aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/reload.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/reload.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/reload.c7354
1 files changed, 0 insertions, 7354 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/reload.c b/gcc-4.2.1-5666.3/gcc/reload.c
deleted file mode 100644
index 320cd59bb..000000000
--- a/gcc-4.2.1-5666.3/gcc/reload.c
+++ /dev/null
@@ -1,7354 +0,0 @@
-/* Search an insn for pseudo regs that must be in hard regs and are not.
- Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
- 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
- Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-/* This file contains subroutines used only from the file reload1.c.
- It knows how to scan one insn for operands and values
- that need to be copied into registers to make valid code.
- It also finds other operands and values which are valid
- but for which equivalent values in registers exist and
- ought to be used instead.
-
- Before processing the first insn of the function, call `init_reload'.
- init_reload actually has to be called earlier anyway.
-
- To scan an insn, call `find_reloads'. This does two things:
- 1. sets up tables describing which values must be reloaded
- for this insn, and what kind of hard regs they must be reloaded into;
- 2. optionally record the locations where those values appear in
- the data, so they can be replaced properly later.
- This is done only if the second arg to `find_reloads' is nonzero.
-
- The third arg to `find_reloads' specifies the number of levels
- of indirect addressing supported by the machine. If it is zero,
- indirect addressing is not valid. If it is one, (MEM (REG n))
- is valid even if (REG n) did not get a hard register; if it is two,
- (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
- hard register, and similarly for higher values.
-
- Then you must choose the hard regs to reload those pseudo regs into,
- and generate appropriate load insns before this insn and perhaps
- also store insns after this insn. Set up the array `reload_reg_rtx'
- to contain the REG rtx's for the registers you used. In some
- cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
- for certain reloads. Then that tells you which register to use,
- so you do not need to allocate one. But you still do need to add extra
- instructions to copy the value into and out of that register.
-
- Finally you must call `subst_reloads' to substitute the reload reg rtx's
- into the locations already recorded.
-
-NOTE SIDE EFFECTS:
-
- find_reloads can alter the operands of the instruction it is called on.
-
- 1. Two operands of any sort may be interchanged, if they are in a
- commutative instruction.
- This happens only if find_reloads thinks the instruction will compile
- better that way.
-
- 2. Pseudo-registers that are equivalent to constants are replaced
- with those constants if they are not in hard registers.
-
-1 happens every time find_reloads is called.
-2 happens only when REPLACE is 1, which is only when
-actually doing the reloads, not when just counting them.
-
-Using a reload register for several reloads in one insn:
-
-When an insn has reloads, it is considered as having three parts:
-the input reloads, the insn itself after reloading, and the output reloads.
-Reloads of values used in memory addresses are often needed for only one part.
-
-When this is so, reload_when_needed records which part needs the reload.
-Two reloads for different parts of the insn can share the same reload
-register.
-
-When a reload is used for addresses in multiple parts, or when it is
-an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
-a register with any other reload. */
-
-#define REG_OK_STRICT
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "insn-config.h"
-#include "expr.h"
-#include "optabs.h"
-#include "recog.h"
-#include "reload.h"
-#include "regs.h"
-#include "addresses.h"
-#include "hard-reg-set.h"
-#include "flags.h"
-#include "real.h"
-#include "output.h"
-#include "function.h"
-#include "toplev.h"
-#include "params.h"
-#include "target.h"
-
-/* True if X is a constant that can be forced into the constant pool. */
-#define CONST_POOL_OK_P(X) \
- (CONSTANT_P (X) \
- && GET_CODE (X) != HIGH \
- && !targetm.cannot_force_const_mem (X))
-
-/* True if C is a non-empty register class that has too few registers
- to be safely used as a reload target class. */
-#define SMALL_REGISTER_CLASS_P(C) \
- (reg_class_size [(C)] == 1 \
- || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
-
-
-/* All reloads of the current insn are recorded here. See reload.h for
- comments. */
-int n_reloads;
-struct reload rld[MAX_RELOADS];
-
-/* All the "earlyclobber" operands of the current insn
- are recorded here. */
-int n_earlyclobbers;
-rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
-
-int reload_n_operands;
-
-/* Replacing reloads.
-
- If `replace_reloads' is nonzero, then as each reload is recorded
- an entry is made for it in the table `replacements'.
- Then later `subst_reloads' can look through that table and
- perform all the replacements needed. */
-
-/* Nonzero means record the places to replace. */
-static int replace_reloads;
-
-/* Each replacement is recorded with a structure like this. */
-struct replacement
-{
- rtx *where; /* Location to store in */
- rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
- a SUBREG; 0 otherwise. */
- int what; /* which reload this is for */
- enum machine_mode mode; /* mode it must have */
-};
-
-static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
-
-/* Number of replacements currently recorded. */
-static int n_replacements;
-
-/* Used to track what is modified by an operand. */
-struct decomposition
-{
- int reg_flag; /* Nonzero if referencing a register. */
- int safe; /* Nonzero if this can't conflict with anything. */
- rtx base; /* Base address for MEM. */
- HOST_WIDE_INT start; /* Starting offset or register number. */
- HOST_WIDE_INT end; /* Ending offset or register number. */
-};
-
-#ifdef SECONDARY_MEMORY_NEEDED
-
-/* Save MEMs needed to copy from one class of registers to another. One MEM
- is used per mode, but normally only one or two modes are ever used.
-
- We keep two versions, before and after register elimination. The one
- after register elimination is record separately for each operand. This
- is done in case the address is not valid to be sure that we separately
- reload each. */
-
-static rtx secondary_memlocs[NUM_MACHINE_MODES];
-static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
-static int secondary_memlocs_elim_used = 0;
-#endif
-
-/* The instruction we are doing reloads for;
- so we can test whether a register dies in it. */
-static rtx this_insn;
-
-/* Nonzero if this instruction is a user-specified asm with operands. */
-static int this_insn_is_asm;
-
-/* If hard_regs_live_known is nonzero,
- we can tell which hard regs are currently live,
- at least enough to succeed in choosing dummy reloads. */
-static int hard_regs_live_known;
-
-/* Indexed by hard reg number,
- element is nonnegative if hard reg has been spilled.
- This vector is passed to `find_reloads' as an argument
- and is not changed here. */
-static short *static_reload_reg_p;
-
-/* Set to 1 in subst_reg_equivs if it changes anything. */
-static int subst_reg_equivs_changed;
-
-/* On return from push_reload, holds the reload-number for the OUT
- operand, which can be different for that from the input operand. */
-static int output_reloadnum;
-
- /* Compare two RTX's. */
-#define MATCHES(x, y) \
- (x == y || (x != 0 && (REG_P (x) \
- ? REG_P (y) && REGNO (x) == REGNO (y) \
- : rtx_equal_p (x, y) && ! side_effects_p (x))))
-
- /* Indicates if two reloads purposes are for similar enough things that we
- can merge their reloads. */
-#define MERGABLE_RELOADS(when1, when2, op1, op2) \
- ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
- || ((when1) == (when2) && (op1) == (op2)) \
- || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
- || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
- && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
- || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
- && (when2) == RELOAD_FOR_OTHER_ADDRESS))
-
- /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
-#define MERGE_TO_OTHER(when1, when2, op1, op2) \
- ((when1) != (when2) \
- || ! ((op1) == (op2) \
- || (when1) == RELOAD_FOR_INPUT \
- || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
- || (when1) == RELOAD_FOR_OTHER_ADDRESS))
-
- /* If we are going to reload an address, compute the reload type to
- use. */
-#define ADDR_TYPE(type) \
- ((type) == RELOAD_FOR_INPUT_ADDRESS \
- ? RELOAD_FOR_INPADDR_ADDRESS \
- : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
- ? RELOAD_FOR_OUTADDR_ADDRESS \
- : (type)))
-
-static int push_secondary_reload (int, rtx, int, int, enum reg_class,
- enum machine_mode, enum reload_type,
- enum insn_code *, secondary_reload_info *);
-static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
- int, unsigned int);
-static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
-static void push_replacement (rtx *, int, enum machine_mode);
-static void dup_replacements (rtx *, rtx *);
-static void combine_reloads (void);
-static int find_reusable_reload (rtx *, rtx, enum reg_class,
- enum reload_type, int, int);
-static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
- enum machine_mode, enum reg_class, int, int);
-static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
-static struct decomposition decompose (rtx);
-static int immune_p (rtx, rtx, struct decomposition);
-static int alternative_allows_memconst (const char *, int);
-static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
- int *);
-static rtx make_memloc (rtx, int);
-static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
-static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
- int, enum reload_type, int, rtx);
-static rtx subst_reg_equivs (rtx, rtx);
-static rtx subst_indexed_address (rtx);
-static void update_auto_inc_notes (rtx, int, int);
-static int find_reloads_address_1 (enum machine_mode, rtx, int,
- enum rtx_code, enum rtx_code, rtx *,
- int, enum reload_type,int, rtx);
-static void find_reloads_address_part (rtx, rtx *, enum reg_class,
- enum machine_mode, int,
- enum reload_type, int);
-static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
- int, rtx);
-static void copy_replacements_1 (rtx *, rtx *, int);
-static int find_inc_amount (rtx, rtx);
-static int refers_to_mem_for_reload_p (rtx);
-static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
- rtx, rtx *);
-
-/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
- list yet. */
-
-static void
-push_reg_equiv_alt_mem (int regno, rtx mem)
-{
- rtx it;
-
- for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
- if (rtx_equal_p (XEXP (it, 0), mem))
- return;
-
- reg_equiv_alt_mem_list [regno]
- = alloc_EXPR_LIST (REG_EQUIV, mem,
- reg_equiv_alt_mem_list [regno]);
-}
-
-/* Determine if any secondary reloads are needed for loading (if IN_P is
- nonzero) or storing (if IN_P is zero) X to or from a reload register of
- register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
- are needed, push them.
-
- Return the reload number of the secondary reload we made, or -1 if
- we didn't need one. *PICODE is set to the insn_code to use if we do
- need a secondary reload. */
-
-static int
-push_secondary_reload (int in_p, rtx x, int opnum, int optional,
- enum reg_class reload_class,
- enum machine_mode reload_mode, enum reload_type type,
- enum insn_code *picode, secondary_reload_info *prev_sri)
-{
- enum reg_class class = NO_REGS;
- enum reg_class scratch_class;
- enum machine_mode mode = reload_mode;
- enum insn_code icode = CODE_FOR_nothing;
- enum insn_code t_icode = CODE_FOR_nothing;
- enum reload_type secondary_type;
- int s_reload, t_reload = -1;
- const char *scratch_constraint;
- char letter;
- secondary_reload_info sri;
-
- if (type == RELOAD_FOR_INPUT_ADDRESS
- || type == RELOAD_FOR_OUTPUT_ADDRESS
- || type == RELOAD_FOR_INPADDR_ADDRESS
- || type == RELOAD_FOR_OUTADDR_ADDRESS)
- secondary_type = type;
- else
- secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
-
- *picode = CODE_FOR_nothing;
-
- /* If X is a paradoxical SUBREG, use the inner value to determine both the
- mode and object being reloaded. */
- if (GET_CODE (x) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (x))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
- {
- x = SUBREG_REG (x);
- reload_mode = GET_MODE (x);
- }
-
- /* If X is a pseudo-register that has an equivalent MEM (actually, if it
- is still a pseudo-register by now, it *must* have an equivalent MEM
- but we don't want to assume that), use that equivalent when seeing if
- a secondary reload is needed since whether or not a reload is needed
- might be sensitive to the form of the MEM. */
-
- if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
- && reg_equiv_mem[REGNO (x)] != 0)
- x = reg_equiv_mem[REGNO (x)];
-
- sri.icode = CODE_FOR_nothing;
- sri.prev_sri = prev_sri;
- class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
- icode = sri.icode;
-
- /* If we don't need any secondary registers, done. */
- if (class == NO_REGS && icode == CODE_FOR_nothing)
- return -1;
-
- if (class != NO_REGS)
- t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
- reload_mode, type, &t_icode, &sri);
-
- /* If we will be using an insn, the secondary reload is for a
- scratch register. */
-
- if (icode != CODE_FOR_nothing)
- {
- /* If IN_P is nonzero, the reload register will be the output in
- operand 0. If IN_P is zero, the reload register will be the input
- in operand 1. Outputs should have an initial "=", which we must
- skip. */
-
- /* ??? It would be useful to be able to handle only two, or more than
- three, operands, but for now we can only handle the case of having
- exactly three: output, input and one temp/scratch. */
- gcc_assert (insn_data[(int) icode].n_operands == 3);
-
- /* ??? We currently have no way to represent a reload that needs
- an icode to reload from an intermediate tertiary reload register.
- We should probably have a new field in struct reload to tag a
- chain of scratch operand reloads onto. */
- gcc_assert (class == NO_REGS);
-
- scratch_constraint = insn_data[(int) icode].operand[2].constraint;
- gcc_assert (*scratch_constraint == '=');
- scratch_constraint++;
- if (*scratch_constraint == '&')
- scratch_constraint++;
- letter = *scratch_constraint;
- scratch_class = (letter == 'r' ? GENERAL_REGS
- : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
- scratch_constraint));
-
- class = scratch_class;
- mode = insn_data[(int) icode].operand[2].mode;
- }
-
- /* This case isn't valid, so fail. Reload is allowed to use the same
- register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
- in the case of a secondary register, we actually need two different
- registers for correct code. We fail here to prevent the possibility of
- silently generating incorrect code later.
-
- The convention is that secondary input reloads are valid only if the
- secondary_class is different from class. If you have such a case, you
- can not use secondary reloads, you must work around the problem some
- other way.
-
- Allow this when a reload_in/out pattern is being used. I.e. assume
- that the generated code handles this case. */
-
- gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
- || t_icode != CODE_FOR_nothing);
-
- /* See if we can reuse an existing secondary reload. */
- for (s_reload = 0; s_reload < n_reloads; s_reload++)
- if (rld[s_reload].secondary_p
- && (reg_class_subset_p (class, rld[s_reload].class)
- || reg_class_subset_p (rld[s_reload].class, class))
- && ((in_p && rld[s_reload].inmode == mode)
- || (! in_p && rld[s_reload].outmode == mode))
- && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
- || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
- && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
- || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
- && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
- && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
- opnum, rld[s_reload].opnum))
- {
- if (in_p)
- rld[s_reload].inmode = mode;
- if (! in_p)
- rld[s_reload].outmode = mode;
-
- if (reg_class_subset_p (class, rld[s_reload].class))
- rld[s_reload].class = class;
-
- rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
- rld[s_reload].optional &= optional;
- rld[s_reload].secondary_p = 1;
- if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
- opnum, rld[s_reload].opnum))
- rld[s_reload].when_needed = RELOAD_OTHER;
- }
-
- if (s_reload == n_reloads)
- {
-#ifdef SECONDARY_MEMORY_NEEDED
- /* If we need a memory location to copy between the two reload regs,
- set it up now. Note that we do the input case before making
- the reload and the output case after. This is due to the
- way reloads are output. */
-
- if (in_p && icode == CODE_FOR_nothing
- && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
- {
- get_secondary_mem (x, reload_mode, opnum, type);
-
- /* We may have just added new reloads. Make sure we add
- the new reload at the end. */
- s_reload = n_reloads;
- }
-#endif
-
- /* We need to make a new secondary reload for this register class. */
- rld[s_reload].in = rld[s_reload].out = 0;
- rld[s_reload].class = class;
-
- rld[s_reload].inmode = in_p ? mode : VOIDmode;
- rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
- rld[s_reload].reg_rtx = 0;
- rld[s_reload].optional = optional;
- rld[s_reload].inc = 0;
- /* Maybe we could combine these, but it seems too tricky. */
- rld[s_reload].nocombine = 1;
- rld[s_reload].in_reg = 0;
- rld[s_reload].out_reg = 0;
- rld[s_reload].opnum = opnum;
- rld[s_reload].when_needed = secondary_type;
- rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
- rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
- rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
- rld[s_reload].secondary_out_icode
- = ! in_p ? t_icode : CODE_FOR_nothing;
- rld[s_reload].secondary_p = 1;
-
- n_reloads++;
-
-#ifdef SECONDARY_MEMORY_NEEDED
- if (! in_p && icode == CODE_FOR_nothing
- && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
- get_secondary_mem (x, mode, opnum, type);
-#endif
- }
-
- *picode = icode;
- return s_reload;
-}
-
-/* If a secondary reload is needed, return its class. If both an intermediate
- register and a scratch register is needed, we return the class of the
- intermediate register. */
-enum reg_class
-secondary_reload_class (bool in_p, enum reg_class class,
- enum machine_mode mode, rtx x)
-{
- enum insn_code icode;
- secondary_reload_info sri;
-
- sri.icode = CODE_FOR_nothing;
- sri.prev_sri = NULL;
- class = targetm.secondary_reload (in_p, x, class, mode, &sri);
- icode = sri.icode;
-
- /* If there are no secondary reloads at all, we return NO_REGS.
- If an intermediate register is needed, we return its class. */
- if (icode == CODE_FOR_nothing || class != NO_REGS)
- return class;
-
- /* No intermediate register is needed, but we have a special reload
- pattern, which we assume for now needs a scratch register. */
- return scratch_reload_class (icode);
-}
-
-/* ICODE is the insn_code of a reload pattern. Check that it has exactly
- three operands, verify that operand 2 is an output operand, and return
- its register class.
- ??? We'd like to be able to handle any pattern with at least 2 operands,
- for zero or more scratch registers, but that needs more infrastructure. */
-enum reg_class
-scratch_reload_class (enum insn_code icode)
-{
- const char *scratch_constraint;
- char scratch_letter;
- enum reg_class class;
-
- gcc_assert (insn_data[(int) icode].n_operands == 3);
- scratch_constraint = insn_data[(int) icode].operand[2].constraint;
- gcc_assert (*scratch_constraint == '=');
- scratch_constraint++;
- if (*scratch_constraint == '&')
- scratch_constraint++;
- scratch_letter = *scratch_constraint;
- if (scratch_letter == 'r')
- return GENERAL_REGS;
- class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
- scratch_constraint);
- gcc_assert (class != NO_REGS);
- return class;
-}
-
-#ifdef SECONDARY_MEMORY_NEEDED
-
-/* Return a memory location that will be used to copy X in mode MODE.
- If we haven't already made a location for this mode in this insn,
- call find_reloads_address on the location being returned. */
-
-rtx
-get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
- int opnum, enum reload_type type)
-{
- rtx loc;
- int mem_valid;
-
- /* By default, if MODE is narrower than a word, widen it to a word.
- This is required because most machines that require these memory
- locations do not support short load and stores from all registers
- (e.g., FP registers). */
-
-#ifdef SECONDARY_MEMORY_NEEDED_MODE
- mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
-#else
- if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
- mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
-#endif
-
- /* If we already have made a MEM for this operand in MODE, return it. */
- if (secondary_memlocs_elim[(int) mode][opnum] != 0)
- return secondary_memlocs_elim[(int) mode][opnum];
-
- /* If this is the first time we've tried to get a MEM for this mode,
- allocate a new one. `something_changed' in reload will get set
- by noticing that the frame size has changed. */
-
- if (secondary_memlocs[(int) mode] == 0)
- {
-#ifdef SECONDARY_MEMORY_NEEDED_RTX
- secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
-#else
- secondary_memlocs[(int) mode]
- = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
-#endif
- }
-
- /* Get a version of the address doing any eliminations needed. If that
- didn't give us a new MEM, make a new one if it isn't valid. */
-
- loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
- mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
-
- if (! mem_valid && loc == secondary_memlocs[(int) mode])
- loc = copy_rtx (loc);
-
- /* The only time the call below will do anything is if the stack
- offset is too large. In that case IND_LEVELS doesn't matter, so we
- can just pass a zero. Adjust the type to be the address of the
- corresponding object. If the address was valid, save the eliminated
- address. If it wasn't valid, we need to make a reload each time, so
- don't save it. */
-
- if (! mem_valid)
- {
- type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
- : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
- : RELOAD_OTHER);
-
- find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
- opnum, type, 0, 0);
- }
-
- secondary_memlocs_elim[(int) mode][opnum] = loc;
- if (secondary_memlocs_elim_used <= (int)mode)
- secondary_memlocs_elim_used = (int)mode + 1;
- return loc;
-}
-
-/* Clear any secondary memory locations we've made. */
-
-void
-clear_secondary_mem (void)
-{
- memset (secondary_memlocs, 0, sizeof secondary_memlocs);
-}
-#endif /* SECONDARY_MEMORY_NEEDED */
-
-
-/* Find the largest class which has at least one register valid in
- mode INNER, and which for every such register, that register number
- plus N is also valid in OUTER (if in range) and is cheap to move
- into REGNO. Such a class must exist. */
-
-static enum reg_class
-find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
- enum machine_mode inner ATTRIBUTE_UNUSED, int n,
- unsigned int dest_regno ATTRIBUTE_UNUSED)
-{
- int best_cost = -1;
- int class;
- int regno;
- enum reg_class best_class = NO_REGS;
- enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
- unsigned int best_size = 0;
- int cost;
-
- for (class = 1; class < N_REG_CLASSES; class++)
- {
- int bad = 0;
- int good = 0;
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
- if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
- {
- if (HARD_REGNO_MODE_OK (regno, inner))
- {
- good = 1;
- if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
- || ! HARD_REGNO_MODE_OK (regno + n, outer))
- bad = 1;
- }
- }
-
- if (bad || !good)
- continue;
- cost = REGISTER_MOVE_COST (outer, class, dest_class);
-
- if ((reg_class_size[class] > best_size
- && (best_cost < 0 || best_cost >= cost))
- || best_cost > cost)
- {
- best_class = class;
- best_size = reg_class_size[class];
- best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
- }
- }
-
- gcc_assert (best_size != 0);
-
- return best_class;
-}
-
-/* Return the number of a previously made reload that can be combined with
- a new one, or n_reloads if none of the existing reloads can be used.
- OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
- push_reload, they determine the kind of the new reload that we try to
- combine. P_IN points to the corresponding value of IN, which can be
- modified by this function.
- DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
-
-static int
-find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
- enum reload_type type, int opnum, int dont_share)
-{
- rtx in = *p_in;
- int i;
- /* We can't merge two reloads if the output of either one is
- earlyclobbered. */
-
- if (earlyclobber_operand_p (out))
- return n_reloads;
-
- /* We can use an existing reload if the class is right
- and at least one of IN and OUT is a match
- and the other is at worst neutral.
- (A zero compared against anything is neutral.)
-
- If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
- for the same thing since that can cause us to need more reload registers
- than we otherwise would. */
-
- for (i = 0; i < n_reloads; i++)
- if ((reg_class_subset_p (class, rld[i].class)
- || reg_class_subset_p (rld[i].class, class))
- /* If the existing reload has a register, it must fit our class. */
- && (rld[i].reg_rtx == 0
- || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- true_regnum (rld[i].reg_rtx)))
- && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
- && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
- || (out != 0 && MATCHES (rld[i].out, out)
- && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
- && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
- && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
- && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
- return i;
-
- /* Reloading a plain reg for input can match a reload to postincrement
- that reg, since the postincrement's value is the right value.
- Likewise, it can match a preincrement reload, since we regard
- the preincrementation as happening before any ref in this insn
- to that register. */
- for (i = 0; i < n_reloads; i++)
- if ((reg_class_subset_p (class, rld[i].class)
- || reg_class_subset_p (rld[i].class, class))
- /* If the existing reload has a register, it must fit our
- class. */
- && (rld[i].reg_rtx == 0
- || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- true_regnum (rld[i].reg_rtx)))
- && out == 0 && rld[i].out == 0 && rld[i].in != 0
- && ((REG_P (in)
- && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
- && MATCHES (XEXP (rld[i].in, 0), in))
- || (REG_P (rld[i].in)
- && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
- && MATCHES (XEXP (in, 0), rld[i].in)))
- && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
- && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
- && MERGABLE_RELOADS (type, rld[i].when_needed,
- opnum, rld[i].opnum))
- {
- /* Make sure reload_in ultimately has the increment,
- not the plain register. */
- if (REG_P (in))
- *p_in = rld[i].in;
- return i;
- }
- return n_reloads;
-}
-
-/* Return nonzero if X is a SUBREG which will require reloading of its
- SUBREG_REG expression. */
-
-static int
-reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
-{
- rtx inner;
-
- /* Only SUBREGs are problematical. */
- if (GET_CODE (x) != SUBREG)
- return 0;
-
- inner = SUBREG_REG (x);
-
- /* If INNER is a constant or PLUS, then INNER must be reloaded. */
- if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
- return 1;
-
- /* If INNER is not a hard register, then INNER will not need to
- be reloaded. */
- if (!REG_P (inner)
- || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
- return 0;
-
- /* If INNER is not ok for MODE, then INNER will need reloading. */
- if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
- return 1;
-
- /* If the outer part is a word or smaller, INNER larger than a
- word and the number of regs for INNER is not the same as the
- number of words in INNER, then INNER will need reloading. */
- return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
- && output
- && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
- && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
- != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
-}
-
-/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
- requiring an extra reload register. The caller has already found that
- IN contains some reference to REGNO, so check that we can produce the
- new value in a single step. E.g. if we have
- (set (reg r13) (plus (reg r13) (const int 1))), and there is an
- instruction that adds one to a register, this should succeed.
- However, if we have something like
- (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
- needs to be loaded into a register first, we need a separate reload
- register.
- Such PLUS reloads are generated by find_reload_address_part.
- The out-of-range PLUS expressions are usually introduced in the instruction
- patterns by register elimination and substituting pseudos without a home
- by their function-invariant equivalences. */
-static int
-can_reload_into (rtx in, int regno, enum machine_mode mode)
-{
- rtx dst, test_insn;
- int r = 0;
- struct recog_data save_recog_data;
-
- /* For matching constraints, we often get notional input reloads where
- we want to use the original register as the reload register. I.e.
- technically this is a non-optional input-output reload, but IN is
- already a valid register, and has been chosen as the reload register.
- Speed this up, since it trivially works. */
- if (REG_P (in))
- return 1;
-
- /* To test MEMs properly, we'd have to take into account all the reloads
- that are already scheduled, which can become quite complicated.
- And since we've already handled address reloads for this MEM, it
- should always succeed anyway. */
- if (MEM_P (in))
- return 1;
-
- /* If we can make a simple SET insn that does the job, everything should
- be fine. */
- dst = gen_rtx_REG (mode, regno);
- test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
- save_recog_data = recog_data;
- if (recog_memoized (test_insn) >= 0)
- {
- extract_insn (test_insn);
- r = constrain_operands (1);
- }
- recog_data = save_recog_data;
- return r;
-}
-
-/* Record one reload that needs to be performed.
