aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/real.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/real.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/real.c4933
1 files changed, 0 insertions, 4933 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/real.c b/gcc-4.2.1-5666.3/gcc/real.c
deleted file mode 100644
index 420a04532..000000000
--- a/gcc-4.2.1-5666.3/gcc/real.c
+++ /dev/null
@@ -1,4933 +0,0 @@
-/* real.c - software floating point emulation.
- Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
- 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
- Contributed by Stephen L. Moshier (moshier@world.std.com).
- Re-written by Richard Henderson <rth@redhat.com>
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 2, or (at your option) any later
- version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING. If not, write to the Free
- Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
- 02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "toplev.h"
-#include "real.h"
-#include "tm_p.h"
-#include "dfp.h"
-
-/* The floating point model used internally is not exactly IEEE 754
- compliant, and close to the description in the ISO C99 standard,
- section 5.2.4.2.2 Characteristics of floating types.
-
- Specifically
-
- x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
-
- where
- s = sign (+- 1)
- b = base or radix, here always 2
- e = exponent
- p = precision (the number of base-b digits in the significand)
- f_k = the digits of the significand.
-
- We differ from typical IEEE 754 encodings in that the entire
- significand is fractional. Normalized significands are in the
- range [0.5, 1.0).
-
- A requirement of the model is that P be larger than the largest
- supported target floating-point type by at least 2 bits. This gives
- us proper rounding when we truncate to the target type. In addition,
- E must be large enough to hold the smallest supported denormal number
- in a normalized form.
-
- Both of these requirements are easily satisfied. The largest target
- significand is 113 bits; we store at least 160. The smallest
- denormal number fits in 17 exponent bits; we store 27.
-
- Note that the decimal string conversion routines are sensitive to
- rounding errors. Since the raw arithmetic routines do not themselves
- have guard digits or rounding, the computation of 10**exp can
- accumulate more than a few digits of error. The previous incarnation
- of real.c successfully used a 144-bit fraction; given the current
- layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
-
- Target floating point models that use base 16 instead of base 2
- (i.e. IBM 370), are handled during round_for_format, in which we
- canonicalize the exponent to be a multiple of 4 (log2(16)), and
- adjust the significand to match. */
-
-
-/* Used to classify two numbers simultaneously. */
-#define CLASS2(A, B) ((A) << 2 | (B))
-
-#if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
- #error "Some constant folding done by hand to avoid shift count warnings"
-#endif
-
-static void get_zero (REAL_VALUE_TYPE *, int);
-static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
-static void get_canonical_snan (REAL_VALUE_TYPE *, int);
-static void get_inf (REAL_VALUE_TYPE *, int);
-static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *, unsigned int);
-static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- unsigned int);
-static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- unsigned int);
-static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
-static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *);
-static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *, int);
-static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
-static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
-static int cmp_significand_0 (const REAL_VALUE_TYPE *);
-static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
-static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
-static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
-static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
-static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *);
-static void normalize (REAL_VALUE_TYPE *);
-
-static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *, int);
-static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *);
-static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
- const REAL_VALUE_TYPE *);
-static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
-static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
-
-static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
-
-static const REAL_VALUE_TYPE * ten_to_ptwo (int);
-static const REAL_VALUE_TYPE * ten_to_mptwo (int);
-static const REAL_VALUE_TYPE * real_digit (int);
-static void times_pten (REAL_VALUE_TYPE *, int);
-
-static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
-
-/* Initialize R with a positive zero. */
-
-static inline void
-get_zero (REAL_VALUE_TYPE *r, int sign)
-{
- memset (r, 0, sizeof (*r));
- r->sign = sign;
-}
-
-/* Initialize R with the canonical quiet NaN. */
-
-static inline void
-get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
-{
- memset (r, 0, sizeof (*r));
- r->cl = rvc_nan;
- r->sign = sign;
- r->canonical = 1;
-}
-
-static inline void
-get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
-{
- memset (r, 0, sizeof (*r));
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = 1;
- r->canonical = 1;
-}
-
-static inline void
-get_inf (REAL_VALUE_TYPE *r, int sign)
-{
- memset (r, 0, sizeof (*r));
- r->cl = rvc_inf;
- r->sign = sign;
-}
-
-
-/* Right-shift the significand of A by N bits; put the result in the
- significand of R. If any one bits are shifted out, return true. */
-
-static bool
-sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- unsigned int n)
-{
- unsigned long sticky = 0;
- unsigned int i, ofs = 0;
-
- if (n >= HOST_BITS_PER_LONG)
- {
- for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
- sticky |= a->sig[i];
- n &= HOST_BITS_PER_LONG - 1;
- }
-
- if (n != 0)
- {
- sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
- for (i = 0; i < SIGSZ; ++i)
- {
- r->sig[i]
- = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
- | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
- << (HOST_BITS_PER_LONG - n)));
- }
- }
- else
- {
- for (i = 0; ofs + i < SIGSZ; ++i)
- r->sig[i] = a->sig[ofs + i];
- for (; i < SIGSZ; ++i)
- r->sig[i] = 0;
- }
-
- return sticky != 0;
-}
-
-/* Right-shift the significand of A by N bits; put the result in the
- significand of R. */
-
-static void
-rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- unsigned int n)
-{
- unsigned int i, ofs = n / HOST_BITS_PER_LONG;
-
- n &= HOST_BITS_PER_LONG - 1;
- if (n != 0)
- {
- for (i = 0; i < SIGSZ; ++i)
- {
- r->sig[i]
- = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
- | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
- << (HOST_BITS_PER_LONG - n)));
- }
- }
- else
- {
- for (i = 0; ofs + i < SIGSZ; ++i)
- r->sig[i] = a->sig[ofs + i];
- for (; i < SIGSZ; ++i)
- r->sig[i] = 0;
- }
-}
-
-/* Left-shift the significand of A by N bits; put the result in the
- significand of R. */
-
-static void
-lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- unsigned int n)
-{
- unsigned int i, ofs = n / HOST_BITS_PER_LONG;
-
- n &= HOST_BITS_PER_LONG - 1;
- if (n == 0)
- {
- for (i = 0; ofs + i < SIGSZ; ++i)
- r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
- for (; i < SIGSZ; ++i)
- r->sig[SIGSZ-1-i] = 0;
- }
- else
- for (i = 0; i < SIGSZ; ++i)
- {
- r->sig[SIGSZ-1-i]
- = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
- | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
- >> (HOST_BITS_PER_LONG - n)));
- }
-}
-
-/* Likewise, but N is specialized to 1. */
-
-static inline void
-lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
-{
- unsigned int i;
-
- for (i = SIGSZ - 1; i > 0; --i)
- r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
- r->sig[0] = a->sig[0] << 1;
-}
-
-/* Add the significands of A and B, placing the result in R. Return
- true if there was carry out of the most significant word. */
-
-static inline bool
-add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b)
-{
- bool carry = false;
- int i;
-
- for (i = 0; i < SIGSZ; ++i)
- {
- unsigned long ai = a->sig[i];
- unsigned long ri = ai + b->sig[i];
-
- if (carry)
- {
- carry = ri < ai;
- carry |= ++ri == 0;
- }
- else
- carry = ri < ai;
-
- r->sig[i] = ri;
- }
-
- return carry;
-}
-
-/* Subtract the significands of A and B, placing the result in R. CARRY is
- true if there's a borrow incoming to the least significant word.
- Return true if there was borrow out of the most significant word. */
-
-static inline bool
-sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b, int carry)
-{
- int i;
-
- for (i = 0; i < SIGSZ; ++i)
- {
- unsigned long ai = a->sig[i];
- unsigned long ri = ai - b->sig[i];
-
- if (carry)
- {
- carry = ri > ai;
- carry |= ~--ri == 0;
- }
- else
- carry = ri > ai;
-
- r->sig[i] = ri;
- }
-
- return carry;
-}
-
-/* Negate the significand A, placing the result in R. */
-
-static inline void
-neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
-{
- bool carry = true;
- int i;
-
- for (i = 0; i < SIGSZ; ++i)
- {
- unsigned long ri, ai = a->sig[i];
-
- if (carry)
- {
- if (ai)
- {
- ri = -ai;
- carry = false;
- }
- else
- ri = ai;
- }
- else
- ri = ~ai;
-
- r->sig[i] = ri;
- }
-}
-
-/* Compare significands. Return tri-state vs zero. */
-
-static inline int
-cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
-{
- int i;
-
- for (i = SIGSZ - 1; i >= 0; --i)
- {
- unsigned long ai = a->sig[i];
- unsigned long bi = b->sig[i];
-
- if (ai > bi)
- return 1;
- if (ai < bi)
- return -1;
- }
-
- return 0;
-}
-
-/* Return true if A is nonzero. */
-
-static inline int
-cmp_significand_0 (const REAL_VALUE_TYPE *a)
-{
- int i;
-
- for (i = SIGSZ - 1; i >= 0; --i)
- if (a->sig[i])
- return 1;
-
- return 0;
-}
-
-/* Set bit N of the significand of R. */
-
-static inline void
-set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
-{
- r->sig[n / HOST_BITS_PER_LONG]
- |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
-}
-
-/* Clear bit N of the significand of R. */
-
-static inline void
-clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
-{
- r->sig[n / HOST_BITS_PER_LONG]
- &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
-}
-
-/* Test bit N of the significand of R. */
-
-static inline bool
-test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
-{
- /* ??? Compiler bug here if we return this expression directly.
- The conversion to bool strips the "&1" and we wind up testing
- e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
- int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
- return t;
-}
-
-/* Clear bits 0..N-1 of the significand of R. */
-
-static void
-clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
-{
- int i, w = n / HOST_BITS_PER_LONG;
-
- for (i = 0; i < w; ++i)
- r->sig[i] = 0;
-
- r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
-}
-
-/* Divide the significands of A and B, placing the result in R. Return
- true if the division was inexact. */
-
-static inline bool
-div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b)
-{
- REAL_VALUE_TYPE u;
- int i, bit = SIGNIFICAND_BITS - 1;
- unsigned long msb, inexact;
-
- u = *a;
- memset (r->sig, 0, sizeof (r->sig));
-
- msb = 0;
- goto start;
- do
- {
- msb = u.sig[SIGSZ-1] & SIG_MSB;
- lshift_significand_1 (&u, &u);
- start:
- if (msb || cmp_significands (&u, b) >= 0)
- {
- sub_significands (&u, &u, b, 0);
- set_significand_bit (r, bit);
- }
- }
- while (--bit >= 0);
-
- for (i = 0, inexact = 0; i < SIGSZ; i++)
- inexact |= u.sig[i];
-
- return inexact != 0;
-}
-
-/* Adjust the exponent and significand of R such that the most
- significant bit is set. We underflow to zero and overflow to
- infinity here, without denormals. (The intermediate representation
- exponent is large enough to handle target denormals normalized.) */
-
-static void
-normalize (REAL_VALUE_TYPE *r)
-{
- int shift = 0, exp;
- int i, j;
-
- if (r->decimal)
- return;
-
- /* Find the first word that is nonzero. */
- for (i = SIGSZ - 1; i >= 0; i--)
- if (r->sig[i] == 0)
- shift += HOST_BITS_PER_LONG;
- else
- break;
-
- /* Zero significand flushes to zero. */
- if (i < 0)
- {
- r->cl = rvc_zero;
- SET_REAL_EXP (r, 0);
- return;
- }
-
- /* Find the first bit that is nonzero. */
- for (j = 0; ; j++)
- if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
- break;
- shift += j;
-
- if (shift > 0)
- {
- exp = REAL_EXP (r) - shift;
- if (exp > MAX_EXP)
- get_inf (r, r->sign);
- else if (exp < -MAX_EXP)
- get_zero (r, r->sign);
- else
- {
- SET_REAL_EXP (r, exp);
- lshift_significand (r, r, shift);
- }
- }
-}
-
-/* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
- result may be inexact due to a loss of precision. */
-
-static bool
-do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b, int subtract_p)
-{
- int dexp, sign, exp;
- REAL_VALUE_TYPE t;
- bool inexact = false;
-
- /* Determine if we need to add or subtract. */
- sign = a->sign;
- subtract_p = (sign ^ b->sign) ^ subtract_p;
-
- switch (CLASS2 (a->cl, b->cl))
- {
- case CLASS2 (rvc_zero, rvc_zero):
- /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
- get_zero (r, sign & !subtract_p);
- return false;
-
- case CLASS2 (rvc_zero, rvc_normal):
- case CLASS2 (rvc_zero, rvc_inf):
- case CLASS2 (rvc_zero, rvc_nan):
- /* 0 + ANY = ANY. */
- case CLASS2 (rvc_normal, rvc_nan):
- case CLASS2 (rvc_inf, rvc_nan):
- case CLASS2 (rvc_nan, rvc_nan):
- /* ANY + NaN = NaN. */
- case CLASS2 (rvc_normal, rvc_inf):
- /* R + Inf = Inf. */
- *r = *b;
- r->sign = sign ^ subtract_p;
- return false;
-
- case CLASS2 (rvc_normal, rvc_zero):
- case CLASS2 (rvc_inf, rvc_zero):
- case CLASS2 (rvc_nan, rvc_zero):
- /* ANY + 0 = ANY. */
- case CLASS2 (rvc_nan, rvc_normal):
- case CLASS2 (rvc_nan, rvc_inf):
- /* NaN + ANY = NaN. */
- case CLASS2 (rvc_inf, rvc_normal):
- /* Inf + R = Inf. */
- *r = *a;
- return false;
-
- case CLASS2 (rvc_inf, rvc_inf):
- if (subtract_p)
- /* Inf - Inf = NaN. */
- get_canonical_qnan (r, 0);
- else
- /* Inf + Inf = Inf. */
- *r = *a;
- return false;
-
- case CLASS2 (rvc_normal, rvc_normal):
- break;
-
- default:
- gcc_unreachable ();
- }
-
- /* Swap the arguments such that A has the larger exponent. */
- dexp = REAL_EXP (a) - REAL_EXP (b);
- if (dexp < 0)
- {
- const REAL_VALUE_TYPE *t;
- t = a, a = b, b = t;
- dexp = -dexp;
- sign ^= subtract_p;
- }
- exp = REAL_EXP (a);
-
- /* If the exponents are not identical, we need to shift the
- significand of B down. */
- if (dexp > 0)
- {
- /* If the exponents are too far apart, the significands
- do not overlap, which makes the subtraction a noop. */
- if (dexp >= SIGNIFICAND_BITS)
- {
- *r = *a;
- r->sign = sign;
- return true;
- }
-
- inexact |= sticky_rshift_significand (&t, b, dexp);
- b = &t;
- }
-
- if (subtract_p)
- {
- if (sub_significands (r, a, b, inexact))
- {
- /* We got a borrow out of the subtraction. That means that
- A and B had the same exponent, and B had the larger
- significand. We need to swap the sign and negate the
- significand. */
- sign ^= 1;
- neg_significand (r, r);
- }
- }
- else
- {
- if (add_significands (r, a, b))
- {
- /* We got carry out of the addition. This means we need to
- shift the significand back down one bit and increase the
- exponent. */
- inexact |= sticky_rshift_significand (r, r, 1);
- r->sig[SIGSZ-1] |= SIG_MSB;
- if (++exp > MAX_EXP)
- {
- get_inf (r, sign);
- return true;
- }
- }
- }
-
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp);
- /* Zero out the remaining fields. */
- r->signalling = 0;
- r->canonical = 0;
- r->decimal = 0;
-
- /* Re-normalize the result. */
- normalize (r);
-
- /* Special case: if the subtraction results in zero, the result
- is positive. */
- if (r->cl == rvc_zero)
- r->sign = 0;
- else
- r->sig[0] |= inexact;
-
- return inexact;
-}
-
-/* Calculate R = A * B. Return true if the result may be inexact. */
-
-static bool
-do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b)
-{
- REAL_VALUE_TYPE u, t, *rr;
- unsigned int i, j, k;
- int sign = a->sign ^ b->sign;
- bool inexact = false;
-
- switch (CLASS2 (a->cl, b->cl))
- {
- case CLASS2 (rvc_zero, rvc_zero):
- case CLASS2 (rvc_zero, rvc_normal):
- case CLASS2 (rvc_normal, rvc_zero):
- /* +-0 * ANY = 0 with appropriate sign. */
- get_zero (r, sign);
- return false;
-
- case CLASS2 (rvc_zero, rvc_nan):
- case CLASS2 (rvc_normal, rvc_nan):
- case CLASS2 (rvc_inf, rvc_nan):
- case CLASS2 (rvc_nan, rvc_nan):
- /* ANY * NaN = NaN. */
- *r = *b;
- r->sign = sign;
- return false;
-
- case CLASS2 (rvc_nan, rvc_zero):
- case CLASS2 (rvc_nan, rvc_normal):
- case CLASS2 (rvc_nan, rvc_inf):
- /* NaN * ANY = NaN. */
- *r = *a;
- r->sign = sign;
- return false;
-
- case CLASS2 (rvc_zero, rvc_inf):
- case CLASS2 (rvc_inf, rvc_zero):
- /* 0 * Inf = NaN */
- get_canonical_qnan (r, sign);
- return false;
-
- case CLASS2 (rvc_inf, rvc_inf):
- case CLASS2 (rvc_normal, rvc_inf):
- case CLASS2 (rvc_inf, rvc_normal):
- /* Inf * Inf = Inf, R * Inf = Inf */
- get_inf (r, sign);
- return false;
-
- case CLASS2 (rvc_normal, rvc_normal):
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (r == a || r == b)
- rr = &t;
- else
- rr = r;
- get_zero (rr, 0);
-
- /* Collect all the partial products. Since we don't have sure access
- to a widening multiply, we split each long into two half-words.
