aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/regclass.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/regclass.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/regclass.c2693
1 files changed, 2693 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/regclass.c b/gcc-4.2.1-5666.3/gcc/regclass.c
new file mode 100644
index 000000000..fb22da580
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/regclass.c
@@ -0,0 +1,2693 @@
+/* Compute register class preferences for pseudo-registers.
+ Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
+ 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
+ Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+
+/* This file contains two passes of the compiler: reg_scan and reg_class.
+ It also defines some tables of information about the hardware registers
+ and a function init_reg_sets to initialize the tables. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "hard-reg-set.h"
+#include "rtl.h"
+#include "expr.h"
+#include "tm_p.h"
+#include "flags.h"
+#include "basic-block.h"
+#include "regs.h"
+#include "addresses.h"
+#include "function.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "reload.h"
+#include "real.h"
+#include "toplev.h"
+#include "output.h"
+#include "ggc.h"
+#include "timevar.h"
+#include "hashtab.h"
+#include "target.h"
+
+static void init_reg_sets_1 (void);
+static void init_reg_autoinc (void);
+
+/* If we have auto-increment or auto-decrement and we can have secondary
+ reloads, we are not allowed to use classes requiring secondary
+ reloads for pseudos auto-incremented since reload can't handle it. */
+/* We leave it to target hooks to decide if we have secondary reloads, so
+ assume that we might have them. */
+#if defined(AUTO_INC_DEC) /* */
+#define FORBIDDEN_INC_DEC_CLASSES
+#endif
+
+/* Register tables used by many passes. */
+
+/* Indexed by hard register number, contains 1 for registers
+ that are fixed use (stack pointer, pc, frame pointer, etc.).
+ These are the registers that cannot be used to allocate
+ a pseudo reg for general use. */
+
+char fixed_regs[FIRST_PSEUDO_REGISTER];
+
+/* Same info as a HARD_REG_SET. */
+
+HARD_REG_SET fixed_reg_set;
+
+/* Data for initializing the above. */
+
+static const char initial_fixed_regs[] = FIXED_REGISTERS;
+
+/* Indexed by hard register number, contains 1 for registers
+ that are fixed use or are clobbered by function calls.
+ These are the registers that cannot be used to allocate
+ a pseudo reg whose life crosses calls unless we are able
+ to save/restore them across the calls. */
+
+char call_used_regs[FIRST_PSEUDO_REGISTER];
+
+/* Same info as a HARD_REG_SET. */
+
+HARD_REG_SET call_used_reg_set;
+
+/* HARD_REG_SET of registers we want to avoid caller saving. */
+HARD_REG_SET losing_caller_save_reg_set;
+
+/* Data for initializing the above. */
+
+static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
+
+/* This is much like call_used_regs, except it doesn't have to
+ be a superset of FIXED_REGISTERS. This vector indicates
+ what is really call clobbered, and is used when defining
+ regs_invalidated_by_call. */
+
+#ifdef CALL_REALLY_USED_REGISTERS
+char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
+#endif
+
+#ifdef CALL_REALLY_USED_REGISTERS
+#define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
+#else
+#define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
+#endif
+
+
+/* Indexed by hard register number, contains 1 for registers that are
+ fixed use or call used registers that cannot hold quantities across
+ calls even if we are willing to save and restore them. call fixed
+ registers are a subset of call used registers. */
+
+char call_fixed_regs[FIRST_PSEUDO_REGISTER];
+
+/* The same info as a HARD_REG_SET. */
+
+HARD_REG_SET call_fixed_reg_set;
+
+/* Indexed by hard register number, contains 1 for registers
+ that are being used for global register decls.
+ These must be exempt from ordinary flow analysis
+ and are also considered fixed. */
+
+char global_regs[FIRST_PSEUDO_REGISTER];
+
+/* Contains 1 for registers that are set or clobbered by calls. */
+/* ??? Ideally, this would be just call_used_regs plus global_regs, but
+ for someone's bright idea to have call_used_regs strictly include
+ fixed_regs. Which leaves us guessing as to the set of fixed_regs
+ that are actually preserved. We know for sure that those associated
+ with the local stack frame are safe, but scant others. */
+
+HARD_REG_SET regs_invalidated_by_call;
+
+/* Table of register numbers in the order in which to try to use them. */
+#ifdef REG_ALLOC_ORDER
+int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
+
+/* The inverse of reg_alloc_order. */
+int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
+#endif
+
+/* APPLE LOCAL begin 5831562 add DIMODE_REG_ALLOC_ORDER */
+#ifdef DIMODE_REG_ALLOC_ORDER
+int dimode_reg_alloc_order[FIRST_PSEUDO_REGISTER] = DIMODE_REG_ALLOC_ORDER;
+
+/* The inverse of reg_alloc_order. */
+int dimode_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
+#endif
+/* APPLE LOCAL end 5831562 add DIMODE_REG_ALLOC_ORDER */
+
+/* For each reg class, a HARD_REG_SET saying which registers are in it. */
+
+HARD_REG_SET reg_class_contents[N_REG_CLASSES];
+
+/* The same information, but as an array of unsigned ints. We copy from
+ these unsigned ints to the table above. We do this so the tm.h files
+ do not have to be aware of the wordsize for machines with <= 64 regs.
+ Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
+
+#define N_REG_INTS \
+ ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
+
+static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
+ = REG_CLASS_CONTENTS;
+
+/* For each reg class, number of regs it contains. */
+
+unsigned int reg_class_size[N_REG_CLASSES];
+
+/* For each reg class, table listing all the containing classes. */
+
+static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
+
+/* For each reg class, table listing all the classes contained in it. */
+
+static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
+
+/* For each pair of reg classes,
+ a largest reg class contained in their union. */
+
+enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
+
+/* For each pair of reg classes,
+ the smallest reg class containing their union. */
+
+enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
+
+/* Array containing all of the register names. */
+
+const char * reg_names[] = REGISTER_NAMES;
+
+/* Array containing all of the register class names. */
+
+const char * reg_class_names[] = REG_CLASS_NAMES;
+
+/* For each hard register, the widest mode object that it can contain.
+ This will be a MODE_INT mode if the register can hold integers. Otherwise
+ it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
+ register. */
+
+enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
+
+/* 1 if there is a register of given mode. */
+
+bool have_regs_of_mode [MAX_MACHINE_MODE];
+
+/* 1 if class does contain register of given mode. */
+
+static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
+
+/* Maximum cost of moving from a register in one class to a register in
+ another class. Based on REGISTER_MOVE_COST. */
+
+static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
+
+/* Similar, but here we don't have to move if the first index is a subset
+ of the second so in that case the cost is zero. */
+
+static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
+
+/* Similar, but here we don't have to move if the first index is a superset
+ of the second so in that case the cost is zero. */
+
+static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
+
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+
+/* These are the classes that regs which are auto-incremented or decremented
+ cannot be put in. */
+
+static int forbidden_inc_dec_class[N_REG_CLASSES];
+
+/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
+ context. */
+
+static char *in_inc_dec;
+
+#endif /* FORBIDDEN_INC_DEC_CLASSES */
+
+/* Sample MEM values for use by memory_move_secondary_cost. */
+
+static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
+
+/* Linked list of reg_info structures allocated for reg_n_info array.
+ Grouping all of the allocated structures together in one lump
+ means only one call to bzero to clear them, rather than n smaller
+ calls. */
+struct reg_info_data {
+ struct reg_info_data *next; /* next set of reg_info structures */
+ size_t min_index; /* minimum index # */
+ size_t max_index; /* maximum index # */
+ char used_p; /* nonzero if this has been used previously */
+ reg_info data[1]; /* beginning of the reg_info data */
+};
+
+static struct reg_info_data *reg_info_head;
+
+/* No more global register variables may be declared; true once
+ regclass has been initialized. */
+
+static int no_global_reg_vars = 0;
+
+/* Specify number of hard registers given machine mode occupy. */
+unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
+
+/* Function called only once to initialize the above data on reg usage.
+ Once this is done, various switches may override. */
+
+void
+init_reg_sets (void)
+{
+ int i, j;
+
+ /* First copy the register information from the initial int form into
+ the regsets. */
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ CLEAR_HARD_REG_SET (reg_class_contents[i]);
+
+ /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ if (int_reg_class_contents[i][j / 32]
+ & ((unsigned) 1 << (j % 32)))
+ SET_HARD_REG_BIT (reg_class_contents[i], j);
+ }
+
+ /* Sanity check: make sure the target macros FIXED_REGISTERS and
+ CALL_USED_REGISTERS had the right number of initializers. */
+ gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
+ gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
+
+ memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
+ memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
+ memset (global_regs, 0, sizeof global_regs);
+
+#ifdef REG_ALLOC_ORDER
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ inv_reg_alloc_order[reg_alloc_order[i]] = i;
+#endif
+
+/* APPLE LOCAL begin 5831562 add DIMODE_REG_ALLOC_ORDER */
+#ifdef DIMODE_REG_ALLOC_ORDER
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ dimode_inv_reg_alloc_order[dimode_reg_alloc_order[i]] = i;
+#endif
+/* APPLE LOCAL end 5831562 add DIMODE_REG_ALLOC_ORDER */
+}
+
+/* After switches have been processed, which perhaps alter
+ `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
+
+static void
+init_reg_sets_1 (void)
+{
+ unsigned int i, j;
+ unsigned int /* enum machine_mode */ m;
+
+ /* This macro allows the fixed or call-used registers
+ and the register classes to depend on target flags. */
+
+#ifdef CONDITIONAL_REGISTER_USAGE
+ CONDITIONAL_REGISTER_USAGE;
+#endif
+
+ /* Compute number of hard regs in each class. */
+
+ memset (reg_class_size, 0, sizeof reg_class_size);
+ for (i = 0; i < N_REG_CLASSES; i++)
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
+ reg_class_size[i]++;
+
+ /* Initialize the table of subunions.