- IN is an rtx saying where the data are to be found before this instruction.
- OUT says where they must be stored after the instruction.
- (IN is zero for data not read, and OUT is zero for data not written.)
- INLOC and OUTLOC point to the places in the instructions where
- IN and OUT were found.
- If IN and OUT are both nonzero, it means the same register must be used
- to reload both IN and OUT.
-
- CLASS is a register class required for the reloaded data.
- INMODE is the machine mode that the instruction requires
- for the reg that replaces IN and OUTMODE is likewise for OUT.
-
- If IN is zero, then OUT's location and mode should be passed as
- INLOC and INMODE.
-
- STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
-
- OPTIONAL nonzero means this reload does not need to be performed:
- it can be discarded if that is more convenient.
-
- OPNUM and TYPE say what the purpose of this reload is.
-
- The return value is the reload-number for this reload.
-
- If both IN and OUT are nonzero, in some rare cases we might
- want to make two separate reloads. (Actually we never do this now.)
- Therefore, the reload-number for OUT is stored in
- output_reloadnum when we return; the return value applies to IN.
- Usually (presently always), when IN and OUT are nonzero,
- the two reload-numbers are equal, but the caller should be careful to
- distinguish them. */
-
-int
-push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
- enum reg_class class, enum machine_mode inmode,
- enum machine_mode outmode, int strict_low, int optional,
- int opnum, enum reload_type type)
-{
- int i;
- int dont_share = 0;
- int dont_remove_subreg = 0;
- rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
- int secondary_in_reload = -1, secondary_out_reload = -1;
- enum insn_code secondary_in_icode = CODE_FOR_nothing;
- enum insn_code secondary_out_icode = CODE_FOR_nothing;
-
- /* INMODE and/or OUTMODE could be VOIDmode if no mode
- has been specified for the operand. In that case,
- use the operand's mode as the mode to reload. */
- if (inmode == VOIDmode && in != 0)
- inmode = GET_MODE (in);
- if (outmode == VOIDmode && out != 0)
- outmode = GET_MODE (out);
-
- /* If IN is a pseudo register everywhere-equivalent to a constant, and
- it is not in a hard register, reload straight from the constant,
- since we want to get rid of such pseudo registers.
- Often this is done earlier, but not always in find_reloads_address. */
- if (in != 0 && REG_P (in))
- {
- int regno = REGNO (in);
-
- if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- in = reg_equiv_constant[regno];
- }
-
- /* Likewise for OUT. Of course, OUT will never be equivalent to
- an actual constant, but it might be equivalent to a memory location
- (in the case of a parameter). */
- if (out != 0 && REG_P (out))
- {
- int regno = REGNO (out);
-
- if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- out = reg_equiv_constant[regno];
- }
-
- /* If we have a read-write operand with an address side-effect,
- change either IN or OUT so the side-effect happens only once. */
- if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
- switch (GET_CODE (XEXP (in, 0)))
- {
- case POST_INC: case POST_DEC: case POST_MODIFY:
- in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
- break;
-
- case PRE_INC: case PRE_DEC: case PRE_MODIFY:
- out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
- break;
-
- default:
- break;
- }
-
- /* If we are reloading a (SUBREG constant ...), really reload just the
- inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
- If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
- a pseudo and hence will become a MEM) with M1 wider than M2 and the
- register is a pseudo, also reload the inside expression.
- For machines that extend byte loads, do this for any SUBREG of a pseudo
- where both M1 and M2 are a word or smaller, M1 is wider than M2, and
- M2 is an integral mode that gets extended when loaded.
- Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
- either M1 is not valid for R or M2 is wider than a word but we only
- need one word to store an M2-sized quantity in R.
- (However, if OUT is nonzero, we need to reload the reg *and*
- the subreg, so do nothing here, and let following statement handle it.)
-
- Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
- we can't handle it here because CONST_INT does not indicate a mode.
-
- Similarly, we must reload the inside expression if we have a
- STRICT_LOW_PART (presumably, in == out in the cas).
-
- Also reload the inner expression if it does not require a secondary
- reload but the SUBREG does.
-
- Finally, reload the inner expression if it is a register that is in
- the class whose registers cannot be referenced in a different size
- and M1 is not the same size as M2. If subreg_lowpart_p is false, we
- cannot reload just the inside since we might end up with the wrong
- register class. But if it is inside a STRICT_LOW_PART, we have
- no choice, so we hope we do get the right register class there. */
-
- if (in != 0 && GET_CODE (in) == SUBREG
- && (subreg_lowpart_p (in) || strict_low)
-#ifdef CANNOT_CHANGE_MODE_CLASS
- && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
-#endif
- && (CONSTANT_P (SUBREG_REG (in))
- || GET_CODE (SUBREG_REG (in)) == PLUS
- || strict_low
- || (((REG_P (SUBREG_REG (in))
- && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
- || MEM_P (SUBREG_REG (in)))
- && ((GET_MODE_SIZE (inmode)
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
-#ifdef LOAD_EXTEND_OP
- || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- <= UNITS_PER_WORD)
- && (GET_MODE_SIZE (inmode)
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
- && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
- && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
-#endif
-#ifdef WORD_REGISTER_OPERATIONS
- || ((GET_MODE_SIZE (inmode)
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
- && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
- ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
- / UNITS_PER_WORD)))
-#endif
- ))
- || (REG_P (SUBREG_REG (in))
- && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
- /* The case where out is nonzero
- is handled differently in the following statement. */
- && (out == 0 || subreg_lowpart_p (in))
- && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- > UNITS_PER_WORD)
- && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- / UNITS_PER_WORD)
- != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
- [GET_MODE (SUBREG_REG (in))]))
- || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
- || (secondary_reload_class (1, class, inmode, in) != NO_REGS
- && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
- SUBREG_REG (in))
- == NO_REGS))
-#ifdef CANNOT_CHANGE_MODE_CLASS
- || (REG_P (SUBREG_REG (in))
- && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
- && REG_CANNOT_CHANGE_MODE_P
- (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
-#endif
- ))
- {
- in_subreg_loc = inloc;
- inloc = &SUBREG_REG (in);
- in = *inloc;
-#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
- if (MEM_P (in))
- /* This is supposed to happen only for paradoxical subregs made by
- combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
- gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
-#endif
- inmode = GET_MODE (in);
- }
-
- /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
- either M1 is not valid for R or M2 is wider than a word but we only
- need one word to store an M2-sized quantity in R.
-
- However, we must reload the inner reg *as well as* the subreg in
- that case. */
-
- /* Similar issue for (SUBREG constant ...) if it was not handled by the
- code above. This can happen if SUBREG_BYTE != 0. */
-
- if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
- {
- enum reg_class in_class = class;
-
- if (REG_P (SUBREG_REG (in)))
- in_class
- = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
- subreg_regno_offset (REGNO (SUBREG_REG (in)),
- GET_MODE (SUBREG_REG (in)),
- SUBREG_BYTE (in),
- GET_MODE (in)),
- REGNO (SUBREG_REG (in)));
-
- /* This relies on the fact that emit_reload_insns outputs the
- instructions for input reloads of type RELOAD_OTHER in the same
- order as the reloads. Thus if the outer reload is also of type
- RELOAD_OTHER, we are guaranteed that this inner reload will be
- output before the outer reload. */
- push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
- in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
- dont_remove_subreg = 1;
- }
-
- /* Similarly for paradoxical and problematical SUBREGs on the output.
- Note that there is no reason we need worry about the previous value
- of SUBREG_REG (out); even if wider than out,
- storing in a subreg is entitled to clobber it all
- (except in the case of STRICT_LOW_PART,
- and in that case the constraint should label it input-output.) */
- if (out != 0 && GET_CODE (out) == SUBREG
- && (subreg_lowpart_p (out) || strict_low)
-#ifdef CANNOT_CHANGE_MODE_CLASS
- && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
-#endif
- && (CONSTANT_P (SUBREG_REG (out))
- || strict_low
- || (((REG_P (SUBREG_REG (out))
- && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
- || MEM_P (SUBREG_REG (out)))
- && ((GET_MODE_SIZE (outmode)
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
-#ifdef WORD_REGISTER_OPERATIONS
- || ((GET_MODE_SIZE (outmode)
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
- && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
- ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
- / UNITS_PER_WORD)))
-#endif
- ))
- || (REG_P (SUBREG_REG (out))
- && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
- && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
- > UNITS_PER_WORD)
- && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
- / UNITS_PER_WORD)
- != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
- [GET_MODE (SUBREG_REG (out))]))
- || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
- || (secondary_reload_class (0, class, outmode, out) != NO_REGS
- && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
- SUBREG_REG (out))
- == NO_REGS))
-#ifdef CANNOT_CHANGE_MODE_CLASS
- || (REG_P (SUBREG_REG (out))
- && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
- && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
- GET_MODE (SUBREG_REG (out)),
- outmode))
-#endif
- ))
- {
- out_subreg_loc = outloc;
- outloc = &SUBREG_REG (out);
- out = *outloc;
-#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
- gcc_assert (!MEM_P (out)
- || GET_MODE_SIZE (GET_MODE (out))
- <= GET_MODE_SIZE (outmode));
-#endif
- outmode = GET_MODE (out);
- }
-
- /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
- either M1 is not valid for R or M2 is wider than a word but we only
- need one word to store an M2-sized quantity in R.
-
- However, we must reload the inner reg *as well as* the subreg in
- that case. In this case, the inner reg is an in-out reload. */
-
- if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
- {
- /* This relies on the fact that emit_reload_insns outputs the
- instructions for output reloads of type RELOAD_OTHER in reverse
- order of the reloads. Thus if the outer reload is also of type
- RELOAD_OTHER, we are guaranteed that this inner reload will be
- output after the outer reload. */
- dont_remove_subreg = 1;
- push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
- &SUBREG_REG (out),
- find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
- subreg_regno_offset (REGNO (SUBREG_REG (out)),
- GET_MODE (SUBREG_REG (out)),
- SUBREG_BYTE (out),
- GET_MODE (out)),
- REGNO (SUBREG_REG (out))),
- VOIDmode, VOIDmode, 0, 0,
- opnum, RELOAD_OTHER);
- }
-
- /* If IN appears in OUT, we can't share any input-only reload for IN. */
- if (in != 0 && out != 0 && MEM_P (out)
- && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
- && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
- dont_share = 1;
-
- /* If IN is a SUBREG of a hard register, make a new REG. This
- simplifies some of the cases below. */
-
- if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
- && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
- && ! dont_remove_subreg)
- in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
-
- /* Similarly for OUT. */
- if (out != 0 && GET_CODE (out) == SUBREG
- && REG_P (SUBREG_REG (out))
- && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
- && ! dont_remove_subreg)
- out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
-
- /* Narrow down the class of register wanted if that is
- desirable on this machine for efficiency. */
- {
- enum reg_class preferred_class = class;
-
- if (in != 0)
- preferred_class = PREFERRED_RELOAD_CLASS (in, class);
-
- /* Output reloads may need analogous treatment, different in detail. */
-#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
- if (out != 0)
- preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
-#endif
-
- /* Discard what the target said if we cannot do it. */
- if (preferred_class != NO_REGS
- || (optional && type == RELOAD_FOR_OUTPUT))
- class = preferred_class;
- }
-
- /* Make sure we use a class that can handle the actual pseudo
- inside any subreg. For example, on the 386, QImode regs
- can appear within SImode subregs. Although GENERAL_REGS
- can handle SImode, QImode needs a smaller class. */
-#ifdef LIMIT_RELOAD_CLASS
- if (in_subreg_loc)
- class = LIMIT_RELOAD_CLASS (inmode, class);
- else if (in != 0 && GET_CODE (in) == SUBREG)
- class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
-
- if (out_subreg_loc)
- class = LIMIT_RELOAD_CLASS (outmode, class);
- if (out != 0 && GET_CODE (out) == SUBREG)
- class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
-#endif
-
- /* Verify that this class is at least possible for the mode that
- is specified. */
- if (this_insn_is_asm)
- {
- enum machine_mode mode;
- if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
- mode = inmode;
- else
- mode = outmode;
- if (mode == VOIDmode)
- {
- error_for_asm (this_insn, "cannot reload integer constant "
- "operand in %<asm%>");
- mode = word_mode;
- if (in != 0)
- inmode = word_mode;
- if (out != 0)
- outmode = word_mode;
- }
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (HARD_REGNO_MODE_OK (i, mode)
- && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
- {
- int nregs = hard_regno_nregs[i][mode];
-
- int j;
- for (j = 1; j < nregs; j++)
- if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
- break;
- if (j == nregs)
- break;
- }
- if (i == FIRST_PSEUDO_REGISTER)
- {
- error_for_asm (this_insn, "impossible register constraint "
- "in %<asm%>");
- /* Avoid further trouble with this insn. */
- PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
- /* We used to continue here setting class to ALL_REGS, but it triggers
- sanity check on i386 for:
- void foo(long double d)
- {
- asm("" :: "a" (d));
- }
- Returning zero here ought to be safe as we take care in
- find_reloads to not process the reloads when instruction was
- replaced by USE. */
-
- return 0;
- }
- }
-
- /* Optional output reloads are always OK even if we have no register class,
- since the function of these reloads is only to have spill_reg_store etc.
- set, so that the storing insn can be deleted later. */
- gcc_assert (class != NO_REGS
- || (optional != 0 && type == RELOAD_FOR_OUTPUT));
-
- i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
-
- if (i == n_reloads)
- {
- /* See if we need a secondary reload register to move between CLASS
- and IN or CLASS and OUT. Get the icode and push any required reloads
- needed for each of them if so. */
-
- /* APPLE LOCAL begin restoration of inmode/outmode */
- if (in != 0)
- {
- secondary_in_reload
- = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
- &secondary_in_icode, NULL);
-#ifdef TARGET_POWERPC
- if ( secondary_in_reload != -1 && in_subreg_loc )
- inmode = GET_MODE (*in_subreg_loc);
-#endif
- }
-
- if (out != 0 && GET_CODE (out) != SCRATCH)
- {
- secondary_out_reload
- = push_secondary_reload (0, out, opnum, optional, class, outmode,
- type, &secondary_out_icode, NULL);
-#ifdef TARGET_POWERPC
- if ( secondary_out_reload != -1 && out_subreg_loc )
- outmode = GET_MODE (*out_subreg_loc);
-#endif
- }
- /* APPLE LOCAL end restoration of inmode/outmode */
-
- /* We found no existing reload suitable for re-use.
- So add an additional reload. */
-
-#ifdef SECONDARY_MEMORY_NEEDED
- /* If a memory location is needed for the copy, make one. */
- if (in != 0
- && (REG_P (in)
- || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
- && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
- && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
- class, inmode))
- get_secondary_mem (in, inmode, opnum, type);
-#endif
-
- i = n_reloads;
- rld[i].in = in;
- rld[i].out = out;
- rld[i].class = class;
- rld[i].inmode = inmode;
- rld[i].outmode = outmode;
- rld[i].reg_rtx = 0;
- rld[i].optional = optional;
- rld[i].inc = 0;
- rld[i].nocombine = 0;
- rld[i].in_reg = inloc ? *inloc : 0;
- rld[i].out_reg = outloc ? *outloc : 0;
- rld[i].opnum = opnum;
- rld[i].when_needed = type;
- rld[i].secondary_in_reload = secondary_in_reload;
- rld[i].secondary_out_reload = secondary_out_reload;
- rld[i].secondary_in_icode = secondary_in_icode;
- rld[i].secondary_out_icode = secondary_out_icode;
- rld[i].secondary_p = 0;
-
- n_reloads++;
-
-#ifdef SECONDARY_MEMORY_NEEDED
- if (out != 0
- && (REG_P (out)
- || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
- && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
- && SECONDARY_MEMORY_NEEDED (class,
- REGNO_REG_CLASS (reg_or_subregno (out)),
- outmode))
- get_secondary_mem (out, outmode, opnum, type);
-#endif
- }
- else
- {
- /* We are reusing an existing reload,
- but we may have additional information for it.
- For example, we may now have both IN and OUT
- while the old one may have just one of them. */
-
- /* The modes can be different. If they are, we want to reload in
- the larger mode, so that the value is valid for both modes. */
- if (inmode != VOIDmode
- && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
- rld[i].inmode = inmode;
- if (outmode != VOIDmode
- && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
- rld[i].outmode = outmode;
- if (in != 0)
- {
- rtx in_reg = inloc ? *inloc : 0;
- /* If we merge reloads for two distinct rtl expressions that
- are identical in content, there might be duplicate address
- reloads. Remove the extra set now, so that if we later find
- that we can inherit this reload, we can get rid of the
- address reloads altogether.
-
- Do not do this if both reloads are optional since the result
- would be an optional reload which could potentially leave
- unresolved address replacements.
-
- It is not sufficient to call transfer_replacements since
- choose_reload_regs will remove the replacements for address
- reloads of inherited reloads which results in the same
- problem. */
- if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
- && ! (rld[i].optional && optional))
- {
- /* We must keep the address reload with the lower operand
- number alive. */
- if (opnum > rld[i].opnum)
- {
- remove_address_replacements (in);
- in = rld[i].in;
- in_reg = rld[i].in_reg;
- }
- else
- remove_address_replacements (rld[i].in);
- }
- rld[i].in = in;
- rld[i].in_reg = in_reg;
- }
- if (out != 0)
- {
- rld[i].out = out;
- rld[i].out_reg = outloc ? *outloc : 0;
- }
- if (reg_class_subset_p (class, rld[i].class))
- rld[i].class = class;
- rld[i].optional &= optional;
- if (MERGE_TO_OTHER (type, rld[i].when_needed,
- opnum, rld[i].opnum))
- rld[i].when_needed = RELOAD_OTHER;
- rld[i].opnum = MIN (rld[i].opnum, opnum);
- }
-
- /* If the ostensible rtx being reloaded differs from the rtx found
- in the location to substitute, this reload is not safe to combine
- because we cannot reliably tell whether it appears in the insn. */
-
- if (in != 0 && in != *inloc)
- rld[i].nocombine = 1;
-
-#if 0
- /* This was replaced by changes in find_reloads_address_1 and the new
- function inc_for_reload, which go with a new meaning of reload_inc. */
-
- /* If this is an IN/OUT reload in an insn that sets the CC,
- it must be for an autoincrement. It doesn't work to store
- the incremented value after the insn because that would clobber the CC.
- So we must do the increment of the value reloaded from,
- increment it, store it back, then decrement again. */
- if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
- {
- out = 0;
- rld[i].out = 0;
- rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
- /* If we did not find a nonzero amount-to-increment-by,
- that contradicts the belief that IN is being incremented
- in an address in this insn. */
- gcc_assert (rld[i].inc != 0);
- }
-#endif
-
- /* If we will replace IN and OUT with the reload-reg,
- record where they are located so that substitution need
- not do a tree walk. */
-
- if (replace_reloads)
- {
- if (inloc != 0)
- {
- struct replacement *r = &replacements[n_replacements++];
- r->what = i;
- r->subreg_loc = in_subreg_loc;
- r->where = inloc;
- r->mode = inmode;
- }
- if (outloc != 0 && outloc != inloc)
- {
- struct replacement *r = &replacements[n_replacements++];
- r->what = i;
- r->where = outloc;
- r->subreg_loc = out_subreg_loc;
- r->mode = outmode;
- }
- }
-
- /* If this reload is just being introduced and it has both
- an incoming quantity and an outgoing quantity that are
- supposed to be made to match, see if either one of the two
- can serve as the place to reload into.
-
- If one of them is acceptable, set rld[i].reg_rtx
- to that one. */
-
- if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
- {
- rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
- inmode, outmode,
- rld[i].class, i,
- earlyclobber_operand_p (out));
-
- /* If the outgoing register already contains the same value
- as the incoming one, we can dispense with loading it.
- The easiest way to tell the caller that is to give a phony
- value for the incoming operand (same as outgoing one). */
- if (rld[i].reg_rtx == out
- && (REG_P (in) || CONSTANT_P (in))
- && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
- static_reload_reg_p, i, inmode))
- rld[i].in = out;
- }
-
- /* If this is an input reload and the operand contains a register that
- dies in this insn and is used nowhere else, see if it is the right class
- to be used for this reload. Use it if so. (This occurs most commonly
- in the case of paradoxical SUBREGs and in-out reloads). We cannot do
- this if it is also an output reload that mentions the register unless
- the output is a SUBREG that clobbers an entire register.
-
- Note that the operand might be one of the spill regs, if it is a
- pseudo reg and we are in a block where spilling has not taken place.
- But if there is no spilling in this block, that is OK.
- An explicitly used hard reg cannot be a spill reg. */
-
- if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
- {
- rtx note;
- int regno;
- enum machine_mode rel_mode = inmode;
-
- if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
- rel_mode = outmode;
-
- for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_DEAD
- && REG_P (XEXP (note, 0))
- && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
- && reg_mentioned_p (XEXP (note, 0), in)
- /* Check that we don't use a hardreg for an uninitialized
- pseudo. See also find_dummy_reload(). */
- && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
- || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
- ORIGINAL_REGNO (XEXP (note, 0))))
- && ! refers_to_regno_for_reload_p (regno,
- (regno
- + hard_regno_nregs[regno]
- [rel_mode]),
- PATTERN (this_insn), inloc)
- /* If this is also an output reload, IN cannot be used as
- the reload register if it is set in this insn unless IN
- is also OUT. */
- && (out == 0 || in == out
- || ! hard_reg_set_here_p (regno,
- (regno
- + hard_regno_nregs[regno]
- [rel_mode]),
- PATTERN (this_insn)))
- /* ??? Why is this code so different from the previous?
- Is there any simple coherent way to describe the two together?
- What's going on here. */
- && (in != out
- || (GET_CODE (in) == SUBREG
- && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
- / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
- /* Make sure the operand fits in the reg that dies. */
- && (GET_MODE_SIZE (rel_mode)
- <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
- && HARD_REGNO_MODE_OK (regno, inmode)
- && HARD_REGNO_MODE_OK (regno, outmode))
- {
- unsigned int offs;
- unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
- hard_regno_nregs[regno][outmode]);
-
- for (offs = 0; offs < nregs; offs++)
- if (fixed_regs[regno + offs]
- || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- regno + offs))
- break;
-
- if (offs == nregs
- && (! (refers_to_regno_for_reload_p
- (regno, (regno + hard_regno_nregs[regno][inmode]),
- in, (rtx *)0))
- || can_reload_into (in, regno, inmode)))
- {
- rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
- break;
- }
- }
- }
-
- if (out)
- output_reloadnum = i;
-
- return i;
-}
-
-/* Record an additional place we must replace a value
- for which we have already recorded a reload.
- RELOADNUM is the value returned by push_reload
- when the reload was recorded.
- This is used in insn patterns that use match_dup. */
-
-static void
-push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
-{
- if (replace_reloads)
- {
- struct replacement *r = &replacements[n_replacements++];
- r->what = reloadnum;
- r->where = loc;
- r->subreg_loc = 0;
- r->mode = mode;
- }
-}
-
-/* Duplicate any replacement we have recorded to apply at
- location ORIG_LOC to also be performed at DUP_LOC.
- This is used in insn patterns that use match_dup. */
-
-static void
-dup_replacements (rtx *dup_loc, rtx *orig_loc)
-{
- int i, n = n_replacements;
-
- for (i = 0; i < n; i++)
- {
- struct replacement *r = &replacements[i];
- if (r->where == orig_loc)
- push_replacement (dup_loc, r->what, r->mode);
- }
-}
-
-/* Transfer all replacements that used to be in reload FROM to be in
- reload TO. */
-
-void
-transfer_replacements (int to, int from)
-{
- int i;
-
- for (i = 0; i < n_replacements; i++)
- if (replacements[i].what == from)
- replacements[i].what = to;
-}
-
-/* IN_RTX is the value loaded by a reload that we now decided to inherit,
- or a subpart of it. If we have any replacements registered for IN_RTX,
- cancel the reloads that were supposed to load them.
- Return nonzero if we canceled any reloads. */
-int
-remove_address_replacements (rtx in_rtx)
-{
- int i, j;
- char reload_flags[MAX_RELOADS];
- int something_changed = 0;
-
- memset (reload_flags, 0, sizeof reload_flags);
- for (i = 0, j = 0; i < n_replacements; i++)
- {
- if (loc_mentioned_in_p (replacements[i].where, in_rtx))
- reload_flags[replacements[i].what] |= 1;
- else
- {
- replacements[j++] = replacements[i];
- reload_flags[replacements[i].what] |= 2;
- }
- }
- /* Note that the following store must be done before the recursive calls. */
- n_replacements = j;
-
- for (i = n_reloads - 1; i >= 0; i--)
- {
- if (reload_flags[i] == 1)
- {
- deallocate_reload_reg (i);
- remove_address_replacements (rld[i].in);
- rld[i].in = 0;
- something_changed = 1;
- }
- }
- return something_changed;
-}
-
-/* If there is only one output reload, and it is not for an earlyclobber
- operand, try to combine it with a (logically unrelated) input reload
- to reduce the number of reload registers needed.
-
- This is safe if the input reload does not appear in
- the value being output-reloaded, because this implies
- it is not needed any more once the original insn completes.
-
- If that doesn't work, see we can use any of the registers that
- die in this insn as a reload register. We can if it is of the right
- class and does not appear in the value being output-reloaded. */
-
-static void
-combine_reloads (void)
-{
- int i;
- int output_reload = -1;
- int secondary_out = -1;
- rtx note;
-
- /* Find the output reload; return unless there is exactly one
- and that one is mandatory. */
-
- for (i = 0; i < n_reloads; i++)
- if (rld[i].out != 0)
- {
- if (output_reload >= 0)
- return;
- output_reload = i;
- }
-
- if (output_reload < 0 || rld[output_reload].optional)
- return;
-
- /* An input-output reload isn't combinable. */
-
- if (rld[output_reload].in != 0)
- return;
-
- /* If this reload is for an earlyclobber operand, we can't do anything. */
- if (earlyclobber_operand_p (rld[output_reload].out))
- return;
-
- /* If there is a reload for part of the address of this operand, we would
- need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
- its life to the point where doing this combine would not lower the
- number of spill registers needed. */
- for (i = 0; i < n_reloads; i++)
- if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
- && rld[i].opnum == rld[output_reload].opnum)
- /* APPLE LOCAL begin try destroyed input */
-#ifdef TARGET_POWERPC
- goto try_destroyed_input;
-#else
- return;
-#endif
- /* APPLE LOCAL end try destroyed input */
-
- /* Check each input reload; can we combine it? */
-
- for (i = 0; i < n_reloads; i++)
- if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
- /* Life span of this reload must not extend past main insn. */
- && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
- && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
- && rld[i].when_needed != RELOAD_OTHER
- && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
- == CLASS_MAX_NREGS (rld[output_reload].class,
- rld[output_reload].outmode))
- && rld[i].inc == 0
- && rld[i].reg_rtx == 0
-#ifdef SECONDARY_MEMORY_NEEDED
- /* Don't combine two reloads with different secondary
- memory locations. */
- && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
- || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
- || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
- secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
-#endif
- && (SMALL_REGISTER_CLASSES
- ? (rld[i].class == rld[output_reload].class)
- : (reg_class_subset_p (rld[i].class,
- rld[output_reload].class)
- || reg_class_subset_p (rld[output_reload].class,
- rld[i].class)))
- && (MATCHES (rld[i].in, rld[output_reload].out)
- /* Args reversed because the first arg seems to be
- the one that we imagine being modified
- while the second is the one that might be affected. */
- || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
- rld[i].in)
- /* However, if the input is a register that appears inside
- the output, then we also can't share.
- Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
- If the same reload reg is used for both reg 69 and the
- result to be stored in memory, then that result
- will clobber the address of the memory ref. */
- && ! (REG_P (rld[i].in)
- && reg_overlap_mentioned_for_reload_p (rld[i].in,
- rld[output_reload].out))))
- && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
- rld[i].when_needed != RELOAD_FOR_INPUT)
- && (reg_class_size[(int) rld[i].class]
- || SMALL_REGISTER_CLASSES)
- /* We will allow making things slightly worse by combining an
- input and an output, but no worse than that. */
- && (rld[i].when_needed == RELOAD_FOR_INPUT
- || rld[i].when_needed == RELOAD_FOR_OUTPUT))
- {
- int j;
-
- /* We have found a reload to combine with! */
- rld[i].out = rld[output_reload].out;
- rld[i].out_reg = rld[output_reload].out_reg;
- rld[i].outmode = rld[output_reload].outmode;
- /* Mark the old output reload as inoperative. */
- rld[output_reload].out = 0;
- /* The combined reload is needed for the entire insn. */
- rld[i].when_needed = RELOAD_OTHER;
- /* If the output reload had a secondary reload, copy it. */
- if (rld[output_reload].secondary_out_reload != -1)
- {
- rld[i].secondary_out_reload
- = rld[output_reload].secondary_out_reload;
- rld[i].secondary_out_icode
- = rld[output_reload].secondary_out_icode;
- }
-
-#ifdef SECONDARY_MEMORY_NEEDED
- /* Copy any secondary MEM. */
- if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
- secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
- = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
-#endif
- /* If required, minimize the register class. */
- if (reg_class_subset_p (rld[output_reload].class,
- rld[i].class))
- rld[i].class = rld[output_reload].class;
-
- /* Transfer all replacements from the old reload to the combined. */
- for (j = 0; j < n_replacements; j++)
- if (replacements[j].what == output_reload)
- replacements[j].what = i;
-
- return;
- }
-
- /* If this insn has only one operand that is modified or written (assumed
- to be the first), it must be the one corresponding to this reload. It
- is safe to use anything that dies in this insn for that output provided
- that it does not occur in the output (we already know it isn't an
- earlyclobber. If this is an asm insn, give up. */
-
- /* APPLE LOCAL begin try destroyed input */
-#ifdef TARGET_POWERPC
- try_destroyed_input:
-#endif
- /* APPLE LOCAL end try destroyed input */
- if (INSN_CODE (this_insn) == -1)
- return;
-
- for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
- if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
- || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
- return;
-
- /* See if some hard register that dies in this insn and is not used in
- the output is the right class. Only works if the register we pick
- up can fully hold our output reload. */
- for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_DEAD
- && REG_P (XEXP (note, 0))
- && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
- rld[output_reload].out)
- && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
- && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
- && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
- REGNO (XEXP (note, 0)))
- && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
- <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
- /* Ensure that a secondary or tertiary reload for this output
- won't want this register. */
- && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
- || (! (TEST_HARD_REG_BIT
- (reg_class_contents[(int) rld[secondary_out].class],
- REGNO (XEXP (note, 0))))
- && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
- || ! (TEST_HARD_REG_BIT
- (reg_class_contents[(int) rld[secondary_out].class],
- REGNO (XEXP (note, 0)))))))
- && ! fixed_regs[REGNO (XEXP (note, 0))]
- /* Check that we don't use a hardreg for an uninitialized
- pseudo. See also find_dummy_reload(). */
- && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
- || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
- ORIGINAL_REGNO (XEXP (note, 0)))))
- {
- rld[output_reload].reg_rtx
- = gen_rtx_REG (rld[output_reload].outmode,
- REGNO (XEXP (note, 0)));
- return;
- }
-}
-
-/* Try to find a reload register for an in-out reload (expressions IN and OUT).
- See if one of IN and OUT is a register that may be used;
- this is desirable since a spill-register won't be needed.
- If so, return the register rtx that proves acceptable.
-
- INLOC and OUTLOC are locations where IN and OUT appear in the insn.
- CLASS is the register class required for the reload.
-
- If FOR_REAL is >= 0, it is the number of the reload,
- and in some cases when it can be discovered that OUT doesn't need
- to be computed, clear out rld[FOR_REAL].out.
-
- If FOR_REAL is -1, this should not be done, because this call
- is just to see if a register can be found, not to find and install it.
-
- EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
- puts an additional constraint on being able to use IN for OUT since
- IN must not appear elsewhere in the insn (it is assumed that IN itself
- is safe from the earlyclobber). */
-
-static rtx
-find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
- enum machine_mode inmode, enum machine_mode outmode,
- enum reg_class class, int for_real, int earlyclobber)
-{
- rtx in = real_in;
- rtx out = real_out;
- int in_offset = 0;
- int out_offset = 0;
- rtx value = 0;
-
- /* If operands exceed a word, we can't use either of them
- unless they have the same size. */
- if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
- && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
- || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
- return 0;
-
- /* Note that {in,out}_offset are needed only when 'in' or 'out'
- respectively refers to a hard register. */
-
- /* Find the inside of any subregs. */
- while (GET_CODE (out) == SUBREG)
- {
- if (REG_P (SUBREG_REG (out))
- && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
- out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
- GET_MODE (SUBREG_REG (out)),
- SUBREG_BYTE (out),
- GET_MODE (out));
- out = SUBREG_REG (out);
- }
- while (GET_CODE (in) == SUBREG)
- {
- if (REG_P (SUBREG_REG (in))
- && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
- in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
- GET_MODE (SUBREG_REG (in)),
- SUBREG_BYTE (in),
- GET_MODE (in));
- in = SUBREG_REG (in);
- }
-
- /* Narrow down the reg class, the same way push_reload will;
- otherwise we might find a dummy now, but push_reload won't. */
- {
- enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
- if (preferred_class != NO_REGS)
- class = preferred_class;
- }
-
- /* See if OUT will do. */
- if (REG_P (out)
- && REGNO (out) < FIRST_PSEUDO_REGISTER)
- {
- unsigned int regno = REGNO (out) + out_offset;
- unsigned int nwords = hard_regno_nregs[regno][outmode];
- rtx saved_rtx;
-
- /* When we consider whether the insn uses OUT,
- ignore references within IN. They don't prevent us
- from copying IN into OUT, because those refs would
- move into the insn that reloads IN.
-
- However, we only ignore IN in its role as this reload.
- If the insn uses IN elsewhere and it contains OUT,
- that counts. We can't be sure it's the "same" operand
- so it might not go through this reload. */
- saved_rtx = *inloc;
- *inloc = const0_rtx;
-
- if (regno < FIRST_PSEUDO_REGISTER
- && HARD_REGNO_MODE_OK (regno, outmode)
- && ! refers_to_regno_for_reload_p (regno, regno + nwords,
- PATTERN (this_insn), outloc))
- {
- unsigned int i;
-
- for (i = 0; i < nwords; i++)
- if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- regno + i))
- break;
-
- if (i == nwords)
- {
- if (REG_P (real_out))
- value = real_out;
- else
- value = gen_rtx_REG (outmode, regno);
- }
- }
-
- *inloc = saved_rtx;
- }
-
- /* Consider using IN if OUT was not acceptable
- or if OUT dies in this insn (like the quotient in a divmod insn).
- We can't use IN unless it is dies in this insn,
- which means we must know accurately which hard regs are live.
- Also, the result can't go in IN if IN is used within OUT,
- or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
- if (hard_regs_live_known
- && REG_P (in)
- && REGNO (in) < FIRST_PSEUDO_REGISTER
- && (value == 0
- || find_reg_note (this_insn, REG_UNUSED, real_out))
- && find_reg_note (this_insn, REG_DEAD, real_in)
- && !fixed_regs[REGNO (in)]
- && HARD_REGNO_MODE_OK (REGNO (in),
- /* The only case where out and real_out might
- have different modes is where real_out
- is a subreg, and in that case, out
- has a real mode. */
- (GET_MODE (out) != VOIDmode
- ? GET_MODE (out) : outmode))
- /* But only do all this if we can be sure, that this input
- operand doesn't correspond with an uninitialized pseudoreg.
- global can assign some hardreg to it, which is the same as
- a different pseudo also currently live (as it can ignore the
- conflict). So we never must introduce writes to such hardregs,
- as they would clobber the other live pseudo using the same.
- See also PR20973. */
- && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
- || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
- ORIGINAL_REGNO (in))))
- {
- unsigned int regno = REGNO (in) + in_offset;
- unsigned int nwords = hard_regno_nregs[regno][inmode];
-
- if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
- && ! hard_reg_set_here_p (regno, regno + nwords,
- PATTERN (this_insn))
- && (! earlyclobber
- || ! refers_to_regno_for_reload_p (regno, regno + nwords,
- PATTERN (this_insn), inloc)))
- {
- unsigned int i;
-
- for (i = 0; i < nwords; i++)
- if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- regno + i))
- break;
-
- if (i == nwords)
- {
- /* If we were going to use OUT as the reload reg
- and changed our mind, it means OUT is a dummy that
- dies here. So don't bother copying value to it. */
- if (for_real >= 0 && value == real_out)
- rld[for_real].out = 0;
- if (REG_P (real_in))
- value = real_in;
- else
- value = gen_rtx_REG (inmode, regno);
- }
- }
- }
-
- return value;
-}
-
-/* This page contains subroutines used mainly for determining
- whether the IN or an OUT of a reload can serve as the
- reload register. */
-
-/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
-
-int
-earlyclobber_operand_p (rtx x)
-{
- int i;
-
- for (i = 0; i < n_earlyclobbers; i++)
- if (reload_earlyclobbers[i] == x)
- return 1;
-
- return 0;
-}
-
-/* Return 1 if expression X alters a hard reg in the range
- from BEG_REGNO (inclusive) to END_REGNO (exclusive),
- either explicitly or in the guise of a pseudo-reg allocated to REGNO.
- X should be the body of an instruction. */
-
-static int
-hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
-{
- if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
- {
- rtx op0 = SET_DEST (x);
-
- while (GET_CODE (op0) == SUBREG)
- op0 = SUBREG_REG (op0);
- if (REG_P (op0))
- {
- unsigned int r = REGNO (op0);
-
- /* See if this reg overlaps range under consideration. */
- if (r < end_regno
- && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
- return 1;
- }
- }
- else if (GET_CODE (x) == PARALLEL)
- {
- int i = XVECLEN (x, 0) - 1;
-
- for (; i >= 0; i--)
- if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
- return 1;
- }
-
- return 0;
-}
-
-/* Return 1 if ADDR is a valid memory address for mode MODE,
- and check that each pseudo reg has the proper kind of
- hard reg. */
-
-int
-strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
-{
- GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
- return 0;
-
- win:
- return 1;
-}
-
-/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
- if they are the same hard reg, and has special hacks for
- autoincrement and autodecrement.
- This is specifically intended for find_reloads to use
- in determining whether two operands match.
- X is the operand whose number is the lower of the two.
-
- The value is 2 if Y contains a pre-increment that matches
- a non-incrementing address in X. */
-
-/* ??? To be completely correct, we should arrange to pass
- for X the output operand and for Y the input operand.
- For now, we assume that the output operand has the lower number
- because that is natural in (SET output (... input ...)). */
-
-int
-operands_match_p (rtx x, rtx y)
-{
- int i;
- RTX_CODE code = GET_CODE (x);
- const char *fmt;
- int success_2;
-
- if (x == y)
- return 1;
- if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
- && (REG_P (y) || (GET_CODE (y) == SUBREG
- && REG_P (SUBREG_REG (y)))))
- {
- int j;
-
- if (code == SUBREG)
- {
- i = REGNO (SUBREG_REG (x));
- if (i >= FIRST_PSEUDO_REGISTER)
- goto slow;
- i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
- GET_MODE (SUBREG_REG (x)),
- SUBREG_BYTE (x),
- GET_MODE (x));
- }
- else
- i = REGNO (x);
-
- if (GET_CODE (y) == SUBREG)
- {
- j = REGNO (SUBREG_REG (y));
- if (j >= FIRST_PSEUDO_REGISTER)
- goto slow;
- j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
- GET_MODE (SUBREG_REG (y)),
- SUBREG_BYTE (y),
- GET_MODE (y));
- }
- else
- j = REGNO (y);
-
- /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
- multiple hard register group of scalar integer registers, so that
- for example (reg:DI 0) and (reg:SI 1) will be considered the same
- register. */
- if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
- && SCALAR_INT_MODE_P (GET_MODE (x))
- && i < FIRST_PSEUDO_REGISTER)
- i += hard_regno_nregs[i][GET_MODE (x)] - 1;
- if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
- && SCALAR_INT_MODE_P (GET_MODE (y))
- && j < FIRST_PSEUDO_REGISTER)
- j += hard_regno_nregs[j][GET_MODE (y)] - 1;
-
- return i == j;
- }
- /* If two operands must match, because they are really a single
- operand of an assembler insn, then two postincrements are invalid
- because the assembler insn would increment only once.
- On the other hand, a postincrement matches ordinary indexing
- if the postincrement is the output operand. */
- if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
- return operands_match_p (XEXP (x, 0), y);
- /* Two preincrements are invalid
- because the assembler insn would increment only once.
- On the other hand, a preincrement matches ordinary indexing
- if the preincrement is the input operand.
- In this case, return 2, since some callers need to do special
- things when this happens. */
- if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
- || GET_CODE (y) == PRE_MODIFY)
- return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
-
- slow:
-
- /* Now we have disposed of all the cases in which different rtx codes
- can match. */
- if (code != GET_CODE (y))
- return 0;
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- switch (code)
- {
- case CONST_INT:
- case CONST_DOUBLE:
- return 0;
-
- case LABEL_REF:
- return XEXP (x, 0) == XEXP (y, 0);
- case SYMBOL_REF:
- return XSTR (x, 0) == XSTR (y, 0);
-
- default:
- break;
- }
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole things. */
-
- success_2 = 0;
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- int val, j;
- switch (fmt[i])
- {
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return 0;
- break;
-
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'e':
- val = operands_match_p (XEXP (x, i), XEXP (y, i));
- if (val == 0)
- return 0;
- /* If any subexpression returns 2,
- we should return 2 if we are successful. */
- if (val == 2)
- success_2 = 1;
- break;
-
- case '0':
- break;
-
- case 'E':
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
- for (j = XVECLEN (x, i) - 1; j >= 0; --j)
- {
- val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
- if (val == 0)
- return 0;
- if (val == 2)
- success_2 = 1;
- }
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- gcc_unreachable ();
- }
- }
- return 1 + success_2;
-}
-
-/* Describe the range of registers or memory referenced by X.
- If X is a register, set REG_FLAG and put the first register
- number into START and the last plus one into END.
- If X is a memory reference, put a base address into BASE
- and a range of integer offsets into START and END.
- If X is pushing on the stack, we can assume it causes no trouble,
- so we set the SAFE field. */
-
-static struct decomposition
-decompose (rtx x)
-{
- struct decomposition val;
- int all_const = 0;
-
- memset (&val, 0, sizeof (val));
-
- switch (GET_CODE (x))
- {
- case MEM:
- {
- rtx base = NULL_RTX, offset = 0;
- rtx addr = XEXP (x, 0);
-
- if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
- || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
- {
- val.base = XEXP (addr, 0);
- val.start = -GET_MODE_SIZE (GET_MODE (x));
- val.end = GET_MODE_SIZE (GET_MODE (x));
- val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
- return val;
- }
-
- if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
- {
- if (GET_CODE (XEXP (addr, 1)) == PLUS
- && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
- && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
- {
- val.base = XEXP (addr, 0);
- val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
- val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
- val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
- return val;
- }
- }
-
- if (GET_CODE (addr) == CONST)
- {
- addr = XEXP (addr, 0);
- all_const = 1;
- }
- if (GET_CODE (addr) == PLUS)
- {
- if (CONSTANT_P (XEXP (addr, 0)))
- {
- base = XEXP (addr, 1);
- offset = XEXP (addr, 0);
- }
- else if (CONSTANT_P (XEXP (addr, 1)))
- {
- base = XEXP (addr, 0);
- offset = XEXP (addr, 1);
- }
- }
-
- if (offset == 0)
- {
- base = addr;
- offset = const0_rtx;
- }
- if (GET_CODE (offset) == CONST)
- offset = XEXP (offset, 0);
- if (GET_CODE (offset) == PLUS)
- {
- if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
- {
- base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
- offset = XEXP (offset, 0);
- }
- else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
- {
- base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
- offset = XEXP (offset, 1);
- }
- else
- {
- base = gen_rtx_PLUS (GET_MODE (base), base, offset);
- offset = const0_rtx;
- }
- }
- else if (GET_CODE (offset) != CONST_INT)
- {
- base = gen_rtx_PLUS (GET_MODE (base), base, offset);
- offset = const0_rtx;
- }
-
- if (all_const && GET_CODE (base) == PLUS)
- base = gen_rtx_CONST (GET_MODE (base), base);
-
- gcc_assert (GET_CODE (offset) == CONST_INT);
-
- val.start = INTVAL (offset);
- val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
- val.base = base;
- }
- break;
-
- case REG:
- val.reg_flag = 1;
- val.start = true_regnum (x);
- if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
- {
- /* A pseudo with no hard reg. */
- val.start = REGNO (x);
- val.end = val.start + 1;
- }
- else
- /* A hard reg. */
- val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
- break;
-
- case SUBREG:
- if (!REG_P (SUBREG_REG (x)))
- /* This could be more precise, but it's good enough. */
- return decompose (SUBREG_REG (x));
- val.reg_flag = 1;
- val.start = true_regnum (x);
- if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
- return decompose (SUBREG_REG (x));
- else
- /* A hard reg. */
- val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
- break;
-
- case SCRATCH:
- /* This hasn't been assigned yet, so it can't conflict yet. */
- val.safe = 1;
- break;
-
- default:
- gcc_assert (CONSTANT_P (x));
- val.safe = 1;
- break;
- }
- return val;
-}
-
-/* Return 1 if altering Y will not modify the value of X.
- Y is also described by YDATA, which should be decompose (Y). */
-
-static int
-immune_p (rtx x, rtx y, struct decomposition ydata)
-{
- struct decomposition xdata;
-
- if (ydata.reg_flag)
- return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
- if (ydata.safe)
- return 1;
-
- gcc_assert (MEM_P (y));
- /* If Y is memory and X is not, Y can't affect X. */
- if (!MEM_P (x))
- return 1;
-
- xdata = decompose (x);
-
- if (! rtx_equal_p (xdata.base, ydata.base))
- {
- /* If bases are distinct symbolic constants, there is no overlap. */
- if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
- return 1;
- /* Constants and stack slots never overlap. */
- if (CONSTANT_P (xdata.base)
- && (ydata.base == frame_pointer_rtx
- || ydata.base == hard_frame_pointer_rtx
- || ydata.base == stack_pointer_rtx))
- return 1;
- if (CONSTANT_P (ydata.base)
- && (xdata.base == frame_pointer_rtx
- || xdata.base == hard_frame_pointer_rtx
- || xdata.base == stack_pointer_rtx))
- return 1;
- /* If either base is variable, we don't know anything. */
- return 0;
- }
-
- return (xdata.start >= ydata.end || ydata.start >= xdata.end);
-}
-
-/* Similar, but calls decompose. */
-
-int
-safe_from_earlyclobber (rtx op, rtx clobber)
-{
- struct decomposition early_data;
-
- early_data = decompose (clobber);
- return immune_p (op, clobber, early_data);
-}
-
-/* Main entry point of this file: search the body of INSN
- for values that need reloading and record them with push_reload.
- REPLACE nonzero means record also where the values occur
- so that subst_reloads can be used.
-
- IND_LEVELS says how many levels of indirection are supported by this
- machine; a value of zero means that a memory reference is not a valid
- memory address.
-
- LIVE_KNOWN says we have valid information about which hard
- regs are live at each point in the program; this is true when
- we are called from global_alloc but false when stupid register
- allocation has been done.
-
- RELOAD_REG_P if nonzero is a vector indexed by hard reg number
- which is nonnegative if the reg has been commandeered for reloading into.
- It is copied into STATIC_RELOAD_REG_P and referenced from there
- by various subroutines.
-
- Return TRUE if some operands need to be changed, because of swapping
- commutative operands, reg_equiv_address substitution, or whatever. */
-
-int
-find_reloads (rtx insn, int replace, int ind_levels, int live_known,
- short *reload_reg_p)
-{
- int insn_code_number;
- int i, j;
- int noperands;
- /* These start out as the constraints for the insn
- and they are chewed up as we consider alternatives. */
- char *constraints[MAX_RECOG_OPERANDS];
- /* These are the preferred classes for an operand, or NO_REGS if it isn't
- a register. */
- enum reg_class preferred_class[MAX_RECOG_OPERANDS];
- char pref_or_nothing[MAX_RECOG_OPERANDS];
- /* Nonzero for a MEM operand whose entire address needs a reload.
- May be -1 to indicate the entire address may or may not need a reload. */
- int address_reloaded[MAX_RECOG_OPERANDS];
- /* Nonzero for an address operand that needs to be completely reloaded.
- May be -1 to indicate the entire operand may or may not need a reload. */
- int address_operand_reloaded[MAX_RECOG_OPERANDS];
- /* Value of enum reload_type to use for operand. */
- enum reload_type operand_type[MAX_RECOG_OPERANDS];
- /* Value of enum reload_type to use within address of operand. */
- enum reload_type address_type[MAX_RECOG_OPERANDS];
- /* Save the usage of each operand. */
- enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
- int no_input_reloads = 0, no_output_reloads = 0;
- int n_alternatives;
- int this_alternative[MAX_RECOG_OPERANDS];
- char this_alternative_match_win[MAX_RECOG_OPERANDS];
- char this_alternative_win[MAX_RECOG_OPERANDS];
- char this_alternative_offmemok[MAX_RECOG_OPERANDS];
- char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
- int this_alternative_matches[MAX_RECOG_OPERANDS];
- int swapped;
- int goal_alternative[MAX_RECOG_OPERANDS];
- int this_alternative_number;
- int goal_alternative_number = 0;
- int operand_reloadnum[MAX_RECOG_OPERANDS];
- int goal_alternative_matches[MAX_RECOG_OPERANDS];
- int goal_alternative_matched[MAX_RECOG_OPERANDS];
- char goal_alternative_match_win[MAX_RECOG_OPERANDS];
- char goal_alternative_win[MAX_RECOG_OPERANDS];
- char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
- char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
- int goal_alternative_swapped;
- int best;
- int commutative;
- char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
- rtx substed_operand[MAX_RECOG_OPERANDS];
- rtx body = PATTERN (insn);
- rtx set = single_set (insn);
- int goal_earlyclobber = 0, this_earlyclobber;
- enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
- int retval = 0;
-
- this_insn = insn;
- n_reloads = 0;
- n_replacements = 0;
- n_earlyclobbers = 0;
- replace_reloads = replace;
- hard_regs_live_known = live_known;
- static_reload_reg_p = reload_reg_p;
-
- /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
- neither are insns that SET cc0. Insns that use CC0 are not allowed
- to have any input reloads. */
- if (JUMP_P (insn) || CALL_P (insn))
- no_output_reloads = 1;
-
-#ifdef HAVE_cc0
- if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
- no_input_reloads = 1;
- if (reg_set_p (cc0_rtx, PATTERN (insn)))
- no_output_reloads = 1;
-#endif
-
-#ifdef SECONDARY_MEMORY_NEEDED
- /* The eliminated forms of any secondary memory locations are per-insn, so
- clear them out here. */
-
- if (secondary_memlocs_elim_used)
- {
- memset (secondary_memlocs_elim, 0,
- sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
- secondary_memlocs_elim_used = 0;
- }
-#endif
-
- /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
- is cheap to move between them. If it is not, there may not be an insn
- to do the copy, so we may need a reload. */
- if (GET_CODE (body) == SET
- && REG_P (SET_DEST (body))
- && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
- && REG_P (SET_SRC (body))
- && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
- && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
- REGNO_REG_CLASS (REGNO (SET_SRC (body))),
- REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
- return 0;
-
- extract_insn (insn);
-
- noperands = reload_n_operands = recog_data.n_operands;
- n_alternatives = recog_data.n_alternatives;
-
- /* Just return "no reloads" if insn has no operands with constraints. */
- if (noperands == 0 || n_alternatives == 0)
- return 0;
-
- insn_code_number = INSN_CODE (insn);
- this_insn_is_asm = insn_code_number < 0;
-
- memcpy (operand_mode, recog_data.operand_mode,
- noperands * sizeof (enum machine_mode));
- memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
-
- commutative = -1;
-
- /* If we will need to know, later, whether some pair of operands
- are the same, we must compare them now and save the result.
