aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/reg-stack.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/reg-stack.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/reg-stack.c3211
1 files changed, 3211 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/reg-stack.c b/gcc-4.2.1-5666.3/gcc/reg-stack.c
new file mode 100644
index 000000000..2a05612de
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/reg-stack.c
@@ -0,0 +1,3211 @@
+/* Register to Stack convert for GNU compiler.
+ Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* This pass converts stack-like registers from the "flat register
+ file" model that gcc uses, to a stack convention that the 387 uses.
+
+ * The form of the input:
+
+ On input, the function consists of insn that have had their
+ registers fully allocated to a set of "virtual" registers. Note that
+ the word "virtual" is used differently here than elsewhere in gcc: for
+ each virtual stack reg, there is a hard reg, but the mapping between
+ them is not known until this pass is run. On output, hard register
+ numbers have been substituted, and various pop and exchange insns have
+ been emitted. The hard register numbers and the virtual register
+ numbers completely overlap - before this pass, all stack register
+ numbers are virtual, and afterward they are all hard.
+
+ The virtual registers can be manipulated normally by gcc, and their
+ semantics are the same as for normal registers. After the hard
+ register numbers are substituted, the semantics of an insn containing
+ stack-like regs are not the same as for an insn with normal regs: for
+ instance, it is not safe to delete an insn that appears to be a no-op
+ move. In general, no insn containing hard regs should be changed
+ after this pass is done.
+
+ * The form of the output:
+
+ After this pass, hard register numbers represent the distance from
+ the current top of stack to the desired register. A reference to
+ FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
+ represents the register just below that, and so forth. Also, REG_DEAD
+ notes indicate whether or not a stack register should be popped.
+
+ A "swap" insn looks like a parallel of two patterns, where each
+ pattern is a SET: one sets A to B, the other B to A.
+
+ A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
+ and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
+ will replace the existing stack top, not push a new value.
+
+ A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
+ SET_SRC is REG or MEM.
+
+ The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
+ appears ambiguous. As a special case, the presence of a REG_DEAD note
+ for FIRST_STACK_REG differentiates between a load insn and a pop.
+
+ If a REG_DEAD is present, the insn represents a "pop" that discards
+ the top of the register stack. If there is no REG_DEAD note, then the
+ insn represents a "dup" or a push of the current top of stack onto the
+ stack.
+
+ * Methodology:
+
+ Existing REG_DEAD and REG_UNUSED notes for stack registers are
+ deleted and recreated from scratch. REG_DEAD is never created for a
+ SET_DEST, only REG_UNUSED.
+
+ * asm_operands:
+
+ There are several rules on the usage of stack-like regs in
+ asm_operands insns. These rules apply only to the operands that are
+ stack-like regs:
+
+ 1. Given a set of input regs that die in an asm_operands, it is
+ necessary to know which are implicitly popped by the asm, and
+ which must be explicitly popped by gcc.
+
+ An input reg that is implicitly popped by the asm must be
+ explicitly clobbered, unless it is constrained to match an
+ output operand.
+
+ 2. For any input reg that is implicitly popped by an asm, it is
+ necessary to know how to adjust the stack to compensate for the pop.
+ If any non-popped input is closer to the top of the reg-stack than
+ the implicitly popped reg, it would not be possible to know what the
+ stack looked like - it's not clear how the rest of the stack "slides
+ up".
+
+ All implicitly popped input regs must be closer to the top of
+ the reg-stack than any input that is not implicitly popped.
+
+ 3. It is possible that if an input dies in an insn, reload might
+ use the input reg for an output reload. Consider this example:
+
+ asm ("foo" : "=t" (a) : "f" (b));
+
+ This asm says that input B is not popped by the asm, and that
+ the asm pushes a result onto the reg-stack, i.e., the stack is one
+ deeper after the asm than it was before. But, it is possible that
+ reload will think that it can use the same reg for both the input and
+ the output, if input B dies in this insn.
+
+ If any input operand uses the "f" constraint, all output reg
+ constraints must use the "&" earlyclobber.
+
+ The asm above would be written as
+
+ asm ("foo" : "=&t" (a) : "f" (b));
+
+ 4. Some operands need to be in particular places on the stack. All
+ output operands fall in this category - there is no other way to
+ know which regs the outputs appear in unless the user indicates
+ this in the constraints.
+
+ Output operands must specifically indicate which reg an output
+ appears in after an asm. "=f" is not allowed: the operand
+ constraints must select a class with a single reg.
+
+ 5. Output operands may not be "inserted" between existing stack regs.
+ Since no 387 opcode uses a read/write operand, all output operands
+ are dead before the asm_operands, and are pushed by the asm_operands.
+ It makes no sense to push anywhere but the top of the reg-stack.
+
+ Output operands must start at the top of the reg-stack: output
+ operands may not "skip" a reg.
+
+ 6. Some asm statements may need extra stack space for internal
+ calculations. This can be guaranteed by clobbering stack registers
+ unrelated to the inputs and outputs.
+
+ Here are a couple of reasonable asms to want to write. This asm
+ takes one input, which is internally popped, and produces two outputs.
+
+ asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
+
+ This asm takes two inputs, which are popped by the fyl2xp1 opcode,
+ and replaces them with one output. The user must code the "st(1)"
+ clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
+
+ asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
+
+*/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "function.h"
+#include "insn-config.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "toplev.h"
+#include "recog.h"
+#include "output.h"
+#include "basic-block.h"
+#include "varray.h"
+#include "reload.h"
+#include "ggc.h"
+#include "timevar.h"
+#include "tree-pass.h"
+#include "target.h"
+#include "vecprim.h"
+
+#ifdef STACK_REGS
+
+/* We use this array to cache info about insns, because otherwise we
+ spend too much time in stack_regs_mentioned_p.
+
+ Indexed by insn UIDs. A value of zero is uninitialized, one indicates
+ the insn uses stack registers, two indicates the insn does not use
+ stack registers. */
+static VEC(char,heap) *stack_regs_mentioned_data;
+
+#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
+
+int regstack_completed = 0;
+
+/* This is the basic stack record. TOP is an index into REG[] such
+ that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
+
+ If TOP is -2, REG[] is not yet initialized. Stack initialization
+ consists of placing each live reg in array `reg' and setting `top'
+ appropriately.
+
+ REG_SET indicates which registers are live. */
+
+typedef struct stack_def
+{
+ int top; /* index to top stack element */
+ HARD_REG_SET reg_set; /* set of live registers */
+ unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
+} *stack;
+
+/* This is used to carry information about basic blocks. It is
+ attached to the AUX field of the standard CFG block. */
+
+typedef struct block_info_def
+{
+ struct stack_def stack_in; /* Input stack configuration. */
+ struct stack_def stack_out; /* Output stack configuration. */
+ HARD_REG_SET out_reg_set; /* Stack regs live on output. */
+ int done; /* True if block already converted. */
+ int predecessors; /* Number of predecessors that need
+ to be visited. */
+} *block_info;
+
+#define BLOCK_INFO(B) ((block_info) (B)->aux)
+
+/* Passed to change_stack to indicate where to emit insns. */
+enum emit_where
+{
+ EMIT_AFTER,
+ EMIT_BEFORE
+};
+
+/* The block we're currently working on. */
+static basic_block current_block;
+
+/* In the current_block, whether we're processing the first register
+ stack or call instruction, i.e. the regstack is currently the
+ same as BLOCK_INFO(current_block)->stack_in. */
+static bool starting_stack_p;
+
+/* This is the register file for all register after conversion. */
+static rtx
+ FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
+
+#define FP_MODE_REG(regno,mode) \
+ (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
+
+/* Used to initialize uninitialized registers. */
+static rtx not_a_num;
+
+/* Forward declarations */
+
+static int stack_regs_mentioned_p (rtx pat);
+static void pop_stack (stack, int);
+static rtx *get_true_reg (rtx *);
+
+static int check_asm_stack_operands (rtx);
+static int get_asm_operand_n_inputs (rtx);
+static rtx stack_result (tree);
+static void replace_reg (rtx *, int);
+static void remove_regno_note (rtx, enum reg_note, unsigned int);
+static int get_hard_regnum (stack, rtx);
+static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
+static void swap_to_top(rtx, stack, rtx, rtx);
+static bool move_for_stack_reg (rtx, stack, rtx);
+static bool move_nan_for_stack_reg (rtx, stack, rtx);
+static int swap_rtx_condition_1 (rtx);
+static int swap_rtx_condition (rtx);
+static void compare_for_stack_reg (rtx, stack, rtx);
+static bool subst_stack_regs_pat (rtx, stack, rtx);
+static void subst_asm_stack_regs (rtx, stack);
+static bool subst_stack_regs (rtx, stack);
+static void change_stack (rtx, stack, stack, enum emit_where);
+static void print_stack (FILE *, stack);
+static rtx next_flags_user (rtx);
+
+/* Return nonzero if any stack register is mentioned somewhere within PAT. */
+
+static int
+stack_regs_mentioned_p (rtx pat)
+{
+ const char *fmt;
+ int i;
+
+ if (STACK_REG_P (pat))
+ return 1;
+
+ fmt = GET_RTX_FORMAT (GET_CODE (pat));
+ for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ int j;
+
+ for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
+ if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
+ return 1;
+ }
+ else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Return nonzero if INSN mentions stacked registers, else return zero. */
+
+int
+stack_regs_mentioned (rtx insn)
+{
+ unsigned int uid, max;
+ int test;
+
+ if (! INSN_P (insn) || !stack_regs_mentioned_data)
+ return 0;
+
+ uid = INSN_UID (insn);
+ max = VEC_length (char, stack_regs_mentioned_data);
+ if (uid >= max)
+ {
+ char *p;
+ unsigned int old_max = max;
+
+ /* Allocate some extra size to avoid too many reallocs, but
+ do not grow too quickly. */
+ max = uid + uid / 20 + 1;
+ VEC_safe_grow (char, heap, stack_regs_mentioned_data, max);
+ p = VEC_address (char, stack_regs_mentioned_data);
+ memset (&p[old_max], 0,
+ sizeof (char) * (max - old_max));
+ }
+
+ test = VEC_index (char, stack_regs_mentioned_data, uid);
+ if (test == 0)
+ {
+ /* This insn has yet to be examined. Do so now. */
+ test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
+ VEC_replace (char, stack_regs_mentioned_data, uid, test);
+ }
+
+ return test == 1;
+}
+
+static rtx ix86_flags_rtx;
+
+static rtx
+next_flags_user (rtx insn)
+{
+ /* Search forward looking for the first use of this value.
+ Stop at block boundaries. */
+
+ while (insn != BB_END (current_block))
+ {
+ insn = NEXT_INSN (insn);
+
+ if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
+ return insn;
+
+ if (CALL_P (insn))
+ return NULL_RTX;
+ }
+ return NULL_RTX;
+}
+
+/* Reorganize the stack into ascending numbers, before this insn. */
+
+static void
+straighten_stack (rtx insn, stack regstack)
+{
+ struct stack_def temp_stack;
+ int top;
+
+ /* If there is only a single register on the stack, then the stack is
+ already in increasing order and no reorganization is needed.