+ reg_class_subunion[I][J] gets the largest-numbered reg-class
+ that is contained in the union of classes I and J. */
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ for (j = 0; j < N_REG_CLASSES; j++)
+ {
+ HARD_REG_SET c;
+ int k;
+
+ COPY_HARD_REG_SET (c, reg_class_contents[i]);
+ IOR_HARD_REG_SET (c, reg_class_contents[j]);
+ for (k = 0; k < N_REG_CLASSES; k++)
+ {
+ GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
+ subclass1);
+ continue;
+
+ subclass1:
+ /* Keep the largest subclass. */ /* SPEE 900308 */
+ GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
+ reg_class_contents[(int) reg_class_subunion[i][j]],
+ subclass2);
+ reg_class_subunion[i][j] = (enum reg_class) k;
+ subclass2:
+ ;
+ }
+ }
+ }
+
+ /* Initialize the table of superunions.
+ reg_class_superunion[I][J] gets the smallest-numbered reg-class
+ containing the union of classes I and J. */
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ for (j = 0; j < N_REG_CLASSES; j++)
+ {
+ HARD_REG_SET c;
+ int k;
+
+ COPY_HARD_REG_SET (c, reg_class_contents[i]);
+ IOR_HARD_REG_SET (c, reg_class_contents[j]);
+ for (k = 0; k < N_REG_CLASSES; k++)
+ GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
+
+ superclass:
+ reg_class_superunion[i][j] = (enum reg_class) k;
+ }
+ }
+
+ /* Initialize the tables of subclasses and superclasses of each reg class.
+ First clear the whole table, then add the elements as they are found. */
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ for (j = 0; j < N_REG_CLASSES; j++)
+ {
+ reg_class_superclasses[i][j] = LIM_REG_CLASSES;
+ reg_class_subclasses[i][j] = LIM_REG_CLASSES;
+ }
+ }
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ if (i == (int) NO_REGS)
+ continue;
+
+ for (j = i + 1; j < N_REG_CLASSES; j++)
+ {
+ enum reg_class *p;
+
+ GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
+ subclass);
+ continue;
+ subclass:
+ /* Reg class I is a subclass of J.
+ Add J to the table of superclasses of I. */
+ p = &reg_class_superclasses[i][0];
+ while (*p != LIM_REG_CLASSES) p++;
+ *p = (enum reg_class) j;
+ /* Add I to the table of superclasses of J. */
+ p = &reg_class_subclasses[j][0];
+ while (*p != LIM_REG_CLASSES) p++;
+ *p = (enum reg_class) i;
+ }
+ }
+
+ /* Initialize "constant" tables. */
+
+ CLEAR_HARD_REG_SET (fixed_reg_set);
+ CLEAR_HARD_REG_SET (call_used_reg_set);
+ CLEAR_HARD_REG_SET (call_fixed_reg_set);
+ CLEAR_HARD_REG_SET (regs_invalidated_by_call);
+
+ memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ /* call_used_regs must include fixed_regs. */
+ gcc_assert (!fixed_regs[i] || call_used_regs[i]);
+#ifdef CALL_REALLY_USED_REGISTERS
+ /* call_used_regs must include call_really_used_regs. */
+ gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
+#endif
+
+ if (fixed_regs[i])
+ SET_HARD_REG_BIT (fixed_reg_set, i);
+
+ if (call_used_regs[i])
+ SET_HARD_REG_BIT (call_used_reg_set, i);
+ if (call_fixed_regs[i])
+ SET_HARD_REG_BIT (call_fixed_reg_set, i);
+ if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
+ SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
+
+ /* There are a couple of fixed registers that we know are safe to
+ exclude from being clobbered by calls:
+
+ The frame pointer is always preserved across calls. The arg pointer
+ is if it is fixed. The stack pointer usually is, unless
+ RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
+ If we are generating PIC code, the PIC offset table register is
+ preserved across calls, though the target can override that. */
+
+ if (i == STACK_POINTER_REGNUM)
+ ;
+ else if (global_regs[i])
+ SET_HARD_REG_BIT (regs_invalidated_by_call, i);
+ else if (i == FRAME_POINTER_REGNUM)
+ ;
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ else if (i == HARD_FRAME_POINTER_REGNUM)
+ ;
+#endif
+#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
+ ;
+#endif
+#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
+ else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
+ ;
+#endif
+ else if (CALL_REALLY_USED_REGNO_P (i))
+ SET_HARD_REG_BIT (regs_invalidated_by_call, i);
+ }
+
+ memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
+ memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
+ for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
+ for (i = 0; i < N_REG_CLASSES; i++)
+ if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
+ && HARD_REGNO_MODE_OK (j, m))
+ {
+ contains_reg_of_mode [i][m] = 1;
+ have_regs_of_mode [m] = 1;
+ break;
+ }
+
+ /* Initialize the move cost table. Find every subset of each class
+ and take the maximum cost of moving any subset to any other. */
+
+ for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
+ if (have_regs_of_mode [m])
+ {
+ for (i = 0; i < N_REG_CLASSES; i++)
+ if (contains_reg_of_mode [i][m])
+ for (j = 0; j < N_REG_CLASSES; j++)
+ {
+ int cost;
+ enum reg_class *p1, *p2;
+
+ if (!contains_reg_of_mode [j][m])
+ {
+ move_cost[m][i][j] = 65536;
+ may_move_in_cost[m][i][j] = 65536;
+ may_move_out_cost[m][i][j] = 65536;
+ }
+ else
+ {
+ cost = REGISTER_MOVE_COST (m, i, j);
+
+ for (p2 = &reg_class_subclasses[j][0];
+ *p2 != LIM_REG_CLASSES;
+ p2++)
+ if (*p2 != i && contains_reg_of_mode [*p2][m])
+ cost = MAX (cost, move_cost [m][i][*p2]);
+
+ for (p1 = &reg_class_subclasses[i][0];
+ *p1 != LIM_REG_CLASSES;
+ p1++)
+ if (*p1 != j && contains_reg_of_mode [*p1][m])
+ cost = MAX (cost, move_cost [m][*p1][j]);
+
+ move_cost[m][i][j] = cost;
+
+ if (reg_class_subset_p (i, j))
+ may_move_in_cost[m][i][j] = 0;
+ else
+ may_move_in_cost[m][i][j] = cost;
+
+ if (reg_class_subset_p (j, i))
+ may_move_out_cost[m][i][j] = 0;
+ else
+ may_move_out_cost[m][i][j] = cost;
+ }
+ }
+ else
+ for (j = 0; j < N_REG_CLASSES; j++)
+ {
+ move_cost[m][i][j] = 65536;
+ may_move_in_cost[m][i][j] = 65536;
+ may_move_out_cost[m][i][j] = 65536;
+ }
+ }
+}
+
+/* Compute the table of register modes.
+ These values are used to record death information for individual registers
+ (as opposed to a multi-register mode). */
+
+void
+init_reg_modes_once (void)
+{
+ int i, j;
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = 0; j < MAX_MACHINE_MODE; j++)
+ hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
+
+ /* If we couldn't find a valid mode, just use the previous mode.
+ ??? One situation in which we need to do this is on the mips where
+ HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
+ to use DF mode for the even registers and VOIDmode for the odd
+ (for the cpu models where the odd ones are inaccessible). */
+ if (reg_raw_mode[i] == VOIDmode)
+ reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
+ }
+}
+
+/* Finish initializing the register sets and
+ initialize the register modes. */
+
+void
+init_regs (void)
+{
+ /* This finishes what was started by init_reg_sets, but couldn't be done
+ until after register usage was specified. */
+ init_reg_sets_1 ();
+
+ init_reg_autoinc ();
+}
+
+/* Initialize some fake stack-frame MEM references for use in
+ memory_move_secondary_cost. */
+
+void
+init_fake_stack_mems (void)
+{
+ {
+ int i;
+
+ for (i = 0; i < MAX_MACHINE_MODE; i++)
+ top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
+ }
+}
+
+
+/* Compute extra cost of moving registers to/from memory due to reloads.
+ Only needed if secondary reloads are required for memory moves. */
+
+int
+memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
+{
+ enum reg_class altclass;
+ int partial_cost = 0;
+ /* We need a memory reference to feed to SECONDARY... macros. */
+ /* mem may be unused even if the SECONDARY_ macros are defined. */
+ rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
+
+
+ altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
+
+ if (altclass == NO_REGS)
+ return 0;
+
+ if (in)
+ partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
+ else
+ partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
+
+ if (class == altclass)
+ /* This isn't simply a copy-to-temporary situation. Can't guess
+ what it is, so MEMORY_MOVE_COST really ought not to be calling
+ here in that case.
+
+ I'm tempted to put in an assert here, but returning this will
+ probably only give poor estimates, which is what we would've
+ had before this code anyways. */
+ return partial_cost;
+
+ /* Check if the secondary reload register will also need a
+ secondary reload. */
+ return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
+}
+
+/* Return a machine mode that is legitimate for hard reg REGNO and large
+ enough to save nregs. If we can't find one, return VOIDmode.
+ If CALL_SAVED is true, only consider modes that are call saved. */
+
+enum machine_mode
+choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
+ unsigned int nregs, bool call_saved)
+{
+ unsigned int /* enum machine_mode */ m;
+ enum machine_mode found_mode = VOIDmode, mode;
+
+ /* We first look for the largest integer mode that can be validly
+ held in REGNO. If none, we look for the largest floating-point mode.
