aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/optabs.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/optabs.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/optabs.c6284
1 files changed, 0 insertions, 6284 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/optabs.c b/gcc-4.2.1-5666.3/gcc/optabs.c
deleted file mode 100644
index 84287413b..000000000
--- a/gcc-4.2.1-5666.3/gcc/optabs.c
+++ /dev/null
@@ -1,6284 +0,0 @@
-/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
- Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
- 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
- Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "toplev.h"
-
-/* Include insn-config.h before expr.h so that HAVE_conditional_move
- is properly defined. */
-#include "insn-config.h"
-#include "rtl.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "flags.h"
-#include "function.h"
-#include "except.h"
-#include "expr.h"
-#include "optabs.h"
-#include "libfuncs.h"
-#include "recog.h"
-#include "reload.h"
-#include "ggc.h"
-#include "real.h"
-#include "basic-block.h"
-#include "target.h"
-
-/* Each optab contains info on how this target machine
- can perform a particular operation
- for all sizes and kinds of operands.
-
- The operation to be performed is often specified
- by passing one of these optabs as an argument.
-
- See expr.h for documentation of these optabs. */
-
-optab optab_table[OTI_MAX];
-
-rtx libfunc_table[LTI_MAX];
-
-/* Tables of patterns for converting one mode to another. */
-convert_optab convert_optab_table[COI_MAX];
-
-/* Contains the optab used for each rtx code. */
-optab code_to_optab[NUM_RTX_CODE + 1];
-
-/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
- gives the gen_function to make a branch to test that condition. */
-
-rtxfun bcc_gen_fctn[NUM_RTX_CODE];
-
-/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
- gives the insn code to make a store-condition insn
- to test that condition. */
-
-enum insn_code setcc_gen_code[NUM_RTX_CODE];
-
-#ifdef HAVE_conditional_move
-/* Indexed by the machine mode, gives the insn code to make a conditional
- move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
- setcc_gen_code to cut down on the number of named patterns. Consider a day
- when a lot more rtx codes are conditional (eg: for the ARM). */
-
-enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
-#endif
-
-/* Indexed by the machine mode, gives the insn code for vector conditional
- operation. */
-
-enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
-enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
-
-/* The insn generating function can not take an rtx_code argument.
- TRAP_RTX is used as an rtx argument. Its code is replaced with
- the code to be used in the trap insn and all other fields are ignored. */
-static GTY(()) rtx trap_rtx;
-
-static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
-static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
- int);
-static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
- enum machine_mode *, int *,
- enum can_compare_purpose);
-static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
- int *);
-static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
-static optab new_optab (void);
-static convert_optab new_convert_optab (void);
-static inline optab init_optab (enum rtx_code);
-static inline optab init_optabv (enum rtx_code);
-static inline convert_optab init_convert_optab (enum rtx_code);
-static void init_libfuncs (optab, int, int, const char *, int);
-static void init_integral_libfuncs (optab, const char *, int);
-static void init_floating_libfuncs (optab, const char *, int);
-static void init_interclass_conv_libfuncs (convert_optab, const char *,
- enum mode_class, enum mode_class);
-static void init_intraclass_conv_libfuncs (convert_optab, const char *,
- enum mode_class, bool);
-static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
- enum rtx_code, int, rtx);
-static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
- enum machine_mode *, int *);
-static rtx widen_clz (enum machine_mode, rtx, rtx);
-static rtx expand_parity (enum machine_mode, rtx, rtx);
-static enum rtx_code get_rtx_code (enum tree_code, bool);
-static rtx vector_compare_rtx (tree, bool, enum insn_code);
-
-#ifndef HAVE_conditional_trap
-#define HAVE_conditional_trap 0
-#define gen_conditional_trap(a,b) (gcc_unreachable (), NULL_RTX)
-#endif
-
-/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
- the result of operation CODE applied to OP0 (and OP1 if it is a binary
- operation).
-
- If the last insn does not set TARGET, don't do anything, but return 1.
-
- If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
- don't add the REG_EQUAL note but return 0. Our caller can then try
- again, ensuring that TARGET is not one of the operands. */
-
-static int
-add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
-{
- rtx last_insn, insn, set;
- rtx note;
-
- gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
-
- if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
- && GET_RTX_CLASS (code) != RTX_BIN_ARITH
- && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
- && GET_RTX_CLASS (code) != RTX_COMPARE
- && GET_RTX_CLASS (code) != RTX_UNARY)
- return 1;
-
- if (GET_CODE (target) == ZERO_EXTRACT)
- return 1;
-
- for (last_insn = insns;
- NEXT_INSN (last_insn) != NULL_RTX;
- last_insn = NEXT_INSN (last_insn))
- ;
-
- set = single_set (last_insn);
- if (set == NULL_RTX)
- return 1;
-
- if (! rtx_equal_p (SET_DEST (set), target)
- /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
- && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
- || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
- return 1;
-
- /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
- besides the last insn. */
- if (reg_overlap_mentioned_p (target, op0)
- || (op1 && reg_overlap_mentioned_p (target, op1)))
- {
- insn = PREV_INSN (last_insn);
- while (insn != NULL_RTX)
- {
- if (reg_set_p (target, insn))
- return 0;
-
- insn = PREV_INSN (insn);
- }
- }
-
- if (GET_RTX_CLASS (code) == RTX_UNARY)
- note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
- else
- note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
-
- set_unique_reg_note (last_insn, REG_EQUAL, note);
-
- return 1;
-}
-
-/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
- says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
- not actually do a sign-extend or zero-extend, but can leave the
- higher-order bits of the result rtx undefined, for example, in the case
- of logical operations, but not right shifts. */
-
-static rtx
-widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
- int unsignedp, int no_extend)
-{
- rtx result;
-
- /* If we don't have to extend and this is a constant, return it. */
- if (no_extend && GET_MODE (op) == VOIDmode)
- return op;
-
- /* If we must extend do so. If OP is a SUBREG for a promoted object, also
- extend since it will be more efficient to do so unless the signedness of
- a promoted object differs from our extension. */
- if (! no_extend
- || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
- && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
- return convert_modes (mode, oldmode, op, unsignedp);
-
- /* If MODE is no wider than a single word, we return a paradoxical
- SUBREG. */
- if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
- return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
-
- /* Otherwise, get an object of MODE, clobber it, and set the low-order
- part to OP. */
-
- result = gen_reg_rtx (mode);
- emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
- emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
- return result;
-}
-
-/* Return the optab used for computing the operation given by
- the tree code, CODE. This function is not always usable (for
- example, it cannot give complete results for multiplication
- or division) but probably ought to be relied on more widely
- throughout the expander. */
-optab
-optab_for_tree_code (enum tree_code code, tree type)
-{
- bool trapv;
- switch (code)
- {
- case BIT_AND_EXPR:
- return and_optab;
-
- case BIT_IOR_EXPR:
- return ior_optab;
-
- case BIT_NOT_EXPR:
- return one_cmpl_optab;
-
- case BIT_XOR_EXPR:
- return xor_optab;
-
- case TRUNC_MOD_EXPR:
- case CEIL_MOD_EXPR:
- case FLOOR_MOD_EXPR:
- case ROUND_MOD_EXPR:
- return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
-
- case RDIV_EXPR:
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case EXACT_DIV_EXPR:
- return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
-
- case LSHIFT_EXPR:
- return ashl_optab;
-
- case RSHIFT_EXPR:
- return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
-
- case LROTATE_EXPR:
- return rotl_optab;
-
- case RROTATE_EXPR:
- return rotr_optab;
-
- case MAX_EXPR:
- return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
-
- case MIN_EXPR:
- return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
-
- case REALIGN_LOAD_EXPR:
- return vec_realign_load_optab;
-
- case WIDEN_SUM_EXPR:
- return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
-
- case DOT_PROD_EXPR:
- return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
-
- case REDUC_MAX_EXPR:
- return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
-
- case REDUC_MIN_EXPR:
- return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
-
- case REDUC_PLUS_EXPR:
- return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
-
- case VEC_LSHIFT_EXPR:
- return vec_shl_optab;
-
- case VEC_RSHIFT_EXPR:
- return vec_shr_optab;
-
- default:
- break;
- }
-
- trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
- switch (code)
- {
- case PLUS_EXPR:
- return trapv ? addv_optab : add_optab;
-
- case MINUS_EXPR:
- return trapv ? subv_optab : sub_optab;
-
- case MULT_EXPR:
- return trapv ? smulv_optab : smul_optab;
-
- case NEGATE_EXPR:
- return trapv ? negv_optab : neg_optab;
-
- case ABS_EXPR:
- return trapv ? absv_optab : abs_optab;
-
- default:
- return NULL;
- }
-}
-
-
-/* Expand vector widening operations.
-
- There are two different classes of operations handled here:
- 1) Operations whose result is wider than all the arguments to the operation.
- Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
- In this case OP0 and optionally OP1 would be initialized,
- but WIDE_OP wouldn't (not relevant for this case).
- 2) Operations whose result is of the same size as the last argument to the
- operation, but wider than all the other arguments to the operation.
- Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
- In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
-
- E.g, when called to expand the following operations, this is how
- the arguments will be initialized:
- nops OP0 OP1 WIDE_OP
- widening-sum 2 oprnd0 - oprnd1
- widening-dot-product 3 oprnd0 oprnd1 oprnd2
- widening-mult 2 oprnd0 oprnd1 -
- type-promotion (vec-unpack) 1 oprnd0 - - */
-
-rtx
-expand_widen_pattern_expr (tree exp, rtx op0, rtx op1, rtx wide_op, rtx target,
- int unsignedp)
-{
- tree oprnd0, oprnd1, oprnd2;
- enum machine_mode wmode = 0, tmode0, tmode1 = 0;
- optab widen_pattern_optab;
- int icode;
- enum machine_mode xmode0, xmode1 = 0, wxmode = 0;
- rtx temp;
- rtx pat;
- rtx xop0, xop1, wxop;
- int nops = TREE_CODE_LENGTH (TREE_CODE (exp));
-
- oprnd0 = TREE_OPERAND (exp, 0);
- tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
- widen_pattern_optab =
- optab_for_tree_code (TREE_CODE (exp), TREE_TYPE (oprnd0));
- icode = (int) widen_pattern_optab->handlers[(int) tmode0].insn_code;
- gcc_assert (icode != CODE_FOR_nothing);
- xmode0 = insn_data[icode].operand[1].mode;
-
- if (nops >= 2)
- {
- oprnd1 = TREE_OPERAND (exp, 1);
- tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
- xmode1 = insn_data[icode].operand[2].mode;
- }
-
- /* The last operand is of a wider mode than the rest of the operands. */
- if (nops == 2)
- {
- wmode = tmode1;
- wxmode = xmode1;
- }
- else if (nops == 3)
- {
- gcc_assert (tmode1 == tmode0);
- gcc_assert (op1);
- oprnd2 = TREE_OPERAND (exp, 2);
- wmode = TYPE_MODE (TREE_TYPE (oprnd2));
- wxmode = insn_data[icode].operand[3].mode;
- }
-
- if (!wide_op)
- wmode = wxmode = insn_data[icode].operand[0].mode;
-
- if (!target
- || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
- temp = gen_reg_rtx (wmode);
- else
- temp = target;
-
- xop0 = op0;
- xop1 = op1;
- wxop = wide_op;
-
- /* In case the insn wants input operands in modes different from
- those of the actual operands, convert the operands. It would
- seem that we don't need to convert CONST_INTs, but we do, so
- that they're properly zero-extended, sign-extended or truncated
- for their mode. */
-
- if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
- xop0 = convert_modes (xmode0,
- GET_MODE (op0) != VOIDmode
- ? GET_MODE (op0)
- : tmode0,
- xop0, unsignedp);
-
- if (op1)
- if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
- xop1 = convert_modes (xmode1,
- GET_MODE (op1) != VOIDmode
- ? GET_MODE (op1)
- : tmode1,
- xop1, unsignedp);
-
- if (wide_op)
- if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
- wxop = convert_modes (wxmode,
- GET_MODE (wide_op) != VOIDmode
- ? GET_MODE (wide_op)
- : wmode,
- wxop, unsignedp);
-
- /* Now, if insn's predicates don't allow our operands, put them into
- pseudo regs. */
-
- if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
- && xmode0 != VOIDmode)
- xop0 = copy_to_mode_reg (xmode0, xop0);
-
- if (op1)
- {
- if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
- && xmode1 != VOIDmode)
- xop1 = copy_to_mode_reg (xmode1, xop1);
-
- if (wide_op)
- {
- if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
- && wxmode != VOIDmode)
- wxop = copy_to_mode_reg (wxmode, wxop);
-
- pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
- }
- else
- pat = GEN_FCN (icode) (temp, xop0, xop1);
- }
- else
- {
- if (wide_op)
- {
- if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
- && wxmode != VOIDmode)
- wxop = copy_to_mode_reg (wxmode, wxop);
-
- pat = GEN_FCN (icode) (temp, xop0, wxop);
- }
- else
- pat = GEN_FCN (icode) (temp, xop0);
- }
-
- emit_insn (pat);
- return temp;
-}
-
-/* Generate code to perform an operation specified by TERNARY_OPTAB
- on operands OP0, OP1 and OP2, with result having machine-mode MODE.
-
- UNSIGNEDP is for the case where we have to widen the operands
- to perform the operation. It says to use zero-extension.
-
- If TARGET is nonzero, the value
- is generated there, if it is convenient to do so.