+
+ Similarly if the stack is empty. */
+ if (regstack->top <= 0)
+ return;
+
+ COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
+
+ for (top = temp_stack.top = regstack->top; top >= 0; top--)
+ temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
+
+ change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
+}
+
+/* Pop a register from the stack. */
+
+static void
+pop_stack (stack regstack, int regno)
+{
+ int top = regstack->top;
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
+ regstack->top--;
+ /* If regno was not at the top of stack then adjust stack. */
+ if (regstack->reg [top] != regno)
+ {
+ int i;
+ for (i = regstack->top; i >= 0; i--)
+ if (regstack->reg [i] == regno)
+ {
+ int j;
+ for (j = i; j < top; j++)
+ regstack->reg [j] = regstack->reg [j + 1];
+ break;
+ }
+ }
+}
+
+/* Return a pointer to the REG expression within PAT. If PAT is not a
+ REG, possible enclosed by a conversion rtx, return the inner part of
+ PAT that stopped the search. */
+
+static rtx *
+get_true_reg (rtx *pat)
+{
+ for (;;)
+ switch (GET_CODE (*pat))
+ {
+ case SUBREG:
+ /* Eliminate FP subregister accesses in favor of the
+ actual FP register in use. */
+ {
+ rtx subreg;
+ if (FP_REG_P (subreg = SUBREG_REG (*pat)))
+ {
+ int regno_off = subreg_regno_offset (REGNO (subreg),
+ GET_MODE (subreg),
+ SUBREG_BYTE (*pat),
+ GET_MODE (*pat));
+ *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
+ GET_MODE (subreg));
+ default:
+ return pat;
+ }
+ }
+ case FLOAT:
+ case FIX:
+ case FLOAT_EXTEND:
+ pat = & XEXP (*pat, 0);
+ break;
+
+ case FLOAT_TRUNCATE:
+ if (!flag_unsafe_math_optimizations)
+ return pat;
+ pat = & XEXP (*pat, 0);
+ break;
+ }
+}
+
+/* Set if we find any malformed asms in a block. */
+static bool any_malformed_asm;
+
+/* There are many rules that an asm statement for stack-like regs must
+ follow. Those rules are explained at the top of this file: the rule
+ numbers below refer to that explanation. */
+
+static int
+check_asm_stack_operands (rtx insn)
+{
+ int i;
+ int n_clobbers;
+ int malformed_asm = 0;
+ rtx body = PATTERN (insn);
+
+ char reg_used_as_output[FIRST_PSEUDO_REGISTER];
+ char implicitly_dies[FIRST_PSEUDO_REGISTER];
+ int alt;
+
+ rtx *clobber_reg = 0;
+ int n_inputs, n_outputs;
+
+ /* Find out what the constraints require. If no constraint
+ alternative matches, this asm is malformed. */
+ extract_insn (insn);
+ constrain_operands (1);
+ alt = which_alternative;
+
+ preprocess_constraints ();
+
+ n_inputs = get_asm_operand_n_inputs (body);
+ n_outputs = recog_data.n_operands - n_inputs;
+
+ if (alt < 0)
+ {
+ malformed_asm = 1;
+ /* Avoid further trouble with this insn. */
+ PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
+ return 0;
+ }
+
+ /* Strip SUBREGs here to make the following code simpler. */
+ for (i = 0; i < recog_data.n_operands; i++)
+ if (GET_CODE (recog_data.operand[i]) == SUBREG
+ && REG_P (SUBREG_REG (recog_data.operand[i])))
+ recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
+
+ /* Set up CLOBBER_REG. */
+
+ n_clobbers = 0;
+
+ if (GET_CODE (body) == PARALLEL)
+ {
+ clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
+
+ for (i = 0; i < XVECLEN (body, 0); i++)
+ if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
+ {
+ rtx clobber = XVECEXP (body, 0, i);
+ rtx reg = XEXP (clobber, 0);
+
+ if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
+ reg = SUBREG_REG (reg);
+
+ if (STACK_REG_P (reg))
+ {
+ clobber_reg[n_clobbers] = reg;
+ n_clobbers++;
+ }
+ }
+ }
+
+ /* Enforce rule #4: Output operands must specifically indicate which
+ reg an output appears in after an asm. "=f" is not allowed: the
+ operand constraints must select a class with a single reg.
+
+ Also enforce rule #5: Output operands must start at the top of
+ the reg-stack: output operands may not "skip" a reg. */
+
+ memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
+ for (i = 0; i < n_outputs; i++)
+ if (STACK_REG_P (recog_data.operand[i]))
+ {
+ if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
+ {
+ error_for_asm (insn, "output constraint %d must specify a single register", i);
+ malformed_asm = 1;
+ }
+ else
+ {
+ int j;
+
+ for (j = 0; j < n_clobbers; j++)
+ if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
+ {
+ error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
+ i, reg_names [REGNO (clobber_reg[j])]);
+ malformed_asm = 1;
+ break;
+ }
+ if (j == n_clobbers)
+ reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
+ }
+ }
+
+
+ /* Search for first non-popped reg. */
+ for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
+ if (! reg_used_as_output[i])
+ break;
+
+ /* If there are any other popped regs, that's an error. */
+ for (; i < LAST_STACK_REG + 1; i++)
+ if (reg_used_as_output[i])
+ break;
+
+ if (i != LAST_STACK_REG + 1)
+ {
+ error_for_asm (insn, "output regs must be grouped at top of stack");
+ malformed_asm = 1;
+ }
+
+ /* Enforce rule #2: All implicitly popped input regs must be closer
+ to the top of the reg-stack than any input that is not implicitly
+ popped. */
+
+ memset (implicitly_dies, 0, sizeof (implicitly_dies));
+ for (i = n_outputs; i < n_outputs + n_inputs; i++)
+ if (STACK_REG_P (recog_data.operand[i]))
+ {
+ /* An input reg is implicitly popped if it is tied to an
+ output, or if there is a CLOBBER for it. */
+ int j;
+
+ for (j = 0; j < n_clobbers; j++)
+ if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
+ break;
+
+ if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
+ implicitly_dies[REGNO (recog_data.operand[i])] = 1;
+ }
+
+ /* Search for first non-popped reg. */
+ for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
+ if (! implicitly_dies[i])
+ break;
+
+ /* If there are any other popped regs, that's an error. */
+ for (; i < LAST_STACK_REG + 1; i++)
+ if (implicitly_dies[i])
+ break;
+
+ if (i != LAST_STACK_REG + 1)
+ {
+ error_for_asm (insn,
+ "implicitly popped regs must be grouped at top of stack");
+ malformed_asm = 1;
+ }
+
+ /* Enforce rule #3: If any input operand uses the "f" constraint, all
+ output constraints must use the "&" earlyclobber.
+
+ ??? Detect this more deterministically by having constrain_asm_operands
+ record any earlyclobber. */
+
+ for (i = n_outputs; i < n_outputs + n_inputs; i++)
+ if (recog_op_alt[i][alt].matches == -1)
+ {
+ int j;
+
+ for (j = 0; j < n_outputs; j++)
+ if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
+ {
+ error_for_asm (insn,
+ "output operand %d must use %<&%> constraint", j);
+ malformed_asm = 1;
+ }
+ }
+
+ if (malformed_asm)
+ {
+ /* Avoid further trouble with this insn. */
+ PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
+ any_malformed_asm = true;
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Calculate the number of inputs and outputs in BODY, an
+ asm_operands. N_OPERANDS is the total number of operands, and
+ N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
+ placed. */
+
+static int
+get_asm_operand_n_inputs (rtx body)
+{
+ switch (GET_CODE (body))
+ {
+ case SET:
+ gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
+ return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
+
+ case ASM_OPERANDS:
+ return ASM_OPERANDS_INPUT_LENGTH (body);
+
+ case PARALLEL:
+ return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* If current function returns its result in an fp stack register,
+ return the REG. Otherwise, return 0. */
+
+static rtx
+stack_result (tree decl)
+{
+ rtx result;
+
+ /* If the value is supposed to be returned in memory, then clearly
+ it is not returned in a stack register. */
+ if (aggregate_value_p (DECL_RESULT (decl), decl))
+ return 0;
+
+ result = DECL_RTL_IF_SET (DECL_RESULT (decl));
+ if (result != 0)
+ result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
+ decl, true);
+
+ return result != 0 && STACK_REG_P (result) ? result : 0;
+}
+
+
+/*
+ * This section deals with stack register substitution, and forms the second
+ * pass over the RTL.
+ */
+
+/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
+ the desired hard REGNO. */
+
+static void
+replace_reg (rtx *reg, int regno)
+{
+ gcc_assert (regno >= FIRST_STACK_REG);
+ gcc_assert (regno <= LAST_STACK_REG);
+ gcc_assert (STACK_REG_P (*reg));
+
+ gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
+ || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
+
+ *reg = FP_MODE_REG (regno, GET_MODE (*reg));
+}
+
+/* Remove a note of type NOTE, which must be found, for register
+ number REGNO from INSN. Remove only one such note. */
+
+static void
+remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
+{
+ rtx *note_link, this;
+
+ note_link = &REG_NOTES (insn);
+ for (this = *note_link; this; this = XEXP (this, 1))
+ if (REG_NOTE_KIND (this) == note
+ && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
+ {
+ *note_link = XEXP (this, 1);
+ return;
+ }
+ else
+ note_link = &XEXP (this, 1);
+
+ gcc_unreachable ();
+}
+
+/* Find the hard register number of virtual register REG in REGSTACK.
+ The hard register number is relative to the top of the stack. -1 is
+ returned if the register is not found. */
+
+static int
+get_hard_regnum (stack regstack, rtx reg)
+{
+ int i;
+
+ gcc_assert (STACK_REG_P (reg));
+
+ for (i = regstack->top; i >= 0; i--)
+ if (regstack->reg[i] == REGNO (reg))
+ break;
+
+ return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
+}
+
+/* Emit an insn to pop virtual register REG before or after INSN.
+ REGSTACK is the stack state after INSN and is updated to reflect this
+ pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
+ is represented as a SET whose destination is the register to be popped
+ and source is the top of stack. A death note for the top of stack
+ cases the movdf pattern to pop. */
+
+static rtx
+emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
+{
+ rtx pop_insn, pop_rtx;
+ int hard_regno;
+
+ /* For complex types take care to pop both halves. These may survive in
+ CLOBBER and USE expressions. */
+ if (COMPLEX_MODE_P (GET_MODE (reg)))
+ {
+ rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
+ rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
+
+ pop_insn = NULL_RTX;
+ if (get_hard_regnum (regstack, reg1) >= 0)
+ pop_insn = emit_pop_insn (insn, regstack, reg1, where);
+ if (get_hard_regnum (regstack, reg2) >= 0)
+ pop_insn = emit_pop_insn (insn, regstack, reg2, where);
+ gcc_assert (pop_insn);
+ return pop_insn;
+ }
+
+ hard_regno = get_hard_regnum (regstack, reg);
+
+ gcc_assert (hard_regno >= FIRST_STACK_REG);
+
+ pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
+ FP_MODE_REG (FIRST_STACK_REG, DFmode));
+
+ if (where == EMIT_AFTER)
+ pop_insn = emit_insn_after (pop_rtx, insn);
+ else
+ pop_insn = emit_insn_before (pop_rtx, insn);
+
+ REG_NOTES (pop_insn)
+ = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
+ REG_NOTES (pop_insn));
+
+ regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
+ = regstack->reg[regstack->top];
+ regstack->top -= 1;
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
+
+ return pop_insn;
+}
+
+/* Emit an insn before or after INSN to swap virtual register REG with
+ the top of stack. REGSTACK is the stack state before the swap, and
+ is updated to reflect the swap. A swap insn is represented as a
+ PARALLEL of two patterns: each pattern moves one reg to the other.