- Reloading the base and index registers will clobber them
- and afterward they will fail to match. */
-
- for (i = 0; i < noperands; i++)
- {
- char *p;
- int c;
-
- substed_operand[i] = recog_data.operand[i];
- p = constraints[i];
-
- modified[i] = RELOAD_READ;
-
- /* Scan this operand's constraint to see if it is an output operand,
- an in-out operand, is commutative, or should match another. */
-
- while ((c = *p))
- {
- p += CONSTRAINT_LEN (c, p);
- switch (c)
- {
- case '=':
- modified[i] = RELOAD_WRITE;
- break;
- case '+':
- modified[i] = RELOAD_READ_WRITE;
- break;
- case '%':
- {
- /* The last operand should not be marked commutative. */
- gcc_assert (i != noperands - 1);
-
- /* We currently only support one commutative pair of
- operands. Some existing asm code currently uses more
- than one pair. Previously, that would usually work,
- but sometimes it would crash the compiler. We
- continue supporting that case as well as we can by
- silently ignoring all but the first pair. In the
- future we may handle it correctly. */
- if (commutative < 0)
- commutative = i;
- else
- gcc_assert (this_insn_is_asm);
- }
- break;
- /* Use of ISDIGIT is tempting here, but it may get expensive because
- of locale support we don't want. */
- case '0': case '1': case '2': case '3': case '4':
- case '5': case '6': case '7': case '8': case '9':
- {
- c = strtoul (p - 1, &p, 10);
-
- operands_match[c][i]
- = operands_match_p (recog_data.operand[c],
- recog_data.operand[i]);
-
- /* An operand may not match itself. */
- gcc_assert (c != i);
-
- /* If C can be commuted with C+1, and C might need to match I,
- then C+1 might also need to match I. */
- if (commutative >= 0)
- {
- if (c == commutative || c == commutative + 1)
- {
- int other = c + (c == commutative ? 1 : -1);
- operands_match[other][i]
- = operands_match_p (recog_data.operand[other],
- recog_data.operand[i]);
- }
- if (i == commutative || i == commutative + 1)
- {
- int other = i + (i == commutative ? 1 : -1);
- operands_match[c][other]
- = operands_match_p (recog_data.operand[c],
- recog_data.operand[other]);
- }
- /* Note that C is supposed to be less than I.
- No need to consider altering both C and I because in
- that case we would alter one into the other. */
- }
- }
- }
- }
- }
-
- /* Examine each operand that is a memory reference or memory address
- and reload parts of the addresses into index registers.
- Also here any references to pseudo regs that didn't get hard regs
- but are equivalent to constants get replaced in the insn itself
- with those constants. Nobody will ever see them again.
-
- Finally, set up the preferred classes of each operand. */
-
- for (i = 0; i < noperands; i++)
- {
- RTX_CODE code = GET_CODE (recog_data.operand[i]);
-
- address_reloaded[i] = 0;
- address_operand_reloaded[i] = 0;
- operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
- : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
- : RELOAD_OTHER);
- address_type[i]
- = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
- : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
- : RELOAD_OTHER);
-
- if (*constraints[i] == 0)
- /* Ignore things like match_operator operands. */
- ;
- else if (constraints[i][0] == 'p'
- || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
- {
- address_operand_reloaded[i]
- = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
- recog_data.operand[i],
- recog_data.operand_loc[i],
- i, operand_type[i], ind_levels, insn);
-
- /* If we now have a simple operand where we used to have a
- PLUS or MULT, re-recognize and try again. */
- if ((OBJECT_P (*recog_data.operand_loc[i])
- || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
- && (GET_CODE (recog_data.operand[i]) == MULT
- || GET_CODE (recog_data.operand[i]) == PLUS))
- {
- INSN_CODE (insn) = -1;
- retval = find_reloads (insn, replace, ind_levels, live_known,
- reload_reg_p);
- return retval;
- }
-
- recog_data.operand[i] = *recog_data.operand_loc[i];
- substed_operand[i] = recog_data.operand[i];
-
- /* Address operands are reloaded in their existing mode,
- no matter what is specified in the machine description. */
- operand_mode[i] = GET_MODE (recog_data.operand[i]);
- }
- else if (code == MEM)
- {
- address_reloaded[i]
- = find_reloads_address (GET_MODE (recog_data.operand[i]),
- recog_data.operand_loc[i],
- XEXP (recog_data.operand[i], 0),
- &XEXP (recog_data.operand[i], 0),
- i, address_type[i], ind_levels, insn);
- recog_data.operand[i] = *recog_data.operand_loc[i];
- substed_operand[i] = recog_data.operand[i];
- }
- else if (code == SUBREG)
- {
- rtx reg = SUBREG_REG (recog_data.operand[i]);
- rtx op
- = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
- ind_levels,
- set != 0
- && &SET_DEST (set) == recog_data.operand_loc[i],
- insn,
- &address_reloaded[i]);
-
- /* If we made a MEM to load (a part of) the stackslot of a pseudo
- that didn't get a hard register, emit a USE with a REG_EQUAL
- note in front so that we might inherit a previous, possibly
- wider reload. */
-
- if (replace
- && MEM_P (op)
- && REG_P (reg)
- && (GET_MODE_SIZE (GET_MODE (reg))
- >= GET_MODE_SIZE (GET_MODE (op))))
- set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
- insn),
- REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
-
- substed_operand[i] = recog_data.operand[i] = op;
- }
- else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
- /* We can get a PLUS as an "operand" as a result of register
- elimination. See eliminate_regs and gen_reload. We handle
- a unary operator by reloading the operand. */
- substed_operand[i] = recog_data.operand[i]
- = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
- ind_levels, 0, insn,
- &address_reloaded[i]);
- else if (code == REG)
- {
- /* This is equivalent to calling find_reloads_toplev.
- The code is duplicated for speed.
- When we find a pseudo always equivalent to a constant,
- we replace it by the constant. We must be sure, however,
- that we don't try to replace it in the insn in which it
- is being set. */
- int regno = REGNO (recog_data.operand[i]);
- if (reg_equiv_constant[regno] != 0
- && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
- {
- /* Record the existing mode so that the check if constants are
- allowed will work when operand_mode isn't specified. */
-
- if (operand_mode[i] == VOIDmode)
- operand_mode[i] = GET_MODE (recog_data.operand[i]);
-
- substed_operand[i] = recog_data.operand[i]
- = reg_equiv_constant[regno];
- }
- if (reg_equiv_memory_loc[regno] != 0
- && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
- /* We need not give a valid is_set_dest argument since the case
- of a constant equivalence was checked above. */
- substed_operand[i] = recog_data.operand[i]
- = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
- ind_levels, 0, insn,
- &address_reloaded[i]);
- }
- /* If the operand is still a register (we didn't replace it with an
- equivalent), get the preferred class to reload it into. */
- code = GET_CODE (recog_data.operand[i]);
- preferred_class[i]
- = ((code == REG && REGNO (recog_data.operand[i])
- >= FIRST_PSEUDO_REGISTER)
- ? reg_preferred_class (REGNO (recog_data.operand[i]))
- : NO_REGS);
- pref_or_nothing[i]
- = (code == REG
- && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
- && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
- }
-
- /* If this is simply a copy from operand 1 to operand 0, merge the
- preferred classes for the operands. */
- if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
- && recog_data.operand[1] == SET_SRC (set))
- {
- preferred_class[0] = preferred_class[1]
- = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
- pref_or_nothing[0] |= pref_or_nothing[1];
- pref_or_nothing[1] |= pref_or_nothing[0];
- }
-
- /* Now see what we need for pseudo-regs that didn't get hard regs
- or got the wrong kind of hard reg. For this, we must consider
- all the operands together against the register constraints. */
-
- best = MAX_RECOG_OPERANDS * 2 + 600;
-
- swapped = 0;
- goal_alternative_swapped = 0;
- try_swapped:
-
- /* The constraints are made of several alternatives.
- Each operand's constraint looks like foo,bar,... with commas
- separating the alternatives. The first alternatives for all
- operands go together, the second alternatives go together, etc.
-
- First loop over alternatives. */
-
- for (this_alternative_number = 0;
- this_alternative_number < n_alternatives;
- this_alternative_number++)
- {
- /* Loop over operands for one constraint alternative. */
- /* LOSERS counts those that don't fit this alternative
- and would require loading. */
- int losers = 0;
- /* BAD is set to 1 if it some operand can't fit this alternative
- even after reloading. */
- int bad = 0;
- /* REJECT is a count of how undesirable this alternative says it is
- if any reloading is required. If the alternative matches exactly
- then REJECT is ignored, but otherwise it gets this much
- counted against it in addition to the reloading needed. Each
- ? counts three times here since we want the disparaging caused by
- a bad register class to only count 1/3 as much. */
- int reject = 0;
-
- this_earlyclobber = 0;
-
- for (i = 0; i < noperands; i++)
- {
- char *p = constraints[i];
- char *end;
- int len;
- int win = 0;
- int did_match = 0;
- /* 0 => this operand can be reloaded somehow for this alternative. */
- int badop = 1;
- /* 0 => this operand can be reloaded if the alternative allows regs. */
- int winreg = 0;
- int c;
- int m;
- rtx operand = recog_data.operand[i];
- int offset = 0;
- /* Nonzero means this is a MEM that must be reloaded into a reg
- regardless of what the constraint says. */
- int force_reload = 0;
- int offmemok = 0;
- /* Nonzero if a constant forced into memory would be OK for this
- operand. */
- int constmemok = 0;
- int earlyclobber = 0;
-
- /* If the predicate accepts a unary operator, it means that
- we need to reload the operand, but do not do this for
- match_operator and friends. */
- if (UNARY_P (operand) && *p != 0)
- operand = XEXP (operand, 0);
-
- /* If the operand is a SUBREG, extract
- the REG or MEM (or maybe even a constant) within.
- (Constants can occur as a result of reg_equiv_constant.) */
-
- while (GET_CODE (operand) == SUBREG)
- {
- /* Offset only matters when operand is a REG and
- it is a hard reg. This is because it is passed
- to reg_fits_class_p if it is a REG and all pseudos
- return 0 from that function. */
- if (REG_P (SUBREG_REG (operand))
- && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
- {
- if (!subreg_offset_representable_p
- (REGNO (SUBREG_REG (operand)),
- GET_MODE (SUBREG_REG (operand)),
- SUBREG_BYTE (operand),
- GET_MODE (operand)))
- force_reload = 1;
- offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
- GET_MODE (SUBREG_REG (operand)),
- SUBREG_BYTE (operand),
- GET_MODE (operand));
- }
- operand = SUBREG_REG (operand);
- /* Force reload if this is a constant or PLUS or if there may
- be a problem accessing OPERAND in the outer mode. */
- if (CONSTANT_P (operand)
- || GET_CODE (operand) == PLUS
- /* We must force a reload of paradoxical SUBREGs
- of a MEM because the alignment of the inner value
- may not be enough to do the outer reference. On
- big-endian machines, it may also reference outside
- the object.
-
- On machines that extend byte operations and we have a
- SUBREG where both the inner and outer modes are no wider
- than a word and the inner mode is narrower, is integral,
- and gets extended when loaded from memory, combine.c has
- made assumptions about the behavior of the machine in such
- register access. If the data is, in fact, in memory we
- must always load using the size assumed to be in the
- register and let the insn do the different-sized
- accesses.
-
- This is doubly true if WORD_REGISTER_OPERATIONS. In
- this case eliminate_regs has left non-paradoxical
- subregs for push_reload to see. Make sure it does
- by forcing the reload.
-
- ??? When is it right at this stage to have a subreg
- of a mem that is _not_ to be handled specially? IMO
- those should have been reduced to just a mem. */
- || ((MEM_P (operand)
- || (REG_P (operand)
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
-#ifndef WORD_REGISTER_OPERATIONS
- && (((GET_MODE_BITSIZE (GET_MODE (operand))
- < BIGGEST_ALIGNMENT)
- && (GET_MODE_SIZE (operand_mode[i])
- > GET_MODE_SIZE (GET_MODE (operand))))
- || BYTES_BIG_ENDIAN
-#ifdef LOAD_EXTEND_OP
- || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (operand))
- <= UNITS_PER_WORD)
- && (GET_MODE_SIZE (operand_mode[i])
- > GET_MODE_SIZE (GET_MODE (operand)))
- && INTEGRAL_MODE_P (GET_MODE (operand))
- && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
-#endif
- )
-#endif
- )
- )
- force_reload = 1;
- }
-
- this_alternative[i] = (int) NO_REGS;
- this_alternative_win[i] = 0;
- this_alternative_match_win[i] = 0;
- this_alternative_offmemok[i] = 0;
- this_alternative_earlyclobber[i] = 0;
- this_alternative_matches[i] = -1;
-
- /* An empty constraint or empty alternative
- allows anything which matched the pattern. */
- if (*p == 0 || *p == ',')
- win = 1, badop = 0;
-
- /* Scan this alternative's specs for this operand;
- set WIN if the operand fits any letter in this alternative.
- Otherwise, clear BADOP if this operand could
- fit some letter after reloads,
- or set WINREG if this operand could fit after reloads
- provided the constraint allows some registers. */
-
- do
- switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
- {
- case '\0':
- len = 0;
- break;
- case ',':
- c = '\0';
- break;
-
- case '=': case '+': case '*':
- break;
-
- case '%':
- /* We only support one commutative marker, the first
- one. We already set commutative above. */
- break;
-
- case '?':
- reject += 6;
- break;
-
- case '!':
- reject = 600;
- break;
-
- case '#':
- /* Ignore rest of this alternative as far as
- reloading is concerned. */
- do
- p++;
- while (*p && *p != ',');
- len = 0;
- break;
-
- case '0': case '1': case '2': case '3': case '4':
- case '5': case '6': case '7': case '8': case '9':
- m = strtoul (p, &end, 10);
- p = end;
- len = 0;
-
- this_alternative_matches[i] = m;
- /* We are supposed to match a previous operand.
- If we do, we win if that one did.
- If we do not, count both of the operands as losers.
- (This is too conservative, since most of the time
- only a single reload insn will be needed to make
- the two operands win. As a result, this alternative
- may be rejected when it is actually desirable.) */
- if ((swapped && (m != commutative || i != commutative + 1))
- /* If we are matching as if two operands were swapped,
- also pretend that operands_match had been computed
- with swapped.
- But if I is the second of those and C is the first,
- don't exchange them, because operands_match is valid
- only on one side of its diagonal. */
- ? (operands_match
- [(m == commutative || m == commutative + 1)
- ? 2 * commutative + 1 - m : m]
- [(i == commutative || i == commutative + 1)
- ? 2 * commutative + 1 - i : i])
- : operands_match[m][i])
- {
- /* If we are matching a non-offsettable address where an
- offsettable address was expected, then we must reject
- this combination, because we can't reload it. */
- if (this_alternative_offmemok[m]
- && MEM_P (recog_data.operand[m])
- && this_alternative[m] == (int) NO_REGS
- && ! this_alternative_win[m])
- bad = 1;
-
- did_match = this_alternative_win[m];
- }
- else
- {
- /* Operands don't match. */
- rtx value;
- int loc1, loc2;
- /* Retroactively mark the operand we had to match
- as a loser, if it wasn't already. */
- if (this_alternative_win[m])
- losers++;
- this_alternative_win[m] = 0;
- if (this_alternative[m] == (int) NO_REGS)
- bad = 1;
- /* But count the pair only once in the total badness of
- this alternative, if the pair can be a dummy reload.
- The pointers in operand_loc are not swapped; swap
- them by hand if necessary. */
- if (swapped && i == commutative)
- loc1 = commutative + 1;
- else if (swapped && i == commutative + 1)
- loc1 = commutative;
- else
- loc1 = i;
- if (swapped && m == commutative)
- loc2 = commutative + 1;
- else if (swapped && m == commutative + 1)
- loc2 = commutative;
- else
- loc2 = m;
- value
- = find_dummy_reload (recog_data.operand[i],
- recog_data.operand[m],
- recog_data.operand_loc[loc1],
- recog_data.operand_loc[loc2],
- operand_mode[i], operand_mode[m],
- this_alternative[m], -1,
- this_alternative_earlyclobber[m]);
-
- if (value != 0)
- losers--;
- }
- /* This can be fixed with reloads if the operand
- we are supposed to match can be fixed with reloads. */
- badop = 0;
- this_alternative[i] = this_alternative[m];
-
- /* If we have to reload this operand and some previous
- operand also had to match the same thing as this
- operand, we don't know how to do that. So reject this
- alternative. */
- if (! did_match || force_reload)
- for (j = 0; j < i; j++)
- if (this_alternative_matches[j]
- == this_alternative_matches[i])
- badop = 1;
- break;
-
- case 'p':
- /* All necessary reloads for an address_operand
- were handled in find_reloads_address. */
- this_alternative[i]
- = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
- win = 1;
- badop = 0;
- break;
-
- case 'm':
- if (force_reload)
- break;
- if (MEM_P (operand)
- || (REG_P (operand)
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0))
- win = 1;
- if (CONST_POOL_OK_P (operand))
- badop = 0;
- constmemok = 1;
- break;
-
- case '<':
- if (MEM_P (operand)
- && ! address_reloaded[i]
- && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
- || GET_CODE (XEXP (operand, 0)) == POST_DEC))
- win = 1;
- break;
-
- case '>':
- if (MEM_P (operand)
- && ! address_reloaded[i]
- && (GET_CODE (XEXP (operand, 0)) == PRE_INC
- || GET_CODE (XEXP (operand, 0)) == POST_INC))
- win = 1;
- break;
-
- /* Memory operand whose address is not offsettable. */
- case 'V':
- if (force_reload)
- break;
- if (MEM_P (operand)
- && ! (ind_levels ? offsettable_memref_p (operand)
- : offsettable_nonstrict_memref_p (operand))
- /* Certain mem addresses will become offsettable
- after they themselves are reloaded. This is important;
- we don't want our own handling of unoffsettables
- to override the handling of reg_equiv_address. */
- && !(REG_P (XEXP (operand, 0))
- && (ind_levels == 0
- || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
- win = 1;
- break;
-
- /* Memory operand whose address is offsettable. */
- case 'o':
- if (force_reload)
- break;
- if ((MEM_P (operand)
- /* If IND_LEVELS, find_reloads_address won't reload a
- pseudo that didn't get a hard reg, so we have to
- reject that case. */
- && ((ind_levels ? offsettable_memref_p (operand)
- : offsettable_nonstrict_memref_p (operand))
- /* A reloaded address is offsettable because it is now
- just a simple register indirect. */
- || address_reloaded[i] == 1))
- || (REG_P (operand)
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0
- /* If reg_equiv_address is nonzero, we will be
- loading it into a register; hence it will be
- offsettable, but we cannot say that reg_equiv_mem
- is offsettable without checking. */
- && ((reg_equiv_mem[REGNO (operand)] != 0
- && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
- || (reg_equiv_address[REGNO (operand)] != 0))))
- win = 1;
- if (CONST_POOL_OK_P (operand)
- || MEM_P (operand))
- badop = 0;
- constmemok = 1;
- offmemok = 1;
- break;
-
- case '&':
- /* Output operand that is stored before the need for the
- input operands (and their index registers) is over. */
- earlyclobber = 1, this_earlyclobber = 1;
- break;
-
- case 'E':
- case 'F':
- if (GET_CODE (operand) == CONST_DOUBLE
- || (GET_CODE (operand) == CONST_VECTOR
- && (GET_MODE_CLASS (GET_MODE (operand))
- == MODE_VECTOR_FLOAT)))
- win = 1;
- break;
-
- case 'G':
- case 'H':
- if (GET_CODE (operand) == CONST_DOUBLE
- && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
- win = 1;
- break;
-
- case 's':
- if (GET_CODE (operand) == CONST_INT
- || (GET_CODE (operand) == CONST_DOUBLE
- && GET_MODE (operand) == VOIDmode))
- break;
- case 'i':
- if (CONSTANT_P (operand)
- /* APPLE LOCAL ARM -mdynamic-no-pic support */
- && LEGITIMATE_INDIRECT_OPERAND_P (operand))
- win = 1;
- break;
-
- case 'n':
- if (GET_CODE (operand) == CONST_INT
- || (GET_CODE (operand) == CONST_DOUBLE
- && GET_MODE (operand) == VOIDmode))
- win = 1;
- break;
-
- case 'I':
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- if (GET_CODE (operand) == CONST_INT
- && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
- win = 1;
- break;
-
- case 'X':
- force_reload = 0;
- win = 1;
- break;
-
- case 'g':
- if (! force_reload
- /* A PLUS is never a valid operand, but reload can make
- it from a register when eliminating registers. */
- && GET_CODE (operand) != PLUS
- /* A SCRATCH is not a valid operand. */
- && GET_CODE (operand) != SCRATCH
- && (! CONSTANT_P (operand)
- /* APPLE LOCAL ARM -mdynamic-no-pic support */
- || LEGITIMATE_INDIRECT_OPERAND_P (operand))
- && (GENERAL_REGS == ALL_REGS
- || !REG_P (operand)
- || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0)))
- win = 1;
- /* Drop through into 'r' case. */
-
- case 'r':
- this_alternative[i]
- = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
- goto reg;
-
- default:
- if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
- {
-#ifdef EXTRA_CONSTRAINT_STR
- if (EXTRA_MEMORY_CONSTRAINT (c, p))
- {
- if (force_reload)
- break;
- if (EXTRA_CONSTRAINT_STR (operand, c, p))
- win = 1;
- /* If the address was already reloaded,
- we win as well. */
- else if (MEM_P (operand)
- && address_reloaded[i] == 1)
- win = 1;
- /* Likewise if the address will be reloaded because
- reg_equiv_address is nonzero. For reg_equiv_mem
- we have to check. */
- else if (REG_P (operand)
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0
- && ((reg_equiv_mem[REGNO (operand)] != 0
- && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
- || (reg_equiv_address[REGNO (operand)] != 0)))
- win = 1;
-
- /* If we didn't already win, we can reload
- constants via force_const_mem, and other
- MEMs by reloading the address like for 'o'. */
- if (CONST_POOL_OK_P (operand)
- || MEM_P (operand))
- badop = 0;
- constmemok = 1;
- offmemok = 1;
- break;
- }
- if (EXTRA_ADDRESS_CONSTRAINT (c, p))
- {
- if (EXTRA_CONSTRAINT_STR (operand, c, p))
- win = 1;
-
- /* If we didn't already win, we can reload
- the address into a base register. */
- this_alternative[i]
- = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
- badop = 0;
- break;
- }
-
- if (EXTRA_CONSTRAINT_STR (operand, c, p))
- win = 1;
-#endif
- break;
- }
-
- this_alternative[i]
- = (int) (reg_class_subunion
- [this_alternative[i]]
- [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
- reg:
- if (GET_MODE (operand) == BLKmode)
- break;
- winreg = 1;
- if (REG_P (operand)
- && reg_fits_class_p (operand, this_alternative[i],
- offset, GET_MODE (recog_data.operand[i])))
- win = 1;
- break;
- }
- while ((p += len), c);
-
- constraints[i] = p;
-
- /* If this operand could be handled with a reg,
- and some reg is allowed, then this operand can be handled. */
- if (winreg && this_alternative[i] != (int) NO_REGS)
- badop = 0;
-
- /* Record which operands fit this alternative. */
- this_alternative_earlyclobber[i] = earlyclobber;
- if (win && ! force_reload)
- this_alternative_win[i] = 1;
- else if (did_match && ! force_reload)
- this_alternative_match_win[i] = 1;
- else
- {
- int const_to_mem = 0;
-
- this_alternative_offmemok[i] = offmemok;
- losers++;
- if (badop)
- bad = 1;
- /* Alternative loses if it has no regs for a reg operand. */
- if (REG_P (operand)
- && this_alternative[i] == (int) NO_REGS
- && this_alternative_matches[i] < 0)
- bad = 1;
-
- /* If this is a constant that is reloaded into the desired
- class by copying it to memory first, count that as another
- reload. This is consistent with other code and is
- required to avoid choosing another alternative when
- the constant is moved into memory by this function on
- an early reload pass. Note that the test here is
- precisely the same as in the code below that calls
- force_const_mem. */
- if (CONST_POOL_OK_P (operand)
- && ((PREFERRED_RELOAD_CLASS (operand,
- (enum reg_class) this_alternative[i])
- == NO_REGS)
- || no_input_reloads)
- && operand_mode[i] != VOIDmode)
- {
- const_to_mem = 1;
- if (this_alternative[i] != (int) NO_REGS)
- losers++;
- }
-
- /* Alternative loses if it requires a type of reload not
- permitted for this insn. We can always reload SCRATCH
- and objects with a REG_UNUSED note. */
- if (GET_CODE (operand) != SCRATCH
- && modified[i] != RELOAD_READ && no_output_reloads
- && ! find_reg_note (insn, REG_UNUSED, operand))
- bad = 1;
- else if (modified[i] != RELOAD_WRITE && no_input_reloads
- && ! const_to_mem)
- bad = 1;
-
- /* If we can't reload this value at all, reject this
- alternative. Note that we could also lose due to
- LIMIT_RELOAD_CLASS, but we don't check that
- here. */
-
- if (! CONSTANT_P (operand)
- && (enum reg_class) this_alternative[i] != NO_REGS)
- {
- if (PREFERRED_RELOAD_CLASS
- (operand, (enum reg_class) this_alternative[i])
- == NO_REGS)
- reject = 600;
-
-#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
- if (operand_type[i] == RELOAD_FOR_OUTPUT
- && PREFERRED_OUTPUT_RELOAD_CLASS
- (operand, (enum reg_class) this_alternative[i])
- == NO_REGS)
- reject = 600;
-#endif
- }
-
- /* We prefer to reload pseudos over reloading other things,
- since such reloads may be able to be eliminated later.
- If we are reloading a SCRATCH, we won't be generating any
- insns, just using a register, so it is also preferred.
- So bump REJECT in other cases. Don't do this in the
- case where we are forcing a constant into memory and
- it will then win since we don't want to have a different
- alternative match then. */
- if (! (REG_P (operand)
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
- && GET_CODE (operand) != SCRATCH
- && ! (const_to_mem && constmemok))
- reject += 2;
-
- /* Input reloads can be inherited more often than output
- reloads can be removed, so penalize output reloads. */
- if (operand_type[i] != RELOAD_FOR_INPUT
- && GET_CODE (operand) != SCRATCH)
- reject++;
- }
-
- /* If this operand is a pseudo register that didn't get a hard
- reg and this alternative accepts some register, see if the
- class that we want is a subset of the preferred class for this
- register. If not, but it intersects that class, use the
- preferred class instead. If it does not intersect the preferred
- class, show that usage of this alternative should be discouraged;
- it will be discouraged more still if the register is `preferred
- or nothing'. We do this because it increases the chance of
- reusing our spill register in a later insn and avoiding a pair
- of memory stores and loads.
-
- Don't bother with this if this alternative will accept this
- operand.
-
- Don't do this for a multiword operand, since it is only a
- small win and has the risk of requiring more spill registers,
- which could cause a large loss.
