+ class and does not appear in the value being output-reloaded. */
+
+static void
+combine_reloads (void)
+{
+ int i;
+ int output_reload = -1;
+ int secondary_out = -1;
+ rtx note;
+
+ /* Find the output reload; return unless there is exactly one
+ and that one is mandatory. */
+
+ for (i = 0; i < n_reloads; i++)
+ if (rld[i].out != 0)
+ {
+ if (output_reload >= 0)
+ return;
+ output_reload = i;
+ }
+
+ if (output_reload < 0 || rld[output_reload].optional)
+ return;
+
+ /* An input-output reload isn't combinable. */
+
+ if (rld[output_reload].in != 0)
+ return;
+
+ /* If this reload is for an earlyclobber operand, we can't do anything. */
+ if (earlyclobber_operand_p (rld[output_reload].out))
+ return;
+
+ /* If there is a reload for part of the address of this operand, we would
+ need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
+ its life to the point where doing this combine would not lower the
+ number of spill registers needed. */
+ for (i = 0; i < n_reloads; i++)
+ if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
+ && rld[i].opnum == rld[output_reload].opnum)
+ /* APPLE LOCAL begin try destroyed input */
+#ifdef TARGET_POWERPC
+ goto try_destroyed_input;
+#else
+ return;
+#endif
+ /* APPLE LOCAL end try destroyed input */
+
+ /* Check each input reload; can we combine it? */
+
+ for (i = 0; i < n_reloads; i++)
+ if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
+ /* Life span of this reload must not extend past main insn. */
+ && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
+ && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
+ && rld[i].when_needed != RELOAD_OTHER
+ && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
+ == CLASS_MAX_NREGS (rld[output_reload].class,
+ rld[output_reload].outmode))
+ && rld[i].inc == 0
+ && rld[i].reg_rtx == 0
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* Don't combine two reloads with different secondary
+ memory locations. */
+ && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
+ || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
+ || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
+ secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
+#endif
+ && (SMALL_REGISTER_CLASSES
+ ? (rld[i].class == rld[output_reload].class)
+ : (reg_class_subset_p (rld[i].class,
+ rld[output_reload].class)
+ || reg_class_subset_p (rld[output_reload].class,
+ rld[i].class)))
+ && (MATCHES (rld[i].in, rld[output_reload].out)
+ /* Args reversed because the first arg seems to be
+ the one that we imagine being modified
+ while the second is the one that might be affected. */
+ || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
+ rld[i].in)
+ /* However, if the input is a register that appears inside
+ the output, then we also can't share.
+ Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
+ If the same reload reg is used for both reg 69 and the
+ result to be stored in memory, then that result
+ will clobber the address of the memory ref. */
+ && ! (REG_P (rld[i].in)
+ && reg_overlap_mentioned_for_reload_p (rld[i].in,
+ rld[output_reload].out))))
+ && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
+ rld[i].when_needed != RELOAD_FOR_INPUT)
+ && (reg_class_size[(int) rld[i].class]
+ || SMALL_REGISTER_CLASSES)
+ /* We will allow making things slightly worse by combining an
+ input and an output, but no worse than that. */
+ && (rld[i].when_needed == RELOAD_FOR_INPUT
+ || rld[i].when_needed == RELOAD_FOR_OUTPUT))
+ {
+ int j;
+
+ /* We have found a reload to combine with! */
+ rld[i].out = rld[output_reload].out;
+ rld[i].out_reg = rld[output_reload].out_reg;
+ rld[i].outmode = rld[output_reload].outmode;
+ /* Mark the old output reload as inoperative. */
+ rld[output_reload].out = 0;
+ /* The combined reload is needed for the entire insn. */
+ rld[i].when_needed = RELOAD_OTHER;
+ /* If the output reload had a secondary reload, copy it. */
+ if (rld[output_reload].secondary_out_reload != -1)
+ {
+ rld[i].secondary_out_reload
+ = rld[output_reload].secondary_out_reload;
+ rld[i].secondary_out_icode
+ = rld[output_reload].secondary_out_icode;
+ }
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* Copy any secondary MEM. */
+ if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
+ secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
+ = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
+#endif
+ /* If required, minimize the register class. */
+ if (reg_class_subset_p (rld[output_reload].class,
+ rld[i].class))
+ rld[i].class = rld[output_reload].class;
+
+ /* Transfer all replacements from the old reload to the combined. */
+ for (j = 0; j < n_replacements; j++)
+ if (replacements[j].what == output_reload)
+ replacements[j].what = i;
+
+ return;
+ }
+
+ /* If this insn has only one operand that is modified or written (assumed
+ to be the first), it must be the one corresponding to this reload. It
+ is safe to use anything that dies in this insn for that output provided
+ that it does not occur in the output (we already know it isn't an
+ earlyclobber. If this is an asm insn, give up. */
+
+ /* APPLE LOCAL begin try destroyed input */
+#ifdef TARGET_POWERPC
+ try_destroyed_input:
+#endif
+ /* APPLE LOCAL end try destroyed input */
+ if (INSN_CODE (this_insn) == -1)
+ return;
+
+ for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
+ if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
+ || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
+ return;
+
+ /* See if some hard register that dies in this insn and is not used in
+ the output is the right class. Only works if the register we pick
+ up can fully hold our output reload. */
+ for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_DEAD
+ && REG_P (XEXP (note, 0))
+ && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
+ rld[output_reload].out)
+ && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
+ && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
+ REGNO (XEXP (note, 0)))
+ && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
+ <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
+ /* Ensure that a secondary or tertiary reload for this output
+ won't want this register. */
+ && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
+ || (! (TEST_HARD_REG_BIT
+ (reg_class_contents[(int) rld[secondary_out].class],
+ REGNO (XEXP (note, 0))))
+ && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
+ || ! (TEST_HARD_REG_BIT
+ (reg_class_contents[(int) rld[secondary_out].class],
+ REGNO (XEXP (note, 0)))))))
+ && ! fixed_regs[REGNO (XEXP (note, 0))]
+ /* Check that we don't use a hardreg for an uninitialized
+ pseudo. See also find_dummy_reload(). */
+ && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
+ || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
+ ORIGINAL_REGNO (XEXP (note, 0)))))
+ {
+ rld[output_reload].reg_rtx
+ = gen_rtx_REG (rld[output_reload].outmode,
+ REGNO (XEXP (note, 0)));
+ return;
+ }
+}
+
+/* Try to find a reload register for an in-out reload (expressions IN and OUT).
+ See if one of IN and OUT is a register that may be used;
+ this is desirable since a spill-register won't be needed.
+ If so, return the register rtx that proves acceptable.
+
+ INLOC and OUTLOC are locations where IN and OUT appear in the insn.
+ CLASS is the register class required for the reload.
+
+ If FOR_REAL is >= 0, it is the number of the reload,
+ and in some cases when it can be discovered that OUT doesn't need
+ to be computed, clear out rld[FOR_REAL].out.
+
+ If FOR_REAL is -1, this should not be done, because this call
+ is just to see if a register can be found, not to find and install it.
+
+ EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
+ puts an additional constraint on being able to use IN for OUT since
+ IN must not appear elsewhere in the insn (it is assumed that IN itself
+ is safe from the earlyclobber). */
+
+static rtx
+find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
+ enum machine_mode inmode, enum machine_mode outmode,
+ enum reg_class class, int for_real, int earlyclobber)
+{
+ rtx in = real_in;
+ rtx out = real_out;
+ int in_offset = 0;
+ int out_offset = 0;
+ rtx value = 0;
+
+ /* If operands exceed a word, we can't use either of them
+ unless they have the same size. */
+ if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
+ && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
+ || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
+ return 0;
+
+ /* Note that {in,out}_offset are needed only when 'in' or 'out'
+ respectively refers to a hard register. */
+
+ /* Find the inside of any subregs. */
+ while (GET_CODE (out) == SUBREG)
+ {
+ if (REG_P (SUBREG_REG (out))
+ && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
+ out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
+ GET_MODE (SUBREG_REG (out)),
+ SUBREG_BYTE (out),
+ GET_MODE (out));
+ out = SUBREG_REG (out);
+ }
+ while (GET_CODE (in) == SUBREG)
+ {
+ if (REG_P (SUBREG_REG (in))
+ && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
+ in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
+ GET_MODE (SUBREG_REG (in)),
+ SUBREG_BYTE (in),
+ GET_MODE (in));
+ in = SUBREG_REG (in);
+ }
+
+ /* Narrow down the reg class, the same way push_reload will;
+ otherwise we might find a dummy now, but push_reload won't. */
+ {
+ enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
+ if (preferred_class != NO_REGS)
+ class = preferred_class;
+ }
+
+ /* See if OUT will do. */
+ if (REG_P (out)
+ && REGNO (out) < FIRST_PSEUDO_REGISTER)
+ {
+ unsigned int regno = REGNO (out) + out_offset;
+ unsigned int nwords = hard_regno_nregs[regno][outmode];
+ rtx saved_rtx;
+
+ /* When we consider whether the insn uses OUT,
+ ignore references within IN. They don't prevent us
+ from copying IN into OUT, because those refs would
+ move into the insn that reloads IN.
+
+ However, we only ignore IN in its role as this reload.
+ If the insn uses IN elsewhere and it contains OUT,
+ that counts. We can't be sure it's the "same" operand
+ so it might not go through this reload. */
+ saved_rtx = *inloc;
+ *inloc = const0_rtx;
+
+ if (regno < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_MODE_OK (regno, outmode)
+ && ! refers_to_regno_for_reload_p (regno, regno + nwords,
+ PATTERN (this_insn), outloc))
+ {
+ unsigned int i;
+
+ for (i = 0; i < nwords; i++)
+ if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ regno + i))
+ break;
+
+ if (i == nwords)
+ {
+ if (REG_P (real_out))
+ value = real_out;
+ else
+ value = gen_rtx_REG (outmode, regno);
+ }
+ }
+
+ *inloc = saved_rtx;
+ }
+
+ /* Consider using IN if OUT was not acceptable
+ or if OUT dies in this insn (like the quotient in a divmod insn).
+ We can't use IN unless it is dies in this insn,
+ which means we must know accurately which hard regs are live.
+ Also, the result can't go in IN if IN is used within OUT,
+ or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
+ if (hard_regs_live_known
+ && REG_P (in)
+ && REGNO (in) < FIRST_PSEUDO_REGISTER
+ && (value == 0
+ || find_reg_note (this_insn, REG_UNUSED, real_out))
+ && find_reg_note (this_insn, REG_DEAD, real_in)
+ && !fixed_regs[REGNO (in)]
+ && HARD_REGNO_MODE_OK (REGNO (in),
+ /* The only case where out and real_out might
+ have different modes is where real_out
+ is a subreg, and in that case, out
+ has a real mode. */
+ (GET_MODE (out) != VOIDmode
+ ? GET_MODE (out) : outmode))
+ /* But only do all this if we can be sure, that this input
+ operand doesn't correspond with an uninitialized pseudoreg.
+ global can assign some hardreg to it, which is the same as
+ a different pseudo also currently live (as it can ignore the
+ conflict). So we never must introduce writes to such hardregs,
+ as they would clobber the other live pseudo using the same.
+ See also PR20973. */
+ && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
+ || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
+ ORIGINAL_REGNO (in))))
+ {
+ unsigned int regno = REGNO (in) + in_offset;
+ unsigned int nwords = hard_regno_nregs[regno][inmode];
+
+ if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
+ && ! hard_reg_set_here_p (regno, regno + nwords,
+ PATTERN (this_insn))
+ && (! earlyclobber
+ || ! refers_to_regno_for_reload_p (regno, regno + nwords,
+ PATTERN (this_insn), inloc)))
+ {
+ unsigned int i;
+
+ for (i = 0; i < nwords; i++)
+ if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ regno + i))
+ break;
+
+ if (i == nwords)
+ {
+ /* If we were going to use OUT as the reload reg
+ and changed our mind, it means OUT is a dummy that
+ dies here. So don't bother copying value to it. */
+ if (for_real >= 0 && value == real_out)
+ rld[for_real].out = 0;
+ if (REG_P (real_in))
+ value = real_in;
+ else
+ value = gen_rtx_REG (inmode, regno);
+ }
+ }
+ }
+
+ return value;
+}
+
+/* This page contains subroutines used mainly for determining
+ whether the IN or an OUT of a reload can serve as the
+ reload register. */
+
+/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
+
+int
+earlyclobber_operand_p (rtx x)
+{
+ int i;
+
+ for (i = 0; i < n_earlyclobbers; i++)
+ if (reload_earlyclobbers[i] == x)
+ return 1;
+
+ return 0;
+}
+
+/* Return 1 if expression X alters a hard reg in the range
+ from BEG_REGNO (inclusive) to END_REGNO (exclusive),
+ either explicitly or in the guise of a pseudo-reg allocated to REGNO.
+ X should be the body of an instruction. */
+
+static int
+hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
+{
+ if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
+ {
+ rtx op0 = SET_DEST (x);
+
+ while (GET_CODE (op0) == SUBREG)
+ op0 = SUBREG_REG (op0);
+ if (REG_P (op0))
+ {
+ unsigned int r = REGNO (op0);
+
+ /* See if this reg overlaps range under consideration. */
+ if (r < end_regno
+ && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
+ return 1;
+ }
+ }
+ else if (GET_CODE (x) == PARALLEL)
+ {
+ int i = XVECLEN (x, 0) - 1;
+
+ for (; i >= 0; i--)
+ if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Return 1 if ADDR is a valid memory address for mode MODE,
+ and check that each pseudo reg has the proper kind of
+ hard reg. */
+
+int
+strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
+{
+ GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
+ return 0;
+
+ win:
+ return 1;
+}
+
+/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
+ if they are the same hard reg, and has special hacks for
+ autoincrement and autodecrement.
+ This is specifically intended for find_reloads to use
+ in determining whether two operands match.
+ X is the operand whose number is the lower of the two.
+
+ The value is 2 if Y contains a pre-increment that matches
+ a non-incrementing address in X. */
+
+/* ??? To be completely correct, we should arrange to pass
+ for X the output operand and for Y the input operand.
+ For now, we assume that the output operand has the lower number
+ because that is natural in (SET output (... input ...)). */
+
+int
+operands_match_p (rtx x, rtx y)
+{
+ int i;
+ RTX_CODE code = GET_CODE (x);
+ const char *fmt;
+ int success_2;
+
+ if (x == y)
+ return 1;
+ if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
+ && (REG_P (y) || (GET_CODE (y) == SUBREG
+ && REG_P (SUBREG_REG (y)))))
+ {
+ int j;
+
+ if (code == SUBREG)
+ {
+ i = REGNO (SUBREG_REG (x));
+ if (i >= FIRST_PSEUDO_REGISTER)
+ goto slow;
+ i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
+ GET_MODE (SUBREG_REG (x)),
+ SUBREG_BYTE (x),
+ GET_MODE (x));
+ }
+ else
+ i = REGNO (x);
+
+ if (GET_CODE (y) == SUBREG)
+ {
+ j = REGNO (SUBREG_REG (y));
+ if (j >= FIRST_PSEUDO_REGISTER)
+ goto slow;
+ j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
+ GET_MODE (SUBREG_REG (y)),
+ SUBREG_BYTE (y),
+ GET_MODE (y));
+ }
+ else
+ j = REGNO (y);
+
+ /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
+ multiple hard register group of scalar integer registers, so that
+ for example (reg:DI 0) and (reg:SI 1) will be considered the same
+ register. */
+ if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
+ && SCALAR_INT_MODE_P (GET_MODE (x))
+ && i < FIRST_PSEUDO_REGISTER)
+ i += hard_regno_nregs[i][GET_MODE (x)] - 1;
+ if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
+ && SCALAR_INT_MODE_P (GET_MODE (y))
+ && j < FIRST_PSEUDO_REGISTER)
+ j += hard_regno_nregs[j][GET_MODE (y)] - 1;
+
+ return i == j;
+ }
+ /* If two operands must match, because they are really a single
+ operand of an assembler insn, then two postincrements are invalid
+ because the assembler insn would increment only once.
+ On the other hand, a postincrement matches ordinary indexing
+ if the postincrement is the output operand. */
+ if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
+ return operands_match_p (XEXP (x, 0), y);
+ /* Two preincrements are invalid
+ because the assembler insn would increment only once.
+ On the other hand, a preincrement matches ordinary indexing
+ if the preincrement is the input operand.
+ In this case, return 2, since some callers need to do special
+ things when this happens. */
+ if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
+ || GET_CODE (y) == PRE_MODIFY)
+ return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
+
+ slow:
+
+ /* Now we have disposed of all the cases in which different rtx codes
+ can match. */
+ if (code != GET_CODE (y))
+ return 0;
+
+ /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
+ if (GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST_DOUBLE:
+ return 0;
+
+ case LABEL_REF:
+ return XEXP (x, 0) == XEXP (y, 0);
+ case SYMBOL_REF:
+ return XSTR (x, 0) == XSTR (y, 0);
+
+ default:
+ break;
+ }
+
+ /* Compare the elements. If any pair of corresponding elements
+ fail to match, return 0 for the whole things. */
+
+ success_2 = 0;
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ int val, j;
+ switch (fmt[i])
+ {
+ case 'w':
+ if (XWINT (x, i) != XWINT (y, i))
+ return 0;
+ break;
+
+ case 'i':
+ if (XINT (x, i) != XINT (y, i))
+ return 0;
+ break;
+
+ case 'e':
+ val = operands_match_p (XEXP (x, i), XEXP (y, i));
+ if (val == 0)
+ return 0;
+ /* If any subexpression returns 2,
+ we should return 2 if we are successful. */
+ if (val == 2)
+ success_2 = 1;
+ break;
+
+ case '0':
+ break;
+
+ case 'E':
+ if (XVECLEN (x, i) != XVECLEN (y, i))
+ return 0;
+ for (j = XVECLEN (x, i) - 1; j >= 0; --j)
+ {
+ val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
+ if (val == 0)
+ return 0;
+ if (val == 2)
+ success_2 = 1;
+ }
+ break;
+
+ /* It is believed that rtx's at this level will never
+ contain anything but integers and other rtx's,
+ except for within LABEL_REFs and SYMBOL_REFs. */
+ default:
+ gcc_unreachable ();
+ }
+ }
+ return 1 + success_2;
+}
+
+/* Describe the range of registers or memory referenced by X.
+ If X is a register, set REG_FLAG and put the first register
+ number into START and the last plus one into END.
+ If X is a memory reference, put a base address into BASE
+ and a range of integer offsets into START and END.
+ If X is pushing on the stack, we can assume it causes no trouble,
+ so we set the SAFE field. */
+
+static struct decomposition
+decompose (rtx x)
+{
+ struct decomposition val;
+ int all_const = 0;
+
+ memset (&val, 0, sizeof (val));
+
+ switch (GET_CODE (x))
+ {
+ case MEM:
+ {
+ rtx base = NULL_RTX, offset = 0;
+ rtx addr = XEXP (x, 0);
+
+ if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
+ || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
+ {
+ val.base = XEXP (addr, 0);
+ val.start = -GET_MODE_SIZE (GET_MODE (x));
+ val.end = GET_MODE_SIZE (GET_MODE (x));
+ val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
+ return val;
+ }
+
+ if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
+ {
+ if (GET_CODE (XEXP (addr, 1)) == PLUS
+ && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
+ && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
+ {
+ val.base = XEXP (addr, 0);
+ val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
+ val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
+ val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
+ return val;
+ }
+ }
+
+ if (GET_CODE (addr) == CONST)
+ {
+ addr = XEXP (addr, 0);
+ all_const = 1;
+ }
+ if (GET_CODE (addr) == PLUS)
+ {
+ if (CONSTANT_P (XEXP (addr, 0)))
+ {
+ base = XEXP (addr, 1);
+ offset = XEXP (addr, 0);
+ }
+ else if (CONSTANT_P (XEXP (addr, 1)))
+ {
+ base = XEXP (addr, 0);
+ offset = XEXP (addr, 1);
+ }
+ }
+
+ if (offset == 0)
+ {
+ base = addr;
+ offset = const0_rtx;
+ }
+ if (GET_CODE (offset) == CONST)
+ offset = XEXP (offset, 0);
+ if (GET_CODE (offset) == PLUS)
+ {
+ if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
+ {
+ base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
+ offset = XEXP (offset, 0);
+ }
+ else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
+ {
+ base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
+ offset = XEXP (offset, 1);
+ }
+ else
+ {
+ base = gen_rtx_PLUS (GET_MODE (base), base, offset);
+ offset = const0_rtx;
+ }
+ }
+ else if (GET_CODE (offset) != CONST_INT)
+ {
+ base = gen_rtx_PLUS (GET_MODE (base), base, offset);
+ offset = const0_rtx;
+ }
+
+ if (all_const && GET_CODE (base) == PLUS)
+ base = gen_rtx_CONST (GET_MODE (base), base);
+
+ gcc_assert (GET_CODE (offset) == CONST_INT);
+
+ val.start = INTVAL (offset);
+ val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
+ val.base = base;
+ }
+ break;
+
+ case REG:
+ val.reg_flag = 1;
+ val.start = true_regnum (x);
+ if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
+ {
+ /* A pseudo with no hard reg. */
+ val.start = REGNO (x);
+ val.end = val.start + 1;
+ }
+ else
+ /* A hard reg. */
+ val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
+ break;
+
+ case SUBREG:
+ if (!REG_P (SUBREG_REG (x)))
+ /* This could be more precise, but it's good enough. */
+ return decompose (SUBREG_REG (x));
+ val.reg_flag = 1;
+ val.start = true_regnum (x);
+ if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
+ return decompose (SUBREG_REG (x));
+ else
+ /* A hard reg. */
+ val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
+ break;
+
+ case SCRATCH:
+ /* This hasn't been assigned yet, so it can't conflict yet. */
+ val.safe = 1;
+ break;
+
+ default:
+ gcc_assert (CONSTANT_P (x));
+ val.safe = 1;
+ break;
+ }
+ return val;
+}
+
+/* Return 1 if altering Y will not modify the value of X.