+
+ If REG is already at the top of the stack, no insn is emitted. */
+
+static void
+emit_swap_insn (rtx insn, stack regstack, rtx reg)
+{
+ int hard_regno;
+ rtx swap_rtx;
+ int tmp, other_reg; /* swap regno temps */
+ rtx i1; /* the stack-reg insn prior to INSN */
+ rtx i1set = NULL_RTX; /* the SET rtx within I1 */
+
+ hard_regno = get_hard_regnum (regstack, reg);
+
+ if (hard_regno == FIRST_STACK_REG)
+ return;
+ if (hard_regno == -1)
+ {
+ /* Something failed if the register wasn't on the stack. If we had
+ malformed asms, we zapped the instruction itself, but that didn't
+ produce the same pattern of register sets as before. To prevent
+ further failure, adjust REGSTACK to include REG at TOP. */
+ gcc_assert (any_malformed_asm);
+ regstack->reg[++regstack->top] = REGNO (reg);
+ return;
+ }
+ gcc_assert (hard_regno >= FIRST_STACK_REG);
+
+ other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
+
+ tmp = regstack->reg[other_reg];
+ regstack->reg[other_reg] = regstack->reg[regstack->top];
+ regstack->reg[regstack->top] = tmp;
+
+ /* Find the previous insn involving stack regs, but don't pass a
+ block boundary. */
+ i1 = NULL;
+ if (current_block && insn != BB_HEAD (current_block))
+ {
+ rtx tmp = PREV_INSN (insn);
+ rtx limit = PREV_INSN (BB_HEAD (current_block));
+ while (tmp != limit)
+ {
+ if (LABEL_P (tmp)
+ || CALL_P (tmp)
+ || NOTE_INSN_BASIC_BLOCK_P (tmp)
+ || (NONJUMP_INSN_P (tmp)
+ && stack_regs_mentioned (tmp)))
+ {
+ i1 = tmp;
+ break;
+ }
+ tmp = PREV_INSN (tmp);
+ }
+ }
+
+ if (i1 != NULL_RTX
+ && (i1set = single_set (i1)) != NULL_RTX)
+ {
+ rtx i1src = *get_true_reg (&SET_SRC (i1set));
+ rtx i1dest = *get_true_reg (&SET_DEST (i1set));
+
+ /* If the previous register stack push was from the reg we are to
+ swap with, omit the swap. */
+
+ if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
+ && REG_P (i1src)
+ && REGNO (i1src) == (unsigned) hard_regno - 1
+ && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
+ return;
+
+ /* If the previous insn wrote to the reg we are to swap with,
+ omit the swap. */
+
+ if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
+ && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
+ && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
+ return;
+ }
+
+ /* Avoid emitting the swap if this is the first register stack insn
+ of the current_block. Instead update the current_block's stack_in
+ and let compensate edges take care of this for us. */
+ if (current_block && starting_stack_p)
+ {
+ BLOCK_INFO (current_block)->stack_in = *regstack;
+ starting_stack_p = false;
+ return;
+ }
+
+ swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
+ FP_MODE_REG (FIRST_STACK_REG, XFmode));
+
+ if (i1)
+ emit_insn_after (swap_rtx, i1);
+ else if (current_block)
+ emit_insn_before (swap_rtx, BB_HEAD (current_block));
+ else
+ emit_insn_before (swap_rtx, insn);
+}
+
+/* Emit an insns before INSN to swap virtual register SRC1 with
+ the top of stack and virtual register SRC2 with second stack
+ slot. REGSTACK is the stack state before the swaps, and
+ is updated to reflect the swaps. A swap insn is represented as a
+ PARALLEL of two patterns: each pattern moves one reg to the other.
+
+ If SRC1 and/or SRC2 are already at the right place, no swap insn
+ is emitted. */
+
+static void
+swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
+{
+ struct stack_def temp_stack;
+ int regno, j, k, temp;
+
+ temp_stack = *regstack;
+
+ /* Place operand 1 at the top of stack. */
+ regno = get_hard_regnum (&temp_stack, src1);
+ gcc_assert (regno >= 0);
+ if (regno != FIRST_STACK_REG)
+ {
+ k = temp_stack.top - (regno - FIRST_STACK_REG);
+ j = temp_stack.top;
+
+ temp = temp_stack.reg[k];
+ temp_stack.reg[k] = temp_stack.reg[j];
+ temp_stack.reg[j] = temp;
+ }
+
+ /* Place operand 2 next on the stack. */
+ regno = get_hard_regnum (&temp_stack, src2);
+ gcc_assert (regno >= 0);
+ if (regno != FIRST_STACK_REG + 1)
+ {
+ k = temp_stack.top - (regno - FIRST_STACK_REG);
+ j = temp_stack.top - 1;
+
+ temp = temp_stack.reg[k];
+ temp_stack.reg[k] = temp_stack.reg[j];
+ temp_stack.reg[j] = temp;
+ }
+
+ change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
+}
+
+/* Handle a move to or from a stack register in PAT, which is in INSN.
+ REGSTACK is the current stack. Return whether a control flow insn
+ was deleted in the process. */
+
+static bool
+move_for_stack_reg (rtx insn, stack regstack, rtx pat)
+{
+ rtx *psrc = get_true_reg (&SET_SRC (pat));
+ rtx *pdest = get_true_reg (&SET_DEST (pat));
+ rtx src, dest;
+ rtx note;
+ bool control_flow_insn_deleted = false;
+
+ src = *psrc; dest = *pdest;
+
+ if (STACK_REG_P (src) && STACK_REG_P (dest))
+ {
+ /* Write from one stack reg to another. If SRC dies here, then
+ just change the register mapping and delete the insn. */
+
+ note = find_regno_note (insn, REG_DEAD, REGNO (src));
+ if (note)
+ {
+ int i;
+
+ /* If this is a no-op move, there must not be a REG_DEAD note. */
+ gcc_assert (REGNO (src) != REGNO (dest));
+
+ for (i = regstack->top; i >= 0; i--)
+ if (regstack->reg[i] == REGNO (src))
+ break;
+
+ /* The destination must be dead, or life analysis is borked. */
+ gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
+
+ /* If the source is not live, this is yet another case of
+ uninitialized variables. Load up a NaN instead. */
+ if (i < 0)
+ return move_nan_for_stack_reg (insn, regstack, dest);
+
+ /* It is possible that the dest is unused after this insn.
+ If so, just pop the src. */
+
+ if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
+ emit_pop_insn (insn, regstack, src, EMIT_AFTER);
+ else
+ {
+ regstack->reg[i] = REGNO (dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
+ }
+
+ control_flow_insn_deleted |= control_flow_insn_p (insn);
+ delete_insn (insn);
+ return control_flow_insn_deleted;
+ }
+
+ /* The source reg does not die. */
+
+ /* If this appears to be a no-op move, delete it, or else it
+ will confuse the machine description output patterns. But if
+ it is REG_UNUSED, we must pop the reg now, as per-insn processing
+ for REG_UNUSED will not work for deleted insns. */
+
+ if (REGNO (src) == REGNO (dest))
+ {
+ if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
+ emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
+
+ control_flow_insn_deleted |= control_flow_insn_p (insn);
+ delete_insn (insn);
+ return control_flow_insn_deleted;
+ }
+
+ /* The destination ought to be dead. */
+ gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
+
+ replace_reg (psrc, get_hard_regnum (regstack, src));
+
+ regstack->reg[++regstack->top] = REGNO (dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
+ replace_reg (pdest, FIRST_STACK_REG);
+ }
+ else if (STACK_REG_P (src))
+ {
+ /* Save from a stack reg to MEM, or possibly integer reg. Since
+ only top of stack may be saved, emit an exchange first if
+ needs be. */
+
+ emit_swap_insn (insn, regstack, src);
+
+ note = find_regno_note (insn, REG_DEAD, REGNO (src));
+ if (note)
+ {
+ replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
+ }
+ else if ((GET_MODE (src) == XFmode)
+ && regstack->top < REG_STACK_SIZE - 1)
+ {
+ /* A 387 cannot write an XFmode value to a MEM without
+ clobbering the source reg. The output code can handle
+ this by reading back the value from the MEM.
+ But it is more efficient to use a temp register if one is
+ available. Push the source value here if the register
+ stack is not full, and then write the value to memory via
+ a pop. */
+ rtx push_rtx;
+ rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
+
+ push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
+ emit_insn_before (push_rtx, insn);
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
+ REG_NOTES (insn));
+ }
+
+ replace_reg (psrc, FIRST_STACK_REG);
+ }
+ else
+ {
+ gcc_assert (STACK_REG_P (dest));
+
+ /* Load from MEM, or possibly integer REG or constant, into the
+ stack regs. The actual target is always the top of the
+ stack. The stack mapping is changed to reflect that DEST is
+ now at top of stack. */
+
+ /* The destination ought to be dead. */
+ gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
+
+ gcc_assert (regstack->top < REG_STACK_SIZE);
+
+ regstack->reg[++regstack->top] = REGNO (dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
+ replace_reg (pdest, FIRST_STACK_REG);
+ }
+
+ return control_flow_insn_deleted;
+}
+
+/* A helper function which replaces INSN with a pattern that loads up
+ a NaN into DEST, then invokes move_for_stack_reg. */
+
+static bool
+move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
+{
+ rtx pat;
+
+ dest = FP_MODE_REG (REGNO (dest), SFmode);
+ pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
+ PATTERN (insn) = pat;
+ INSN_CODE (insn) = -1;
+
+ return move_for_stack_reg (insn, regstack, pat);
+}
+
+/* Swap the condition on a branch, if there is one. Return true if we
+ found a condition to swap. False if the condition was not used as
+ such. */
+
+static int
+swap_rtx_condition_1 (rtx pat)
+{
+ const char *fmt;
+ int i, r = 0;
+
+ if (COMPARISON_P (pat))
+ {
+ PUT_CODE (pat, swap_condition (GET_CODE (pat)));
+ r = 1;
+ }
+ else
+ {
+ fmt = GET_RTX_FORMAT (GET_CODE (pat));
+ for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ int j;
+
+ for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
+ r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
+ }
+ else if (fmt[i] == 'e')
+ r |= swap_rtx_condition_1 (XEXP (pat, i));
+ }
+ }
+
+ return r;
+}
+
+static int
+swap_rtx_condition (rtx insn)
+{
+ rtx pat = PATTERN (insn);
+
+ /* We're looking for a single set to cc0 or an HImode temporary. */
+
+ if (GET_CODE (pat) == SET
+ && REG_P (SET_DEST (pat))
+ && REGNO (SET_DEST (pat)) == FLAGS_REG)
+ {
+ insn = next_flags_user (insn);
+ if (insn == NULL_RTX)
+ return 0;
+ pat = PATTERN (insn);
+ }
+
+ /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
+ with the cc value right now. We may be able to search for one
+ though. */
+
+ if (GET_CODE (pat) == SET
+ && GET_CODE (SET_SRC (pat)) == UNSPEC
+ && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
+ {
+ rtx dest = SET_DEST (pat);
+
+ /* Search forward looking for the first use of this value.