+ If we still didn't find a valid mode, try CCmode. */
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+ mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if ((unsigned) hard_regno_nregs[regno][mode] == nregs
+ && HARD_REGNO_MODE_OK (regno, mode)
+ && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
+ found_mode = mode;
+
+ if (found_mode != VOIDmode)
+ return found_mode;
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
+ mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if ((unsigned) hard_regno_nregs[regno][mode] == nregs
+ && HARD_REGNO_MODE_OK (regno, mode)
+ && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
+ found_mode = mode;
+
+ if (found_mode != VOIDmode)
+ return found_mode;
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
+ mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if ((unsigned) hard_regno_nregs[regno][mode] == nregs
+ && HARD_REGNO_MODE_OK (regno, mode)
+ && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
+ found_mode = mode;
+
+ if (found_mode != VOIDmode)
+ return found_mode;
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
+ mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if ((unsigned) hard_regno_nregs[regno][mode] == nregs
+ && HARD_REGNO_MODE_OK (regno, mode)
+ && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
+ found_mode = mode;
+
+ if (found_mode != VOIDmode)
+ return found_mode;
+
+ /* Iterate over all of the CCmodes. */
+ for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
+ {
+ mode = (enum machine_mode) m;
+ if ((unsigned) hard_regno_nregs[regno][mode] == nregs
+ && HARD_REGNO_MODE_OK (regno, mode)
+ && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
+ return mode;
+ }
+
+ /* We can't find a mode valid for this register. */
+ return VOIDmode;
+}
+
+/* Specify the usage characteristics of the register named NAME.
+ It should be a fixed register if FIXED and a
+ call-used register if CALL_USED. */
+
+void
+fix_register (const char *name, int fixed, int call_used)
+{
+ int i;
+
+ /* Decode the name and update the primary form of
+ the register info. */
+
+ if ((i = decode_reg_name (name)) >= 0)
+ {
+ if ((i == STACK_POINTER_REGNUM
+#ifdef HARD_FRAME_POINTER_REGNUM
+ || i == HARD_FRAME_POINTER_REGNUM
+#else
+ || i == FRAME_POINTER_REGNUM
+#endif
+ )
+ && (fixed == 0 || call_used == 0))
+ {
+ static const char * const what_option[2][2] = {
+ { "call-saved", "call-used" },
+ { "no-such-option", "fixed" }};
+
+ error ("can't use '%s' as a %s register", name,
+ what_option[fixed][call_used]);
+ }
+ else
+ {
+ fixed_regs[i] = fixed;
+ call_used_regs[i] = call_used;
+#ifdef CALL_REALLY_USED_REGISTERS
+ if (fixed == 0)
+ call_really_used_regs[i] = call_used;
+#endif
+ }
+ }
+ else
+ {
+ warning (0, "unknown register name: %s", name);
+ }
+}
+
+/* Mark register number I as global. */
+
+void
+globalize_reg (int i)
+{
+ if (fixed_regs[i] == 0 && no_global_reg_vars)
+ error ("global register variable follows a function definition");
+
+ if (global_regs[i])
+ {
+ warning (0, "register used for two global register variables");
+ return;
+ }
+
+ if (call_used_regs[i] && ! fixed_regs[i])
+ warning (0, "call-clobbered register used for global register variable");
+
+ global_regs[i] = 1;
+
+ /* If we're globalizing the frame pointer, we need to set the
+ appropriate regs_invalidated_by_call bit, even if it's already
+ set in fixed_regs. */
+ if (i != STACK_POINTER_REGNUM)
+ SET_HARD_REG_BIT (regs_invalidated_by_call, i);
+
+ /* If already fixed, nothing else to do. */
+ if (fixed_regs[i])
+ return;
+
+ fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
+#ifdef CALL_REALLY_USED_REGISTERS
+ call_really_used_regs[i] = 1;
+#endif
+
+ SET_HARD_REG_BIT (fixed_reg_set, i);
+ SET_HARD_REG_BIT (call_used_reg_set, i);
+ SET_HARD_REG_BIT (call_fixed_reg_set, i);
+}
+
+/* Now the data and code for the `regclass' pass, which happens
+ just before local-alloc. */
+
+/* The `costs' struct records the cost of using a hard register of each class
+ and of using memory for each pseudo. We use this data to set up
+ register class preferences. */
+
+struct costs
+{
+ int cost[N_REG_CLASSES];
+ int mem_cost;
+};
+
+/* Structure used to record preferences of given pseudo. */
+struct reg_pref
+{
+ /* (enum reg_class) prefclass is the preferred class. May be
+ NO_REGS if no class is better than memory. */
+ char prefclass;
+
+ /* altclass is a register class that we should use for allocating
+ pseudo if no register in the preferred class is available.
+ If no register in this class is available, memory is preferred.
+
+ It might appear to be more general to have a bitmask of classes here,
+ but since it is recommended that there be a class corresponding to the
+ union of most major pair of classes, that generality is not required. */
+ char altclass;
+};
+
+/* Record the cost of each class for each pseudo. */
+
+static struct costs *costs;
+
+/* Initialized once, and used to initialize cost values for each insn. */
+
+static struct costs init_cost;
+
+/* Record preferences of each pseudo.
+ This is available after `regclass' is run. */
+
+static struct reg_pref *reg_pref;
+
+/* Allocated buffers for reg_pref. */
+
+static struct reg_pref *reg_pref_buffer;
+
+/* Frequency of executions of current insn. */
+
+static int frequency;
+
+static rtx scan_one_insn (rtx, int);
+static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
+static void dump_regclass (FILE *);
+static void record_reg_classes (int, int, rtx *, enum machine_mode *,
+ const char **, rtx, struct costs *,
+ struct reg_pref *);
+static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
+ secondary_reload_info *);
+static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
+ enum rtx_code, int);
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+static int auto_inc_dec_reg_p (rtx, enum machine_mode);
+#endif
+static void reg_scan_mark_refs (rtx, rtx, int);
+
+/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
+
+static inline bool
+ok_for_index_p_nonstrict (rtx reg)
+{
+ unsigned regno = REGNO (reg);
+ return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
+}
+
+/* A version of regno_ok_for_base_p for use during regclass, when all pseudos
+ should count as OK. Arguments as for regno_ok_for_base_p. */
+
+static inline bool
+ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
+ enum rtx_code outer_code, enum rtx_code index_code)
+{
+ unsigned regno = REGNO (reg);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return true;
+
+ return ok_for_base_p_1 (regno, mode, outer_code, index_code);
+}
+
+/* Return the reg_class in which pseudo reg number REGNO is best allocated.
+ This function is sometimes called before the info has been computed.
+ When that happens, just return GENERAL_REGS, which is innocuous. */
+
+enum reg_class
+reg_preferred_class (int regno)
+{
+ if (reg_pref == 0)
+ return GENERAL_REGS;
+ return (enum reg_class) reg_pref[regno].prefclass;
+}
+
+enum reg_class
+reg_alternate_class (int regno)
+{
+ if (reg_pref == 0)
+ return ALL_REGS;
+
+ return (enum reg_class) reg_pref[regno].altclass;
+}
+
+/* Initialize some global data for this pass. */
+
+void
+regclass_init (void)
+{
+ int i;
+
+ init_cost.mem_cost = 10000;
+ for (i = 0; i < N_REG_CLASSES; i++)
+ init_cost.cost[i] = 10000;
+
+ /* This prevents dump_flow_info from losing if called
+ before regclass is run. */
+ reg_pref = NULL;
+
+ /* No more global register variables may be declared. */
+ no_global_reg_vars = 1;
+}
+
+/* Dump register costs. */
+static void
+dump_regclass (FILE *dump)
+{
+ int i;
+ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
+ {
+ int /* enum reg_class */ class;
+ if (REG_N_REFS (i))
+ {
+ fprintf (dump, " Register %i costs:", i);
+ for (class = 0; class < (int) N_REG_CLASSES; class++)
+ if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+ && (!in_inc_dec[i]
+ || !forbidden_inc_dec_class[(enum reg_class) class])
+#endif
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ && ! invalid_mode_change_p (i, (enum reg_class) class,
+ PSEUDO_REGNO_MODE (i))
+#endif
+ )
+ fprintf (dump, " %s:%i", reg_class_names[class],
+ costs[i].cost[(enum reg_class) class]);
+ fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
+ }
+ }
+}
+
+
+/* Calculate the costs of insn operands. */
+
+static void
+record_operand_costs (rtx insn, struct costs *op_costs,
+ struct reg_pref *reg_pref)
+{
+ const char *constraints[MAX_RECOG_OPERANDS];
+ enum machine_mode modes[MAX_RECOG_OPERANDS];
+ int i;
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ {
+ constraints[i] = recog_data.constraints[i];
+ modes[i] = recog_data.operand_mode[i];
+ }
+
+ /* If we get here, we are set up to record the costs of all the
+ operands for this insn. Start by initializing the costs.
+ Then handle any address registers. Finally record the desired
+ classes for any pseudos, doing it twice if some pair of
+ operands are commutative. */
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ {
+ op_costs[i] = init_cost;
+
+ if (GET_CODE (recog_data.operand[i]) == SUBREG)
+ recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
+
+ if (MEM_P (recog_data.operand[i]))
+ record_address_regs (GET_MODE (recog_data.operand[i]),
+ XEXP (recog_data.operand[i], 0),
+ 0, MEM, SCRATCH, frequency * 2);
+ else if (constraints[i][0] == 'p'
+ || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
+ record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
+ SCRATCH, frequency * 2);
+ }
+
+ /* Check for commutative in a separate loop so everything will
+ have been initialized. We must do this even if one operand
+ is a constant--see addsi3 in m68k.md. */
+
+ for (i = 0; i < (int) recog_data.n_operands - 1; i++)
+ if (constraints[i][0] == '%')
+ {
+ const char *xconstraints[MAX_RECOG_OPERANDS];
+ int j;
+
+ /* Handle commutative operands by swapping the constraints.