-
- Don't do this if the preferred class has only one register
- because we might otherwise exhaust the class. */
-
- if (! win && ! did_match
- && this_alternative[i] != (int) NO_REGS
- && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
- && reg_class_size [(int) preferred_class[i]] > 0
- && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
- {
- if (! reg_class_subset_p (this_alternative[i],
- preferred_class[i]))
- {
- /* Since we don't have a way of forming the intersection,
- we just do something special if the preferred class
- is a subset of the class we have; that's the most
- common case anyway. */
- if (reg_class_subset_p (preferred_class[i],
- this_alternative[i]))
- this_alternative[i] = (int) preferred_class[i];
- else
- reject += (2 + 2 * pref_or_nothing[i]);
- }
- }
- }
-
- /* Now see if any output operands that are marked "earlyclobber"
- in this alternative conflict with any input operands
- or any memory addresses. */
-
- for (i = 0; i < noperands; i++)
- if (this_alternative_earlyclobber[i]
- && (this_alternative_win[i] || this_alternative_match_win[i]))
- {
- struct decomposition early_data;
-
- early_data = decompose (recog_data.operand[i]);
-
- gcc_assert (modified[i] != RELOAD_READ);
-
- if (this_alternative[i] == NO_REGS)
- {
- this_alternative_earlyclobber[i] = 0;
- gcc_assert (this_insn_is_asm);
- error_for_asm (this_insn,
- "%<&%> constraint used with no register class");
- }
-
- for (j = 0; j < noperands; j++)
- /* Is this an input operand or a memory ref? */
- if ((MEM_P (recog_data.operand[j])
- || modified[j] != RELOAD_WRITE)
- && j != i
- /* Ignore things like match_operator operands. */
- && *recog_data.constraints[j] != 0
- /* Don't count an input operand that is constrained to match
- the early clobber operand. */
- && ! (this_alternative_matches[j] == i
- && rtx_equal_p (recog_data.operand[i],
- recog_data.operand[j]))
- /* Is it altered by storing the earlyclobber operand? */
- && !immune_p (recog_data.operand[j], recog_data.operand[i],
- early_data))
- {
- /* If the output is in a non-empty few-regs class,
- it's costly to reload it, so reload the input instead. */
- if (SMALL_REGISTER_CLASS_P (this_alternative[i])
- && (REG_P (recog_data.operand[j])
- || GET_CODE (recog_data.operand[j]) == SUBREG))
- {
- losers++;
- this_alternative_win[j] = 0;
- this_alternative_match_win[j] = 0;
- }
- else
- break;
- }
- /* If an earlyclobber operand conflicts with something,
- it must be reloaded, so request this and count the cost. */
- if (j != noperands)
- {
- losers++;
- this_alternative_win[i] = 0;
- this_alternative_match_win[j] = 0;
- for (j = 0; j < noperands; j++)
- if (this_alternative_matches[j] == i
- && this_alternative_match_win[j])
- {
- this_alternative_win[j] = 0;
- this_alternative_match_win[j] = 0;
- losers++;
- }
- }
- }
-
- /* If one alternative accepts all the operands, no reload required,
- choose that alternative; don't consider the remaining ones. */
- if (losers == 0)
- {
- /* Unswap these so that they are never swapped at `finish'. */
- if (commutative >= 0)
- {
- recog_data.operand[commutative] = substed_operand[commutative];
- recog_data.operand[commutative + 1]
- = substed_operand[commutative + 1];
- }
- for (i = 0; i < noperands; i++)
- {
- goal_alternative_win[i] = this_alternative_win[i];
- goal_alternative_match_win[i] = this_alternative_match_win[i];
- goal_alternative[i] = this_alternative[i];
- goal_alternative_offmemok[i] = this_alternative_offmemok[i];
- goal_alternative_matches[i] = this_alternative_matches[i];
- goal_alternative_earlyclobber[i]
- = this_alternative_earlyclobber[i];
- }
- goal_alternative_number = this_alternative_number;
- goal_alternative_swapped = swapped;
- goal_earlyclobber = this_earlyclobber;
- goto finish;
- }
-
- /* REJECT, set by the ! and ? constraint characters and when a register
- would be reloaded into a non-preferred class, discourages the use of
- this alternative for a reload goal. REJECT is incremented by six
- for each ? and two for each non-preferred class. */
- losers = losers * 6 + reject;
-
- /* If this alternative can be made to work by reloading,
- and it needs less reloading than the others checked so far,
- record it as the chosen goal for reloading. */
- if (! bad && best > losers)
- {
- for (i = 0; i < noperands; i++)
- {
- goal_alternative[i] = this_alternative[i];
- goal_alternative_win[i] = this_alternative_win[i];
- goal_alternative_match_win[i] = this_alternative_match_win[i];
- goal_alternative_offmemok[i] = this_alternative_offmemok[i];
- goal_alternative_matches[i] = this_alternative_matches[i];
- goal_alternative_earlyclobber[i]
- = this_alternative_earlyclobber[i];
- }
- goal_alternative_swapped = swapped;
- best = losers;
- goal_alternative_number = this_alternative_number;
- goal_earlyclobber = this_earlyclobber;
- }
- }
-
- /* If insn is commutative (it's safe to exchange a certain pair of operands)
- then we need to try each alternative twice,
- the second time matching those two operands
- as if we had exchanged them.
- To do this, really exchange them in operands.
-
- If we have just tried the alternatives the second time,
- return operands to normal and drop through. */
-
- if (commutative >= 0)
- {
- swapped = !swapped;
- if (swapped)
- {
- enum reg_class tclass;
- int t;
-
- recog_data.operand[commutative] = substed_operand[commutative + 1];
- recog_data.operand[commutative + 1] = substed_operand[commutative];
- /* Swap the duplicates too. */
- for (i = 0; i < recog_data.n_dups; i++)
- if (recog_data.dup_num[i] == commutative
- || recog_data.dup_num[i] == commutative + 1)
- *recog_data.dup_loc[i]
- = recog_data.operand[(int) recog_data.dup_num[i]];
-
- tclass = preferred_class[commutative];
- preferred_class[commutative] = preferred_class[commutative + 1];
- preferred_class[commutative + 1] = tclass;
-
- t = pref_or_nothing[commutative];
- pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
- pref_or_nothing[commutative + 1] = t;
-
- t = address_reloaded[commutative];
- address_reloaded[commutative] = address_reloaded[commutative + 1];
- address_reloaded[commutative + 1] = t;
-
- memcpy (constraints, recog_data.constraints,
- noperands * sizeof (char *));
- goto try_swapped;
- }
- else
- {
- recog_data.operand[commutative] = substed_operand[commutative];
- recog_data.operand[commutative + 1]
- = substed_operand[commutative + 1];
- /* Unswap the duplicates too. */
- for (i = 0; i < recog_data.n_dups; i++)
- if (recog_data.dup_num[i] == commutative
- || recog_data.dup_num[i] == commutative + 1)
- *recog_data.dup_loc[i]
- = recog_data.operand[(int) recog_data.dup_num[i]];
- }
- }
-
- /* The operands don't meet the constraints.
- goal_alternative describes the alternative
- that we could reach by reloading the fewest operands.
- Reload so as to fit it. */
-
- if (best == MAX_RECOG_OPERANDS * 2 + 600)
- {
- /* No alternative works with reloads?? */
- if (insn_code_number >= 0)
- fatal_insn ("unable to generate reloads for:", insn);
- error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
- n_reloads = 0;
- return 0;
- }
-
- /* Jump to `finish' from above if all operands are valid already.
- In that case, goal_alternative_win is all 1. */
- finish:
-
- /* Right now, for any pair of operands I and J that are required to match,
- with I < J,
- goal_alternative_matches[J] is I.
- Set up goal_alternative_matched as the inverse function:
- goal_alternative_matched[I] = J. */
-
- for (i = 0; i < noperands; i++)
- goal_alternative_matched[i] = -1;
-
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i]
- && goal_alternative_matches[i] >= 0)
- goal_alternative_matched[goal_alternative_matches[i]] = i;
-
- for (i = 0; i < noperands; i++)
- goal_alternative_win[i] |= goal_alternative_match_win[i];
-
- /* If the best alternative is with operands 1 and 2 swapped,
- consider them swapped before reporting the reloads. Update the
- operand numbers of any reloads already pushed. */
-
- if (goal_alternative_swapped)
- {
- rtx tem;
-
- tem = substed_operand[commutative];
- substed_operand[commutative] = substed_operand[commutative + 1];
- substed_operand[commutative + 1] = tem;
- tem = recog_data.operand[commutative];
- recog_data.operand[commutative] = recog_data.operand[commutative + 1];
- recog_data.operand[commutative + 1] = tem;
- tem = *recog_data.operand_loc[commutative];
- *recog_data.operand_loc[commutative]
- = *recog_data.operand_loc[commutative + 1];
- *recog_data.operand_loc[commutative + 1] = tem;
-
- for (i = 0; i < n_reloads; i++)
- {
- if (rld[i].opnum == commutative)
- rld[i].opnum = commutative + 1;
- else if (rld[i].opnum == commutative + 1)
- rld[i].opnum = commutative;
- }
- }
-
- for (i = 0; i < noperands; i++)
- {
- operand_reloadnum[i] = -1;
-
- /* If this is an earlyclobber operand, we need to widen the scope.
- The reload must remain valid from the start of the insn being
- reloaded until after the operand is stored into its destination.
- We approximate this with RELOAD_OTHER even though we know that we
- do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
-
- One special case that is worth checking is when we have an
- output that is earlyclobber but isn't used past the insn (typically
- a SCRATCH). In this case, we only need have the reload live
- through the insn itself, but not for any of our input or output
- reloads.
- But we must not accidentally narrow the scope of an existing
- RELOAD_OTHER reload - leave these alone.
-
- In any case, anything needed to address this operand can remain
- however they were previously categorized. */
-
- if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
- operand_type[i]
- = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
- ? RELOAD_FOR_INSN : RELOAD_OTHER);
- }
-
- /* Any constants that aren't allowed and can't be reloaded
- into registers are here changed into memory references. */
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i]
- && CONST_POOL_OK_P (recog_data.operand[i])
- && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
- (enum reg_class) goal_alternative[i])
- == NO_REGS)
- || no_input_reloads)
- && operand_mode[i] != VOIDmode)
- {
- substed_operand[i] = recog_data.operand[i]
- = find_reloads_toplev (force_const_mem (operand_mode[i],
- recog_data.operand[i]),
- i, address_type[i], ind_levels, 0, insn,
- NULL);
- if (alternative_allows_memconst (recog_data.constraints[i],
- goal_alternative_number))
- goal_alternative_win[i] = 1;
- }
-
- /* Likewise any invalid constants appearing as operand of a PLUS
- that is to be reloaded. */
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i]
- && GET_CODE (recog_data.operand[i]) == PLUS
- && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
- && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
- (enum reg_class) goal_alternative[i])
- == NO_REGS)
- && operand_mode[i] != VOIDmode)
- {
- rtx tem = force_const_mem (operand_mode[i],
- XEXP (recog_data.operand[i], 1));
- tem = gen_rtx_PLUS (operand_mode[i],
- XEXP (recog_data.operand[i], 0), tem);
-
- substed_operand[i] = recog_data.operand[i]
- = find_reloads_toplev (tem, i, address_type[i],
- ind_levels, 0, insn, NULL);
- }
-
- /* Record the values of the earlyclobber operands for the caller. */
- if (goal_earlyclobber)
- for (i = 0; i < noperands; i++)
- if (goal_alternative_earlyclobber[i])
- reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
-
- /* Now record reloads for all the operands that need them. */
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i])
- {
- /* Operands that match previous ones have already been handled. */
- if (goal_alternative_matches[i] >= 0)
- ;
- /* Handle an operand with a nonoffsettable address
- appearing where an offsettable address will do
- by reloading the address into a base register.
-
- ??? We can also do this when the operand is a register and
- reg_equiv_mem is not offsettable, but this is a bit tricky,
- so we don't bother with it. It may not be worth doing. */
- else if (goal_alternative_matched[i] == -1
- && goal_alternative_offmemok[i]
- && MEM_P (recog_data.operand[i]))
- {
- /* If the address to be reloaded is a VOIDmode constant,
- use Pmode as mode of the reload register, as would have
- been done by find_reloads_address. */
- enum machine_mode address_mode;
- address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
- if (address_mode == VOIDmode)
- address_mode = Pmode;
-
- operand_reloadnum[i]
- = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
- &XEXP (recog_data.operand[i], 0), (rtx*) 0,
- base_reg_class (VOIDmode, MEM, SCRATCH),
- address_mode,
- VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
- rld[operand_reloadnum[i]].inc
- = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
-
- /* If this operand is an output, we will have made any
- reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
- now we are treating part of the operand as an input, so
- we must change these to RELOAD_FOR_INPUT_ADDRESS. */
-
- if (modified[i] == RELOAD_WRITE)
- {
- for (j = 0; j < n_reloads; j++)
- {
- if (rld[j].opnum == i)
- {
- if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
- rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
- else if (rld[j].when_needed
- == RELOAD_FOR_OUTADDR_ADDRESS)
- rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
- }
- }
- }
- }
- else if (goal_alternative_matched[i] == -1)
- {
- operand_reloadnum[i]
- = push_reload ((modified[i] != RELOAD_WRITE
- ? recog_data.operand[i] : 0),
- (modified[i] != RELOAD_READ
- ? recog_data.operand[i] : 0),
- (modified[i] != RELOAD_WRITE
- ? recog_data.operand_loc[i] : 0),
- (modified[i] != RELOAD_READ
- ? recog_data.operand_loc[i] : 0),
- (enum reg_class) goal_alternative[i],
- (modified[i] == RELOAD_WRITE
- ? VOIDmode : operand_mode[i]),
- (modified[i] == RELOAD_READ
- ? VOIDmode : operand_mode[i]),
- (insn_code_number < 0 ? 0
- : insn_data[insn_code_number].operand[i].strict_low),
- 0, i, operand_type[i]);
- }
- /* In a matching pair of operands, one must be input only
- and the other must be output only.
- Pass the input operand as IN and the other as OUT. */
- else if (modified[i] == RELOAD_READ
- && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
- {
- operand_reloadnum[i]
- = push_reload (recog_data.operand[i],
- recog_data.operand[goal_alternative_matched[i]],
- recog_data.operand_loc[i],
- recog_data.operand_loc[goal_alternative_matched[i]],
- (enum reg_class) goal_alternative[i],
- operand_mode[i],
- operand_mode[goal_alternative_matched[i]],
- 0, 0, i, RELOAD_OTHER);
- operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
- }
- else if (modified[i] == RELOAD_WRITE
- && modified[goal_alternative_matched[i]] == RELOAD_READ)
- {
- operand_reloadnum[goal_alternative_matched[i]]
- = push_reload (recog_data.operand[goal_alternative_matched[i]],
- recog_data.operand[i],
- recog_data.operand_loc[goal_alternative_matched[i]],
- recog_data.operand_loc[i],
- (enum reg_class) goal_alternative[i],
- operand_mode[goal_alternative_matched[i]],
- operand_mode[i],
- 0, 0, i, RELOAD_OTHER);
- operand_reloadnum[i] = output_reloadnum;
- }
- else
- {
- gcc_assert (insn_code_number < 0);
- error_for_asm (insn, "inconsistent operand constraints "
- "in an %<asm%>");
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
- n_reloads = 0;
- return 0;
- }
- }
- else if (goal_alternative_matched[i] < 0
- && goal_alternative_matches[i] < 0
- && address_operand_reloaded[i] != 1
- && optimize)
- {
- /* For each non-matching operand that's a MEM or a pseudo-register
- that didn't get a hard register, make an optional reload.
- This may get done even if the insn needs no reloads otherwise. */
-
- rtx operand = recog_data.operand[i];
-
- while (GET_CODE (operand) == SUBREG)
- operand = SUBREG_REG (operand);
- if ((MEM_P (operand)
- || (REG_P (operand)
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
- /* If this is only for an output, the optional reload would not
- actually cause us to use a register now, just note that
- something is stored here. */
- && ((enum reg_class) goal_alternative[i] != NO_REGS
- || modified[i] == RELOAD_WRITE)
- && ! no_input_reloads
- /* An optional output reload might allow to delete INSN later.
- We mustn't make in-out reloads on insns that are not permitted
- output reloads.
- If this is an asm, we can't delete it; we must not even call
- push_reload for an optional output reload in this case,
- because we can't be sure that the constraint allows a register,
- and push_reload verifies the constraints for asms. */
- && (modified[i] == RELOAD_READ
- || (! no_output_reloads && ! this_insn_is_asm)))
- operand_reloadnum[i]
- = push_reload ((modified[i] != RELOAD_WRITE
- ? recog_data.operand[i] : 0),
- (modified[i] != RELOAD_READ
- ? recog_data.operand[i] : 0),
- (modified[i] != RELOAD_WRITE
- ? recog_data.operand_loc[i] : 0),
- (modified[i] != RELOAD_READ
- ? recog_data.operand_loc[i] : 0),
- (enum reg_class) goal_alternative[i],
- (modified[i] == RELOAD_WRITE
- ? VOIDmode : operand_mode[i]),
- (modified[i] == RELOAD_READ
- ? VOIDmode : operand_mode[i]),
- (insn_code_number < 0 ? 0
- : insn_data[insn_code_number].operand[i].strict_low),
- 1, i, operand_type[i]);
- /* If a memory reference remains (either as a MEM or a pseudo that
- did not get a hard register), yet we can't make an optional
- reload, check if this is actually a pseudo register reference;
- we then need to emit a USE and/or a CLOBBER so that reload
- inheritance will do the right thing. */
- else if (replace
- && (MEM_P (operand)
- || (REG_P (operand)
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber [REGNO (operand)] < 0)))
- {
- operand = *recog_data.operand_loc[i];
-
- while (GET_CODE (operand) == SUBREG)
- operand = SUBREG_REG (operand);
- if (REG_P (operand))
- {
- if (modified[i] != RELOAD_WRITE)
- /* We mark the USE with QImode so that we recognize
- it as one that can be safely deleted at the end
- of reload. */
- PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
- insn), QImode);
- if (modified[i] != RELOAD_READ)
- emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
- }
- }
- }
- else if (goal_alternative_matches[i] >= 0
- && goal_alternative_win[goal_alternative_matches[i]]
- && modified[i] == RELOAD_READ
- && modified[goal_alternative_matches[i]] == RELOAD_WRITE
- && ! no_input_reloads && ! no_output_reloads
- && optimize)
- {
- /* Similarly, make an optional reload for a pair of matching
- objects that are in MEM or a pseudo that didn't get a hard reg. */
-
- rtx operand = recog_data.operand[i];
-
- while (GET_CODE (operand) == SUBREG)
- operand = SUBREG_REG (operand);
- if ((MEM_P (operand)
- || (REG_P (operand)
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
- && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
- != NO_REGS))
- operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
- = push_reload (recog_data.operand[goal_alternative_matches[i]],
- recog_data.operand[i],
- recog_data.operand_loc[goal_alternative_matches[i]],
- recog_data.operand_loc[i],
- (enum reg_class) goal_alternative[goal_alternative_matches[i]],
- operand_mode[goal_alternative_matches[i]],
- operand_mode[i],
- 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
- }
-
- /* Perform whatever substitutions on the operands we are supposed
- to make due to commutativity or replacement of registers
- with equivalent constants or memory slots. */
-
- for (i = 0; i < noperands; i++)
- {
- /* We only do this on the last pass through reload, because it is
- possible for some data (like reg_equiv_address) to be changed during
- later passes. Moreover, we lose the opportunity to get a useful
- reload_{in,out}_reg when we do these replacements. */
-
- if (replace)
- {
- rtx substitution = substed_operand[i];
-
- *recog_data.operand_loc[i] = substitution;
-
- /* If we're replacing an operand with a LABEL_REF, we need
- to make sure that there's a REG_LABEL note attached to
- this instruction. */
- if (!JUMP_P (insn)
- && GET_CODE (substitution) == LABEL_REF
- && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
- REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
- XEXP (substitution, 0),
- REG_NOTES (insn));
- }
- else
- retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
- }
-
- /* If this insn pattern contains any MATCH_DUP's, make sure that
- they will be substituted if the operands they match are substituted.
- Also do now any substitutions we already did on the operands.
-
- Don't do this if we aren't making replacements because we might be
- propagating things allocated by frame pointer elimination into places
- it doesn't expect. */
-
- if (insn_code_number >= 0 && replace)
- for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
- {
- int opno = recog_data.dup_num[i];
- *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
- dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
- }
-
-#if 0
- /* This loses because reloading of prior insns can invalidate the equivalence
- (or at least find_equiv_reg isn't smart enough to find it any more),
- causing this insn to need more reload regs than it needed before.
- It may be too late to make the reload regs available.
- Now this optimization is done safely in choose_reload_regs. */
-
- /* For each reload of a reg into some other class of reg,
- search for an existing equivalent reg (same value now) in the right class.
- We can use it as long as we don't need to change its contents. */
- for (i = 0; i < n_reloads; i++)
- if (rld[i].reg_rtx == 0
- && rld[i].in != 0
- && REG_P (rld[i].in)
- && rld[i].out == 0)
- {
- rld[i].reg_rtx
- = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
- static_reload_reg_p, 0, rld[i].inmode);
- /* Prevent generation of insn to load the value
- because the one we found already has the value. */
- if (rld[i].reg_rtx)
- rld[i].in = rld[i].reg_rtx;
- }
-#endif
-
- /* If we detected error and replaced asm instruction by USE, forget about the
- reloads. */
- if (GET_CODE (PATTERN (insn)) == USE
- && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
- n_reloads = 0;
-
- /* Perhaps an output reload can be combined with another
- to reduce needs by one. */
- if (!goal_earlyclobber)
- combine_reloads ();
-
- /* If we have a pair of reloads for parts of an address, they are reloading
- the same object, the operands themselves were not reloaded, and they
- are for two operands that are supposed to match, merge the reloads and
- change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
-
- for (i = 0; i < n_reloads; i++)
- {
- int k;
-
- for (j = i + 1; j < n_reloads; j++)
- if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
- && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
- || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
- || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
- || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
- && rtx_equal_p (rld[i].in, rld[j].in)
- && (operand_reloadnum[rld[i].opnum] < 0
- || rld[operand_reloadnum[rld[i].opnum]].optional)
- && (operand_reloadnum[rld[j].opnum] < 0
- || rld[operand_reloadnum[rld[j].opnum]].optional)
- && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
- || (goal_alternative_matches[rld[j].opnum]
- == rld[i].opnum)))
- {
- for (k = 0; k < n_replacements; k++)
- if (replacements[k].what == j)
- replacements[k].what = i;
-
- if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
- rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
- else
- rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
- rld[j].in = 0;
- }
- }
-
- /* Scan all the reloads and update their type.
- If a reload is for the address of an operand and we didn't reload
- that operand, change the type. Similarly, change the operand number
- of a reload when two operands match. If a reload is optional, treat it
- as though the operand isn't reloaded.
-
- ??? This latter case is somewhat odd because if we do the optional
- reload, it means the object is hanging around. Thus we need only
- do the address reload if the optional reload was NOT done.
-
- Change secondary reloads to be the address type of their operand, not
- the normal type.
-
- If an operand's reload is now RELOAD_OTHER, change any
- RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
- RELOAD_FOR_OTHER_ADDRESS. */
-
- for (i = 0; i < n_reloads; i++)
- {
- if (rld[i].secondary_p
- && rld[i].when_needed == operand_type[rld[i].opnum])
- rld[i].when_needed = address_type[rld[i].opnum];
-
- if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
- && (operand_reloadnum[rld[i].opnum] < 0
- || rld[operand_reloadnum[rld[i].opnum]].optional))
- {
- /* If we have a secondary reload to go along with this reload,
- change its type to RELOAD_FOR_OPADDR_ADDR. */
-
- if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
- && rld[i].secondary_in_reload != -1)
- {
- int secondary_in_reload = rld[i].secondary_in_reload;
-
- rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
-
- /* If there's a tertiary reload we have to change it also. */
- if (secondary_in_reload > 0
- && rld[secondary_in_reload].secondary_in_reload != -1)
- rld[rld[secondary_in_reload].secondary_in_reload].when_needed
- = RELOAD_FOR_OPADDR_ADDR;
- }
-
- if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
- && rld[i].secondary_out_reload != -1)
- {
- int secondary_out_reload = rld[i].secondary_out_reload;
-
- rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
-
- /* If there's a tertiary reload we have to change it also. */
- if (secondary_out_reload
- && rld[secondary_out_reload].secondary_out_reload != -1)
- rld[rld[secondary_out_reload].secondary_out_reload].when_needed
- = RELOAD_FOR_OPADDR_ADDR;
- }
-
- if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
- rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
- else
- rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
- }
-
- if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
- && operand_reloadnum[rld[i].opnum] >= 0
- && (rld[operand_reloadnum[rld[i].opnum]].when_needed
- == RELOAD_OTHER))
- rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
-
- if (goal_alternative_matches[rld[i].opnum] >= 0)
- rld[i].opnum = goal_alternative_matches[rld[i].opnum];
- }
-
- /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
- If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
- reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
-
- choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
- conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
- single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
- However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
- then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
- RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
- This is complicated by the fact that a single operand can have more
- than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
- choose_reload_regs without affecting code quality, and cases that
- actually fail are extremely rare, so it turns out to be better to fix
- the problem here by not generating cases that choose_reload_regs will
- fail for. */
- /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
- RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
- a single operand.
- We can reduce the register pressure by exploiting that a
- RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
- does not conflict with any of them, if it is only used for the first of
- the RELOAD_FOR_X_ADDRESS reloads. */
- {
- int first_op_addr_num = -2;
- int first_inpaddr_num[MAX_RECOG_OPERANDS];
- int first_outpaddr_num[MAX_RECOG_OPERANDS];
- int need_change = 0;
- /* We use last_op_addr_reload and the contents of the above arrays
- first as flags - -2 means no instance encountered, -1 means exactly
- one instance encountered.