- In all cases an rtx is returned for the locus of the value;
- this may or may not be TARGET. */
-
-rtx
-expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
- rtx op1, rtx op2, rtx target, int unsignedp)
-{
- int icode = (int) ternary_optab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_data[icode].operand[1].mode;
- enum machine_mode mode1 = insn_data[icode].operand[2].mode;
- enum machine_mode mode2 = insn_data[icode].operand[3].mode;
- rtx temp;
- rtx pat;
- rtx xop0 = op0, xop1 = op1, xop2 = op2;
-
- gcc_assert (ternary_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing);
-
- if (!target || !insn_data[icode].operand[0].predicate (target, mode))
- temp = gen_reg_rtx (mode);
- else
- temp = target;
-
- /* In case the insn wants input operands in modes different from
- those of the actual operands, convert the operands. It would
- seem that we don't need to convert CONST_INTs, but we do, so
- that they're properly zero-extended, sign-extended or truncated
- for their mode. */
-
- if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
- xop0 = convert_modes (mode0,
- GET_MODE (op0) != VOIDmode
- ? GET_MODE (op0)
- : mode,
- xop0, unsignedp);
-
- if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
- xop1 = convert_modes (mode1,
- GET_MODE (op1) != VOIDmode
- ? GET_MODE (op1)
- : mode,
- xop1, unsignedp);
-
- if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
- xop2 = convert_modes (mode2,
- GET_MODE (op2) != VOIDmode
- ? GET_MODE (op2)
- : mode,
- xop2, unsignedp);
-
- /* Now, if insn's predicates don't allow our operands, put them into
- pseudo regs. */
-
- if (!insn_data[icode].operand[1].predicate (xop0, mode0)
- && mode0 != VOIDmode)
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (!insn_data[icode].operand[2].predicate (xop1, mode1)
- && mode1 != VOIDmode)
- xop1 = copy_to_mode_reg (mode1, xop1);
-
- if (!insn_data[icode].operand[3].predicate (xop2, mode2)
- && mode2 != VOIDmode)
- xop2 = copy_to_mode_reg (mode2, xop2);
-
- pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
-
- emit_insn (pat);
- return temp;
-}
-
-
-/* Like expand_binop, but return a constant rtx if the result can be
- calculated at compile time. The arguments and return value are
- otherwise the same as for expand_binop. */
-
-static rtx
-simplify_expand_binop (enum machine_mode mode, optab binoptab,
- rtx op0, rtx op1, rtx target, int unsignedp,
- enum optab_methods methods)
-{
- if (CONSTANT_P (op0) && CONSTANT_P (op1))
- {
- rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
-
- if (x)
- return x;
- }
-
- return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
-}
-
-/* Like simplify_expand_binop, but always put the result in TARGET.
- Return true if the expansion succeeded. */
-
-bool
-force_expand_binop (enum machine_mode mode, optab binoptab,
- rtx op0, rtx op1, rtx target, int unsignedp,
- enum optab_methods methods)
-{
- rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
- target, unsignedp, methods);
- if (x == 0)
- return false;
- if (x != target)
- emit_move_insn (target, x);
- return true;
-}
-
-/* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
-
-rtx
-expand_vec_shift_expr (tree vec_shift_expr, rtx target)
-{
- enum insn_code icode;
- rtx rtx_op1, rtx_op2;
- enum machine_mode mode1;
- enum machine_mode mode2;
- enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_shift_expr));
- tree vec_oprnd = TREE_OPERAND (vec_shift_expr, 0);
- tree shift_oprnd = TREE_OPERAND (vec_shift_expr, 1);
- optab shift_optab;
- rtx pat;
-
- switch (TREE_CODE (vec_shift_expr))
- {
- case VEC_RSHIFT_EXPR:
- shift_optab = vec_shr_optab;
- break;
- case VEC_LSHIFT_EXPR:
- shift_optab = vec_shl_optab;
- break;
- default:
- gcc_unreachable ();
- }
-
- icode = (int) shift_optab->handlers[(int) mode].insn_code;
- gcc_assert (icode != CODE_FOR_nothing);
-
- mode1 = insn_data[icode].operand[1].mode;
- mode2 = insn_data[icode].operand[2].mode;
-
- rtx_op1 = expand_expr (vec_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL);
- if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
- && mode1 != VOIDmode)
- rtx_op1 = force_reg (mode1, rtx_op1);
-
- rtx_op2 = expand_expr (shift_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL);
- if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
- && mode2 != VOIDmode)
- rtx_op2 = force_reg (mode2, rtx_op2);
-
- if (!target
- || ! (*insn_data[icode].operand[0].predicate) (target, mode))
- target = gen_reg_rtx (mode);
-
- /* Emit instruction */
- pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
- gcc_assert (pat);
- emit_insn (pat);
-
- return target;
-}
-
-/* This subroutine of expand_doubleword_shift handles the cases in which
- the effective shift value is >= BITS_PER_WORD. The arguments and return
- value are the same as for the parent routine, except that SUPERWORD_OP1
- is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
- INTO_TARGET may be null if the caller has decided to calculate it. */
-
-static bool
-expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
- rtx outof_target, rtx into_target,
- int unsignedp, enum optab_methods methods)
-{
- if (into_target != 0)
- if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
- into_target, unsignedp, methods))
- return false;
-
- if (outof_target != 0)
- {
- /* For a signed right shift, we must fill OUTOF_TARGET with copies
- of the sign bit, otherwise we must fill it with zeros. */
- if (binoptab != ashr_optab)
- emit_move_insn (outof_target, CONST0_RTX (word_mode));
- else
- if (!force_expand_binop (word_mode, binoptab,
- outof_input, GEN_INT (BITS_PER_WORD - 1),
- outof_target, unsignedp, methods))
- return false;
- }
- return true;
-}
-
-/* This subroutine of expand_doubleword_shift handles the cases in which
- the effective shift value is < BITS_PER_WORD. The arguments and return
- value are the same as for the parent routine. */
-
-static bool
-expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
- rtx outof_input, rtx into_input, rtx op1,
- rtx outof_target, rtx into_target,
- int unsignedp, enum optab_methods methods,
- unsigned HOST_WIDE_INT shift_mask)
-{
- optab reverse_unsigned_shift, unsigned_shift;
- rtx tmp, carries;
-
- reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
- unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
-
- /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
- We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
- the opposite direction to BINOPTAB. */
- if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
- {
- carries = outof_input;
- tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
- tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
- 0, true, methods);
- }
- else
- {
- /* We must avoid shifting by BITS_PER_WORD bits since that is either
- the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
- has unknown behavior. Do a single shift first, then shift by the
- remainder. It's OK to use ~OP1 as the remainder if shift counts
- are truncated to the mode size. */
- carries = expand_binop (word_mode, reverse_unsigned_shift,
- outof_input, const1_rtx, 0, unsignedp, methods);
- if (shift_mask == BITS_PER_WORD - 1)
- {
- tmp = immed_double_const (-1, -1, op1_mode);
- tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
- 0, true, methods);
- }
- else
- {
- tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
- tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
- 0, true, methods);
- }
- }
- if (tmp == 0 || carries == 0)
- return false;
- carries = expand_binop (word_mode, reverse_unsigned_shift,
- carries, tmp, 0, unsignedp, methods);
- if (carries == 0)
- return false;
-
- /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
- so the result can go directly into INTO_TARGET if convenient. */
- tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
- into_target, unsignedp, methods);
- if (tmp == 0)
- return false;
-
- /* Now OR in the bits carried over from OUTOF_INPUT. */
- if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
- into_target, unsignedp, methods))
- return false;
-
- /* Use a standard word_mode shift for the out-of half. */
- if (outof_target != 0)
- if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
- outof_target, unsignedp, methods))
- return false;
-
- return true;
-}
-
-
-#ifdef HAVE_conditional_move
-/* Try implementing expand_doubleword_shift using conditional moves.
- The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
- otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
- are the shift counts to use in the former and latter case. All other
- arguments are the same as the parent routine. */
-
-static bool
-expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
- enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
- rtx outof_input, rtx into_input,
- rtx subword_op1, rtx superword_op1,
- rtx outof_target, rtx into_target,
- int unsignedp, enum optab_methods methods,
- unsigned HOST_WIDE_INT shift_mask)
-{
- rtx outof_superword, into_superword;
-
- /* Put the superword version of the output into OUTOF_SUPERWORD and
- INTO_SUPERWORD. */
- outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
- if (outof_target != 0 && subword_op1 == superword_op1)
- {
- /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
- OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
- into_superword = outof_target;
- if (!expand_superword_shift (binoptab, outof_input, superword_op1,
- outof_superword, 0, unsignedp, methods))
- return false;
- }
- else
- {
- into_superword = gen_reg_rtx (word_mode);
- if (!expand_superword_shift (binoptab, outof_input, superword_op1,
- outof_superword, into_superword,
- unsignedp, methods))
- return false;
- }
-
- /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
- if (!expand_subword_shift (op1_mode, binoptab,
- outof_input, into_input, subword_op1,
- outof_target, into_target,
- unsignedp, methods, shift_mask))
- return false;
-
- /* Select between them. Do the INTO half first because INTO_SUPERWORD
- might be the current value of OUTOF_TARGET. */
- if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
- into_target, into_superword, word_mode, false))
- return false;
-
- if (outof_target != 0)
- if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
- outof_target, outof_superword,
- word_mode, false))
- return false;
-
- return true;
-}
-#endif
-
-/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
- OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
- input operand; the shift moves bits in the direction OUTOF_INPUT->
- INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
- of the target. OP1 is the shift count and OP1_MODE is its mode.
- If OP1 is constant, it will have been truncated as appropriate
- and is known to be nonzero.
-
- If SHIFT_MASK is zero, the result of word shifts is undefined when the
- shift count is outside the range [0, BITS_PER_WORD). This routine must
- avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
-
- If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
- masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
- fill with zeros or sign bits as appropriate.
-
- If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
- a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
- Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
- In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
- are undefined.
-
- BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
- may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
- OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
- function wants to calculate it itself.
-
- Return true if the shift could be successfully synthesized. */
-
-static bool
-expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
- rtx outof_input, rtx into_input, rtx op1,
- rtx outof_target, rtx into_target,
- int unsignedp, enum optab_methods methods,
- unsigned HOST_WIDE_INT shift_mask)
-{
- rtx superword_op1, tmp, cmp1, cmp2;
- rtx subword_label, done_label;
- enum rtx_code cmp_code;
-
- /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
- fill the result with sign or zero bits as appropriate. If so, the value
- of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
- this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
- and INTO_INPUT), then emit code to set up OUTOF_TARGET.
-
- This isn't worthwhile for constant shifts since the optimizers will
- cope better with in-range shift counts. */
- if (shift_mask >= BITS_PER_WORD
- && outof_target != 0
- && !CONSTANT_P (op1))
- {
- if (!expand_doubleword_shift (op1_mode, binoptab,
- outof_input, into_input, op1,
- 0, into_target,
- unsignedp, methods, shift_mask))
- return false;
- if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
- outof_target, unsignedp, methods))
- return false;
- return true;
- }
-
- /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
- is true when the effective shift value is less than BITS_PER_WORD.
- Set SUPERWORD_OP1 to the shift count that should be used to shift
- OUTOF_INPUT into INTO_TARGET when the condition is false. */
- tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
- if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
- {
- /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
- is a subword shift count. */
- cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
- 0, true, methods);
- cmp2 = CONST0_RTX (op1_mode);
- cmp_code = EQ;
- superword_op1 = op1;
- }
- else
- {
- /* Set CMP1 to OP1 - BITS_PER_WORD. */
- cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
- 0, true, methods);
- cmp2 = CONST0_RTX (op1_mode);
- cmp_code = LT;
- superword_op1 = cmp1;
- }
- if (cmp1 == 0)
- return false;
-
- /* If we can compute the condition at compile time, pick the
- appropriate subroutine. */
- tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
- if (tmp != 0 && GET_CODE (tmp) == CONST_INT)
- {
- if (tmp == const0_rtx)
- return expand_superword_shift (binoptab, outof_input, superword_op1,
- outof_target, into_target,
- unsignedp, methods);
- else
- return expand_subword_shift (op1_mode, binoptab,
- outof_input, into_input, op1,
- outof_target, into_target,
- unsignedp, methods, shift_mask);
- }
-
-#ifdef HAVE_conditional_move
- /* Try using conditional moves to generate straight-line code. */
- {
- rtx start = get_last_insn ();
- if (expand_doubleword_shift_condmove (op1_mode, binoptab,
- cmp_code, cmp1, cmp2,
- outof_input, into_input,
- op1, superword_op1,
- outof_target, into_target,
- unsignedp, methods, shift_mask))
- return true;
- delete_insns_since (start);
- }
-#endif
-
- /* As a last resort, use branches to select the correct alternative. */
- subword_label = gen_label_rtx ();
- done_label = gen_label_rtx ();
-
- NO_DEFER_POP;
- do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
- 0, 0, subword_label);
- OK_DEFER_POP;
-
- if (!expand_superword_shift (binoptab, outof_input, superword_op1,
- outof_target, into_target,
- unsignedp, methods))
- return false;
-
- emit_jump_insn (gen_jump (done_label));
- emit_barrier ();
- emit_label (subword_label);
-
- if (!expand_subword_shift (op1_mode, binoptab,
- outof_input, into_input, op1,
- outof_target, into_target,
- unsignedp, methods, shift_mask))
- return false;
-
- emit_label (done_label);
- return true;
-}
-
-/* Subroutine of expand_binop. Perform a double word multiplication of
- operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
- as the target's word_mode. This function return NULL_RTX if anything
- goes wrong, in which case it may have already emitted instructions
- which need to be deleted.
-
- If we want to multiply two two-word values and have normal and widening
- multiplies of single-word values, we can do this with three smaller
- multiplications. Note that we do not make a REG_NO_CONFLICT block here
- because we are not operating on one word at a time.
-
- The multiplication proceeds as follows:
- _______________________
- [__op0_high_|__op0_low__]
- _______________________
- * [__op1_high_|__op1_low__]
- _______________________________________________
- _______________________
- (1) [__op0_low__*__op1_low__]
- _______________________
- (2a) [__op0_low__*__op1_high_]
- _______________________
- (2b) [__op0_high_*__op1_low__]
- _______________________
- (3) [__op0_high_*__op1_high_]
-
-
- This gives a 4-word result. Since we are only interested in the
- lower 2 words, partial result (3) and the upper words of (2a) and
- (2b) don't need to be calculated. Hence (2a) and (2b) can be
- calculated using non-widening multiplication.
-
- (1), however, needs to be calculated with an unsigned widening
- multiplication. If this operation is not directly supported we
- try using a signed widening multiplication and adjust the result.
- This adjustment works as follows:
-
- If both operands are positive then no adjustment is needed.
-
- If the operands have different signs, for example op0_low < 0 and
- op1_low >= 0, the instruction treats the most significant bit of
- op0_low as a sign bit instead of a bit with significance
- 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
- with 2**BITS_PER_WORD - op0_low, and two's complements the
- result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
- the result.
-
- Similarly, if both operands are negative, we need to add
- (op0_low + op1_low) * 2**BITS_PER_WORD.