+ We assume the modes are the same. */
+
+ for (j = 0; j < recog_data.n_operands; j++)
+ xconstraints[j] = constraints[j];
+
+ xconstraints[i] = constraints[i+1];
+ xconstraints[i+1] = constraints[i];
+ record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
+ recog_data.operand, modes,
+ xconstraints, insn, op_costs, reg_pref);
+ }
+
+ record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
+ recog_data.operand, modes,
+ constraints, insn, op_costs, reg_pref);
+}
+
+/* Subroutine of regclass, processes one insn INSN. Scan it and record each
+ time it would save code to put a certain register in a certain class.
+ PASS, when nonzero, inhibits some optimizations which need only be done
+ once.
+ Return the last insn processed, so that the scan can be continued from
+ there. */
+
+static rtx
+scan_one_insn (rtx insn, int pass)
+{
+ enum rtx_code pat_code;
+ rtx set, note;
+ int i, j;
+ struct costs op_costs[MAX_RECOG_OPERANDS];
+
+ if (!INSN_P (insn))
+ return insn;
+
+ pat_code = GET_CODE (PATTERN (insn));
+ if (pat_code == USE
+ || pat_code == CLOBBER
+ || pat_code == ASM_INPUT
+ || pat_code == ADDR_VEC
+ || pat_code == ADDR_DIFF_VEC)
+ return insn;
+
+ set = single_set (insn);
+ extract_insn (insn);
+
+ /* If this insn loads a parameter from its stack slot, then
+ it represents a savings, rather than a cost, if the
+ parameter is stored in memory. Record this fact. */
+
+ if (set != 0 && REG_P (SET_DEST (set))
+ && MEM_P (SET_SRC (set))
+ && (note = find_reg_note (insn, REG_EQUIV,
+ NULL_RTX)) != 0
+ && MEM_P (XEXP (note, 0)))
+ {
+ costs[REGNO (SET_DEST (set))].mem_cost
+ -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
+ GENERAL_REGS, 1)
+ * frequency);
+ record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
+ 0, MEM, SCRATCH, frequency * 2);
+ return insn;
+ }
+
+ /* Improve handling of two-address insns such as
+ (set X (ashift CONST Y)) where CONST must be made to
+ match X. Change it into two insns: (set X CONST)
+ (set X (ashift X Y)). If we left this for reloading, it
+ would probably get three insns because X and Y might go
+ in the same place. This prevents X and Y from receiving
+ the same hard reg.
+
+ We can only do this if the modes of operands 0 and 1
+ (which might not be the same) are tieable and we only need
+ do this during our first pass. */
+
+ if (pass == 0 && optimize
+ && recog_data.n_operands >= 3
+ && recog_data.constraints[1][0] == '0'
+ && recog_data.constraints[1][1] == 0
+ && CONSTANT_P (recog_data.operand[1])
+ && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
+ && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
+ && REG_P (recog_data.operand[0])
+ && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
+ recog_data.operand_mode[1]))
+ {
+ rtx previnsn = prev_real_insn (insn);
+ rtx dest
+ = gen_lowpart (recog_data.operand_mode[1],
+ recog_data.operand[0]);
+ rtx newinsn
+ = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
+
+ /* If this insn was the start of a basic block,
+ include the new insn in that block.
+ We need not check for code_label here;
+ while a basic block can start with a code_label,
+ INSN could not be at the beginning of that block. */
+ if (previnsn == 0 || JUMP_P (previnsn))
+ {
+ basic_block b;
+ FOR_EACH_BB (b)
+ if (insn == BB_HEAD (b))
+ BB_HEAD (b) = newinsn;
+ }
+
+ /* This makes one more setting of new insns's dest. */
+ REG_N_SETS (REGNO (recog_data.operand[0]))++;
+ REG_N_REFS (REGNO (recog_data.operand[0]))++;
+ REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
+
+ *recog_data.operand_loc[1] = recog_data.operand[0];
+ REG_N_REFS (REGNO (recog_data.operand[0]))++;
+ REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
+ for (i = recog_data.n_dups - 1; i >= 0; i--)
+ if (recog_data.dup_num[i] == 1)
+ {
+ *recog_data.dup_loc[i] = recog_data.operand[0];
+ REG_N_REFS (REGNO (recog_data.operand[0]))++;
+ REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
+ }
+
+ return PREV_INSN (newinsn);
+ }
+
+ record_operand_costs (insn, op_costs, reg_pref);
+
+ /* Now add the cost for each operand to the total costs for
+ its register. */
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ if (REG_P (recog_data.operand[i])
+ && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
+ {
+ int regno = REGNO (recog_data.operand[i]);
+ struct costs *p = &costs[regno], *q = &op_costs[i];
+
+ p->mem_cost += q->mem_cost * frequency;
+ for (j = 0; j < N_REG_CLASSES; j++)
+ p->cost[j] += q->cost[j] * frequency;
+ }
+
+ return insn;
+}
+
+/* Initialize information about which register classes can be used for
+ pseudos that are auto-incremented or auto-decremented. */
+
+static void
+init_reg_autoinc (void)
+{
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+ int i;
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ {
+ rtx r = gen_rtx_raw_REG (VOIDmode, 0);
+ enum machine_mode m;
+ int j;
+
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
+ {
+ REGNO (r) = j;
+
+ for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
+ m = (enum machine_mode) ((int) m + 1))
+ if (HARD_REGNO_MODE_OK (j, m))
+ {
+ /* ??? There are two assumptions here; that the base class does not
+ depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
+ that it does not depend on the machine mode of the memory
+ reference. */
+ enum reg_class base_class
+ = base_reg_class (VOIDmode, POST_INC, SCRATCH);
+
+ PUT_MODE (r, m);
+
+ /* If a register is not directly suitable for an
+ auto-increment or decrement addressing mode and
+ requires secondary reloads, disallow its class from
+ being used in such addresses. */
+
+ if ((secondary_reload_class (1, base_class, m, r)
+ || secondary_reload_class (1, base_class, m, r))
+ && ! auto_inc_dec_reg_p (r, m))
+ forbidden_inc_dec_class[i] = 1;
+ }
+ }
+ }
+#endif /* FORBIDDEN_INC_DEC_CLASSES */
+}
+
+/* This is a pass of the compiler that scans all instructions
+ and calculates the preferred class for each pseudo-register.
+ This information can be accessed later by calling `reg_preferred_class'.
+ This pass comes just before local register allocation. */
+
+void
+regclass (rtx f, int nregs)
+{
+ rtx insn;
+ int i;
+ int pass;
+
+ init_recog ();
+
+ costs = XNEWVEC (struct costs, nregs);
+
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+
+ in_inc_dec = XNEWVEC (char, nregs);
+
+#endif /* FORBIDDEN_INC_DEC_CLASSES */
+
+ /* Normally we scan the insns once and determine the best class to use for
+ each register. However, if -fexpensive_optimizations are on, we do so
+ twice, the second time using the tentative best classes to guide the
+ selection. */
+
+ for (pass = 0; pass <= flag_expensive_optimizations; pass++)
+ {
+ basic_block bb;
+
+ if (dump_file)
+ fprintf (dump_file, "\n\nPass %i\n\n",pass);
+ /* Zero out our accumulation of the cost of each class for each reg. */
+
+ memset (costs, 0, nregs * sizeof (struct costs));
+
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+ memset (in_inc_dec, 0, nregs);
+#endif
+
+ /* Scan the instructions and record each time it would
+ save code to put a certain register in a certain class. */
+
+ if (!optimize)
+ {
+ frequency = REG_FREQ_MAX;
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ insn = scan_one_insn (insn, pass);
+ }
+ else
+ FOR_EACH_BB (bb)
+ {
+ /* Show that an insn inside a loop is likely to be executed three
+ times more than insns outside a loop. This is much more
+ aggressive than the assumptions made elsewhere and is being
+ tried as an experiment. */
+ frequency = REG_FREQ_FROM_BB (bb);
+ for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
+ {
+ insn = scan_one_insn (insn, pass);
+ if (insn == BB_END (bb))
+ break;
+ }
+ }
+
+ /* Now for each register look at how desirable each class is
+ and find which class is preferred. Store that in
+ `prefclass'. Record in `altclass' the largest register
+ class any of whose registers is better than memory. */
+
+ if (pass == 0)
+ reg_pref = reg_pref_buffer;
+
+ if (dump_file)
+ {
+ dump_regclass (dump_file);
+ fprintf (dump_file,"\n");
+ }
+ for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
+ {
+ int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
+ enum reg_class best = ALL_REGS, alt = NO_REGS;
+ /* This is an enum reg_class, but we call it an int
+ to save lots of casts. */
+ int class;
+ struct costs *p = &costs[i];
+
+ /* In non-optimizing compilation REG_N_REFS is not initialized
+ yet. */
+ if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
+ continue;
+
+ for (class = (int) ALL_REGS - 1; class > 0; class--)
+ {
+ /* Ignore classes that are too small for this operand or
+ invalid for an operand that was auto-incremented. */
+ if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+ || (in_inc_dec[i] && forbidden_inc_dec_class[class])
+#endif
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ || invalid_mode_change_p (i, (enum reg_class) class,
+ PSEUDO_REGNO_MODE (i))
+#endif
+ )
+ ;
+ else if (p->cost[class] < best_cost)
+ {
+ best_cost = p->cost[class];
+ best = (enum reg_class) class;
+ }
+ else if (p->cost[class] == best_cost)
+ best = reg_class_subunion[(int) best][class];
+ }
+
+ /* If no register class is better than memory, use memory. */
+ if (p->mem_cost < best_cost)
+ best = NO_REGS;
+
+ /* Record the alternate register class; i.e., a class for which
+ every register in it is better than using memory. If adding a
+ class would make a smaller class (i.e., no union of just those
+ classes exists), skip that class. The major unions of classes
+ should be provided as a register class. Don't do this if we
+ will be doing it again later. */
+
+ if ((pass == 1 || dump_file) || ! flag_expensive_optimizations)
+ for (class = 0; class < N_REG_CLASSES; class++)
+ if (p->cost[class] < p->mem_cost
+ && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
+ > reg_class_size[(int) alt])
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+ && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
+#endif
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ && ! invalid_mode_change_p (i, (enum reg_class) class,
+ PSEUDO_REGNO_MODE (i))
+#endif
+ )
+ alt = reg_class_subunion[(int) alt][class];
+
+ /* If we don't add any classes, nothing to try. */
+ if (alt == best)
+ alt = NO_REGS;
+
+ if (dump_file
+ && (reg_pref[i].prefclass != (int) best
+ || reg_pref[i].altclass != (int) alt))
+ {
+ fprintf (dump_file, " Register %i", i);
+ if (alt == ALL_REGS || best == ALL_REGS)
+ fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
+ else if (alt == NO_REGS)
+ fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
+ else
+ fprintf (dump_file, " pref %s, else %s\n",
+ reg_class_names[(int) best],
+ reg_class_names[(int) alt]);
+ }
+
+ /* We cast to (int) because (char) hits bugs in some compilers. */
+ reg_pref[i].prefclass = (int) best;
+ reg_pref[i].altclass = (int) alt;
+ }
+ }
+
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+ free (in_inc_dec);
+#endif
+ free (costs);
+}
+
+/* Record the cost of using memory or registers of various classes for
+ the operands in INSN.