- If more than one instance has been encountered, we store the reload
- number of the first reload of the kind in question; reload numbers
- are known to be non-negative. */
- for (i = 0; i < noperands; i++)
- first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
- for (i = n_reloads - 1; i >= 0; i--)
- {
- switch (rld[i].when_needed)
- {
- case RELOAD_FOR_OPERAND_ADDRESS:
- if (++first_op_addr_num >= 0)
- {
- first_op_addr_num = i;
- need_change = 1;
- }
- break;
- case RELOAD_FOR_INPUT_ADDRESS:
- if (++first_inpaddr_num[rld[i].opnum] >= 0)
- {
- first_inpaddr_num[rld[i].opnum] = i;
- need_change = 1;
- }
- break;
- case RELOAD_FOR_OUTPUT_ADDRESS:
- if (++first_outpaddr_num[rld[i].opnum] >= 0)
- {
- first_outpaddr_num[rld[i].opnum] = i;
- need_change = 1;
- }
- break;
- default:
- break;
- }
- }
-
- if (need_change)
- {
- for (i = 0; i < n_reloads; i++)
- {
- int first_num;
- enum reload_type type;
-
- switch (rld[i].when_needed)
- {
- case RELOAD_FOR_OPADDR_ADDR:
- first_num = first_op_addr_num;
- type = RELOAD_FOR_OPERAND_ADDRESS;
- break;
- case RELOAD_FOR_INPADDR_ADDRESS:
- first_num = first_inpaddr_num[rld[i].opnum];
- type = RELOAD_FOR_INPUT_ADDRESS;
- break;
- case RELOAD_FOR_OUTADDR_ADDRESS:
- first_num = first_outpaddr_num[rld[i].opnum];
- type = RELOAD_FOR_OUTPUT_ADDRESS;
- break;
- default:
- continue;
- }
- if (first_num < 0)
- continue;
- else if (i > first_num)
- rld[i].when_needed = type;
- else
- {
- /* Check if the only TYPE reload that uses reload I is
- reload FIRST_NUM. */
- for (j = n_reloads - 1; j > first_num; j--)
- {
- if (rld[j].when_needed == type
- && (rld[i].secondary_p
- ? rld[j].secondary_in_reload == i
- : reg_mentioned_p (rld[i].in, rld[j].in)))
- {
- rld[i].when_needed = type;
- break;
- }
- }
- }
- }
- }
- }
-
- /* See if we have any reloads that are now allowed to be merged
- because we've changed when the reload is needed to
- RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
- check for the most common cases. */
-
- for (i = 0; i < n_reloads; i++)
- if (rld[i].in != 0 && rld[i].out == 0
- && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
- || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
- for (j = 0; j < n_reloads; j++)
- if (i != j && rld[j].in != 0 && rld[j].out == 0
- && rld[j].when_needed == rld[i].when_needed
- && MATCHES (rld[i].in, rld[j].in)
- && rld[i].class == rld[j].class
- && !rld[i].nocombine && !rld[j].nocombine
- && rld[i].reg_rtx == rld[j].reg_rtx)
- {
- rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
- transfer_replacements (i, j);
- rld[j].in = 0;
- }
-
-#ifdef HAVE_cc0
- /* If we made any reloads for addresses, see if they violate a
- "no input reloads" requirement for this insn. But loads that we
- do after the insn (such as for output addresses) are fine. */
- if (no_input_reloads)
- for (i = 0; i < n_reloads; i++)
- gcc_assert (rld[i].in == 0
- || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
- || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
-#endif
-
- /* Compute reload_mode and reload_nregs. */
- for (i = 0; i < n_reloads; i++)
- {
- rld[i].mode
- = (rld[i].inmode == VOIDmode
- || (GET_MODE_SIZE (rld[i].outmode)
- > GET_MODE_SIZE (rld[i].inmode)))
- ? rld[i].outmode : rld[i].inmode;
-
- rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
- }
-
- /* Special case a simple move with an input reload and a
- destination of a hard reg, if the hard reg is ok, use it. */
- for (i = 0; i < n_reloads; i++)
- if (rld[i].when_needed == RELOAD_FOR_INPUT
- && GET_CODE (PATTERN (insn)) == SET
- && REG_P (SET_DEST (PATTERN (insn)))
- && SET_SRC (PATTERN (insn)) == rld[i].in)
- {
- rtx dest = SET_DEST (PATTERN (insn));
- unsigned int regno = REGNO (dest);
-
- if (regno < FIRST_PSEUDO_REGISTER
- && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
- && HARD_REGNO_MODE_OK (regno, rld[i].mode))
- {
- int nr = hard_regno_nregs[regno][rld[i].mode];
- int ok = 1, nri;
-
- for (nri = 1; nri < nr; nri ++)
- if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
- ok = 0;
-
- if (ok)
- rld[i].reg_rtx = dest;
- }
- }
-
- return retval;
-}
-
-/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
- accepts a memory operand with constant address. */
-
-static int
-alternative_allows_memconst (const char *constraint, int altnum)
-{
- int c;
- /* Skip alternatives before the one requested. */
- while (altnum > 0)
- {
- while (*constraint++ != ',');
- altnum--;
- }
- /* Scan the requested alternative for 'm' or 'o'.
- If one of them is present, this alternative accepts memory constants. */
- for (; (c = *constraint) && c != ',' && c != '#';
- constraint += CONSTRAINT_LEN (c, constraint))
- if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
- return 1;
- return 0;
-}
-
-/* Scan X for memory references and scan the addresses for reloading.
- Also checks for references to "constant" regs that we want to eliminate
- and replaces them with the values they stand for.
- We may alter X destructively if it contains a reference to such.
- If X is just a constant reg, we return the equivalent value
- instead of X.
-
- IND_LEVELS says how many levels of indirect addressing this machine
- supports.
-
- OPNUM and TYPE identify the purpose of the reload.
-
- IS_SET_DEST is true if X is the destination of a SET, which is not
- appropriate to be replaced by a constant.
-
- INSN, if nonzero, is the insn in which we do the reload. It is used
- to determine if we may generate output reloads, and where to put USEs
- for pseudos that we have to replace with stack slots.
-
- ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
- result of find_reloads_address. */
-
-static rtx
-find_reloads_toplev (rtx x, int opnum, enum reload_type type,
- int ind_levels, int is_set_dest, rtx insn,
- int *address_reloaded)
-{
- RTX_CODE code = GET_CODE (x);
-
- const char *fmt = GET_RTX_FORMAT (code);
- int i;
- int copied;
-
- if (code == REG)
- {
- /* This code is duplicated for speed in find_reloads. */
- int regno = REGNO (x);
- if (reg_equiv_constant[regno] != 0 && !is_set_dest)
- x = reg_equiv_constant[regno];
-#if 0
- /* This creates (subreg (mem...)) which would cause an unnecessary
- reload of the mem. */
- else if (reg_equiv_mem[regno] != 0)
- x = reg_equiv_mem[regno];
-#endif
- else if (reg_equiv_memory_loc[regno]
- && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
- {
- rtx mem = make_memloc (x, regno);
- if (reg_equiv_address[regno]
- || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
- {
- /* If this is not a toplevel operand, find_reloads doesn't see
- this substitution. We have to emit a USE of the pseudo so
- that delete_output_reload can see it. */
- if (replace_reloads && recog_data.operand[opnum] != x)
- /* We mark the USE with QImode so that we recognize it
- as one that can be safely deleted at the end of
- reload. */
- PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
- QImode);
- x = mem;
- i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
- opnum, type, ind_levels, insn);
- if (x != mem)
- push_reg_equiv_alt_mem (regno, x);
- if (address_reloaded)
- *address_reloaded = i;
- }
- }
- return x;
- }
- if (code == MEM)
- {
- rtx tem = x;
-
- i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
- opnum, type, ind_levels, insn);
- if (address_reloaded)
- *address_reloaded = i;
-
- return tem;
- }
-
- if (code == SUBREG && REG_P (SUBREG_REG (x)))
- {
- /* Check for SUBREG containing a REG that's equivalent to a
- constant. If the constant has a known value, truncate it
- right now. Similarly if we are extracting a single-word of a
- multi-word constant. If the constant is symbolic, allow it
- to be substituted normally. push_reload will strip the
- subreg later. The constant must not be VOIDmode, because we
- will lose the mode of the register (this should never happen
- because one of the cases above should handle it). */
-
- int regno = REGNO (SUBREG_REG (x));
- rtx tem;
-
- if (subreg_lowpart_p (x)
- && regno >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0
- && (tem = gen_lowpart_common (GET_MODE (x),
- reg_equiv_constant[regno])) != 0)
- return tem;
-
- if (regno >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- {
- tem =
- simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
- GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
- gcc_assert (tem);
- return tem;
- }
-
- /* If the subreg contains a reg that will be converted to a mem,
- convert the subreg to a narrower memref now.
- Otherwise, we would get (subreg (mem ...) ...),
- which would force reload of the mem.
-
- We also need to do this if there is an equivalent MEM that is
- not offsettable. In that case, alter_subreg would produce an
- invalid address on big-endian machines.
-
- For machines that extend byte loads, we must not reload using
- a wider mode if we have a paradoxical SUBREG. find_reloads will
- force a reload in that case. So we should not do anything here. */
-
- if (regno >= FIRST_PSEUDO_REGISTER
-#ifdef LOAD_EXTEND_OP
- && (GET_MODE_SIZE (GET_MODE (x))
- <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
-#endif
- && (reg_equiv_address[regno] != 0
- || (reg_equiv_mem[regno] != 0
- && (! strict_memory_address_p (GET_MODE (x),
- XEXP (reg_equiv_mem[regno], 0))
- || ! offsettable_memref_p (reg_equiv_mem[regno])
- || num_not_at_initial_offset))))
- x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
- insn);
- }
-
- for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
- ind_levels, is_set_dest, insn,
- address_reloaded);
- /* If we have replaced a reg with it's equivalent memory loc -
- that can still be handled here e.g. if it's in a paradoxical
- subreg - we must make the change in a copy, rather than using
- a destructive change. This way, find_reloads can still elect
- not to do the change. */
- if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
- {
- x = shallow_copy_rtx (x);
- copied = 1;
- }
- XEXP (x, i) = new_part;
- }
- }
- return x;
-}
-
-/* Return a mem ref for the memory equivalent of reg REGNO.
- This mem ref is not shared with anything. */
-
-static rtx
-make_memloc (rtx ad, int regno)
-{
- /* We must rerun eliminate_regs, in case the elimination
- offsets have changed. */
- rtx tem
- = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
-
- /* If TEM might contain a pseudo, we must copy it to avoid
- modifying it when we do the substitution for the reload. */
- if (rtx_varies_p (tem, 0))
- tem = copy_rtx (tem);
-
- tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
- tem = adjust_address_nv (tem, GET_MODE (ad), 0);
-
- /* Copy the result if it's still the same as the equivalence, to avoid
- modifying it when we do the substitution for the reload. */
- if (tem == reg_equiv_memory_loc[regno])
- tem = copy_rtx (tem);
- return tem;
-}
-
-/* Returns true if AD could be turned into a valid memory reference
- to mode MODE by reloading the part pointed to by PART into a
- register. */
-
-static int
-maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
-{
- int retv;
- rtx tem = *part;
- rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
-
- *part = reg;
- retv = memory_address_p (mode, ad);
- *part = tem;
-
- return retv;
-}
-
-/* Record all reloads needed for handling memory address AD
- which appears in *LOC in a memory reference to mode MODE
- which itself is found in location *MEMREFLOC.
- Note that we take shortcuts assuming that no multi-reg machine mode
- occurs as part of an address.
-
- OPNUM and TYPE specify the purpose of this reload.
-
- IND_LEVELS says how many levels of indirect addressing this machine
- supports.
-
- INSN, if nonzero, is the insn in which we do the reload. It is used
- to determine if we may generate output reloads, and where to put USEs
- for pseudos that we have to replace with stack slots.
-
- Value is one if this address is reloaded or replaced as a whole; it is
- zero if the top level of this address was not reloaded or replaced, and
- it is -1 if it may or may not have been reloaded or replaced.
-
- Note that there is no verification that the address will be valid after
- this routine does its work. Instead, we rely on the fact that the address
- was valid when reload started. So we need only undo things that reload
- could have broken. These are wrong register types, pseudos not allocated
- to a hard register, and frame pointer elimination. */
-
-static int
-find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
- rtx *loc, int opnum, enum reload_type type,
- int ind_levels, rtx insn)
-{
- int regno;
- int removed_and = 0;
- int op_index;
- rtx tem;
-
- /* If the address is a register, see if it is a legitimate address and
- reload if not. We first handle the cases where we need not reload
- or where we must reload in a non-standard way. */
-
- if (REG_P (ad))
- {
- regno = REGNO (ad);
-
- /* If the register is equivalent to an invariant expression, substitute
- the invariant, and eliminate any eliminable register references. */
- tem = reg_equiv_constant[regno];
- if (tem != 0
- && (tem = eliminate_regs (tem, mode, insn))
- && strict_memory_address_p (mode, tem))
- {
- *loc = ad = tem;
- return 0;
- }
-
- tem = reg_equiv_memory_loc[regno];
- if (tem != 0)
- {
- if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
- {
- tem = make_memloc (ad, regno);
- if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
- {
- rtx orig = tem;
-
- find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
- &XEXP (tem, 0), opnum,
- ADDR_TYPE (type), ind_levels, insn);
- if (tem != orig)
- push_reg_equiv_alt_mem (regno, tem);
- }
- /* We can avoid a reload if the register's equivalent memory
- expression is valid as an indirect memory address.
- But not all addresses are valid in a mem used as an indirect
- address: only reg or reg+constant. */
-
- if (ind_levels > 0
- && strict_memory_address_p (mode, tem)
- && (REG_P (XEXP (tem, 0))
- || (GET_CODE (XEXP (tem, 0)) == PLUS
- && REG_P (XEXP (XEXP (tem, 0), 0))
- && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
- {
- /* TEM is not the same as what we'll be replacing the
- pseudo with after reload, put a USE in front of INSN
- in the final reload pass. */
- if (replace_reloads
- && num_not_at_initial_offset
- && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
- {
- *loc = tem;
- /* We mark the USE with QImode so that we
- recognize it as one that can be safely
- deleted at the end of reload. */
- PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
- insn), QImode);
-
- /* This doesn't really count as replacing the address
- as a whole, since it is still a memory access. */
- }
- return 0;
- }
- ad = tem;
- }
- }
-
- /* The only remaining case where we can avoid a reload is if this is a
- hard register that is valid as a base register and which is not the
- subject of a CLOBBER in this insn. */
-
- else if (regno < FIRST_PSEUDO_REGISTER
- && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
- && ! regno_clobbered_p (regno, this_insn, mode, 0))
- return 0;
-
- /* If we do not have one of the cases above, we must do the reload. */
- push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
- GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
-
- if (strict_memory_address_p (mode, ad))
- {
- /* The address appears valid, so reloads are not needed.
- But the address may contain an eliminable register.
- This can happen because a machine with indirect addressing
- may consider a pseudo register by itself a valid address even when
- it has failed to get a hard reg.
- So do a tree-walk to find and eliminate all such regs. */
-
- /* But first quickly dispose of a common case. */
- if (GET_CODE (ad) == PLUS
- && GET_CODE (XEXP (ad, 1)) == CONST_INT
- && REG_P (XEXP (ad, 0))
- && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
- return 0;
-
- subst_reg_equivs_changed = 0;
- *loc = subst_reg_equivs (ad, insn);
-
- if (! subst_reg_equivs_changed)
- return 0;
-
- /* Check result for validity after substitution. */
- if (strict_memory_address_p (mode, ad))
- return 0;
- }
-
-#ifdef LEGITIMIZE_RELOAD_ADDRESS
- do
- {
- if (memrefloc)
- {
- LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
- ind_levels, win);
- }
- break;
- win:
- *memrefloc = copy_rtx (*memrefloc);
- XEXP (*memrefloc, 0) = ad;
- move_replacements (&ad, &XEXP (*memrefloc, 0));
- return -1;
- }
- while (0);
-#endif
-
- /* The address is not valid. We have to figure out why. First see if
- we have an outer AND and remove it if so. Then analyze what's inside. */
-
- if (GET_CODE (ad) == AND)
- {
- removed_and = 1;
- loc = &XEXP (ad, 0);
- ad = *loc;
- }
-
- /* One possibility for why the address is invalid is that it is itself
- a MEM. This can happen when the frame pointer is being eliminated, a
- pseudo is not allocated to a hard register, and the offset between the
- frame and stack pointers is not its initial value. In that case the
- pseudo will have been replaced by a MEM referring to the
- stack pointer. */
- if (MEM_P (ad))
- {
- /* First ensure that the address in this MEM is valid. Then, unless
- indirect addresses are valid, reload the MEM into a register. */
- tem = ad;
- find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
- opnum, ADDR_TYPE (type),
- ind_levels == 0 ? 0 : ind_levels - 1, insn);
-
- /* If tem was changed, then we must create a new memory reference to
- hold it and store it back into memrefloc. */
- if (tem != ad && memrefloc)
- {
- *memrefloc = copy_rtx (*memrefloc);
- copy_replacements (tem, XEXP (*memrefloc, 0));
- loc = &XEXP (*memrefloc, 0);
- if (removed_and)
- loc = &XEXP (*loc, 0);
- }
-
- /* Check similar cases as for indirect addresses as above except
- that we can allow pseudos and a MEM since they should have been
- taken care of above. */
-
- if (ind_levels == 0
- || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
- || MEM_P (XEXP (tem, 0))
- || ! (REG_P (XEXP (tem, 0))
- || (GET_CODE (XEXP (tem, 0)) == PLUS
- && REG_P (XEXP (XEXP (tem, 0), 0))
- && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
- {
- /* Must use TEM here, not AD, since it is the one that will
- have any subexpressions reloaded, if needed. */
- push_reload (tem, NULL_RTX, loc, (rtx*) 0,
- base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
- VOIDmode, 0,
- 0, opnum, type);
- return ! removed_and;
- }
- else
- return 0;
- }
-
- /* If we have address of a stack slot but it's not valid because the
- displacement is too large, compute the sum in a register.
- Handle all base registers here, not just fp/ap/sp, because on some
- targets (namely SH) we can also get too large displacements from
- big-endian corrections. */
- else if (GET_CODE (ad) == PLUS
- && REG_P (XEXP (ad, 0))
- && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
- && GET_CODE (XEXP (ad, 1)) == CONST_INT
- && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
- CONST_INT))
-
- {
- /* Unshare the MEM rtx so we can safely alter it. */
- if (memrefloc)
- {
- *memrefloc = copy_rtx (*memrefloc);
- loc = &XEXP (*memrefloc, 0);
- if (removed_and)
- loc = &XEXP (*loc, 0);
- }
-
- if (double_reg_address_ok)
- {
- /* Unshare the sum as well. */
- *loc = ad = copy_rtx (ad);
-
- /* Reload the displacement into an index reg.
- We assume the frame pointer or arg pointer is a base reg. */
- find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
- INDEX_REG_CLASS, GET_MODE (ad), opnum,
- type, ind_levels);
- return 0;
- }
- else
- {
- /* If the sum of two regs is not necessarily valid,
- reload the sum into a base reg.
- That will at least work. */
- find_reloads_address_part (ad, loc,
- base_reg_class (mode, MEM, SCRATCH),
- Pmode, opnum, type, ind_levels);
- }
- return ! removed_and;
- }
-
- /* If we have an indexed stack slot, there are three possible reasons why
- it might be invalid: The index might need to be reloaded, the address
- might have been made by frame pointer elimination and hence have a
- constant out of range, or both reasons might apply.
-
- We can easily check for an index needing reload, but even if that is the
- case, we might also have an invalid constant. To avoid making the
- conservative assumption and requiring two reloads, we see if this address
- is valid when not interpreted strictly. If it is, the only problem is
- that the index needs a reload and find_reloads_address_1 will take care
- of it.
-
- Handle all base registers here, not just fp/ap/sp, because on some
- targets (namely SPARC) we can also get invalid addresses from preventive
- subreg big-endian corrections made by find_reloads_toplev. We
- can also get expressions involving LO_SUM (rather than PLUS) from
- find_reloads_subreg_address.
-
- If we decide to do something, it must be that `double_reg_address_ok'
- is true. We generate a reload of the base register + constant and
- rework the sum so that the reload register will be added to the index.
- This is safe because we know the address isn't shared.
-
- We check for the base register as both the first and second operand of
- the innermost PLUS and/or LO_SUM. */
-
- for (op_index = 0; op_index < 2; ++op_index)
- {
- rtx operand, addend;
- enum rtx_code inner_code;
-
- if (GET_CODE (ad) != PLUS)
- continue;
-
- inner_code = GET_CODE (XEXP (ad, 0));
- if (!(GET_CODE (ad) == PLUS
- && GET_CODE (XEXP (ad, 1)) == CONST_INT
- && (inner_code == PLUS || inner_code == LO_SUM)))
- continue;
-
- operand = XEXP (XEXP (ad, 0), op_index);
- if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
- continue;
-
- addend = XEXP (XEXP (ad, 0), 1 - op_index);
-
- if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
- GET_CODE (addend))
- || operand == frame_pointer_rtx
-#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
- || operand == hard_frame_pointer_rtx
-#endif
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- || operand == arg_pointer_rtx
-#endif
- || operand == stack_pointer_rtx)
- && ! maybe_memory_address_p (mode, ad,
- &XEXP (XEXP (ad, 0), 1 - op_index)))
- {
- rtx offset_reg;
- enum reg_class cls;
-
- offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
-
- /* Form the adjusted address. */
- if (GET_CODE (XEXP (ad, 0)) == PLUS)
- ad = gen_rtx_PLUS (GET_MODE (ad),
- op_index == 0 ? offset_reg : addend,
- op_index == 0 ? addend : offset_reg);
- else
- ad = gen_rtx_LO_SUM (GET_MODE (ad),
- op_index == 0 ? offset_reg : addend,
- op_index == 0 ? addend : offset_reg);
- *loc = ad;
-
- cls = base_reg_class (mode, MEM, GET_CODE (addend));
- find_reloads_address_part (XEXP (ad, op_index),
- &XEXP (ad, op_index), cls,
- GET_MODE (ad), opnum, type, ind_levels);
- find_reloads_address_1 (mode,
- XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
- GET_CODE (XEXP (ad, op_index)),
- &XEXP (ad, 1 - op_index), opnum,
- type, 0, insn);
-
- return 0;
- }
- }
-
- /* See if address becomes valid when an eliminable register
- in a sum is replaced. */
-
- tem = ad;
- if (GET_CODE (ad) == PLUS)
- tem = subst_indexed_address (ad);
- if (tem != ad && strict_memory_address_p (mode, tem))
- {
- /* Ok, we win that way. Replace any additional eliminable
- registers. */
-
- subst_reg_equivs_changed = 0;
- tem = subst_reg_equivs (tem, insn);
-
- /* Make sure that didn't make the address invalid again. */
-
- if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
- {
- *loc = tem;
- return 0;
- }
- }
-
- /* If constants aren't valid addresses, reload the constant address
- into a register. */
- if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
- {
- /* If AD is an address in the constant pool, the MEM rtx may be shared.
- Unshare it so we can safely alter it. */
- if (memrefloc && GET_CODE (ad) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (ad))
- {
- *memrefloc = copy_rtx (*memrefloc);
- loc = &XEXP (*memrefloc, 0);
- if (removed_and)
- loc = &XEXP (*loc, 0);
- }
-
- find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
- Pmode, opnum, type, ind_levels);
- return ! removed_and;
- }
-
- return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
- ind_levels, insn);
-}
-
-/* Find all pseudo regs appearing in AD
- that are eliminable in favor of equivalent values
- and do not have hard regs; replace them by their equivalents.
- INSN, if nonzero, is the insn in which we do the reload. We put USEs in
- front of it for pseudos that we have to replace with stack slots. */
-
-static rtx
-subst_reg_equivs (rtx ad, rtx insn)
-{
- RTX_CODE code = GET_CODE (ad);
- int i;
- const char *fmt;
-
- switch (code)
- {
- case HIGH:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case CONST_VECTOR:
- case SYMBOL_REF:
- case LABEL_REF:
- case PC:
- case CC0:
- return ad;
-
- case REG:
- {
- int regno = REGNO (ad);
-
- if (reg_equiv_constant[regno] != 0)
- {
- subst_reg_equivs_changed = 1;
- return reg_equiv_constant[regno];
- }
- if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
- {
- rtx mem = make_memloc (ad, regno);
- if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
- {
- subst_reg_equivs_changed = 1;
- /* We mark the USE with QImode so that we recognize it
- as one that can be safely deleted at the end of
- reload. */
- PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
- QImode);
- return mem;
- }
- }
- }
- return ad;
-
- case PLUS:
- /* Quickly dispose of a common case. */
- if (XEXP (ad, 0) == frame_pointer_rtx
- && GET_CODE (XEXP (ad, 1)) == CONST_INT)
- return ad;
- break;
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
- return ad;
-}
-
-/* Compute the sum of X and Y, making canonicalizations assumed in an
- address, namely: sum constant integers, surround the sum of two
- constants with a CONST, put the constant as the second operand, and
- group the constant on the outermost sum.
-
- This routine assumes both inputs are already in canonical form. */
-
-rtx
-form_sum (rtx x, rtx y)
-{
- rtx tem;
- enum machine_mode mode = GET_MODE (x);
-
- if (mode == VOIDmode)
- mode = GET_MODE (y);
-
- if (mode == VOIDmode)
- mode = Pmode;
-
- if (GET_CODE (x) == CONST_INT)
- return plus_constant (y, INTVAL (x));
- else if (GET_CODE (y) == CONST_INT)
- return plus_constant (x, INTVAL (y));
- else if (CONSTANT_P (x))
- tem = x, x = y, y = tem;
-
- if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
- return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
-
- /* Note that if the operands of Y are specified in the opposite
- order in the recursive calls below, infinite recursion will occur. */
- if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
- return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
-
- /* If both constant, encapsulate sum. Otherwise, just form sum. A
- constant will have been placed second. */
- if (CONSTANT_P (x) && CONSTANT_P (y))
- {
- if (GET_CODE (x) == CONST)
- x = XEXP (x, 0);
- if (GET_CODE (y) == CONST)
- y = XEXP (y, 0);
-
- return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
- }
-
- return gen_rtx_PLUS (mode, x, y);
-}
-
-/* If ADDR is a sum containing a pseudo register that should be
- replaced with a constant (from reg_equiv_constant),
- return the result of doing so, and also apply the associative
- law so that the result is more likely to be a valid address.
- (But it is not guaranteed to be one.)
-
- Note that at most one register is replaced, even if more are
- replaceable. Also, we try to put the result into a canonical form
- so it is more likely to be a valid address.
-
- In all other cases, return ADDR. */
-
-static rtx
-subst_indexed_address (rtx addr)
-{
- rtx op0 = 0, op1 = 0, op2 = 0;
- rtx tem;
- int regno;
-
- if (GET_CODE (addr) == PLUS)
- {
- /* Try to find a register to replace. */
- op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
- if (REG_P (op0)
- && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- op0 = reg_equiv_constant[regno];
- else if (REG_P (op1)
- && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- op1 = reg_equiv_constant[regno];
- else if (GET_CODE (op0) == PLUS
- && (tem = subst_indexed_address (op0)) != op0)
- op0 = tem;
- else if (GET_CODE (op1) == PLUS
- && (tem = subst_indexed_address (op1)) != op1)
- op1 = tem;
- else
- return addr;
-
- /* Pick out up to three things to add. */
- if (GET_CODE (op1) == PLUS)
- op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
- else if (GET_CODE (op0) == PLUS)
- op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
-
- /* Compute the sum. */
- if (op2 != 0)
- op1 = form_sum (op1, op2);
- if (op1 != 0)
- op0 = form_sum (op0, op1);
-
- return op0;
- }
- return addr;
-}
-
-/* Update the REG_INC notes for an insn. It updates all REG_INC
- notes for the instruction which refer to REGNO the to refer
- to the reload number.
-
- INSN is the insn for which any REG_INC notes need updating.
-
- REGNO is the register number which has been reloaded.