+ Stop at block boundaries. */
+ while (insn != BB_END (current_block))
+ {
+ insn = NEXT_INSN (insn);
+ if (INSN_P (insn) && reg_mentioned_p (dest, insn))
+ break;
+ if (CALL_P (insn))
+ return 0;
+ }
+
+ /* We haven't found it. */
+ if (insn == BB_END (current_block))
+ return 0;
+
+ /* So we've found the insn using this value. If it is anything
+ other than sahf or the value does not die (meaning we'd have
+ to search further), then we must give up. */
+ pat = PATTERN (insn);
+ if (GET_CODE (pat) != SET
+ || GET_CODE (SET_SRC (pat)) != UNSPEC
+ || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
+ || ! dead_or_set_p (insn, dest))
+ return 0;
+
+ /* Now we are prepared to handle this as a normal cc0 setter. */
+ insn = next_flags_user (insn);
+ if (insn == NULL_RTX)
+ return 0;
+ pat = PATTERN (insn);
+ }
+
+ if (swap_rtx_condition_1 (pat))
+ {
+ int fail = 0;
+ INSN_CODE (insn) = -1;
+ if (recog_memoized (insn) == -1)
+ fail = 1;
+ /* In case the flags don't die here, recurse to try fix
+ following user too. */
+ else if (! dead_or_set_p (insn, ix86_flags_rtx))
+ {
+ insn = next_flags_user (insn);
+ if (!insn || !swap_rtx_condition (insn))
+ fail = 1;
+ }
+ if (fail)
+ {
+ swap_rtx_condition_1 (pat);
+ return 0;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/* Handle a comparison. Special care needs to be taken to avoid
+ causing comparisons that a 387 cannot do correctly, such as EQ.
+
+ Also, a pop insn may need to be emitted. The 387 does have an
+ `fcompp' insn that can pop two regs, but it is sometimes too expensive
+ to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
+ set up. */
+
+static void
+compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
+{
+ rtx *src1, *src2;
+ rtx src1_note, src2_note;
+
+ src1 = get_true_reg (&XEXP (pat_src, 0));
+ src2 = get_true_reg (&XEXP (pat_src, 1));
+
+ /* ??? If fxch turns out to be cheaper than fstp, give priority to
+ registers that die in this insn - move those to stack top first. */
+ if ((! STACK_REG_P (*src1)
+ || (STACK_REG_P (*src2)
+ && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
+ && swap_rtx_condition (insn))
+ {
+ rtx temp;
+ temp = XEXP (pat_src, 0);
+ XEXP (pat_src, 0) = XEXP (pat_src, 1);
+ XEXP (pat_src, 1) = temp;
+
+ src1 = get_true_reg (&XEXP (pat_src, 0));
+ src2 = get_true_reg (&XEXP (pat_src, 1));
+
+ INSN_CODE (insn) = -1;
+ }
+
+ /* We will fix any death note later. */
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+
+ if (STACK_REG_P (*src2))
+ src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
+ else
+ src2_note = NULL_RTX;
+
+ emit_swap_insn (insn, regstack, *src1);
+
+ replace_reg (src1, FIRST_STACK_REG);
+
+ if (STACK_REG_P (*src2))
+ replace_reg (src2, get_hard_regnum (regstack, *src2));
+
+ if (src1_note)
+ {
+ pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ }
+
+ /* If the second operand dies, handle that. But if the operands are
+ the same stack register, don't bother, because only one death is
+ needed, and it was just handled. */
+
+ if (src2_note
+ && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
+ && REGNO (*src1) == REGNO (*src2)))
+ {
+ /* As a special case, two regs may die in this insn if src2 is
+ next to top of stack and the top of stack also dies. Since
+ we have already popped src1, "next to top of stack" is really
+ at top (FIRST_STACK_REG) now. */
+
+ if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
+ && src1_note)
+ {
+ pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
+ replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
+ }
+ else
+ {
+ /* The 386 can only represent death of the first operand in
+ the case handled above. In all other cases, emit a separate
+ pop and remove the death note from here. */
+
+ /* link_cc0_insns (insn); */
+
+ remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
+
+ emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
+ EMIT_AFTER);
+ }
+ }
+}
+
+/* Substitute new registers in PAT, which is part of INSN. REGSTACK
+ is the current register layout. Return whether a control flow insn
+ was deleted in the process. */
+
+static bool
+subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
+{
+ rtx *dest, *src;
+ bool control_flow_insn_deleted = false;
+
+ switch (GET_CODE (pat))
+ {
+ case USE:
+ /* Deaths in USE insns can happen in non optimizing compilation.
+ Handle them by popping the dying register. */
+ src = get_true_reg (&XEXP (pat, 0));
+ if (STACK_REG_P (*src)
+ && find_regno_note (insn, REG_DEAD, REGNO (*src)))
+ {
+ emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
+ return control_flow_insn_deleted;
+ }
+ /* ??? Uninitialized USE should not happen. */
+ else
+ gcc_assert (get_hard_regnum (regstack, *src) != -1);
+ break;
+
+ case CLOBBER:
+ {
+ rtx note;
+
+ dest = get_true_reg (&XEXP (pat, 0));
+ if (STACK_REG_P (*dest))
+ {
+ note = find_reg_note (insn, REG_DEAD, *dest);
+
+ if (pat != PATTERN (insn))
+ {
+ /* The fix_truncdi_1 pattern wants to be able to allocate
+ its own scratch register. It does this by clobbering
+ an fp reg so that it is assured of an empty reg-stack
+ register. If the register is live, kill it now.
+ Remove the DEAD/UNUSED note so we don't try to kill it
+ later too. */
+
+ if (note)
+ emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
+ else
+ {
+ note = find_reg_note (insn, REG_UNUSED, *dest);
+ gcc_assert (note);
+ }
+ remove_note (insn, note);
+ replace_reg (dest, FIRST_STACK_REG + 1);
+ }
+ else
+ {
+ /* A top-level clobber with no REG_DEAD, and no hard-regnum
+ indicates an uninitialized value. Because reload removed
+ all other clobbers, this must be due to a function
+ returning without a value. Load up a NaN. */
+
+ if (!note)
+ {
+ rtx t = *dest;
+ if (COMPLEX_MODE_P (GET_MODE (t)))
+ {
+ rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
+ if (get_hard_regnum (regstack, u) == -1)
+ {
+ rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
+ rtx insn2 = emit_insn_before (pat2, insn);
+ control_flow_insn_deleted
+ |= move_nan_for_stack_reg (insn2, regstack, u);
+ }
+ }
+ if (get_hard_regnum (regstack, t) == -1)
+ control_flow_insn_deleted
+ |= move_nan_for_stack_reg (insn, regstack, t);
+ }
+ }
+ }
+ break;
+ }
+
+ case SET:
+ {
+ rtx *src1 = (rtx *) 0, *src2;
+ rtx src1_note, src2_note;
+ rtx pat_src;
+
+ dest = get_true_reg (&SET_DEST (pat));
+ src = get_true_reg (&SET_SRC (pat));
+ pat_src = SET_SRC (pat);
+
+ /* See if this is a `movM' pattern, and handle elsewhere if so. */
+ if (STACK_REG_P (*src)
+ || (STACK_REG_P (*dest)
+ && (REG_P (*src) || MEM_P (*src)
+ || GET_CODE (*src) == CONST_DOUBLE)))
+ {
+ control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
+ break;
+ }
+
+ switch (GET_CODE (pat_src))
+ {
+ case COMPARE:
+ compare_for_stack_reg (insn, regstack, pat_src);
+ break;
+
+ case CALL:
+ {
+ int count;
+ for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
+ --count >= 0;)
+ {
+ regstack->reg[++regstack->top] = REGNO (*dest) + count;
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
+ }
+ }
+ replace_reg (dest, FIRST_STACK_REG);
+ break;
+
+ case REG:
+ /* This is a `tstM2' case. */
+ gcc_assert (*dest == cc0_rtx);
+ src1 = src;
+
+ /* Fall through. */
+
+ case FLOAT_TRUNCATE:
+ case SQRT:
+ case ABS:
+ case NEG:
+ /* These insns only operate on the top of the stack. DEST might
+ be cc0_rtx if we're processing a tstM pattern. Also, it's
+ possible that the tstM case results in a REG_DEAD note on the
+ source. */
+
+ if (src1 == 0)
+ src1 = get_true_reg (&XEXP (pat_src, 0));
+
+ emit_swap_insn (insn, regstack, *src1);
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+
+ if (STACK_REG_P (*dest))
+ replace_reg (dest, FIRST_STACK_REG);
+
+ if (src1_note)
+ {
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
+ }
+
+ replace_reg (src1, FIRST_STACK_REG);
+ break;
+
+ case MINUS:
+ case DIV:
+ /* On i386, reversed forms of subM3 and divM3 exist for
+ MODE_FLOAT, so the same code that works for addM3 and mulM3
+ can be used. */
+ case MULT:
+ case PLUS:
+ /* These insns can accept the top of stack as a destination
+ from a stack reg or mem, or can use the top of stack as a
+ source and some other stack register (possibly top of stack)
+ as a destination. */
+
+ src1 = get_true_reg (&XEXP (pat_src, 0));
+ src2 = get_true_reg (&XEXP (pat_src, 1));
+
+ /* We will fix any death note later. */
+
+ if (STACK_REG_P (*src1))
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ else
+ src1_note = NULL_RTX;
+ if (STACK_REG_P (*src2))
+ src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
+ else
+ src2_note = NULL_RTX;
+
+ /* If either operand is not a stack register, then the dest
+ must be top of stack. */
+
+ if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
+ emit_swap_insn (insn, regstack, *dest);
+ else
+ {
+ /* Both operands are REG. If neither operand is already
+ at the top of stack, choose to make the one that is the dest
+ the new top of stack. */
+
+ int src1_hard_regnum, src2_hard_regnum;
+
+ src1_hard_regnum = get_hard_regnum (regstack, *src1);
+ src2_hard_regnum = get_hard_regnum (regstack, *src2);
+ gcc_assert (src1_hard_regnum != -1);
+ gcc_assert (src2_hard_regnum != -1);
+
+ if (src1_hard_regnum != FIRST_STACK_REG
+ && src2_hard_regnum != FIRST_STACK_REG)
+ emit_swap_insn (insn, regstack, *dest);
+ }
+
+ if (STACK_REG_P (*src1))
+ replace_reg (src1, get_hard_regnum (regstack, *src1));
+ if (STACK_REG_P (*src2))
+ replace_reg (src2, get_hard_regnum (regstack, *src2));
+
+ if (src1_note)
+ {
+ rtx src1_reg = XEXP (src1_note, 0);
+
+ /* If the register that dies is at the top of stack, then
+ the destination is somewhere else - merely substitute it.