+
+ N_ALTS is the number of alternatives.
+
+ N_OPS is the number of operands.
+
+ OPS is an array of the operands.
+
+ MODES are the modes of the operands, in case any are VOIDmode.
+
+ CONSTRAINTS are the constraints to use for the operands. This array
+ is modified by this procedure.
+
+ This procedure works alternative by alternative. For each alternative
+ we assume that we will be able to allocate all pseudos to their ideal
+ register class and calculate the cost of using that alternative. Then
+ we compute for each operand that is a pseudo-register, the cost of
+ having the pseudo allocated to each register class and using it in that
+ alternative. To this cost is added the cost of the alternative.
+
+ The cost of each class for this insn is its lowest cost among all the
+ alternatives. */
+
+static void
+record_reg_classes (int n_alts, int n_ops, rtx *ops,
+ enum machine_mode *modes, const char **constraints,
+ rtx insn, struct costs *op_costs,
+ struct reg_pref *reg_pref)
+{
+ int alt;
+ int i, j;
+ rtx set;
+
+ /* Process each alternative, each time minimizing an operand's cost with
+ the cost for each operand in that alternative. */
+
+ for (alt = 0; alt < n_alts; alt++)
+ {
+ struct costs this_op_costs[MAX_RECOG_OPERANDS];
+ int alt_fail = 0;
+ int alt_cost = 0;
+ enum reg_class classes[MAX_RECOG_OPERANDS];
+ int allows_mem[MAX_RECOG_OPERANDS];
+ int class;
+
+ for (i = 0; i < n_ops; i++)
+ {
+ const char *p = constraints[i];
+ rtx op = ops[i];
+ enum machine_mode mode = modes[i];
+ int allows_addr = 0;
+ int win = 0;
+ unsigned char c;
+
+ /* Initially show we know nothing about the register class. */
+ classes[i] = NO_REGS;
+ allows_mem[i] = 0;
+
+ /* If this operand has no constraints at all, we can conclude
+ nothing about it since anything is valid. */
+
+ if (*p == 0)
+ {
+ if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
+ memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
+
+ continue;
+ }
+
+ /* If this alternative is only relevant when this operand
+ matches a previous operand, we do different things depending
+ on whether this operand is a pseudo-reg or not. We must process
+ any modifiers for the operand before we can make this test. */
+
+ while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
+ p++;
+
+ if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
+ {
+ /* Copy class and whether memory is allowed from the matching
+ alternative. Then perform any needed cost computations
+ and/or adjustments. */
+ j = p[0] - '0';
+ classes[i] = classes[j];
+ allows_mem[i] = allows_mem[j];
+
+ if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
+ {
+ /* If this matches the other operand, we have no added
+ cost and we win. */
+ if (rtx_equal_p (ops[j], op))
+ win = 1;
+
+ /* If we can put the other operand into a register, add to
+ the cost of this alternative the cost to copy this
+ operand to the register used for the other operand. */
+
+ else if (classes[j] != NO_REGS)
+ {
+ alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
+ win = 1;
+ }
+ }
+ else if (!REG_P (ops[j])
+ || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
+ {
+ /* This op is a pseudo but the one it matches is not. */
+
+ /* If we can't put the other operand into a register, this
+ alternative can't be used. */
+
+ if (classes[j] == NO_REGS)
+ alt_fail = 1;
+
+ /* Otherwise, add to the cost of this alternative the cost
+ to copy the other operand to the register used for this
+ operand. */
+
+ else
+ alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
+ }
+ else
+ {
+ /* The costs of this operand are not the same as the other
+ operand since move costs are not symmetric. Moreover,
+ if we cannot tie them, this alternative needs to do a
+ copy, which is one instruction. */
+
+ struct costs *pp = &this_op_costs[i];
+
+ for (class = 0; class < N_REG_CLASSES; class++)
+ pp->cost[class]
+ = ((recog_data.operand_type[i] != OP_OUT
+ ? may_move_in_cost[mode][class][(int) classes[i]]
+ : 0)
+ + (recog_data.operand_type[i] != OP_IN
+ ? may_move_out_cost[mode][(int) classes[i]][class]
+ : 0));
+
+ /* If the alternative actually allows memory, make things
+ a bit cheaper since we won't need an extra insn to
+ load it. */
+
+ pp->mem_cost
+ = ((recog_data.operand_type[i] != OP_IN
+ ? MEMORY_MOVE_COST (mode, classes[i], 0)
+ : 0)
+ + (recog_data.operand_type[i] != OP_OUT
+ ? MEMORY_MOVE_COST (mode, classes[i], 1)
+ : 0) - allows_mem[i]);
+
+ /* If we have assigned a class to this register in our
+ first pass, add a cost to this alternative corresponding
+ to what we would add if this register were not in the
+ appropriate class. */
+
+ if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
+ alt_cost
+ += (may_move_in_cost[mode]
+ [(unsigned char) reg_pref[REGNO (op)].prefclass]
+ [(int) classes[i]]);
+
+ if (REGNO (ops[i]) != REGNO (ops[j])
+ && ! find_reg_note (insn, REG_DEAD, op))
+ alt_cost += 2;
+
+ /* This is in place of ordinary cost computation
+ for this operand, so skip to the end of the
+ alternative (should be just one character). */
+ while (*p && *p++ != ',')
+ ;
+
+ constraints[i] = p;
+ continue;
+ }
+ }
+
+ /* Scan all the constraint letters. See if the operand matches
+ any of the constraints. Collect the valid register classes
+ and see if this operand accepts memory. */
+
+ while ((c = *p))
+ {
+ switch (c)
+ {
+ case ',':
+ break;
+ case '*':
+ /* Ignore the next letter for this pass. */
+ c = *++p;
+ break;
+
+ case '?':
+ alt_cost += 2;
+ case '!': case '#': case '&':
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ break;
+
+ case 'p':
+ allows_addr = 1;
+ win = address_operand (op, GET_MODE (op));
+ /* We know this operand is an address, so we want it to be
+ allocated to a register that can be the base of an
+ address, i.e. BASE_REG_CLASS. */
+ classes[i]
+ = reg_class_subunion[(int) classes[i]]
+ [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
+ break;
+
+ case 'm': case 'o': case 'V':
+ /* It doesn't seem worth distinguishing between offsettable
+ and non-offsettable addresses here. */
+ allows_mem[i] = 1;
+ if (MEM_P (op))
+ win = 1;
+ break;
+
+ case '<':
+ if (MEM_P (op)
+ && (GET_CODE (XEXP (op, 0)) == PRE_DEC
+ || GET_CODE (XEXP (op, 0)) == POST_DEC))
+ win = 1;
+ break;
+
+ case '>':
+ if (MEM_P (op)
+ && (GET_CODE (XEXP (op, 0)) == PRE_INC
+ || GET_CODE (XEXP (op, 0)) == POST_INC))
+ win = 1;
+ break;
+
+ case 'E':
+ case 'F':
+ if (GET_CODE (op) == CONST_DOUBLE
+ || (GET_CODE (op) == CONST_VECTOR
+ && (GET_MODE_CLASS (GET_MODE (op))
+ == MODE_VECTOR_FLOAT)))
+ win = 1;
+ break;
+
+ case 'G':
+ case 'H':
+ if (GET_CODE (op) == CONST_DOUBLE
+ && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
+ win = 1;
+ break;
+
+ case 's':
+ if (GET_CODE (op) == CONST_INT
+ || (GET_CODE (op) == CONST_DOUBLE
+ && GET_MODE (op) == VOIDmode))
+ break;
+ case 'i':
+ if (CONSTANT_P (op)
+ /* APPLE LOCAL ARM -mdynamic-no-pic support */
+ && LEGITIMATE_INDIRECT_OPERAND_P (op))
+ win = 1;
+ break;
+
+ case 'n':
+ if (GET_CODE (op) == CONST_INT
+ || (GET_CODE (op) == CONST_DOUBLE
+ && GET_MODE (op) == VOIDmode))
+ win = 1;
+ break;
+
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ if (GET_CODE (op) == CONST_INT
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
+ win = 1;
+ break;
+
+ case 'X':
+ win = 1;
+ break;
+
+ case 'g':
+ if (MEM_P (op)
+ || (CONSTANT_P (op)
+ /* APPLE LOCAL ARM -mdynamic-no-pic support */
+ && LEGITIMATE_INDIRECT_OPERAND_P (op)))
+ win = 1;
+ allows_mem[i] = 1;
+ case 'r':
+ classes[i]
+ = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
+ break;
+
+ default:
+ if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
+ classes[i]
+ = reg_class_subunion[(int) classes[i]]
+ [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
+#ifdef EXTRA_CONSTRAINT_STR
+ else if (EXTRA_CONSTRAINT_STR (op, c, p))
+ win = 1;
+
+ if (EXTRA_MEMORY_CONSTRAINT (c, p))
+ {
+ /* Every MEM can be reloaded to fit. */
+ allows_mem[i] = 1;
+ if (MEM_P (op))
+ win = 1;
+ }
+ if (EXTRA_ADDRESS_CONSTRAINT (c, p))
+ {
+ /* Every address can be reloaded to fit. */
+ allows_addr = 1;
+ if (address_operand (op, GET_MODE (op)))
+ win = 1;
+ /* We know this operand is an address, so we want it to
+ be allocated to a register that can be the base of an
+ address, i.e. BASE_REG_CLASS. */
+ classes[i]
+ = reg_class_subunion[(int) classes[i]]
+ [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
+ }
+#endif
+ break;
+ }
+ p += CONSTRAINT_LEN (c, p);
+ if (c == ',')
+ break;
+ }
+
+ constraints[i] = p;
+
+ /* How we account for this operand now depends on whether it is a
+ pseudo register or not. If it is, we first check if any
+ register classes are valid. If not, we ignore this alternative,
+ since we want to assume that all pseudos get allocated for
+ register preferencing. If some register class is valid, compute
+ the costs of moving the pseudo into that class. */
+
+ if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
+ {
+ if (classes[i] == NO_REGS)
+ {
+ /* We must always fail if the operand is a REG, but
+ we did not find a suitable class.