+ Y is also described by YDATA, which should be decompose (Y). */
+
+static int
+immune_p (rtx x, rtx y, struct decomposition ydata)
+{
+ struct decomposition xdata;
+
+ if (ydata.reg_flag)
+ return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
+ if (ydata.safe)
+ return 1;
+
+ gcc_assert (MEM_P (y));
+ /* If Y is memory and X is not, Y can't affect X. */
+ if (!MEM_P (x))
+ return 1;
+
+ xdata = decompose (x);
+
+ if (! rtx_equal_p (xdata.base, ydata.base))
+ {
+ /* If bases are distinct symbolic constants, there is no overlap. */
+ if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
+ return 1;
+ /* Constants and stack slots never overlap. */
+ if (CONSTANT_P (xdata.base)
+ && (ydata.base == frame_pointer_rtx
+ || ydata.base == hard_frame_pointer_rtx
+ || ydata.base == stack_pointer_rtx))
+ return 1;
+ if (CONSTANT_P (ydata.base)
+ && (xdata.base == frame_pointer_rtx
+ || xdata.base == hard_frame_pointer_rtx
+ || xdata.base == stack_pointer_rtx))
+ return 1;
+ /* If either base is variable, we don't know anything. */
+ return 0;
+ }
+
+ return (xdata.start >= ydata.end || ydata.start >= xdata.end);
+}
+
+/* Similar, but calls decompose. */
+
+int
+safe_from_earlyclobber (rtx op, rtx clobber)
+{
+ struct decomposition early_data;
+
+ early_data = decompose (clobber);
+ return immune_p (op, clobber, early_data);
+}
+
+/* Main entry point of this file: search the body of INSN
+ for values that need reloading and record them with push_reload.
+ REPLACE nonzero means record also where the values occur
+ so that subst_reloads can be used.
+
+ IND_LEVELS says how many levels of indirection are supported by this
+ machine; a value of zero means that a memory reference is not a valid
+ memory address.
+
+ LIVE_KNOWN says we have valid information about which hard
+ regs are live at each point in the program; this is true when
+ we are called from global_alloc but false when stupid register
+ allocation has been done.
+
+ RELOAD_REG_P if nonzero is a vector indexed by hard reg number
+ which is nonnegative if the reg has been commandeered for reloading into.
+ It is copied into STATIC_RELOAD_REG_P and referenced from there
+ by various subroutines.
+
+ Return TRUE if some operands need to be changed, because of swapping
+ commutative operands, reg_equiv_address substitution, or whatever. */
+
+int
+find_reloads (rtx insn, int replace, int ind_levels, int live_known,
+ short *reload_reg_p)
+{
+ int insn_code_number;
+ int i, j;
+ int noperands;
+ /* These start out as the constraints for the insn
+ and they are chewed up as we consider alternatives. */
+ char *constraints[MAX_RECOG_OPERANDS];
+ /* These are the preferred classes for an operand, or NO_REGS if it isn't
+ a register. */
+ enum reg_class preferred_class[MAX_RECOG_OPERANDS];
+ char pref_or_nothing[MAX_RECOG_OPERANDS];
+ /* Nonzero for a MEM operand whose entire address needs a reload.
+ May be -1 to indicate the entire address may or may not need a reload. */
+ int address_reloaded[MAX_RECOG_OPERANDS];
+ /* Nonzero for an address operand that needs to be completely reloaded.
+ May be -1 to indicate the entire operand may or may not need a reload. */
+ int address_operand_reloaded[MAX_RECOG_OPERANDS];
+ /* Value of enum reload_type to use for operand. */
+ enum reload_type operand_type[MAX_RECOG_OPERANDS];
+ /* Value of enum reload_type to use within address of operand. */
+ enum reload_type address_type[MAX_RECOG_OPERANDS];
+ /* Save the usage of each operand. */
+ enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
+ int no_input_reloads = 0, no_output_reloads = 0;
+ int n_alternatives;
+ int this_alternative[MAX_RECOG_OPERANDS];
+ char this_alternative_match_win[MAX_RECOG_OPERANDS];
+ char this_alternative_win[MAX_RECOG_OPERANDS];
+ char this_alternative_offmemok[MAX_RECOG_OPERANDS];
+ char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
+ int this_alternative_matches[MAX_RECOG_OPERANDS];
+ int swapped;
+ int goal_alternative[MAX_RECOG_OPERANDS];
+ int this_alternative_number;
+ int goal_alternative_number = 0;
+ int operand_reloadnum[MAX_RECOG_OPERANDS];
+ int goal_alternative_matches[MAX_RECOG_OPERANDS];
+ int goal_alternative_matched[MAX_RECOG_OPERANDS];
+ char goal_alternative_match_win[MAX_RECOG_OPERANDS];
+ char goal_alternative_win[MAX_RECOG_OPERANDS];
+ char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
+ char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
+ int goal_alternative_swapped;
+ int best;
+ int commutative;
+ char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
+ rtx substed_operand[MAX_RECOG_OPERANDS];
+ rtx body = PATTERN (insn);
+ rtx set = single_set (insn);
+ int goal_earlyclobber = 0, this_earlyclobber;
+ enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
+ int retval = 0;
+
+ this_insn = insn;
+ n_reloads = 0;
+ n_replacements = 0;
+ n_earlyclobbers = 0;
+ replace_reloads = replace;
+ hard_regs_live_known = live_known;
+ static_reload_reg_p = reload_reg_p;
+
+ /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
+ neither are insns that SET cc0. Insns that use CC0 are not allowed
+ to have any input reloads. */
+ if (JUMP_P (insn) || CALL_P (insn))
+ no_output_reloads = 1;
+
+#ifdef HAVE_cc0
+ if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
+ no_input_reloads = 1;
+ if (reg_set_p (cc0_rtx, PATTERN (insn)))
+ no_output_reloads = 1;
+#endif
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* The eliminated forms of any secondary memory locations are per-insn, so
+ clear them out here. */
+
+ if (secondary_memlocs_elim_used)
+ {
+ memset (secondary_memlocs_elim, 0,
+ sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
+ secondary_memlocs_elim_used = 0;
+ }
+#endif
+
+ /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
+ is cheap to move between them. If it is not, there may not be an insn
+ to do the copy, so we may need a reload. */
+ if (GET_CODE (body) == SET
+ && REG_P (SET_DEST (body))
+ && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
+ && REG_P (SET_SRC (body))
+ && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
+ && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
+ REGNO_REG_CLASS (REGNO (SET_SRC (body))),
+ REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
+ return 0;
+
+ extract_insn (insn);
+
+ noperands = reload_n_operands = recog_data.n_operands;
+ n_alternatives = recog_data.n_alternatives;
+
+ /* Just return "no reloads" if insn has no operands with constraints. */
+ if (noperands == 0 || n_alternatives == 0)
+ return 0;
+
+ insn_code_number = INSN_CODE (insn);
+ this_insn_is_asm = insn_code_number < 0;
+
+ memcpy (operand_mode, recog_data.operand_mode,
+ noperands * sizeof (enum machine_mode));
+ memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
+
+ commutative = -1;
+
+ /* If we will need to know, later, whether some pair of operands
+ are the same, we must compare them now and save the result.
+ Reloading the base and index registers will clobber them
+ and afterward they will fail to match. */
+
+ for (i = 0; i < noperands; i++)
+ {
+ char *p;
+ int c;
+
+ substed_operand[i] = recog_data.operand[i];
+ p = constraints[i];
+
+ modified[i] = RELOAD_READ;
+
+ /* Scan this operand's constraint to see if it is an output operand,
+ an in-out operand, is commutative, or should match another. */
+
+ while ((c = *p))
+ {
+ p += CONSTRAINT_LEN (c, p);
+ switch (c)
+ {
+ case '=':
+ modified[i] = RELOAD_WRITE;
+ break;
+ case '+':
+ modified[i] = RELOAD_READ_WRITE;
+ break;
+ case '%':
+ {
+ /* The last operand should not be marked commutative. */
+ gcc_assert (i != noperands - 1);
+
+ /* We currently only support one commutative pair of
+ operands. Some existing asm code currently uses more
+ than one pair. Previously, that would usually work,
+ but sometimes it would crash the compiler. We
+ continue supporting that case as well as we can by
+ silently ignoring all but the first pair. In the
+ future we may handle it correctly. */
+ if (commutative < 0)
+ commutative = i;
+ else
+ gcc_assert (this_insn_is_asm);
+ }
+ break;
+ /* Use of ISDIGIT is tempting here, but it may get expensive because
+ of locale support we don't want. */
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ c = strtoul (p - 1, &p, 10);
+
+ operands_match[c][i]
+ = operands_match_p (recog_data.operand[c],
+ recog_data.operand[i]);
+
+ /* An operand may not match itself. */
+ gcc_assert (c != i);
+
+ /* If C can be commuted with C+1, and C might need to match I,
+ then C+1 might also need to match I. */
+ if (commutative >= 0)
+ {
+ if (c == commutative || c == commutative + 1)
+ {
+ int other = c + (c == commutative ? 1 : -1);
+ operands_match[other][i]
+ = operands_match_p (recog_data.operand[other],
+ recog_data.operand[i]);
+ }
+ if (i == commutative || i == commutative + 1)
+ {
+ int other = i + (i == commutative ? 1 : -1);
+ operands_match[c][other]
+ = operands_match_p (recog_data.operand[c],
+ recog_data.operand[other]);
+ }
+ /* Note that C is supposed to be less than I.
+ No need to consider altering both C and I because in
+ that case we would alter one into the other. */
+ }
+ }
+ }
+ }
+ }
+
+ /* Examine each operand that is a memory reference or memory address
+ and reload parts of the addresses into index registers.
+ Also here any references to pseudo regs that didn't get hard regs
+ but are equivalent to constants get replaced in the insn itself
+ with those constants. Nobody will ever see them again.
+
+ Finally, set up the preferred classes of each operand. */
+
+ for (i = 0; i < noperands; i++)
+ {
+ RTX_CODE code = GET_CODE (recog_data.operand[i]);
+
+ address_reloaded[i] = 0;
+ address_operand_reloaded[i] = 0;
+ operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
+ : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
+ : RELOAD_OTHER);
+ address_type[i]
+ = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
+ : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
+ : RELOAD_OTHER);
+
+ if (*constraints[i] == 0)
+ /* Ignore things like match_operator operands. */
+ ;
+ else if (constraints[i][0] == 'p'
+ || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
+ {
+ address_operand_reloaded[i]
+ = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
+ recog_data.operand[i],
+ recog_data.operand_loc[i],
+ i, operand_type[i], ind_levels, insn);
+
+ /* If we now have a simple operand where we used to have a
+ PLUS or MULT, re-recognize and try again. */
+ if ((OBJECT_P (*recog_data.operand_loc[i])
+ || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
+ && (GET_CODE (recog_data.operand[i]) == MULT
+ || GET_CODE (recog_data.operand[i]) == PLUS))
+ {
+ INSN_CODE (insn) = -1;
+ retval = find_reloads (insn, replace, ind_levels, live_known,
+ reload_reg_p);
+ return retval;
+ }
+
+ recog_data.operand[i] = *recog_data.operand_loc[i];
+ substed_operand[i] = recog_data.operand[i];
+
+ /* Address operands are reloaded in their existing mode,
+ no matter what is specified in the machine description. */
+ operand_mode[i] = GET_MODE (recog_data.operand[i]);
+ }
+ else if (code == MEM)
+ {
+ address_reloaded[i]
+ = find_reloads_address (GET_MODE (recog_data.operand[i]),
+ recog_data.operand_loc[i],
+ XEXP (recog_data.operand[i], 0),
+ &XEXP (recog_data.operand[i], 0),
+ i, address_type[i], ind_levels, insn);
+ recog_data.operand[i] = *recog_data.operand_loc[i];
+ substed_operand[i] = recog_data.operand[i];
+ }
+ else if (code == SUBREG)
+ {
+ rtx reg = SUBREG_REG (recog_data.operand[i]);
+ rtx op
+ = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
+ ind_levels,
+ set != 0
+ && &SET_DEST (set) == recog_data.operand_loc[i],
+ insn,
+ &address_reloaded[i]);
+
+ /* If we made a MEM to load (a part of) the stackslot of a pseudo
+ that didn't get a hard register, emit a USE with a REG_EQUAL
+ note in front so that we might inherit a previous, possibly
+ wider reload. */
+
+ if (replace
+ && MEM_P (op)
+ && REG_P (reg)
+ && (GET_MODE_SIZE (GET_MODE (reg))
+ >= GET_MODE_SIZE (GET_MODE (op))))
+ set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
+ insn),
+ REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
+
+ substed_operand[i] = recog_data.operand[i] = op;
+ }
+ else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
+ /* We can get a PLUS as an "operand" as a result of register
+ elimination. See eliminate_regs and gen_reload. We handle
+ a unary operator by reloading the operand. */
+ substed_operand[i] = recog_data.operand[i]
+ = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
+ ind_levels, 0, insn,
+ &address_reloaded[i]);
+ else if (code == REG)
+ {
+ /* This is equivalent to calling find_reloads_toplev.
+ The code is duplicated for speed.
+ When we find a pseudo always equivalent to a constant,
+ we replace it by the constant. We must be sure, however,
+ that we don't try to replace it in the insn in which it
+ is being set. */
+ int regno = REGNO (recog_data.operand[i]);
+ if (reg_equiv_constant[regno] != 0
+ && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
+ {
+ /* Record the existing mode so that the check if constants are
+ allowed will work when operand_mode isn't specified. */
+
+ if (operand_mode[i] == VOIDmode)
+ operand_mode[i] = GET_MODE (recog_data.operand[i]);
+
+ substed_operand[i] = recog_data.operand[i]
+ = reg_equiv_constant[regno];
+ }
+ if (reg_equiv_memory_loc[regno] != 0
+ && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
+ /* We need not give a valid is_set_dest argument since the case
+ of a constant equivalence was checked above. */
+ substed_operand[i] = recog_data.operand[i]
+ = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
+ ind_levels, 0, insn,
+ &address_reloaded[i]);
+ }
+ /* If the operand is still a register (we didn't replace it with an
+ equivalent), get the preferred class to reload it into. */
+ code = GET_CODE (recog_data.operand[i]);
+ preferred_class[i]
+ = ((code == REG && REGNO (recog_data.operand[i])
+ >= FIRST_PSEUDO_REGISTER)
+ ? reg_preferred_class (REGNO (recog_data.operand[i]))
+ : NO_REGS);
+ pref_or_nothing[i]
+ = (code == REG
+ && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
+ && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
+ }
+
+ /* If this is simply a copy from operand 1 to operand 0, merge the
+ preferred classes for the operands. */
+ if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
+ && recog_data.operand[1] == SET_SRC (set))
+ {
+ preferred_class[0] = preferred_class[1]
+ = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
+ pref_or_nothing[0] |= pref_or_nothing[1];
+ pref_or_nothing[1] |= pref_or_nothing[0];
+ }
+
+ /* Now see what we need for pseudo-regs that didn't get hard regs
+ or got the wrong kind of hard reg. For this, we must consider
+ all the operands together against the register constraints. */
+
+ best = MAX_RECOG_OPERANDS * 2 + 600;
+
+ swapped = 0;
+ goal_alternative_swapped = 0;
+ try_swapped:
+
+ /* The constraints are made of several alternatives.
+ Each operand's constraint looks like foo,bar,... with commas
+ separating the alternatives. The first alternatives for all
+ operands go together, the second alternatives go together, etc.
+
+ First loop over alternatives. */
+
+ for (this_alternative_number = 0;
+ this_alternative_number < n_alternatives;
+ this_alternative_number++)
+ {
+ /* Loop over operands for one constraint alternative. */
+ /* LOSERS counts those that don't fit this alternative
+ and would require loading. */
+ int losers = 0;
+ /* BAD is set to 1 if it some operand can't fit this alternative
+ even after reloading. */
+ int bad = 0;
+ /* REJECT is a count of how undesirable this alternative says it is
+ if any reloading is required. If the alternative matches exactly
+ then REJECT is ignored, but otherwise it gets this much
+ counted against it in addition to the reloading needed. Each
+ ? counts three times here since we want the disparaging caused by
+ a bad register class to only count 1/3 as much. */
+ int reject = 0;
+
+ this_earlyclobber = 0;
+
+ for (i = 0; i < noperands; i++)
+ {
+ char *p = constraints[i];
+ char *end;
+ int len;
+ int win = 0;
+ int did_match = 0;
+ /* 0 => this operand can be reloaded somehow for this alternative. */
+ int badop = 1;
+ /* 0 => this operand can be reloaded if the alternative allows regs. */
+ int winreg = 0;
+ int c;
+ int m;
+ rtx operand = recog_data.operand[i];
+ int offset = 0;
+ /* Nonzero means this is a MEM that must be reloaded into a reg
+ regardless of what the constraint says. */
+ int force_reload = 0;
+ int offmemok = 0;
+ /* Nonzero if a constant forced into memory would be OK for this
+ operand. */
+ int constmemok = 0;
+ int earlyclobber = 0;
+
+ /* If the predicate accepts a unary operator, it means that
+ we need to reload the operand, but do not do this for
+ match_operator and friends. */
+ if (UNARY_P (operand) && *p != 0)
+ operand = XEXP (operand, 0);
+
+ /* If the operand is a SUBREG, extract
+ the REG or MEM (or maybe even a constant) within.
+ (Constants can occur as a result of reg_equiv_constant.) */
+
+ while (GET_CODE (operand) == SUBREG)
+ {
+ /* Offset only matters when operand is a REG and
+ it is a hard reg. This is because it is passed
+ to reg_fits_class_p if it is a REG and all pseudos
+ return 0 from that function. */
+ if (REG_P (SUBREG_REG (operand))
+ && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
+ {
+ if (!subreg_offset_representable_p
+ (REGNO (SUBREG_REG (operand)),
+ GET_MODE (SUBREG_REG (operand)),
+ SUBREG_BYTE (operand),
+ GET_MODE (operand)))
+ force_reload = 1;
+ offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
+ GET_MODE (SUBREG_REG (operand)),
+ SUBREG_BYTE (operand),
+ GET_MODE (operand));
+ }
+ operand = SUBREG_REG (operand);
+ /* Force reload if this is a constant or PLUS or if there may
+ be a problem accessing OPERAND in the outer mode. */
+ if (CONSTANT_P (operand)
+ || GET_CODE (operand) == PLUS
+ /* We must force a reload of paradoxical SUBREGs
+ of a MEM because the alignment of the inner value
+ may not be enough to do the outer reference. On
+ big-endian machines, it may also reference outside
+ the object.
+
+ On machines that extend byte operations and we have a
+ SUBREG where both the inner and outer modes are no wider
+ than a word and the inner mode is narrower, is integral,
+ and gets extended when loaded from memory, combine.c has
+ made assumptions about the behavior of the machine in such
+ register access. If the data is, in fact, in memory we
+ must always load using the size assumed to be in the
+ register and let the insn do the different-sized
+ accesses.
+
+ This is doubly true if WORD_REGISTER_OPERATIONS. In
+ this case eliminate_regs has left non-paradoxical
+ subregs for push_reload to see. Make sure it does
+ by forcing the reload.
+
+ ??? When is it right at this stage to have a subreg
+ of a mem that is _not_ to be handled specially? IMO
+ those should have been reduced to just a mem. */
+ || ((MEM_P (operand)
+ || (REG_P (operand)
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
+#ifndef WORD_REGISTER_OPERATIONS
+ && (((GET_MODE_BITSIZE (GET_MODE (operand))
+ < BIGGEST_ALIGNMENT)
+ && (GET_MODE_SIZE (operand_mode[i])
+ > GET_MODE_SIZE (GET_MODE (operand))))
+ || BYTES_BIG_ENDIAN
+#ifdef LOAD_EXTEND_OP
+ || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (operand))
+ <= UNITS_PER_WORD)
+ && (GET_MODE_SIZE (operand_mode[i])
+ > GET_MODE_SIZE (GET_MODE (operand)))
+ && INTEGRAL_MODE_P (GET_MODE (operand))
+ && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
+#endif
+ )
+#endif
+ )
+ )
+ force_reload = 1;
+ }
+
+ this_alternative[i] = (int) NO_REGS;
+ this_alternative_win[i] = 0;
+ this_alternative_match_win[i] = 0;
+ this_alternative_offmemok[i] = 0;
+ this_alternative_earlyclobber[i] = 0;
+ this_alternative_matches[i] = -1;
+
+ /* An empty constraint or empty alternative
+ allows anything which matched the pattern. */
+ if (*p == 0 || *p == ',')
+ win = 1, badop = 0;
+
+ /* Scan this alternative's specs for this operand;
+ set WIN if the operand fits any letter in this alternative.