-
- Consider the long-hand form of a four half-word multiplication:
-
- A B C D
- * E F G H
- --------------
- DE DF DG DH
- CE CF CG CH
- BE BF BG BH
- AE AF AG AH
-
- We construct partial products of the widened half-word products
- that are known to not overlap, e.g. DF+DH. Each such partial
- product is given its proper exponent, which allows us to sum them
- and obtain the finished product. */
-
- for (i = 0; i < SIGSZ * 2; ++i)
- {
- unsigned long ai = a->sig[i / 2];
- if (i & 1)
- ai >>= HOST_BITS_PER_LONG / 2;
- else
- ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
-
- if (ai == 0)
- continue;
-
- for (j = 0; j < 2; ++j)
- {
- int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
- + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
-
- if (exp > MAX_EXP)
- {
- get_inf (r, sign);
- return true;
- }
- if (exp < -MAX_EXP)
- {
- /* Would underflow to zero, which we shouldn't bother adding. */
- inexact = true;
- continue;
- }
-
- memset (&u, 0, sizeof (u));
- u.cl = rvc_normal;
- SET_REAL_EXP (&u, exp);
-
- for (k = j; k < SIGSZ * 2; k += 2)
- {
- unsigned long bi = b->sig[k / 2];
- if (k & 1)
- bi >>= HOST_BITS_PER_LONG / 2;
- else
- bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
-
- u.sig[k / 2] = ai * bi;
- }
-
- normalize (&u);
- inexact |= do_add (rr, rr, &u, 0);
- }
- }
-
- rr->sign = sign;
- if (rr != r)
- *r = t;
-
- return inexact;
-}
-
-/* Calculate R = A / B. Return true if the result may be inexact. */
-
-static bool
-do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
- const REAL_VALUE_TYPE *b)
-{
- int exp, sign = a->sign ^ b->sign;
- REAL_VALUE_TYPE t, *rr;
- bool inexact;
-
- switch (CLASS2 (a->cl, b->cl))
- {
- case CLASS2 (rvc_zero, rvc_zero):
- /* 0 / 0 = NaN. */
- case CLASS2 (rvc_inf, rvc_inf):
- /* Inf / Inf = NaN. */
- get_canonical_qnan (r, sign);
- return false;
-
- case CLASS2 (rvc_zero, rvc_normal):
- case CLASS2 (rvc_zero, rvc_inf):
- /* 0 / ANY = 0. */
- case CLASS2 (rvc_normal, rvc_inf):
- /* R / Inf = 0. */
- get_zero (r, sign);
- return false;
-
- case CLASS2 (rvc_normal, rvc_zero):
- /* R / 0 = Inf. */
- case CLASS2 (rvc_inf, rvc_zero):
- /* Inf / 0 = Inf. */
- get_inf (r, sign);
- return false;
-
- case CLASS2 (rvc_zero, rvc_nan):
- case CLASS2 (rvc_normal, rvc_nan):
- case CLASS2 (rvc_inf, rvc_nan):
- case CLASS2 (rvc_nan, rvc_nan):
- /* ANY / NaN = NaN. */
- *r = *b;
- r->sign = sign;
- return false;
-
- case CLASS2 (rvc_nan, rvc_zero):
- case CLASS2 (rvc_nan, rvc_normal):
- case CLASS2 (rvc_nan, rvc_inf):
- /* NaN / ANY = NaN. */
- *r = *a;
- r->sign = sign;
- return false;
-
- case CLASS2 (rvc_inf, rvc_normal):
- /* Inf / R = Inf. */
- get_inf (r, sign);
- return false;
-
- case CLASS2 (rvc_normal, rvc_normal):
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (r == a || r == b)
- rr = &t;
- else
- rr = r;
-
- /* Make sure all fields in the result are initialized. */
- get_zero (rr, 0);
- rr->cl = rvc_normal;
- rr->sign = sign;
-
- exp = REAL_EXP (a) - REAL_EXP (b) + 1;
- if (exp > MAX_EXP)
- {
- get_inf (r, sign);
- return true;
- }
- if (exp < -MAX_EXP)
- {
- get_zero (r, sign);
- return true;
- }
- SET_REAL_EXP (rr, exp);
-
- inexact = div_significands (rr, a, b);
-
- /* Re-normalize the result. */
- normalize (rr);
- rr->sig[0] |= inexact;
-
- if (rr != r)
- *r = t;
-
- return inexact;
-}
-
-/* Return a tri-state comparison of A vs B. Return NAN_RESULT if
- one of the two operands is a NaN. */
-
-static int
-do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
- int nan_result)
-{
- int ret;
-
- switch (CLASS2 (a->cl, b->cl))
- {
- case CLASS2 (rvc_zero, rvc_zero):
- /* Sign of zero doesn't matter for compares. */
- return 0;
-
- case CLASS2 (rvc_inf, rvc_zero):
- case CLASS2 (rvc_inf, rvc_normal):
- case CLASS2 (rvc_normal, rvc_zero):
- return (a->sign ? -1 : 1);
-
- case CLASS2 (rvc_inf, rvc_inf):
- return -a->sign - -b->sign;
-
- case CLASS2 (rvc_zero, rvc_normal):
- case CLASS2 (rvc_zero, rvc_inf):
- case CLASS2 (rvc_normal, rvc_inf):
- return (b->sign ? 1 : -1);
-
- case CLASS2 (rvc_zero, rvc_nan):
- case CLASS2 (rvc_normal, rvc_nan):
- case CLASS2 (rvc_inf, rvc_nan):
- case CLASS2 (rvc_nan, rvc_nan):
- case CLASS2 (rvc_nan, rvc_zero):
- case CLASS2 (rvc_nan, rvc_normal):
- case CLASS2 (rvc_nan, rvc_inf):
- return nan_result;
-
- case CLASS2 (rvc_normal, rvc_normal):
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (a->sign != b->sign)
- return -a->sign - -b->sign;
-
- if (a->decimal || b->decimal)
- return decimal_do_compare (a, b, nan_result);
-
- if (REAL_EXP (a) > REAL_EXP (b))
- ret = 1;
- else if (REAL_EXP (a) < REAL_EXP (b))
- ret = -1;
- else
- ret = cmp_significands (a, b);
-
- return (a->sign ? -ret : ret);
-}
-
-/* Return A truncated to an integral value toward zero. */
-
-static void
-do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
-{
- *r = *a;
-
- switch (r->cl)
- {
- case rvc_zero:
- case rvc_inf:
- case rvc_nan:
- break;
-
- case rvc_normal:
- if (r->decimal)
- {
- decimal_do_fix_trunc (r, a);
- return;
- }
- if (REAL_EXP (r) <= 0)
- get_zero (r, r->sign);
- else if (REAL_EXP (r) < SIGNIFICAND_BITS)
- clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
- break;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Perform the binary or unary operation described by CODE.