+
+ Otherwise we may perform an uninitialized read
+ from this_op_costs after the `continue' statement
+ below. */
+ alt_fail = 1;
+ }
+ else
+ {
+ struct costs *pp = &this_op_costs[i];
+
+ for (class = 0; class < N_REG_CLASSES; class++)
+ pp->cost[class]
+ = ((recog_data.operand_type[i] != OP_OUT
+ ? may_move_in_cost[mode][class][(int) classes[i]]
+ : 0)
+ + (recog_data.operand_type[i] != OP_IN
+ ? may_move_out_cost[mode][(int) classes[i]][class]
+ : 0));
+
+ /* If the alternative actually allows memory, make things
+ a bit cheaper since we won't need an extra insn to
+ load it. */
+
+ pp->mem_cost
+ = ((recog_data.operand_type[i] != OP_IN
+ ? MEMORY_MOVE_COST (mode, classes[i], 0)
+ : 0)
+ + (recog_data.operand_type[i] != OP_OUT
+ ? MEMORY_MOVE_COST (mode, classes[i], 1)
+ : 0) - allows_mem[i]);
+
+ /* If we have assigned a class to this register in our
+ first pass, add a cost to this alternative corresponding
+ to what we would add if this register were not in the
+ appropriate class. */
+
+ if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
+ alt_cost
+ += (may_move_in_cost[mode]
+ [(unsigned char) reg_pref[REGNO (op)].prefclass]
+ [(int) classes[i]]);
+ }
+ }
+
+ /* Otherwise, if this alternative wins, either because we
+ have already determined that or if we have a hard register of
+ the proper class, there is no cost for this alternative. */
+
+ else if (win
+ || (REG_P (op)
+ && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
+ ;
+
+ /* If registers are valid, the cost of this alternative includes
+ copying the object to and/or from a register. */
+
+ else if (classes[i] != NO_REGS)
+ {
+ if (recog_data.operand_type[i] != OP_OUT)
+ alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
+
+ if (recog_data.operand_type[i] != OP_IN)
+ alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
+ }
+
+ /* The only other way this alternative can be used is if this is a
+ constant that could be placed into memory. */
+
+ else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
+ alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
+ else
+ alt_fail = 1;
+ }
+
+ if (alt_fail)
+ continue;
+
+ /* Finally, update the costs with the information we've calculated
+ about this alternative. */
+
+ for (i = 0; i < n_ops; i++)
+ if (REG_P (ops[i])
+ && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
+ {
+ struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
+ int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
+
+ pp->mem_cost = MIN (pp->mem_cost,
+ (qq->mem_cost + alt_cost) * scale);
+
+ for (class = 0; class < N_REG_CLASSES; class++)
+ pp->cost[class] = MIN (pp->cost[class],
+ (qq->cost[class] + alt_cost) * scale);
+ }
+ }
+
+ /* If this insn is a single set copying operand 1 to operand 0
+ and one operand is a pseudo with the other a hard reg or a pseudo
+ that prefers a register that is in its own register class then
+ we may want to adjust the cost of that register class to -1.
+
+ Avoid the adjustment if the source does not die to avoid stressing of
+ register allocator by preferrencing two colliding registers into single
+ class.
+
+ Also avoid the adjustment if a copy between registers of the class
+ is expensive (ten times the cost of a default copy is considered
+ arbitrarily expensive). This avoids losing when the preferred class
+ is very expensive as the source of a copy instruction. */
+
+ if ((set = single_set (insn)) != 0
+ && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
+ && REG_P (ops[0]) && REG_P (ops[1])
+ && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
+ for (i = 0; i <= 1; i++)
+ if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
+ {
+ unsigned int regno = REGNO (ops[!i]);
+ enum machine_mode mode = GET_MODE (ops[!i]);
+ int class;
+ unsigned int nr;
+
+ if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
+ && reg_pref[regno].prefclass != NO_REGS)
+ {
+ enum reg_class pref = reg_pref[regno].prefclass;
+
+ if ((reg_class_size[(unsigned char) pref]
+ == (unsigned) CLASS_MAX_NREGS (pref, mode))
+ && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
+ op_costs[i].cost[(unsigned char) pref] = -1;
+ }
+ else if (regno < FIRST_PSEUDO_REGISTER)
+ for (class = 0; class < N_REG_CLASSES; class++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
+ && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
+ {
+ if (reg_class_size[class] == 1)
+ op_costs[i].cost[class] = -1;
+ else
+ {
+ for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
+ {
+ if (! TEST_HARD_REG_BIT (reg_class_contents[class],
+ regno + nr))
+ break;
+ }
+
+ if (nr == (unsigned) hard_regno_nregs[regno][mode])
+ op_costs[i].cost[class] = -1;
+ }
+ }
+ }
+}
+
+/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
+ TO_P is zero) a register of class CLASS in mode MODE.
+
+ X must not be a pseudo. */
+
+static int
+copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
+ secondary_reload_info *prev_sri)
+{
+ enum reg_class secondary_class = NO_REGS;
+ secondary_reload_info sri;
+
+ /* If X is a SCRATCH, there is actually nothing to move since we are
+ assuming optimal allocation. */
+
+ if (GET_CODE (x) == SCRATCH)
+ return 0;
+
+ /* Get the class we will actually use for a reload. */
+ class = PREFERRED_RELOAD_CLASS (x, class);
+
+ /* If we need a secondary reload for an intermediate, the
+ cost is that to load the input into the intermediate register, then
+ to copy it. */
+
+ sri.prev_sri = prev_sri;
+ sri.extra_cost = 0;
+ secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
+
+ if (secondary_class != NO_REGS)
+ return (move_cost[mode][(int) secondary_class][(int) class]
+ + sri.extra_cost
+ + copy_cost (x, mode, secondary_class, to_p, &sri));
+
+ /* For memory, use the memory move cost, for (hard) registers, use the
+ cost to move between the register classes, and use 2 for everything
+ else (constants). */
+
+ if (MEM_P (x) || class == NO_REGS)
+ return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
+
+ else if (REG_P (x))
+ return (sri.extra_cost
+ + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
+
+ else
+ /* If this is a constant, we may eventually want to call rtx_cost here. */
+ return sri.extra_cost + COSTS_N_INSNS (1);
+}
+
+/* Record the pseudo registers we must reload into hard registers
+ in a subexpression of a memory address, X.
+
+ If CONTEXT is 0, we are looking at the base part of an address, otherwise we
+ are looking at the index part.
+
+ MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
+ give the context that the rtx appears in. These three arguments are
+ passed down to base_reg_class.
+
+ SCALE is twice the amount to multiply the cost by (it is twice so we
+ can represent half-cost adjustments). */
+
+static void
+record_address_regs (enum machine_mode mode, rtx x, int context,
+ enum rtx_code outer_code, enum rtx_code index_code,
+ int scale)
+{
+ enum rtx_code code = GET_CODE (x);
+ enum reg_class class;
+
+ if (context == 1)
+ class = INDEX_REG_CLASS;
+ else
+ class = base_reg_class (mode, outer_code, index_code);
+
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST:
+ case CC0:
+ case PC:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return;
+
+ case PLUS:
+ /* When we have an address that is a sum,
+ we must determine whether registers are "base" or "index" regs.
+ If there is a sum of two registers, we must choose one to be
+ the "base". Luckily, we can use the REG_POINTER to make a good
+ choice most of the time. We only need to do this on machines
+ that can have two registers in an address and where the base
+ and index register classes are different.