+ Otherwise, clear BADOP if this operand could
+ fit some letter after reloads,
+ or set WINREG if this operand could fit after reloads
+ provided the constraint allows some registers. */
+
+ do
+ switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
+ {
+ case '\0':
+ len = 0;
+ break;
+ case ',':
+ c = '\0';
+ break;
+
+ case '=': case '+': case '*':
+ break;
+
+ case '%':
+ /* We only support one commutative marker, the first
+ one. We already set commutative above. */
+ break;
+
+ case '?':
+ reject += 6;
+ break;
+
+ case '!':
+ reject = 600;
+ break;
+
+ case '#':
+ /* Ignore rest of this alternative as far as
+ reloading is concerned. */
+ do
+ p++;
+ while (*p && *p != ',');
+ len = 0;
+ break;
+
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ m = strtoul (p, &end, 10);
+ p = end;
+ len = 0;
+
+ this_alternative_matches[i] = m;
+ /* We are supposed to match a previous operand.
+ If we do, we win if that one did.
+ If we do not, count both of the operands as losers.
+ (This is too conservative, since most of the time
+ only a single reload insn will be needed to make
+ the two operands win. As a result, this alternative
+ may be rejected when it is actually desirable.) */
+ if ((swapped && (m != commutative || i != commutative + 1))
+ /* If we are matching as if two operands were swapped,
+ also pretend that operands_match had been computed
+ with swapped.
+ But if I is the second of those and C is the first,
+ don't exchange them, because operands_match is valid
+ only on one side of its diagonal. */
+ ? (operands_match
+ [(m == commutative || m == commutative + 1)
+ ? 2 * commutative + 1 - m : m]
+ [(i == commutative || i == commutative + 1)
+ ? 2 * commutative + 1 - i : i])
+ : operands_match[m][i])
+ {
+ /* If we are matching a non-offsettable address where an
+ offsettable address was expected, then we must reject
+ this combination, because we can't reload it. */
+ if (this_alternative_offmemok[m]
+ && MEM_P (recog_data.operand[m])
+ && this_alternative[m] == (int) NO_REGS
+ && ! this_alternative_win[m])
+ bad = 1;
+
+ did_match = this_alternative_win[m];
+ }
+ else
+ {
+ /* Operands don't match. */
+ rtx value;
+ int loc1, loc2;
+ /* Retroactively mark the operand we had to match
+ as a loser, if it wasn't already. */
+ if (this_alternative_win[m])
+ losers++;
+ this_alternative_win[m] = 0;
+ if (this_alternative[m] == (int) NO_REGS)
+ bad = 1;
+ /* But count the pair only once in the total badness of
+ this alternative, if the pair can be a dummy reload.
+ The pointers in operand_loc are not swapped; swap
+ them by hand if necessary. */
+ if (swapped && i == commutative)
+ loc1 = commutative + 1;
+ else if (swapped && i == commutative + 1)
+ loc1 = commutative;
+ else
+ loc1 = i;
+ if (swapped && m == commutative)
+ loc2 = commutative + 1;
+ else if (swapped && m == commutative + 1)
+ loc2 = commutative;
+ else
+ loc2 = m;
+ value
+ = find_dummy_reload (recog_data.operand[i],
+ recog_data.operand[m],
+ recog_data.operand_loc[loc1],
+ recog_data.operand_loc[loc2],
+ operand_mode[i], operand_mode[m],
+ this_alternative[m], -1,
+ this_alternative_earlyclobber[m]);
+
+ if (value != 0)
+ losers--;
+ }
+ /* This can be fixed with reloads if the operand
+ we are supposed to match can be fixed with reloads. */
+ badop = 0;
+ this_alternative[i] = this_alternative[m];
+
+ /* If we have to reload this operand and some previous
+ operand also had to match the same thing as this
+ operand, we don't know how to do that. So reject this
+ alternative. */
+ if (! did_match || force_reload)
+ for (j = 0; j < i; j++)
+ if (this_alternative_matches[j]
+ == this_alternative_matches[i])
+ badop = 1;
+ break;
+
+ case 'p':
+ /* All necessary reloads for an address_operand
+ were handled in find_reloads_address. */
+ this_alternative[i]
+ = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
+ win = 1;
+ badop = 0;
+ break;
+
+ case 'm':
+ if (force_reload)
+ break;
+ if (MEM_P (operand)
+ || (REG_P (operand)
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (operand)] < 0))
+ win = 1;
+ if (CONST_POOL_OK_P (operand))
+ badop = 0;
+ constmemok = 1;
+ break;
+
+ case '<':
+ if (MEM_P (operand)
+ && ! address_reloaded[i]
+ && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
+ || GET_CODE (XEXP (operand, 0)) == POST_DEC))
+ win = 1;
+ break;
+
+ case '>':
+ if (MEM_P (operand)
+ && ! address_reloaded[i]
+ && (GET_CODE (XEXP (operand, 0)) == PRE_INC
+ || GET_CODE (XEXP (operand, 0)) == POST_INC))
+ win = 1;
+ break;
+
+ /* Memory operand whose address is not offsettable. */
+ case 'V':
+ if (force_reload)
+ break;
+ if (MEM_P (operand)
+ && ! (ind_levels ? offsettable_memref_p (operand)
+ : offsettable_nonstrict_memref_p (operand))
+ /* Certain mem addresses will become offsettable
+ after they themselves are reloaded. This is important;
+ we don't want our own handling of unoffsettables
+ to override the handling of reg_equiv_address. */
+ && !(REG_P (XEXP (operand, 0))
+ && (ind_levels == 0
+ || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
+ win = 1;
+ break;
+
+ /* Memory operand whose address is offsettable. */
+ case 'o':
+ if (force_reload)
+ break;
+ if ((MEM_P (operand)
+ /* If IND_LEVELS, find_reloads_address won't reload a
+ pseudo that didn't get a hard reg, so we have to
+ reject that case. */
+ && ((ind_levels ? offsettable_memref_p (operand)
+ : offsettable_nonstrict_memref_p (operand))
+ /* A reloaded address is offsettable because it is now
+ just a simple register indirect. */
+ || address_reloaded[i] == 1))
+ || (REG_P (operand)
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (operand)] < 0
+ /* If reg_equiv_address is nonzero, we will be
+ loading it into a register; hence it will be
+ offsettable, but we cannot say that reg_equiv_mem
+ is offsettable without checking. */
+ && ((reg_equiv_mem[REGNO (operand)] != 0
+ && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
+ || (reg_equiv_address[REGNO (operand)] != 0))))
+ win = 1;
+ if (CONST_POOL_OK_P (operand)
+ || MEM_P (operand))
+ badop = 0;
+ constmemok = 1;
+ offmemok = 1;
+ break;
+
+ case '&':
+ /* Output operand that is stored before the need for the
+ input operands (and their index registers) is over. */
+ earlyclobber = 1, this_earlyclobber = 1;
+ break;
+
+ case 'E':
+ case 'F':
+ if (GET_CODE (operand) == CONST_DOUBLE
+ || (GET_CODE (operand) == CONST_VECTOR
+ && (GET_MODE_CLASS (GET_MODE (operand))
+ == MODE_VECTOR_FLOAT)))
+ win = 1;
+ break;
+
+ case 'G':
+ case 'H':
+ if (GET_CODE (operand) == CONST_DOUBLE
+ && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
+ win = 1;
+ break;
+
+ case 's':
+ if (GET_CODE (operand) == CONST_INT
+ || (GET_CODE (operand) == CONST_DOUBLE
+ && GET_MODE (operand) == VOIDmode))
+ break;
+ case 'i':
+ if (CONSTANT_P (operand)
+ /* APPLE LOCAL ARM -mdynamic-no-pic support */
+ && LEGITIMATE_INDIRECT_OPERAND_P (operand))
+ win = 1;
+ break;
+
+ case 'n':
+ if (GET_CODE (operand) == CONST_INT
+ || (GET_CODE (operand) == CONST_DOUBLE
+ && GET_MODE (operand) == VOIDmode))
+ win = 1;
+ break;
+
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ if (GET_CODE (operand) == CONST_INT
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
+ win = 1;
+ break;
+
+ case 'X':
+ force_reload = 0;
+ win = 1;
+ break;
+
+ case 'g':
+ if (! force_reload
+ /* A PLUS is never a valid operand, but reload can make
+ it from a register when eliminating registers. */
+ && GET_CODE (operand) != PLUS
+ /* A SCRATCH is not a valid operand. */
+ && GET_CODE (operand) != SCRATCH
+ && (! CONSTANT_P (operand)
+ /* APPLE LOCAL ARM -mdynamic-no-pic support */
+ || LEGITIMATE_INDIRECT_OPERAND_P (operand))
+ && (GENERAL_REGS == ALL_REGS
+ || !REG_P (operand)
+ || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (operand)] < 0)))
+ win = 1;
+ /* Drop through into 'r' case. */
+
+ case 'r':
+ this_alternative[i]
+ = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
+ goto reg;
+
+ default:
+ if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
+ {
+#ifdef EXTRA_CONSTRAINT_STR
+ if (EXTRA_MEMORY_CONSTRAINT (c, p))
+ {
+ if (force_reload)
+ break;
+ if (EXTRA_CONSTRAINT_STR (operand, c, p))
+ win = 1;
+ /* If the address was already reloaded,
+ we win as well. */
+ else if (MEM_P (operand)
+ && address_reloaded[i] == 1)
+ win = 1;
+ /* Likewise if the address will be reloaded because
+ reg_equiv_address is nonzero. For reg_equiv_mem
+ we have to check. */
+ else if (REG_P (operand)
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (operand)] < 0
+ && ((reg_equiv_mem[REGNO (operand)] != 0
+ && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
+ || (reg_equiv_address[REGNO (operand)] != 0)))
+ win = 1;
+
+ /* If we didn't already win, we can reload
+ constants via force_const_mem, and other
+ MEMs by reloading the address like for 'o'. */
+ if (CONST_POOL_OK_P (operand)
+ || MEM_P (operand))
+ badop = 0;
+ constmemok = 1;
+ offmemok = 1;
+ break;
+ }
+ if (EXTRA_ADDRESS_CONSTRAINT (c, p))
+ {
+ if (EXTRA_CONSTRAINT_STR (operand, c, p))
+ win = 1;
+
+ /* If we didn't already win, we can reload
+ the address into a base register. */
+ this_alternative[i]
+ = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
+ badop = 0;
+ break;
+ }
+
+ if (EXTRA_CONSTRAINT_STR (operand, c, p))
+ win = 1;
+#endif
+ break;
+ }
+
+ this_alternative[i]
+ = (int) (reg_class_subunion
+ [this_alternative[i]]
+ [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
+ reg:
+ if (GET_MODE (operand) == BLKmode)
+ break;
+ winreg = 1;
+ if (REG_P (operand)
+ && reg_fits_class_p (operand, this_alternative[i],
+ offset, GET_MODE (recog_data.operand[i])))
+ win = 1;
+ break;
+ }
+ while ((p += len), c);
+
+ constraints[i] = p;
+
+ /* If this operand could be handled with a reg,
+ and some reg is allowed, then this operand can be handled. */
+ if (winreg && this_alternative[i] != (int) NO_REGS)
+ badop = 0;
+
+ /* Record which operands fit this alternative. */
+ this_alternative_earlyclobber[i] = earlyclobber;
+ if (win && ! force_reload)
+ this_alternative_win[i] = 1;
+ else if (did_match && ! force_reload)
+ this_alternative_match_win[i] = 1;
+ else
+ {
+ int const_to_mem = 0;
+
+ this_alternative_offmemok[i] = offmemok;
+ losers++;
+ if (badop)
+ bad = 1;
+ /* Alternative loses if it has no regs for a reg operand. */
+ if (REG_P (operand)
+ && this_alternative[i] == (int) NO_REGS
+ && this_alternative_matches[i] < 0)
+ bad = 1;
+
+ /* If this is a constant that is reloaded into the desired
+ class by copying it to memory first, count that as another
+ reload. This is consistent with other code and is
+ required to avoid choosing another alternative when
+ the constant is moved into memory by this function on
+ an early reload pass. Note that the test here is
+ precisely the same as in the code below that calls
+ force_const_mem. */
+ if (CONST_POOL_OK_P (operand)
+ && ((PREFERRED_RELOAD_CLASS (operand,
+ (enum reg_class) this_alternative[i])
+ == NO_REGS)
+ || no_input_reloads)
+ && operand_mode[i] != VOIDmode)
+ {
+ const_to_mem = 1;
+ if (this_alternative[i] != (int) NO_REGS)
+ losers++;
+ }
+
+ /* Alternative loses if it requires a type of reload not
+ permitted for this insn. We can always reload SCRATCH
+ and objects with a REG_UNUSED note. */
+ if (GET_CODE (operand) != SCRATCH
+ && modified[i] != RELOAD_READ && no_output_reloads
+ && ! find_reg_note (insn, REG_UNUSED, operand))
+ bad = 1;
+ else if (modified[i] != RELOAD_WRITE && no_input_reloads
+ && ! const_to_mem)
+ bad = 1;
+
+ /* If we can't reload this value at all, reject this
+ alternative. Note that we could also lose due to
+ LIMIT_RELOAD_CLASS, but we don't check that
+ here. */
+
+ if (! CONSTANT_P (operand)
+ && (enum reg_class) this_alternative[i] != NO_REGS)
+ {
+ if (PREFERRED_RELOAD_CLASS
+ (operand, (enum reg_class) this_alternative[i])
+ == NO_REGS)
+ reject = 600;
+
+#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
+ if (operand_type[i] == RELOAD_FOR_OUTPUT
+ && PREFERRED_OUTPUT_RELOAD_CLASS
+ (operand, (enum reg_class) this_alternative[i])
+ == NO_REGS)
+ reject = 600;
+#endif
+ }
+
+ /* We prefer to reload pseudos over reloading other things,
+ since such reloads may be able to be eliminated later.
+ If we are reloading a SCRATCH, we won't be generating any
+ insns, just using a register, so it is also preferred.
+ So bump REJECT in other cases. Don't do this in the
+ case where we are forcing a constant into memory and
+ it will then win since we don't want to have a different
+ alternative match then. */
+ if (! (REG_P (operand)
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
+ && GET_CODE (operand) != SCRATCH
+ && ! (const_to_mem && constmemok))
+ reject += 2;
+
+ /* Input reloads can be inherited more often than output
+ reloads can be removed, so penalize output reloads. */
+ if (operand_type[i] != RELOAD_FOR_INPUT
+ && GET_CODE (operand) != SCRATCH)
+ reject++;
+ }
+
+ /* If this operand is a pseudo register that didn't get a hard
+ reg and this alternative accepts some register, see if the
+ class that we want is a subset of the preferred class for this
+ register. If not, but it intersects that class, use the
+ preferred class instead. If it does not intersect the preferred
+ class, show that usage of this alternative should be discouraged;
+ it will be discouraged more still if the register is `preferred
+ or nothing'. We do this because it increases the chance of
+ reusing our spill register in a later insn and avoiding a pair
+ of memory stores and loads.
+
+ Don't bother with this if this alternative will accept this
+ operand.
+
+ Don't do this for a multiword operand, since it is only a
+ small win and has the risk of requiring more spill registers,
+ which could cause a large loss.
+
+ Don't do this if the preferred class has only one register
+ because we might otherwise exhaust the class. */
+
+ if (! win && ! did_match
+ && this_alternative[i] != (int) NO_REGS
+ && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
+ && reg_class_size [(int) preferred_class[i]] > 0
+ && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
+ {
+ if (! reg_class_subset_p (this_alternative[i],
+ preferred_class[i]))
+ {
+ /* Since we don't have a way of forming the intersection,
+ we just do something special if the preferred class
+ is a subset of the class we have; that's the most
+ common case anyway. */
+ if (reg_class_subset_p (preferred_class[i],
+ this_alternative[i]))
+ this_alternative[i] = (int) preferred_class[i];
+ else
+ reject += (2 + 2 * pref_or_nothing[i]);
+ }
+ }
+ }
+
+ /* Now see if any output operands that are marked "earlyclobber"
+ in this alternative conflict with any input operands
+ or any memory addresses. */
+
+ for (i = 0; i < noperands; i++)
+ if (this_alternative_earlyclobber[i]
+ && (this_alternative_win[i] || this_alternative_match_win[i]))
+ {
+ struct decomposition early_data;
+
+ early_data = decompose (recog_data.operand[i]);
+
+ gcc_assert (modified[i] != RELOAD_READ);
+
+ if (this_alternative[i] == NO_REGS)
+ {
+ this_alternative_earlyclobber[i] = 0;
+ gcc_assert (this_insn_is_asm);
+ error_for_asm (this_insn,
+ "%<&%> constraint used with no register class");
+ }
+
+ for (j = 0; j < noperands; j++)
+ /* Is this an input operand or a memory ref? */
+ if ((MEM_P (recog_data.operand[j])
+ || modified[j] != RELOAD_WRITE)
+ && j != i
+ /* Ignore things like match_operator operands. */
+ && *recog_data.constraints[j] != 0
+ /* Don't count an input operand that is constrained to match
+ the early clobber operand. */
+ && ! (this_alternative_matches[j] == i
+ && rtx_equal_p (recog_data.operand[i],
+ recog_data.operand[j]))
+ /* Is it altered by storing the earlyclobber operand? */
+ && !immune_p (recog_data.operand[j], recog_data.operand[i],
+ early_data))
+ {
+ /* If the output is in a non-empty few-regs class,
+ it's costly to reload it, so reload the input instead. */
+ if (SMALL_REGISTER_CLASS_P (this_alternative[i])
+ && (REG_P (recog_data.operand[j])
+ || GET_CODE (recog_data.operand[j]) == SUBREG))
+ {
+ losers++;
+ this_alternative_win[j] = 0;
+ this_alternative_match_win[j] = 0;
+ }
+ else
+ break;
+ }
+ /* If an earlyclobber operand conflicts with something,
+ it must be reloaded, so request this and count the cost. */
+ if (j != noperands)
+ {
+ losers++;
+ this_alternative_win[i] = 0;
+ this_alternative_match_win[j] = 0;
+ for (j = 0; j < noperands; j++)
+ if (this_alternative_matches[j] == i
+ && this_alternative_match_win[j])
+ {
+ this_alternative_win[j] = 0;
+ this_alternative_match_win[j] = 0;
+ losers++;
+ }
+ }
+ }
+
+ /* If one alternative accepts all the operands, no reload required,
+ choose that alternative; don't consider the remaining ones. */
+ if (losers == 0)
+ {
+ /* Unswap these so that they are never swapped at `finish'. */
+ if (commutative >= 0)
+ {
+ recog_data.operand[commutative] = substed_operand[commutative];
+ recog_data.operand[commutative + 1]
+ = substed_operand[commutative + 1];
+ }
+ for (i = 0; i < noperands; i++)
+ {
+ goal_alternative_win[i] = this_alternative_win[i];
+ goal_alternative_match_win[i] = this_alternative_match_win[i];
+ goal_alternative[i] = this_alternative[i];
+ goal_alternative_offmemok[i] = this_alternative_offmemok[i];
+ goal_alternative_matches[i] = this_alternative_matches[i];
+ goal_alternative_earlyclobber[i]
+ = this_alternative_earlyclobber[i];
+ }
+ goal_alternative_number = this_alternative_number;
+ goal_alternative_swapped = swapped;
+ goal_earlyclobber = this_earlyclobber;
+ goto finish;
+ }
+
+ /* REJECT, set by the ! and ? constraint characters and when a register
+ would be reloaded into a non-preferred class, discourages the use of
+ this alternative for a reload goal. REJECT is incremented by six
+ for each ? and two for each non-preferred class. */
+ losers = losers * 6 + reject;
+
+ /* If this alternative can be made to work by reloading,
+ and it needs less reloading than the others checked so far,
+ record it as the chosen goal for reloading. */
+ if (! bad && best > losers)
+ {
+ for (i = 0; i < noperands; i++)
+ {
+ goal_alternative[i] = this_alternative[i];
+ goal_alternative_win[i] = this_alternative_win[i];
+ goal_alternative_match_win[i] = this_alternative_match_win[i];
+ goal_alternative_offmemok[i] = this_alternative_offmemok[i];
+ goal_alternative_matches[i] = this_alternative_matches[i];
+ goal_alternative_earlyclobber[i]
+ = this_alternative_earlyclobber[i];
+ }
+ goal_alternative_swapped = swapped;
+ best = losers;
+ goal_alternative_number = this_alternative_number;
+ goal_earlyclobber = this_earlyclobber;
+ }
+ }
+
+ /* If insn is commutative (it's safe to exchange a certain pair of operands)
+ then we need to try each alternative twice,
+ the second time matching those two operands
+ as if we had exchanged them.
+ To do this, really exchange them in operands.
+
+ If we have just tried the alternatives the second time,
+ return operands to normal and drop through. */
+
+ if (commutative >= 0)
+ {
+ swapped = !swapped;
+ if (swapped)
+ {
+ enum reg_class tclass;
+ int t;
+
+ recog_data.operand[commutative] = substed_operand[commutative + 1];
+ recog_data.operand[commutative + 1] = substed_operand[commutative];
+ /* Swap the duplicates too. */
+ for (i = 0; i < recog_data.n_dups; i++)
+ if (recog_data.dup_num[i] == commutative
+ || recog_data.dup_num[i] == commutative + 1)
+ *recog_data.dup_loc[i]
+ = recog_data.operand[(int) recog_data.dup_num[i]];
+
+ tclass = preferred_class[commutative];
+ preferred_class[commutative] = preferred_class[commutative + 1];
+ preferred_class[commutative + 1] = tclass;
+
+ t = pref_or_nothing[commutative];
+ pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
+ pref_or_nothing[commutative + 1] = t;
+
+ t = address_reloaded[commutative];
+ address_reloaded[commutative] = address_reloaded[commutative + 1];
+ address_reloaded[commutative + 1] = t;
+
+ memcpy (constraints, recog_data.constraints,
+ noperands * sizeof (char *));
+ goto try_swapped;
+ }
+ else
+ {
+ recog_data.operand[commutative] = substed_operand[commutative];
+ recog_data.operand[commutative + 1]
+ = substed_operand[commutative + 1];
+ /* Unswap the duplicates too. */
+ for (i = 0; i < recog_data.n_dups; i++)
+ if (recog_data.dup_num[i] == commutative
+ || recog_data.dup_num[i] == commutative + 1)
+ *recog_data.dup_loc[i]
+ = recog_data.operand[(int) recog_data.dup_num[i]];
+ }
+ }
+
+ /* The operands don't meet the constraints.