-
- We use a trick to adjust quickly. We logically shift op0_low right
- (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
- op0_high (op1_high) before it is used to calculate 2b (2a). If no
- logical shift exists, we do an arithmetic right shift and subtract
- the 0 or -1. */
-
-static rtx
-expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
- bool umulp, enum optab_methods methods)
-{
- int low = (WORDS_BIG_ENDIAN ? 1 : 0);
- int high = (WORDS_BIG_ENDIAN ? 0 : 1);
- rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
- rtx product, adjust, product_high, temp;
-
- rtx op0_high = operand_subword_force (op0, high, mode);
- rtx op0_low = operand_subword_force (op0, low, mode);
- rtx op1_high = operand_subword_force (op1, high, mode);
- rtx op1_low = operand_subword_force (op1, low, mode);
-
- /* If we're using an unsigned multiply to directly compute the product
- of the low-order words of the operands and perform any required
- adjustments of the operands, we begin by trying two more multiplications
- and then computing the appropriate sum.
-
- We have checked above that the required addition is provided.
- Full-word addition will normally always succeed, especially if
- it is provided at all, so we don't worry about its failure. The
- multiplication may well fail, however, so we do handle that. */
-
- if (!umulp)
- {
- /* ??? This could be done with emit_store_flag where available. */
- temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
- NULL_RTX, 1, methods);
- if (temp)
- op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
- NULL_RTX, 0, OPTAB_DIRECT);
- else
- {
- temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
- NULL_RTX, 0, methods);
- if (!temp)
- return NULL_RTX;
- op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
- NULL_RTX, 0, OPTAB_DIRECT);
- }
-
- if (!op0_high)
- return NULL_RTX;
- }
-
- adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
- NULL_RTX, 0, OPTAB_DIRECT);
- if (!adjust)
- return NULL_RTX;
-
- /* OP0_HIGH should now be dead. */
-
- if (!umulp)
- {
- /* ??? This could be done with emit_store_flag where available. */
- temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
- NULL_RTX, 1, methods);
- if (temp)
- op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
- NULL_RTX, 0, OPTAB_DIRECT);
- else
- {
- temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
- NULL_RTX, 0, methods);
- if (!temp)
- return NULL_RTX;
- op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
- NULL_RTX, 0, OPTAB_DIRECT);
- }
-
- if (!op1_high)
- return NULL_RTX;
- }
-
- temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
- NULL_RTX, 0, OPTAB_DIRECT);
- if (!temp)
- return NULL_RTX;
-
- /* OP1_HIGH should now be dead. */
-
- adjust = expand_binop (word_mode, add_optab, adjust, temp,
- adjust, 0, OPTAB_DIRECT);
-
- if (target && !REG_P (target))
- target = NULL_RTX;
-
- if (umulp)
- product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
- target, 1, OPTAB_DIRECT);
- else
- product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
- target, 1, OPTAB_DIRECT);
-
- if (!product)
- return NULL_RTX;
-
- product_high = operand_subword (product, high, 1, mode);
- adjust = expand_binop (word_mode, add_optab, product_high, adjust,
- REG_P (product_high) ? product_high : adjust,
- 0, OPTAB_DIRECT);
- emit_move_insn (product_high, adjust);
- return product;
-}
-
-/* Wrapper around expand_binop which takes an rtx code to specify
- the operation to perform, not an optab pointer. All other
- arguments are the same. */
-rtx
-expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
- rtx op1, rtx target, int unsignedp,
- enum optab_methods methods)
-{
- optab binop = code_to_optab[(int) code];
- gcc_assert (binop);
-
- return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
-}
-
-/* Return whether OP0 and OP1 should be swapped when expanding a commutative
- binop. Order them according to commutative_operand_precedence and, if
- possible, try to put TARGET or a pseudo first. */
-static bool
-swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
-{
- int op0_prec = commutative_operand_precedence (op0);
- int op1_prec = commutative_operand_precedence (op1);
-
- if (op0_prec < op1_prec)
- return true;
-
- if (op0_prec > op1_prec)
- return false;
-
- /* With equal precedence, both orders are ok, but it is better if the
- first operand is TARGET, or if both TARGET and OP0 are pseudos. */
- if (target == 0 || REG_P (target))
- return (REG_P (op1) && !REG_P (op0)) || target == op1;
- else
- return rtx_equal_p (op1, target);
-}
-
-
-/* Generate code to perform an operation specified by BINOPTAB
- on operands OP0 and OP1, with result having machine-mode MODE.
-
- UNSIGNEDP is for the case where we have to widen the operands
- to perform the operation. It says to use zero-extension.
-
- If TARGET is nonzero, the value
- is generated there, if it is convenient to do so.
- In all cases an rtx is returned for the locus of the value;
- this may or may not be TARGET. */
-
-rtx
-expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
- rtx target, int unsignedp, enum optab_methods methods)
-{
- enum optab_methods next_methods
- = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
- ? OPTAB_WIDEN : methods);
- enum mode_class class;
- enum machine_mode wider_mode;
- rtx temp;
- int commutative_op = 0;
- int shift_op = (binoptab->code == ASHIFT
- || binoptab->code == ASHIFTRT
- || binoptab->code == LSHIFTRT
- || binoptab->code == ROTATE
- || binoptab->code == ROTATERT);
- rtx entry_last = get_last_insn ();
- rtx last;
- bool first_pass_p = true;
-
- class = GET_MODE_CLASS (mode);
-
- /* If subtracting an integer constant, convert this into an addition of
- the negated constant. */
-
- if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
- {
- op1 = negate_rtx (mode, op1);
- binoptab = add_optab;
- }
-
- /* If we are inside an appropriately-short loop and we are optimizing,
- force expensive constants into a register. */
- if (CONSTANT_P (op0) && optimize
- && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
- {
- if (GET_MODE (op0) != VOIDmode)
- op0 = convert_modes (mode, VOIDmode, op0, unsignedp);
- op0 = force_reg (mode, op0);
- }
-
- if (CONSTANT_P (op1) && optimize
- && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
- {
- if (GET_MODE (op1) != VOIDmode)
- op1 = convert_modes (mode, VOIDmode, op1, unsignedp);
- op1 = force_reg (mode, op1);
- }
-
- /* Record where to delete back to if we backtrack. */
- last = get_last_insn ();
-
- /* If operation is commutative,
- try to make the first operand a register.
- Even better, try to make it the same as the target.
- Also try to make the last operand a constant. */
- if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
- || binoptab == smul_widen_optab
- || binoptab == umul_widen_optab
- || binoptab == smul_highpart_optab
- || binoptab == umul_highpart_optab)
- {
- commutative_op = 1;
-
- if (swap_commutative_operands_with_target (target, op0, op1))
- {
- temp = op1;
- op1 = op0;
- op0 = temp;
- }
- }
-
- retry:
-
- /* If we can do it with a three-operand insn, do so. */
-
- if (methods != OPTAB_MUST_WIDEN
- && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) binoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_data[icode].operand[1].mode;
- enum machine_mode mode1 = insn_data[icode].operand[2].mode;
- rtx pat;
- rtx xop0 = op0, xop1 = op1;
-
- if (target)
- temp = target;
- else
- temp = gen_reg_rtx (mode);
-
- /* If it is a commutative operator and the modes would match
- if we would swap the operands, we can save the conversions. */
- if (commutative_op)
- {
- if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
- && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
- {
- rtx tmp;
-
- tmp = op0; op0 = op1; op1 = tmp;
- tmp = xop0; xop0 = xop1; xop1 = tmp;
- }
- }
-
- /* In case the insn wants input operands in modes different from
- those of the actual operands, convert the operands. It would
- seem that we don't need to convert CONST_INTs, but we do, so
- that they're properly zero-extended, sign-extended or truncated
- for their mode. */
-
- if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
- xop0 = convert_modes (mode0,
- GET_MODE (op0) != VOIDmode
- ? GET_MODE (op0)
- : mode,
- xop0, unsignedp);
-
- if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
- xop1 = convert_modes (mode1,
- GET_MODE (op1) != VOIDmode
- ? GET_MODE (op1)
- : mode,
- xop1, unsignedp);
-
- /* Now, if insn's predicates don't allow our operands, put them into
- pseudo regs. */
-
- if (!insn_data[icode].operand[1].predicate (xop0, mode0)
- && mode0 != VOIDmode)
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (!insn_data[icode].operand[2].predicate (xop1, mode1)
- && mode1 != VOIDmode)
- xop1 = copy_to_mode_reg (mode1, xop1);
-
- if (!insn_data[icode].operand[0].predicate (temp, mode))
- temp = gen_reg_rtx (mode);
-
- pat = GEN_FCN (icode) (temp, xop0, xop1);
- if (pat)
- {
- /* If PAT is composed of more than one insn, try to add an appropriate
- REG_EQUAL note to it. If we can't because TEMP conflicts with an
- operand, call ourselves again, this time without a target. */
- if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
- && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
- {
- delete_insns_since (last);
- return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
- unsignedp, methods);
- }
-
- emit_insn (pat);
- return temp;
- }
- else
- delete_insns_since (last);
- }
-
- /* If we were trying to rotate by a constant value, and that didn't
- work, try rotating the other direction before falling back to
- shifts and bitwise-or. */
- if (first_pass_p
- && (binoptab == rotl_optab || binoptab == rotr_optab)
- && class == MODE_INT
- && GET_CODE (op1) == CONST_INT
- && INTVAL (op1) > 0
- && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
- {
- first_pass_p = false;
- op1 = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1));
- binoptab = binoptab == rotl_optab ? rotr_optab : rotl_optab;
- goto retry;
- }
-
- /* If this is a multiply, see if we can do a widening operation that
- takes operands of this mode and makes a wider mode. */
-
- if (binoptab == smul_optab
- && GET_MODE_WIDER_MODE (mode) != VOIDmode
- && (((unsignedp ? umul_widen_optab : smul_widen_optab)
- ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
- != CODE_FOR_nothing))
- {
- temp = expand_binop (GET_MODE_WIDER_MODE (mode),
- unsignedp ? umul_widen_optab : smul_widen_optab,
- op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
-
- if (temp != 0)
- {
- if (GET_MODE_CLASS (mode) == MODE_INT
- && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (GET_MODE (temp))))
- return gen_lowpart (mode, temp);
- else
- return convert_to_mode (mode, temp, unsignedp);
- }
- }
-
- /* Look for a wider mode of the same class for which we think we
- can open-code the operation. Check for a widening multiply at the
- wider mode as well. */
-
- if (CLASS_HAS_WIDER_MODES_P (class)
- && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
- for (wider_mode = GET_MODE_WIDER_MODE (mode);
- wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
- || (binoptab == smul_optab
- && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
- && (((unsignedp ? umul_widen_optab : smul_widen_optab)
- ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
- != CODE_FOR_nothing)))
- {
- rtx xop0 = op0, xop1 = op1;
- int no_extend = 0;
-
- /* For certain integer operations, we need not actually extend
- the narrow operands, as long as we will truncate
- the results to the same narrowness. */
-
- if ((binoptab == ior_optab || binoptab == and_optab
- || binoptab == xor_optab
- || binoptab == add_optab || binoptab == sub_optab
- || binoptab == smul_optab || binoptab == ashl_optab)
- && class == MODE_INT)
- no_extend = 1;
-
- xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
-
- /* The second operand of a shift must always be extended. */
- xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
- no_extend && binoptab != ashl_optab);
-
- temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
- unsignedp, OPTAB_DIRECT);
- if (temp)
- {
- if (class != MODE_INT
- || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (wider_mode)))
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- /* These can be done a word at a time. */
- if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
- && class == MODE_INT
- && GET_MODE_SIZE (mode) > UNITS_PER_WORD
- && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- int i;
- rtx insns;
- rtx equiv_value;
-
- /* If TARGET is the same as one of the operands, the REG_EQUAL note
- won't be accurate, so use a new target. */
- if (target == 0 || target == op0 || target == op1)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- /* Do the actual arithmetic. */
- for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
- {
- rtx target_piece = operand_subword (target, i, 1, mode);
- rtx x = expand_binop (word_mode, binoptab,
- operand_subword_force (op0, i, mode),
- operand_subword_force (op1, i, mode),
- target_piece, unsignedp, next_methods);
-
- if (x == 0)
- break;
-
- if (target_piece != x)
- emit_move_insn (target_piece, x);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
- {
- if (binoptab->code != UNKNOWN)
- equiv_value
- = gen_rtx_fmt_ee (binoptab->code, mode,
- copy_rtx (op0), copy_rtx (op1));
- else
- equiv_value = 0;
-
- emit_no_conflict_block (insns, target, op0, op1, equiv_value);
- return target;
- }
- }
-
- /* Synthesize double word shifts from single word shifts. */
- if ((binoptab == lshr_optab || binoptab == ashl_optab
- || binoptab == ashr_optab)
- && class == MODE_INT
- && (GET_CODE (op1) == CONST_INT || !optimize_size)
- && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
- && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
- enum machine_mode op1_mode;
-
- double_shift_mask = targetm.shift_truncation_mask (mode);
- shift_mask = targetm.shift_truncation_mask (word_mode);
- op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
-
- /* Apply the truncation to constant shifts. */
- if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT)
- op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
-
- if (op1 == CONST0_RTX (op1_mode))
- return op0;
-
- /* Make sure that this is a combination that expand_doubleword_shift
- can handle. See the comments there for details. */
- if (double_shift_mask == 0
- || (shift_mask == BITS_PER_WORD - 1
- && double_shift_mask == BITS_PER_WORD * 2 - 1))
- {
- rtx insns, equiv_value;
- rtx into_target, outof_target;
- rtx into_input, outof_input;
- int left_shift, outof_word;
-
- /* If TARGET is the same as one of the operands, the REG_EQUAL note
- won't be accurate, so use a new target. */
- if (target == 0 || target == op0 || target == op1)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- /* OUTOF_* is the word we are shifting bits away from, and
- INTO_* is the word that we are shifting bits towards, thus
- they differ depending on the direction of the shift and
- WORDS_BIG_ENDIAN. */
-
- left_shift = binoptab == ashl_optab;
- outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
-
- outof_target = operand_subword (target, outof_word, 1, mode);
- into_target = operand_subword (target, 1 - outof_word, 1, mode);
-
- outof_input = operand_subword_force (op0, outof_word, mode);
- into_input = operand_subword_force (op0, 1 - outof_word, mode);
-
- if (expand_doubleword_shift (op1_mode, binoptab,
- outof_input, into_input, op1,
- outof_target, into_target,
- unsignedp, next_methods, shift_mask))
- {
- insns = get_insns ();