+ But if the reg that dies is not at top of stack, then
+ move the top of stack to the dead reg, as though we had
+ done the insn and then a store-with-pop. */
+
+ if (REGNO (src1_reg) == regstack->reg[regstack->top])
+ {
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, get_hard_regnum (regstack, *dest));
+ }
+ else
+ {
+ int regno = get_hard_regnum (regstack, src1_reg);
+
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, regno);
+
+ regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
+ = regstack->reg[regstack->top];
+ }
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set,
+ REGNO (XEXP (src1_note, 0)));
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ }
+ else if (src2_note)
+ {
+ rtx src2_reg = XEXP (src2_note, 0);
+ if (REGNO (src2_reg) == regstack->reg[regstack->top])
+ {
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, get_hard_regnum (regstack, *dest));
+ }
+ else
+ {
+ int regno = get_hard_regnum (regstack, src2_reg);
+
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, regno);
+
+ regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
+ = regstack->reg[regstack->top];
+ }
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set,
+ REGNO (XEXP (src2_note, 0)));
+ replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ }
+ else
+ {
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, get_hard_regnum (regstack, *dest));
+ }
+
+ /* Keep operand 1 matching with destination. */
+ if (COMMUTATIVE_ARITH_P (pat_src)
+ && REG_P (*src1) && REG_P (*src2)
+ && REGNO (*src1) != REGNO (*dest))
+ {
+ int tmp = REGNO (*src1);
+ replace_reg (src1, REGNO (*src2));
+ replace_reg (src2, tmp);
+ }
+ break;
+
+ case UNSPEC:
+ switch (XINT (pat_src, 1))
+ {
+ case UNSPEC_FIST:
+
+ case UNSPEC_FIST_FLOOR:
+ case UNSPEC_FIST_CEIL:
+
+ /* These insns only operate on the top of the stack. */
+
+ src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
+ emit_swap_insn (insn, regstack, *src1);
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+
+ if (STACK_REG_P (*dest))
+ replace_reg (dest, FIRST_STACK_REG);
+
+ if (src1_note)
+ {
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
+ }
+
+ replace_reg (src1, FIRST_STACK_REG);
+ break;
+
+ case UNSPEC_SIN:
+ case UNSPEC_COS:
+ case UNSPEC_FRNDINT:
+ case UNSPEC_F2XM1:
+
+ case UNSPEC_FRNDINT_FLOOR:
+ case UNSPEC_FRNDINT_CEIL:
+ case UNSPEC_FRNDINT_TRUNC:
+ case UNSPEC_FRNDINT_MASK_PM:
+
+ /* These insns only operate on the top of the stack. */
+
+ src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
+
+ emit_swap_insn (insn, regstack, *src1);
+
+ /* Input should never die, it is
+ replaced with output. */
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ gcc_assert (!src1_note);
+
+ if (STACK_REG_P (*dest))
+ replace_reg (dest, FIRST_STACK_REG);
+
+ replace_reg (src1, FIRST_STACK_REG);
+ break;
+
+ case UNSPEC_FPATAN:
+ case UNSPEC_FYL2X:
+ case UNSPEC_FYL2XP1:
+ /* These insns operate on the top two stack slots. */
+
+ src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
+ src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
+
+ swap_to_top (insn, regstack, *src1, *src2);
+
+ replace_reg (src1, FIRST_STACK_REG);
+ replace_reg (src2, FIRST_STACK_REG + 1);
+
+ if (src1_note)
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ if (src2_note)
+ replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
+
+ /* Pop both input operands from the stack. */
+ CLEAR_HARD_REG_BIT (regstack->reg_set,
+ regstack->reg[regstack->top]);
+ CLEAR_HARD_REG_BIT (regstack->reg_set,
+ regstack->reg[regstack->top - 1]);
+ regstack->top -= 2;
+
+ /* Push the result back onto the stack. */
+ regstack->reg[++regstack->top] = REGNO (*dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, FIRST_STACK_REG);
+ break;
+
+ case UNSPEC_FSCALE_FRACT:
+ case UNSPEC_FPREM_F:
+ case UNSPEC_FPREM1_F:
+ /* These insns operate on the top two stack slots.
+ first part of double input, double output insn. */
+
+ src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
+ src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
+
+ /* Inputs should never die, they are
+ replaced with outputs. */
+ gcc_assert (!src1_note);
+ gcc_assert (!src2_note);
+
+ swap_to_top (insn, regstack, *src1, *src2);
+
+ /* Push the result back onto stack. Empty stack slot
+ will be filled in second part of insn. */
+ if (STACK_REG_P (*dest)) {
+ regstack->reg[regstack->top] = REGNO (*dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, FIRST_STACK_REG);
+ }
+
+ replace_reg (src1, FIRST_STACK_REG);
+ replace_reg (src2, FIRST_STACK_REG + 1);
+ break;
+
+ case UNSPEC_FSCALE_EXP:
+ case UNSPEC_FPREM_U:
+ case UNSPEC_FPREM1_U:
+ /* These insns operate on the top two stack slots./
+ second part of double input, double output insn. */
+
+ src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
+ src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
+
+ /* Inputs should never die, they are
+ replaced with outputs. */
+ gcc_assert (!src1_note);
+ gcc_assert (!src2_note);
+
+ swap_to_top (insn, regstack, *src1, *src2);
+
+ /* Push the result back onto stack. Fill empty slot from
+ first part of insn and fix top of stack pointer. */
+ if (STACK_REG_P (*dest)) {
+ regstack->reg[regstack->top - 1] = REGNO (*dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, FIRST_STACK_REG + 1);
+ }
+
+ replace_reg (src1, FIRST_STACK_REG);
+ replace_reg (src2, FIRST_STACK_REG + 1);
+ break;
+
+ case UNSPEC_SINCOS_COS:
+ case UNSPEC_TAN_ONE:
+ case UNSPEC_XTRACT_FRACT:
+ /* These insns operate on the top two stack slots,
+ first part of one input, double output insn. */
+
+ src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
+
+ emit_swap_insn (insn, regstack, *src1);
+
+ /* Input should never die, it is
+ replaced with output. */
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ gcc_assert (!src1_note);
+
+ /* Push the result back onto stack. Empty stack slot
+ will be filled in second part of insn. */
+ if (STACK_REG_P (*dest)) {
+ regstack->reg[regstack->top + 1] = REGNO (*dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, FIRST_STACK_REG);
+ }
+
+ replace_reg (src1, FIRST_STACK_REG);
+ break;
+
+ case UNSPEC_SINCOS_SIN:
+ case UNSPEC_TAN_TAN:
+ case UNSPEC_XTRACT_EXP:
+ /* These insns operate on the top two stack slots,
+ second part of one input, double output insn. */
+
+ src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
+
+ emit_swap_insn (insn, regstack, *src1);
+
+ /* Input should never die, it is
+ replaced with output. */
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ gcc_assert (!src1_note);
+
+ /* Push the result back onto stack. Fill empty slot from
+ first part of insn and fix top of stack pointer. */
+ if (STACK_REG_P (*dest)) {
+ regstack->reg[regstack->top] = REGNO (*dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, FIRST_STACK_REG + 1);
+
+ regstack->top++;
+ }
+
+ replace_reg (src1, FIRST_STACK_REG);
+ break;
+
+ case UNSPEC_SAHF:
+ /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
+ The combination matches the PPRO fcomi instruction. */
+
+ pat_src = XVECEXP (pat_src, 0, 0);
+ gcc_assert (GET_CODE (pat_src) == UNSPEC);
+ gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
+ /* Fall through. */
+
+ case UNSPEC_FNSTSW:
+ /* Combined fcomp+fnstsw generated for doing well with
+ CSE. When optimizing this would have been broken
+ up before now. */
+
+ pat_src = XVECEXP (pat_src, 0, 0);
+ gcc_assert (GET_CODE (pat_src) == COMPARE);
+
+ compare_for_stack_reg (insn, regstack, pat_src);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case IF_THEN_ELSE:
+ /* This insn requires the top of stack to be the destination. */
+
+ src1 = get_true_reg (&XEXP (pat_src, 1));
+ src2 = get_true_reg (&XEXP (pat_src, 2));
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
+
+ /* If the comparison operator is an FP comparison operator,
+ it is handled correctly by compare_for_stack_reg () who
+ will move the destination to the top of stack. But if the
+ comparison operator is not an FP comparison operator, we
+ have to handle it here. */
+ if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
+ && REGNO (*dest) != regstack->reg[regstack->top])
+ {
+ /* In case one of operands is the top of stack and the operands
+ dies, it is safe to make it the destination operand by
+ reversing the direction of cmove and avoid fxch. */
+ if ((REGNO (*src1) == regstack->reg[regstack->top]
+ && src1_note)
+ || (REGNO (*src2) == regstack->reg[regstack->top]
+ && src2_note))
+ {
+ int idx1 = (get_hard_regnum (regstack, *src1)
+ - FIRST_STACK_REG);
+ int idx2 = (get_hard_regnum (regstack, *src2)
+ - FIRST_STACK_REG);
+
+ /* Make reg-stack believe that the operands are already
+ swapped on the stack */
+ regstack->reg[regstack->top - idx1] = REGNO (*src2);
+ regstack->reg[regstack->top - idx2] = REGNO (*src1);
+
+ /* Reverse condition to compensate the operand swap.
+ i386 do have comparison always reversible. */
+ PUT_CODE (XEXP (pat_src, 0),
+ reversed_comparison_code (XEXP (pat_src, 0), insn));
+ }
+ else
+ emit_swap_insn (insn, regstack, *dest);
+ }
+
+ {
+ rtx src_note [3];
+ int i;
+
+ src_note[0] = 0;
+ src_note[1] = src1_note;
+ src_note[2] = src2_note;
+
+ if (STACK_REG_P (*src1))
+ replace_reg (src1, get_hard_regnum (regstack, *src1));
+ if (STACK_REG_P (*src2))
+ replace_reg (src2, get_hard_regnum (regstack, *src2));
+
+ for (i = 1; i <= 2; i++)
+ if (src_note [i])
+ {
+ int regno = REGNO (XEXP (src_note[i], 0));
+
+ /* If the register that dies is not at the top of
+ stack, then move the top of stack to the dead reg.
+ Top of stack should never die, as it is the
+ destination. */
+ gcc_assert (regno != regstack->reg[regstack->top]);
+ remove_regno_note (insn, REG_DEAD, regno);
+ emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
+ EMIT_AFTER);
+ }
+ }
+
+ /* Make dest the top of stack. Add dest to regstack if
+ not present. */
+ if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
+ regstack->reg[++regstack->top] = REGNO (*dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, FIRST_STACK_REG);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return control_flow_insn_deleted;
+}
+
+/* Substitute hard regnums for any stack regs in INSN, which has
+ N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
+ before the insn, and is updated with changes made here.