+ goal_alternative describes the alternative
+ that we could reach by reloading the fewest operands.
+ Reload so as to fit it. */
+
+ if (best == MAX_RECOG_OPERANDS * 2 + 600)
+ {
+ /* No alternative works with reloads?? */
+ if (insn_code_number >= 0)
+ fatal_insn ("unable to generate reloads for:", insn);
+ error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
+ /* Avoid further trouble with this insn. */
+ PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
+ n_reloads = 0;
+ return 0;
+ }
+
+ /* Jump to `finish' from above if all operands are valid already.
+ In that case, goal_alternative_win is all 1. */
+ finish:
+
+ /* Right now, for any pair of operands I and J that are required to match,
+ with I < J,
+ goal_alternative_matches[J] is I.
+ Set up goal_alternative_matched as the inverse function:
+ goal_alternative_matched[I] = J. */
+
+ for (i = 0; i < noperands; i++)
+ goal_alternative_matched[i] = -1;
+
+ for (i = 0; i < noperands; i++)
+ if (! goal_alternative_win[i]
+ && goal_alternative_matches[i] >= 0)
+ goal_alternative_matched[goal_alternative_matches[i]] = i;
+
+ for (i = 0; i < noperands; i++)
+ goal_alternative_win[i] |= goal_alternative_match_win[i];
+
+ /* If the best alternative is with operands 1 and 2 swapped,
+ consider them swapped before reporting the reloads. Update the
+ operand numbers of any reloads already pushed. */
+
+ if (goal_alternative_swapped)
+ {
+ rtx tem;
+
+ tem = substed_operand[commutative];
+ substed_operand[commutative] = substed_operand[commutative + 1];
+ substed_operand[commutative + 1] = tem;
+ tem = recog_data.operand[commutative];
+ recog_data.operand[commutative] = recog_data.operand[commutative + 1];
+ recog_data.operand[commutative + 1] = tem;
+ tem = *recog_data.operand_loc[commutative];
+ *recog_data.operand_loc[commutative]
+ = *recog_data.operand_loc[commutative + 1];
+ *recog_data.operand_loc[commutative + 1] = tem;
+
+ for (i = 0; i < n_reloads; i++)
+ {
+ if (rld[i].opnum == commutative)
+ rld[i].opnum = commutative + 1;
+ else if (rld[i].opnum == commutative + 1)
+ rld[i].opnum = commutative;
+ }
+ }
+
+ for (i = 0; i < noperands; i++)
+ {
+ operand_reloadnum[i] = -1;
+
+ /* If this is an earlyclobber operand, we need to widen the scope.
+ The reload must remain valid from the start of the insn being
+ reloaded until after the operand is stored into its destination.
+ We approximate this with RELOAD_OTHER even though we know that we
+ do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
+
+ One special case that is worth checking is when we have an
+ output that is earlyclobber but isn't used past the insn (typically
+ a SCRATCH). In this case, we only need have the reload live
+ through the insn itself, but not for any of our input or output
+ reloads.
+ But we must not accidentally narrow the scope of an existing
+ RELOAD_OTHER reload - leave these alone.
+
+ In any case, anything needed to address this operand can remain
+ however they were previously categorized. */
+
+ if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
+ operand_type[i]
+ = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
+ ? RELOAD_FOR_INSN : RELOAD_OTHER);
+ }
+
+ /* Any constants that aren't allowed and can't be reloaded
+ into registers are here changed into memory references. */
+ for (i = 0; i < noperands; i++)
+ if (! goal_alternative_win[i]
+ && CONST_POOL_OK_P (recog_data.operand[i])
+ && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
+ (enum reg_class) goal_alternative[i])
+ == NO_REGS)
+ || no_input_reloads)
+ && operand_mode[i] != VOIDmode)
+ {
+ substed_operand[i] = recog_data.operand[i]
+ = find_reloads_toplev (force_const_mem (operand_mode[i],
+ recog_data.operand[i]),
+ i, address_type[i], ind_levels, 0, insn,
+ NULL);
+ if (alternative_allows_memconst (recog_data.constraints[i],
+ goal_alternative_number))
+ goal_alternative_win[i] = 1;
+ }
+
+ /* Likewise any invalid constants appearing as operand of a PLUS
+ that is to be reloaded. */
+ for (i = 0; i < noperands; i++)
+ if (! goal_alternative_win[i]
+ && GET_CODE (recog_data.operand[i]) == PLUS
+ && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
+ && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
+ (enum reg_class) goal_alternative[i])
+ == NO_REGS)
+ && operand_mode[i] != VOIDmode)
+ {
+ rtx tem = force_const_mem (operand_mode[i],
+ XEXP (recog_data.operand[i], 1));
+ tem = gen_rtx_PLUS (operand_mode[i],
+ XEXP (recog_data.operand[i], 0), tem);
+
+ substed_operand[i] = recog_data.operand[i]
+ = find_reloads_toplev (tem, i, address_type[i],
+ ind_levels, 0, insn, NULL);
+ }
+
+ /* Record the values of the earlyclobber operands for the caller. */
+ if (goal_earlyclobber)
+ for (i = 0; i < noperands; i++)
+ if (goal_alternative_earlyclobber[i])
+ reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
+
+ /* Now record reloads for all the operands that need them. */
+ for (i = 0; i < noperands; i++)
+ if (! goal_alternative_win[i])
+ {
+ /* Operands that match previous ones have already been handled. */
+ if (goal_alternative_matches[i] >= 0)
+ ;
+ /* Handle an operand with a nonoffsettable address
+ appearing where an offsettable address will do
+ by reloading the address into a base register.
+
+ ??? We can also do this when the operand is a register and
+ reg_equiv_mem is not offsettable, but this is a bit tricky,
+ so we don't bother with it. It may not be worth doing. */
+ else if (goal_alternative_matched[i] == -1
+ && goal_alternative_offmemok[i]
+ && MEM_P (recog_data.operand[i]))
+ {
+ /* If the address to be reloaded is a VOIDmode constant,
+ use Pmode as mode of the reload register, as would have
+ been done by find_reloads_address. */
+ enum machine_mode address_mode;
+ address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
+ if (address_mode == VOIDmode)
+ address_mode = Pmode;
+
+ operand_reloadnum[i]
+ = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
+ &XEXP (recog_data.operand[i], 0), (rtx*) 0,
+ base_reg_class (VOIDmode, MEM, SCRATCH),
+ address_mode,
+ VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
+ rld[operand_reloadnum[i]].inc
+ = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
+
+ /* If this operand is an output, we will have made any
+ reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
+ now we are treating part of the operand as an input, so
+ we must change these to RELOAD_FOR_INPUT_ADDRESS. */
+
+ if (modified[i] == RELOAD_WRITE)
+ {
+ for (j = 0; j < n_reloads; j++)
+ {
+ if (rld[j].opnum == i)
+ {
+ if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
+ rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
+ else if (rld[j].when_needed
+ == RELOAD_FOR_OUTADDR_ADDRESS)
+ rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
+ }
+ }
+ }
+ }
+ else if (goal_alternative_matched[i] == -1)
+ {
+ operand_reloadnum[i]
+ = push_reload ((modified[i] != RELOAD_WRITE
+ ? recog_data.operand[i] : 0),
+ (modified[i] != RELOAD_READ
+ ? recog_data.operand[i] : 0),
+ (modified[i] != RELOAD_WRITE
+ ? recog_data.operand_loc[i] : 0),
+ (modified[i] != RELOAD_READ
+ ? recog_data.operand_loc[i] : 0),
+ (enum reg_class) goal_alternative[i],
+ (modified[i] == RELOAD_WRITE
+ ? VOIDmode : operand_mode[i]),
+ (modified[i] == RELOAD_READ
+ ? VOIDmode : operand_mode[i]),
+ (insn_code_number < 0 ? 0
+ : insn_data[insn_code_number].operand[i].strict_low),
+ 0, i, operand_type[i]);
+ }
+ /* In a matching pair of operands, one must be input only
+ and the other must be output only.
+ Pass the input operand as IN and the other as OUT. */
+ else if (modified[i] == RELOAD_READ
+ && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
+ {
+ operand_reloadnum[i]
+ = push_reload (recog_data.operand[i],
+ recog_data.operand[goal_alternative_matched[i]],
+ recog_data.operand_loc[i],
+ recog_data.operand_loc[goal_alternative_matched[i]],
+ (enum reg_class) goal_alternative[i],
+ operand_mode[i],
+ operand_mode[goal_alternative_matched[i]],
+ 0, 0, i, RELOAD_OTHER);
+ operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
+ }
+ else if (modified[i] == RELOAD_WRITE
+ && modified[goal_alternative_matched[i]] == RELOAD_READ)
+ {
+ operand_reloadnum[goal_alternative_matched[i]]
+ = push_reload (recog_data.operand[goal_alternative_matched[i]],
+ recog_data.operand[i],
+ recog_data.operand_loc[goal_alternative_matched[i]],
+ recog_data.operand_loc[i],
+ (enum reg_class) goal_alternative[i],
+ operand_mode[goal_alternative_matched[i]],
+ operand_mode[i],
+ 0, 0, i, RELOAD_OTHER);
+ operand_reloadnum[i] = output_reloadnum;
+ }
+ else
+ {
+ gcc_assert (insn_code_number < 0);
+ error_for_asm (insn, "inconsistent operand constraints "
+ "in an %<asm%>");
+ /* Avoid further trouble with this insn. */
+ PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
+ n_reloads = 0;
+ return 0;
+ }
+ }
+ else if (goal_alternative_matched[i] < 0
+ && goal_alternative_matches[i] < 0
+ && address_operand_reloaded[i] != 1
+ && optimize)
+ {
+ /* For each non-matching operand that's a MEM or a pseudo-register
+ that didn't get a hard register, make an optional reload.
+ This may get done even if the insn needs no reloads otherwise. */
+
+ rtx operand = recog_data.operand[i];
+
+ while (GET_CODE (operand) == SUBREG)
+ operand = SUBREG_REG (operand);
+ if ((MEM_P (operand)
+ || (REG_P (operand)
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
+ /* If this is only for an output, the optional reload would not
+ actually cause us to use a register now, just note that
+ something is stored here. */
+ && ((enum reg_class) goal_alternative[i] != NO_REGS
+ || modified[i] == RELOAD_WRITE)
+ && ! no_input_reloads
+ /* An optional output reload might allow to delete INSN later.
+ We mustn't make in-out reloads on insns that are not permitted
+ output reloads.
+ If this is an asm, we can't delete it; we must not even call
+ push_reload for an optional output reload in this case,
+ because we can't be sure that the constraint allows a register,
+ and push_reload verifies the constraints for asms. */
+ && (modified[i] == RELOAD_READ
+ || (! no_output_reloads && ! this_insn_is_asm)))
+ operand_reloadnum[i]
+ = push_reload ((modified[i] != RELOAD_WRITE
+ ? recog_data.operand[i] : 0),
+ (modified[i] != RELOAD_READ
+ ? recog_data.operand[i] : 0),
+ (modified[i] != RELOAD_WRITE
+ ? recog_data.operand_loc[i] : 0),
+ (modified[i] != RELOAD_READ
+ ? recog_data.operand_loc[i] : 0),
+ (enum reg_class) goal_alternative[i],
+ (modified[i] == RELOAD_WRITE
+ ? VOIDmode : operand_mode[i]),
+ (modified[i] == RELOAD_READ
+ ? VOIDmode : operand_mode[i]),
+ (insn_code_number < 0 ? 0
+ : insn_data[insn_code_number].operand[i].strict_low),
+ 1, i, operand_type[i]);
+ /* If a memory reference remains (either as a MEM or a pseudo that
+ did not get a hard register), yet we can't make an optional
+ reload, check if this is actually a pseudo register reference;
+ we then need to emit a USE and/or a CLOBBER so that reload
+ inheritance will do the right thing. */
+ else if (replace
+ && (MEM_P (operand)
+ || (REG_P (operand)
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber [REGNO (operand)] < 0)))
+ {
+ operand = *recog_data.operand_loc[i];
+
+ while (GET_CODE (operand) == SUBREG)
+ operand = SUBREG_REG (operand);
+ if (REG_P (operand))
+ {
+ if (modified[i] != RELOAD_WRITE)
+ /* We mark the USE with QImode so that we recognize
+ it as one that can be safely deleted at the end
+ of reload. */
+ PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
+ insn), QImode);
+ if (modified[i] != RELOAD_READ)
+ emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
+ }
+ }
+ }
+ else if (goal_alternative_matches[i] >= 0
+ && goal_alternative_win[goal_alternative_matches[i]]
+ && modified[i] == RELOAD_READ
+ && modified[goal_alternative_matches[i]] == RELOAD_WRITE
+ && ! no_input_reloads && ! no_output_reloads
+ && optimize)
+ {
+ /* Similarly, make an optional reload for a pair of matching
+ objects that are in MEM or a pseudo that didn't get a hard reg. */
+
+ rtx operand = recog_data.operand[i];
+
+ while (GET_CODE (operand) == SUBREG)
+ operand = SUBREG_REG (operand);
+ if ((MEM_P (operand)
+ || (REG_P (operand)
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
+ && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
+ != NO_REGS))
+ operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
+ = push_reload (recog_data.operand[goal_alternative_matches[i]],
+ recog_data.operand[i],
+ recog_data.operand_loc[goal_alternative_matches[i]],
+ recog_data.operand_loc[i],
+ (enum reg_class) goal_alternative[goal_alternative_matches[i]],
+ operand_mode[goal_alternative_matches[i]],
+ operand_mode[i],
+ 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
+ }
+
+ /* Perform whatever substitutions on the operands we are supposed
+ to make due to commutativity or replacement of registers
+ with equivalent constants or memory slots. */
+
+ for (i = 0; i < noperands; i++)
+ {
+ /* We only do this on the last pass through reload, because it is
+ possible for some data (like reg_equiv_address) to be changed during
+ later passes. Moreover, we lose the opportunity to get a useful
+ reload_{in,out}_reg when we do these replacements. */
+
+ if (replace)
+ {
+ rtx substitution = substed_operand[i];
+
+ *recog_data.operand_loc[i] = substitution;
+
+ /* If we're replacing an operand with a LABEL_REF, we need
+ to make sure that there's a REG_LABEL note attached to
+ this instruction. */
+ if (!JUMP_P (insn)
+ && GET_CODE (substitution) == LABEL_REF
+ && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
+ REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
+ XEXP (substitution, 0),
+ REG_NOTES (insn));
+ }
+ else
+ retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
+ }
+
+ /* If this insn pattern contains any MATCH_DUP's, make sure that
+ they will be substituted if the operands they match are substituted.
+ Also do now any substitutions we already did on the operands.
+
+ Don't do this if we aren't making replacements because we might be
+ propagating things allocated by frame pointer elimination into places
+ it doesn't expect. */
+
+ if (insn_code_number >= 0 && replace)
+ for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
+ {
+ int opno = recog_data.dup_num[i];
+ *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
+ dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
+ }
+
+#if 0
+ /* This loses because reloading of prior insns can invalidate the equivalence
+ (or at least find_equiv_reg isn't smart enough to find it any more),
+ causing this insn to need more reload regs than it needed before.
+ It may be too late to make the reload regs available.
+ Now this optimization is done safely in choose_reload_regs. */
+
+ /* For each reload of a reg into some other class of reg,
+ search for an existing equivalent reg (same value now) in the right class.
+ We can use it as long as we don't need to change its contents. */
+ for (i = 0; i < n_reloads; i++)
+ if (rld[i].reg_rtx == 0
+ && rld[i].in != 0
+ && REG_P (rld[i].in)
+ && rld[i].out == 0)
+ {
+ rld[i].reg_rtx
+ = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
+ static_reload_reg_p, 0, rld[i].inmode);
+ /* Prevent generation of insn to load the value
+ because the one we found already has the value. */
+ if (rld[i].reg_rtx)
+ rld[i].in = rld[i].reg_rtx;
+ }
+#endif
+
+ /* If we detected error and replaced asm instruction by USE, forget about the
+ reloads. */
+ if (GET_CODE (PATTERN (insn)) == USE
+ && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
+ n_reloads = 0;
+
+ /* Perhaps an output reload can be combined with another
+ to reduce needs by one. */
+ if (!goal_earlyclobber)
+ combine_reloads ();
+
+ /* If we have a pair of reloads for parts of an address, they are reloading
+ the same object, the operands themselves were not reloaded, and they
+ are for two operands that are supposed to match, merge the reloads and
+ change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
+
+ for (i = 0; i < n_reloads; i++)
+ {
+ int k;
+
+ for (j = i + 1; j < n_reloads; j++)
+ if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
+ && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
+ || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
+ || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
+ || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
+ && rtx_equal_p (rld[i].in, rld[j].in)
+ && (operand_reloadnum[rld[i].opnum] < 0
+ || rld[operand_reloadnum[rld[i].opnum]].optional)
+ && (operand_reloadnum[rld[j].opnum] < 0
+ || rld[operand_reloadnum[rld[j].opnum]].optional)
+ && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
+ || (goal_alternative_matches[rld[j].opnum]
+ == rld[i].opnum)))
+ {
+ for (k = 0; k < n_replacements; k++)
+ if (replacements[k].what == j)
+ replacements[k].what = i;
+
+ if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
+ rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
+ else
+ rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
+ rld[j].in = 0;
+ }
+ }
+
+ /* Scan all the reloads and update their type.
+ If a reload is for the address of an operand and we didn't reload
+ that operand, change the type. Similarly, change the operand number
+ of a reload when two operands match. If a reload is optional, treat it
+ as though the operand isn't reloaded.
+
+ ??? This latter case is somewhat odd because if we do the optional
+ reload, it means the object is hanging around. Thus we need only
+ do the address reload if the optional reload was NOT done.
+
+ Change secondary reloads to be the address type of their operand, not
+ the normal type.
+
+ If an operand's reload is now RELOAD_OTHER, change any
+ RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
+ RELOAD_FOR_OTHER_ADDRESS. */
+
+ for (i = 0; i < n_reloads; i++)
+ {
+ if (rld[i].secondary_p
+ && rld[i].when_needed == operand_type[rld[i].opnum])
+ rld[i].when_needed = address_type[rld[i].opnum];
+
+ if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
+ && (operand_reloadnum[rld[i].opnum] < 0
+ || rld[operand_reloadnum[rld[i].opnum]].optional))
+ {
+ /* If we have a secondary reload to go along with this reload,
+ change its type to RELOAD_FOR_OPADDR_ADDR. */
+
+ if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
+ && rld[i].secondary_in_reload != -1)
+ {
+ int secondary_in_reload = rld[i].secondary_in_reload;
+
+ rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
+
+ /* If there's a tertiary reload we have to change it also. */
+ if (secondary_in_reload > 0
+ && rld[secondary_in_reload].secondary_in_reload != -1)
+ rld[rld[secondary_in_reload].secondary_in_reload].when_needed
+ = RELOAD_FOR_OPADDR_ADDR;
+ }
+
+ if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
+ && rld[i].secondary_out_reload != -1)
+ {
+ int secondary_out_reload = rld[i].secondary_out_reload;
+
+ rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
+
+ /* If there's a tertiary reload we have to change it also. */
+ if (secondary_out_reload
+ && rld[secondary_out_reload].secondary_out_reload != -1)
+ rld[rld[secondary_out_reload].secondary_out_reload].when_needed
+ = RELOAD_FOR_OPADDR_ADDR;
+ }
+
+ if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
+ rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
+ else
+ rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
+ }
+
+ if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
+ && operand_reloadnum[rld[i].opnum] >= 0
+ && (rld[operand_reloadnum[rld[i].opnum]].when_needed
+ == RELOAD_OTHER))
+ rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
+
+ if (goal_alternative_matches[rld[i].opnum] >= 0)
+ rld[i].opnum = goal_alternative_matches[rld[i].opnum];
+ }
+
+ /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
+ If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
+ reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
+
+ choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
+ conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
+ single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
+ However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
+ then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
+ RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
+ This is complicated by the fact that a single operand can have more
+ than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
+ choose_reload_regs without affecting code quality, and cases that
+ actually fail are extremely rare, so it turns out to be better to fix
+ the problem here by not generating cases that choose_reload_regs will
+ fail for. */
+ /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
+ RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
+ a single operand.
+ We can reduce the register pressure by exploiting that a
+ RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
+ does not conflict with any of them, if it is only used for the first of
+ the RELOAD_FOR_X_ADDRESS reloads. */
+ {
+ int first_op_addr_num = -2;
+ int first_inpaddr_num[MAX_RECOG_OPERANDS];
+ int first_outpaddr_num[MAX_RECOG_OPERANDS];
+ int need_change = 0;
+ /* We use last_op_addr_reload and the contents of the above arrays
+ first as flags - -2 means no instance encountered, -1 means exactly
+ one instance encountered.