- end_sequence ();
-
- equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
- emit_no_conflict_block (insns, target, op0, op1, equiv_value);
- return target;
- }
- end_sequence ();
- }
- }
-
- /* Synthesize double word rotates from single word shifts. */
- if ((binoptab == rotl_optab || binoptab == rotr_optab)
- && class == MODE_INT
- && GET_CODE (op1) == CONST_INT
- && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
- && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- rtx insns;
- rtx into_target, outof_target;
- rtx into_input, outof_input;
- rtx inter;
- int shift_count, left_shift, outof_word;
-
- /* If TARGET is the same as one of the operands, the REG_EQUAL note
- won't be accurate, so use a new target. Do this also if target is not
- a REG, first because having a register instead may open optimization
- opportunities, and second because if target and op0 happen to be MEMs
- designating the same location, we would risk clobbering it too early
- in the code sequence we generate below. */
- if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- shift_count = INTVAL (op1);
-
- /* OUTOF_* is the word we are shifting bits away from, and
- INTO_* is the word that we are shifting bits towards, thus
- they differ depending on the direction of the shift and
- WORDS_BIG_ENDIAN. */
-
- left_shift = (binoptab == rotl_optab);
- outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
-
- outof_target = operand_subword (target, outof_word, 1, mode);
- into_target = operand_subword (target, 1 - outof_word, 1, mode);
-
- outof_input = operand_subword_force (op0, outof_word, mode);
- into_input = operand_subword_force (op0, 1 - outof_word, mode);
-
- if (shift_count == BITS_PER_WORD)
- {
- /* This is just a word swap. */
- emit_move_insn (outof_target, into_input);
- emit_move_insn (into_target, outof_input);
- inter = const0_rtx;
- }
- else
- {
- rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
- rtx first_shift_count, second_shift_count;
- optab reverse_unsigned_shift, unsigned_shift;
-
- reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
- ? lshr_optab : ashl_optab);
-
- unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
- ? ashl_optab : lshr_optab);
-
- if (shift_count > BITS_PER_WORD)
- {
- first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
- second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
- }
- else
- {
- first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
- second_shift_count = GEN_INT (shift_count);
- }
-
- into_temp1 = expand_binop (word_mode, unsigned_shift,
- outof_input, first_shift_count,
- NULL_RTX, unsignedp, next_methods);
- into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
- into_input, second_shift_count,
- NULL_RTX, unsignedp, next_methods);
-
- if (into_temp1 != 0 && into_temp2 != 0)
- inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
- into_target, unsignedp, next_methods);
- else
- inter = 0;
-
- if (inter != 0 && inter != into_target)
- emit_move_insn (into_target, inter);
-
- outof_temp1 = expand_binop (word_mode, unsigned_shift,
- into_input, first_shift_count,
- NULL_RTX, unsignedp, next_methods);
- outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
- outof_input, second_shift_count,
- NULL_RTX, unsignedp, next_methods);
-
- if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
- inter = expand_binop (word_mode, ior_optab,
- outof_temp1, outof_temp2,
- outof_target, unsignedp, next_methods);
-
- if (inter != 0 && inter != outof_target)
- emit_move_insn (outof_target, inter);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- if (inter != 0)
- {
- /* One may be tempted to wrap the insns in a REG_NO_CONFLICT
- block to help the register allocator a bit. But a multi-word
- rotate will need all the input bits when setting the output
- bits, so there clearly is a conflict between the input and
- output registers. So we can't use a no-conflict block here. */
- emit_insn (insns);
- return target;
- }
- }
-
- /* These can be done a word at a time by propagating carries. */
- if ((binoptab == add_optab || binoptab == sub_optab)
- && class == MODE_INT
- && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
- && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- unsigned int i;
- optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
- const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
- rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
- rtx xop0, xop1, xtarget;
-
- /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
- value is one of those, use it. Otherwise, use 1 since it is the
- one easiest to get. */
-#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
- int normalizep = STORE_FLAG_VALUE;
-#else
- int normalizep = 1;
-#endif
-
- /* Prepare the operands. */
- xop0 = force_reg (mode, op0);
- xop1 = force_reg (mode, op1);
-
- xtarget = gen_reg_rtx (mode);
-
- if (target == 0 || !REG_P (target))
- target = xtarget;
-
- /* Indicate for flow that the entire target reg is being set. */
- if (REG_P (target))
- emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
-
- /* Do the actual arithmetic. */
- for (i = 0; i < nwords; i++)
- {
- int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
- rtx target_piece = operand_subword (xtarget, index, 1, mode);
- rtx op0_piece = operand_subword_force (xop0, index, mode);
- rtx op1_piece = operand_subword_force (xop1, index, mode);
- rtx x;
-
- /* Main add/subtract of the input operands. */
- x = expand_binop (word_mode, binoptab,
- op0_piece, op1_piece,
- target_piece, unsignedp, next_methods);
- if (x == 0)
- break;
-
- if (i + 1 < nwords)
- {
- /* Store carry from main add/subtract. */
- carry_out = gen_reg_rtx (word_mode);
- carry_out = emit_store_flag_force (carry_out,
- (binoptab == add_optab
- ? LT : GT),
- x, op0_piece,
- word_mode, 1, normalizep);
- }
-
- if (i > 0)
- {
- rtx newx;
-
- /* Add/subtract previous carry to main result. */
- newx = expand_binop (word_mode,
- normalizep == 1 ? binoptab : otheroptab,
- x, carry_in,
- NULL_RTX, 1, next_methods);
-
- if (i + 1 < nwords)
- {
- /* Get out carry from adding/subtracting carry in. */
- rtx carry_tmp = gen_reg_rtx (word_mode);
- carry_tmp = emit_store_flag_force (carry_tmp,
- (binoptab == add_optab
- ? LT : GT),
- newx, x,
- word_mode, 1, normalizep);
-
- /* Logical-ior the two poss. carry together. */
- carry_out = expand_binop (word_mode, ior_optab,
- carry_out, carry_tmp,
- carry_out, 0, next_methods);
- if (carry_out == 0)
- break;
- }
- emit_move_insn (target_piece, newx);
- }
- else
- {
- if (x != target_piece)
- emit_move_insn (target_piece, x);
- }
-
- carry_in = carry_out;
- }
-
- if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
- {
- if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
- || ! rtx_equal_p (target, xtarget))
- {
- rtx temp = emit_move_insn (target, xtarget);
-
- set_unique_reg_note (temp,
- REG_EQUAL,
- gen_rtx_fmt_ee (binoptab->code, mode,
- copy_rtx (xop0),
- copy_rtx (xop1)));
- }
- else
- target = xtarget;
-
- return target;
- }
-
- else
- delete_insns_since (last);
- }
-
- /* Attempt to synthesize double word multiplies using a sequence of word
- mode multiplications. We first attempt to generate a sequence using a
- more efficient unsigned widening multiply, and if that fails we then
- try using a signed widening multiply. */
-
- if (binoptab == smul_optab
- && class == MODE_INT
- && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
- && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- rtx product = NULL_RTX;
-
- if (umul_widen_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing)
- {
- product = expand_doubleword_mult (mode, op0, op1, target,
- true, methods);
- if (!product)
- delete_insns_since (last);
- }
-
- if (product == NULL_RTX
- && smul_widen_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing)
- {
- product = expand_doubleword_mult (mode, op0, op1, target,
- false, methods);
- if (!product)
- delete_insns_since (last);
- }
-
- if (product != NULL_RTX)
- {
- if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- temp = emit_move_insn (target ? target : product, product);
- set_unique_reg_note (temp,
- REG_EQUAL,
- gen_rtx_fmt_ee (MULT, mode,
- copy_rtx (op0),
- copy_rtx (op1)));
- }
- return product;
- }
- }
-
- /* It can't be open-coded in this mode.
- Use a library call if one is available and caller says that's ok. */
-
- if (binoptab->handlers[(int) mode].libfunc
- && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
- {
- rtx insns;
- rtx op1x = op1;
- enum machine_mode op1_mode = mode;
- rtx value;
-
- start_sequence ();
-
- if (shift_op)
- {
- op1_mode = word_mode;
- /* Specify unsigned here,
- since negative shift counts are meaningless. */
- op1x = convert_to_mode (word_mode, op1, 1);
- }
-
- if (GET_MODE (op0) != VOIDmode
- && GET_MODE (op0) != mode)
- op0 = convert_to_mode (mode, op0, unsignedp);
-
- /* Pass 1 for NO_QUEUE so we don't lose any increments
- if the libcall is cse'd or moved. */
- value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
- NULL_RTX, LCT_CONST, mode, 2,
- op0, mode, op1x, op1_mode);
-
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (mode);
- emit_libcall_block (insns, target, value,
- gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
-
- return target;
- }
-
- delete_insns_since (last);
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
- || methods == OPTAB_MUST_WIDEN))
- {
- /* Caller says, don't even try. */
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Compute the value of METHODS to pass to recursive calls.
- Don't allow widening to be tried recursively. */
-
- methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
-
- /* Look for a wider mode of the same class for which it appears we can do
- the operation. */
-
- if (CLASS_HAS_WIDER_MODES_P (class))
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode);
- wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((binoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || (methods == OPTAB_LIB
- && binoptab->handlers[(int) wider_mode].libfunc))
- {
- rtx xop0 = op0, xop1 = op1;
- int no_extend = 0;
-
- /* For certain integer operations, we need not actually extend
- the narrow operands, as long as we will truncate
- the results to the same narrowness. */
-
- if ((binoptab == ior_optab || binoptab == and_optab
- || binoptab == xor_optab
- || binoptab == add_optab || binoptab == sub_optab
- || binoptab == smul_optab || binoptab == ashl_optab)
- && class == MODE_INT)
- no_extend = 1;
-
- xop0 = widen_operand (xop0, wider_mode, mode,
- unsignedp, no_extend);
-
- /* The second operand of a shift must always be extended. */
- xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
- no_extend && binoptab != ashl_optab);
-
- temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
- unsignedp, methods);
- if (temp)
- {
- if (class != MODE_INT
- || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (wider_mode)))
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
-}
-
-/* Expand a binary operator which has both signed and unsigned forms.
- UOPTAB is the optab for unsigned operations, and SOPTAB is for
- signed operations.
-
- If we widen unsigned operands, we may use a signed wider operation instead
- of an unsigned wider operation, since the result would be the same. */
-
-rtx
-sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
- rtx op0, rtx op1, rtx target, int unsignedp,
- enum optab_methods methods)
-{
- rtx temp;
- optab direct_optab = unsignedp ? uoptab : soptab;
- struct optab wide_soptab;
-
- /* Do it without widening, if possible. */
- temp = expand_binop (mode, direct_optab, op0, op1, target,
- unsignedp, OPTAB_DIRECT);
- if (temp || methods == OPTAB_DIRECT)
- return temp;
-
- /* Try widening to a signed int. Make a fake signed optab that
- hides any signed insn for direct use. */
- wide_soptab = *soptab;
- wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
- wide_soptab.handlers[(int) mode].libfunc = 0;
-
- temp = expand_binop (mode, &wide_soptab, op0, op1, target,
- unsignedp, OPTAB_WIDEN);
-
- /* For unsigned operands, try widening to an unsigned int. */
- if (temp == 0 && unsignedp)
- temp = expand_binop (mode, uoptab, op0, op1, target,
- unsignedp, OPTAB_WIDEN);
- if (temp || methods == OPTAB_WIDEN)
- return temp;
-
- /* Use the right width lib call if that exists. */
- temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
- if (temp || methods == OPTAB_LIB)
- return temp;
-
- /* Must widen and use a lib call, use either signed or unsigned. */
- temp = expand_binop (mode, &wide_soptab, op0, op1, target,
- unsignedp, methods);
- if (temp != 0)
- return temp;
- if (unsignedp)
- return expand_binop (mode, uoptab, op0, op1, target,
- unsignedp, methods);
- return 0;
-}
-
-/* Generate code to perform an operation specified by UNOPPTAB
- on operand OP0, with two results to TARG0 and TARG1.
- We assume that the order of the operands for the instruction
- is TARG0, TARG1, OP0.
-
- Either TARG0 or TARG1 may be zero, but what that means is that
- the result is not actually wanted. We will generate it into
- a dummy pseudo-reg and discard it. They may not both be zero.
-
- Returns 1 if this operation can be performed; 0 if not. */
-
-int
-expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
- int unsignedp)
-{
- enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
- enum mode_class class;
- enum machine_mode wider_mode;
- rtx entry_last = get_last_insn ();
- rtx last;
-
- class = GET_MODE_CLASS (mode);
-
- if (!targ0)
- targ0 = gen_reg_rtx (mode);
- if (!targ1)
- targ1 = gen_reg_rtx (mode);
-
- /* Record where to go back to if we fail. */
- last = get_last_insn ();
-
- if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) unoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_data[icode].operand[2].mode;
- rtx pat;
- rtx xop0 = op0;
-
- if (GET_MODE (xop0) != VOIDmode
- && GET_MODE (xop0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- /* Now, if insn doesn't accept these operands, put them into pseudos. */
- if (!insn_data[icode].operand[2].predicate (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- /* We could handle this, but we should always be called with a pseudo
- for our targets and all insns should take them as outputs. */
- gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
- gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
-
- pat = GEN_FCN (icode) (targ0, targ1, xop0);
- if (pat)
- {
- emit_insn (pat);
- return 1;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (CLASS_HAS_WIDER_MODES_P (class))
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode);
- wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (unoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- {
- rtx t0 = gen_reg_rtx (wider_mode);
- rtx t1 = gen_reg_rtx (wider_mode);
- rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
-
- if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
- {
- convert_move (targ0, t0, unsignedp);
- convert_move (targ1, t1, unsignedp);
- return 1;
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
-}
-
-/* Generate code to perform an operation specified by BINOPTAB
- on operands OP0 and OP1, with two results to TARG1 and TARG2.
- We assume that the order of the operands for the instruction
- is TARG0, OP0, OP1, TARG1, which would fit a pattern like
- [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
-
- Either TARG0 or TARG1 may be zero, but what that means is that
- the result is not actually wanted. We will generate it into
- a dummy pseudo-reg and discard it. They may not both be zero.