+
+ There are several requirements and assumptions about the use of
+ stack-like regs in asm statements. These rules are enforced by
+ record_asm_stack_regs; see comments there for details. Any
+ asm_operands left in the RTL at this point may be assume to meet the
+ requirements, since record_asm_stack_regs removes any problem asm. */
+
+static void
+subst_asm_stack_regs (rtx insn, stack regstack)
+{
+ rtx body = PATTERN (insn);
+ int alt;
+
+ rtx *note_reg; /* Array of note contents */
+ rtx **note_loc; /* Address of REG field of each note */
+ enum reg_note *note_kind; /* The type of each note */
+
+ rtx *clobber_reg = 0;
+ rtx **clobber_loc = 0;
+
+ struct stack_def temp_stack;
+ int n_notes;
+ int n_clobbers;
+ rtx note;
+ int i;
+ int n_inputs, n_outputs;
+
+ if (! check_asm_stack_operands (insn))
+ return;
+
+ /* Find out what the constraints required. If no constraint
+ alternative matches, that is a compiler bug: we should have caught
+ such an insn in check_asm_stack_operands. */
+ extract_insn (insn);
+ constrain_operands (1);
+ alt = which_alternative;
+
+ preprocess_constraints ();
+
+ n_inputs = get_asm_operand_n_inputs (body);
+ n_outputs = recog_data.n_operands - n_inputs;
+
+ gcc_assert (alt >= 0);
+
+ /* Strip SUBREGs here to make the following code simpler. */
+ for (i = 0; i < recog_data.n_operands; i++)
+ if (GET_CODE (recog_data.operand[i]) == SUBREG
+ && REG_P (SUBREG_REG (recog_data.operand[i])))
+ {
+ recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
+ recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
+ }
+
+ /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
+
+ for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ i++;
+
+ note_reg = alloca (i * sizeof (rtx));
+ note_loc = alloca (i * sizeof (rtx *));
+ note_kind = alloca (i * sizeof (enum reg_note));
+
+ n_notes = 0;
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ {
+ rtx reg = XEXP (note, 0);
+ rtx *loc = & XEXP (note, 0);
+
+ if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
+ {
+ loc = & SUBREG_REG (reg);
+ reg = SUBREG_REG (reg);
+ }
+
+ if (STACK_REG_P (reg)
+ && (REG_NOTE_KIND (note) == REG_DEAD
+ || REG_NOTE_KIND (note) == REG_UNUSED))
+ {
+ note_reg[n_notes] = reg;
+ note_loc[n_notes] = loc;
+ note_kind[n_notes] = REG_NOTE_KIND (note);
+ n_notes++;
+ }
+ }
+
+ /* Set up CLOBBER_REG and CLOBBER_LOC. */
+
+ n_clobbers = 0;
+
+ if (GET_CODE (body) == PARALLEL)
+ {
+ clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
+ clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
+
+ for (i = 0; i < XVECLEN (body, 0); i++)
+ if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
+ {
+ rtx clobber = XVECEXP (body, 0, i);
+ rtx reg = XEXP (clobber, 0);
+ rtx *loc = & XEXP (clobber, 0);
+
+ if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
+ {
+ loc = & SUBREG_REG (reg);
+ reg = SUBREG_REG (reg);
+ }
+
+ if (STACK_REG_P (reg))
+ {
+ clobber_reg[n_clobbers] = reg;
+ clobber_loc[n_clobbers] = loc;
+ n_clobbers++;
+ }
+ }
+ }
+
+ temp_stack = *regstack;
+
+ /* Put the input regs into the desired place in TEMP_STACK. */
+
+ for (i = n_outputs; i < n_outputs + n_inputs; i++)
+ if (STACK_REG_P (recog_data.operand[i])
+ && reg_class_subset_p (recog_op_alt[i][alt].cl,
+ FLOAT_REGS)
+ && recog_op_alt[i][alt].cl != FLOAT_REGS)
+ {
+ /* If an operand needs to be in a particular reg in
+ FLOAT_REGS, the constraint was either 't' or 'u'. Since
+ these constraints are for single register classes, and
+ reload guaranteed that operand[i] is already in that class,
+ we can just use REGNO (recog_data.operand[i]) to know which
+ actual reg this operand needs to be in. */
+
+ int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
+
+ gcc_assert (regno >= 0);
+
+ if ((unsigned int) regno != REGNO (recog_data.operand[i]))
+ {
+ /* recog_data.operand[i] is not in the right place. Find
+ it and swap it with whatever is already in I's place.
+ K is where recog_data.operand[i] is now. J is where it
+ should be. */
+ int j, k, temp;
+
+ k = temp_stack.top - (regno - FIRST_STACK_REG);
+ j = (temp_stack.top
+ - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
+
+ temp = temp_stack.reg[k];
+ temp_stack.reg[k] = temp_stack.reg[j];
+ temp_stack.reg[j] = temp;
+ }
+ }
+
+ /* Emit insns before INSN to make sure the reg-stack is in the right
+ order. */
+
+ change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
+
+ /* Make the needed input register substitutions. Do death notes and
+ clobbers too, because these are for inputs, not outputs. */
+
+ for (i = n_outputs; i < n_outputs + n_inputs; i++)
+ if (STACK_REG_P (recog_data.operand[i]))
+ {
+ int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
+
+ gcc_assert (regnum >= 0);
+
+ replace_reg (recog_data.operand_loc[i], regnum);
+ }
+
+ for (i = 0; i < n_notes; i++)
+ if (note_kind[i] == REG_DEAD)
+ {
+ int regnum = get_hard_regnum (regstack, note_reg[i]);
+
+ gcc_assert (regnum >= 0);
+
+ replace_reg (note_loc[i], regnum);
+ }
+
+ for (i = 0; i < n_clobbers; i++)
+ {
+ /* It's OK for a CLOBBER to reference a reg that is not live.
+ Don't try to replace it in that case. */
+ int regnum = get_hard_regnum (regstack, clobber_reg[i]);
+
+ if (regnum >= 0)
+ {
+ /* Sigh - clobbers always have QImode. But replace_reg knows
+ that these regs can't be MODE_INT and will assert. Just put
+ the right reg there without calling replace_reg. */
+
+ *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
+ }
+ }
+
+ /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
+
+ for (i = n_outputs; i < n_outputs + n_inputs; i++)
+ if (STACK_REG_P (recog_data.operand[i]))
+ {
+ /* An input reg is implicitly popped if it is tied to an
+ output, or if there is a CLOBBER for it. */
+ int j;
+
+ for (j = 0; j < n_clobbers; j++)
+ if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
+ break;
+
+ if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
+ {
+ /* recog_data.operand[i] might not be at the top of stack.
+ But that's OK, because all we need to do is pop the
+ right number of regs off of the top of the reg-stack.
+ record_asm_stack_regs guaranteed that all implicitly
+ popped regs were grouped at the top of the reg-stack. */
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set,
+ regstack->reg[regstack->top]);
+ regstack->top--;
+ }
+ }
+
+ /* Now add to REGSTACK any outputs that the asm implicitly pushed.
+ Note that there isn't any need to substitute register numbers.
+ ??? Explain why this is true. */
+
+ for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
+ {
+ /* See if there is an output for this hard reg. */
+ int j;
+
+ for (j = 0; j < n_outputs; j++)
+ if (STACK_REG_P (recog_data.operand[j])
+ && REGNO (recog_data.operand[j]) == (unsigned) i)
+ {
+ regstack->reg[++regstack->top] = i;
+ SET_HARD_REG_BIT (regstack->reg_set, i);
+ break;
+ }
+ }
+
+ /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
+ input that the asm didn't implicitly pop. If the asm didn't
+ implicitly pop an input reg, that reg will still be live.
+
+ Note that we can't use find_regno_note here: the register numbers
+ in the death notes have already been substituted. */
+
+ for (i = 0; i < n_outputs; i++)
+ if (STACK_REG_P (recog_data.operand[i]))
+ {
+ int j;
+
+ for (j = 0; j < n_notes; j++)
+ if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
+ && note_kind[j] == REG_UNUSED)
+ {
+ insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
+ EMIT_AFTER);
+ break;
+ }
+ }
+
+ for (i = n_outputs; i < n_outputs + n_inputs; i++)
+ if (STACK_REG_P (recog_data.operand[i]))
+ {
+ int j;
+
+ for (j = 0; j < n_notes; j++)
+ if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
+ && note_kind[j] == REG_DEAD
+ && TEST_HARD_REG_BIT (regstack->reg_set,
+ REGNO (recog_data.operand[i])))
+ {
+ insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
+ EMIT_AFTER);
+ break;
+ }
+ }
+}
+
+/* Substitute stack hard reg numbers for stack virtual registers in
+ INSN. Non-stack register numbers are not changed. REGSTACK is the
+ current stack content. Insns may be emitted as needed to arrange the
+ stack for the 387 based on the contents of the insn. Return whether
+ a control flow insn was deleted in the process. */
+
+static bool
+subst_stack_regs (rtx insn, stack regstack)
+{
+ rtx *note_link, note;
+ bool control_flow_insn_deleted = false;
+ int i;
+
+ if (CALL_P (insn))
+ {
+ int top = regstack->top;
+
+ /* If there are any floating point parameters to be passed in
+ registers for this call, make sure they are in the right
+ order. */
+
+ if (top >= 0)
+ {
+ straighten_stack (insn, regstack);
+
+ /* Now mark the arguments as dead after the call. */
+
+ while (regstack->top >= 0)
+ {
+ CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
+ regstack->top--;
+ }
+ }
+ }
+
+ /* Do the actual substitution if any stack regs are mentioned.
+ Since we only record whether entire insn mentions stack regs, and
+ subst_stack_regs_pat only works for patterns that contain stack regs,
+ we must check each pattern in a parallel here. A call_value_pop could
+ fail otherwise. */
+
+ if (stack_regs_mentioned (insn))
+ {
+ int n_operands = asm_noperands (PATTERN (insn));
+ if (n_operands >= 0)
+ {
+ /* This insn is an `asm' with operands. Decode the operands,
+ decide how many are inputs, and do register substitution.
+ Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
+
+ subst_asm_stack_regs (insn, regstack);
+ return control_flow_insn_deleted;
+ }
+
+ if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
+ {
+ if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
+ XVECEXP (PATTERN (insn), 0, i)
+ = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
+ control_flow_insn_deleted
+ |= subst_stack_regs_pat (insn, regstack,
+ XVECEXP (PATTERN (insn), 0, i));
+ }
+ }
+ else
+ control_flow_insn_deleted
+ |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
+ }
+
+ /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
+ REG_UNUSED will already have been dealt with, so just return. */
+
+ if (NOTE_P (insn) || INSN_DELETED_P (insn))
+ return control_flow_insn_deleted;
+
+ /* If this a noreturn call, we can't insert pop insns after it.
+ Instead, reset the stack state to empty. */
+ if (CALL_P (insn)
+ && find_reg_note (insn, REG_NORETURN, NULL))
+ {
+ regstack->top = -1;
+ CLEAR_HARD_REG_SET (regstack->reg_set);
+ return control_flow_insn_deleted;
+ }
+
+ /* If there is a REG_UNUSED note on a stack register on this insn,
+ the indicated reg must be popped. The REG_UNUSED note is removed,
+ since the form of the newly emitted pop insn references the reg,
+ making it no longer `unset'. */
+
+ note_link = &REG_NOTES (insn);
+ for (note = *note_link; note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
+ {
+ *note_link = XEXP (note, 1);
+ insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
+ }
+ else
+ note_link = &XEXP (note, 1);
+
+ return control_flow_insn_deleted;
+}
+
+/* Change the organization of the stack so that it fits a new basic
+ block. Some registers might have to be popped, but there can never be
+ a register live in the new block that is not now live.
+
+ Insert any needed insns before or after INSN, as indicated by
+ WHERE. OLD is the original stack layout, and NEW is the desired
+ form. OLD is updated to reflect the code emitted, i.e., it will be
+ the same as NEW upon return.
+
+ This function will not preserve block_end[]. But that information
+ is no longer needed once this has executed. */
+
+static void
+change_stack (rtx insn, stack old, stack new, enum emit_where where)
+{
+ int reg;
+ int update_end = 0;
+
+ /* Stack adjustments for the first insn in a block update the
+ current_block's stack_in instead of inserting insns directly.