+ If more than one instance has been encountered, we store the reload
+ number of the first reload of the kind in question; reload numbers
+ are known to be non-negative. */
+ for (i = 0; i < noperands; i++)
+ first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
+ for (i = n_reloads - 1; i >= 0; i--)
+ {
+ switch (rld[i].when_needed)
+ {
+ case RELOAD_FOR_OPERAND_ADDRESS:
+ if (++first_op_addr_num >= 0)
+ {
+ first_op_addr_num = i;
+ need_change = 1;
+ }
+ break;
+ case RELOAD_FOR_INPUT_ADDRESS:
+ if (++first_inpaddr_num[rld[i].opnum] >= 0)
+ {
+ first_inpaddr_num[rld[i].opnum] = i;
+ need_change = 1;
+ }
+ break;
+ case RELOAD_FOR_OUTPUT_ADDRESS:
+ if (++first_outpaddr_num[rld[i].opnum] >= 0)
+ {
+ first_outpaddr_num[rld[i].opnum] = i;
+ need_change = 1;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (need_change)
+ {
+ for (i = 0; i < n_reloads; i++)
+ {
+ int first_num;
+ enum reload_type type;
+
+ switch (rld[i].when_needed)
+ {
+ case RELOAD_FOR_OPADDR_ADDR:
+ first_num = first_op_addr_num;
+ type = RELOAD_FOR_OPERAND_ADDRESS;
+ break;
+ case RELOAD_FOR_INPADDR_ADDRESS:
+ first_num = first_inpaddr_num[rld[i].opnum];
+ type = RELOAD_FOR_INPUT_ADDRESS;
+ break;
+ case RELOAD_FOR_OUTADDR_ADDRESS:
+ first_num = first_outpaddr_num[rld[i].opnum];
+ type = RELOAD_FOR_OUTPUT_ADDRESS;
+ break;
+ default:
+ continue;
+ }
+ if (first_num < 0)
+ continue;
+ else if (i > first_num)
+ rld[i].when_needed = type;
+ else
+ {
+ /* Check if the only TYPE reload that uses reload I is
+ reload FIRST_NUM. */
+ for (j = n_reloads - 1; j > first_num; j--)
+ {
+ if (rld[j].when_needed == type
+ && (rld[i].secondary_p
+ ? rld[j].secondary_in_reload == i
+ : reg_mentioned_p (rld[i].in, rld[j].in)))
+ {
+ rld[i].when_needed = type;
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* See if we have any reloads that are now allowed to be merged
+ because we've changed when the reload is needed to
+ RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
+ check for the most common cases. */
+
+ for (i = 0; i < n_reloads; i++)
+ if (rld[i].in != 0 && rld[i].out == 0
+ && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
+ || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
+ for (j = 0; j < n_reloads; j++)
+ if (i != j && rld[j].in != 0 && rld[j].out == 0
+ && rld[j].when_needed == rld[i].when_needed
+ && MATCHES (rld[i].in, rld[j].in)
+ && rld[i].class == rld[j].class
+ && !rld[i].nocombine && !rld[j].nocombine
+ && rld[i].reg_rtx == rld[j].reg_rtx)
+ {
+ rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
+ transfer_replacements (i, j);
+ rld[j].in = 0;
+ }
+
+#ifdef HAVE_cc0
+ /* If we made any reloads for addresses, see if they violate a
+ "no input reloads" requirement for this insn. But loads that we
+ do after the insn (such as for output addresses) are fine. */
+ if (no_input_reloads)
+ for (i = 0; i < n_reloads; i++)
+ gcc_assert (rld[i].in == 0
+ || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
+ || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
+#endif
+
+ /* Compute reload_mode and reload_nregs. */
+ for (i = 0; i < n_reloads; i++)
+ {
+ rld[i].mode
+ = (rld[i].inmode == VOIDmode
+ || (GET_MODE_SIZE (rld[i].outmode)
+ > GET_MODE_SIZE (rld[i].inmode)))
+ ? rld[i].outmode : rld[i].inmode;
+
+ rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
+ }
+
+ /* Special case a simple move with an input reload and a
+ destination of a hard reg, if the hard reg is ok, use it. */
+ for (i = 0; i < n_reloads; i++)
+ if (rld[i].when_needed == RELOAD_FOR_INPUT
+ && GET_CODE (PATTERN (insn)) == SET
+ && REG_P (SET_DEST (PATTERN (insn)))
+ && SET_SRC (PATTERN (insn)) == rld[i].in)
+ {
+ rtx dest = SET_DEST (PATTERN (insn));
+ unsigned int regno = REGNO (dest);
+
+ if (regno < FIRST_PSEUDO_REGISTER
+ && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
+ && HARD_REGNO_MODE_OK (regno, rld[i].mode))
+ {
+ int nr = hard_regno_nregs[regno][rld[i].mode];
+ int ok = 1, nri;
+
+ for (nri = 1; nri < nr; nri ++)
+ if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
+ ok = 0;
+
+ if (ok)
+ rld[i].reg_rtx = dest;
+ }
+ }
+
+ return retval;
+}
+
+/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
+ accepts a memory operand with constant address. */
+
+static int
+alternative_allows_memconst (const char *constraint, int altnum)
+{
+ int c;
+ /* Skip alternatives before the one requested. */
+ while (altnum > 0)
+ {
+ while (*constraint++ != ',');
+ altnum--;
+ }
+ /* Scan the requested alternative for 'm' or 'o'.
+ If one of them is present, this alternative accepts memory constants. */
+ for (; (c = *constraint) && c != ',' && c != '#';
+ constraint += CONSTRAINT_LEN (c, constraint))
+ if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
+ return 1;
+ return 0;
+}
+
+/* Scan X for memory references and scan the addresses for reloading.
+ Also checks for references to "constant" regs that we want to eliminate
+ and replaces them with the values they stand for.
+ We may alter X destructively if it contains a reference to such.
+ If X is just a constant reg, we return the equivalent value
+ instead of X.
+
+ IND_LEVELS says how many levels of indirect addressing this machine
+ supports.
+
+ OPNUM and TYPE identify the purpose of the reload.
+
+ IS_SET_DEST is true if X is the destination of a SET, which is not
+ appropriate to be replaced by a constant.
+
+ INSN, if nonzero, is the insn in which we do the reload. It is used
+ to determine if we may generate output reloads, and where to put USEs
+ for pseudos that we have to replace with stack slots.
+
+ ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
+ result of find_reloads_address. */
+
+static rtx
+find_reloads_toplev (rtx x, int opnum, enum reload_type type,
+ int ind_levels, int is_set_dest, rtx insn,
+ int *address_reloaded)
+{
+ RTX_CODE code = GET_CODE (x);
+
+ const char *fmt = GET_RTX_FORMAT (code);
+ int i;
+ int copied;
+
+ if (code == REG)
+ {
+ /* This code is duplicated for speed in find_reloads. */
+ int regno = REGNO (x);
+ if (reg_equiv_constant[regno] != 0 && !is_set_dest)
+ x = reg_equiv_constant[regno];
+#if 0
+ /* This creates (subreg (mem...)) which would cause an unnecessary
+ reload of the mem. */
+ else if (reg_equiv_mem[regno] != 0)
+ x = reg_equiv_mem[regno];
+#endif
+ else if (reg_equiv_memory_loc[regno]
+ && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
+ {
+ rtx mem = make_memloc (x, regno);
+ if (reg_equiv_address[regno]
+ || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
+ {
+ /* If this is not a toplevel operand, find_reloads doesn't see
+ this substitution. We have to emit a USE of the pseudo so
+ that delete_output_reload can see it. */
+ if (replace_reloads && recog_data.operand[opnum] != x)
+ /* We mark the USE with QImode so that we recognize it
+ as one that can be safely deleted at the end of
+ reload. */
+ PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
+ QImode);
+ x = mem;
+ i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
+ opnum, type, ind_levels, insn);
+ if (x != mem)
+ push_reg_equiv_alt_mem (regno, x);
+ if (address_reloaded)
+ *address_reloaded = i;
+ }
+ }
+ return x;
+ }
+ if (code == MEM)
+ {
+ rtx tem = x;
+
+ i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
+ opnum, type, ind_levels, insn);
+ if (address_reloaded)
+ *address_reloaded = i;
+
+ return tem;
+ }
+
+ if (code == SUBREG && REG_P (SUBREG_REG (x)))
+ {
+ /* Check for SUBREG containing a REG that's equivalent to a
+ constant. If the constant has a known value, truncate it
+ right now. Similarly if we are extracting a single-word of a
+ multi-word constant. If the constant is symbolic, allow it
+ to be substituted normally. push_reload will strip the
+ subreg later. The constant must not be VOIDmode, because we
+ will lose the mode of the register (this should never happen
+ because one of the cases above should handle it). */
+
+ int regno = REGNO (SUBREG_REG (x));
+ rtx tem;
+
+ if (subreg_lowpart_p (x)
+ && regno >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0
+ && (tem = gen_lowpart_common (GET_MODE (x),
+ reg_equiv_constant[regno])) != 0)
+ return tem;
+
+ if (regno >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ {
+ tem =
+ simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
+ GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
+ gcc_assert (tem);
+ return tem;
+ }
+
+ /* If the subreg contains a reg that will be converted to a mem,
+ convert the subreg to a narrower memref now.
+ Otherwise, we would get (subreg (mem ...) ...),
+ which would force reload of the mem.
+
+ We also need to do this if there is an equivalent MEM that is
+ not offsettable. In that case, alter_subreg would produce an
+ invalid address on big-endian machines.
+
+ For machines that extend byte loads, we must not reload using
+ a wider mode if we have a paradoxical SUBREG. find_reloads will
+ force a reload in that case. So we should not do anything here. */
+
+ if (regno >= FIRST_PSEUDO_REGISTER
+#ifdef LOAD_EXTEND_OP
+ && (GET_MODE_SIZE (GET_MODE (x))
+ <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+#endif
+ && (reg_equiv_address[regno] != 0
+ || (reg_equiv_mem[regno] != 0
+ && (! strict_memory_address_p (GET_MODE (x),
+ XEXP (reg_equiv_mem[regno], 0))
+ || ! offsettable_memref_p (reg_equiv_mem[regno])
+ || num_not_at_initial_offset))))
+ x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
+ insn);
+ }
+
+ for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
+ ind_levels, is_set_dest, insn,
+ address_reloaded);
+ /* If we have replaced a reg with it's equivalent memory loc -
+ that can still be handled here e.g. if it's in a paradoxical
+ subreg - we must make the change in a copy, rather than using
+ a destructive change. This way, find_reloads can still elect
+ not to do the change. */
+ if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
+ {
+ x = shallow_copy_rtx (x);
+ copied = 1;
+ }
+ XEXP (x, i) = new_part;
+ }
+ }
+ return x;
+}
+
+/* Return a mem ref for the memory equivalent of reg REGNO.
+ This mem ref is not shared with anything. */
+
+static rtx
+make_memloc (rtx ad, int regno)
+{
+ /* We must rerun eliminate_regs, in case the elimination
+ offsets have changed. */
+ rtx tem
+ = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
+
+ /* If TEM might contain a pseudo, we must copy it to avoid
+ modifying it when we do the substitution for the reload. */
+ if (rtx_varies_p (tem, 0))
+ tem = copy_rtx (tem);
+
+ tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
+ tem = adjust_address_nv (tem, GET_MODE (ad), 0);
+
+ /* Copy the result if it's still the same as the equivalence, to avoid
+ modifying it when we do the substitution for the reload. */
+ if (tem == reg_equiv_memory_loc[regno])
+ tem = copy_rtx (tem);
+ return tem;
+}
+
+/* Returns true if AD could be turned into a valid memory reference
+ to mode MODE by reloading the part pointed to by PART into a
+ register. */
+
+static int
+maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
+{
+ int retv;
+ rtx tem = *part;
+ rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
+
+ *part = reg;
+ retv = memory_address_p (mode, ad);
+ *part = tem;
+
+ return retv;
+}
+
+/* Record all reloads needed for handling memory address AD
+ which appears in *LOC in a memory reference to mode MODE
+ which itself is found in location *MEMREFLOC.
+ Note that we take shortcuts assuming that no multi-reg machine mode
+ occurs as part of an address.
+
+ OPNUM and TYPE specify the purpose of this reload.
+
+ IND_LEVELS says how many levels of indirect addressing this machine
+ supports.
+
+ INSN, if nonzero, is the insn in which we do the reload. It is used
+ to determine if we may generate output reloads, and where to put USEs
+ for pseudos that we have to replace with stack slots.
+
+ Value is one if this address is reloaded or replaced as a whole; it is
+ zero if the top level of this address was not reloaded or replaced, and
+ it is -1 if it may or may not have been reloaded or replaced.
+
+ Note that there is no verification that the address will be valid after
+ this routine does its work. Instead, we rely on the fact that the address
+ was valid when reload started. So we need only undo things that reload
+ could have broken. These are wrong register types, pseudos not allocated
+ to a hard register, and frame pointer elimination. */
+
+static int
+find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
+ rtx *loc, int opnum, enum reload_type type,
+ int ind_levels, rtx insn)
+{
+ int regno;
+ int removed_and = 0;
+ int op_index;
+ rtx tem;
+
+ /* If the address is a register, see if it is a legitimate address and
+ reload if not. We first handle the cases where we need not reload
+ or where we must reload in a non-standard way. */
+
+ if (REG_P (ad))
+ {
+ regno = REGNO (ad);
+
+ /* If the register is equivalent to an invariant expression, substitute
+ the invariant, and eliminate any eliminable register references. */
+ tem = reg_equiv_constant[regno];
+ if (tem != 0
+ && (tem = eliminate_regs (tem, mode, insn))
+ && strict_memory_address_p (mode, tem))
+ {
+ *loc = ad = tem;
+ return 0;
+ }
+
+ tem = reg_equiv_memory_loc[regno];
+ if (tem != 0)
+ {
+ if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
+ {
+ tem = make_memloc (ad, regno);
+ if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
+ {
+ rtx orig = tem;
+
+ find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
+ &XEXP (tem, 0), opnum,
+ ADDR_TYPE (type), ind_levels, insn);
+ if (tem != orig)
+ push_reg_equiv_alt_mem (regno, tem);
+ }
+ /* We can avoid a reload if the register's equivalent memory
+ expression is valid as an indirect memory address.
+ But not all addresses are valid in a mem used as an indirect
+ address: only reg or reg+constant. */
+
+ if (ind_levels > 0
+ && strict_memory_address_p (mode, tem)
+ && (REG_P (XEXP (tem, 0))
+ || (GET_CODE (XEXP (tem, 0)) == PLUS
+ && REG_P (XEXP (XEXP (tem, 0), 0))
+ && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
+ {
+ /* TEM is not the same as what we'll be replacing the
+ pseudo with after reload, put a USE in front of INSN
+ in the final reload pass. */
+ if (replace_reloads
+ && num_not_at_initial_offset
+ && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
+ {
+ *loc = tem;
+ /* We mark the USE with QImode so that we
+ recognize it as one that can be safely
+ deleted at the end of reload. */
+ PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
+ insn), QImode);
+
+ /* This doesn't really count as replacing the address
+ as a whole, since it is still a memory access. */
+ }
+ return 0;
+ }
+ ad = tem;
+ }
+ }
+
+ /* The only remaining case where we can avoid a reload is if this is a
+ hard register that is valid as a base register and which is not the
+ subject of a CLOBBER in this insn. */
+
+ else if (regno < FIRST_PSEUDO_REGISTER
+ && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
+ && ! regno_clobbered_p (regno, this_insn, mode, 0))
+ return 0;
+
+ /* If we do not have one of the cases above, we must do the reload. */
+ push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
+ GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+
+ if (strict_memory_address_p (mode, ad))
+ {
+ /* The address appears valid, so reloads are not needed.
+ But the address may contain an eliminable register.
+ This can happen because a machine with indirect addressing
+ may consider a pseudo register by itself a valid address even when
+ it has failed to get a hard reg.
+ So do a tree-walk to find and eliminate all such regs. */
+
+ /* But first quickly dispose of a common case. */
+ if (GET_CODE (ad) == PLUS
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT
+ && REG_P (XEXP (ad, 0))
+ && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
+ return 0;
+
+ subst_reg_equivs_changed = 0;
+ *loc = subst_reg_equivs (ad, insn);
+
+ if (! subst_reg_equivs_changed)
+ return 0;
+
+ /* Check result for validity after substitution. */
+ if (strict_memory_address_p (mode, ad))
+ return 0;
+ }
+
+#ifdef LEGITIMIZE_RELOAD_ADDRESS
+ do
+ {
+ if (memrefloc)
+ {
+ LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
+ ind_levels, win);
+ }
+ break;
+ win:
+ *memrefloc = copy_rtx (*memrefloc);
+ XEXP (*memrefloc, 0) = ad;
+ move_replacements (&ad, &XEXP (*memrefloc, 0));
+ return -1;
+ }
+ while (0);
+#endif
+
+ /* The address is not valid. We have to figure out why. First see if
+ we have an outer AND and remove it if so. Then analyze what's inside. */
+
+ if (GET_CODE (ad) == AND)
+ {
+ removed_and = 1;
+ loc = &XEXP (ad, 0);
+ ad = *loc;
+ }
+
+ /* One possibility for why the address is invalid is that it is itself
+ a MEM. This can happen when the frame pointer is being eliminated, a
+ pseudo is not allocated to a hard register, and the offset between the
+ frame and stack pointers is not its initial value. In that case the
+ pseudo will have been replaced by a MEM referring to the
+ stack pointer. */
+ if (MEM_P (ad))
+ {
+ /* First ensure that the address in this MEM is valid. Then, unless
+ indirect addresses are valid, reload the MEM into a register. */
+ tem = ad;
+ find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
+ opnum, ADDR_TYPE (type),
+ ind_levels == 0 ? 0 : ind_levels - 1, insn);
+
+ /* If tem was changed, then we must create a new memory reference to
+ hold it and store it back into memrefloc. */
+ if (tem != ad && memrefloc)
+ {
+ *memrefloc = copy_rtx (*memrefloc);
+ copy_replacements (tem, XEXP (*memrefloc, 0));
+ loc = &XEXP (*memrefloc, 0);
+ if (removed_and)
+ loc = &XEXP (*loc, 0);
+ }
+
+ /* Check similar cases as for indirect addresses as above except
+ that we can allow pseudos and a MEM since they should have been
+ taken care of above. */
+
+ if (ind_levels == 0
+ || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
+ || MEM_P (XEXP (tem, 0))
+ || ! (REG_P (XEXP (tem, 0))
+ || (GET_CODE (XEXP (tem, 0)) == PLUS
+ && REG_P (XEXP (XEXP (tem, 0), 0))
+ && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
+ {
+ /* Must use TEM here, not AD, since it is the one that will
+ have any subexpressions reloaded, if needed. */
+ push_reload (tem, NULL_RTX, loc, (rtx*) 0,
+ base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
+ VOIDmode, 0,
+ 0, opnum, type);
+ return ! removed_and;
+ }
+ else
+ return 0;
+ }
+
+ /* If we have address of a stack slot but it's not valid because the
+ displacement is too large, compute the sum in a register.
+ Handle all base registers here, not just fp/ap/sp, because on some
+ targets (namely SH) we can also get too large displacements from
+ big-endian corrections. */
+ else if (GET_CODE (ad) == PLUS
+ && REG_P (XEXP (ad, 0))
+ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT
+ && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
+ CONST_INT))
+
+ {
+ /* Unshare the MEM rtx so we can safely alter it. */
+ if (memrefloc)
+ {
+ *memrefloc = copy_rtx (*memrefloc);
+ loc = &XEXP (*memrefloc, 0);
+ if (removed_and)
+ loc = &XEXP (*loc, 0);
+ }
+
+ if (double_reg_address_ok)
+ {
+ /* Unshare the sum as well. */
+ *loc = ad = copy_rtx (ad);
+
+ /* Reload the displacement into an index reg.
+ We assume the frame pointer or arg pointer is a base reg. */
+ find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
+ INDEX_REG_CLASS, GET_MODE (ad), opnum,
+ type, ind_levels);
+ return 0;
+ }
+ else
+ {
+ /* If the sum of two regs is not necessarily valid,
+ reload the sum into a base reg.
+ That will at least work. */
+ find_reloads_address_part (ad, loc,
+ base_reg_class (mode, MEM, SCRATCH),
+ Pmode, opnum, type, ind_levels);
+ }
+ return ! removed_and;
+ }
+
+ /* If we have an indexed stack slot, there are three possible reasons why
+ it might be invalid: The index might need to be reloaded, the address
+ might have been made by frame pointer elimination and hence have a
+ constant out of range, or both reasons might apply.
+
+ We can easily check for an index needing reload, but even if that is the
+ case, we might also have an invalid constant. To avoid making the
+ conservative assumption and requiring two reloads, we see if this address
+ is valid when not interpreted strictly. If it is, the only problem is
+ that the index needs a reload and find_reloads_address_1 will take care
+ of it.
+
+ Handle all base registers here, not just fp/ap/sp, because on some
+ targets (namely SPARC) we can also get invalid addresses from preventive
+ subreg big-endian corrections made by find_reloads_toplev. We
+ can also get expressions involving LO_SUM (rather than PLUS) from
+ find_reloads_subreg_address.
+
+ If we decide to do something, it must be that `double_reg_address_ok'
+ is true. We generate a reload of the base register + constant and
+ rework the sum so that the reload register will be added to the index.
+ This is safe because we know the address isn't shared.