- For a unary operation, leave OP1 NULL. This function returns
- true if the result may be inexact due to loss of precision. */
-
-bool
-real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
- const REAL_VALUE_TYPE *op1)
-{
- enum tree_code code = icode;
-
- if (op0->decimal || (op1 && op1->decimal))
- return decimal_real_arithmetic (r, icode, op0, op1);
-
- switch (code)
- {
- case PLUS_EXPR:
- return do_add (r, op0, op1, 0);
-
- case MINUS_EXPR:
- return do_add (r, op0, op1, 1);
-
- case MULT_EXPR:
- return do_multiply (r, op0, op1);
-
- case RDIV_EXPR:
- return do_divide (r, op0, op1);
-
- case MIN_EXPR:
- if (op1->cl == rvc_nan)
- *r = *op1;
- else if (do_compare (op0, op1, -1) < 0)
- *r = *op0;
- else
- *r = *op1;
- break;
-
- case MAX_EXPR:
- if (op1->cl == rvc_nan)
- *r = *op1;
- else if (do_compare (op0, op1, 1) < 0)
- *r = *op1;
- else
- *r = *op0;
- break;
-
- case NEGATE_EXPR:
- *r = *op0;
- r->sign ^= 1;
- break;
-
- case ABS_EXPR:
- *r = *op0;
- r->sign = 0;
- break;
-
- case FIX_TRUNC_EXPR:
- do_fix_trunc (r, op0);
- break;
-
- default:
- gcc_unreachable ();
- }
- return false;
-}
-
-/* Legacy. Similar, but return the result directly. */
-
-REAL_VALUE_TYPE
-real_arithmetic2 (int icode, const REAL_VALUE_TYPE *op0,
- const REAL_VALUE_TYPE *op1)
-{
- REAL_VALUE_TYPE r;
- real_arithmetic (&r, icode, op0, op1);
- return r;
-}
-
-bool
-real_compare (int icode, const REAL_VALUE_TYPE *op0,
- const REAL_VALUE_TYPE *op1)
-{
- enum tree_code code = icode;
-
- switch (code)
- {
- case LT_EXPR:
- return do_compare (op0, op1, 1) < 0;
- case LE_EXPR:
- return do_compare (op0, op1, 1) <= 0;
- case GT_EXPR:
- return do_compare (op0, op1, -1) > 0;
- case GE_EXPR:
- return do_compare (op0, op1, -1) >= 0;
- case EQ_EXPR:
- return do_compare (op0, op1, -1) == 0;
- case NE_EXPR:
- return do_compare (op0, op1, -1) != 0;
- case UNORDERED_EXPR:
- return op0->cl == rvc_nan || op1->cl == rvc_nan;
- case ORDERED_EXPR:
- return op0->cl != rvc_nan && op1->cl != rvc_nan;
- case UNLT_EXPR:
- return do_compare (op0, op1, -1) < 0;
- case UNLE_EXPR:
- return do_compare (op0, op1, -1) <= 0;
- case UNGT_EXPR:
- return do_compare (op0, op1, 1) > 0;
- case UNGE_EXPR:
- return do_compare (op0, op1, 1) >= 0;
- case UNEQ_EXPR:
- return do_compare (op0, op1, 0) == 0;
- case LTGT_EXPR:
- return do_compare (op0, op1, 0) != 0;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Return floor log2(R). */
-
-int
-real_exponent (const REAL_VALUE_TYPE *r)
-{
- switch (r->cl)
- {
- case rvc_zero:
- return 0;
- case rvc_inf:
- case rvc_nan:
- return (unsigned int)-1 >> 1;
- case rvc_normal:
- return REAL_EXP (r);
- default:
- gcc_unreachable ();
- }
-}
-
-/* R = OP0 * 2**EXP. */
-
-void
-real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
-{
- *r = *op0;
- switch (r->cl)
- {
- case rvc_zero:
- case rvc_inf:
- case rvc_nan:
- break;
-
- case rvc_normal:
- exp += REAL_EXP (op0);
- if (exp > MAX_EXP)
- get_inf (r, r->sign);
- else if (exp < -MAX_EXP)
- get_zero (r, r->sign);
- else
- SET_REAL_EXP (r, exp);
- break;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Determine whether a floating-point value X is infinite. */
-
-bool
-real_isinf (const REAL_VALUE_TYPE *r)
-{
- return (r->cl == rvc_inf);
-}
-
-/* Determine whether a floating-point value X is a NaN. */
-
-bool
-real_isnan (const REAL_VALUE_TYPE *r)
-{
- return (r->cl == rvc_nan);
-}
-
-/* Determine whether a floating-point value X is negative. */
-
-bool
-real_isneg (const REAL_VALUE_TYPE *r)
-{
- return r->sign;
-}
-
-/* Determine whether a floating-point value X is minus zero. */
-
-bool
-real_isnegzero (const REAL_VALUE_TYPE *r)
-{
- return r->sign && r->cl == rvc_zero;
-}
-
-/* Compare two floating-point objects for bitwise identity. */
-
-bool
-real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
-{
- int i;
-
- if (a->cl != b->cl)
- return false;
- if (a->sign != b->sign)
- return false;
-
- switch (a->cl)
- {
- case rvc_zero:
- case rvc_inf:
- return true;
-
- case rvc_normal:
- if (a->decimal != b->decimal)
- return false;
- if (REAL_EXP (a) != REAL_EXP (b))
- return false;
- break;
-
- case rvc_nan:
- if (a->signalling != b->signalling)
- return false;
- /* The significand is ignored for canonical NaNs. */
- if (a->canonical || b->canonical)
- return a->canonical == b->canonical;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- for (i = 0; i < SIGSZ; ++i)
- if (a->sig[i] != b->sig[i])
- return false;
-
- return true;
-}
-
-/* Try to change R into its exact multiplicative inverse in machine
- mode MODE. Return true if successful. */
-
-bool
-exact_real_inverse (enum machine_mode mode, REAL_VALUE_TYPE *r)
-{
- const REAL_VALUE_TYPE *one = real_digit (1);
- REAL_VALUE_TYPE u;
- int i;
-
- if (r->cl != rvc_normal)
- return false;
-
- /* Check for a power of two: all significand bits zero except the MSB. */
- for (i = 0; i < SIGSZ-1; ++i)
- if (r->sig[i] != 0)
- return false;
- if (r->sig[SIGSZ-1] != SIG_MSB)
- return false;
-
- /* Find the inverse and truncate to the required mode. */
- do_divide (&u, one, r);
- real_convert (&u, mode, &u);
-
- /* The rounding may have overflowed. */
- if (u.cl != rvc_normal)
- return false;
- for (i = 0; i < SIGSZ-1; ++i)
- if (u.sig[i] != 0)
- return false;
- if (u.sig[SIGSZ-1] != SIG_MSB)
- return false;
-
- *r = u;
- return true;
-}
-
-/* Render R as an integer. */
-
-HOST_WIDE_INT
-real_to_integer (const REAL_VALUE_TYPE *r)
-{
- unsigned HOST_WIDE_INT i;
-
- switch (r->cl)
- {
- case rvc_zero:
- underflow:
- return 0;
-
- case rvc_inf:
- case rvc_nan:
- overflow:
- i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
- if (!r->sign)
- i--;
- return i;
-
- case rvc_normal:
- if (r->decimal)
- return decimal_real_to_integer (r);
-
- if (REAL_EXP (r) <= 0)
- goto underflow;
- /* Only force overflow for unsigned overflow. Signed overflow is
- undefined, so it doesn't matter what we return, and some callers
- expect to be able to use this routine for both signed and
- unsigned conversions. */
- if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
- goto overflow;
-
- if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
- i = r->sig[SIGSZ-1];
- else
- {
- gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
- i = r->sig[SIGSZ-1];
- i = i << (HOST_BITS_PER_LONG - 1) << 1;
- i |= r->sig[SIGSZ-2];
- }
-
- i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
-
- if (r->sign)
- i = -i;
- return i;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Likewise, but to an integer pair, HI+LOW. */
-
-void
-real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
- const REAL_VALUE_TYPE *r)
-{
- REAL_VALUE_TYPE t;
- HOST_WIDE_INT low, high;
- int exp;
-
- switch (r->cl)
- {
- case rvc_zero:
- underflow:
- low = high = 0;
- break;
-
- case rvc_inf:
- case rvc_nan:
- overflow:
- high = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
- if (r->sign)
- low = 0;
- else
- {
- high--;
- low = -1;
- }
- break;
-
- case rvc_normal:
- if (r->decimal)
- {
- decimal_real_to_integer2 (plow, phigh, r);
- return;
- }
-
- exp = REAL_EXP (r);
- if (exp <= 0)
- goto underflow;
- /* Only force overflow for unsigned overflow. Signed overflow is
- undefined, so it doesn't matter what we return, and some callers
- expect to be able to use this routine for both signed and
- unsigned conversions. */
- if (exp > 2*HOST_BITS_PER_WIDE_INT)
- goto overflow;
-
- rshift_significand (&t, r, 2*HOST_BITS_PER_WIDE_INT - exp);
- if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
- {
- high = t.sig[SIGSZ-1];
- low = t.sig[SIGSZ-2];
- }
- else
- {
- gcc_assert (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG);
- high = t.sig[SIGSZ-1];
- high = high << (HOST_BITS_PER_LONG - 1) << 1;
- high |= t.sig[SIGSZ-2];
-
- low = t.sig[SIGSZ-3];
- low = low << (HOST_BITS_PER_LONG - 1) << 1;
- low |= t.sig[SIGSZ-4];
- }
-
- if (r->sign)
- {
- if (low == 0)
- high = -high;
- else
- low = -low, high = ~high;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- *plow = low;
- *phigh = high;
-}
-
-/* A subroutine of real_to_decimal. Compute the quotient and remainder
- of NUM / DEN. Return the quotient and place the remainder in NUM.
- It is expected that NUM / DEN are close enough that the quotient is
- small. */
-
-static unsigned long
-rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
-{
- unsigned long q, msb;
- int expn = REAL_EXP (num), expd = REAL_EXP (den);
-
- if (expn < expd)
- return 0;
-
- q = msb = 0;
- goto start;
- do
- {
- msb = num->sig[SIGSZ-1] & SIG_MSB;
- q <<= 1;
- lshift_significand_1 (num, num);
- start:
- if (msb || cmp_significands (num, den) >= 0)
- {
- sub_significands (num, num, den, 0);
- q |= 1;
- }
- }
- while (--expn >= expd);
-
- SET_REAL_EXP (num, expd);
- normalize (num);
-
- return q;
-}
-
-/* Render R as a decimal floating point constant. Emit DIGITS significant
- digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
- maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
- zeros. */
-
-#define M_LOG10_2 0.30102999566398119521
-
-void
-real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
- size_t digits, int crop_trailing_zeros)
-{
- const REAL_VALUE_TYPE *one, *ten;
- REAL_VALUE_TYPE r, pten, u, v;
- int dec_exp, cmp_one, digit;
- size_t max_digits;
- char *p, *first, *last;
- bool sign;
-
- r = *r_orig;
- switch (r.cl)
- {
- case rvc_zero:
- strcpy (str, (r.sign ? "-0.0" : "0.0"));
- return;
- case rvc_normal:
- break;
- case rvc_inf:
- strcpy (str, (r.sign ? "-Inf" : "+Inf"));
- return;
- case rvc_nan:
- /* ??? Print the significand as well, if not canonical? */
- strcpy (str, (r.sign ? "-NaN" : "+NaN"));
- return;
- default:
- gcc_unreachable ();
- }
-
- if (r.decimal)
- {
- decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
- return;
- }
-
- /* Bound the number of digits printed by the size of the representation. */
- max_digits = SIGNIFICAND_BITS * M_LOG10_2;
- if (digits == 0 || digits > max_digits)
- digits = max_digits;
-
- /* Estimate the decimal exponent, and compute the length of the string it
- will print as. Be conservative and add one to account for possible
- overflow or rounding error. */
- dec_exp = REAL_EXP (&r) * M_LOG10_2;
- for (max_digits = 1; dec_exp ; max_digits++)
- dec_exp /= 10;
-
- /* Bound the number of digits printed by the size of the output buffer. */
- max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
- gcc_assert (max_digits <= buf_size);
- if (digits > max_digits)
- digits = max_digits;
-
- one = real_digit (1);
- ten = ten_to_ptwo (0);
-
- sign = r.sign;
- r.sign = 0;
-
- dec_exp = 0;
- pten = *one;
-
- cmp_one = do_compare (&r, one, 0);
- if (cmp_one > 0)
- {
- int m;
-
- /* Number is greater than one. Convert significand to an integer
- and strip trailing decimal zeros. */
-
- u = r;
- SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
-
- /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
- m = floor_log2 (max_digits);
-
- /* Iterate over the bits of the possible powers of 10 that might
- be present in U and eliminate them. That is, if we find that
- 10**2**M divides U evenly, keep the division and increase
- DEC_EXP by 2**M. */
- do
- {
- REAL_VALUE_TYPE t;
-
- do_divide (&t, &u, ten_to_ptwo (m));
- do_fix_trunc (&v, &t);
- if (cmp_significands (&v, &t) == 0)
- {
- u = t;
- dec_exp += 1 << m;
- }
- }
- while (--m >= 0);
-
- /* Revert the scaling to integer that we performed earlier. */
- SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
- - (SIGNIFICAND_BITS - 1));
- r = u;
-
- /* Find power of 10. Do this by dividing out 10**2**M when
- this is larger than the current remainder. Fill PTEN with
- the power of 10 that we compute. */
- if (REAL_EXP (&r) > 0)
- {
- m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
- do
- {
- const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
- if (do_compare (&u, ptentwo, 0) >= 0)
- {
- do_divide (&u, &u, ptentwo);
- do_multiply (&pten, &pten, ptentwo);
- dec_exp += 1 << m;
- }
- }
- while (--m >= 0);
- }
- else
- /* We managed to divide off enough tens in the above reduction
- loop that we've now got a negative exponent. Fall into the
- less-than-one code to compute the proper value for PTEN. */
- cmp_one = -1;
- }
- if (cmp_one < 0)
- {
- int m;
-
- /* Number is less than one. Pad significand with leading
- decimal zeros. */
-
- v = r;
- while (1)
- {
- /* Stop if we'd shift bits off the bottom. */
- if (v.sig[0] & 7)
- break;
-
- do_multiply (&u, &v, ten);
-
- /* Stop if we're now >= 1. */
- if (REAL_EXP (&u) > 0)
- break;
-
- v = u;
- dec_exp -= 1;
- }
- r = v;
-
- /* Find power of 10. Do this by multiplying in P=10**2**M when
- the current remainder is smaller than 1/P. Fill PTEN with the
- power of 10 that we compute. */
- m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
- do
- {
- const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
- const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
-
- if (do_compare (&v, ptenmtwo, 0) <= 0)
- {
- do_multiply (&v, &v, ptentwo);
- do_multiply (&pten, &pten, ptentwo);
- dec_exp -= 1 << m;
- }
- }
- while (--m >= 0);
-
- /* Invert the positive power of 10 that we've collected so far. */
- do_divide (&pten, one, &pten);
- }
-
- p = str;
- if (sign)
- *p++ = '-';
- first = p++;
-
- /* At this point, PTEN should contain the nearest power of 10 smaller
- than R, such that this division produces the first digit.