-
- Returns 1 if this operation can be performed; 0 if not. */
-
-int
-expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
- int unsignedp)
-{
- enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
- enum mode_class class;
- enum machine_mode wider_mode;
- rtx entry_last = get_last_insn ();
- rtx last;
-
- class = GET_MODE_CLASS (mode);
-
- /* If we are inside an appropriately-short loop and we are optimizing,
- force expensive constants into a register. */
- if (CONSTANT_P (op0) && optimize
- && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
- op0 = force_reg (mode, op0);
-
- if (CONSTANT_P (op1) && optimize
- && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
- op1 = force_reg (mode, op1);
-
- if (!targ0)
- targ0 = gen_reg_rtx (mode);
- if (!targ1)
- targ1 = gen_reg_rtx (mode);
-
- /* Record where to go back to if we fail. */
- last = get_last_insn ();
-
- if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) binoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_data[icode].operand[1].mode;
- enum machine_mode mode1 = insn_data[icode].operand[2].mode;
- rtx pat;
- rtx xop0 = op0, xop1 = op1;
-
- /* In case the insn wants input operands in modes different from
- those of the actual operands, convert the operands. It would
- seem that we don't need to convert CONST_INTs, but we do, so
- that they're properly zero-extended, sign-extended or truncated
- for their mode. */
-
- if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
- xop0 = convert_modes (mode0,
- GET_MODE (op0) != VOIDmode
- ? GET_MODE (op0)
- : mode,
- xop0, unsignedp);
-
- if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
- xop1 = convert_modes (mode1,
- GET_MODE (op1) != VOIDmode
- ? GET_MODE (op1)
- : mode,
- xop1, unsignedp);
-
- /* Now, if insn doesn't accept these operands, put them into pseudos. */
- if (!insn_data[icode].operand[1].predicate (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (!insn_data[icode].operand[2].predicate (xop1, mode1))
- xop1 = copy_to_mode_reg (mode1, xop1);
-
- /* We could handle this, but we should always be called with a pseudo
- for our targets and all insns should take them as outputs. */
- gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
- gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
-
- pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
- if (pat)
- {
- emit_insn (pat);
- return 1;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (CLASS_HAS_WIDER_MODES_P (class))
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode);
- wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (binoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- {
- rtx t0 = gen_reg_rtx (wider_mode);
- rtx t1 = gen_reg_rtx (wider_mode);
- rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
- rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
-
- if (expand_twoval_binop (binoptab, cop0, cop1,
- t0, t1, unsignedp))
- {
- convert_move (targ0, t0, unsignedp);
- convert_move (targ1, t1, unsignedp);
- return 1;
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
-}
-
-/* Expand the two-valued library call indicated by BINOPTAB, but
- preserve only one of the values. If TARG0 is non-NULL, the first
- value is placed into TARG0; otherwise the second value is placed
- into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
- value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
- This routine assumes that the value returned by the library call is
- as if the return value was of an integral mode twice as wide as the
- mode of OP0. Returns 1 if the call was successful. */
-
-bool
-expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
- rtx targ0, rtx targ1, enum rtx_code code)
-{
- enum machine_mode mode;
- enum machine_mode libval_mode;
- rtx libval;
- rtx insns;
-
- /* Exactly one of TARG0 or TARG1 should be non-NULL. */
- gcc_assert (!targ0 != !targ1);
-
- mode = GET_MODE (op0);
- if (!binoptab->handlers[(int) mode].libfunc)
- return false;
-
- /* The value returned by the library function will have twice as
- many bits as the nominal MODE. */
- libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
- MODE_INT);
- start_sequence ();
- libval = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
- NULL_RTX, LCT_CONST,
- libval_mode, 2,
- op0, mode,
- op1, mode);
- /* Get the part of VAL containing the value that we want. */
- libval = simplify_gen_subreg (mode, libval, libval_mode,
- targ0 ? 0 : GET_MODE_SIZE (mode));
- insns = get_insns ();
- end_sequence ();
- /* Move the into the desired location. */
- emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
- gen_rtx_fmt_ee (code, mode, op0, op1));
-
- return true;
-}
-
-
-/* Wrapper around expand_unop which takes an rtx code to specify
- the operation to perform, not an optab pointer. All other
- arguments are the same. */
-rtx
-expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
- rtx target, int unsignedp)
-{
- optab unop = code_to_optab[(int) code];
- gcc_assert (unop);
-
- return expand_unop (mode, unop, op0, target, unsignedp);
-}
-
-/* Try calculating
- (clz:narrow x)
- as
- (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
-static rtx
-widen_clz (enum machine_mode mode, rtx op0, rtx target)
-{
- enum mode_class class = GET_MODE_CLASS (mode);
- if (CLASS_HAS_WIDER_MODES_P (class))
- {
- enum machine_mode wider_mode;
- for (wider_mode = GET_MODE_WIDER_MODE (mode);
- wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (clz_optab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- {
- rtx xop0, temp, last;
-
- last = get_last_insn ();
-
- if (target == 0)
- target = gen_reg_rtx (mode);
- xop0 = widen_operand (op0, wider_mode, mode, true, false);
- temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
- if (temp != 0)
- temp = expand_binop (wider_mode, sub_optab, temp,
- GEN_INT (GET_MODE_BITSIZE (wider_mode)
- - GET_MODE_BITSIZE (mode)),
- target, true, OPTAB_DIRECT);
- if (temp == 0)
- delete_insns_since (last);
-
- return temp;
- }
- }
- }
- return 0;
-}
-
-/* Try calculating (parity x) as (and (popcount x) 1), where
- popcount can also be done in a wider mode. */
-static rtx
-expand_parity (enum machine_mode mode, rtx op0, rtx target)
-{
- enum mode_class class = GET_MODE_CLASS (mode);
- if (CLASS_HAS_WIDER_MODES_P (class))
- {
- enum machine_mode wider_mode;
- for (wider_mode = mode; wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (popcount_optab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- {
- rtx xop0, temp, last;
-
- last = get_last_insn ();
-
- if (target == 0)
- target = gen_reg_rtx (mode);
- xop0 = widen_operand (op0, wider_mode, mode, true, false);
- temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
- true);
- if (temp != 0)
- temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
- target, true, OPTAB_DIRECT);
- if (temp == 0)
- delete_insns_since (last);
-
- return temp;
- }
- }
- }
- return 0;
-}
-
-/* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
- conditions, VAL may already be a SUBREG against which we cannot generate
- a further SUBREG. In this case, we expect forcing the value into a
- register will work around the situation. */
-
-static rtx
-lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
- enum machine_mode imode)
-{
- rtx ret;
- ret = lowpart_subreg (omode, val, imode);
- if (ret == NULL)
- {
- val = force_reg (imode, val);
- ret = lowpart_subreg (omode, val, imode);
- gcc_assert (ret != NULL);
- }
- return ret;
-}
-
-/* Expand a floating point absolute value or negation operation via a
- logical operation on the sign bit. */
-
-static rtx
-expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
- rtx op0, rtx target)
-{
- const struct real_format *fmt;
- int bitpos, word, nwords, i;
- enum machine_mode imode;
- HOST_WIDE_INT hi, lo;
- rtx temp, insns;
-
- /* The format has to have a simple sign bit. */
- fmt = REAL_MODE_FORMAT (mode);
- if (fmt == NULL)
- return NULL_RTX;
-
- bitpos = fmt->signbit_rw;
- if (bitpos < 0)
- return NULL_RTX;
-
- /* Don't create negative zeros if the format doesn't support them. */
- if (code == NEG && !fmt->has_signed_zero)
- return NULL_RTX;
-
- if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
- {
- imode = int_mode_for_mode (mode);
- if (imode == BLKmode)
- return NULL_RTX;
- word = 0;
- nwords = 1;
- }
- else
- {
- imode = word_mode;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
- else
- word = bitpos / BITS_PER_WORD;
- bitpos = bitpos % BITS_PER_WORD;
- nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
- }
-
- if (bitpos < HOST_BITS_PER_WIDE_INT)
- {
- hi = 0;
- lo = (HOST_WIDE_INT) 1 << bitpos;
- }
- else
- {
- hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
- lo = 0;
- }
- if (code == ABS)
- lo = ~lo, hi = ~hi;
-
- if (target == 0 || target == op0)
- target = gen_reg_rtx (mode);
-
- if (nwords > 1)
- {
- start_sequence ();
-
- for (i = 0; i < nwords; ++i)
- {
- rtx targ_piece = operand_subword (target, i, 1, mode);
- rtx op0_piece = operand_subword_force (op0, i, mode);
-
- if (i == word)
- {
- temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
- op0_piece,
- immed_double_const (lo, hi, imode),
- targ_piece, 1, OPTAB_LIB_WIDEN);
- if (temp != targ_piece)
- emit_move_insn (targ_piece, temp);
- }
- else
- emit_move_insn (targ_piece, op0_piece);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- temp = gen_rtx_fmt_e (code, mode, copy_rtx (op0));
- emit_no_conflict_block (insns, target, op0, NULL_RTX, temp);
- }
- else
- {
- temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
- gen_lowpart (imode, op0),
- immed_double_const (lo, hi, imode),
- gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
- target = lowpart_subreg_maybe_copy (mode, temp, imode);
-
- set_unique_reg_note (get_last_insn (), REG_EQUAL,
- gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
- }
-
- return target;
-}
-
-/* Generate code to perform an operation specified by UNOPTAB
- on operand OP0, with result having machine-mode MODE.
-
- UNSIGNEDP is for the case where we have to widen the operands
- to perform the operation. It says to use zero-extension.
-
- If TARGET is nonzero, the value
- is generated there, if it is convenient to do so.
- In all cases an rtx is returned for the locus of the value;
- this may or may not be TARGET. */
-
-rtx
-expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
- int unsignedp)
-{
- enum mode_class class;
- enum machine_mode wider_mode;
- rtx temp;
- rtx last = get_last_insn ();
- rtx pat;
-
- class = GET_MODE_CLASS (mode);
-
- if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) unoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_data[icode].operand[1].mode;
- rtx xop0 = op0;
-
- if (target)
- temp = target;
- else
- temp = gen_reg_rtx (mode);
-
- if (GET_MODE (xop0) != VOIDmode
- && GET_MODE (xop0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- /* Now, if insn doesn't accept our operand, put it into a pseudo. */
-
- if (!insn_data[icode].operand[1].predicate (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (!insn_data[icode].operand[0].predicate (temp, mode))
- temp = gen_reg_rtx (mode);
-
- pat = GEN_FCN (icode) (temp, xop0);
- if (pat)
- {
- if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
- && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
- {
- delete_insns_since (last);
- return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
- }
-
- emit_insn (pat);
-
- return temp;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we open-code it in a wider mode? */
-
- /* Widening clz needs special treatment. */
- if (unoptab == clz_optab)
- {
- temp = widen_clz (mode, op0, target);
- if (temp)
- return temp;
- else
- goto try_libcall;
- }
-
- /* APPLE LOCAL begin mainline bswap */
- if (unoptab == bswap_optab)
- goto try_libcall;
-
- /* APPLE LOCAL end mainline bswap */
- if (CLASS_HAS_WIDER_MODES_P (class))
- for (wider_mode = GET_MODE_WIDER_MODE (mode);
- wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
- {
- rtx xop0 = op0;
-
- /* For certain operations, we need not actually extend
- the narrow operand, as long as we will truncate the
- results to the same narrowness. */
-
- xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
- (unoptab == neg_optab
- || unoptab == one_cmpl_optab)
- && class == MODE_INT);
-
- temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
- unsignedp);
-
- if (temp)
- {
- if (class != MODE_INT
- || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (wider_mode)))
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- /* These can be done a word at a time. */
- if (unoptab == one_cmpl_optab
- && class == MODE_INT
- && GET_MODE_SIZE (mode) > UNITS_PER_WORD
- && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- int i;
- rtx insns;
-
- if (target == 0 || target == op0)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- /* Do the actual arithmetic. */
- for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
- {
- rtx target_piece = operand_subword (target, i, 1, mode);
- rtx x = expand_unop (word_mode, unoptab,
- operand_subword_force (op0, i, mode),
- target_piece, unsignedp);
-
- if (target_piece != x)
- emit_move_insn (target_piece, x);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- emit_no_conflict_block (insns, target, op0, NULL_RTX,
- gen_rtx_fmt_e (unoptab->code, mode,
- copy_rtx (op0)));
- return target;
- }
-
- if (unoptab->code == NEG)
- {
- /* Try negating floating point values by flipping the sign bit. */
- if (SCALAR_FLOAT_MODE_P (mode))
- {
- temp = expand_absneg_bit (NEG, mode, op0, target);
- if (temp)
- return temp;
- }
-
- /* If there is no negation pattern, and we have no negative zero,
- try subtracting from zero. */
- if (!HONOR_SIGNED_ZEROS (mode))
- {
- temp = expand_binop (mode, (unoptab == negv_optab
- ? subv_optab : sub_optab),
- CONST0_RTX (mode), op0, target,
- unsignedp, OPTAB_DIRECT);
- if (temp)
- return temp;
- }
- }
-
- /* Try calculating parity (x) as popcount (x) % 2. */
- if (unoptab == parity_optab)
- {
- temp = expand_parity (mode, op0, target);
- if (temp)
- return temp;
- }
-
- try_libcall:
- /* Now try a library call in this mode. */
- if (unoptab->handlers[(int) mode].libfunc)
- {
- rtx insns;
- rtx value;
- enum machine_mode outmode = mode;
-
- /* All of these functions return small values. Thus we choose to
- have them return something that isn't a double-word. */
- if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
- || unoptab == popcount_optab || unoptab == parity_optab)
- outmode
- = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
-
- start_sequence ();
-
- /* Pass 1 for NO_QUEUE so we don't lose any increments
- if the libcall is cse'd or moved. */
- value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
- NULL_RTX, LCT_CONST, outmode,
- 1, op0, mode);
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (outmode);
- emit_libcall_block (insns, target, value,
- gen_rtx_fmt_e (unoptab->code, outmode, op0));
-
- return target;
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (CLASS_HAS_WIDER_MODES_P (class))
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode);
- wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((unoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || unoptab->handlers[(int) wider_mode].libfunc)
- {
- rtx xop0 = op0;
-
- /* For certain operations, we need not actually extend
- the narrow operand, as long as we will truncate the
- results to the same narrowness. */
-
- xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
- (unoptab == neg_optab
- || unoptab == one_cmpl_optab)
- && class == MODE_INT);
-
- temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
- unsignedp);
-
- /* If we are generating clz using wider mode, adjust the
- result. */
- if (unoptab == clz_optab && temp != 0)
- temp = expand_binop (wider_mode, sub_optab, temp,
- GEN_INT (GET_MODE_BITSIZE (wider_mode)
- - GET_MODE_BITSIZE (mode)),
- target, true, OPTAB_DIRECT);
-
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- /* One final attempt at implementing negation via subtraction,
- this time allowing widening of the operand. */
- if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
- {
- rtx temp;
- temp = expand_binop (mode,
- unoptab == negv_optab ? subv_optab : sub_optab,
- CONST0_RTX (mode), op0,
- target, unsignedp, OPTAB_LIB_WIDEN);
- if (temp)
- return temp;
- }
-
- return 0;
-}
-
-/* Emit code to compute the absolute value of OP0, with result to
- TARGET if convenient. (TARGET may be 0.) The return value says
- where the result actually is to be found.