+ compensate_edges will add the necessary code later. */
+ if (current_block
+ && starting_stack_p
+ && where == EMIT_BEFORE)
+ {
+ BLOCK_INFO (current_block)->stack_in = *new;
+ starting_stack_p = false;
+ *old = *new;
+ return;
+ }
+
+ /* We will be inserting new insns "backwards". If we are to insert
+ after INSN, find the next insn, and insert before it. */
+
+ if (where == EMIT_AFTER)
+ {
+ if (current_block && BB_END (current_block) == insn)
+ update_end = 1;
+ insn = NEXT_INSN (insn);
+ }
+
+ /* Pop any registers that are not needed in the new block. */
+
+ /* If the destination block's stack already has a specified layout
+ and contains two or more registers, use a more intelligent algorithm
+ to pop registers that minimizes the number number of fxchs below. */
+ if (new->top > 0)
+ {
+ bool slots[REG_STACK_SIZE];
+ int pops[REG_STACK_SIZE];
+ int next, dest, topsrc;
+
+ /* First pass to determine the free slots. */
+ for (reg = 0; reg <= new->top; reg++)
+ slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
+
+ /* Second pass to allocate preferred slots. */
+ topsrc = -1;
+ for (reg = old->top; reg > new->top; reg--)
+ if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
+ {
+ dest = -1;
+ for (next = 0; next <= new->top; next++)
+ if (!slots[next] && new->reg[next] == old->reg[reg])
+ {
+ /* If this is a preference for the new top of stack, record
+ the fact by remembering it's old->reg in topsrc. */
+ if (next == new->top)
+ topsrc = reg;
+ slots[next] = true;
+ dest = next;
+ break;
+ }
+ pops[reg] = dest;
+ }
+ else
+ pops[reg] = reg;
+
+ /* Intentionally, avoid placing the top of stack in it's correct
+ location, if we still need to permute the stack below and we
+ can usefully place it somewhere else. This is the case if any
+ slot is still unallocated, in which case we should place the
+ top of stack there. */
+ if (topsrc != -1)
+ for (reg = 0; reg < new->top; reg++)
+ if (!slots[reg])
+ {
+ pops[topsrc] = reg;
+ slots[new->top] = false;
+ slots[reg] = true;
+ break;
+ }
+
+ /* Third pass allocates remaining slots and emits pop insns. */
+ next = new->top;
+ for (reg = old->top; reg > new->top; reg--)
+ {
+ dest = pops[reg];
+ if (dest == -1)
+ {
+ /* Find next free slot. */
+ while (slots[next])
+ next--;
+ dest = next--;
+ }
+ emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
+ EMIT_BEFORE);
+ }
+ }
+ else
+ {
+ /* The following loop attempts to maximize the number of times we
+ pop the top of the stack, as this permits the use of the faster
+ ffreep instruction on platforms that support it. */
+ int live, next;
+
+ live = 0;
+ for (reg = 0; reg <= old->top; reg++)
+ if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
+ live++;
+
+ next = live;
+ while (old->top >= live)
+ if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
+ {
+ while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
+ next--;
+ emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
+ EMIT_BEFORE);
+ }
+ else
+ emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
+ EMIT_BEFORE);
+ }
+
+ if (new->top == -2)
+ {
+ /* If the new block has never been processed, then it can inherit
+ the old stack order. */
+
+ new->top = old->top;
+ memcpy (new->reg, old->reg, sizeof (new->reg));
+ }
+ else
+ {
+ /* This block has been entered before, and we must match the
+ previously selected stack order. */
+
+ /* By now, the only difference should be the order of the stack,
+ not their depth or liveliness. */
+
+ GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
+ gcc_unreachable ();
+ win:
+ gcc_assert (old->top == new->top);
+
+ /* If the stack is not empty (new->top != -1), loop here emitting
+ swaps until the stack is correct.
+
+ The worst case number of swaps emitted is N + 2, where N is the
+ depth of the stack. In some cases, the reg at the top of
+ stack may be correct, but swapped anyway in order to fix
+ other regs. But since we never swap any other reg away from
+ its correct slot, this algorithm will converge. */
+
+ if (new->top != -1)
+ do
+ {
+ /* Swap the reg at top of stack into the position it is
+ supposed to be in, until the correct top of stack appears. */
+
+ while (old->reg[old->top] != new->reg[new->top])
+ {
+ for (reg = new->top; reg >= 0; reg--)
+ if (new->reg[reg] == old->reg[old->top])
+ break;
+
+ gcc_assert (reg != -1);
+
+ emit_swap_insn (insn, old,
+ FP_MODE_REG (old->reg[reg], DFmode));
+ }
+
+ /* See if any regs remain incorrect. If so, bring an
+ incorrect reg to the top of stack, and let the while loop
+ above fix it. */
+
+ for (reg = new->top; reg >= 0; reg--)
+ if (new->reg[reg] != old->reg[reg])
+ {
+ emit_swap_insn (insn, old,
+ FP_MODE_REG (old->reg[reg], DFmode));
+ break;
+ }
+ } while (reg >= 0);
+
+ /* At this point there must be no differences. */
+
+ for (reg = old->top; reg >= 0; reg--)
+ gcc_assert (old->reg[reg] == new->reg[reg]);
+ }
+
+ if (update_end)
+ BB_END (current_block) = PREV_INSN (insn);
+}
+
+/* Print stack configuration. */
+
+static void
+print_stack (FILE *file, stack s)
+{
+ if (! file)
+ return;
+
+ if (s->top == -2)
+ fprintf (file, "uninitialized\n");
+ else if (s->top == -1)
+ fprintf (file, "empty\n");
+ else
+ {
+ int i;
+ fputs ("[ ", file);
+ for (i = 0; i <= s->top; ++i)
+ fprintf (file, "%d ", s->reg[i]);
+ fputs ("]\n", file);
+ }
+}
+
+/* This function was doing life analysis. We now let the regular live
+ code do it's job, so we only need to check some extra invariants
+ that reg-stack expects. Primary among these being that all registers
+ are initialized before use.
+
+ The function returns true when code was emitted to CFG edges and
+ commit_edge_insertions needs to be called. */
+
+static int
+convert_regs_entry (void)
+{
+ int inserted = 0;
+ edge e;
+ edge_iterator ei;
+
+ /* Load something into each stack register live at function entry.
+ Such live registers can be caused by uninitialized variables or
+ functions not returning values on all paths. In order to keep
+ the push/pop code happy, and to not scrog the register stack, we
+ must put something in these registers. Use a QNaN.
+
+ Note that we are inserting converted code here. This code is
+ never seen by the convert_regs pass. */
+
+ FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
+ {
+ basic_block block = e->dest;
+ block_info bi = BLOCK_INFO (block);
+ int reg, top = -1;
+
+ for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
+ if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
+ {
+ rtx init;
+
+ bi->stack_in.reg[++top] = reg;
+
+ init = gen_rtx_SET (VOIDmode,
+ FP_MODE_REG (FIRST_STACK_REG, SFmode),
+ not_a_num);
+ insert_insn_on_edge (init, e);
+ inserted = 1;
+ }
+
+ bi->stack_in.top = top;
+ }
+
+ return inserted;
+}
+
+/* Construct the desired stack for function exit. This will either
+ be `empty', or the function return value at top-of-stack. */
+
+static void
+convert_regs_exit (void)
+{
+ int value_reg_low, value_reg_high;
+ stack output_stack;
+ rtx retvalue;
+
+ retvalue = stack_result (current_function_decl);
+ value_reg_low = value_reg_high = -1;
+ if (retvalue)
+ {
+ value_reg_low = REGNO (retvalue);
+ value_reg_high = value_reg_low
+ + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
+ }
+
+ output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
+ if (value_reg_low == -1)
+ output_stack->top = -1;
+ else
+ {
+ int reg;
+
+ output_stack->top = value_reg_high - value_reg_low;
+ for (reg = value_reg_low; reg <= value_reg_high; ++reg)
+ {
+ output_stack->reg[value_reg_high - reg] = reg;
+ SET_HARD_REG_BIT (output_stack->reg_set, reg);
+ }
+ }
+}
+
+/* Copy the stack info from the end of edge E's source block to the
+ start of E's destination block. */
+
+static void
+propagate_stack (edge e)
+{
+ stack src_stack = &BLOCK_INFO (e->src)->stack_out;
+ stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
+ int reg;
+
+ /* Preserve the order of the original stack, but check whether
+ any pops are needed. */
+ dest_stack->top = -1;
+ for (reg = 0; reg <= src_stack->top; ++reg)
+ if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
+ dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
+}
+
+
+/* Adjust the stack of edge E's source block on exit to match the stack
+ of it's target block upon input. The stack layouts of both blocks
+ should have been defined by now. */
+
+static bool
+compensate_edge (edge e)
+{
+ basic_block source = e->src, target = e->dest;
+ stack target_stack = &BLOCK_INFO (target)->stack_in;
+ stack source_stack = &BLOCK_INFO (source)->stack_out;
+ struct stack_def regstack;
+ int reg;
+
+ if (dump_file)
+ fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
+
+ gcc_assert (target_stack->top != -2);
+
+ /* Check whether stacks are identical. */
+ if (target_stack->top == source_stack->top)
+ {
+ for (reg = target_stack->top; reg >= 0; --reg)
+ if (target_stack->reg[reg] != source_stack->reg[reg])
+ break;
+
+ if (reg == -1)
+ {
+ if (dump_file)
+ fprintf (dump_file, "no changes needed\n");
+ return false;
+ }
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "correcting stack to ");
+ print_stack (dump_file, target_stack);
+ }
+
+ /* Abnormal calls may appear to have values live in st(0), but the
+ abnormal return path will not have actually loaded the values. */
+ if (e->flags & EDGE_ABNORMAL_CALL)
+ {
+ /* Assert that the lifetimes are as we expect -- one value
+ live at st(0) on the end of the source block, and no
+ values live at the beginning of the destination block.