+
+ We check for the base register as both the first and second operand of
+ the innermost PLUS and/or LO_SUM. */
+
+ for (op_index = 0; op_index < 2; ++op_index)
+ {
+ rtx operand, addend;
+ enum rtx_code inner_code;
+
+ if (GET_CODE (ad) != PLUS)
+ continue;
+
+ inner_code = GET_CODE (XEXP (ad, 0));
+ if (!(GET_CODE (ad) == PLUS
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT
+ && (inner_code == PLUS || inner_code == LO_SUM)))
+ continue;
+
+ operand = XEXP (XEXP (ad, 0), op_index);
+ if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
+ continue;
+
+ addend = XEXP (XEXP (ad, 0), 1 - op_index);
+
+ if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
+ GET_CODE (addend))
+ || operand == frame_pointer_rtx
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ || operand == hard_frame_pointer_rtx
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ || operand == arg_pointer_rtx
+#endif
+ || operand == stack_pointer_rtx)
+ && ! maybe_memory_address_p (mode, ad,
+ &XEXP (XEXP (ad, 0), 1 - op_index)))
+ {
+ rtx offset_reg;
+ enum reg_class cls;
+
+ offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
+
+ /* Form the adjusted address. */
+ if (GET_CODE (XEXP (ad, 0)) == PLUS)
+ ad = gen_rtx_PLUS (GET_MODE (ad),
+ op_index == 0 ? offset_reg : addend,
+ op_index == 0 ? addend : offset_reg);
+ else
+ ad = gen_rtx_LO_SUM (GET_MODE (ad),
+ op_index == 0 ? offset_reg : addend,
+ op_index == 0 ? addend : offset_reg);
+ *loc = ad;
+
+ cls = base_reg_class (mode, MEM, GET_CODE (addend));
+ find_reloads_address_part (XEXP (ad, op_index),
+ &XEXP (ad, op_index), cls,
+ GET_MODE (ad), opnum, type, ind_levels);
+ find_reloads_address_1 (mode,
+ XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
+ GET_CODE (XEXP (ad, op_index)),
+ &XEXP (ad, 1 - op_index), opnum,
+ type, 0, insn);
+
+ return 0;
+ }
+ }
+
+ /* See if address becomes valid when an eliminable register
+ in a sum is replaced. */
+
+ tem = ad;
+ if (GET_CODE (ad) == PLUS)
+ tem = subst_indexed_address (ad);
+ if (tem != ad && strict_memory_address_p (mode, tem))
+ {
+ /* Ok, we win that way. Replace any additional eliminable
+ registers. */
+
+ subst_reg_equivs_changed = 0;
+ tem = subst_reg_equivs (tem, insn);
+
+ /* Make sure that didn't make the address invalid again. */
+
+ if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
+ {
+ *loc = tem;
+ return 0;
+ }
+ }
+
+ /* If constants aren't valid addresses, reload the constant address
+ into a register. */
+ if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
+ {
+ /* If AD is an address in the constant pool, the MEM rtx may be shared.
+ Unshare it so we can safely alter it. */
+ if (memrefloc && GET_CODE (ad) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (ad))
+ {
+ *memrefloc = copy_rtx (*memrefloc);
+ loc = &XEXP (*memrefloc, 0);
+ if (removed_and)
+ loc = &XEXP (*loc, 0);
+ }
+
+ find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
+ Pmode, opnum, type, ind_levels);
+ return ! removed_and;
+ }
+
+ return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
+ ind_levels, insn);
+}
+
+/* Find all pseudo regs appearing in AD
+ that are eliminable in favor of equivalent values
+ and do not have hard regs; replace them by their equivalents.
+ INSN, if nonzero, is the insn in which we do the reload. We put USEs in
+ front of it for pseudos that we have to replace with stack slots. */
+
+static rtx
+subst_reg_equivs (rtx ad, rtx insn)
+{
+ RTX_CODE code = GET_CODE (ad);
+ int i;
+ const char *fmt;
+
+ switch (code)
+ {
+ case HIGH:
+ case CONST_INT:
+ case CONST:
+ case CONST_DOUBLE:
+ case CONST_VECTOR:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case PC:
+ case CC0:
+ return ad;
+
+ case REG:
+ {
+ int regno = REGNO (ad);
+
+ if (reg_equiv_constant[regno] != 0)
+ {
+ subst_reg_equivs_changed = 1;
+ return reg_equiv_constant[regno];
+ }
+ if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
+ {
+ rtx mem = make_memloc (ad, regno);
+ if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
+ {
+ subst_reg_equivs_changed = 1;
+ /* We mark the USE with QImode so that we recognize it
+ as one that can be safely deleted at the end of
+ reload. */
+ PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
+ QImode);
+ return mem;
+ }
+ }
+ }
+ return ad;
+
+ case PLUS:
+ /* Quickly dispose of a common case. */
+ if (XEXP (ad, 0) == frame_pointer_rtx
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT)
+ return ad;
+ break;
+
+ default:
+ break;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
+ return ad;
+}
+
+/* Compute the sum of X and Y, making canonicalizations assumed in an
+ address, namely: sum constant integers, surround the sum of two
+ constants with a CONST, put the constant as the second operand, and
+ group the constant on the outermost sum.
+
+ This routine assumes both inputs are already in canonical form. */
+
+rtx
+form_sum (rtx x, rtx y)
+{
+ rtx tem;
+ enum machine_mode mode = GET_MODE (x);
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (y);
+
+ if (mode == VOIDmode)
+ mode = Pmode;
+
+ if (GET_CODE (x) == CONST_INT)
+ return plus_constant (y, INTVAL (x));
+ else if (GET_CODE (y) == CONST_INT)
+ return plus_constant (x, INTVAL (y));
+ else if (CONSTANT_P (x))
+ tem = x, x = y, y = tem;
+
+ if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
+ return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
+
+ /* Note that if the operands of Y are specified in the opposite
+ order in the recursive calls below, infinite recursion will occur. */
+ if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
+ return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
+
+ /* If both constant, encapsulate sum. Otherwise, just form sum. A
+ constant will have been placed second. */
+ if (CONSTANT_P (x) && CONSTANT_P (y))
+ {
+ if (GET_CODE (x) == CONST)
+ x = XEXP (x, 0);
+ if (GET_CODE (y) == CONST)
+ y = XEXP (y, 0);
+
+ return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
+ }
+
+ return gen_rtx_PLUS (mode, x, y);
+}
+
+/* If ADDR is a sum containing a pseudo register that should be
+ replaced with a constant (from reg_equiv_constant),
+ return the result of doing so, and also apply the associative
+ law so that the result is more likely to be a valid address.
+ (But it is not guaranteed to be one.)
+
+ Note that at most one register is replaced, even if more are
+ replaceable. Also, we try to put the result into a canonical form
+ so it is more likely to be a valid address.
+
+ In all other cases, return ADDR. */
+
+static rtx
+subst_indexed_address (rtx addr)
+{
+ rtx op0 = 0, op1 = 0, op2 = 0;
+ rtx tem;
+ int regno;
+
+ if (GET_CODE (addr) == PLUS)
+ {
+ /* Try to find a register to replace. */
+ op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
+ if (REG_P (op0)
+ && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ op0 = reg_equiv_constant[regno];
+ else if (REG_P (op1)
+ && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ op1 = reg_equiv_constant[regno];
+ else if (GET_CODE (op0) == PLUS
+ && (tem = subst_indexed_address (op0)) != op0)
+ op0 = tem;
+ else if (GET_CODE (op1) == PLUS
+ && (tem = subst_indexed_address (op1)) != op1)
+ op1 = tem;
+ else
+ return addr;
+
+ /* Pick out up to three things to add. */
+ if (GET_CODE (op1) == PLUS)
+ op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
+ else if (GET_CODE (op0) == PLUS)
+ op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
+
+ /* Compute the sum. */
+ if (op2 != 0)
+ op1 = form_sum (op1, op2);
+ if (op1 != 0)
+ op0 = form_sum (op0, op1);
+
+ return op0;
+ }
+ return addr;
+}
+
+/* Update the REG_INC notes for an insn. It updates all REG_INC
+ notes for the instruction which refer to REGNO the to refer
+ to the reload number.
+
+ INSN is the insn for which any REG_INC notes need updating.
+
+ REGNO is the register number which has been reloaded.
+
+ RELOADNUM is the reload number. */
+
+static void
+update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
+ int reloadnum ATTRIBUTE_UNUSED)
+{
+#ifdef AUTO_INC_DEC
+ rtx link;
+
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_INC
+ && (int) REGNO (XEXP (link, 0)) == regno)
+ push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
+#endif
+}
+
+/* Record the pseudo registers we must reload into hard registers in a
+ subexpression of a would-be memory address, X referring to a value
+ in mode MODE. (This function is not called if the address we find
+ is strictly valid.)
+
+ CONTEXT = 1 means we are considering regs as index regs,
+ = 0 means we are considering them as base regs.
+ OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
+ or an autoinc code.
+ If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
+ is the code of the index part of the address. Otherwise, pass SCRATCH
+ for this argument.
+ OPNUM and TYPE specify the purpose of any reloads made.
+
+ IND_LEVELS says how many levels of indirect addressing are
+ supported at this point in the address.
+
+ INSN, if nonzero, is the insn in which we do the reload. It is used
+ to determine if we may generate output reloads.
+
+ We return nonzero if X, as a whole, is reloaded or replaced. */
+
+/* Note that we take shortcuts assuming that no multi-reg machine mode
+ occurs as part of an address.
+ Also, this is not fully machine-customizable; it works for machines
+ such as VAXen and 68000's and 32000's, but other possible machines
+ could have addressing modes that this does not handle right.
+ If you add push_reload calls here, you need to make sure gen_reload
+ handles those cases gracefully. */
+
+static int
+find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
+ enum rtx_code outer_code, enum rtx_code index_code,
+ rtx *loc, int opnum, enum reload_type type,
+ int ind_levels, rtx insn)
+{
+#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
+ ((CONTEXT) == 0 \
+ ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
+ : REGNO_OK_FOR_INDEX_P (REGNO))
+
+ enum reg_class context_reg_class;
+ RTX_CODE code = GET_CODE (x);
+
+ if (context == 1)
+ context_reg_class = INDEX_REG_CLASS;
+ else
+ context_reg_class = base_reg_class (mode, outer_code, index_code);
+
+ switch (code)
+ {
+ case PLUS:
+ {
+ rtx orig_op0 = XEXP (x, 0);
+ rtx orig_op1 = XEXP (x, 1);
+ RTX_CODE code0 = GET_CODE (orig_op0);
+ RTX_CODE code1 = GET_CODE (orig_op1);
+ rtx op0 = orig_op0;
+ rtx op1 = orig_op1;
+
+ if (GET_CODE (op0) == SUBREG)
+ {
+ op0 = SUBREG_REG (op0);
+ code0 = GET_CODE (op0);
+ if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
+ op0 = gen_rtx_REG (word_mode,
+ (REGNO (op0) +
+ subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
+ GET_MODE (SUBREG_REG (orig_op0)),
+ SUBREG_BYTE (orig_op0),
+ GET_MODE (orig_op0))));
+ }
+
+ if (GET_CODE (op1) == SUBREG)
+ {
+ op1 = SUBREG_REG (op1);
+ code1 = GET_CODE (op1);
+ if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
+ /* ??? Why is this given op1's mode and above for
+ ??? op0 SUBREGs we use word_mode? */
+ op1 = gen_rtx_REG (GET_MODE (op1),
+ (REGNO (op1) +
+ subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
+ GET_MODE (SUBREG_REG (orig_op1)),
+ SUBREG_BYTE (orig_op1),
+ GET_MODE (orig_op1))));
+ }
+ /* Plus in the index register may be created only as a result of
+ register rematerialization for expression like &localvar*4. Reload it.
+ It may be possible to combine the displacement on the outer level,
+ but it is probably not worthwhile to do so. */
+ if (context == 1)
+ {
+ find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
+ opnum, ADDR_TYPE (type), ind_levels, insn);
+ push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+
+ if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
+ || code0 == ZERO_EXTEND || code1 == MEM)
+ {
+ find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
+ &XEXP (x, 0), opnum, type, ind_levels,
+ insn);
+ find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
+ &XEXP (x, 1), opnum, type, ind_levels,
+ insn);
+ }
+
+ else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
+ || code1 == ZERO_EXTEND || code0 == MEM)
+ {
+ find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
+ &XEXP (x, 0), opnum, type, ind_levels,
+ insn);
+ find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
+ &XEXP (x, 1), opnum, type, ind_levels,
+ insn);
+ }
+
+ else if (code0 == CONST_INT || code0 == CONST
+ || code0 == SYMBOL_REF || code0 == LABEL_REF)
+ find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
+ &XEXP (x, 1), opnum, type, ind_levels,
+ insn);
+
+ else if (code1 == CONST_INT || code1 == CONST
+ || code1 == SYMBOL_REF || code1 == LABEL_REF)
+ find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
+ &XEXP (x, 0), opnum, type, ind_levels,
+ insn);
+
+ else if (code0 == REG && code1 == REG)
+ {
+ if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
+ && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
+ return 0;
+ else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
+ && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
+ return 0;
+ else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
+ find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
+ &XEXP (x, 0), opnum, type, ind_levels,
+ insn);
+ else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
+ find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
+ &XEXP (x, 1), opnum, type, ind_levels,
+ insn);
+ else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
+ find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
+ &XEXP (x, 0), opnum, type, ind_levels,
+ insn);
+ else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
+ find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
+ &XEXP (x, 1), opnum, type, ind_levels,
+ insn);
+ else
+ {
+ find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
+ &XEXP (x, 0), opnum, type, ind_levels,
+ insn);
+ find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
+ &XEXP (x, 1), opnum, type, ind_levels,
+ insn);
+ }
+ }
+
+ else if (code0 == REG)
+ {
+ find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
+ &XEXP (x, 0), opnum, type, ind_levels,
+ insn);
+ find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
+ &XEXP (x, 1), opnum, type, ind_levels,
+ insn);
+ }
+
+ else if (code1 == REG)
+ {
+ find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
+ &XEXP (x, 1), opnum, type, ind_levels,
+ insn);
+ find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
+ &XEXP (x, 0), opnum, type, ind_levels,
+ insn);
+ }
+ }
+
+ return 0;
+
+ case POST_MODIFY:
+ case PRE_MODIFY:
+ {
+ rtx op0 = XEXP (x, 0);
+ rtx op1 = XEXP (x, 1);
+ enum rtx_code index_code;
+ int regno;
+ int reloadnum;
+
+ if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
+ return 0;
+
+ /* Currently, we only support {PRE,POST}_MODIFY constructs
+ where a base register is {inc,dec}remented by the contents
+ of another register or by a constant value. Thus, these
+ operands must match. */
+ gcc_assert (op0 == XEXP (op1, 0));
+
+ /* Require index register (or constant). Let's just handle the
+ register case in the meantime... If the target allows
+ auto-modify by a constant then we could try replacing a pseudo
+ register with its equivalent constant where applicable.
+
+ If we later decide to reload the whole PRE_MODIFY or
+ POST_MODIFY, inc_for_reload might clobber the reload register
+ before reading the index. The index register might therefore
+ need to live longer than a TYPE reload normally would, so be
+ conservative and class it as RELOAD_OTHER. */
+ if (REG_P (XEXP (op1, 1)))
+ if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
+ find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
+ &XEXP (op1, 1), opnum, RELOAD_OTHER,
+ ind_levels, insn);
+
+ gcc_assert (REG_P (XEXP (op1, 0)));
+
+ regno = REGNO (XEXP (op1, 0));
+ index_code = GET_CODE (XEXP (op1, 1));
+
+ /* A register that is incremented cannot be constant! */
+ gcc_assert (regno < FIRST_PSEUDO_REGISTER
+ || reg_equiv_constant[regno] == 0);
+
+ /* Handle a register that is equivalent to a memory location
+ which cannot be addressed directly. */
+ if (reg_equiv_memory_loc[regno] != 0
+ && (reg_equiv_address[regno] != 0
+ || num_not_at_initial_offset))
+ {
+ rtx tem = make_memloc (XEXP (x, 0), regno);
+
+ if (reg_equiv_address[regno]
+ || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
+ {
+ rtx orig = tem;
+
+ /* First reload the memory location's address.
+ We can't use ADDR_TYPE (type) here, because we need to
+ write back the value after reading it, hence we actually
+ need two registers. */
+ find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
+ &XEXP (tem, 0), opnum,
+ RELOAD_OTHER,
+ ind_levels, insn);
+
+ if (tem != orig)
+ push_reg_equiv_alt_mem (regno, tem);
+
+ /* Then reload the memory location into a base
+ register. */
+ reloadnum = push_reload (tem, tem, &XEXP (x, 0),
+ &XEXP (op1, 0),
+ base_reg_class (mode, code,
+ index_code),
+ GET_MODE (x), GET_MODE (x), 0,
+ 0, opnum, RELOAD_OTHER);
+
+ update_auto_inc_notes (this_insn, regno, reloadnum);
+ return 0;
+ }
+ }
+
+ if (reg_renumber[regno] >= 0)
+ regno = reg_renumber[regno];
+
+ /* We require a base register here... */
+ if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
+ {
+ reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
+ &XEXP (op1, 0), &XEXP (x, 0),
+ base_reg_class (mode, code, index_code),
+ GET_MODE (x), GET_MODE (x), 0, 0,
+ opnum, RELOAD_OTHER);
+
+ update_auto_inc_notes (this_insn, regno, reloadnum);
+ return 0;
+ }
+ }
+ return 0;
+
+ case POST_INC:
+ case POST_DEC:
+ case PRE_INC:
+ case PRE_DEC:
+ if (REG_P (XEXP (x, 0)))
+ {
+ int regno = REGNO (XEXP (x, 0));
+ int value = 0;
+ rtx x_orig = x;
+
+ /* A register that is incremented cannot be constant! */
+ gcc_assert (regno < FIRST_PSEUDO_REGISTER
+ || reg_equiv_constant[regno] == 0);
+
+ /* Handle a register that is equivalent to a memory location
+ which cannot be addressed directly. */
+ if (reg_equiv_memory_loc[regno] != 0
+ && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
+ {
+ rtx tem = make_memloc (XEXP (x, 0), regno);
+ if (reg_equiv_address[regno]
+ || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
+ {
+ rtx orig = tem;
+
+ /* First reload the memory location's address.
+ We can't use ADDR_TYPE (type) here, because we need to
+ write back the value after reading it, hence we actually
+ need two registers. */
+ find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
+ &XEXP (tem, 0), opnum, type,
+ ind_levels, insn);
+ if (tem != orig)
+ push_reg_equiv_alt_mem (regno, tem);
+ /* Put this inside a new increment-expression. */
+ x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
+ /* Proceed to reload that, as if it contained a register. */
+ }
+ }
+
+ /* If we have a hard register that is ok as an index,
+ don't make a reload. If an autoincrement of a nice register
+ isn't "valid", it must be that no autoincrement is "valid".
+ If that is true and something made an autoincrement anyway,
+ this must be a special context where one is allowed.
+ (For example, a "push" instruction.)
+ We can't improve this address, so leave it alone. */
+
+ /* Otherwise, reload the autoincrement into a suitable hard reg
+ and record how much to increment by. */
+
+ if (reg_renumber[regno] >= 0)
+ regno = reg_renumber[regno];
+ if (regno >= FIRST_PSEUDO_REGISTER
+ || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
+ index_code))
+ {
+ int reloadnum;
+
+ /* If we can output the register afterwards, do so, this
+ saves the extra update.
+ We can do so if we have an INSN - i.e. no JUMP_INSN nor
+ CALL_INSN - and it does not set CC0.
+ But don't do this if we cannot directly address the
+ memory location, since this will make it harder to
+ reuse address reloads, and increases register pressure.
+ Also don't do this if we can probably update x directly. */
+ rtx equiv = (MEM_P (XEXP (x, 0))
+ ? XEXP (x, 0)
+ : reg_equiv_mem[regno]);
+ int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
+ if (insn && NONJUMP_INSN_P (insn) && equiv
+ && memory_operand (equiv, GET_MODE (equiv))
+#ifdef HAVE_cc0
+ && ! sets_cc0_p (PATTERN (insn))
+#endif
+ && ! (icode != CODE_FOR_nothing
+ && ((*insn_data[icode].operand[0].predicate)
+ (equiv, Pmode))
+ && ((*insn_data[icode].operand[1].predicate)
+ (equiv, Pmode))))
+ {
+ /* We use the original pseudo for loc, so that
+ emit_reload_insns() knows which pseudo this
+ reload refers to and updates the pseudo rtx, not
+ its equivalent memory location, as well as the
+ corresponding entry in reg_last_reload_reg. */
+ loc = &XEXP (x_orig, 0);
+ x = XEXP (x, 0);
+ reloadnum
+ = push_reload (x, x, loc, loc,
+ context_reg_class,
+ GET_MODE (x), GET_MODE (x), 0, 0,
+ opnum, RELOAD_OTHER);
+ }
+ else
+ {
+ reloadnum
+ = push_reload (x, NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), GET_MODE (x), 0, 0,
+ opnum, type);
+ rld[reloadnum].inc
+ = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
+
+ value = 1;
+ }
+
+ update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
+ reloadnum);
+ }
+ return value;
+ }
+
+ else if (MEM_P (XEXP (x, 0)))
+ {
+ /* This is probably the result of a substitution, by eliminate_regs,
+ of an equivalent address for a pseudo that was not allocated to a
+ hard register. Verify that the specified address is valid and
+ reload it into a register. */
+ /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
+ rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
+ rtx link;
+ int reloadnum;
+
+ /* Since we know we are going to reload this item, don't decrement
+ for the indirection level.