-
- MODE is the mode of the operand; the mode of the result is
- different but can be deduced from MODE.
-
- */
-
-rtx
-expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
- int result_unsignedp)
-{
- rtx temp;
-
- if (! flag_trapv)
- result_unsignedp = 1;
-
- /* First try to do it with a special abs instruction. */
- temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
- op0, target, 0);
- if (temp != 0)
- return temp;
-
- /* For floating point modes, try clearing the sign bit. */
- if (SCALAR_FLOAT_MODE_P (mode))
- {
- temp = expand_absneg_bit (ABS, mode, op0, target);
- if (temp)
- return temp;
- }
-
- /* If we have a MAX insn, we can do this as MAX (x, -x). */
- if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
- && !HONOR_SIGNED_ZEROS (mode))
- {
- rtx last = get_last_insn ();
-
- temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
- if (temp != 0)
- temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
- OPTAB_WIDEN);
-
- if (temp != 0)
- return temp;
-
- delete_insns_since (last);
- }
-
- /* If this machine has expensive jumps, we can do integer absolute
- value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
- where W is the width of MODE. */
-
- if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
- {
- rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
- size_int (GET_MODE_BITSIZE (mode) - 1),
- NULL_RTX, 0);
-
- temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
- OPTAB_LIB_WIDEN);
- if (temp != 0)
- temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
- temp, extended, target, 0, OPTAB_LIB_WIDEN);
-
- if (temp != 0)
- return temp;
- }
-
- return NULL_RTX;
-}
-
-rtx
-expand_abs (enum machine_mode mode, rtx op0, rtx target,
- int result_unsignedp, int safe)
-{
- rtx temp, op1;
-
- if (! flag_trapv)
- result_unsignedp = 1;
-
- temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
- if (temp != 0)
- return temp;
-
- /* If that does not win, use conditional jump and negate. */
-
- /* It is safe to use the target if it is the same
- as the source if this is also a pseudo register */
- if (op0 == target && REG_P (op0)
- && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
- safe = 1;
-
- op1 = gen_label_rtx ();
- if (target == 0 || ! safe
- || GET_MODE (target) != mode
- || (MEM_P (target) && MEM_VOLATILE_P (target))
- || (REG_P (target)
- && REGNO (target) < FIRST_PSEUDO_REGISTER))
- target = gen_reg_rtx (mode);
-
- emit_move_insn (target, op0);
- NO_DEFER_POP;
-
- do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
- NULL_RTX, NULL_RTX, op1);
-
- op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
- target, target, 0);
- if (op0 != target)
- emit_move_insn (target, op0);
- emit_label (op1);
- OK_DEFER_POP;
- return target;
-}
-
-/* A subroutine of expand_copysign, perform the copysign operation using the
- abs and neg primitives advertised to exist on the target. The assumption
- is that we have a split register file, and leaving op0 in fp registers,
- and not playing with subregs so much, will help the register allocator. */
-
-static rtx
-expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
- int bitpos, bool op0_is_abs)
-{
- enum machine_mode imode;
- HOST_WIDE_INT hi, lo;
- int word;
- rtx label;
-
- if (target == op1)
- target = NULL_RTX;
-
- if (!op0_is_abs)
- {
- op0 = expand_unop (mode, abs_optab, op0, target, 0);
- if (op0 == NULL)
- return NULL_RTX;
- target = op0;
- }
- else
- {
- if (target == NULL_RTX)
- target = copy_to_reg (op0);
- else
- emit_move_insn (target, op0);
- }
-
- if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
- {
- imode = int_mode_for_mode (mode);
- if (imode == BLKmode)
- return NULL_RTX;
- op1 = gen_lowpart (imode, op1);
- }
- else
- {
- imode = word_mode;
- if (FLOAT_WORDS_BIG_ENDIAN)
- word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
- else
- word = bitpos / BITS_PER_WORD;
- bitpos = bitpos % BITS_PER_WORD;
- op1 = operand_subword_force (op1, word, mode);
- }
-
- if (bitpos < HOST_BITS_PER_WIDE_INT)
- {
- hi = 0;
- lo = (HOST_WIDE_INT) 1 << bitpos;
- }
- else
- {
- hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
- lo = 0;
- }
-
- op1 = expand_binop (imode, and_optab, op1,
- immed_double_const (lo, hi, imode),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
-
- label = gen_label_rtx ();
- emit_cmp_and_jump_insns (op1, const0_rtx, EQ, NULL_RTX, imode, 1, label);
-
- if (GET_CODE (op0) == CONST_DOUBLE)
- op0 = simplify_unary_operation (NEG, mode, op0, mode);
- else
- op0 = expand_unop (mode, neg_optab, op0, target, 0);
- if (op0 != target)
- emit_move_insn (target, op0);
-
- emit_label (label);
-
- return target;
-}
-
-
-/* A subroutine of expand_copysign, perform the entire copysign operation
- with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
- is true if op0 is known to have its sign bit clear. */
-
-static rtx
-expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
- int bitpos, bool op0_is_abs)
-{
- enum machine_mode imode;
- HOST_WIDE_INT hi, lo;
- int word, nwords, i;
- rtx temp, insns;
-
- if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
- {
- imode = int_mode_for_mode (mode);
- if (imode == BLKmode)
- return NULL_RTX;
- word = 0;
- nwords = 1;
- }
- else
- {
- imode = word_mode;
-
- if (FLOAT_WORDS_BIG_ENDIAN)
- word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
- else
- word = bitpos / BITS_PER_WORD;
- bitpos = bitpos % BITS_PER_WORD;
- nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
- }
-
- if (bitpos < HOST_BITS_PER_WIDE_INT)
- {
- hi = 0;
- lo = (HOST_WIDE_INT) 1 << bitpos;
- }
- else
- {
- hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
- lo = 0;
- }
-
- if (target == 0 || target == op0 || target == op1)
- target = gen_reg_rtx (mode);
-
- if (nwords > 1)
- {
- start_sequence ();
-
- for (i = 0; i < nwords; ++i)
- {
- rtx targ_piece = operand_subword (target, i, 1, mode);
- rtx op0_piece = operand_subword_force (op0, i, mode);
-
- if (i == word)
- {
- if (!op0_is_abs)
- op0_piece = expand_binop (imode, and_optab, op0_piece,
- immed_double_const (~lo, ~hi, imode),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
-
- op1 = expand_binop (imode, and_optab,
- operand_subword_force (op1, i, mode),
- immed_double_const (lo, hi, imode),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
-
- temp = expand_binop (imode, ior_optab, op0_piece, op1,
- targ_piece, 1, OPTAB_LIB_WIDEN);
- if (temp != targ_piece)
- emit_move_insn (targ_piece, temp);
- }
- else
- emit_move_insn (targ_piece, op0_piece);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
- }
- else
- {
- op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
- immed_double_const (lo, hi, imode),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
-
- op0 = gen_lowpart (imode, op0);
- if (!op0_is_abs)
- op0 = expand_binop (imode, and_optab, op0,
- immed_double_const (~lo, ~hi, imode),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
-
- temp = expand_binop (imode, ior_optab, op0, op1,
- gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
- target = lowpart_subreg_maybe_copy (mode, temp, imode);
- }
-
- return target;
-}
-
-/* Expand the C99 copysign operation. OP0 and OP1 must be the same
- scalar floating point mode. Return NULL if we do not know how to
- expand the operation inline. */
-
-rtx
-expand_copysign (rtx op0, rtx op1, rtx target)
-{
- enum machine_mode mode = GET_MODE (op0);
- const struct real_format *fmt;
- bool op0_is_abs;
- rtx temp;
-
- gcc_assert (SCALAR_FLOAT_MODE_P (mode));
- gcc_assert (GET_MODE (op1) == mode);
-
- /* First try to do it with a special instruction. */
- temp = expand_binop (mode, copysign_optab, op0, op1,
- target, 0, OPTAB_DIRECT);
- if (temp)
- return temp;
-
- fmt = REAL_MODE_FORMAT (mode);
- if (fmt == NULL || !fmt->has_signed_zero)
- return NULL_RTX;
-
- op0_is_abs = false;
- if (GET_CODE (op0) == CONST_DOUBLE)
- {
- if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
- op0 = simplify_unary_operation (ABS, mode, op0, mode);
- op0_is_abs = true;
- }
-
- if (fmt->signbit_ro >= 0
- && (GET_CODE (op0) == CONST_DOUBLE
- || (neg_optab->handlers[mode].insn_code != CODE_FOR_nothing
- && abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)))
- {
- temp = expand_copysign_absneg (mode, op0, op1, target,
- fmt->signbit_ro, op0_is_abs);
- if (temp)
- return temp;
- }
-
- if (fmt->signbit_rw < 0)
- return NULL_RTX;
- return expand_copysign_bit (mode, op0, op1, target,
- fmt->signbit_rw, op0_is_abs);
-}
-
-/* Generate an instruction whose insn-code is INSN_CODE,
- with two operands: an output TARGET and an input OP0.
- TARGET *must* be nonzero, and the output is always stored there.
- CODE is an rtx code such that (CODE OP0) is an rtx that describes
- the value that is stored into TARGET. */
-
-void
-emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
-{
- rtx temp;
- enum machine_mode mode0 = insn_data[icode].operand[1].mode;
- rtx pat;
-
- temp = target;
-
- /* Now, if insn does not accept our operands, put them into pseudos. */
-
- if (!insn_data[icode].operand[1].predicate (op0, mode0))
- op0 = copy_to_mode_reg (mode0, op0);
-
- if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
- temp = gen_reg_rtx (GET_MODE (temp));
-
- pat = GEN_FCN (icode) (temp, op0);
-
- if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
- add_equal_note (pat, temp, code, op0, NULL_RTX);
-
- emit_insn (pat);
-
- if (temp != target)
- emit_move_insn (target, temp);
-}
-
-struct no_conflict_data
-{
- rtx target, first, insn;
- bool must_stay;
-};
-
-/* Called via note_stores by emit_no_conflict_block and emit_libcall_block.
- Set P->must_stay if the currently examined clobber / store has to stay
- in the list of insns that constitute the actual no_conflict block /
- libcall block. */
-static void
-no_conflict_move_test (rtx dest, rtx set, void *p0)
-{
- struct no_conflict_data *p= p0;
-
- /* If this inns directly contributes to setting the target, it must stay. */
- if (reg_overlap_mentioned_p (p->target, dest))
- p->must_stay = true;
- /* If we haven't committed to keeping any other insns in the list yet,
- there is nothing more to check. */
- else if (p->insn == p->first)
- return;
- /* If this insn sets / clobbers a register that feeds one of the insns
- already in the list, this insn has to stay too. */
- else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
- || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
- || reg_used_between_p (dest, p->first, p->insn)
- /* Likewise if this insn depends on a register set by a previous
- insn in the list, or if it sets a result (presumably a hard
- register) that is set or clobbered by a previous insn.
- N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
- SET_DEST perform the former check on the address, and the latter
- check on the MEM. */
- || (GET_CODE (set) == SET
- && (modified_in_p (SET_SRC (set), p->first)
- || modified_in_p (SET_DEST (set), p->first)
- || modified_between_p (SET_SRC (set), p->first, p->insn)
- || modified_between_p (SET_DEST (set), p->first, p->insn))))
- p->must_stay = true;
-}
-
-/* Encapsulate the block starting at FIRST and ending with LAST, which is
- logically equivalent to EQUIV, so it gets manipulated as a unit if it
- is possible to do so. */
-
-static void
-maybe_encapsulate_block (rtx first, rtx last, rtx equiv)
-{
- if (!flag_non_call_exceptions || !may_trap_p (equiv))
- {
- /* We can't attach the REG_LIBCALL and REG_RETVAL notes when the
- encapsulated region would not be in one basic block, i.e. when
- there is a control_flow_insn_p insn between FIRST and LAST. */
- bool attach_libcall_retval_notes = true;
- rtx insn, next = NEXT_INSN (last);
-
- for (insn = first; insn != next; insn = NEXT_INSN (insn))
- if (control_flow_insn_p (insn))
- {
- attach_libcall_retval_notes = false;
- break;
- }
-
- if (attach_libcall_retval_notes)
- {
- REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
- REG_NOTES (first));
- REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
- REG_NOTES (last));
- }
- }
-}
-
-/* Emit code to perform a series of operations on a multi-word quantity, one
- word at a time.
-
- Such a block is preceded by a CLOBBER of the output, consists of multiple
- insns, each setting one word of the output, and followed by a SET copying
- the output to itself.
-
- Each of the insns setting words of the output receives a REG_NO_CONFLICT
- note indicating that it doesn't conflict with the (also multi-word)
- inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
- notes.
-
- INSNS is a block of code generated to perform the operation, not including
- the CLOBBER and final copy. All insns that compute intermediate values
- are first emitted, followed by the block as described above.
-
- TARGET, OP0, and OP1 are the output and inputs of the operations,
- respectively. OP1 may be zero for a unary operation.
-
- EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
- on the last insn.
-
- If TARGET is not a register, INSNS is simply emitted with no special
- processing. Likewise if anything in INSNS is not an INSN or if
- there is a libcall block inside INSNS.