-
- RELOADNUM is the reload number. */
-
-static void
-update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
- int reloadnum ATTRIBUTE_UNUSED)
-{
-#ifdef AUTO_INC_DEC
- rtx link;
-
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && (int) REGNO (XEXP (link, 0)) == regno)
- push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
-#endif
-}
-
-/* Record the pseudo registers we must reload into hard registers in a
- subexpression of a would-be memory address, X referring to a value
- in mode MODE. (This function is not called if the address we find
- is strictly valid.)
-
- CONTEXT = 1 means we are considering regs as index regs,
- = 0 means we are considering them as base regs.
- OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
- or an autoinc code.
- If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
- is the code of the index part of the address. Otherwise, pass SCRATCH
- for this argument.
- OPNUM and TYPE specify the purpose of any reloads made.
-
- IND_LEVELS says how many levels of indirect addressing are
- supported at this point in the address.
-
- INSN, if nonzero, is the insn in which we do the reload. It is used
- to determine if we may generate output reloads.
-
- We return nonzero if X, as a whole, is reloaded or replaced. */
-
-/* Note that we take shortcuts assuming that no multi-reg machine mode
- occurs as part of an address.
- Also, this is not fully machine-customizable; it works for machines
- such as VAXen and 68000's and 32000's, but other possible machines
- could have addressing modes that this does not handle right.
- If you add push_reload calls here, you need to make sure gen_reload
- handles those cases gracefully. */
-
-static int
-find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
- enum rtx_code outer_code, enum rtx_code index_code,
- rtx *loc, int opnum, enum reload_type type,
- int ind_levels, rtx insn)
-{
-#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
- ((CONTEXT) == 0 \
- ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
- : REGNO_OK_FOR_INDEX_P (REGNO))
-
- enum reg_class context_reg_class;
- RTX_CODE code = GET_CODE (x);
-
- if (context == 1)
- context_reg_class = INDEX_REG_CLASS;
- else
- context_reg_class = base_reg_class (mode, outer_code, index_code);
-
- switch (code)
- {
- case PLUS:
- {
- rtx orig_op0 = XEXP (x, 0);
- rtx orig_op1 = XEXP (x, 1);
- RTX_CODE code0 = GET_CODE (orig_op0);
- RTX_CODE code1 = GET_CODE (orig_op1);
- rtx op0 = orig_op0;
- rtx op1 = orig_op1;
-
- if (GET_CODE (op0) == SUBREG)
- {
- op0 = SUBREG_REG (op0);
- code0 = GET_CODE (op0);
- if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
- op0 = gen_rtx_REG (word_mode,
- (REGNO (op0) +
- subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
- GET_MODE (SUBREG_REG (orig_op0)),
- SUBREG_BYTE (orig_op0),
- GET_MODE (orig_op0))));
- }
-
- if (GET_CODE (op1) == SUBREG)
- {
- op1 = SUBREG_REG (op1);
- code1 = GET_CODE (op1);
- if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
- /* ??? Why is this given op1's mode and above for
- ??? op0 SUBREGs we use word_mode? */
- op1 = gen_rtx_REG (GET_MODE (op1),
- (REGNO (op1) +
- subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
- GET_MODE (SUBREG_REG (orig_op1)),
- SUBREG_BYTE (orig_op1),
- GET_MODE (orig_op1))));
- }
- /* Plus in the index register may be created only as a result of
- register rematerialization for expression like &localvar*4. Reload it.
- It may be possible to combine the displacement on the outer level,
- but it is probably not worthwhile to do so. */
- if (context == 1)
- {
- find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
- opnum, ADDR_TYPE (type), ind_levels, insn);
- push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
-
- if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
- || code0 == ZERO_EXTEND || code1 == MEM)
- {
- find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
- &XEXP (x, 0), opnum, type, ind_levels,
- insn);
- find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
- &XEXP (x, 1), opnum, type, ind_levels,
- insn);
- }
-
- else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
- || code1 == ZERO_EXTEND || code0 == MEM)
- {
- find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
- &XEXP (x, 0), opnum, type, ind_levels,
- insn);
- find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
- &XEXP (x, 1), opnum, type, ind_levels,
- insn);
- }
-
- else if (code0 == CONST_INT || code0 == CONST
- || code0 == SYMBOL_REF || code0 == LABEL_REF)
- find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
- &XEXP (x, 1), opnum, type, ind_levels,
- insn);
-
- else if (code1 == CONST_INT || code1 == CONST
- || code1 == SYMBOL_REF || code1 == LABEL_REF)
- find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
- &XEXP (x, 0), opnum, type, ind_levels,
- insn);
-
- else if (code0 == REG && code1 == REG)
- {
- if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
- && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
- return 0;
- else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
- && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
- return 0;
- else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
- find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
- &XEXP (x, 0), opnum, type, ind_levels,
- insn);
- else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
- find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
- &XEXP (x, 1), opnum, type, ind_levels,
- insn);
- else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
- find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
- &XEXP (x, 0), opnum, type, ind_levels,
- insn);
- else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
- find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
- &XEXP (x, 1), opnum, type, ind_levels,
- insn);
- else
- {
- find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
- &XEXP (x, 0), opnum, type, ind_levels,
- insn);
- find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
- &XEXP (x, 1), opnum, type, ind_levels,
- insn);
- }
- }
-
- else if (code0 == REG)
- {
- find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
- &XEXP (x, 0), opnum, type, ind_levels,
- insn);
- find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
- &XEXP (x, 1), opnum, type, ind_levels,
- insn);
- }
-
- else if (code1 == REG)
- {
- find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
- &XEXP (x, 1), opnum, type, ind_levels,
- insn);
- find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
- &XEXP (x, 0), opnum, type, ind_levels,
- insn);
- }
- }
-
- return 0;
-
- case POST_MODIFY:
- case PRE_MODIFY:
- {
- rtx op0 = XEXP (x, 0);
- rtx op1 = XEXP (x, 1);
- enum rtx_code index_code;
- int regno;
- int reloadnum;
-
- if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
- return 0;
-
- /* Currently, we only support {PRE,POST}_MODIFY constructs
- where a base register is {inc,dec}remented by the contents
- of another register or by a constant value. Thus, these
- operands must match. */
- gcc_assert (op0 == XEXP (op1, 0));
-
- /* Require index register (or constant). Let's just handle the
- register case in the meantime... If the target allows
- auto-modify by a constant then we could try replacing a pseudo
- register with its equivalent constant where applicable.
-
- If we later decide to reload the whole PRE_MODIFY or
- POST_MODIFY, inc_for_reload might clobber the reload register
- before reading the index. The index register might therefore
- need to live longer than a TYPE reload normally would, so be
- conservative and class it as RELOAD_OTHER. */
- if (REG_P (XEXP (op1, 1)))
- if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
- find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
- &XEXP (op1, 1), opnum, RELOAD_OTHER,
- ind_levels, insn);
-
- gcc_assert (REG_P (XEXP (op1, 0)));
-
- regno = REGNO (XEXP (op1, 0));
- index_code = GET_CODE (XEXP (op1, 1));
-
- /* A register that is incremented cannot be constant! */
- gcc_assert (regno < FIRST_PSEUDO_REGISTER
- || reg_equiv_constant[regno] == 0);
-
- /* Handle a register that is equivalent to a memory location
- which cannot be addressed directly. */
- if (reg_equiv_memory_loc[regno] != 0
- && (reg_equiv_address[regno] != 0
- || num_not_at_initial_offset))
- {
- rtx tem = make_memloc (XEXP (x, 0), regno);
-
- if (reg_equiv_address[regno]
- || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
- {
- rtx orig = tem;
-
- /* First reload the memory location's address.
- We can't use ADDR_TYPE (type) here, because we need to
- write back the value after reading it, hence we actually
- need two registers. */
- find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
- &XEXP (tem, 0), opnum,
- RELOAD_OTHER,
- ind_levels, insn);
-
- if (tem != orig)
- push_reg_equiv_alt_mem (regno, tem);
-
- /* Then reload the memory location into a base
- register. */
- reloadnum = push_reload (tem, tem, &XEXP (x, 0),
- &XEXP (op1, 0),
- base_reg_class (mode, code,
- index_code),
- GET_MODE (x), GET_MODE (x), 0,
- 0, opnum, RELOAD_OTHER);
-
- update_auto_inc_notes (this_insn, regno, reloadnum);
- return 0;
- }
- }
-
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
-
- /* We require a base register here... */
- if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
- {
- reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
- &XEXP (op1, 0), &XEXP (x, 0),
- base_reg_class (mode, code, index_code),
- GET_MODE (x), GET_MODE (x), 0, 0,
- opnum, RELOAD_OTHER);
-
- update_auto_inc_notes (this_insn, regno, reloadnum);
- return 0;
- }
- }
- return 0;
-
- case POST_INC:
- case POST_DEC:
- case PRE_INC:
- case PRE_DEC:
- if (REG_P (XEXP (x, 0)))
- {
- int regno = REGNO (XEXP (x, 0));
- int value = 0;
- rtx x_orig = x;
-
- /* A register that is incremented cannot be constant! */
- gcc_assert (regno < FIRST_PSEUDO_REGISTER
- || reg_equiv_constant[regno] == 0);
-
- /* Handle a register that is equivalent to a memory location
- which cannot be addressed directly. */
- if (reg_equiv_memory_loc[regno] != 0
- && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
- {
- rtx tem = make_memloc (XEXP (x, 0), regno);
- if (reg_equiv_address[regno]
- || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
- {
- rtx orig = tem;
-
- /* First reload the memory location's address.
- We can't use ADDR_TYPE (type) here, because we need to
- write back the value after reading it, hence we actually
- need two registers. */
- find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
- &XEXP (tem, 0), opnum, type,
- ind_levels, insn);
- if (tem != orig)
- push_reg_equiv_alt_mem (regno, tem);
- /* Put this inside a new increment-expression. */
- x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
- /* Proceed to reload that, as if it contained a register. */
- }
- }
-
- /* If we have a hard register that is ok as an index,
- don't make a reload. If an autoincrement of a nice register
- isn't "valid", it must be that no autoincrement is "valid".
- If that is true and something made an autoincrement anyway,
- this must be a special context where one is allowed.
- (For example, a "push" instruction.)
- We can't improve this address, so leave it alone. */
-
- /* Otherwise, reload the autoincrement into a suitable hard reg
- and record how much to increment by. */
-
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
- if (regno >= FIRST_PSEUDO_REGISTER
- || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
- index_code))
- {
- int reloadnum;
-
- /* If we can output the register afterwards, do so, this
- saves the extra update.
- We can do so if we have an INSN - i.e. no JUMP_INSN nor
- CALL_INSN - and it does not set CC0.
- But don't do this if we cannot directly address the
- memory location, since this will make it harder to
- reuse address reloads, and increases register pressure.
- Also don't do this if we can probably update x directly. */
- rtx equiv = (MEM_P (XEXP (x, 0))
- ? XEXP (x, 0)
- : reg_equiv_mem[regno]);
- int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
- if (insn && NONJUMP_INSN_P (insn) && equiv
- && memory_operand (equiv, GET_MODE (equiv))
-#ifdef HAVE_cc0
- && ! sets_cc0_p (PATTERN (insn))
-#endif
- && ! (icode != CODE_FOR_nothing
- && ((*insn_data[icode].operand[0].predicate)
- (equiv, Pmode))
- && ((*insn_data[icode].operand[1].predicate)
- (equiv, Pmode))))
- {
- /* We use the original pseudo for loc, so that
- emit_reload_insns() knows which pseudo this
- reload refers to and updates the pseudo rtx, not
- its equivalent memory location, as well as the
- corresponding entry in reg_last_reload_reg. */
- loc = &XEXP (x_orig, 0);
- x = XEXP (x, 0);
- reloadnum
- = push_reload (x, x, loc, loc,
- context_reg_class,
- GET_MODE (x), GET_MODE (x), 0, 0,
- opnum, RELOAD_OTHER);
- }
- else
- {
- reloadnum
- = push_reload (x, NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), GET_MODE (x), 0, 0,
- opnum, type);
- rld[reloadnum].inc
- = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
-
- value = 1;
- }
-
- update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
- reloadnum);
- }
- return value;
- }
-
- else if (MEM_P (XEXP (x, 0)))
- {
- /* This is probably the result of a substitution, by eliminate_regs,
- of an equivalent address for a pseudo that was not allocated to a
- hard register. Verify that the specified address is valid and
- reload it into a register. */
- /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
- rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
- rtx link;
- int reloadnum;
-
- /* Since we know we are going to reload this item, don't decrement
- for the indirection level.
-
- Note that this is actually conservative: it would be slightly
- more efficient to use the value of SPILL_INDIRECT_LEVELS from
- reload1.c here. */
- /* We can't use ADDR_TYPE (type) here, because we need to
- write back the value after reading it, hence we actually
- need two registers. */
- find_reloads_address (GET_MODE (x), &XEXP (x, 0),
- XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
- opnum, type, ind_levels, insn);
-
- reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- rld[reloadnum].inc
- = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
-
- link = FIND_REG_INC_NOTE (this_insn, tem);
- if (link != 0)
- push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
-
- return 1;
- }
- return 0;
-
- case TRUNCATE:
- case SIGN_EXTEND:
- case ZERO_EXTEND:
- /* Look for parts to reload in the inner expression and reload them
- too, in addition to this operation. Reloading all inner parts in
- addition to this one shouldn't be necessary, but at this point,
- we don't know if we can possibly omit any part that *can* be
- reloaded. Targets that are better off reloading just either part
- (or perhaps even a different part of an outer expression), should
- define LEGITIMIZE_RELOAD_ADDRESS. */
- find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
- context, code, SCRATCH, &XEXP (x, 0), opnum,
- type, ind_levels, insn);
- push_reload (x, NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
-
- case MEM:
- /* This is probably the result of a substitution, by eliminate_regs, of
- an equivalent address for a pseudo that was not allocated to a hard
- register. Verify that the specified address is valid and reload it
- into a register.
-
- Since we know we are going to reload this item, don't decrement for
- the indirection level.
-
- Note that this is actually conservative: it would be slightly more
- efficient to use the value of SPILL_INDIRECT_LEVELS from
- reload1.c here. */
-
- find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
- opnum, ADDR_TYPE (type), ind_levels, insn);
- push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
-
- case REG:
- {
- int regno = REGNO (x);
-
- if (reg_equiv_constant[regno] != 0)
- {
- find_reloads_address_part (reg_equiv_constant[regno], loc,
- context_reg_class,
- GET_MODE (x), opnum, type, ind_levels);
- return 1;
- }
-
-#if 0 /* This might screw code in reload1.c to delete prior output-reload
- that feeds this insn. */
- if (reg_equiv_mem[regno] != 0)
- {
- push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
-#endif
-
- if (reg_equiv_memory_loc[regno]
- && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
- {
- rtx tem = make_memloc (x, regno);
- if (reg_equiv_address[regno] != 0
- || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
- {
- x = tem;
- find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
- &XEXP (x, 0), opnum, ADDR_TYPE (type),
- ind_levels, insn);
- if (x != tem)
- push_reg_equiv_alt_mem (regno, x);
- }
- }
-
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
-
- if (regno >= FIRST_PSEUDO_REGISTER
- || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
- index_code))
- {
- push_reload (x, NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
-
- /* If a register appearing in an address is the subject of a CLOBBER
- in this insn, reload it into some other register to be safe.
- The CLOBBER is supposed to make the register unavailable
- from before this insn to after it. */
- if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
- {
- push_reload (x, NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
- }
- return 0;
-
- case SUBREG:
- if (REG_P (SUBREG_REG (x)))
- {
- /* If this is a SUBREG of a hard register and the resulting register
- is of the wrong class, reload the whole SUBREG. This avoids
- needless copies if SUBREG_REG is multi-word. */
- if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
- {
- int regno ATTRIBUTE_UNUSED = subreg_regno (x);
-
- if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
- index_code))
- {
- push_reload (x, NULL_RTX, loc, (rtx*) 0,
- context_reg_class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
- }
- /* If this is a SUBREG of a pseudo-register, and the pseudo-register
- is larger than the class size, then reload the whole SUBREG. */
- else
- {
- enum reg_class class = context_reg_class;
- if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
- > reg_class_size[class])
- {
- x = find_reloads_subreg_address (x, 0, opnum,
- ADDR_TYPE (type),
- ind_levels, insn);
- push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
- }
- }
- break;
-
- default:
- break;
- }
-
- {
- const char *fmt = GET_RTX_FORMAT (code);
- int i;
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
- we get here. */
- find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
- &XEXP (x, i), opnum, type, ind_levels, insn);
- }
- }
-
-#undef REG_OK_FOR_CONTEXT
- return 0;
-}
-
-/* X, which is found at *LOC, is a part of an address that needs to be
- reloaded into a register of class CLASS. If X is a constant, or if
- X is a PLUS that contains a constant, check that the constant is a
- legitimate operand and that we are supposed to be able to load
- it into the register.
-
- If not, force the constant into memory and reload the MEM instead.
-
- MODE is the mode to use, in case X is an integer constant.
-
- OPNUM and TYPE describe the purpose of any reloads made.
-
- IND_LEVELS says how many levels of indirect addressing this machine
- supports. */
-
-static void
-find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
- enum machine_mode mode, int opnum,
- enum reload_type type, int ind_levels)
-{
- if (CONSTANT_P (x)
- && (! LEGITIMATE_CONSTANT_P (x)
- || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
- {
- rtx tem;
-
- tem = x = force_const_mem (mode, x);
- find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
- opnum, type, ind_levels, 0);
- }
-
- else if (GET_CODE (x) == PLUS
- && CONSTANT_P (XEXP (x, 1))
- && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
- || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
- {
- rtx tem;
-
- tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
- x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
- find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
- opnum, type, ind_levels, 0);
- }
-
- push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
- mode, VOIDmode, 0, 0, opnum, type);
-}
-
-/* X, a subreg of a pseudo, is a part of an address that needs to be
- reloaded.
-
- If the pseudo is equivalent to a memory location that cannot be directly
- addressed, make the necessary address reloads.
-
- If address reloads have been necessary, or if the address is changed
- by register elimination, return the rtx of the memory location;
- otherwise, return X.
-
- If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
- memory location.
-
- OPNUM and TYPE identify the purpose of the reload.
-
- IND_LEVELS says how many levels of indirect addressing are
- supported at this point in the address.
-
- INSN, if nonzero, is the insn in which we do the reload. It is used
- to determine where to put USEs for pseudos that we have to replace with
- stack slots. */
-
-static rtx
-find_reloads_subreg_address (rtx x, int force_replace, int opnum,
- enum reload_type type, int ind_levels, rtx insn)
-{
- int regno = REGNO (SUBREG_REG (x));
-
- if (reg_equiv_memory_loc[regno])
- {
- /* If the address is not directly addressable, or if the address is not
- offsettable, then it must be replaced. */
- if (! force_replace
- && (reg_equiv_address[regno]
- || ! offsettable_memref_p (reg_equiv_mem[regno])))
- force_replace = 1;
-
- if (force_replace || num_not_at_initial_offset)
- {
- rtx tem = make_memloc (SUBREG_REG (x), regno);
-
- /* If the address changes because of register elimination, then
- it must be replaced. */
- if (force_replace
- || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
- {
- unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
- unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
- int offset;
- rtx orig = tem;
- enum machine_mode orig_mode = GET_MODE (orig);
- int reloaded;
-
- /* For big-endian paradoxical subregs, SUBREG_BYTE does not
- hold the correct (negative) byte offset. */
- if (BYTES_BIG_ENDIAN && outer_size > inner_size)
- offset = inner_size - outer_size;
- else
- offset = SUBREG_BYTE (x);
-
- XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
- PUT_MODE (tem, GET_MODE (x));
-
- /* If this was a paradoxical subreg that we replaced, the
- resulting memory must be sufficiently aligned to allow
- us to widen the mode of the memory. */
- if (outer_size > inner_size)
- {
- rtx base;
-
- base = XEXP (tem, 0);
- if (GET_CODE (base) == PLUS)
- {
- if (GET_CODE (XEXP (base, 1)) == CONST_INT
- && INTVAL (XEXP (base, 1)) % outer_size != 0)
- return x;
- base = XEXP (base, 0);
- }
- if (!REG_P (base)
- || (REGNO_POINTER_ALIGN (REGNO (base))
- < outer_size * BITS_PER_UNIT))
- return x;
- }
-
- reloaded = find_reloads_address (GET_MODE (tem), &tem,
- XEXP (tem, 0), &XEXP (tem, 0),
- opnum, type, ind_levels, insn);
- /* ??? Do we need to handle nonzero offsets somehow? */
- if (!offset && tem != orig)
- push_reg_equiv_alt_mem (regno, tem);
-
- /* For some processors an address may be valid in the
- original mode but not in a smaller mode. For
- example, ARM accepts a scaled index register in
- SImode but not in HImode. find_reloads_address
- assumes that we pass it a valid address, and doesn't
- force a reload. This will probably be fine if
- find_reloads_address finds some reloads. But if it
- doesn't find any, then we may have just converted a
- valid address into an invalid one. Check for that
- here. */
- if (reloaded != 1
- && strict_memory_address_p (orig_mode, XEXP (tem, 0))
- && !strict_memory_address_p (GET_MODE (tem),
- XEXP (tem, 0)))
- push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
- base_reg_class (GET_MODE (tem), MEM, SCRATCH),
- GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
- opnum, type);
-
- /* If this is not a toplevel operand, find_reloads doesn't see
- this substitution. We have to emit a USE of the pseudo so
- that delete_output_reload can see it. */
- if (replace_reloads && recog_data.operand[opnum] != x)
- /* We mark the USE with QImode so that we recognize it
- as one that can be safely deleted at the end of
- reload. */
- PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
- SUBREG_REG (x)),
- insn), QImode);
- x = tem;
- }
- }
- }
- return x;
-}
-
-/* Substitute into the current INSN the registers into which we have reloaded
- the things that need reloading. The array `replacements'
- contains the locations of all pointers that must be changed
- and says what to replace them with.
-
- Return the rtx that X translates into; usually X, but modified. */
-
-void
-subst_reloads (rtx insn)
-{
- int i;
-
- for (i = 0; i < n_replacements; i++)
- {
- struct replacement *r = &replacements[i];
- rtx reloadreg = rld[r->what].reg_rtx;
- if (reloadreg)
- {
-#ifdef ENABLE_CHECKING
- /* Internal consistency test. Check that we don't modify
- anything in the equivalence arrays. Whenever something from
- those arrays needs to be reloaded, it must be unshared before
- being substituted into; the equivalence must not be modified.
- Otherwise, if the equivalence is used after that, it will
- have been modified, and the thing substituted (probably a
- register) is likely overwritten and not a usable equivalence. */
- int check_regno;
-
- for (check_regno = 0; check_regno < max_regno; check_regno++)
- {
-#define CHECK_MODF(ARRAY) \
- gcc_assert (!ARRAY[check_regno] \
- || !loc_mentioned_in_p (r->where, \
- ARRAY[check_regno]))
-
- CHECK_MODF (reg_equiv_constant);
- CHECK_MODF (reg_equiv_memory_loc);
- CHECK_MODF (reg_equiv_address);
- CHECK_MODF (reg_equiv_mem);
-#undef CHECK_MODF
- }
-#endif /* ENABLE_CHECKING */
-
- /* If we're replacing a LABEL_REF with a register, add a
- REG_LABEL note to indicate to flow which label this
- register refers to. */
- if (GET_CODE (*r->where) == LABEL_REF
- && JUMP_P (insn))
- {
- REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
- XEXP (*r->where, 0),
- REG_NOTES (insn));
- JUMP_LABEL (insn) = XEXP (*r->where, 0);
- }
-
- /* Encapsulate RELOADREG so its machine mode matches what
- used to be there. Note that gen_lowpart_common will
- do the wrong thing if RELOADREG is multi-word. RELOADREG
- will always be a REG here. */
- if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
- reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
-
- /* If we are putting this into a SUBREG and RELOADREG is a
- SUBREG, we would be making nested SUBREGs, so we have to fix
- this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
-
- if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
- {
- if (GET_MODE (*r->subreg_loc)
- == GET_MODE (SUBREG_REG (reloadreg)))
- *r->subreg_loc = SUBREG_REG (reloadreg);
- else
- {
- int final_offset =
- SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
-
- /* When working with SUBREGs the rule is that the byte
- offset must be a multiple of the SUBREG's mode. */
- final_offset = (final_offset /
- GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
- final_offset = (final_offset *
- GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
-
- *r->where = SUBREG_REG (reloadreg);
- SUBREG_BYTE (*r->subreg_loc) = final_offset;
- }
- }
- else
- *r->where = reloadreg;
- }
- /* If reload got no reg and isn't optional, something's wrong. */
- else
- gcc_assert (rld[r->what].optional);
- }
-}
-
-/* Make a copy of any replacements being done into X and move those
- copies to locations in Y, a copy of X. */
-
-void
-copy_replacements (rtx x, rtx y)
-{
- /* We can't support X being a SUBREG because we might then need to know its
- location if something inside it was replaced. */
- gcc_assert (GET_CODE (x) != SUBREG);
-
- copy_replacements_1 (&x, &y, n_replacements);
-}
-
-static void
-copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
-{
- int i, j;
- rtx x, y;
- struct replacement *r;
- enum rtx_code code;
- const char *fmt;
-
- for (j = 0; j < orig_replacements; j++)
- {
- if (replacements[j].subreg_loc == px)
- {
- r = &replacements[n_replacements++];
- r->where = replacements[j].where;
- r->subreg_loc = py;
- r->what = replacements[j].what;
- r->mode = replacements[j].mode;
- }
- else if (replacements[j].where == px)
- {
- r = &replacements[n_replacements++];
- r->where = py;
- r->subreg_loc = 0;
- r->what = replacements[j].what;
- r->mode = replacements[j].mode;
- }
- }
-
- x = *px;
- y = *py;
- code = GET_CODE (x);
- fmt = GET_RTX_FORMAT (code);
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i); --j >= 0; )
- copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
- orig_replacements);
- }
-}
-
-/* Change any replacements being done to *X to be done to *Y. */
-
-void
-move_replacements (rtx *x, rtx *y)
-{
- int i;
-
- for (i = 0; i < n_replacements; i++)
- if (replacements[i].subreg_loc == x)
- replacements[i].subreg_loc = y;
- else if (replacements[i].where == x)
- {
- replacements[i].where = y;
- replacements[i].subreg_loc = 0;
- }
-}
-
-/* If LOC was scheduled to be replaced by something, return the replacement.