-
- Using a divide-step primitive that returns the complete integral
- remainder avoids the rounding error that would be produced if
- we were to use do_divide here and then simply multiply by 10 for
- each subsequent digit. */
-
- digit = rtd_divmod (&r, &pten);
-
- /* Be prepared for error in that division via underflow ... */
- if (digit == 0 && cmp_significand_0 (&r))
- {
- /* Multiply by 10 and try again. */
- do_multiply (&r, &r, ten);
- digit = rtd_divmod (&r, &pten);
- dec_exp -= 1;
- gcc_assert (digit != 0);
- }
-
- /* ... or overflow. */
- if (digit == 10)
- {
- *p++ = '1';
- if (--digits > 0)
- *p++ = '0';
- dec_exp += 1;
- }
- else
- {
- gcc_assert (digit <= 10);
- *p++ = digit + '0';
- }
-
- /* Generate subsequent digits. */
- while (--digits > 0)
- {
- do_multiply (&r, &r, ten);
- digit = rtd_divmod (&r, &pten);
- *p++ = digit + '0';
- }
- last = p;
-
- /* Generate one more digit with which to do rounding. */
- do_multiply (&r, &r, ten);
- digit = rtd_divmod (&r, &pten);
-
- /* Round the result. */
- if (digit == 5)
- {
- /* Round to nearest. If R is nonzero there are additional
- nonzero digits to be extracted. */
- if (cmp_significand_0 (&r))
- digit++;
- /* Round to even. */
- else if ((p[-1] - '0') & 1)
- digit++;
- }
- if (digit > 5)
- {
- while (p > first)
- {
- digit = *--p;
- if (digit == '9')
- *p = '0';
- else
- {
- *p = digit + 1;
- break;
- }
- }
-
- /* Carry out of the first digit. This means we had all 9's and
- now have all 0's. "Prepend" a 1 by overwriting the first 0. */
- if (p == first)
- {
- first[1] = '1';
- dec_exp++;
- }
- }
-
- /* Insert the decimal point. */
- first[0] = first[1];
- first[1] = '.';
-
- /* If requested, drop trailing zeros. Never crop past "1.0". */
- if (crop_trailing_zeros)
- while (last > first + 3 && last[-1] == '0')
- last--;
-
- /* Append the exponent. */
- sprintf (last, "e%+d", dec_exp);
-}
-
-/* Render R as a hexadecimal floating point constant. Emit DIGITS
- significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
- choose the maximum for the representation. If CROP_TRAILING_ZEROS,
- strip trailing zeros. */
-
-void
-real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
- size_t digits, int crop_trailing_zeros)
-{
- int i, j, exp = REAL_EXP (r);
- char *p, *first;
- char exp_buf[16];
- size_t max_digits;
-
- switch (r->cl)
- {
- case rvc_zero:
- exp = 0;
- break;
- case rvc_normal:
- break;
- case rvc_inf:
- strcpy (str, (r->sign ? "-Inf" : "+Inf"));
- return;
- case rvc_nan:
- /* ??? Print the significand as well, if not canonical? */
- strcpy (str, (r->sign ? "-NaN" : "+NaN"));
- return;
- default:
- gcc_unreachable ();
- }
-
- if (r->decimal)
- {
- /* Hexadecimal format for decimal floats is not interesting. */
- strcpy (str, "N/A");
- return;
- }
-
- if (digits == 0)
- digits = SIGNIFICAND_BITS / 4;
-
- /* Bound the number of digits printed by the size of the output buffer. */
-
- sprintf (exp_buf, "p%+d", exp);
- max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
- gcc_assert (max_digits <= buf_size);
- if (digits > max_digits)
- digits = max_digits;
-
- p = str;
- if (r->sign)
- *p++ = '-';
- *p++ = '0';
- *p++ = 'x';
- *p++ = '0';
- *p++ = '.';
- first = p;
-
- for (i = SIGSZ - 1; i >= 0; --i)
- for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
- {
- *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
- if (--digits == 0)
- goto out;
- }
-
- out:
- if (crop_trailing_zeros)
- while (p > first + 1 && p[-1] == '0')
- p--;
-
- sprintf (p, "p%+d", exp);
-}
-
-/* Initialize R from a decimal or hexadecimal string. The string is
- assumed to have been syntax checked already. */
-
-void
-real_from_string (REAL_VALUE_TYPE *r, const char *str)
-{
- int exp = 0;
- bool sign = false;
-
- get_zero (r, 0);
-
- if (*str == '-')
- {
- sign = true;
- str++;
- }
- else if (*str == '+')
- str++;
-
- if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
- {
- /* Hexadecimal floating point. */
- int pos = SIGNIFICAND_BITS - 4, d;
-
- str += 2;
-
- while (*str == '0')
- str++;
- while (1)
- {
- d = hex_value (*str);
- if (d == _hex_bad)
- break;
- if (pos >= 0)
- {
- r->sig[pos / HOST_BITS_PER_LONG]
- |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
- pos -= 4;
- }
- else if (d)
- /* Ensure correct rounding by setting last bit if there is
- a subsequent nonzero digit. */
- r->sig[0] |= 1;
- exp += 4;
- str++;
- }
- if (*str == '.')
- {
- str++;
- if (pos == SIGNIFICAND_BITS - 4)
- {
- while (*str == '0')
- str++, exp -= 4;
- }
- while (1)
- {
- d = hex_value (*str);
- if (d == _hex_bad)
- break;
- if (pos >= 0)
- {
- r->sig[pos / HOST_BITS_PER_LONG]
- |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
- pos -= 4;
- }
- else if (d)
- /* Ensure correct rounding by setting last bit if there is
- a subsequent nonzero digit. */
- r->sig[0] |= 1;
- str++;
- }
- }
-
- /* If the mantissa is zero, ignore the exponent. */
- if (!cmp_significand_0 (r))
- goto underflow;
-
- if (*str == 'p' || *str == 'P')
- {
- bool exp_neg = false;
-
- str++;
- if (*str == '-')
- {
- exp_neg = true;
- str++;
- }
- else if (*str == '+')
- str++;
-
- d = 0;
- while (ISDIGIT (*str))
- {
- d *= 10;
- d += *str - '0';
- if (d > MAX_EXP)
- {
- /* Overflowed the exponent. */
- if (exp_neg)
- goto underflow;
- else
- goto overflow;
- }
- str++;
- }
- if (exp_neg)
- d = -d;
-
- exp += d;
- }
-
- r->cl = rvc_normal;
- SET_REAL_EXP (r, exp);
-
- normalize (r);
- }
- else
- {
- /* Decimal floating point. */
- const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);
- int d;
-
- while (*str == '0')
- str++;
- while (ISDIGIT (*str))
- {
- d = *str++ - '0';
- do_multiply (r, r, ten);
- if (d)
- do_add (r, r, real_digit (d), 0);
- }
- if (*str == '.')
- {
- str++;
- if (r->cl == rvc_zero)
- {
- while (*str == '0')
- str++, exp--;
- }
- while (ISDIGIT (*str))
- {
- d = *str++ - '0';
- do_multiply (r, r, ten);
- if (d)
- do_add (r, r, real_digit (d), 0);
- exp--;
- }
- }
-
- /* If the mantissa is zero, ignore the exponent. */
- if (r->cl == rvc_zero)
- goto underflow;
-
- if (*str == 'e' || *str == 'E')
- {
- bool exp_neg = false;
-
- str++;
- if (*str == '-')
- {
- exp_neg = true;
- str++;
- }
- else if (*str == '+')
- str++;
-
- d = 0;
- while (ISDIGIT (*str))
- {
- d *= 10;
- d += *str - '0';
- if (d > MAX_EXP)
- {
- /* Overflowed the exponent. */
- if (exp_neg)
- goto underflow;
- else
- goto overflow;
- }
- str++;
- }
- if (exp_neg)
- d = -d;
- exp += d;
- }
-
- if (exp)
- times_pten (r, exp);
- }
-
- r->sign = sign;
- return;
-
- underflow:
- get_zero (r, sign);
- return;
-
- overflow:
- get_inf (r, sign);
- return;
-}
-
-/* Legacy. Similar, but return the result directly. */
-
-REAL_VALUE_TYPE
-real_from_string2 (const char *s, enum machine_mode mode)
-{
- REAL_VALUE_TYPE r;
-
- real_from_string (&r, s);
- if (mode != VOIDmode)
- real_convert (&r, mode, &r);
-
- return r;
-}
-
-/* Initialize R from string S and desired MODE. */
-
-void
-real_from_string3 (REAL_VALUE_TYPE *r, const char *s, enum machine_mode mode)
-{
- if (DECIMAL_FLOAT_MODE_P (mode))
- decimal_real_from_string (r, s);
- else
- real_from_string (r, s);
-
- if (mode != VOIDmode)
- real_convert (r, mode, r);
-}
-
-/* Initialize R from the integer pair HIGH+LOW. */
-
-void
-real_from_integer (REAL_VALUE_TYPE *r, enum machine_mode mode,
- unsigned HOST_WIDE_INT low, HOST_WIDE_INT high,
- int unsigned_p)
-{
- if (low == 0 && high == 0)
- get_zero (r, 0);
- else
- {
- memset (r, 0, sizeof (*r));
- r->cl = rvc_normal;
- r->sign = high < 0 && !unsigned_p;
- SET_REAL_EXP (r, 2 * HOST_BITS_PER_WIDE_INT);
-
- if (r->sign)
- {
- high = ~high;
- if (low == 0)
- high += 1;
- else
- low = -low;
- }
-
- if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
- {
- r->sig[SIGSZ-1] = high;
- r->sig[SIGSZ-2] = low;
- }
- else
- {
- gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
- r->sig[SIGSZ-1] = high >> (HOST_BITS_PER_LONG - 1) >> 1;
- r->sig[SIGSZ-2] = high;
- r->sig[SIGSZ-3] = low >> (HOST_BITS_PER_LONG - 1) >> 1;
- r->sig[SIGSZ-4] = low;
- }
-
- normalize (r);
- }
-
- if (mode != VOIDmode)
- real_convert (r, mode, r);
-}
-
-/* Returns 10**2**N. */
-
-static const REAL_VALUE_TYPE *
-ten_to_ptwo (int n)
-{
- static REAL_VALUE_TYPE tens[EXP_BITS];
-
- gcc_assert (n >= 0);
- gcc_assert (n < EXP_BITS);
-
- if (tens[n].cl == rvc_zero)
- {
- if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
- {
- HOST_WIDE_INT t = 10;
- int i;
-
- for (i = 0; i < n; ++i)
- t *= t;
-
- real_from_integer (&tens[n], VOIDmode, t, 0, 1);
- }
- else
- {
- const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
- do_multiply (&tens[n], t, t);
- }
- }
-
- return &tens[n];
-}
-
-/* Returns 10**(-2**N). */
-
-static const REAL_VALUE_TYPE *
-ten_to_mptwo (int n)
-{
- static REAL_VALUE_TYPE tens[EXP_BITS];
-
- gcc_assert (n >= 0);
- gcc_assert (n < EXP_BITS);
-
- if (tens[n].cl == rvc_zero)
- do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
-
- return &tens[n];
-}
-
-/* Returns N. */
-
-static const REAL_VALUE_TYPE *
-real_digit (int n)
-{
- static REAL_VALUE_TYPE num[10];
-
- gcc_assert (n >= 0);
- gcc_assert (n <= 9);
-
- if (n > 0 && num[n].cl == rvc_zero)
- real_from_integer (&num[n], VOIDmode, n, 0, 1);
-
- return &num[n];
-}
-
-/* Multiply R by 10**EXP. */
-
-static void
-times_pten (REAL_VALUE_TYPE *r, int exp)
-{
- REAL_VALUE_TYPE pten, *rr;
- bool negative = (exp < 0);
- int i;
-
- if (negative)
- {
- exp = -exp;
- pten = *real_digit (1);
- rr = &pten;
- }
- else
- rr = r;
-
- for (i = 0; exp > 0; ++i, exp >>= 1)
- if (exp & 1)
- do_multiply (rr, rr, ten_to_ptwo (i));
-
- if (negative)
- do_divide (r, r, &pten);
-}
-
-/* Fills R with +Inf. */
-
-void
-real_inf (REAL_VALUE_TYPE *r)
-{
- get_inf (r, 0);
-}
-
-/* Fills R with a NaN whose significand is described by STR. If QUIET,
- we force a QNaN, else we force an SNaN. The string, if not empty,
- is parsed as a number and placed in the significand. Return true
- if the string was successfully parsed. */
-
-bool
-real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
- enum machine_mode mode)
-{
- const struct real_format *fmt;
-
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
-
- if (*str == 0)
- {
- if (quiet)
- get_canonical_qnan (r, 0);
- else
- get_canonical_snan (r, 0);
- }
- else
- {
- int base = 10, d;
-
- memset (r, 0, sizeof (*r));
- r->cl = rvc_nan;
-
- /* Parse akin to strtol into the significand of R. */
-
- while (ISSPACE (*str))
- str++;
- if (*str == '-')
- str++;
- else if (*str == '+')
- str++;
- if (*str == '0')
- {
- str++;
- if (*str == 'x' || *str == 'X')
- {
- base = 16;
- str++;
- }
- else
- base = 8;
- }
-
- while ((d = hex_value (*str)) < base)
- {
- REAL_VALUE_TYPE u;
-
- switch (base)
- {
- case 8:
- lshift_significand (r, r, 3);
- break;
- case 16:
- lshift_significand (r, r, 4);
- break;
- case 10:
- lshift_significand_1 (&u, r);
- lshift_significand (r, r, 3);
- add_significands (r, r, &u);
- break;
- default:
- gcc_unreachable ();
- }
-
- get_zero (&u, 0);
- u.sig[0] = d;
- add_significands (r, r, &u);
-
- str++;
- }
-
- /* Must have consumed the entire string for success. */
- if (*str != 0)
- return false;
-
- /* Shift the significand into place such that the bits
- are in the most significant bits for the format. */
- lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
-
- /* Our MSB is always unset for NaNs. */
- r->sig[SIGSZ-1] &= ~SIG_MSB;
-
- /* Force quiet or signalling NaN. */
- r->signalling = !quiet;
- }
-
- return true;
-}
-
-/* Fills R with the largest finite value representable in mode MODE.