-
- The final insn emitted is returned. */
-
-rtx
-emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
-{
- rtx prev, next, first, last, insn;
-
- if (!REG_P (target) || reload_in_progress)
- return emit_insn (insns);
- else
- for (insn = insns; insn; insn = NEXT_INSN (insn))
- if (!NONJUMP_INSN_P (insn)
- || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
- return emit_insn (insns);
-
- /* First emit all insns that do not store into words of the output and remove
- these from the list. */
- for (insn = insns; insn; insn = next)
- {
- rtx note;
- struct no_conflict_data data;
-
- next = NEXT_INSN (insn);
-
- /* Some ports (cris) create a libcall regions at their own. We must
- avoid any potential nesting of LIBCALLs. */
- if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
- remove_note (insn, note);
- if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
- remove_note (insn, note);
-
- data.target = target;
- data.first = insns;
- data.insn = insn;
- data.must_stay = 0;
- note_stores (PATTERN (insn), no_conflict_move_test, &data);
- if (! data.must_stay)
- {
- if (PREV_INSN (insn))
- NEXT_INSN (PREV_INSN (insn)) = next;
- else
- insns = next;
-
- if (next)
- PREV_INSN (next) = PREV_INSN (insn);
-
- add_insn (insn);
- }
- }
-
- prev = get_last_insn ();
-
- /* Now write the CLOBBER of the output, followed by the setting of each
- of the words, followed by the final copy. */
- if (target != op0 && target != op1)
- emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
-
- for (insn = insns; insn; insn = next)
- {
- next = NEXT_INSN (insn);
- add_insn (insn);
-
- if (op1 && REG_P (op1))
- REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
- REG_NOTES (insn));
-
- if (op0 && REG_P (op0))
- REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
- REG_NOTES (insn));
- }
-
- if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
- != CODE_FOR_nothing)
- {
- last = emit_move_insn (target, target);
- if (equiv)
- set_unique_reg_note (last, REG_EQUAL, equiv);
- }
- else
- {
- last = get_last_insn ();
-
- /* Remove any existing REG_EQUAL note from "last", or else it will
- be mistaken for a note referring to the full contents of the
- alleged libcall value when found together with the REG_RETVAL
- note added below. An existing note can come from an insn
- expansion at "last". */
- remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
- }
-
- if (prev == 0)
- first = get_insns ();
- else
- first = NEXT_INSN (prev);
-
- maybe_encapsulate_block (first, last, equiv);
-
- return last;
-}
-
-/* Emit code to make a call to a constant function or a library call.
-
- INSNS is a list containing all insns emitted in the call.
- These insns leave the result in RESULT. Our block is to copy RESULT
- to TARGET, which is logically equivalent to EQUIV.
-
- We first emit any insns that set a pseudo on the assumption that these are
- loading constants into registers; doing so allows them to be safely cse'ed
- between blocks. Then we emit all the other insns in the block, followed by
- an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
- note with an operand of EQUIV.
-
- Moving assignments to pseudos outside of the block is done to improve
- the generated code, but is not required to generate correct code,
- hence being unable to move an assignment is not grounds for not making
- a libcall block. There are two reasons why it is safe to leave these
- insns inside the block: First, we know that these pseudos cannot be
- used in generated RTL outside the block since they are created for
- temporary purposes within the block. Second, CSE will not record the
- values of anything set inside a libcall block, so we know they must
- be dead at the end of the block.
-
- Except for the first group of insns (the ones setting pseudos), the
- block is delimited by REG_RETVAL and REG_LIBCALL notes. */
-
-void
-emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
-{
- rtx final_dest = target;
- rtx prev, next, first, last, insn;
-
- /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
- into a MEM later. Protect the libcall block from this change. */
- if (! REG_P (target) || REG_USERVAR_P (target))
- target = gen_reg_rtx (GET_MODE (target));
-
- /* If we're using non-call exceptions, a libcall corresponding to an
- operation that may trap may also trap. */
- if (flag_non_call_exceptions && may_trap_p (equiv))
- {
- for (insn = insns; insn; insn = NEXT_INSN (insn))
- if (CALL_P (insn))
- {
- rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
-
- if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
- remove_note (insn, note);
- }
- }
- else
- /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
- reg note to indicate that this call cannot throw or execute a nonlocal
- goto (unless there is already a REG_EH_REGION note, in which case
- we update it). */
- for (insn = insns; insn; insn = NEXT_INSN (insn))
- if (CALL_P (insn))
- {
- rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
-
- if (note != 0)
- XEXP (note, 0) = constm1_rtx;
- else
- REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
- REG_NOTES (insn));
- }
-
- /* First emit all insns that set pseudos. Remove them from the list as
- we go. Avoid insns that set pseudos which were referenced in previous
- insns. These can be generated by move_by_pieces, for example,
- to update an address. Similarly, avoid insns that reference things
- set in previous insns. */
-
- for (insn = insns; insn; insn = next)
- {
- rtx set = single_set (insn);
- rtx note;
-
- /* Some ports (cris) create a libcall regions at their own. We must
- avoid any potential nesting of LIBCALLs. */
- if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
- remove_note (insn, note);
- if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
- remove_note (insn, note);
-
- next = NEXT_INSN (insn);
-
- if (set != 0 && REG_P (SET_DEST (set))
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
- {
- struct no_conflict_data data;
-
- data.target = const0_rtx;
- data.first = insns;
- data.insn = insn;
- data.must_stay = 0;
- note_stores (PATTERN (insn), no_conflict_move_test, &data);
- if (! data.must_stay)
- {
- if (PREV_INSN (insn))
- NEXT_INSN (PREV_INSN (insn)) = next;
- else
- insns = next;
-
- if (next)
- PREV_INSN (next) = PREV_INSN (insn);
-
- add_insn (insn);
- }
- }
-
- /* Some ports use a loop to copy large arguments onto the stack.
- Don't move anything outside such a loop. */
- if (LABEL_P (insn))
- break;
- }
-
- prev = get_last_insn ();
-
- /* Write the remaining insns followed by the final copy. */
-
- for (insn = insns; insn; insn = next)
- {
- next = NEXT_INSN (insn);
-
- add_insn (insn);
- }
-
- last = emit_move_insn (target, result);
- if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
- != CODE_FOR_nothing)
- set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
- else
- {
- /* Remove any existing REG_EQUAL note from "last", or else it will
- be mistaken for a note referring to the full contents of the
- libcall value when found together with the REG_RETVAL note added
- below. An existing note can come from an insn expansion at
- "last". */
- remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
- }
-
- if (final_dest != target)
- emit_move_insn (final_dest, target);
-
- if (prev == 0)
- first = get_insns ();
- else
- first = NEXT_INSN (prev);
-
- maybe_encapsulate_block (first, last, equiv);
-}
-
-/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
- PURPOSE describes how this comparison will be used. CODE is the rtx
- comparison code we will be using.
-
- ??? Actually, CODE is slightly weaker than that. A target is still
- required to implement all of the normal bcc operations, but not
- required to implement all (or any) of the unordered bcc operations. */
-
-int
-can_compare_p (enum rtx_code code, enum machine_mode mode,
- enum can_compare_purpose purpose)
-{
- do
- {
- if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- if (purpose == ccp_jump)
- return bcc_gen_fctn[(int) code] != NULL;
- else if (purpose == ccp_store_flag)
- return setcc_gen_code[(int) code] != CODE_FOR_nothing;
- else
- /* There's only one cmov entry point, and it's allowed to fail. */
- return 1;
- }
- if (purpose == ccp_jump
- && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- return 1;
- if (purpose == ccp_cmov
- && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- return 1;
- if (purpose == ccp_store_flag
- && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- return 1;
- mode = GET_MODE_WIDER_MODE (mode);
- }
- while (mode != VOIDmode);
-
- return 0;
-}
-
-/* This function is called when we are going to emit a compare instruction that
- compares the values found in *PX and *PY, using the rtl operator COMPARISON.
-
- *PMODE is the mode of the inputs (in case they are const_int).
- *PUNSIGNEDP nonzero says that the operands are unsigned;
- this matters if they need to be widened.
-
- If they have mode BLKmode, then SIZE specifies the size of both operands.
-
- This function performs all the setup necessary so that the caller only has
- to emit a single comparison insn. This setup can involve doing a BLKmode
- comparison or emitting a library call to perform the comparison if no insn
- is available to handle it.
- The values which are passed in through pointers can be modified; the caller
- should perform the comparison on the modified values. Constant
- comparisons must have already been folded. */
-
-static void
-prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
- enum machine_mode *pmode, int *punsignedp,
- enum can_compare_purpose purpose)
-{
- enum machine_mode mode = *pmode;
- rtx x = *px, y = *py;
- int unsignedp = *punsignedp;
-
- /* If we are inside an appropriately-short loop and we are optimizing,
- force expensive constants into a register. */
- if (CONSTANT_P (x) && optimize
- && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
- x = force_reg (mode, x);
-
- if (CONSTANT_P (y) && optimize
- && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
- y = force_reg (mode, y);
-
-#ifdef HAVE_cc0
- /* Make sure if we have a canonical comparison. The RTL
- documentation states that canonical comparisons are required only
- for targets which have cc0. */
- gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
-#endif
-
- /* Don't let both operands fail to indicate the mode. */
- if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
- x = force_reg (mode, x);
-
- /* Handle all BLKmode compares. */
-
- if (mode == BLKmode)
- {
- enum machine_mode cmp_mode, result_mode;
- enum insn_code cmp_code;
- tree length_type;
- rtx libfunc;
- rtx result;
- rtx opalign
- = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
-
- gcc_assert (size);
-
- /* Try to use a memory block compare insn - either cmpstr
- or cmpmem will do. */
- for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
- cmp_mode != VOIDmode;
- cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
- {
- cmp_code = cmpmem_optab[cmp_mode];
- if (cmp_code == CODE_FOR_nothing)
- cmp_code = cmpstr_optab[cmp_mode];
- if (cmp_code == CODE_FOR_nothing)
- cmp_code = cmpstrn_optab[cmp_mode];
- if (cmp_code == CODE_FOR_nothing)
- continue;
-
- /* Must make sure the size fits the insn's mode. */
- if ((GET_CODE (size) == CONST_INT
- && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
- || (GET_MODE_BITSIZE (GET_MODE (size))
- > GET_MODE_BITSIZE (cmp_mode)))
- continue;
-
- result_mode = insn_data[cmp_code].operand[0].mode;
- result = gen_reg_rtx (result_mode);
- size = convert_to_mode (cmp_mode, size, 1);
- emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
-
- *px = result;
- *py = const0_rtx;
- *pmode = result_mode;
- return;
- }
-
- /* Otherwise call a library function, memcmp. */
- libfunc = memcmp_libfunc;
- length_type = sizetype;
- result_mode = TYPE_MODE (integer_type_node);
- cmp_mode = TYPE_MODE (length_type);
- size = convert_to_mode (TYPE_MODE (length_type), size,
- TYPE_UNSIGNED (length_type));
-
- result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
- result_mode, 3,
- XEXP (x, 0), Pmode,
- XEXP (y, 0), Pmode,
- size, cmp_mode);
- *px = result;
- *py = const0_rtx;
- *pmode = result_mode;
- return;
- }
-
- /* Don't allow operands to the compare to trap, as that can put the
- compare and branch in different basic blocks. */
- if (flag_non_call_exceptions)
- {
- if (may_trap_p (x))
- x = force_reg (mode, x);
- if (may_trap_p (y))
- y = force_reg (mode, y);
- }
-
- *px = x;
- *py = y;
- if (can_compare_p (*pcomparison, mode, purpose))
- return;
-
- /* Handle a lib call just for the mode we are using. */
-
- if (cmp_optab->handlers[(int) mode].libfunc && !SCALAR_FLOAT_MODE_P (mode))
- {
- rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
- rtx result;
-
- /* If we want unsigned, and this mode has a distinct unsigned
- comparison routine, use that. */
- if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
- libfunc = ucmp_optab->handlers[(int) mode].libfunc;
-
- result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
- word_mode, 2, x, mode, y, mode);
-
- /* There are two kinds of comparison routines. Biased routines
- return 0/1/2, and unbiased routines return -1/0/1. Other parts
- of gcc expect that the comparison operation is equivalent
- to the modified comparison. For signed comparisons compare the
- result against 1 in the biased case, and zero in the unbiased
- case. For unsigned comparisons always compare against 1 after
- biasing the unbiased result by adding 1. This gives us a way to
- represent LTU. */
- *px = result;
- *pmode = word_mode;
- *py = const1_rtx;
-
- if (!TARGET_LIB_INT_CMP_BIASED)
- {
- if (*punsignedp)
- *px = plus_constant (result, 1);
- else
- *py = const0_rtx;
- }
- return;
- }
-
- gcc_assert (SCALAR_FLOAT_MODE_P (mode));
- prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
-}
-
-/* Before emitting an insn with code ICODE, make sure that X, which is going
- to be used for operand OPNUM of the insn, is converted from mode MODE to
- WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
- that it is accepted by the operand predicate. Return the new value. */
-
-static rtx
-prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
- enum machine_mode wider_mode, int unsignedp)
-{
- if (mode != wider_mode)
- x = convert_modes (wider_mode, mode, x, unsignedp);
-
- if (!insn_data[icode].operand[opnum].predicate
- (x, insn_data[icode].operand[opnum].mode))
- {
- if (no_new_pseudos)
- return NULL_RTX;
- x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
- }
-
- return x;
-}
-
-/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
- we can do the comparison.
- The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
- be NULL_RTX which indicates that only a comparison is to be generated. */
-
-static void
-emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
- enum rtx_code comparison, int unsignedp, rtx label)
-{
- rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
- enum mode_class class = GET_MODE_CLASS (mode);
- enum machine_mode wider_mode = mode;
-
- /* Try combined insns first. */
- do
- {
- enum insn_code icode;
- PUT_MODE (test, wider_mode);
-
- if (label)
- {
- icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
-
- if (icode != CODE_FOR_nothing
- && insn_data[icode].operand[0].predicate (test, wider_mode))
- {
- x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
- y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
- emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
- return;
- }
- }
-
- /* Handle some compares against zero. */
- icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
- if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
- {
- x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
- emit_insn (GEN_FCN (icode) (x));
- if (label)
- emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
- return;
- }
-
- /* Handle compares for which there is a directly suitable insn. */
-
- icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
- if (icode != CODE_FOR_nothing)
- {
- x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
- y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
- emit_insn (GEN_FCN (icode) (x, y));
- if (label)
- emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
- return;
- }
-
- if (!CLASS_HAS_WIDER_MODES_P (class))
- break;
-
- wider_mode = GET_MODE_WIDER_MODE (wider_mode);
- }
- while (wider_mode != VOIDmode);
-
- gcc_unreachable ();
-}
-
-/* Generate code to compare X with Y so that the condition codes are
- set and to jump to LABEL if the condition is true. If X is a
- constant and Y is not a constant, then the comparison is swapped to
- ensure that the comparison RTL has the canonical form.
-
- UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
- need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
- the proper branch condition code.