+
+ ??? This code used to set REGNO_POINTER_FLAG in some cases, but
+ that seems bogus since it should only be set when we are sure
+ the register is being used as a pointer. */
+
+ {
+ rtx arg0 = XEXP (x, 0);
+ rtx arg1 = XEXP (x, 1);
+ enum rtx_code code0 = GET_CODE (arg0);
+ enum rtx_code code1 = GET_CODE (arg1);
+
+ /* Look inside subregs. */
+ if (code0 == SUBREG)
+ arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
+ if (code1 == SUBREG)
+ arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
+
+ /* If this machine only allows one register per address, it must
+ be in the first operand. */
+
+ if (MAX_REGS_PER_ADDRESS == 1)
+ record_address_regs (mode, arg0, 0, PLUS, code1, scale);
+
+ /* If index and base registers are the same on this machine, just
+ record registers in any non-constant operands. We assume here,
+ as well as in the tests below, that all addresses are in
+ canonical form. */
+
+ else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
+ {
+ record_address_regs (mode, arg0, context, PLUS, code1, scale);
+ if (! CONSTANT_P (arg1))
+ record_address_regs (mode, arg1, context, PLUS, code0, scale);
+ }
+
+ /* If the second operand is a constant integer, it doesn't change
+ what class the first operand must be. */
+
+ else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
+ record_address_regs (mode, arg0, context, PLUS, code1, scale);
+
+ /* If the second operand is a symbolic constant, the first operand
+ must be an index register. */
+
+ else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
+ record_address_regs (mode, arg0, 1, PLUS, code1, scale);
+
+ /* If both operands are registers but one is already a hard register
+ of index or reg-base class, give the other the class that the
+ hard register is not. */
+
+ else if (code0 == REG && code1 == REG
+ && REGNO (arg0) < FIRST_PSEUDO_REGISTER
+ && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
+ || ok_for_index_p_nonstrict (arg0)))
+ record_address_regs (mode, arg1,
+ ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
+ ? 1 : 0,
+ PLUS, REG, scale);
+ else if (code0 == REG && code1 == REG
+ && REGNO (arg1) < FIRST_PSEUDO_REGISTER
+ && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
+ || ok_for_index_p_nonstrict (arg1)))
+ record_address_regs (mode, arg0,
+ ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
+ ? 1 : 0,
+ PLUS, REG, scale);
+
+ /* If one operand is known to be a pointer, it must be the base
+ with the other operand the index. Likewise if the other operand
+ is a MULT. */
+
+ else if ((code0 == REG && REG_POINTER (arg0))
+ || code1 == MULT)
+ {
+ record_address_regs (mode, arg0, 0, PLUS, code1, scale);
+ record_address_regs (mode, arg1, 1, PLUS, code0, scale);
+ }
+ else if ((code1 == REG && REG_POINTER (arg1))
+ || code0 == MULT)
+ {
+ record_address_regs (mode, arg0, 1, PLUS, code1, scale);
+ record_address_regs (mode, arg1, 0, PLUS, code0, scale);
+ }
+
+ /* Otherwise, count equal chances that each might be a base
+ or index register. This case should be rare. */
+
+ else
+ {
+ record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
+ record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
+ record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
+ record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
+ }
+ }
+ break;
+
+ /* Double the importance of a pseudo register that is incremented
+ or decremented, since it would take two extra insns
+ if it ends up in the wrong place. */
+ case POST_MODIFY:
+ case PRE_MODIFY:
+ record_address_regs (mode, XEXP (x, 0), 0, code,
+ GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
+ if (REG_P (XEXP (XEXP (x, 1), 1)))
+ record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
+ 2 * scale);
+ break;
+
+ case POST_INC:
+ case PRE_INC:
+ case POST_DEC:
+ case PRE_DEC:
+ /* Double the importance of a pseudo register that is incremented
+ or decremented, since it would take two extra insns
+ if it ends up in the wrong place. If the operand is a pseudo,
+ show it is being used in an INC_DEC context. */
+
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+ if (REG_P (XEXP (x, 0))
+ && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
+ in_inc_dec[REGNO (XEXP (x, 0))] = 1;
+#endif
+
+ record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
+ break;
+
+ case REG:
+ {
+ struct costs *pp = &costs[REGNO (x)];
+ int i;
+
+ pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
+
+ for (i = 0; i < N_REG_CLASSES; i++)
+ pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
+ }
+ break;
+
+ default:
+ {
+ const char *fmt = GET_RTX_FORMAT (code);
+ int i;
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
+ scale);
+ }
+ }
+}
+
+#ifdef FORBIDDEN_INC_DEC_CLASSES
+
+/* Return 1 if REG is valid as an auto-increment memory reference
+ to an object of MODE. */
+
+static int
+auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
+{
+ if (HAVE_POST_INCREMENT
+ && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
+ return 1;
+
+ if (HAVE_POST_DECREMENT
+ && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
+ return 1;
+
+ if (HAVE_PRE_INCREMENT
+ && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
+ return 1;
+
+ if (HAVE_PRE_DECREMENT
+ && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
+ return 1;
+
+ return 0;
+}
+#endif
+
+static short *renumber;
+static size_t regno_allocated;
+static unsigned int reg_n_max;
+
+/* Allocate enough space to hold NUM_REGS registers for the tables used for
+ reg_scan and flow_analysis that are indexed by the register number. If
+ NEW_P is nonzero, initialize all of the registers, otherwise only
+ initialize the new registers allocated. The same table is kept from
+ function to function, only reallocating it when we need more room. If
+ RENUMBER_P is nonzero, allocate the reg_renumber array also. */
+
+void
+allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
+{
+ size_t size_info;
+ size_t size_renumber;
+ size_t min = (new_p) ? 0 : reg_n_max;
+ struct reg_info_data *reg_data;
+
+ if (num_regs > regno_allocated)
+ {
+ size_t old_allocated = regno_allocated;
+
+ regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
+ size_renumber = regno_allocated * sizeof (short);
+
+ if (!reg_n_info)
+ {
+ reg_n_info = VEC_alloc (reg_info_p, heap, regno_allocated);
+ VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
+ memset (VEC_address (reg_info_p, reg_n_info), 0,
+ sizeof (reg_info_p) * regno_allocated);
+ renumber = xmalloc (size_renumber);
+ reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
+ }
+ else
+ {
+ size_t old_length = VEC_length (reg_info_p, reg_n_info);
+ if (old_length < regno_allocated)
+ {
+ reg_info_p *addr;
+ VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
+ addr = VEC_address (reg_info_p, reg_n_info);
+ memset (&addr[old_length], 0,
+ sizeof (reg_info_p) * (regno_allocated - old_length));
+ }
+ else if (regno_allocated < old_length)
+ {
+ VEC_truncate (reg_info_p, reg_n_info, regno_allocated);
+ }
+
+ if (new_p) /* If we're zapping everything, no need to realloc. */
+ {
+ free ((char *) renumber);
+ free ((char *) reg_pref);
+ renumber = xmalloc (size_renumber);
+ reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
+ }
+
+ else
+ {
+ renumber = xrealloc (renumber, size_renumber);
+ reg_pref_buffer = (struct reg_pref *) xrealloc (reg_pref_buffer,
+ regno_allocated
+ * sizeof (struct reg_pref));
+ }
+ }
+
+ size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
+ + sizeof (struct reg_info_data) - sizeof (reg_info);
+ reg_data = xcalloc (size_info, 1);
+ reg_data->min_index = old_allocated;
+ reg_data->max_index = regno_allocated - 1;
+ reg_data->next = reg_info_head;
+ reg_info_head = reg_data;
+ }
+
+ reg_n_max = num_regs;
+ if (min < num_regs)
+ {
+ /* Loop through each of the segments allocated for the actual
+ reg_info pages, and set up the pointers, zero the pages, etc. */
+ for (reg_data = reg_info_head;
+ reg_data && reg_data->max_index >= min;
+ reg_data = reg_data->next)
+ {
+ size_t min_index = reg_data->min_index;
+ size_t max_index = reg_data->max_index;
+ size_t max = MIN (max_index, num_regs);
+ size_t local_min = min - min_index;
+ size_t i;
+
+ if (reg_data->min_index > num_regs)
+ continue;
+
+ if (min < min_index)
+ local_min = 0;
+ if (!reg_data->used_p) /* page just allocated with calloc */
+ reg_data->used_p = 1; /* no need to zero */
+ else
+ memset (&reg_data->data[local_min], 0,
+ sizeof (reg_info) * (max - min_index - local_min + 1));
+
+ for (i = min_index+local_min; i <= max; i++)
+ {
+ VEC_replace (reg_info_p, reg_n_info, i,
+ &reg_data->data[i-min_index]);
+ REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
+ renumber[i] = -1;
+ reg_pref_buffer[i].prefclass = (char) NO_REGS;
+ reg_pref_buffer[i].altclass = (char) NO_REGS;
+ }
+ }
+ }
+
+ /* If {pref,alt}class have already been allocated, update the pointers to
+ the newly realloced ones. */
+ if (reg_pref)
+ reg_pref = reg_pref_buffer;
+
+ if (renumber_p)
+ reg_renumber = renumber;
+}
+
+/* Free up the space allocated by allocate_reg_info. */
+void
+free_reg_info (void)
+{
+ if (reg_n_info)
+ {
+ struct reg_info_data *reg_data;
+ struct reg_info_data *reg_next;
+
+ VEC_free (reg_info_p, heap, reg_n_info);
+ for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
+ {
+ reg_next = reg_data->next;
+ free ((char *) reg_data);
+ }
+
+ free (reg_pref_buffer);
+ reg_pref_buffer = (struct reg_pref *) 0;
+ reg_info_head = (struct reg_info_data *) 0;
+ renumber = (short *) 0;
+ }
+ regno_allocated = 0;
+ reg_n_max = 0;
+}
+
+/* This is the `regscan' pass of the compiler, run just before cse
+ and again just before loop.
+
+ It finds the first and last use of each pseudo-register
+ and records them in the vectors regno_first_uid, regno_last_uid
+ and counts the number of sets in the vector reg_n_sets.
+
+ REPEAT is nonzero the second time this is called. */
+
+/* Maximum number of parallel sets and clobbers in any insn in this fn.