- If SIGN is nonzero, R is set to the most negative finite value. */
-
-void
-real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
-{
- const struct real_format *fmt;
- int np2;
-
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
- memset (r, 0, sizeof (*r));
-
- if (fmt->b == 10)
- decimal_real_maxval (r, sign, mode);
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, fmt->emax * fmt->log2_b);
-
- np2 = SIGNIFICAND_BITS - fmt->p * fmt->log2_b;
- memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
- clear_significand_below (r, np2);
-
- if (fmt->pnan < fmt->p)
- /* This is an IBM extended double format made up of two IEEE
- doubles. The value of the long double is the sum of the
- values of the two parts. The most significant part is
- required to be the value of the long double rounded to the
- nearest double. Rounding means we need a slightly smaller
- value for LDBL_MAX. */
- clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan);
- }
-}
-
-/* Fills R with 2**N. */
-
-void
-real_2expN (REAL_VALUE_TYPE *r, int n)
-{
- memset (r, 0, sizeof (*r));
-
- n++;
- if (n > MAX_EXP)
- r->cl = rvc_inf;
- else if (n < -MAX_EXP)
- ;
- else
- {
- r->cl = rvc_normal;
- SET_REAL_EXP (r, n);
- r->sig[SIGSZ-1] = SIG_MSB;
- }
-}
-
-
-static void
-round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
-{
- int p2, np2, i, w;
- unsigned long sticky;
- bool guard, lsb;
- int emin2m1, emax2;
-
- if (r->decimal)
- {
- if (fmt->b == 10)
- {
- decimal_round_for_format (fmt, r);
- return;
- }
- /* FIXME. We can come here via fp_easy_constant
- (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
- investigated whether this convert needs to be here, or
- something else is missing. */
- decimal_real_convert (r, DFmode, r);
- }
-
- p2 = fmt->p * fmt->log2_b;
- emin2m1 = (fmt->emin - 1) * fmt->log2_b;
- emax2 = fmt->emax * fmt->log2_b;
-
- np2 = SIGNIFICAND_BITS - p2;
- switch (r->cl)
- {
- underflow:
- get_zero (r, r->sign);
- case rvc_zero:
- if (!fmt->has_signed_zero)
- r->sign = 0;
- return;
-
- overflow:
- get_inf (r, r->sign);
- case rvc_inf:
- return;
-
- case rvc_nan:
- clear_significand_below (r, np2);
- return;
-
- case rvc_normal:
- break;
-
- default:
- gcc_unreachable ();
- }
-
- /* If we're not base2, normalize the exponent to a multiple of
- the true base. */
- if (fmt->log2_b != 1)
- {
- int shift;
-
- gcc_assert (fmt->b != 10);
- shift = REAL_EXP (r) & (fmt->log2_b - 1);
- if (shift)
- {
- shift = fmt->log2_b - shift;
- r->sig[0] |= sticky_rshift_significand (r, r, shift);
- SET_REAL_EXP (r, REAL_EXP (r) + shift);
- }
- }
-
- /* Check the range of the exponent. If we're out of range,
- either underflow or overflow. */
- if (REAL_EXP (r) > emax2)
- goto overflow;
- else if (REAL_EXP (r) <= emin2m1)
- {
- int diff;
-
- if (!fmt->has_denorm)
- {
- /* Don't underflow completely until we've had a chance to round. */
- if (REAL_EXP (r) < emin2m1)
- goto underflow;
- }
- else
- {
- diff = emin2m1 - REAL_EXP (r) + 1;
- if (diff > p2)
- goto underflow;
-
- /* De-normalize the significand. */
- r->sig[0] |= sticky_rshift_significand (r, r, diff);
- SET_REAL_EXP (r, REAL_EXP (r) + diff);
- }
- }
-
- /* There are P2 true significand bits, followed by one guard bit,
- followed by one sticky bit, followed by stuff. Fold nonzero
- stuff into the sticky bit. */
-
- sticky = 0;
- for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
- sticky |= r->sig[i];
- sticky |=
- r->sig[w] & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
-
- guard = test_significand_bit (r, np2 - 1);
- lsb = test_significand_bit (r, np2);
-
- /* Round to even. */
- if (guard && (sticky || lsb))
- {
- REAL_VALUE_TYPE u;
- get_zero (&u, 0);
- set_significand_bit (&u, np2);
-
- if (add_significands (r, r, &u))
- {
- /* Overflow. Means the significand had been all ones, and
- is now all zeros. Need to increase the exponent, and
- possibly re-normalize it. */
- SET_REAL_EXP (r, REAL_EXP (r) + 1);
- if (REAL_EXP (r) > emax2)
- goto overflow;
- r->sig[SIGSZ-1] = SIG_MSB;
-
- if (fmt->log2_b != 1)
- {
- int shift = REAL_EXP (r) & (fmt->log2_b - 1);
- if (shift)
- {
- shift = fmt->log2_b - shift;
- rshift_significand (r, r, shift);
- SET_REAL_EXP (r, REAL_EXP (r) + shift);
- if (REAL_EXP (r) > emax2)
- goto overflow;
- }
- }
- }
- }
-
- /* Catch underflow that we deferred until after rounding. */
- if (REAL_EXP (r) <= emin2m1)
- goto underflow;
-
- /* Clear out trailing garbage. */
- clear_significand_below (r, np2);
-}
-
-/* Extend or truncate to a new mode. */
-
-void
-real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
- const REAL_VALUE_TYPE *a)
-{
- const struct real_format *fmt;
-
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
-
- *r = *a;
-
- if (a->decimal || fmt->b == 10)
- decimal_real_convert (r, mode, a);
-
- round_for_format (fmt, r);
-
- /* round_for_format de-normalizes denormals. Undo just that part. */
- if (r->cl == rvc_normal)
- normalize (r);
-}
-
-/* Legacy. Likewise, except return the struct directly. */
-
-REAL_VALUE_TYPE
-real_value_truncate (enum machine_mode mode, REAL_VALUE_TYPE a)
-{
- REAL_VALUE_TYPE r;
- real_convert (&r, mode, &a);
- return r;
-}
-
-/* Return true if truncating to MODE is exact. */
-
-bool
-exact_real_truncate (enum machine_mode mode, const REAL_VALUE_TYPE *a)
-{
- const struct real_format *fmt;
- REAL_VALUE_TYPE t;
- int emin2m1;
-
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
-
- /* Don't allow conversion to denormals. */
- emin2m1 = (fmt->emin - 1) * fmt->log2_b;
- if (REAL_EXP (a) <= emin2m1)
- return false;
-
- /* After conversion to the new mode, the value must be identical. */
- real_convert (&t, mode, a);
- return real_identical (&t, a);
-}
-
-/* Write R to the given target format. Place the words of the result
- in target word order in BUF. There are always 32 bits in each
- long, no matter the size of the host long.
-
- Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
-
-long
-real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
- const struct real_format *fmt)
-{
- REAL_VALUE_TYPE r;
- long buf1;
-
- r = *r_orig;
- round_for_format (fmt, &r);
-
- if (!buf)
- buf = &buf1;
- (*fmt->encode) (fmt, buf, &r);
-
- return *buf;
-}
-
-/* Similar, but look up the format from MODE. */
-
-long
-real_to_target (long *buf, const REAL_VALUE_TYPE *r, enum machine_mode mode)
-{
- const struct real_format *fmt;
-
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
-
- return real_to_target_fmt (buf, r, fmt);
-}
-
-/* Read R from the given target format. Read the words of the result
- in target word order in BUF. There are always 32 bits in each
- long, no matter the size of the host long. */
-
-void
-real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
- const struct real_format *fmt)
-{
- (*fmt->decode) (fmt, r, buf);
-}
-
-/* Similar, but look up the format from MODE. */
-
-void
-real_from_target (REAL_VALUE_TYPE *r, const long *buf, enum machine_mode mode)
-{
- const struct real_format *fmt;
-
- fmt = REAL_MODE_FORMAT (mode);
- gcc_assert (fmt);
-
- (*fmt->decode) (fmt, r, buf);
-}
-
-/* Return the number of bits of the largest binary value that the
- significand of MODE will hold. */
-/* ??? Legacy. Should get access to real_format directly. */
-
-int
-significand_size (enum machine_mode mode)
-{
- const struct real_format *fmt;
-
- fmt = REAL_MODE_FORMAT (mode);
- if (fmt == NULL)
- return 0;
-
- if (fmt->b == 10)
- {
- /* Return the size in bits of the largest binary value that can be
- held by the decimal coefficient for this mode. This is one more
- than the number of bits required to hold the largest coefficient
- of this mode. */
- double log2_10 = 3.3219281;
- return fmt->p * log2_10;
- }
- return fmt->p * fmt->log2_b;
-}
-
-/* Return a hash value for the given real value. */
-/* ??? The "unsigned int" return value is intended to be hashval_t,
- but I didn't want to pull hashtab.h into real.h. */
-
-unsigned int
-real_hash (const REAL_VALUE_TYPE *r)
-{
- unsigned int h;
- size_t i;
-
- h = r->cl | (r->sign << 2);
- switch (r->cl)
- {
- case rvc_zero:
- case rvc_inf:
- return h;
-
- case rvc_normal:
- h |= REAL_EXP (r) << 3;
- break;
-
- case rvc_nan:
- if (r->signalling)
- h ^= (unsigned int)-1;
- if (r->canonical)
- return h;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (sizeof(unsigned long) > sizeof(unsigned int))
- for (i = 0; i < SIGSZ; ++i)
- {
- unsigned long s = r->sig[i];
- h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
- }
- else
- for (i = 0; i < SIGSZ; ++i)
- h ^= r->sig[i];
-
- return h;
-}
-
-/* IEEE single-precision format. */
-
-static void encode_ieee_single (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_ieee_single (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-
-static void
-encode_ieee_single (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- unsigned long image, sig, exp;
- unsigned long sign = r->sign;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
-
- image = sign << 31;
- sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
-
- switch (r->cl)
- {
- case rvc_zero:
- break;
-
- case rvc_inf:
- if (fmt->has_inf)
- image |= 255 << 23;
- else
- image |= 0x7fffffff;
- break;
-
- case rvc_nan:
- if (fmt->has_nans)
- {
- if (r->canonical)
- sig = 0;
- if (r->signalling == fmt->qnan_msb_set)
- sig &= ~(1 << 22);
- else
- sig |= 1 << 22;
- /* We overload qnan_msb_set here: it's only clear for
- mips_ieee_single, which wants all mantissa bits but the
- quiet/signalling one set in canonical NaNs (at least
- Quiet ones). */
- if (r->canonical && !fmt->qnan_msb_set)
- sig |= (1 << 22) - 1;
- else if (sig == 0)
- sig = 1 << 21;
-
- image |= 255 << 23;
- image |= sig;
- }
- else
- image |= 0x7fffffff;
- break;
-
- case rvc_normal:
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one. */
- if (denormal)
- exp = 0;
- else
- exp = REAL_EXP (r) + 127 - 1;
- image |= exp << 23;
- image |= sig;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- buf[0] = image;
-}
-
-static void
-decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
-{
- unsigned long image = buf[0] & 0xffffffff;
- bool sign = (image >> 31) & 1;
- int exp = (image >> 23) & 0xff;
-
- memset (r, 0, sizeof (*r));
- image <<= HOST_BITS_PER_LONG - 24;
- image &= ~SIG_MSB;
-
- if (exp == 0)
- {
- if (image && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, -126);
- r->sig[SIGSZ-1] = image << 1;
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
- {
- if (image)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
- ^ fmt->qnan_msb_set);
- r->sig[SIGSZ-1] = image;
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 127 + 1);
- r->sig[SIGSZ-1] = image | SIG_MSB;
- }
-}
-
-const struct real_format ieee_single_format =
- {
- encode_ieee_single,
- decode_ieee_single,
- 2,
- 1,
- 24,
- 24,
- -125,
- 128,
- 31,
- 31,
- true,
- true,
- true,
- true,
- true
- };
-
-const struct real_format mips_single_format =
- {
- encode_ieee_single,
- decode_ieee_single,
- 2,
- 1,
- 24,
- 24,
- -125,
- 128,
- 31,
- 31,
- true,
- true,
- true,
- true,
- false
- };
-
-
-/* IEEE double-precision format. */
-
-static void encode_ieee_double (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_ieee_double (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-
-static void
-encode_ieee_double (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
-
- image_hi = r->sign << 31;
- image_lo = 0;
-
- if (HOST_BITS_PER_LONG == 64)
- {
- sig_hi = r->sig[SIGSZ-1];
- sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
- sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
- }
- else
- {
- sig_hi = r->sig[SIGSZ-1];
- sig_lo = r->sig[SIGSZ-2];
- sig_lo = (sig_hi << 21) | (sig_lo >> 11);
- sig_hi = (sig_hi >> 11) & 0xfffff;
- }
-
- switch (r->cl)
- {
- case rvc_zero:
- break;
-
- case rvc_inf:
- if (fmt->has_inf)
- image_hi |= 2047 << 20;
- else
- {
- image_hi |= 0x7fffffff;
- image_lo = 0xffffffff;
- }
- break;
-
- case rvc_nan:
- if (fmt->has_nans)
- {
- if (r->canonical)
- sig_hi = sig_lo = 0;
- if (r->signalling == fmt->qnan_msb_set)
- sig_hi &= ~(1 << 19);
- else
- sig_hi |= 1 << 19;
- /* We overload qnan_msb_set here: it's only clear for
- mips_ieee_single, which wants all mantissa bits but the
- quiet/signalling one set in canonical NaNs (at least
- Quiet ones). */
- if (r->canonical && !fmt->qnan_msb_set)
- {
- sig_hi |= (1 << 19) - 1;
- sig_lo = 0xffffffff;
- }
- else if (sig_hi == 0 && sig_lo == 0)
- sig_hi = 1 << 18;
-
- image_hi |= 2047 << 20;
- image_hi |= sig_hi;
- image_lo = sig_lo;
- }
- else
- {
- image_hi |= 0x7fffffff;
- image_lo = 0xffffffff;
- }
- break;
-
- case rvc_normal:
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one. */
- if (denormal)
- exp = 0;
- else
- exp = REAL_EXP (r) + 1023 - 1;
- image_hi |= exp << 20;
- image_hi |= sig_hi;
- image_lo = sig_lo;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = image_hi, buf[1] = image_lo;
- else
- buf[0] = image_lo, buf[1] = image_hi;
-}
-
-static void
-decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
-{
- unsigned long image_hi, image_lo;
- bool sign;
- int exp;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- image_hi = buf[0], image_lo = buf[1];
- else
- image_lo = buf[0], image_hi = buf[1];
- image_lo &= 0xffffffff;
- image_hi &= 0xffffffff;
-
- sign = (image_hi >> 31) & 1;
- exp = (image_hi >> 20) & 0x7ff;
-
- memset (r, 0, sizeof (*r));
-
- image_hi <<= 32 - 21;
- image_hi |= image_lo >> 21;
- image_hi &= 0x7fffffff;
- image_lo <<= 32 - 21;
-
- if (exp == 0)
- {
- if ((image_hi || image_lo) && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, -1022);
- if (HOST_BITS_PER_LONG == 32)
- {
- image_hi = (image_hi << 1) | (image_lo >> 31);
- image_lo <<= 1;
- r->sig[SIGSZ-1] = image_hi;
- r->sig[SIGSZ-2] = image_lo;
- }
- else
- {
- image_hi = (image_hi << 31 << 2) | (image_lo << 1);
- r->sig[SIGSZ-1] = image_hi;
- }
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
- {
- if (image_hi || image_lo)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = image_hi;
- r->sig[SIGSZ-2] = image_lo;
- }
- else
- r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 1023 + 1);
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = image_hi | SIG_MSB;
- r->sig[SIGSZ-2] = image_lo;
- }
- else
- r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
- }
-}
-
-const struct real_format ieee_double_format =
- {
- encode_ieee_double,
- decode_ieee_double,
- 2,
- 1,
- 53,
- 53,
- -1021,
- 1024,
- 63,
- 63,
- true,
- true,
- true,
- true,
- true
- };
-
-const struct real_format mips_double_format =
- {
- encode_ieee_double,
- decode_ieee_double,
- 2,
- 1,
- 53,
- 53,
- -1021,
- 1024,
- 63,
- 63,
- true,
- true,
- true,
- true,
- false
- };
-
-
-/* IEEE extended real format. This comes in three flavors: Intel's as
- a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
- 12- and 16-byte images may be big- or little endian; Motorola's is
- always big endian. */
-
-/* Helper subroutine which converts from the internal format to the
- 12-byte little-endian Intel format. Functions below adjust this
- for the other possible formats. */
-static void
-encode_ieee_extended (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- unsigned long image_hi, sig_hi, sig_lo;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
-
- image_hi = r->sign << 15;
- sig_hi = sig_lo = 0;
-
- switch (r->cl)
- {
- case rvc_zero:
- break;
-
- case rvc_inf:
- if (fmt->has_inf)
- {
- image_hi |= 32767;
-
- /* Intel requires the explicit integer bit to be set, otherwise
- it considers the value a "pseudo-infinity". Motorola docs
- say it doesn't care. */
- sig_hi = 0x80000000;
- }
- else
- {
- image_hi |= 32767;
- sig_lo = sig_hi = 0xffffffff;
- }
- break;
-
- case rvc_nan:
- if (fmt->has_nans)
- {
- image_hi |= 32767;
- if (HOST_BITS_PER_LONG == 32)
- {
- sig_hi = r->sig[SIGSZ-1];
- sig_lo = r->sig[SIGSZ-2];
- }
- else
- {
- sig_lo = r->sig[SIGSZ-1];
- sig_hi = sig_lo >> 31 >> 1;
- sig_lo &= 0xffffffff;
- }
- if (r->signalling == fmt->qnan_msb_set)
- sig_hi &= ~(1 << 30);
- else
- sig_hi |= 1 << 30;
- if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
- sig_hi = 1 << 29;
-
- /* Intel requires the explicit integer bit to be set, otherwise
- it considers the value a "pseudo-nan". Motorola docs say it
- doesn't care. */
- sig_hi |= 0x80000000;
- }
- else
- {
- image_hi |= 32767;
- sig_lo = sig_hi = 0xffffffff;
- }
- break;
-
- case rvc_normal:
- {
- int exp = REAL_EXP (r);
-
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one.