+
+ Note that this is actually conservative: it would be slightly
+ more efficient to use the value of SPILL_INDIRECT_LEVELS from
+ reload1.c here. */
+ /* We can't use ADDR_TYPE (type) here, because we need to
+ write back the value after reading it, hence we actually
+ need two registers. */
+ find_reloads_address (GET_MODE (x), &XEXP (x, 0),
+ XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
+ opnum, type, ind_levels, insn);
+
+ reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ rld[reloadnum].inc
+ = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
+
+ link = FIND_REG_INC_NOTE (this_insn, tem);
+ if (link != 0)
+ push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
+
+ return 1;
+ }
+ return 0;
+
+ case TRUNCATE:
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ /* Look for parts to reload in the inner expression and reload them
+ too, in addition to this operation. Reloading all inner parts in
+ addition to this one shouldn't be necessary, but at this point,
+ we don't know if we can possibly omit any part that *can* be
+ reloaded. Targets that are better off reloading just either part
+ (or perhaps even a different part of an outer expression), should
+ define LEGITIMIZE_RELOAD_ADDRESS. */
+ find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
+ context, code, SCRATCH, &XEXP (x, 0), opnum,
+ type, ind_levels, insn);
+ push_reload (x, NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+
+ case MEM:
+ /* This is probably the result of a substitution, by eliminate_regs, of
+ an equivalent address for a pseudo that was not allocated to a hard
+ register. Verify that the specified address is valid and reload it
+ into a register.
+
+ Since we know we are going to reload this item, don't decrement for
+ the indirection level.
+
+ Note that this is actually conservative: it would be slightly more
+ efficient to use the value of SPILL_INDIRECT_LEVELS from
+ reload1.c here. */
+
+ find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
+ opnum, ADDR_TYPE (type), ind_levels, insn);
+ push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+
+ case REG:
+ {
+ int regno = REGNO (x);
+
+ if (reg_equiv_constant[regno] != 0)
+ {
+ find_reloads_address_part (reg_equiv_constant[regno], loc,
+ context_reg_class,
+ GET_MODE (x), opnum, type, ind_levels);
+ return 1;
+ }
+
+#if 0 /* This might screw code in reload1.c to delete prior output-reload
+ that feeds this insn. */
+ if (reg_equiv_mem[regno] != 0)
+ {
+ push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+#endif
+
+ if (reg_equiv_memory_loc[regno]
+ && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
+ {
+ rtx tem = make_memloc (x, regno);
+ if (reg_equiv_address[regno] != 0
+ || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
+ {
+ x = tem;
+ find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
+ &XEXP (x, 0), opnum, ADDR_TYPE (type),
+ ind_levels, insn);
+ if (x != tem)
+ push_reg_equiv_alt_mem (regno, x);
+ }
+ }
+
+ if (reg_renumber[regno] >= 0)
+ regno = reg_renumber[regno];
+
+ if (regno >= FIRST_PSEUDO_REGISTER
+ || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
+ index_code))
+ {
+ push_reload (x, NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+
+ /* If a register appearing in an address is the subject of a CLOBBER
+ in this insn, reload it into some other register to be safe.
+ The CLOBBER is supposed to make the register unavailable
+ from before this insn to after it. */
+ if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
+ {
+ push_reload (x, NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+ }
+ return 0;
+
+ case SUBREG:
+ if (REG_P (SUBREG_REG (x)))
+ {
+ /* If this is a SUBREG of a hard register and the resulting register
+ is of the wrong class, reload the whole SUBREG. This avoids
+ needless copies if SUBREG_REG is multi-word. */
+ if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
+ {
+ int regno ATTRIBUTE_UNUSED = subreg_regno (x);
+
+ if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
+ index_code))
+ {
+ push_reload (x, NULL_RTX, loc, (rtx*) 0,
+ context_reg_class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+ }
+ /* If this is a SUBREG of a pseudo-register, and the pseudo-register
+ is larger than the class size, then reload the whole SUBREG. */
+ else
+ {
+ enum reg_class class = context_reg_class;
+ if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
+ > reg_class_size[class])
+ {
+ x = find_reloads_subreg_address (x, 0, opnum,
+ ADDR_TYPE (type),
+ ind_levels, insn);
+ push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ {
+ const char *fmt = GET_RTX_FORMAT (code);
+ int i;
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
+ we get here. */
+ find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
+ &XEXP (x, i), opnum, type, ind_levels, insn);
+ }
+ }
+
+#undef REG_OK_FOR_CONTEXT
+ return 0;
+}
+
+/* X, which is found at *LOC, is a part of an address that needs to be
+ reloaded into a register of class CLASS. If X is a constant, or if
+ X is a PLUS that contains a constant, check that the constant is a
+ legitimate operand and that we are supposed to be able to load
+ it into the register.
+
+ If not, force the constant into memory and reload the MEM instead.
+
+ MODE is the mode to use, in case X is an integer constant.
+
+ OPNUM and TYPE describe the purpose of any reloads made.
+
+ IND_LEVELS says how many levels of indirect addressing this machine
+ supports. */
+
+static void
+find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
+ enum machine_mode mode, int opnum,
+ enum reload_type type, int ind_levels)
+{
+ if (CONSTANT_P (x)
+ && (! LEGITIMATE_CONSTANT_P (x)
+ || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
+ {
+ rtx tem;
+
+ tem = x = force_const_mem (mode, x);
+ find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
+ opnum, type, ind_levels, 0);
+ }
+
+ else if (GET_CODE (x) == PLUS
+ && CONSTANT_P (XEXP (x, 1))
+ && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
+ || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
+ {
+ rtx tem;
+
+ tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
+ x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
+ find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
+ opnum, type, ind_levels, 0);
+ }
+
+ push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
+ mode, VOIDmode, 0, 0, opnum, type);
+}
+
+/* X, a subreg of a pseudo, is a part of an address that needs to be
+ reloaded.
+
+ If the pseudo is equivalent to a memory location that cannot be directly
+ addressed, make the necessary address reloads.
+
+ If address reloads have been necessary, or if the address is changed
+ by register elimination, return the rtx of the memory location;
+ otherwise, return X.
+
+ If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
+ memory location.
+
+ OPNUM and TYPE identify the purpose of the reload.
+
+ IND_LEVELS says how many levels of indirect addressing are
+ supported at this point in the address.
+
+ INSN, if nonzero, is the insn in which we do the reload. It is used
+ to determine where to put USEs for pseudos that we have to replace with
+ stack slots. */
+
+static rtx
+find_reloads_subreg_address (rtx x, int force_replace, int opnum,
+ enum reload_type type, int ind_levels, rtx insn)
+{
+ int regno = REGNO (SUBREG_REG (x));
+
+ if (reg_equiv_memory_loc[regno])
+ {
+ /* If the address is not directly addressable, or if the address is not
+ offsettable, then it must be replaced. */
+ if (! force_replace
+ && (reg_equiv_address[regno]
+ || ! offsettable_memref_p (reg_equiv_mem[regno])))
+ force_replace = 1;
+
+ if (force_replace || num_not_at_initial_offset)
+ {
+ rtx tem = make_memloc (SUBREG_REG (x), regno);
+
+ /* If the address changes because of register elimination, then
+ it must be replaced. */
+ if (force_replace
+ || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
+ {
+ unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
+ unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
+ int offset;
+ rtx orig = tem;
+ enum machine_mode orig_mode = GET_MODE (orig);
+ int reloaded;
+
+ /* For big-endian paradoxical subregs, SUBREG_BYTE does not
+ hold the correct (negative) byte offset. */
+ if (BYTES_BIG_ENDIAN && outer_size > inner_size)
+ offset = inner_size - outer_size;
+ else
+ offset = SUBREG_BYTE (x);
+
+ XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
+ PUT_MODE (tem, GET_MODE (x));
+
+ /* If this was a paradoxical subreg that we replaced, the
+ resulting memory must be sufficiently aligned to allow
+ us to widen the mode of the memory. */
+ if (outer_size > inner_size)
+ {
+ rtx base;
+
+ base = XEXP (tem, 0);
+ if (GET_CODE (base) == PLUS)
+ {
+ if (GET_CODE (XEXP (base, 1)) == CONST_INT
+ && INTVAL (XEXP (base, 1)) % outer_size != 0)
+ return x;
+ base = XEXP (base, 0);
+ }
+ if (!REG_P (base)
+ || (REGNO_POINTER_ALIGN (REGNO (base))
+ < outer_size * BITS_PER_UNIT))
+ return x;
+ }
+
+ reloaded = find_reloads_address (GET_MODE (tem), &tem,
+ XEXP (tem, 0), &XEXP (tem, 0),
+ opnum, type, ind_levels, insn);
+ /* ??? Do we need to handle nonzero offsets somehow? */
+ if (!offset && tem != orig)
+ push_reg_equiv_alt_mem (regno, tem);
+
+ /* For some processors an address may be valid in the
+ original mode but not in a smaller mode. For
+ example, ARM accepts a scaled index register in
+ SImode but not in HImode. find_reloads_address
+ assumes that we pass it a valid address, and doesn't
+ force a reload. This will probably be fine if
+ find_reloads_address finds some reloads. But if it
+ doesn't find any, then we may have just converted a
+ valid address into an invalid one. Check for that
+ here. */
+ if (reloaded != 1
+ && strict_memory_address_p (orig_mode, XEXP (tem, 0))
+ && !strict_memory_address_p (GET_MODE (tem),
+ XEXP (tem, 0)))
+ push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
+ base_reg_class (GET_MODE (tem), MEM, SCRATCH),
+ GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
+ opnum, type);
+
+ /* If this is not a toplevel operand, find_reloads doesn't see
+ this substitution. We have to emit a USE of the pseudo so
+ that delete_output_reload can see it. */
+ if (replace_reloads && recog_data.operand[opnum] != x)
+ /* We mark the USE with QImode so that we recognize it
+ as one that can be safely deleted at the end of
+ reload. */
+ PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
+ SUBREG_REG (x)),
+ insn), QImode);
+ x = tem;
+ }
+ }
+ }
+ return x;
+}
+
+/* Substitute into the current INSN the registers into which we have reloaded
+ the things that need reloading. The array `replacements'
+ contains the locations of all pointers that must be changed
+ and says what to replace them with.
+
+ Return the rtx that X translates into; usually X, but modified. */
+
+void
+subst_reloads (rtx insn)
+{
+ int i;
+
+ for (i = 0; i < n_replacements; i++)
+ {
+ struct replacement *r = &replacements[i];
+ rtx reloadreg = rld[r->what].reg_rtx;
+ if (reloadreg)
+ {
+#ifdef ENABLE_CHECKING
+ /* Internal consistency test. Check that we don't modify
+ anything in the equivalence arrays. Whenever something from
+ those arrays needs to be reloaded, it must be unshared before
+ being substituted into; the equivalence must not be modified.
+ Otherwise, if the equivalence is used after that, it will
+ have been modified, and the thing substituted (probably a
+ register) is likely overwritten and not a usable equivalence. */
+ int check_regno;
+
+ for (check_regno = 0; check_regno < max_regno; check_regno++)
+ {
+#define CHECK_MODF(ARRAY) \
+ gcc_assert (!ARRAY[check_regno] \
+ || !loc_mentioned_in_p (r->where, \
+ ARRAY[check_regno]))
+
+ CHECK_MODF (reg_equiv_constant);
+ CHECK_MODF (reg_equiv_memory_loc);
+ CHECK_MODF (reg_equiv_address);
+ CHECK_MODF (reg_equiv_mem);
+#undef CHECK_MODF
+ }
+#endif /* ENABLE_CHECKING */
+
+ /* If we're replacing a LABEL_REF with a register, add a
+ REG_LABEL note to indicate to flow which label this
+ register refers to. */
+ if (GET_CODE (*r->where) == LABEL_REF
+ && JUMP_P (insn))
+ {
+ REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
+ XEXP (*r->where, 0),
+ REG_NOTES (insn));
+ JUMP_LABEL (insn) = XEXP (*r->where, 0);
+ }
+
+ /* Encapsulate RELOADREG so its machine mode matches what
+ used to be there. Note that gen_lowpart_common will
+ do the wrong thing if RELOADREG is multi-word. RELOADREG
+ will always be a REG here. */
+ if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
+ reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
+
+ /* If we are putting this into a SUBREG and RELOADREG is a
+ SUBREG, we would be making nested SUBREGs, so we have to fix
+ this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
+
+ if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
+ {
+ if (GET_MODE (*r->subreg_loc)
+ == GET_MODE (SUBREG_REG (reloadreg)))
+ *r->subreg_loc = SUBREG_REG (reloadreg);
+ else
+ {
+ int final_offset =
+ SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
+
+ /* When working with SUBREGs the rule is that the byte
+ offset must be a multiple of the SUBREG's mode. */
+ final_offset = (final_offset /
+ GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
+ final_offset = (final_offset *
+ GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
+
+ *r->where = SUBREG_REG (reloadreg);
+ SUBREG_BYTE (*r->subreg_loc) = final_offset;
+ }
+ }
+ else
+ *r->where = reloadreg;
+ }
+ /* If reload got no reg and isn't optional, something's wrong. */
+ else
+ gcc_assert (rld[r->what].optional);
+ }
+}
+
+/* Make a copy of any replacements being done into X and move those
+ copies to locations in Y, a copy of X. */
+
+void
+copy_replacements (rtx x, rtx y)
+{
+ /* We can't support X being a SUBREG because we might then need to know its
+ location if something inside it was replaced. */
+ gcc_assert (GET_CODE (x) != SUBREG);
+
+ copy_replacements_1 (&x, &y, n_replacements);
+}
+
+static void
+copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
+{
+ int i, j;
+ rtx x, y;
+ struct replacement *r;
+ enum rtx_code code;
+ const char *fmt;
+
+ for (j = 0; j < orig_replacements; j++)
+ {
+ if (replacements[j].subreg_loc == px)
+ {
+ r = &replacements[n_replacements++];
+ r->where = replacements[j].where;
+ r->subreg_loc = py;
+ r->what = replacements[j].what;
+ r->mode = replacements[j].mode;
+ }
+ else if (replacements[j].where == px)
+ {
+ r = &replacements[n_replacements++];
+ r->where = py;
+ r->subreg_loc = 0;
+ r->what = replacements[j].what;
+ r->mode = replacements[j].mode;
+ }
+ }
+
+ x = *px;
+ y = *py;
+ code = GET_CODE (x);
+ fmt = GET_RTX_FORMAT (code);
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i); --j >= 0; )
+ copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
+ orig_replacements);
+ }
+}
+
+/* Change any replacements being done to *X to be done to *Y. */
+
+void
+move_replacements (rtx *x, rtx *y)
+{
+ int i;
+
+ for (i = 0; i < n_replacements; i++)
+ if (replacements[i].subreg_loc == x)
+ replacements[i].subreg_loc = y;
+ else if (replacements[i].where == x)
+ {
+ replacements[i].where = y;
+ replacements[i].subreg_loc = 0;
+ }
+}
+
+/* If LOC was scheduled to be replaced by something, return the replacement.
+ Otherwise, return *LOC. */
+
+rtx
+find_replacement (rtx *loc)
+{
+ struct replacement *r;
+
+ for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
+ {
+ rtx reloadreg = rld[r->what].reg_rtx;
+
+ if (reloadreg && r->where == loc)
+ {
+ if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
+ reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
+
+ return reloadreg;
+ }
+ else if (reloadreg && r->subreg_loc == loc)
+ {
+ /* RELOADREG must be either a REG or a SUBREG.
+
+ ??? Is it actually still ever a SUBREG? If so, why? */
+
+ if (REG_P (reloadreg))
+ return gen_rtx_REG (GET_MODE (*loc),
+ (REGNO (reloadreg) +
+ subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
+ GET_MODE (SUBREG_REG (*loc)),
+ SUBREG_BYTE (*loc),
+ GET_MODE (*loc))));
+ else if (GET_MODE (reloadreg) == GET_MODE (*loc))
+ return reloadreg;
+ else
+ {
+ int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
+
+ /* When working with SUBREGs the rule is that the byte
+ offset must be a multiple of the SUBREG's mode. */
+ final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
+ final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
+ return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
+ final_offset);
+ }
+ }
+ }
+
+ /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
+ what's inside and make a new rtl if so. */
+ if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
+ || GET_CODE (*loc) == MULT)
+ {
+ rtx x = find_replacement (&XEXP (*loc, 0));
+ rtx y = find_replacement (&XEXP (*loc, 1));
+
+ if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
+ return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
+ }
+
+ return *loc;
+}
+
+/* Return nonzero if register in range [REGNO, ENDREGNO)
+ appears either explicitly or implicitly in X
+ other than being stored into (except for earlyclobber operands).
+
+ References contained within the substructure at LOC do not count.
+ LOC may be zero, meaning don't ignore anything.
+
+ This is similar to refers_to_regno_p in rtlanal.c except that we
+ look at equivalences for pseudos that didn't get hard registers. */
+
+static int
+refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
+ rtx x, rtx *loc)
+{
+ int i;
+ unsigned int r;
+ RTX_CODE code;
+ const char *fmt;
+
+ if (x == 0)
+ return 0;
+
+ repeat:
+ code = GET_CODE (x);
+
+ switch (code)
+ {
+ case REG:
+ r = REGNO (x);
+
+ /* If this is a pseudo, a hard register must not have been allocated.
+ X must therefore either be a constant or be in memory. */
+ if (r >= FIRST_PSEUDO_REGISTER)
+ {
+ if (reg_equiv_memory_loc[r])
+ return refers_to_regno_for_reload_p (regno, endregno,
+ reg_equiv_memory_loc[r],
+ (rtx*) 0);
+
+ gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
+ return 0;
+ }
+
+ return (endregno > r
+ && regno < r + (r < FIRST_PSEUDO_REGISTER
+ ? hard_regno_nregs[r][GET_MODE (x)]
+ : 1));
+
+ case SUBREG:
+ /* If this is a SUBREG of a hard reg, we can see exactly which
+ registers are being modified. Otherwise, handle normally. */
+ if (REG_P (SUBREG_REG (x))
+ && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
+ {
+ unsigned int inner_regno = subreg_regno (x);
+ unsigned int inner_endregno
+ = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
+ ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
+
+ return endregno > inner_regno && regno < inner_endregno;
+ }
+ break;
+
+ case CLOBBER:
+ case SET:
+ if (&SET_DEST (x) != loc
+ /* Note setting a SUBREG counts as referring to the REG it is in for
+ a pseudo but not for hard registers since we can
+ treat each word individually. */
+ && ((GET_CODE (SET_DEST (x)) == SUBREG
+ && loc != &SUBREG_REG (SET_DEST (x))
+ && REG_P (SUBREG_REG (SET_DEST (x)))
+ && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
+ && refers_to_regno_for_reload_p (regno, endregno,
+ SUBREG_REG (SET_DEST (x)),
+ loc))
+ /* If the output is an earlyclobber operand, this is
+ a conflict. */
+ || ((!REG_P (SET_DEST (x))
+ || earlyclobber_operand_p (SET_DEST (x)))
+ && refers_to_regno_for_reload_p (regno, endregno,
+ SET_DEST (x), loc))))
+ return 1;
+
+ if (code == CLOBBER || loc == &SET_SRC (x))
+ return 0;
+ x = SET_SRC (x);
+ goto repeat;
+
+ default:
+ break;
+ }
+
+ /* X does not match, so try its subexpressions. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e' && loc != &XEXP (x, i))
+ {
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto repeat;
+ }
+ else
+ if (refers_to_regno_for_reload_p (regno, endregno,
+ XEXP (x, i), loc))
+ return 1;
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ if (loc != &XVECEXP (x, i, j)
+ && refers_to_regno_for_reload_p (regno, endregno,
+ XVECEXP (x, i, j), loc))
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
+ we check if any register number in X conflicts with the relevant register
+ numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
+ contains a MEM (we don't bother checking for memory addresses that can't
+ conflict because we expect this to be a rare case.
+
+ This function is similar to reg_overlap_mentioned_p in rtlanal.c except
+ that we look at equivalences for pseudos that didn't get hard registers. */
+
+int
+reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
+{
+ int regno, endregno;
+
+ /* Overly conservative. */
+ if (GET_CODE (x) == STRICT_LOW_PART
+ || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
+ x = XEXP (x, 0);
+
+ /* If either argument is a constant, then modifying X can not affect IN. */
+ if (CONSTANT_P (x) || CONSTANT_P (in))
+ return 0;
+ else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
+ return refers_to_mem_for_reload_p (in);
+ else if (GET_CODE (x) == SUBREG)
+ {
+ regno = REGNO (SUBREG_REG (x));
+ if (regno < FIRST_PSEUDO_REGISTER)
+ regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
+ GET_MODE (SUBREG_REG (x)),
+ SUBREG_BYTE (x),
+ GET_MODE (x));
+ }
+ else if (REG_P (x))
+ {
+ regno = REGNO (x);
+
+ /* If this is a pseudo, it must not have been assigned a hard register.
+ Therefore, it must either be in memory or be a constant. */
+
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ if (reg_equiv_memory_loc[regno])
+ return refers_to_mem_for_reload_p (in);
+ gcc_assert (reg_equiv_constant[regno]);
+ return 0;
+ }
+ }
+ else if (MEM_P (x))
+ return refers_to_mem_for_reload_p (in);
+ else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
+ || GET_CODE (x) == CC0)
+ return reg_mentioned_p (x, in);
+ else
+ {
+ gcc_assert (GET_CODE (x) == PLUS);
+
+ /* We actually want to know if X is mentioned somewhere inside IN.