- Otherwise, return *LOC. */
-
-rtx
-find_replacement (rtx *loc)
-{
- struct replacement *r;
-
- for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
- {
- rtx reloadreg = rld[r->what].reg_rtx;
-
- if (reloadreg && r->where == loc)
- {
- if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
- reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
-
- return reloadreg;
- }
- else if (reloadreg && r->subreg_loc == loc)
- {
- /* RELOADREG must be either a REG or a SUBREG.
-
- ??? Is it actually still ever a SUBREG? If so, why? */
-
- if (REG_P (reloadreg))
- return gen_rtx_REG (GET_MODE (*loc),
- (REGNO (reloadreg) +
- subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
- GET_MODE (SUBREG_REG (*loc)),
- SUBREG_BYTE (*loc),
- GET_MODE (*loc))));
- else if (GET_MODE (reloadreg) == GET_MODE (*loc))
- return reloadreg;
- else
- {
- int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
-
- /* When working with SUBREGs the rule is that the byte
- offset must be a multiple of the SUBREG's mode. */
- final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
- final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
- return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
- final_offset);
- }
- }
- }
-
- /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
- what's inside and make a new rtl if so. */
- if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
- || GET_CODE (*loc) == MULT)
- {
- rtx x = find_replacement (&XEXP (*loc, 0));
- rtx y = find_replacement (&XEXP (*loc, 1));
-
- if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
- return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
- }
-
- return *loc;
-}
-
-/* Return nonzero if register in range [REGNO, ENDREGNO)
- appears either explicitly or implicitly in X
- other than being stored into (except for earlyclobber operands).
-
- References contained within the substructure at LOC do not count.
- LOC may be zero, meaning don't ignore anything.
-
- This is similar to refers_to_regno_p in rtlanal.c except that we
- look at equivalences for pseudos that didn't get hard registers. */
-
-static int
-refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
- rtx x, rtx *loc)
-{
- int i;
- unsigned int r;
- RTX_CODE code;
- const char *fmt;
-
- if (x == 0)
- return 0;
-
- repeat:
- code = GET_CODE (x);
-
- switch (code)
- {
- case REG:
- r = REGNO (x);
-
- /* If this is a pseudo, a hard register must not have been allocated.
- X must therefore either be a constant or be in memory. */
- if (r >= FIRST_PSEUDO_REGISTER)
- {
- if (reg_equiv_memory_loc[r])
- return refers_to_regno_for_reload_p (regno, endregno,
- reg_equiv_memory_loc[r],
- (rtx*) 0);
-
- gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
- return 0;
- }
-
- return (endregno > r
- && regno < r + (r < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[r][GET_MODE (x)]
- : 1));
-
- case SUBREG:
- /* If this is a SUBREG of a hard reg, we can see exactly which
- registers are being modified. Otherwise, handle normally. */
- if (REG_P (SUBREG_REG (x))
- && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
- {
- unsigned int inner_regno = subreg_regno (x);
- unsigned int inner_endregno
- = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
-
- return endregno > inner_regno && regno < inner_endregno;
- }
- break;
-
- case CLOBBER:
- case SET:
- if (&SET_DEST (x) != loc
- /* Note setting a SUBREG counts as referring to the REG it is in for
- a pseudo but not for hard registers since we can
- treat each word individually. */
- && ((GET_CODE (SET_DEST (x)) == SUBREG
- && loc != &SUBREG_REG (SET_DEST (x))
- && REG_P (SUBREG_REG (SET_DEST (x)))
- && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
- && refers_to_regno_for_reload_p (regno, endregno,
- SUBREG_REG (SET_DEST (x)),
- loc))
- /* If the output is an earlyclobber operand, this is
- a conflict. */
- || ((!REG_P (SET_DEST (x))
- || earlyclobber_operand_p (SET_DEST (x)))
- && refers_to_regno_for_reload_p (regno, endregno,
- SET_DEST (x), loc))))
- return 1;
-
- if (code == CLOBBER || loc == &SET_SRC (x))
- return 0;
- x = SET_SRC (x);
- goto repeat;
-
- default:
- break;
- }
-
- /* X does not match, so try its subexpressions. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e' && loc != &XEXP (x, i))
- {
- if (i == 0)
- {
- x = XEXP (x, 0);
- goto repeat;
- }
- else
- if (refers_to_regno_for_reload_p (regno, endregno,
- XEXP (x, i), loc))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (loc != &XVECEXP (x, i, j)
- && refers_to_regno_for_reload_p (regno, endregno,
- XVECEXP (x, i, j), loc))
- return 1;
- }
- }
- return 0;
-}
-
-/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
- we check if any register number in X conflicts with the relevant register
- numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
- contains a MEM (we don't bother checking for memory addresses that can't
- conflict because we expect this to be a rare case.
-
- This function is similar to reg_overlap_mentioned_p in rtlanal.c except
- that we look at equivalences for pseudos that didn't get hard registers. */
-
-int
-reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
-{
- int regno, endregno;
-
- /* Overly conservative. */
- if (GET_CODE (x) == STRICT_LOW_PART
- || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
- x = XEXP (x, 0);
-
- /* If either argument is a constant, then modifying X can not affect IN. */
- if (CONSTANT_P (x) || CONSTANT_P (in))
- return 0;
- else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
- return refers_to_mem_for_reload_p (in);
- else if (GET_CODE (x) == SUBREG)
- {
- regno = REGNO (SUBREG_REG (x));
- if (regno < FIRST_PSEUDO_REGISTER)
- regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
- GET_MODE (SUBREG_REG (x)),
- SUBREG_BYTE (x),
- GET_MODE (x));
- }
- else if (REG_P (x))
- {
- regno = REGNO (x);
-
- /* If this is a pseudo, it must not have been assigned a hard register.
- Therefore, it must either be in memory or be a constant. */
-
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- if (reg_equiv_memory_loc[regno])
- return refers_to_mem_for_reload_p (in);
- gcc_assert (reg_equiv_constant[regno]);
- return 0;
- }
- }
- else if (MEM_P (x))
- return refers_to_mem_for_reload_p (in);
- else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
- || GET_CODE (x) == CC0)
- return reg_mentioned_p (x, in);
- else
- {
- gcc_assert (GET_CODE (x) == PLUS);
-
- /* We actually want to know if X is mentioned somewhere inside IN.
- We must not say that (plus (sp) (const_int 124)) is in
- (plus (sp) (const_int 64)), since that can lead to incorrect reload
- allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
- into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
- while (MEM_P (in))
- in = XEXP (in, 0);
- if (REG_P (in))
- return 0;
- else if (GET_CODE (in) == PLUS)
- return (rtx_equal_p (x, in)
- || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
- || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
- else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
- || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
- }
-
- endregno = regno + (regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
-
- return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
-}
-
-/* Return nonzero if anything in X contains a MEM. Look also for pseudo
- registers. */
-
-static int
-refers_to_mem_for_reload_p (rtx x)
-{
- const char *fmt;
- int i;
-
- if (MEM_P (x))
- return 1;
-
- if (REG_P (x))
- return (REGNO (x) >= FIRST_PSEUDO_REGISTER
- && reg_equiv_memory_loc[REGNO (x)]);
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- if (fmt[i] == 'e'
- && (MEM_P (XEXP (x, i))
- || refers_to_mem_for_reload_p (XEXP (x, i))))
- return 1;
-
- return 0;
-}
-
-/* Check the insns before INSN to see if there is a suitable register
- containing the same value as GOAL.
- If OTHER is -1, look for a register in class CLASS.
- Otherwise, just see if register number OTHER shares GOAL's value.
-
- Return an rtx for the register found, or zero if none is found.
-
- If RELOAD_REG_P is (short *)1,
- we reject any hard reg that appears in reload_reg_rtx
- because such a hard reg is also needed coming into this insn.
-
- If RELOAD_REG_P is any other nonzero value,
- it is a vector indexed by hard reg number
- and we reject any hard reg whose element in the vector is nonnegative
- as well as any that appears in reload_reg_rtx.
-
- If GOAL is zero, then GOALREG is a register number; we look
- for an equivalent for that register.
-
- MODE is the machine mode of the value we want an equivalence for.
- If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
-
- This function is used by jump.c as well as in the reload pass.
-
- If GOAL is the sum of the stack pointer and a constant, we treat it
- as if it were a constant except that sp is required to be unchanging. */
-
-rtx
-find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
- short *reload_reg_p, int goalreg, enum machine_mode mode)
-{
- rtx p = insn;
- rtx goaltry, valtry, value, where;
- rtx pat;
- int regno = -1;
- int valueno;
- int goal_mem = 0;
- int goal_const = 0;
- int goal_mem_addr_varies = 0;
- int need_stable_sp = 0;
- int nregs;
- int valuenregs;
- int num = 0;
-
- if (goal == 0)
- regno = goalreg;
- else if (REG_P (goal))
- regno = REGNO (goal);
- else if (MEM_P (goal))
- {
- enum rtx_code code = GET_CODE (XEXP (goal, 0));
- if (MEM_VOLATILE_P (goal))
- return 0;
- if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
- return 0;
- /* An address with side effects must be reexecuted. */
- switch (code)
- {
- case POST_INC:
- case PRE_INC:
- case POST_DEC:
- case PRE_DEC:
- case POST_MODIFY:
- case PRE_MODIFY:
- return 0;
- default:
- break;
- }
- goal_mem = 1;
- }
- else if (CONSTANT_P (goal))
- goal_const = 1;
- else if (GET_CODE (goal) == PLUS
- && XEXP (goal, 0) == stack_pointer_rtx
- && CONSTANT_P (XEXP (goal, 1)))
- goal_const = need_stable_sp = 1;
- else if (GET_CODE (goal) == PLUS
- && XEXP (goal, 0) == frame_pointer_rtx
- && CONSTANT_P (XEXP (goal, 1)))
- goal_const = 1;
- else
- return 0;
-
- num = 0;
- /* Scan insns back from INSN, looking for one that copies
- a value into or out of GOAL.
- Stop and give up if we reach a label. */
-
- while (1)
- {
- p = PREV_INSN (p);
- num++;
- if (p == 0 || LABEL_P (p)
- || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
- return 0;
-
- if (NONJUMP_INSN_P (p)
- /* If we don't want spill regs ... */
- && (! (reload_reg_p != 0
- && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
- /* ... then ignore insns introduced by reload; they aren't
- useful and can cause results in reload_as_needed to be
- different from what they were when calculating the need for
- spills. If we notice an input-reload insn here, we will
- reject it below, but it might hide a usable equivalent.
- That makes bad code. It may even fail: perhaps no reg was
- spilled for this insn because it was assumed we would find
- that equivalent. */
- || INSN_UID (p) < reload_first_uid))
- {
- rtx tem;
- pat = single_set (p);
-
- /* First check for something that sets some reg equal to GOAL. */
- if (pat != 0
- && ((regno >= 0
- && true_regnum (SET_SRC (pat)) == regno
- && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
- ||
- (regno >= 0
- && true_regnum (SET_DEST (pat)) == regno
- && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
- ||
- (goal_const && rtx_equal_p (SET_SRC (pat), goal)
- /* When looking for stack pointer + const,
- make sure we don't use a stack adjust. */
- && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
- && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
- || (goal_mem
- && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
- && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
- || (goal_mem
- && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
- && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
- /* If we are looking for a constant,
- and something equivalent to that constant was copied
- into a reg, we can use that reg. */
- || (goal_const && REG_NOTES (p) != 0
- && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
- && ((rtx_equal_p (XEXP (tem, 0), goal)
- && (valueno
- = true_regnum (valtry = SET_DEST (pat))) >= 0)
- || (REG_P (SET_DEST (pat))
- && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
- && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
- && GET_CODE (goal) == CONST_INT
- && 0 != (goaltry
- = operand_subword (XEXP (tem, 0), 0, 0,
- VOIDmode))
- && rtx_equal_p (goal, goaltry)
- && (valtry
- = operand_subword (SET_DEST (pat), 0, 0,
- VOIDmode))
- && (valueno = true_regnum (valtry)) >= 0)))
- || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
- NULL_RTX))
- && REG_P (SET_DEST (pat))
- && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
- && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
- && GET_CODE (goal) == CONST_INT
- && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
- VOIDmode))
- && rtx_equal_p (goal, goaltry)
- && (valtry
- = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
- && (valueno = true_regnum (valtry)) >= 0)))
- {
- if (other >= 0)
- {
- if (valueno != other)
- continue;
- }
- else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
- continue;
- else
- {
- int i;
-
- for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
- if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- valueno + i))
- break;
- if (i >= 0)
- continue;
- }
- value = valtry;
- where = p;
- break;
- }
- }
- }
-
- /* We found a previous insn copying GOAL into a suitable other reg VALUE
- (or copying VALUE into GOAL, if GOAL is also a register).
- Now verify that VALUE is really valid. */
-
- /* VALUENO is the register number of VALUE; a hard register. */
-
- /* Don't try to re-use something that is killed in this insn. We want
- to be able to trust REG_UNUSED notes. */
- if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
- return 0;
-
- /* If we propose to get the value from the stack pointer or if GOAL is
- a MEM based on the stack pointer, we need a stable SP. */
- if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
- || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
- goal)))
- need_stable_sp = 1;
-
- /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
- if (GET_MODE (value) != mode)
- return 0;
-
- /* Reject VALUE if it was loaded from GOAL
- and is also a register that appears in the address of GOAL. */
-
- if (goal_mem && value == SET_DEST (single_set (where))
- && refers_to_regno_for_reload_p (valueno,
- (valueno
- + hard_regno_nregs[valueno][mode]),
- goal, (rtx*) 0))
- return 0;
-
- /* Reject registers that overlap GOAL. */
-
- if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
- nregs = hard_regno_nregs[regno][mode];
- else
- nregs = 1;
- valuenregs = hard_regno_nregs[valueno][mode];
-
- if (!goal_mem && !goal_const
- && regno + nregs > valueno && regno < valueno + valuenregs)
- return 0;
-
- /* Reject VALUE if it is one of the regs reserved for reloads.
- Reload1 knows how to reuse them anyway, and it would get
- confused if we allocated one without its knowledge.
- (Now that insns introduced by reload are ignored above,
- this case shouldn't happen, but I'm not positive.) */
-
- if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
- {
- int i;
- for (i = 0; i < valuenregs; ++i)
- if (reload_reg_p[valueno + i] >= 0)
- return 0;
- }
-
- /* Reject VALUE if it is a register being used for an input reload
- even if it is not one of those reserved. */
-
- if (reload_reg_p != 0)
- {
- int i;
- for (i = 0; i < n_reloads; i++)
- if (rld[i].reg_rtx != 0 && rld[i].in)
- {
- int regno1 = REGNO (rld[i].reg_rtx);
- int nregs1 = hard_regno_nregs[regno1]
- [GET_MODE (rld[i].reg_rtx)];
- if (regno1 < valueno + valuenregs
- && regno1 + nregs1 > valueno)
- return 0;
- }
- }
-
- if (goal_mem)
- /* We must treat frame pointer as varying here,
- since it can vary--in a nonlocal goto as generated by expand_goto. */
- goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
-
- /* Now verify that the values of GOAL and VALUE remain unaltered
- until INSN is reached. */
-
- p = insn;
- while (1)
- {
- p = PREV_INSN (p);
- if (p == where)
- return value;
-
- /* Don't trust the conversion past a function call
- if either of the two is in a call-clobbered register, or memory. */
- if (CALL_P (p))
- {
- int i;
-
- if (goal_mem || need_stable_sp)
- return 0;
-
- if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
- for (i = 0; i < nregs; ++i)
- if (call_used_regs[regno + i]
- || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
- return 0;
-
- if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
- for (i = 0; i < valuenregs; ++i)
- if (call_used_regs[valueno + i]
- || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
- return 0;
- }
-
- if (INSN_P (p))
- {
- pat = PATTERN (p);
-
- /* Watch out for unspec_volatile, and volatile asms. */
- if (volatile_insn_p (pat))
- return 0;
-
- /* If this insn P stores in either GOAL or VALUE, return 0.
- If GOAL is a memory ref and this insn writes memory, return 0.
- If GOAL is a memory ref and its address is not constant,
- and this insn P changes a register used in GOAL, return 0. */
-
- if (GET_CODE (pat) == COND_EXEC)
- pat = COND_EXEC_CODE (pat);
- if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
- {
- rtx dest = SET_DEST (pat);
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- if (REG_P (dest))
- {
- int xregno = REGNO (dest);
- int xnregs;
- if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
- xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
- else
- xnregs = 1;
- if (xregno < regno + nregs && xregno + xnregs > regno)
- return 0;
- if (xregno < valueno + valuenregs
- && xregno + xnregs > valueno)
- return 0;
- if (goal_mem_addr_varies
- && reg_overlap_mentioned_for_reload_p (dest, goal))
- return 0;
- if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
- return 0;
- }
- else if (goal_mem && MEM_P (dest)
- && ! push_operand (dest, GET_MODE (dest)))
- return 0;
- else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
- && reg_equiv_memory_loc[regno] != 0)
- return 0;
- else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
- return 0;
- }
- else if (GET_CODE (pat) == PARALLEL)
- {
- int i;
- for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
- {
- rtx v1 = XVECEXP (pat, 0, i);
- if (GET_CODE (v1) == COND_EXEC)
- v1 = COND_EXEC_CODE (v1);
- if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
- {
- rtx dest = SET_DEST (v1);
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- if (REG_P (dest))
- {
- int xregno = REGNO (dest);
- int xnregs;
- if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
- xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
- else
- xnregs = 1;
- if (xregno < regno + nregs
- && xregno + xnregs > regno)
- return 0;
- if (xregno < valueno + valuenregs
- && xregno + xnregs > valueno)
- return 0;
- if (goal_mem_addr_varies
- && reg_overlap_mentioned_for_reload_p (dest,
- goal))
- return 0;
- if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
- return 0;
- }
- else if (goal_mem && MEM_P (dest)
- && ! push_operand (dest, GET_MODE (dest)))
- return 0;
- else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
- && reg_equiv_memory_loc[regno] != 0)
- return 0;
- else if (need_stable_sp
- && push_operand (dest, GET_MODE (dest)))
- return 0;
- }
- }
- }
-
- if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
- {
- rtx link;
-
- for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
- link = XEXP (link, 1))
- {
- pat = XEXP (link, 0);
- if (GET_CODE (pat) == CLOBBER)
- {
- rtx dest = SET_DEST (pat);
-
- if (REG_P (dest))
- {
- int xregno = REGNO (dest);
- int xnregs
- = hard_regno_nregs[xregno][GET_MODE (dest)];
-
- if (xregno < regno + nregs
- && xregno + xnregs > regno)
- return 0;
- else if (xregno < valueno + valuenregs
- && xregno + xnregs > valueno)
- return 0;
- else if (goal_mem_addr_varies
- && reg_overlap_mentioned_for_reload_p (dest,
- goal))
- return 0;
- }
-
- else if (goal_mem && MEM_P (dest)
- && ! push_operand (dest, GET_MODE (dest)))
- return 0;
- else if (need_stable_sp
- && push_operand (dest, GET_MODE (dest)))
- return 0;
- }
- }
- }
-
-#ifdef AUTO_INC_DEC
- /* If this insn auto-increments or auto-decrements
- either regno or valueno, return 0 now.
- If GOAL is a memory ref and its address is not constant,
- and this insn P increments a register used in GOAL, return 0. */
- {
- rtx link;
-
- for (link = REG_NOTES (p); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && REG_P (XEXP (link, 0)))
- {
- int incno = REGNO (XEXP (link, 0));
- if (incno < regno + nregs && incno >= regno)
- return 0;
- if (incno < valueno + valuenregs && incno >= valueno)
- return 0;
- if (goal_mem_addr_varies
- && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
- goal))
- return 0;
- }
- }
-#endif
- }
- }
-}
-
-/* Find a place where INCED appears in an increment or decrement operator
- within X, and return the amount INCED is incremented or decremented by.
- The value is always positive. */
-
-static int
-find_inc_amount (rtx x, rtx inced)
-{
- enum rtx_code code = GET_CODE (x);
- const char *fmt;
- int i;
-
- if (code == MEM)
- {
- rtx addr = XEXP (x, 0);
- if ((GET_CODE (addr) == PRE_DEC
- || GET_CODE (addr) == POST_DEC
- || GET_CODE (addr) == PRE_INC
- || GET_CODE (addr) == POST_INC)
- && XEXP (addr, 0) == inced)
- return GET_MODE_SIZE (GET_MODE (x));
- else if ((GET_CODE (addr) == PRE_MODIFY
- || GET_CODE (addr) == POST_MODIFY)
- && GET_CODE (XEXP (addr, 1)) == PLUS
- && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
- && XEXP (addr, 0) == inced
- && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
- {
- i = INTVAL (XEXP (XEXP (addr, 1), 1));
- return i < 0 ? -i : i;
- }
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- int tem = find_inc_amount (XEXP (x, i), inced);
- if (tem != 0)
- return tem;
- }
- if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- {
- int tem = find_inc_amount (XVECEXP (x, i, j), inced);
- if (tem != 0)
- return tem;
- }
- }
- }
-
- return 0;
-}
-
-/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
- REG_INC note in insn INSN. REGNO must refer to a hard register. */
-
-#ifdef AUTO_INC_DEC
-static int
-reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
- rtx insn)
-{
- rtx link;
-
- gcc_assert (insn);
-
- if (! INSN_P (insn))
- return 0;
-
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC)
- {
- unsigned int test = (int) REGNO (XEXP (link, 0));
- if (test >= regno && test < endregno)
- return 1;
- }
- return 0;
-}
-#else
-
-#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
-
-#endif
-
-/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
- If SETS is 1, also consider SETs. If SETS is 2, enable checking
- REG_INC. REGNO must refer to a hard register. */
-
-int
-regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
- int sets)
-{
- unsigned int nregs, endregno;
-
- /* regno must be a hard register. */
- gcc_assert (regno < FIRST_PSEUDO_REGISTER);
-
- nregs = hard_regno_nregs[regno][mode];
- endregno = regno + nregs;
-
- if ((GET_CODE (PATTERN (insn)) == CLOBBER
- || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
- && REG_P (XEXP (PATTERN (insn), 0)))
- {
- unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
-
- return test >= regno && test < endregno;
- }
-
- if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
- return 1;
-
- if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- int i = XVECLEN (PATTERN (insn), 0) - 1;
-
- for (; i >= 0; i--)
- {
- rtx elt = XVECEXP (PATTERN (insn), 0, i);
- if ((GET_CODE (elt) == CLOBBER
- || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
- && REG_P (XEXP (elt, 0)))
- {
- unsigned int test = REGNO (XEXP (elt, 0));
-
- if (test >= regno && test < endregno)
- return 1;
- }
- if (sets == 2
- && reg_inc_found_and_valid_p (regno, endregno, elt))
- return 1;
- }
- }
-
- return 0;
-}
-
-/* Find the low part, with mode MODE, of a hard regno RELOADREG. */
-rtx
-reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
-{
- int regno;
-
- if (GET_MODE (reloadreg) == mode)
- return reloadreg;
-
- regno = REGNO (reloadreg);
-
- if (WORDS_BIG_ENDIAN)
- regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
- - (int) hard_regno_nregs[regno][mode];
-
- return gen_rtx_REG (mode, regno);
-}
-
-static const char *const reload_when_needed_name[] =
-{
- "RELOAD_FOR_INPUT",
- "RELOAD_FOR_OUTPUT",
- "RELOAD_FOR_INSN",
- "RELOAD_FOR_INPUT_ADDRESS",
- "RELOAD_FOR_INPADDR_ADDRESS",
- "RELOAD_FOR_OUTPUT_ADDRESS",
- "RELOAD_FOR_OUTADDR_ADDRESS",
- "RELOAD_FOR_OPERAND_ADDRESS",
- "RELOAD_FOR_OPADDR_ADDR",
- "RELOAD_OTHER",
- "RELOAD_FOR_OTHER_ADDRESS"
-};
-
-/* These functions are used to print the variables set by 'find_reloads' */
-
-void
-debug_reload_to_stream (FILE *f)
-{
- int r;
- const char *prefix;
-
- if (! f)
- f = stderr;
- for (r = 0; r < n_reloads; r++)
- {
- fprintf (f, "Reload %d: ", r);
-
- if (rld[r].in != 0)
- {
- fprintf (f, "reload_in (%s) = ",
- GET_MODE_NAME (rld[r].inmode));
- print_inline_rtx (f, rld[r].in, 24);
- fprintf (f, "\n\t");
- }
-
- if (rld[r].out != 0)
- {
- fprintf (f, "reload_out (%s) = ",
- GET_MODE_NAME (rld[r].outmode));
- print_inline_rtx (f, rld[r].out, 24);
- fprintf (f, "\n\t");
- }
-
- fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
-
- fprintf (f, "%s (opnum = %d)",
- reload_when_needed_name[(int) rld[r].when_needed],
- rld[r].opnum);
-
- if (rld[r].optional)
- fprintf (f, ", optional");
-
- if (rld[r].nongroup)
- fprintf (f, ", nongroup");
-
- if (rld[r].inc != 0)
- fprintf (f, ", inc by %d", rld[r].inc);
-
- if (rld[r].nocombine)
- fprintf (f, ", can't combine");
-
- if (rld[r].secondary_p)
- fprintf (f, ", secondary_reload_p");
-
- if (rld[r].in_reg != 0)
- {
- fprintf (f, "\n\treload_in_reg: ");
- print_inline_rtx (f, rld[r].in_reg, 24);
- }
-
- if (rld[r].out_reg != 0)
- {
- fprintf (f, "\n\treload_out_reg: ");
- print_inline_rtx (f, rld[r].out_reg, 24);
- }
-
- if (rld[r].reg_rtx != 0)
- {
- fprintf (f, "\n\treload_reg_rtx: ");
- print_inline_rtx (f, rld[r].reg_rtx, 24);
- }
-
- prefix = "\n\t";
- if (rld[r].secondary_in_reload != -1)
- {
- fprintf (f, "%ssecondary_in_reload = %d",
- prefix, rld[r].secondary_in_reload);
- prefix = ", ";
- }
-
- if (rld[r].secondary_out_reload != -1)
- fprintf (f, "%ssecondary_out_reload = %d\n",
- prefix, rld[r].secondary_out_reload);
-
- prefix = "\n\t";
- if (rld[r].secondary_in_icode != CODE_FOR_nothing)
- {
- fprintf (f, "%ssecondary_in_icode = %s", prefix,
- insn_data[rld[r].secondary_in_icode].name);
- prefix = ", ";
- }
-
- if (rld[r].secondary_out_icode != CODE_FOR_nothing)
- fprintf (f, "%ssecondary_out_icode = %s", prefix,
- insn_data[rld[r].secondary_out_icode].name);
-
- fprintf (f, "\n");
- }
-}
-
-void
-debug_reload (void)
-{
- debug_reload_to_stream (stderr);
-}