-
- Except for Motorola, which consider exp=0 and explicit
- integer bit set to continue to be normalized. In theory
- this discrepancy has been taken care of by the difference
- in fmt->emin in round_for_format. */
-
- if (denormal)
- exp = 0;
- else
- {
- exp += 16383 - 1;
- gcc_assert (exp >= 0);
- }
- image_hi |= exp;
-
- if (HOST_BITS_PER_LONG == 32)
- {
- sig_hi = r->sig[SIGSZ-1];
- sig_lo = r->sig[SIGSZ-2];
- }
- else
- {
- sig_lo = r->sig[SIGSZ-1];
- sig_hi = sig_lo >> 31 >> 1;
- sig_lo &= 0xffffffff;
- }
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
-}
-
-/* Convert from the internal format to the 12-byte Motorola format
- for an IEEE extended real. */
-static void
-encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- long intermed[3];
- encode_ieee_extended (fmt, intermed, r);
-
- /* Motorola chips are assumed always to be big-endian. Also, the
- padding in a Motorola extended real goes between the exponent and
- the mantissa. At this point the mantissa is entirely within
- elements 0 and 1 of intermed, and the exponent entirely within
- element 2, so all we have to do is swap the order around, and
- shift element 2 left 16 bits. */
- buf[0] = intermed[2] << 16;
- buf[1] = intermed[1];
- buf[2] = intermed[0];
-}
-
-/* Convert from the internal format to the 12-byte Intel format for
- an IEEE extended real. */
-static void
-encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- /* All the padding in an Intel-format extended real goes at the high
- end, which in this case is after the mantissa, not the exponent.
- Therefore we must shift everything down 16 bits. */
- long intermed[3];
- encode_ieee_extended (fmt, intermed, r);
- buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
- buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
- buf[2] = (intermed[0] << 16);
- }
- else
- /* encode_ieee_extended produces what we want directly. */
- encode_ieee_extended (fmt, buf, r);
-}
-
-/* Convert from the internal format to the 16-byte Intel format for
- an IEEE extended real. */
-static void
-encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- /* All the padding in an Intel-format extended real goes at the high end. */
- encode_ieee_extended_intel_96 (fmt, buf, r);
- buf[3] = 0;
-}
-
-/* As above, we have a helper function which converts from 12-byte
- little-endian Intel format to internal format. Functions below
- adjust for the other possible formats. */
-static void
-decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
-{
- unsigned long image_hi, sig_hi, sig_lo;
- bool sign;
- int exp;
-
- sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
- sig_lo &= 0xffffffff;
- sig_hi &= 0xffffffff;
- image_hi &= 0xffffffff;
-
- sign = (image_hi >> 15) & 1;
- exp = image_hi & 0x7fff;
-
- memset (r, 0, sizeof (*r));
-
- if (exp == 0)
- {
- if ((sig_hi || sig_lo) && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
-
- /* When the IEEE format contains a hidden bit, we know that
- it's zero at this point, and so shift up the significand
- and decrease the exponent to match. In this case, Motorola
- defines the explicit integer bit to be valid, so we don't
- know whether the msb is set or not. */
- SET_REAL_EXP (r, fmt->emin);
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = sig_hi;
- r->sig[SIGSZ-2] = sig_lo;
- }
- else
- r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
-
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
- {
- /* See above re "pseudo-infinities" and "pseudo-nans".
- Short summary is that the MSB will likely always be
- set, and that we don't care about it. */
- sig_hi &= 0x7fffffff;
-
- if (sig_hi || sig_lo)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = sig_hi;
- r->sig[SIGSZ-2] = sig_lo;
- }
- else
- r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 16383 + 1);
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[SIGSZ-1] = sig_hi;
- r->sig[SIGSZ-2] = sig_lo;
- }
- else
- r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
- }
-}
-
-/* Convert from the internal format to the 12-byte Motorola format
- for an IEEE extended real. */
-static void
-decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
-{
- long intermed[3];
-
- /* Motorola chips are assumed always to be big-endian. Also, the
- padding in a Motorola extended real goes between the exponent and
- the mantissa; remove it. */
- intermed[0] = buf[2];
- intermed[1] = buf[1];
- intermed[2] = (unsigned long)buf[0] >> 16;
-
- decode_ieee_extended (fmt, r, intermed);
-}
-
-/* Convert from the internal format to the 12-byte Intel format for
- an IEEE extended real. */
-static void
-decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
-{
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- /* All the padding in an Intel-format extended real goes at the high
- end, which in this case is after the mantissa, not the exponent.
- Therefore we must shift everything up 16 bits. */
- long intermed[3];
-
- intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
- intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
- intermed[2] = ((unsigned long)buf[0] >> 16);
-
- decode_ieee_extended (fmt, r, intermed);
- }
- else
- /* decode_ieee_extended produces what we want directly. */
- decode_ieee_extended (fmt, r, buf);
-}
-
-/* Convert from the internal format to the 16-byte Intel format for
- an IEEE extended real. */
-static void
-decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
-{
- /* All the padding in an Intel-format extended real goes at the high end. */
- decode_ieee_extended_intel_96 (fmt, r, buf);
-}
-
-const struct real_format ieee_extended_motorola_format =
- {
- encode_ieee_extended_motorola,
- decode_ieee_extended_motorola,
- 2,
- 1,
- 64,
- 64,
- -16382,
- 16384,
- 95,
- 95,
- true,
- true,
- true,
- true,
- true
- };
-
-const struct real_format ieee_extended_intel_96_format =
- {
- encode_ieee_extended_intel_96,
- decode_ieee_extended_intel_96,
- 2,
- 1,
- 64,
- 64,
- -16381,
- 16384,
- 79,
- 79,
- true,
- true,
- true,
- true,
- true
- };
-
-const struct real_format ieee_extended_intel_128_format =
- {
- encode_ieee_extended_intel_128,
- decode_ieee_extended_intel_128,
- 2,
- 1,
- 64,
- 64,
- -16381,
- 16384,
- 79,
- 79,
- true,
- true,
- true,
- true,
- true
- };
-
-/* The following caters to i386 systems that set the rounding precision
- to 53 bits instead of 64, e.g. FreeBSD. */
-const struct real_format ieee_extended_intel_96_round_53_format =
- {
- encode_ieee_extended_intel_96,
- decode_ieee_extended_intel_96,
- 2,
- 1,
- 53,
- 53,
- -16381,
- 16384,
- 79,
- 79,
- true,
- true,
- true,
- true,
- true
- };
-
-/* IBM 128-bit extended precision format: a pair of IEEE double precision
- numbers whose sum is equal to the extended precision value. The number
- with greater magnitude is first. This format has the same magnitude
- range as an IEEE double precision value, but effectively 106 bits of
- significand precision. Infinity and NaN are represented by their IEEE
- double precision value stored in the first number, the second number is
- +0.0 or -0.0 for Infinity and don't-care for NaN. */
-
-static void encode_ibm_extended (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_ibm_extended (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-
-static void
-encode_ibm_extended (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- REAL_VALUE_TYPE u, normr, v;
- const struct real_format *base_fmt;
-
- base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
-
- /* Renormlize R before doing any arithmetic on it. */
- normr = *r;
- if (normr.cl == rvc_normal)
- normalize (&normr);
-
- /* u = IEEE double precision portion of significand. */
- u = normr;
- round_for_format (base_fmt, &u);
- encode_ieee_double (base_fmt, &buf[0], &u);
-
- if (u.cl == rvc_normal)
- {
- do_add (&v, &normr, &u, 1);
- /* Call round_for_format since we might need to denormalize. */
- round_for_format (base_fmt, &v);
- encode_ieee_double (base_fmt, &buf[2], &v);
- }
- else
- {
- /* Inf, NaN, 0 are all representable as doubles, so the
- least-significant part can be 0.0. */
- buf[2] = 0;
- buf[3] = 0;
- }
-}
-
-static void
-decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
- const long *buf)
-{
- REAL_VALUE_TYPE u, v;
- const struct real_format *base_fmt;
-
- base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
- decode_ieee_double (base_fmt, &u, &buf[0]);
-
- if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
- {
- decode_ieee_double (base_fmt, &v, &buf[2]);
- do_add (r, &u, &v, 0);
- }
- else
- *r = u;
-}
-
-const struct real_format ibm_extended_format =
- {
- encode_ibm_extended,
- decode_ibm_extended,
- 2,
- 1,
- 53 + 53,
- 53,
- -1021 + 53,
- 1024,
- 127,
- -1,
- true,
- true,
- true,
- true,
- true
- };
-
-const struct real_format mips_extended_format =
- {
- encode_ibm_extended,
- decode_ibm_extended,
- 2,
- 1,
- 53 + 53,
- 53,
- -1021 + 53,
- 1024,
- 127,
- -1,
- true,
- true,
- true,
- true,
- false
- };
-
-
-/* IEEE quad precision format. */
-
-static void encode_ieee_quad (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_ieee_quad (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-
-static void
-encode_ieee_quad (const struct real_format *fmt, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- unsigned long image3, image2, image1, image0, exp;
- bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
- REAL_VALUE_TYPE u;
-
- image3 = r->sign << 31;
- image2 = 0;
- image1 = 0;
- image0 = 0;
-
- rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
-
- switch (r->cl)
- {
- case rvc_zero:
- break;
-
- case rvc_inf:
- if (fmt->has_inf)
- image3 |= 32767 << 16;
- else
- {
- image3 |= 0x7fffffff;
- image2 = 0xffffffff;
- image1 = 0xffffffff;
- image0 = 0xffffffff;
- }
- break;
-
- case rvc_nan:
- if (fmt->has_nans)
- {
- image3 |= 32767 << 16;
-
- if (r->canonical)
- {
- /* Don't use bits from the significand. The
- initialization above is right. */
- }
- else if (HOST_BITS_PER_LONG == 32)
- {
- image0 = u.sig[0];
- image1 = u.sig[1];
- image2 = u.sig[2];
- image3 |= u.sig[3] & 0xffff;
- }
- else
- {
- image0 = u.sig[0];
- image1 = image0 >> 31 >> 1;
- image2 = u.sig[1];
- image3 |= (image2 >> 31 >> 1) & 0xffff;
- image0 &= 0xffffffff;
- image2 &= 0xffffffff;
- }
- if (r->signalling == fmt->qnan_msb_set)
- image3 &= ~0x8000;
- else
- image3 |= 0x8000;
- /* We overload qnan_msb_set here: it's only clear for
- mips_ieee_single, which wants all mantissa bits but the
- quiet/signalling one set in canonical NaNs (at least
- Quiet ones). */
- if (r->canonical && !fmt->qnan_msb_set)
- {
- image3 |= 0x7fff;
- image2 = image1 = image0 = 0xffffffff;
- }
- else if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
- image3 |= 0x4000;
- }
- else
- {
- image3 |= 0x7fffffff;
- image2 = 0xffffffff;
- image1 = 0xffffffff;
- image0 = 0xffffffff;
- }
- break;
-
- case rvc_normal:
- /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
- whereas the intermediate representation is 0.F x 2**exp.