+ Always at least 3, since the combiner could put that many together
+ and we want this to remain correct for all the remaining passes.
+ This corresponds to the maximum number of times note_stores will call
+ a function for any insn. */
+
+int max_parallel;
+
+/* Used as a temporary to record the largest number of registers in
+ PARALLEL in a SET_DEST. This is added to max_parallel. */
+
+static int max_set_parallel;
+
+void
+reg_scan (rtx f, unsigned int nregs)
+{
+ rtx insn;
+
+ timevar_push (TV_REG_SCAN);
+
+ allocate_reg_info (nregs, TRUE, FALSE);
+ max_parallel = 3;
+ max_set_parallel = 0;
+
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ if (INSN_P (insn))
+ {
+ rtx pat = PATTERN (insn);
+ if (GET_CODE (pat) == PARALLEL
+ && XVECLEN (pat, 0) > max_parallel)
+ max_parallel = XVECLEN (pat, 0);
+ reg_scan_mark_refs (pat, insn, 0);
+
+ if (REG_NOTES (insn))
+ reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
+ }
+
+ max_parallel += max_set_parallel;
+
+ timevar_pop (TV_REG_SCAN);
+}
+
+/* X is the expression to scan. INSN is the insn it appears in.
+ NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
+
+static void
+reg_scan_mark_refs (rtx x, rtx insn, int note_flag)
+{
+ enum rtx_code code;
+ rtx dest;
+ rtx note;
+
+ if (!x)
+ return;
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CONST_VECTOR:
+ case CC0:
+ case PC:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return;
+
+ case REG:
+ {
+ unsigned int regno = REGNO (x);
+
+ if (!note_flag)
+ REGNO_LAST_UID (regno) = INSN_UID (insn);
+ if (REGNO_FIRST_UID (regno) == 0)
+ REGNO_FIRST_UID (regno) = INSN_UID (insn);
+ }
+ break;
+
+ case EXPR_LIST:
+ if (XEXP (x, 0))
+ reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
+ if (XEXP (x, 1))
+ reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
+ break;
+
+ case INSN_LIST:
+ if (XEXP (x, 1))
+ reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
+ break;
+
+ case CLOBBER:
+ {
+ rtx reg = XEXP (x, 0);
+ if (REG_P (reg))
+ {
+ REG_N_SETS (REGNO (reg))++;
+ REG_N_REFS (REGNO (reg))++;
+ }
+ else if (MEM_P (reg))
+ reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag);
+ }
+ break;
+
+ case SET:
+ /* Count a set of the destination if it is a register. */
+ for (dest = SET_DEST (x);
+ GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
+ || GET_CODE (dest) == ZERO_EXTEND;
+ dest = XEXP (dest, 0))
+ ;
+
+ /* For a PARALLEL, record the number of things (less the usual one for a
+ SET) that are set. */
+ if (GET_CODE (dest) == PARALLEL)
+ max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
+
+ if (REG_P (dest))
+ {
+ REG_N_SETS (REGNO (dest))++;
+ REG_N_REFS (REGNO (dest))++;
+ }
+
+ /* If this is setting a pseudo from another pseudo or the sum of a
+ pseudo and a constant integer and the other pseudo is known to be
+ a pointer, set the destination to be a pointer as well.
+
+ Likewise if it is setting the destination from an address or from a
+ value equivalent to an address or to the sum of an address and
+ something else.
+
+ But don't do any of this if the pseudo corresponds to a user
+ variable since it should have already been set as a pointer based
+ on the type. */
+
+ if (REG_P (SET_DEST (x))
+ && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
+ /* If the destination pseudo is set more than once, then other
+ sets might not be to a pointer value (consider access to a
+ union in two threads of control in the presence of global
+ optimizations). So only set REG_POINTER on the destination
+ pseudo if this is the only set of that pseudo. */
+ && REG_N_SETS (REGNO (SET_DEST (x))) == 1
+ && ! REG_USERVAR_P (SET_DEST (x))
+ && ! REG_POINTER (SET_DEST (x))
+ && ((REG_P (SET_SRC (x))
+ && REG_POINTER (SET_SRC (x)))
+ || ((GET_CODE (SET_SRC (x)) == PLUS
+ || GET_CODE (SET_SRC (x)) == LO_SUM)
+ && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
+ && REG_P (XEXP (SET_SRC (x), 0))
+ && REG_POINTER (XEXP (SET_SRC (x), 0)))
+ || GET_CODE (SET_SRC (x)) == CONST
+ || GET_CODE (SET_SRC (x)) == SYMBOL_REF
+ || GET_CODE (SET_SRC (x)) == LABEL_REF
+ || (GET_CODE (SET_SRC (x)) == HIGH
+ && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
+ || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
+ || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
+ || ((GET_CODE (SET_SRC (x)) == PLUS
+ || GET_CODE (SET_SRC (x)) == LO_SUM)
+ && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
+ || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
+ || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
+ || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
+ && (GET_CODE (XEXP (note, 0)) == CONST
+ || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
+ || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
+ REG_POINTER (SET_DEST (x)) = 1;
+
+ /* If this is setting a register from a register or from a simple
+ conversion of a register, propagate REG_EXPR. */
+ if (REG_P (dest))
+ {
+ rtx src = SET_SRC (x);
+
+ while (GET_CODE (src) == SIGN_EXTEND
+ || GET_CODE (src) == ZERO_EXTEND
+ || GET_CODE (src) == TRUNCATE
+ || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
+ src = XEXP (src, 0);
+
+ if (!REG_ATTRS (dest) && REG_P (src))
+ REG_ATTRS (dest) = REG_ATTRS (src);
+ if (!REG_ATTRS (dest) && MEM_P (src))
+ set_reg_attrs_from_mem (dest, src);
+ }
+
+ /* ... fall through ... */
+
+ default:
+ {
+ const char *fmt = GET_RTX_FORMAT (code);
+ int i;
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
+ else if (fmt[i] == 'E' && XVEC (x, i) != 0)
+ {
+ int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
+ }
+ }
+ }
+ }
+}
+
+/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
+ is also in C2. */
+
+int
+reg_class_subset_p (enum reg_class c1, enum reg_class c2)
+{
+ if (c1 == c2) return 1;
+
+ if (c2 == ALL_REGS)
+ win:
+ return 1;
+ GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
+ reg_class_contents[(int) c2],
+ win);
+ return 0;
+}
+
+/* Return nonzero if there is a register that is in both C1 and C2. */
+
+int
+reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
+{
+ HARD_REG_SET c;
+
+ if (c1 == c2) return 1;
+
+ if (c1 == ALL_REGS || c2 == ALL_REGS)
+ return 1;
+
+ COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
+ AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
+
+ GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
+ return 1;
+
+ lose:
+ return 0;
+}
+
+#ifdef CANNOT_CHANGE_MODE_CLASS
+
+struct subregs_of_mode_node
+{
+ unsigned int block;
+ unsigned char modes[MAX_MACHINE_MODE];
+};
+
+static htab_t subregs_of_mode;
+
+static hashval_t
+som_hash (const void *x)
+{
+ const struct subregs_of_mode_node *a = x;
+ return a->block;
+}
+
+static int
+som_eq (const void *x, const void *y)
+{
+ const struct subregs_of_mode_node *a = x;
+ const struct subregs_of_mode_node *b = y;
+ return a->block == b->block;
+}
+
+void
+init_subregs_of_mode (void)
+{
+ if (subregs_of_mode)
+ htab_empty (subregs_of_mode);
+ else
+ subregs_of_mode = htab_create (100, som_hash, som_eq, free);
+}
+
+void
+record_subregs_of_mode (rtx subreg)
+{
+ struct subregs_of_mode_node dummy, *node;
+ enum machine_mode mode;
+ unsigned int regno;
+ void **slot;
+
+ if (!REG_P (SUBREG_REG (subreg)))
+ return;
+
+ regno = REGNO (SUBREG_REG (subreg));
+ mode = GET_MODE (subreg);
+
+ if (regno < FIRST_PSEUDO_REGISTER)
+ return;
+
+ dummy.block = regno & -8;
+ slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
+ dummy.block, INSERT);
+ node = *slot;
+ if (node == NULL)
+ {
+ node = XCNEW (struct subregs_of_mode_node);
+ node->block = regno & -8;
+ *slot = node;
+ }
+
+ node->modes[mode] |= 1 << (regno & 7);
+}
+
+/* Set bits in *USED which correspond to registers which can't change
+ their mode from FROM to any mode in which REGNO was encountered. */
+
+void
+cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
+ unsigned int regno)
+{
+ struct subregs_of_mode_node dummy, *node;
+ enum machine_mode to;
+ unsigned char mask;
+ unsigned int i;
+
+ dummy.block = regno & -8;
+ node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
+ if (node == NULL)
+ return;
+
+ mask = 1 << (regno & 7);
+ for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
+ if (node->modes[to] & mask)
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (!TEST_HARD_REG_BIT (*used, i)
+ && REG_CANNOT_CHANGE_MODE_P (i, from, to))
+ SET_HARD_REG_BIT (*used, i);
+}
+
+/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
+ mode. */
+
+bool
+invalid_mode_change_p (unsigned int regno, enum reg_class class,
+ enum machine_mode from)
+{
+ struct subregs_of_mode_node dummy, *node;
+ enum machine_mode to;
+ unsigned char mask;
+
+ dummy.block = regno & -8;
+ node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
+ if (node == NULL)
+ return false;
+
+ mask = 1 << (regno & 7);
+ for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
+ if (node->modes[to] & mask)
+ if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
+ return true;
+
+ return false;
+}
+#endif /* CANNOT_CHANGE_MODE_CLASS */
+
+#include "gt-regclass.h"