+ For complex return values, we may have st(1) live as well. */
+ gcc_assert (source_stack->top == 0 || source_stack->top == 1);
+ gcc_assert (target_stack->top == -1);
+ return false;
+ }
+
+ /* Handle non-call EH edges specially. The normal return path have
+ values in registers. These will be popped en masse by the unwind
+ library. */
+ if (e->flags & EDGE_EH)
+ {
+ gcc_assert (target_stack->top == -1);
+ return false;
+ }
+
+ /* We don't support abnormal edges. Global takes care to
+ avoid any live register across them, so we should never
+ have to insert instructions on such edges. */
+ gcc_assert (! (e->flags & EDGE_ABNORMAL));
+
+ /* Make a copy of source_stack as change_stack is destructive. */
+ regstack = *source_stack;
+
+ /* It is better to output directly to the end of the block
+ instead of to the edge, because emit_swap can do minimal
+ insn scheduling. We can do this when there is only one
+ edge out, and it is not abnormal. */
+ if (EDGE_COUNT (source->succs) == 1)
+ {
+ current_block = source;
+ change_stack (BB_END (source), &regstack, target_stack,
+ (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
+ }
+ else
+ {
+ rtx seq, after;
+
+ current_block = NULL;
+ start_sequence ();
+
+ /* ??? change_stack needs some point to emit insns after. */
+ after = emit_note (NOTE_INSN_DELETED);
+
+ change_stack (after, &regstack, target_stack, EMIT_BEFORE);
+
+ seq = get_insns ();
+ end_sequence ();
+
+ insert_insn_on_edge (seq, e);
+ return true;
+ }
+ return false;
+}
+
+/* Traverse all non-entry edges in the CFG, and emit the necessary
+ edge compensation code to change the stack from stack_out of the
+ source block to the stack_in of the destination block. */
+
+static bool
+compensate_edges (void)
+{
+ bool inserted = false;
+ basic_block bb;
+
+ starting_stack_p = false;
+
+ FOR_EACH_BB (bb)
+ if (bb != ENTRY_BLOCK_PTR)
+ {
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ inserted |= compensate_edge (e);
+ }
+ return inserted;
+}
+
+/* Select the better of two edges E1 and E2 to use to determine the
+ stack layout for their shared destination basic block. This is
+ typically the more frequently executed. The edge E1 may be NULL
+ (in which case E2 is returned), but E2 is always non-NULL. */
+
+static edge
+better_edge (edge e1, edge e2)
+{
+ if (!e1)
+ return e2;
+
+ if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
+ return e1;
+ if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
+ return e2;
+
+ if (e1->count > e2->count)
+ return e1;
+ if (e1->count < e2->count)
+ return e2;
+
+ /* Prefer critical edges to minimize inserting compensation code on
+ critical edges. */
+
+ if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
+ return EDGE_CRITICAL_P (e1) ? e1 : e2;
+
+ /* Avoid non-deterministic behavior. */
+ return (e1->src->index < e2->src->index) ? e1 : e2;
+}
+
+/* Convert stack register references in one block. */
+
+static void
+convert_regs_1 (basic_block block)
+{
+ struct stack_def regstack;
+ block_info bi = BLOCK_INFO (block);
+ int reg;
+ rtx insn, next;
+ bool control_flow_insn_deleted = false;
+
+ any_malformed_asm = false;
+
+ /* Choose an initial stack layout, if one hasn't already been chosen. */
+ if (bi->stack_in.top == -2)
+ {
+ edge e, beste = NULL;
+ edge_iterator ei;
+
+ /* Select the best incoming edge (typically the most frequent) to
+ use as a template for this basic block. */
+ FOR_EACH_EDGE (e, ei, block->preds)
+ if (BLOCK_INFO (e->src)->done)
+ beste = better_edge (beste, e);
+
+ if (beste)
+ propagate_stack (beste);
+ else
+ {
+ /* No predecessors. Create an arbitrary input stack. */
+ bi->stack_in.top = -1;
+ for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
+ if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
+ bi->stack_in.reg[++bi->stack_in.top] = reg;
+ }
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
+ print_stack (dump_file, &bi->stack_in);
+ }
+
+ /* Process all insns in this block. Keep track of NEXT so that we
+ don't process insns emitted while substituting in INSN. */
+ current_block = block;
+ next = BB_HEAD (block);
+ regstack = bi->stack_in;
+ starting_stack_p = true;
+
+ do
+ {
+ insn = next;
+ next = NEXT_INSN (insn);
+
+ /* Ensure we have not missed a block boundary. */
+ gcc_assert (next);
+ if (insn == BB_END (block))
+ next = NULL;
+
+ /* Don't bother processing unless there is a stack reg
+ mentioned or if it's a CALL_INSN. */
+ if (stack_regs_mentioned (insn)
+ || CALL_P (insn))
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, " insn %d input stack: ",
+ INSN_UID (insn));
+ print_stack (dump_file, &regstack);
+ }
+ control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
+ starting_stack_p = false;
+ }
+ }
+ while (next);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Expected live registers [");
+ for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
+ if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
+ fprintf (dump_file, " %d", reg);
+ fprintf (dump_file, " ]\nOutput stack: ");
+ print_stack (dump_file, &regstack);
+ }
+
+ insn = BB_END (block);
+ if (JUMP_P (insn))
+ insn = PREV_INSN (insn);
+
+ /* If the function is declared to return a value, but it returns one
+ in only some cases, some registers might come live here. Emit
+ necessary moves for them. */
+
+ for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
+ {
+ if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
+ && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
+ {
+ rtx set;
+
+ if (dump_file)
+ fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
+
+ set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
+ insn = emit_insn_after (set, insn);
+ control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
+ }
+ }
+
+ /* Amongst the insns possibly deleted during the substitution process above,
+ might have been the only trapping insn in the block. We purge the now
+ possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
+ called at the end of convert_regs. The order in which we process the
+ blocks ensures that we never delete an already processed edge.
+
+ Note that, at this point, the CFG may have been damaged by the emission
+ of instructions after an abnormal call, which moves the basic block end
+ (and is the reason why we call fixup_abnormal_edges later). So we must
+ be sure that the trapping insn has been deleted before trying to purge
+ dead edges, otherwise we risk purging valid edges.
+
+ ??? We are normally supposed not to delete trapping insns, so we pretend
+ that the insns deleted above don't actually trap. It would have been
+ better to detect this earlier and avoid creating the EH edge in the first
+ place, still, but we don't have enough information at that time. */
+
+ if (control_flow_insn_deleted)
+ purge_dead_edges (block);
+
+ /* Something failed if the stack lives don't match. If we had malformed
+ asms, we zapped the instruction itself, but that didn't produce the
+ same pattern of register kills as before. */
+ GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
+ gcc_assert (any_malformed_asm);
+ win:
+ bi->stack_out = regstack;
+ bi->done = true;
+}
+
+/* Convert registers in all blocks reachable from BLOCK. */
+
+static void
+convert_regs_2 (basic_block block)
+{
+ basic_block *stack, *sp;
+
+ /* We process the blocks in a top-down manner, in a way such that one block
+ is only processed after all its predecessors. The number of predecessors
+ of every block has already been computed. */
+
+ stack = XNEWVEC (basic_block, n_basic_blocks);
+ sp = stack;
+
+ *sp++ = block;
+
+ do
+ {
+ edge e;
+ edge_iterator ei;
+
+ block = *--sp;
+
+ /* Processing BLOCK is achieved by convert_regs_1, which may purge
+ some dead EH outgoing edge after the deletion of the trapping
+ insn inside the block. Since the number of predecessors of
+ BLOCK's successors was computed based on the initial edge set,
+ we check the necessity to process some of these successors
+ before such an edge deletion may happen. However, there is
+ a pitfall: if BLOCK is the only predecessor of a successor and
+ the edge between them happens to be deleted, the successor
+ becomes unreachable and should not be processed. The problem
+ is that there is no way to preventively detect this case so we
+ stack the successor in all cases and hand over the task of
+ fixing up the discrepancy to convert_regs_1. */
+
+ FOR_EACH_EDGE (e, ei, block->succs)
+ if (! (e->flags & EDGE_DFS_BACK))
+ {
+ BLOCK_INFO (e->dest)->predecessors--;
+ if (!BLOCK_INFO (e->dest)->predecessors)
+ *sp++ = e->dest;
+ }
+
+ convert_regs_1 (block);
+ }
+ while (sp != stack);
+
+ free (stack);
+}
+
+/* Traverse all basic blocks in a function, converting the register
+ references in each insn from the "flat" register file that gcc uses,
+ to the stack-like registers the 387 uses. */
+
+static void
+convert_regs (void)
+{
+ int inserted;
+ basic_block b;
+ edge e;
+ edge_iterator ei;
+
+ /* Initialize uninitialized registers on function entry. */
+ inserted = convert_regs_entry ();
+
+ /* Construct the desired stack for function exit. */
+ convert_regs_exit ();
+ BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
+
+ /* ??? Future: process inner loops first, and give them arbitrary
+ initial stacks which emit_swap_insn can modify. This ought to
+ prevent double fxch that often appears at the head of a loop. */
+
+ /* Process all blocks reachable from all entry points. */
+ FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
+ convert_regs_2 (e->dest);
+
+ /* ??? Process all unreachable blocks. Though there's no excuse
+ for keeping these even when not optimizing. */
+ FOR_EACH_BB (b)
+ {
+ block_info bi = BLOCK_INFO (b);
+
+ if (! bi->done)
+ convert_regs_2 (b);
+ }
+
+ inserted |= compensate_edges ();
+
+ clear_aux_for_blocks ();
+
+ fixup_abnormal_edges ();
+ if (inserted)
+ commit_edge_insertions ();
+
+ if (dump_file)
+ fputc ('\n', dump_file);
+}
+
+/* Convert register usage from "flat" register file usage to a "stack
+ register file. FILE is the dump file, if used.
+
+ Construct a CFG and run life analysis. Then convert each insn one
+ by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
+ code duplication created when the converter inserts pop insns on
+ the edges. */
+
+static bool
+reg_to_stack (void)
+{
+ basic_block bb;
+ int i;
+ int max_uid;
+
+ /* Clean up previous run. */
+ if (stack_regs_mentioned_data != NULL)
+ VEC_free (char, heap, stack_regs_mentioned_data);
+
+ /* See if there is something to do. Flow analysis is quite
+ expensive so we might save some compilation time. */
+ for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
+ if (regs_ever_live[i])
+ break;
+ if (i > LAST_STACK_REG)
+ return false;
+
+ /* Ok, floating point instructions exist. If not optimizing,
+ build the CFG and run life analysis.
+ Also need to rebuild life when superblock scheduling is done
+ as it don't update liveness yet. */
+ if (!optimize
+ || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
+ && flag_schedule_insns_after_reload))
+ {
+ count_or_remove_death_notes (NULL, 1);
+ life_analysis (PROP_DEATH_NOTES);
+ }
+ mark_dfs_back_edges ();
+
+ /* Set up block info for each basic block. */
+ alloc_aux_for_blocks (sizeof (struct block_info_def));
+ FOR_EACH_BB (bb)
+ {
+ block_info bi = BLOCK_INFO (bb);
+ edge_iterator ei;
+ edge e;
+ int reg;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (!(e->flags & EDGE_DFS_BACK)
+ && e->src != ENTRY_BLOCK_PTR)
+ bi->predecessors++;
+
+ /* Set current register status at last instruction `uninitialized'. */
+ bi->stack_in.top = -2;
+
+ /* Copy live_at_end and live_at_start into temporaries. */
+ for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
+ {
+ if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
+ SET_HARD_REG_BIT (bi->out_reg_set, reg);
+ if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
+ SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
+ }
+ }
+
+ /* Create the replacement registers up front. */
+ for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
+ {
+ enum machine_mode mode;
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
+ mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
+ mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
+ }
+
+ ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
+
+ /* A QNaN for initializing uninitialized variables.
+
+ ??? We can't load from constant memory in PIC mode, because
+ we're inserting these instructions before the prologue and
+ the PIC register hasn't been set up. In that case, fall back
+ on zero, which we can get from `ldz'. */
+
+ if (flag_pic)
+ not_a_num = CONST0_RTX (SFmode);
+ else
+ {
+ not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
+ not_a_num = force_const_mem (SFmode, not_a_num);
+ }
+
+ /* Allocate a cache for stack_regs_mentioned. */
+ max_uid = get_max_uid ();
+ stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
+ memset (VEC_address (char, stack_regs_mentioned_data),
+ 0, sizeof (char) * max_uid + 1);
+
+ convert_regs ();
+
+ free_aux_for_blocks ();
+ return true;
+}
+#endif /* STACK_REGS */
+
+static bool
+gate_handle_stack_regs (void)
+{
+#ifdef STACK_REGS
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+/* Convert register usage from flat register file usage to a stack
+ register file. */
+static unsigned int
+rest_of_handle_stack_regs (void)
+{
+#ifdef STACK_REGS
+ if (reg_to_stack () && optimize)
+ {
+ regstack_completed = 1;
+ if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
+ | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
+ && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
+ {
+ reorder_basic_blocks (0);
+ cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
+ }
+ }
+ else
+ regstack_completed = 1;
+#endif
+ return 0;
+}
+
+struct tree_opt_pass pass_stack_regs =
+{
+ "stack", /* name */
+ gate_handle_stack_regs, /* gate */
+ rest_of_handle_stack_regs, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_REG_STACK, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func |
+ TODO_ggc_collect, /* todo_flags_finish */
+ 'k' /* letter */
+};