- Which means we're off by one. */
- if (denormal)
- exp = 0;
- else
- exp = REAL_EXP (r) + 16383 - 1;
- image3 |= exp << 16;
-
- if (HOST_BITS_PER_LONG == 32)
- {
- image0 = u.sig[0];
- image1 = u.sig[1];
- image2 = u.sig[2];
- image3 |= u.sig[3] & 0xffff;
- }
- else
- {
- image0 = u.sig[0];
- image1 = image0 >> 31 >> 1;
- image2 = u.sig[1];
- image3 |= (image2 >> 31 >> 1) & 0xffff;
- image0 &= 0xffffffff;
- image2 &= 0xffffffff;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- buf[0] = image3;
- buf[1] = image2;
- buf[2] = image1;
- buf[3] = image0;
- }
- else
- {
- buf[0] = image0;
- buf[1] = image1;
- buf[2] = image2;
- buf[3] = image3;
- }
-}
-
-static void
-decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
- const long *buf)
-{
- unsigned long image3, image2, image1, image0;
- bool sign;
- int exp;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- image3 = buf[0];
- image2 = buf[1];
- image1 = buf[2];
- image0 = buf[3];
- }
- else
- {
- image0 = buf[0];
- image1 = buf[1];
- image2 = buf[2];
- image3 = buf[3];
- }
- image0 &= 0xffffffff;
- image1 &= 0xffffffff;
- image2 &= 0xffffffff;
-
- sign = (image3 >> 31) & 1;
- exp = (image3 >> 16) & 0x7fff;
- image3 &= 0xffff;
-
- memset (r, 0, sizeof (*r));
-
- if (exp == 0)
- {
- if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
- {
- r->cl = rvc_normal;
- r->sign = sign;
-
- SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[0] = image0;
- r->sig[1] = image1;
- r->sig[2] = image2;
- r->sig[3] = image3;
- }
- else
- {
- r->sig[0] = (image1 << 31 << 1) | image0;
- r->sig[1] = (image3 << 31 << 1) | image2;
- }
-
- normalize (r);
- }
- else if (fmt->has_signed_zero)
- r->sign = sign;
- }
- else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
- {
- if (image3 | image2 | image1 | image0)
- {
- r->cl = rvc_nan;
- r->sign = sign;
- r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
-
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[0] = image0;
- r->sig[1] = image1;
- r->sig[2] = image2;
- r->sig[3] = image3;
- }
- else
- {
- r->sig[0] = (image1 << 31 << 1) | image0;
- r->sig[1] = (image3 << 31 << 1) | image2;
- }
- lshift_significand (r, r, SIGNIFICAND_BITS - 113);
- }
- else
- {
- r->cl = rvc_inf;
- r->sign = sign;
- }
- }
- else
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, exp - 16383 + 1);
-
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[0] = image0;
- r->sig[1] = image1;
- r->sig[2] = image2;
- r->sig[3] = image3;
- }
- else
- {
- r->sig[0] = (image1 << 31 << 1) | image0;
- r->sig[1] = (image3 << 31 << 1) | image2;
- }
- lshift_significand (r, r, SIGNIFICAND_BITS - 113);
- r->sig[SIGSZ-1] |= SIG_MSB;
- }
-}
-
-const struct real_format ieee_quad_format =
- {
- encode_ieee_quad,
- decode_ieee_quad,
- 2,
- 1,
- 113,
- 113,
- -16381,
- 16384,
- 127,
- 127,
- true,
- true,
- true,
- true,
- true
- };
-
-const struct real_format mips_quad_format =
- {
- encode_ieee_quad,
- decode_ieee_quad,
- 2,
- 1,
- 113,
- 113,
- -16381,
- 16384,
- 127,
- 127,
- true,
- true,
- true,
- true,
- false
- };
-
-/* Descriptions of VAX floating point formats can be found beginning at
-
- http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
-
- The thing to remember is that they're almost IEEE, except for word
- order, exponent bias, and the lack of infinities, nans, and denormals.
-
- We don't implement the H_floating format here, simply because neither
- the VAX or Alpha ports use it. */
-
-static void encode_vax_f (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_vax_f (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-static void encode_vax_d (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_vax_d (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-static void encode_vax_g (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_vax_g (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-
-static void
-encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- unsigned long sign, exp, sig, image;
-
- sign = r->sign << 15;
-
- switch (r->cl)
- {
- case rvc_zero:
- image = 0;
- break;
-
- case rvc_inf:
- case rvc_nan:
- image = 0xffff7fff | sign;
- break;
-
- case rvc_normal:
- sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
- exp = REAL_EXP (r) + 128;
-
- image = (sig << 16) & 0xffff0000;
- image |= sign;
- image |= exp << 7;
- image |= sig >> 16;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- buf[0] = image;
-}
-
-static void
-decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
-{
- unsigned long image = buf[0] & 0xffffffff;
- int exp = (image >> 7) & 0xff;
-
- memset (r, 0, sizeof (*r));
-
- if (exp != 0)
- {
- r->cl = rvc_normal;
- r->sign = (image >> 15) & 1;
- SET_REAL_EXP (r, exp - 128);
-
- image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
- r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
- }
-}
-
-static void
-encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- unsigned long image0, image1, sign = r->sign << 15;
-
- switch (r->cl)
- {
- case rvc_zero:
- image0 = image1 = 0;
- break;
-
- case rvc_inf:
- case rvc_nan:
- image0 = 0xffff7fff | sign;
- image1 = 0xffffffff;
- break;
-
- case rvc_normal:
- /* Extract the significand into straight hi:lo. */
- if (HOST_BITS_PER_LONG == 64)
- {
- image0 = r->sig[SIGSZ-1];
- image1 = (image0 >> (64 - 56)) & 0xffffffff;
- image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
- }
- else
- {
- image0 = r->sig[SIGSZ-1];
- image1 = r->sig[SIGSZ-2];
- image1 = (image0 << 24) | (image1 >> 8);
- image0 = (image0 >> 8) & 0xffffff;
- }
-
- /* Rearrange the half-words of the significand to match the
- external format. */
- image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
- image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
-
- /* Add the sign and exponent. */
- image0 |= sign;
- image0 |= (REAL_EXP (r) + 128) << 7;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = image1, buf[1] = image0;
- else
- buf[0] = image0, buf[1] = image1;
-}
-
-static void
-decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
-{
- unsigned long image0, image1;
- int exp;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- image1 = buf[0], image0 = buf[1];
- else
- image0 = buf[0], image1 = buf[1];
- image0 &= 0xffffffff;
- image1 &= 0xffffffff;
-
- exp = (image0 >> 7) & 0xff;
-
- memset (r, 0, sizeof (*r));
-
- if (exp != 0)
- {
- r->cl = rvc_normal;
- r->sign = (image0 >> 15) & 1;
- SET_REAL_EXP (r, exp - 128);
-
- /* Rearrange the half-words of the external format into
- proper ascending order. */
- image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
- image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
-
- if (HOST_BITS_PER_LONG == 64)
- {
- image0 = (image0 << 31 << 1) | image1;
- image0 <<= 64 - 56;
- image0 |= SIG_MSB;
- r->sig[SIGSZ-1] = image0;
- }
- else
- {
- r->sig[SIGSZ-1] = image0;
- r->sig[SIGSZ-2] = image1;
- lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
- r->sig[SIGSZ-1] |= SIG_MSB;
- }
- }
-}
-
-static void
-encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- unsigned long image0, image1, sign = r->sign << 15;
-
- switch (r->cl)
- {
- case rvc_zero:
- image0 = image1 = 0;
- break;
-
- case rvc_inf:
- case rvc_nan:
- image0 = 0xffff7fff | sign;
- image1 = 0xffffffff;
- break;
-
- case rvc_normal:
- /* Extract the significand into straight hi:lo. */
- if (HOST_BITS_PER_LONG == 64)
- {
- image0 = r->sig[SIGSZ-1];
- image1 = (image0 >> (64 - 53)) & 0xffffffff;
- image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
- }
- else
- {
- image0 = r->sig[SIGSZ-1];
- image1 = r->sig[SIGSZ-2];
- image1 = (image0 << 21) | (image1 >> 11);
- image0 = (image0 >> 11) & 0xfffff;
- }
-
- /* Rearrange the half-words of the significand to match the
- external format. */
- image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
- image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
-
- /* Add the sign and exponent. */
- image0 |= sign;
- image0 |= (REAL_EXP (r) + 1024) << 4;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = image1, buf[1] = image0;
- else
- buf[0] = image0, buf[1] = image1;
-}
-
-static void
-decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
-{
- unsigned long image0, image1;
- int exp;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- image1 = buf[0], image0 = buf[1];
- else
- image0 = buf[0], image1 = buf[1];
- image0 &= 0xffffffff;
- image1 &= 0xffffffff;
-
- exp = (image0 >> 4) & 0x7ff;
-
- memset (r, 0, sizeof (*r));
-
- if (exp != 0)
- {
- r->cl = rvc_normal;
- r->sign = (image0 >> 15) & 1;
- SET_REAL_EXP (r, exp - 1024);
-
- /* Rearrange the half-words of the external format into
- proper ascending order. */
- image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
- image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
-
- if (HOST_BITS_PER_LONG == 64)
- {
- image0 = (image0 << 31 << 1) | image1;
- image0 <<= 64 - 53;
- image0 |= SIG_MSB;
- r->sig[SIGSZ-1] = image0;
- }
- else
- {
- r->sig[SIGSZ-1] = image0;
- r->sig[SIGSZ-2] = image1;
- lshift_significand (r, r, 64 - 53);
- r->sig[SIGSZ-1] |= SIG_MSB;
- }
- }
-}
-
-const struct real_format vax_f_format =
- {
- encode_vax_f,
- decode_vax_f,
- 2,
- 1,
- 24,
- 24,
- -127,
- 127,
- 15,
- 15,
- false,
- false,
- false,
- false,
- false
- };
-
-const struct real_format vax_d_format =
- {
- encode_vax_d,
- decode_vax_d,
- 2,
- 1,
- 56,
- 56,
- -127,
- 127,
- 15,
- 15,
- false,
- false,
- false,
- false,
- false
- };
-
-const struct real_format vax_g_format =
- {
- encode_vax_g,
- decode_vax_g,
- 2,
- 1,
- 53,
- 53,
- -1023,
- 1023,
- 15,
- 15,
- false,
- false,
- false,
- false,
- false
- };
-
-/* A good reference for these can be found in chapter 9 of
- "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
- An on-line version can be found here:
-
- http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
-*/
-
-static void encode_i370_single (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_i370_single (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-static void encode_i370_double (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_i370_double (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-
-static void
-encode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf, const REAL_VALUE_TYPE *r)
-{
- unsigned long sign, exp, sig, image;
-
- sign = r->sign << 31;
-
- switch (r->cl)
- {
- case rvc_zero:
- image = 0;
- break;
-
- case rvc_inf:
- case rvc_nan:
- image = 0x7fffffff | sign;
- break;
-
- case rvc_normal:
- sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0xffffff;
- exp = ((REAL_EXP (r) / 4) + 64) << 24;
- image = sign | exp | sig;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- buf[0] = image;
-}
-
-static void
-decode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
-{
- unsigned long sign, sig, image = buf[0];
- int exp;
-
- sign = (image >> 31) & 1;
- exp = (image >> 24) & 0x7f;
- sig = image & 0xffffff;
-
- memset (r, 0, sizeof (*r));
-
- if (exp || sig)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, (exp - 64) * 4);
- r->sig[SIGSZ-1] = sig << (HOST_BITS_PER_LONG - 24);
- normalize (r);
- }
-}
-
-static void
-encode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf, const REAL_VALUE_TYPE *r)
-{
- unsigned long sign, exp, image_hi, image_lo;
-
- sign = r->sign << 31;
-
- switch (r->cl)
- {
- case rvc_zero:
- image_hi = image_lo = 0;
- break;
-
- case rvc_inf:
- case rvc_nan:
- image_hi = 0x7fffffff | sign;
- image_lo = 0xffffffff;
- break;
-
- case rvc_normal:
- if (HOST_BITS_PER_LONG == 64)
- {
- image_hi = r->sig[SIGSZ-1];
- image_lo = (image_hi >> (64 - 56)) & 0xffffffff;
- image_hi = (image_hi >> (64 - 56 + 1) >> 31) & 0xffffff;
- }
- else
- {
- image_hi = r->sig[SIGSZ-1];
- image_lo = r->sig[SIGSZ-2];
- image_lo = (image_lo >> 8) | (image_hi << 24);
- image_hi >>= 8;
- }
-
- exp = ((REAL_EXP (r) / 4) + 64) << 24;
- image_hi |= sign | exp;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = image_hi, buf[1] = image_lo;
- else
- buf[0] = image_lo, buf[1] = image_hi;
-}
-
-static void
-decode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
-{
- unsigned long sign, image_hi, image_lo;
- int exp;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- image_hi = buf[0], image_lo = buf[1];
- else
- image_lo = buf[0], image_hi = buf[1];
-
- sign = (image_hi >> 31) & 1;
- exp = (image_hi >> 24) & 0x7f;
- image_hi &= 0xffffff;
- image_lo &= 0xffffffff;
-
- memset (r, 0, sizeof (*r));
-
- if (exp || image_hi || image_lo)
- {
- r->cl = rvc_normal;
- r->sign = sign;
- SET_REAL_EXP (r, (exp - 64) * 4 + (SIGNIFICAND_BITS - 56));
-
- if (HOST_BITS_PER_LONG == 32)
- {
- r->sig[0] = image_lo;
- r->sig[1] = image_hi;
- }
- else
- r->sig[0] = image_lo | (image_hi << 31 << 1);
-
- normalize (r);
- }
-}
-
-const struct real_format i370_single_format =
- {
- encode_i370_single,
- decode_i370_single,
- 16,
- 4,
- 6,
- 6,
- -64,
- 63,
- 31,
- 31,
- false,
- false,
- false, /* ??? The encoding does allow for "unnormals". */
- false, /* ??? The encoding does allow for "unnormals". */
- false
- };
-
-const struct real_format i370_double_format =
- {
- encode_i370_double,
- decode_i370_double,
- 16,
- 4,
- 14,
- 14,
- -64,
- 63,
- 63,
- 63,
- false,
- false,
- false, /* ??? The encoding does allow for "unnormals". */
- false, /* ??? The encoding does allow for "unnormals". */
- false
- };
-
-/* Encode real R into a single precision DFP value in BUF. */
-static void
-encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf ATTRIBUTE_UNUSED,
- const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
-{
- encode_decimal32 (fmt, buf, r);
-}
-
-/* Decode a single precision DFP value in BUF into a real R. */
-static void
-decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
- const long *buf ATTRIBUTE_UNUSED)
-{
- decode_decimal32 (fmt, r, buf);
-}
-
-/* Encode real R into a double precision DFP value in BUF. */
-static void
-encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf ATTRIBUTE_UNUSED,
- const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
-{
- encode_decimal64 (fmt, buf, r);
-}
-
-/* Decode a double precision DFP value in BUF into a real R. */
-static void
-decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
- const long *buf ATTRIBUTE_UNUSED)
-{
- decode_decimal64 (fmt, r, buf);
-}
-
-/* Encode real R into a quad precision DFP value in BUF. */
-static void
-encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf ATTRIBUTE_UNUSED,
- const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
-{
- encode_decimal128 (fmt, buf, r);
-}
-
-/* Decode a quad precision DFP value in BUF into a real R. */
-static void
-decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
- const long *buf ATTRIBUTE_UNUSED)
-{
- decode_decimal128 (fmt, r, buf);
-}
-
-/* Single precision decimal floating point (IEEE 754R). */
-const struct real_format decimal_single_format =
- {
- encode_decimal_single,
- decode_decimal_single,
- 10,
- 1, /* log10 */
- 7,
- 7,
- -95,
- 96,
- 31,
- 31,
- true,
- true,
- true,
- true,
- true
- };
-
-/* Double precision decimal floating point (IEEE 754R). */
-const struct real_format decimal_double_format =
- {
- encode_decimal_double,
- decode_decimal_double,
- 10,
- 1, /* log10 */
- 16,
- 16,
- -383,
- 384,
- 63,
- 63,
- true,
- true,
- true,
- true,
- true
- };
-
-/* Quad precision decimal floating point (IEEE 754R). */
-const struct real_format decimal_quad_format =
- {
- encode_decimal_quad,
- decode_decimal_quad,
- 10,
- 1, /* log10 */
- 34,
- 34,
- -6143,
- 6144,
- 127,
- 127,
- true,
- true,
- true,
- true,
- true
- };
-
-/* The "twos-complement" c4x format is officially defined as
-
- x = s(~s).f * 2**e
-
- This is rather misleading. One must remember that F is signed.