+ We must not say that (plus (sp) (const_int 124)) is in
+ (plus (sp) (const_int 64)), since that can lead to incorrect reload
+ allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
+ into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
+ while (MEM_P (in))
+ in = XEXP (in, 0);
+ if (REG_P (in))
+ return 0;
+ else if (GET_CODE (in) == PLUS)
+ return (rtx_equal_p (x, in)
+ || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
+ || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
+ else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
+ || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
+ }
+
+ endregno = regno + (regno < FIRST_PSEUDO_REGISTER
+ ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
+
+ return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
+}
+
+/* Return nonzero if anything in X contains a MEM. Look also for pseudo
+ registers. */
+
+static int
+refers_to_mem_for_reload_p (rtx x)
+{
+ const char *fmt;
+ int i;
+
+ if (MEM_P (x))
+ return 1;
+
+ if (REG_P (x))
+ return (REGNO (x) >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_memory_loc[REGNO (x)]);
+
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
+ if (fmt[i] == 'e'
+ && (MEM_P (XEXP (x, i))
+ || refers_to_mem_for_reload_p (XEXP (x, i))))
+ return 1;
+
+ return 0;
+}
+
+/* Check the insns before INSN to see if there is a suitable register
+ containing the same value as GOAL.
+ If OTHER is -1, look for a register in class CLASS.
+ Otherwise, just see if register number OTHER shares GOAL's value.
+
+ Return an rtx for the register found, or zero if none is found.
+
+ If RELOAD_REG_P is (short *)1,
+ we reject any hard reg that appears in reload_reg_rtx
+ because such a hard reg is also needed coming into this insn.
+
+ If RELOAD_REG_P is any other nonzero value,
+ it is a vector indexed by hard reg number
+ and we reject any hard reg whose element in the vector is nonnegative
+ as well as any that appears in reload_reg_rtx.
+
+ If GOAL is zero, then GOALREG is a register number; we look
+ for an equivalent for that register.
+
+ MODE is the machine mode of the value we want an equivalence for.
+ If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
+
+ This function is used by jump.c as well as in the reload pass.
+
+ If GOAL is the sum of the stack pointer and a constant, we treat it
+ as if it were a constant except that sp is required to be unchanging. */
+
+rtx
+find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
+ short *reload_reg_p, int goalreg, enum machine_mode mode)
+{
+ rtx p = insn;
+ rtx goaltry, valtry, value, where;
+ rtx pat;
+ int regno = -1;
+ int valueno;
+ int goal_mem = 0;
+ int goal_const = 0;
+ int goal_mem_addr_varies = 0;
+ int need_stable_sp = 0;
+ int nregs;
+ int valuenregs;
+ int num = 0;
+
+ if (goal == 0)
+ regno = goalreg;
+ else if (REG_P (goal))
+ regno = REGNO (goal);
+ else if (MEM_P (goal))
+ {
+ enum rtx_code code = GET_CODE (XEXP (goal, 0));
+ if (MEM_VOLATILE_P (goal))
+ return 0;
+ if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
+ return 0;
+ /* An address with side effects must be reexecuted. */
+ switch (code)
+ {
+ case POST_INC:
+ case PRE_INC:
+ case POST_DEC:
+ case PRE_DEC:
+ case POST_MODIFY:
+ case PRE_MODIFY:
+ return 0;
+ default:
+ break;
+ }
+ goal_mem = 1;
+ }
+ else if (CONSTANT_P (goal))
+ goal_const = 1;
+ else if (GET_CODE (goal) == PLUS
+ && XEXP (goal, 0) == stack_pointer_rtx
+ && CONSTANT_P (XEXP (goal, 1)))
+ goal_const = need_stable_sp = 1;
+ else if (GET_CODE (goal) == PLUS
+ && XEXP (goal, 0) == frame_pointer_rtx
+ && CONSTANT_P (XEXP (goal, 1)))
+ goal_const = 1;
+ else
+ return 0;
+
+ num = 0;
+ /* Scan insns back from INSN, looking for one that copies
+ a value into or out of GOAL.
+ Stop and give up if we reach a label. */
+
+ while (1)
+ {
+ p = PREV_INSN (p);
+ num++;
+ if (p == 0 || LABEL_P (p)
+ || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
+ return 0;
+
+ if (NONJUMP_INSN_P (p)
+ /* If we don't want spill regs ... */
+ && (! (reload_reg_p != 0
+ && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
+ /* ... then ignore insns introduced by reload; they aren't
+ useful and can cause results in reload_as_needed to be
+ different from what they were when calculating the need for
+ spills. If we notice an input-reload insn here, we will
+ reject it below, but it might hide a usable equivalent.
+ That makes bad code. It may even fail: perhaps no reg was
+ spilled for this insn because it was assumed we would find
+ that equivalent. */
+ || INSN_UID (p) < reload_first_uid))
+ {
+ rtx tem;
+ pat = single_set (p);
+
+ /* First check for something that sets some reg equal to GOAL. */
+ if (pat != 0
+ && ((regno >= 0
+ && true_regnum (SET_SRC (pat)) == regno
+ && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
+ ||
+ (regno >= 0
+ && true_regnum (SET_DEST (pat)) == regno
+ && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
+ ||
+ (goal_const && rtx_equal_p (SET_SRC (pat), goal)
+ /* When looking for stack pointer + const,
+ make sure we don't use a stack adjust. */
+ && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
+ && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
+ || (goal_mem
+ && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
+ && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
+ || (goal_mem
+ && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
+ && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
+ /* If we are looking for a constant,
+ and something equivalent to that constant was copied
+ into a reg, we can use that reg. */
+ || (goal_const && REG_NOTES (p) != 0
+ && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
+ && ((rtx_equal_p (XEXP (tem, 0), goal)
+ && (valueno
+ = true_regnum (valtry = SET_DEST (pat))) >= 0)
+ || (REG_P (SET_DEST (pat))
+ && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
+ && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
+ && GET_CODE (goal) == CONST_INT
+ && 0 != (goaltry
+ = operand_subword (XEXP (tem, 0), 0, 0,
+ VOIDmode))
+ && rtx_equal_p (goal, goaltry)
+ && (valtry
+ = operand_subword (SET_DEST (pat), 0, 0,
+ VOIDmode))
+ && (valueno = true_regnum (valtry)) >= 0)))
+ || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
+ NULL_RTX))
+ && REG_P (SET_DEST (pat))
+ && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
+ && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
+ && GET_CODE (goal) == CONST_INT
+ && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
+ VOIDmode))
+ && rtx_equal_p (goal, goaltry)
+ && (valtry
+ = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
+ && (valueno = true_regnum (valtry)) >= 0)))
+ {
+ if (other >= 0)
+ {
+ if (valueno != other)
+ continue;
+ }
+ else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
+ continue;
+ else
+ {
+ int i;
+
+ for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
+ if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ valueno + i))
+ break;
+ if (i >= 0)
+ continue;
+ }
+ value = valtry;
+ where = p;
+ break;
+ }
+ }
+ }
+
+ /* We found a previous insn copying GOAL into a suitable other reg VALUE
+ (or copying VALUE into GOAL, if GOAL is also a register).
+ Now verify that VALUE is really valid. */
+
+ /* VALUENO is the register number of VALUE; a hard register. */
+
+ /* Don't try to re-use something that is killed in this insn. We want
+ to be able to trust REG_UNUSED notes. */
+ if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
+ return 0;
+
+ /* If we propose to get the value from the stack pointer or if GOAL is
+ a MEM based on the stack pointer, we need a stable SP. */
+ if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
+ || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
+ goal)))
+ need_stable_sp = 1;
+
+ /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
+ if (GET_MODE (value) != mode)
+ return 0;
+
+ /* Reject VALUE if it was loaded from GOAL
+ and is also a register that appears in the address of GOAL. */
+
+ if (goal_mem && value == SET_DEST (single_set (where))
+ && refers_to_regno_for_reload_p (valueno,
+ (valueno
+ + hard_regno_nregs[valueno][mode]),
+ goal, (rtx*) 0))
+ return 0;
+
+ /* Reject registers that overlap GOAL. */
+
+ if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
+ nregs = hard_regno_nregs[regno][mode];
+ else
+ nregs = 1;
+ valuenregs = hard_regno_nregs[valueno][mode];
+
+ if (!goal_mem && !goal_const
+ && regno + nregs > valueno && regno < valueno + valuenregs)
+ return 0;
+
+ /* Reject VALUE if it is one of the regs reserved for reloads.
+ Reload1 knows how to reuse them anyway, and it would get
+ confused if we allocated one without its knowledge.
+ (Now that insns introduced by reload are ignored above,
+ this case shouldn't happen, but I'm not positive.) */
+
+ if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
+ {
+ int i;
+ for (i = 0; i < valuenregs; ++i)
+ if (reload_reg_p[valueno + i] >= 0)
+ return 0;
+ }
+
+ /* Reject VALUE if it is a register being used for an input reload
+ even if it is not one of those reserved. */
+
+ if (reload_reg_p != 0)
+ {
+ int i;
+ for (i = 0; i < n_reloads; i++)
+ if (rld[i].reg_rtx != 0 && rld[i].in)
+ {
+ int regno1 = REGNO (rld[i].reg_rtx);
+ int nregs1 = hard_regno_nregs[regno1]
+ [GET_MODE (rld[i].reg_rtx)];
+ if (regno1 < valueno + valuenregs
+ && regno1 + nregs1 > valueno)
+ return 0;
+ }
+ }
+
+ if (goal_mem)
+ /* We must treat frame pointer as varying here,
+ since it can vary--in a nonlocal goto as generated by expand_goto. */
+ goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
+
+ /* Now verify that the values of GOAL and VALUE remain unaltered
+ until INSN is reached. */
+
+ p = insn;
+ while (1)
+ {
+ p = PREV_INSN (p);
+ if (p == where)
+ return value;
+
+ /* Don't trust the conversion past a function call
+ if either of the two is in a call-clobbered register, or memory. */
+ if (CALL_P (p))
+ {
+ int i;
+
+ if (goal_mem || need_stable_sp)
+ return 0;
+
+ if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
+ for (i = 0; i < nregs; ++i)
+ if (call_used_regs[regno + i]
+ || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
+ return 0;
+
+ if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
+ for (i = 0; i < valuenregs; ++i)
+ if (call_used_regs[valueno + i]
+ || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
+ return 0;
+ }
+
+ if (INSN_P (p))
+ {
+ pat = PATTERN (p);
+
+ /* Watch out for unspec_volatile, and volatile asms. */
+ if (volatile_insn_p (pat))
+ return 0;
+
+ /* If this insn P stores in either GOAL or VALUE, return 0.
+ If GOAL is a memory ref and this insn writes memory, return 0.
+ If GOAL is a memory ref and its address is not constant,
+ and this insn P changes a register used in GOAL, return 0. */
+
+ if (GET_CODE (pat) == COND_EXEC)
+ pat = COND_EXEC_CODE (pat);
+ if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
+ {
+ rtx dest = SET_DEST (pat);
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+ if (REG_P (dest))
+ {
+ int xregno = REGNO (dest);
+ int xnregs;
+ if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
+ xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
+ else
+ xnregs = 1;
+ if (xregno < regno + nregs && xregno + xnregs > regno)
+ return 0;
+ if (xregno < valueno + valuenregs
+ && xregno + xnregs > valueno)
+ return 0;
+ if (goal_mem_addr_varies
+ && reg_overlap_mentioned_for_reload_p (dest, goal))
+ return 0;
+ if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
+ return 0;
+ }
+ else if (goal_mem && MEM_P (dest)
+ && ! push_operand (dest, GET_MODE (dest)))
+ return 0;
+ else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_memory_loc[regno] != 0)
+ return 0;
+ else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
+ return 0;
+ }
+ else if (GET_CODE (pat) == PARALLEL)
+ {
+ int i;
+ for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
+ {
+ rtx v1 = XVECEXP (pat, 0, i);
+ if (GET_CODE (v1) == COND_EXEC)
+ v1 = COND_EXEC_CODE (v1);
+ if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
+ {
+ rtx dest = SET_DEST (v1);
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+ if (REG_P (dest))
+ {
+ int xregno = REGNO (dest);
+ int xnregs;
+ if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
+ xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
+ else
+ xnregs = 1;
+ if (xregno < regno + nregs
+ && xregno + xnregs > regno)
+ return 0;
+ if (xregno < valueno + valuenregs
+ && xregno + xnregs > valueno)
+ return 0;
+ if (goal_mem_addr_varies
+ && reg_overlap_mentioned_for_reload_p (dest,
+ goal))
+ return 0;
+ if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
+ return 0;
+ }
+ else if (goal_mem && MEM_P (dest)
+ && ! push_operand (dest, GET_MODE (dest)))
+ return 0;
+ else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_memory_loc[regno] != 0)
+ return 0;
+ else if (need_stable_sp
+ && push_operand (dest, GET_MODE (dest)))
+ return 0;
+ }
+ }
+ }
+
+ if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
+ {
+ rtx link;
+
+ for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
+ link = XEXP (link, 1))
+ {
+ pat = XEXP (link, 0);
+ if (GET_CODE (pat) == CLOBBER)
+ {
+ rtx dest = SET_DEST (pat);
+
+ if (REG_P (dest))
+ {
+ int xregno = REGNO (dest);
+ int xnregs
+ = hard_regno_nregs[xregno][GET_MODE (dest)];
+
+ if (xregno < regno + nregs
+ && xregno + xnregs > regno)
+ return 0;
+ else if (xregno < valueno + valuenregs
+ && xregno + xnregs > valueno)
+ return 0;
+ else if (goal_mem_addr_varies
+ && reg_overlap_mentioned_for_reload_p (dest,
+ goal))
+ return 0;
+ }
+
+ else if (goal_mem && MEM_P (dest)
+ && ! push_operand (dest, GET_MODE (dest)))
+ return 0;
+ else if (need_stable_sp
+ && push_operand (dest, GET_MODE (dest)))
+ return 0;
+ }
+ }
+ }
+
+#ifdef AUTO_INC_DEC
+ /* If this insn auto-increments or auto-decrements
+ either regno or valueno, return 0 now.
+ If GOAL is a memory ref and its address is not constant,
+ and this insn P increments a register used in GOAL, return 0. */
+ {
+ rtx link;
+
+ for (link = REG_NOTES (p); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_INC
+ && REG_P (XEXP (link, 0)))
+ {
+ int incno = REGNO (XEXP (link, 0));
+ if (incno < regno + nregs && incno >= regno)
+ return 0;
+ if (incno < valueno + valuenregs && incno >= valueno)
+ return 0;
+ if (goal_mem_addr_varies
+ && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
+ goal))
+ return 0;
+ }
+ }
+#endif
+ }
+ }
+}
+
+/* Find a place where INCED appears in an increment or decrement operator
+ within X, and return the amount INCED is incremented or decremented by.
+ The value is always positive. */
+
+static int
+find_inc_amount (rtx x, rtx inced)
+{
+ enum rtx_code code = GET_CODE (x);
+ const char *fmt;
+ int i;
+
+ if (code == MEM)
+ {
+ rtx addr = XEXP (x, 0);
+ if ((GET_CODE (addr) == PRE_DEC
+ || GET_CODE (addr) == POST_DEC
+ || GET_CODE (addr) == PRE_INC
+ || GET_CODE (addr) == POST_INC)
+ && XEXP (addr, 0) == inced)
+ return GET_MODE_SIZE (GET_MODE (x));
+ else if ((GET_CODE (addr) == PRE_MODIFY
+ || GET_CODE (addr) == POST_MODIFY)
+ && GET_CODE (XEXP (addr, 1)) == PLUS
+ && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
+ && XEXP (addr, 0) == inced
+ && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
+ {
+ i = INTVAL (XEXP (XEXP (addr, 1), 1));
+ return i < 0 ? -i : i;
+ }
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ int tem = find_inc_amount (XEXP (x, i), inced);
+ if (tem != 0)
+ return tem;
+ }
+ if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ {
+ int tem = find_inc_amount (XVECEXP (x, i, j), inced);
+ if (tem != 0)
+ return tem;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
+ REG_INC note in insn INSN. REGNO must refer to a hard register. */
+
+#ifdef AUTO_INC_DEC
+static int
+reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
+ rtx insn)
+{
+ rtx link;
+
+ gcc_assert (insn);
+
+ if (! INSN_P (insn))
+ return 0;
+
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_INC)
+ {
+ unsigned int test = (int) REGNO (XEXP (link, 0));
+ if (test >= regno && test < endregno)
+ return 1;
+ }
+ return 0;
+}
+#else
+
+#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
+
+#endif
+
+/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
+ If SETS is 1, also consider SETs. If SETS is 2, enable checking
+ REG_INC. REGNO must refer to a hard register. */
+
+int
+regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
+ int sets)
+{
+ unsigned int nregs, endregno;
+
+ /* regno must be a hard register. */
+ gcc_assert (regno < FIRST_PSEUDO_REGISTER);
+
+ nregs = hard_regno_nregs[regno][mode];
+ endregno = regno + nregs;
+
+ if ((GET_CODE (PATTERN (insn)) == CLOBBER
+ || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
+ && REG_P (XEXP (PATTERN (insn), 0)))
+ {
+ unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
+
+ return test >= regno && test < endregno;
+ }
+
+ if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
+ return 1;
+
+ if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ int i = XVECLEN (PATTERN (insn), 0) - 1;
+
+ for (; i >= 0; i--)
+ {
+ rtx elt = XVECEXP (PATTERN (insn), 0, i);
+ if ((GET_CODE (elt) == CLOBBER
+ || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
+ && REG_P (XEXP (elt, 0)))
+ {
+ unsigned int test = REGNO (XEXP (elt, 0));
+
+ if (test >= regno && test < endregno)
+ return 1;
+ }
+ if (sets == 2
+ && reg_inc_found_and_valid_p (regno, endregno, elt))
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/* Find the low part, with mode MODE, of a hard regno RELOADREG. */
+rtx
+reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
+{
+ int regno;
+
+ if (GET_MODE (reloadreg) == mode)
+ return reloadreg;
+
+ regno = REGNO (reloadreg);
+
+ if (WORDS_BIG_ENDIAN)
+ regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
+ - (int) hard_regno_nregs[regno][mode];
+
+ return gen_rtx_REG (mode, regno);
+}
+
+static const char *const reload_when_needed_name[] =
+{
+ "RELOAD_FOR_INPUT",
+ "RELOAD_FOR_OUTPUT",
+ "RELOAD_FOR_INSN",
+ "RELOAD_FOR_INPUT_ADDRESS",
+ "RELOAD_FOR_INPADDR_ADDRESS",
+ "RELOAD_FOR_OUTPUT_ADDRESS",
+ "RELOAD_FOR_OUTADDR_ADDRESS",
+ "RELOAD_FOR_OPERAND_ADDRESS",
+ "RELOAD_FOR_OPADDR_ADDR",
+ "RELOAD_OTHER",
+ "RELOAD_FOR_OTHER_ADDRESS"
+};
+
+/* These functions are used to print the variables set by 'find_reloads' */
+
+void
+debug_reload_to_stream (FILE *f)
+{
+ int r;
+ const char *prefix;
+
+ if (! f)
+ f = stderr;
+ for (r = 0; r < n_reloads; r++)
+ {
+ fprintf (f, "Reload %d: ", r);
+
+ if (rld[r].in != 0)
+ {
+ fprintf (f, "reload_in (%s) = ",
+ GET_MODE_NAME (rld[r].inmode));
+ print_inline_rtx (f, rld[r].in, 24);
+ fprintf (f, "\n\t");
+ }
+
+ if (rld[r].out != 0)
+ {
+ fprintf (f, "reload_out (%s) = ",
+ GET_MODE_NAME (rld[r].outmode));
+ print_inline_rtx (f, rld[r].out, 24);
+ fprintf (f, "\n\t");
+ }
+
+ fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
+
+ fprintf (f, "%s (opnum = %d)",
+ reload_when_needed_name[(int) rld[r].when_needed],
+ rld[r].opnum);
+
+ if (rld[r].optional)
+ fprintf (f, ", optional");
+
+ if (rld[r].nongroup)
+ fprintf (f, ", nongroup");
+
+ if (rld[r].inc != 0)
+ fprintf (f, ", inc by %d", rld[r].inc);
+
+ if (rld[r].nocombine)
+ fprintf (f, ", can't combine");
+
+ if (rld[r].secondary_p)
+ fprintf (f, ", secondary_reload_p");
+
+ if (rld[r].in_reg != 0)
+ {
+ fprintf (f, "\n\treload_in_reg: ");
+ print_inline_rtx (f, rld[r].in_reg, 24);
+ }
+
+ if (rld[r].out_reg != 0)
+ {
+ fprintf (f, "\n\treload_out_reg: ");
+ print_inline_rtx (f, rld[r].out_reg, 24);
+ }
+
+ if (rld[r].reg_rtx != 0)
+ {
+ fprintf (f, "\n\treload_reg_rtx: ");
+ print_inline_rtx (f, rld[r].reg_rtx, 24);
+ }
+
+ prefix = "\n\t";
+ if (rld[r].secondary_in_reload != -1)
+ {
+ fprintf (f, "%ssecondary_in_reload = %d",
+ prefix, rld[r].secondary_in_reload);
+ prefix = ", ";
+ }
+
+ if (rld[r].secondary_out_reload != -1)
+ fprintf (f, "%ssecondary_out_reload = %d\n",
+ prefix, rld[r].secondary_out_reload);
+
+ prefix = "\n\t";
+ if (rld[r].secondary_in_icode != CODE_FOR_nothing)
+ {
+ fprintf (f, "%ssecondary_in_icode = %s", prefix,
+ insn_data[rld[r].secondary_in_icode].name);
+ prefix = ", ";
+ }
+
+ if (rld[r].secondary_out_icode != CODE_FOR_nothing)
+ fprintf (f, "%ssecondary_out_icode = %s", prefix,
+ insn_data[rld[r].secondary_out_icode].name);
+
+ fprintf (f, "\n");
+ }
+}
+
+void
+debug_reload (void)
+{
+ debug_reload_to_stream (stderr);
+}