- A better description would be
-
- x = -1**s * ((s + 1 + .f) * 2**e
-
- So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
- that's -1 * (1+1+(-.5)) == -1.5. I think.
-
- The constructions here are taken from Tables 5-1 and 5-2 of the
- TMS320C4x User's Guide wherein step-by-step instructions for
- conversion from IEEE are presented. That's close enough to our
- internal representation so as to make things easy.
-
- See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
-
-static void encode_c4x_single (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_c4x_single (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-static void encode_c4x_extended (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_c4x_extended (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-
-static void
-encode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf, const REAL_VALUE_TYPE *r)
-{
- unsigned long image, exp, sig;
-
- switch (r->cl)
- {
- case rvc_zero:
- exp = -128;
- sig = 0;
- break;
-
- case rvc_inf:
- case rvc_nan:
- exp = 127;
- sig = 0x800000 - r->sign;
- break;
-
- case rvc_normal:
- exp = REAL_EXP (r) - 1;
- sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
- if (r->sign)
- {
- if (sig)
- sig = -sig;
- else
- exp--;
- sig |= 0x800000;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- image = ((exp & 0xff) << 24) | (sig & 0xffffff);
- buf[0] = image;
-}
-
-static void
-decode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
-{
- unsigned long image = buf[0];
- unsigned long sig;
- int exp, sf;
-
- exp = (((image >> 24) & 0xff) ^ 0x80) - 0x80;
- sf = ((image & 0xffffff) ^ 0x800000) - 0x800000;
-
- memset (r, 0, sizeof (*r));
-
- if (exp != -128)
- {
- r->cl = rvc_normal;
-
- sig = sf & 0x7fffff;
- if (sf < 0)
- {
- r->sign = 1;
- if (sig)
- sig = -sig;
- else
- exp++;
- }
- sig = (sig << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
-
- SET_REAL_EXP (r, exp + 1);
- r->sig[SIGSZ-1] = sig;
- }
-}
-
-static void
-encode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
- long *buf, const REAL_VALUE_TYPE *r)
-{
- unsigned long exp, sig;
-
- switch (r->cl)
- {
- case rvc_zero:
- exp = -128;
- sig = 0;
- break;
-
- case rvc_inf:
- case rvc_nan:
- exp = 127;
- sig = 0x80000000 - r->sign;
- break;
-
- case rvc_normal:
- exp = REAL_EXP (r) - 1;
-
- sig = r->sig[SIGSZ-1];
- if (HOST_BITS_PER_LONG == 64)
- sig = sig >> 1 >> 31;
- sig &= 0x7fffffff;
-
- if (r->sign)
- {
- if (sig)
- sig = -sig;
- else
- exp--;
- sig |= 0x80000000;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- exp = (exp & 0xff) << 24;
- sig &= 0xffffffff;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = exp, buf[1] = sig;
- else
- buf[0] = sig, buf[0] = exp;
-}
-
-static void
-decode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
-{
- unsigned long sig;
- int exp, sf;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- exp = buf[0], sf = buf[1];
- else
- sf = buf[0], exp = buf[1];
-
- exp = (((exp >> 24) & 0xff) & 0x80) - 0x80;
- sf = ((sf & 0xffffffff) ^ 0x80000000) - 0x80000000;
-
- memset (r, 0, sizeof (*r));
-
- if (exp != -128)
- {
- r->cl = rvc_normal;
-
- sig = sf & 0x7fffffff;
- if (sf < 0)
- {
- r->sign = 1;
- if (sig)
- sig = -sig;
- else
- exp++;
- }
- if (HOST_BITS_PER_LONG == 64)
- sig = sig << 1 << 31;
- sig |= SIG_MSB;
-
- SET_REAL_EXP (r, exp + 1);
- r->sig[SIGSZ-1] = sig;
- }
-}
-
-const struct real_format c4x_single_format =
- {
- encode_c4x_single,
- decode_c4x_single,
- 2,
- 1,
- 24,
- 24,
- -126,
- 128,
- 23,
- -1,
- false,
- false,
- false,
- false,
- false
- };
-
-const struct real_format c4x_extended_format =
- {
- encode_c4x_extended,
- decode_c4x_extended,
- 2,
- 1,
- 32,
- 32,
- -126,
- 128,
- 31,
- -1,
- false,
- false,
- false,
- false,
- false
- };
-
-
-/* A synthetic "format" for internal arithmetic. It's the size of the
- internal significand minus the two bits needed for proper rounding.
- The encode and decode routines exist only to satisfy our paranoia
- harness. */
-
-static void encode_internal (const struct real_format *fmt,
- long *, const REAL_VALUE_TYPE *);
-static void decode_internal (const struct real_format *,
- REAL_VALUE_TYPE *, const long *);
-
-static void
-encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
- const REAL_VALUE_TYPE *r)
-{
- memcpy (buf, r, sizeof (*r));
-}
-
-static void
-decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
- REAL_VALUE_TYPE *r, const long *buf)
-{
- memcpy (r, buf, sizeof (*r));
-}
-
-const struct real_format real_internal_format =
- {
- encode_internal,
- decode_internal,
- 2,
- 1,
- SIGNIFICAND_BITS - 2,
- SIGNIFICAND_BITS - 2,
- -MAX_EXP,
- MAX_EXP,
- -1,
- -1,
- true,
- true,
- false,
- true,
- true
- };
-
-/* Calculate the square root of X in mode MODE, and store the result
- in R. Return TRUE if the operation does not raise an exception.
- For details see "High Precision Division and Square Root",
- Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
- 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
-
-bool
-real_sqrt (REAL_VALUE_TYPE *r, enum machine_mode mode,
- const REAL_VALUE_TYPE *x)
-{
- static REAL_VALUE_TYPE halfthree;
- static bool init = false;
- REAL_VALUE_TYPE h, t, i;
- int iter, exp;
-
- /* sqrt(-0.0) is -0.0. */
- if (real_isnegzero (x))
- {
- *r = *x;
- return false;
- }
-
- /* Negative arguments return NaN. */
- if (real_isneg (x))
- {
- get_canonical_qnan (r, 0);
- return false;
- }
-
- /* Infinity and NaN return themselves. */
- if (real_isinf (x) || real_isnan (x))
- {
- *r = *x;
- return false;
- }
-
- if (!init)
- {
- do_add (&halfthree, &dconst1, &dconsthalf, 0);
- init = true;
- }
-
- /* Initial guess for reciprocal sqrt, i. */
- exp = real_exponent (x);
- real_ldexp (&i, &dconst1, -exp/2);
-
- /* Newton's iteration for reciprocal sqrt, i. */
- for (iter = 0; iter < 16; iter++)
- {
- /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
- do_multiply (&t, x, &i);
- do_multiply (&h, &t, &i);
- do_multiply (&t, &h, &dconsthalf);
- do_add (&h, &halfthree, &t, 1);
- do_multiply (&t, &i, &h);
-
- /* Check for early convergence. */
- if (iter >= 6 && real_identical (&i, &t))
- break;
-
- /* ??? Unroll loop to avoid copying. */
- i = t;
- }
-
- /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
- do_multiply (&t, x, &i);
- do_multiply (&h, &t, &i);
- do_add (&i, &dconst1, &h, 1);
- do_multiply (&h, &t, &i);
- do_multiply (&i, &dconsthalf, &h);
- do_add (&h, &t, &i, 0);
-
- /* ??? We need a Tuckerman test to get the last bit. */
-
- real_convert (r, mode, &h);
- return true;
-}
-
-/* Calculate X raised to the integer exponent N in mode MODE and store
- the result in R. Return true if the result may be inexact due to
- loss of precision. The algorithm is the classic "left-to-right binary
- method" described in section 4.6.3 of Donald Knuth's "Seminumerical
- Algorithms", "The Art of Computer Programming", Volume 2. */
-
-bool
-real_powi (REAL_VALUE_TYPE *r, enum machine_mode mode,
- const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
-{
- unsigned HOST_WIDE_INT bit;
- REAL_VALUE_TYPE t;
- bool inexact = false;
- bool init = false;
- bool neg;
- int i;
-
- if (n == 0)
- {
- *r = dconst1;
- return false;
- }
- else if (n < 0)
- {
- /* Don't worry about overflow, from now on n is unsigned. */
- neg = true;
- n = -n;
- }
- else
- neg = false;
-
- t = *x;
- bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
- for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
- {
- if (init)
- {
- inexact |= do_multiply (&t, &t, &t);
- if (n & bit)
- inexact |= do_multiply (&t, &t, x);
- }
- else if (n & bit)
- init = true;
- bit >>= 1;
- }
-
- if (neg)
- inexact |= do_divide (&t, &dconst1, &t);
-
- real_convert (r, mode, &t);
- return inexact;
-}
-
-/* Round X to the nearest integer not larger in absolute value, i.e.
- towards zero, placing the result in R in mode MODE. */
-
-void
-real_trunc (REAL_VALUE_TYPE *r, enum machine_mode mode,
- const REAL_VALUE_TYPE *x)
-{
- do_fix_trunc (r, x);
- if (mode != VOIDmode)
- real_convert (r, mode, r);
-}
-
-/* Round X to the largest integer not greater in value, i.e. round
- down, placing the result in R in mode MODE. */
-
-void
-real_floor (REAL_VALUE_TYPE *r, enum machine_mode mode,
- const REAL_VALUE_TYPE *x)
-{
- REAL_VALUE_TYPE t;
-
- do_fix_trunc (&t, x);
- if (! real_identical (&t, x) && x->sign)
- do_add (&t, &t, &dconstm1, 0);
- if (mode != VOIDmode)
- real_convert (r, mode, &t);
- else
- *r = t;
-}
-
-/* Round X to the smallest integer not less then argument, i.e. round
- up, placing the result in R in mode MODE. */
-
-void
-real_ceil (REAL_VALUE_TYPE *r, enum machine_mode mode,
- const REAL_VALUE_TYPE *x)
-{
- REAL_VALUE_TYPE t;
-
- do_fix_trunc (&t, x);
- if (! real_identical (&t, x) && ! x->sign)
- do_add (&t, &t, &dconst1, 0);
- if (mode != VOIDmode)
- real_convert (r, mode, &t);
- else
- *r = t;
-}
-
-/* Round X to the nearest integer, but round halfway cases away from
- zero. */
-
-void
-real_round (REAL_VALUE_TYPE *r, enum machine_mode mode,
- const REAL_VALUE_TYPE *x)
-{
- do_add (r, x, &dconsthalf, x->sign);
- do_fix_trunc (r, r);
- if (mode != VOIDmode)
- real_convert (r, mode, r);
-}
-
-/* Set the sign of R to the sign of X. */
-
-void
-real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
-{
- r->sign = x->sign;
-}
-