-
- If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
-
- MODE is the mode of the inputs (in case they are const_int).
-
- COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
- be passed unchanged to emit_cmp_insn, then potentially converted into an
- unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
-
-void
-emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
- enum machine_mode mode, int unsignedp, rtx label)
-{
- rtx op0 = x, op1 = y;
-
- /* Swap operands and condition to ensure canonical RTL. */
- if (swap_commutative_operands_p (x, y))
- {
- /* If we're not emitting a branch, this means some caller
- is out of sync. */
- gcc_assert (label);
-
- op0 = y, op1 = x;
- comparison = swap_condition (comparison);
- }
-
-#ifdef HAVE_cc0
- /* If OP0 is still a constant, then both X and Y must be constants.
- Force X into a register to create canonical RTL. */
- if (CONSTANT_P (op0))
- op0 = force_reg (mode, op0);
-#endif
-
- if (unsignedp)
- comparison = unsigned_condition (comparison);
-
- prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
- ccp_jump);
- emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
-}
-
-/* Like emit_cmp_and_jump_insns, but generate only the comparison. */
-
-void
-emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
- enum machine_mode mode, int unsignedp)
-{
- emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
-}
-
-/* Emit a library call comparison between floating point X and Y.
- COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
-
-static void
-prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
- enum machine_mode *pmode, int *punsignedp)
-{
- enum rtx_code comparison = *pcomparison;
- enum rtx_code swapped = swap_condition (comparison);
- enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
- rtx x = *px;
- rtx y = *py;
- enum machine_mode orig_mode = GET_MODE (x);
- enum machine_mode mode;
- rtx value, target, insns, equiv;
- rtx libfunc = 0;
- bool reversed_p = false;
-
- for (mode = orig_mode;
- mode != VOIDmode;
- mode = GET_MODE_WIDER_MODE (mode))
- {
- if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
- break;
-
- if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
- {
- rtx tmp;
- tmp = x; x = y; y = tmp;
- comparison = swapped;
- break;
- }
-
- if ((libfunc = code_to_optab[reversed]->handlers[mode].libfunc)
- && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
- {
- comparison = reversed;
- reversed_p = true;
- break;
- }
- }
-
- gcc_assert (mode != VOIDmode);
-
- if (mode != orig_mode)
- {
- x = convert_to_mode (mode, x, 0);
- y = convert_to_mode (mode, y, 0);
- }
-
- /* Attach a REG_EQUAL note describing the semantics of the libcall to
- the RTL. The allows the RTL optimizers to delete the libcall if the
- condition can be determined at compile-time. */
- if (comparison == UNORDERED)
- {
- rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
- equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
- equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
- temp, const_true_rtx, equiv);
- }
- else
- {
- equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
- if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
- {
- rtx true_rtx, false_rtx;
-
- switch (comparison)
- {
- case EQ:
- true_rtx = const0_rtx;
- false_rtx = const_true_rtx;
- break;
-
- case NE:
- true_rtx = const_true_rtx;
- false_rtx = const0_rtx;
- break;
-
- case GT:
- true_rtx = const1_rtx;
- false_rtx = const0_rtx;
- break;
-
- case GE:
- true_rtx = const0_rtx;
- false_rtx = constm1_rtx;
- break;
-
- case LT:
- true_rtx = constm1_rtx;
- false_rtx = const0_rtx;
- break;
-
- case LE:
- true_rtx = const0_rtx;
- false_rtx = const1_rtx;
- break;
-
- default:
- gcc_unreachable ();
- }
- equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
- equiv, true_rtx, false_rtx);
- }
- }
-
- start_sequence ();
- value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
- word_mode, 2, x, mode, y, mode);
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (word_mode);
- emit_libcall_block (insns, target, value, equiv);
-
- if (comparison == UNORDERED
- || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
- comparison = reversed_p ? EQ : NE;
-
- *px = target;
- *py = const0_rtx;
- *pmode = word_mode;
- *pcomparison = comparison;
- *punsignedp = 0;
-}
-
-/* Generate code to indirectly jump to a location given in the rtx LOC. */
-
-void
-emit_indirect_jump (rtx loc)
-{
- if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
- (loc, Pmode))
- loc = copy_to_mode_reg (Pmode, loc);
-
- emit_jump_insn (gen_indirect_jump (loc));
- emit_barrier ();
-}
-
-#ifdef HAVE_conditional_move
-
-/* Emit a conditional move instruction if the machine supports one for that
- condition and machine mode.
-
- OP0 and OP1 are the operands that should be compared using CODE. CMODE is
- the mode to use should they be constants. If it is VOIDmode, they cannot
- both be constants.
-
- OP2 should be stored in TARGET if the comparison is true, otherwise OP3
- should be stored there. MODE is the mode to use should they be constants.
- If it is VOIDmode, they cannot both be constants.
-
- The result is either TARGET (perhaps modified) or NULL_RTX if the operation
- is not supported. */
-
-rtx
-emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
- enum machine_mode cmode, rtx op2, rtx op3,
- enum machine_mode mode, int unsignedp)
-{
- rtx tem, subtarget, comparison, insn;
- enum insn_code icode;
- enum rtx_code reversed;
-
- /* If one operand is constant, make it the second one. Only do this
- if the other operand is not constant as well. */
-
- if (swap_commutative_operands_p (op0, op1))
- {
- tem = op0;
- op0 = op1;
- op1 = tem;
- code = swap_condition (code);
- }
-
- /* get_condition will prefer to generate LT and GT even if the old
- comparison was against zero, so undo that canonicalization here since
- comparisons against zero are cheaper. */
- if (code == LT && op1 == const1_rtx)
- code = LE, op1 = const0_rtx;
- else if (code == GT && op1 == constm1_rtx)
- code = GE, op1 = const0_rtx;
-
- if (cmode == VOIDmode)
- cmode = GET_MODE (op0);
-
- if (swap_commutative_operands_p (op2, op3)
- && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
- != UNKNOWN))
- {
- tem = op2;
- op2 = op3;
- op3 = tem;
- code = reversed;
- }
-
- if (mode == VOIDmode)
- mode = GET_MODE (op2);
-
- icode = movcc_gen_code[mode];
-
- if (icode == CODE_FOR_nothing)
- return 0;
-
- if (!target)
- target = gen_reg_rtx (mode);
-
- subtarget = target;
-
- /* If the insn doesn't accept these operands, put them in pseudos. */
-
- if (!insn_data[icode].operand[0].predicate
- (subtarget, insn_data[icode].operand[0].mode))
- subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
-
- if (!insn_data[icode].operand[2].predicate
- (op2, insn_data[icode].operand[2].mode))
- op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
-
- if (!insn_data[icode].operand[3].predicate
- (op3, insn_data[icode].operand[3].mode))
- op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
-
- /* Everything should now be in the suitable form, so emit the compare insn
- and then the conditional move. */
-
- comparison
- = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
-
- /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
- /* We can get const0_rtx or const_true_rtx in some circumstances. Just
- return NULL and let the caller figure out how best to deal with this
- situation. */
- if (GET_CODE (comparison) != code)
- return NULL_RTX;
-
- insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
-
- /* If that failed, then give up. */
- if (insn == 0)
- return 0;
-
- emit_insn (insn);
-
- if (subtarget != target)
- convert_move (target, subtarget, 0);
-
- return target;
-}
-
-/* Return nonzero if a conditional move of mode MODE is supported.
-
- This function is for combine so it can tell whether an insn that looks
- like a conditional move is actually supported by the hardware. If we
- guess wrong we lose a bit on optimization, but that's it. */
-/* ??? sparc64 supports conditionally moving integers values based on fp
- comparisons, and vice versa. How do we handle them? */
-
-int
-can_conditionally_move_p (enum machine_mode mode)
-{
- if (movcc_gen_code[mode] != CODE_FOR_nothing)
- return 1;
-
- return 0;
-}
-
-#endif /* HAVE_conditional_move */
-
-/* Emit a conditional addition instruction if the machine supports one for that
- condition and machine mode.
-
- OP0 and OP1 are the operands that should be compared using CODE. CMODE is
- the mode to use should they be constants. If it is VOIDmode, they cannot
- both be constants.
-
- OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
- should be stored there. MODE is the mode to use should they be constants.
- If it is VOIDmode, they cannot both be constants.
-
- The result is either TARGET (perhaps modified) or NULL_RTX if the operation
- is not supported. */
-
-rtx
-emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
- enum machine_mode cmode, rtx op2, rtx op3,
- enum machine_mode mode, int unsignedp)
-{
- rtx tem, subtarget, comparison, insn;
- enum insn_code icode;
- enum rtx_code reversed;
-
- /* If one operand is constant, make it the second one. Only do this
- if the other operand is not constant as well. */
-
- if (swap_commutative_operands_p (op0, op1))
- {
- tem = op0;
- op0 = op1;
- op1 = tem;
- code = swap_condition (code);
- }
-
- /* get_condition will prefer to generate LT and GT even if the old
- comparison was against zero, so undo that canonicalization here since
- comparisons against zero are cheaper. */
- if (code == LT && op1 == const1_rtx)
- code = LE, op1 = const0_rtx;
- else if (code == GT && op1 == constm1_rtx)
- code = GE, op1 = const0_rtx;
-
- if (cmode == VOIDmode)
- cmode = GET_MODE (op0);
-
- if (swap_commutative_operands_p (op2, op3)
- && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
- != UNKNOWN))
- {
- tem = op2;
- op2 = op3;
- op3 = tem;
- code = reversed;
- }
-
- if (mode == VOIDmode)
- mode = GET_MODE (op2);
-
- icode = addcc_optab->handlers[(int) mode].insn_code;
-
- if (icode == CODE_FOR_nothing)
- return 0;
-
- if (!target)
- target = gen_reg_rtx (mode);
-
- /* If the insn doesn't accept these operands, put them in pseudos. */
-
- if (!insn_data[icode].operand[0].predicate
- (target, insn_data[icode].operand[0].mode))
- subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
- else
- subtarget = target;
-
- if (!insn_data[icode].operand[2].predicate
- (op2, insn_data[icode].operand[2].mode))
- op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
-
- if (!insn_data[icode].operand[3].predicate
- (op3, insn_data[icode].operand[3].mode))
- op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
-
- /* Everything should now be in the suitable form, so emit the compare insn
- and then the conditional move. */
-
- comparison
- = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
-
- /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
- /* We can get const0_rtx or const_true_rtx in some circumstances. Just
- return NULL and let the caller figure out how best to deal with this
- situation. */
- if (GET_CODE (comparison) != code)
- return NULL_RTX;
-
- insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
-
- /* If that failed, then give up. */
- if (insn == 0)
- return 0;
-
- emit_insn (insn);
-
- if (subtarget != target)
- convert_move (target, subtarget, 0);
-
- return target;
-}
-
-/* These functions attempt to generate an insn body, rather than
- emitting the insn, but if the gen function already emits them, we
- make no attempt to turn them back into naked patterns. */
-
-/* Generate and return an insn body to add Y to X. */
-
-rtx
-gen_add2_insn (rtx x, rtx y)
-{
- int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
-
- gcc_assert (insn_data[icode].operand[0].predicate
- (x, insn_data[icode].operand[0].mode));
- gcc_assert (insn_data[icode].operand[1].predicate
- (x, insn_data[icode].operand[1].mode));
- gcc_assert (insn_data[icode].operand[2].predicate
- (y, insn_data[icode].operand[2].mode));
-
- return GEN_FCN (icode) (x, x, y);
-}
-
-/* Generate and return an insn body to add r1 and c,
- storing the result in r0. */
-rtx
-gen_add3_insn (rtx r0, rtx r1, rtx c)
-{
- int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
-
- if (icode == CODE_FOR_nothing
- || !(insn_data[icode].operand[0].predicate
- (r0, insn_data[icode].operand[0].mode))
- || !(insn_data[icode].operand[1].predicate
- (r1, insn_data[icode].operand[1].mode))
- || !(insn_data[icode].operand[2].predicate
- (c, insn_data[icode].operand[2].mode)))
- return NULL_RTX;
-
- return GEN_FCN (icode) (r0, r1, c);
-}
-
-int
-have_add2_insn (rtx x, rtx y)
-{
- int icode;
-
- gcc_assert (GET_MODE (x) != VOIDmode);
-
- icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
-
- if (icode == CODE_FOR_nothing)
- return 0;
-
- if (!(insn_data[icode].operand[0].predicate
- (x, insn_data[icode].operand[0].mode))
- || !(insn_data[icode].operand[1].predicate
- (x, insn_data[icode].operand[1].mode))
- || !(insn_data[icode].operand[2].predicate
- (y, insn_data[icode].operand[2].mode)))
- return 0;
-
- return 1;
-}
-
-/* Generate and return an insn body to subtract Y from X. */
-
-rtx
-gen_sub2_insn (rtx x, rtx y)
-{
- int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
-
- gcc_assert (insn_data[icode].operand[0].predicate
- (x, insn_data[icode].operand[0].mode));
- gcc_assert (insn_data[icode].operand[1].predicate
- (x, insn_data[icode].operand[1].mode));
- gcc_assert (insn_data[icode].operand[2].predicate
- (y, insn_data[icode].operand[2].mode));
-
- return GEN_FCN (icode) (x, x, y);
-}
-
-/* Generate and return an insn body to subtract r1 and c,
- storing the result in r0. */
-rtx
-gen_sub3_insn (rtx r0, rtx r1, rtx c)
-{
- int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
-
- if (icode == CODE_FOR_nothing
- || !(insn_data[icode].operand[0].predicate
- (r0, insn_data[icode].operand[0].mode))
- || !(insn_data[icode].operand[1].predicate
- (r1, insn_data[icode].operand[1].mode))
- || !(insn_data[icode].operand[2].predicate
- (c, insn_data[icode].operand[2].mode)))
- return NULL_RTX;
-
- return GEN_FCN (icode) (r0, r1, c);
-}
-
-int
-have_sub2_insn (rtx x, rtx y)
-{
- int icode;
-
- gcc_assert (GET_MODE (x) != VOIDmode);
-
- icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
-
- if (icode == CODE_FOR_nothing)
- return 0;
-
- if (!(insn_data[icode].operand[0].predicate
- (x, insn_data[icode].operand[0].mode))
- || !(insn_data[icode].operand[1].predicate
- (x, insn_data[icode].operand[1].mode))
- || !(insn_data[icode].operand[2].predicate
- (y, insn_data[icode].operand[2].mode)))
- return 0;
-
- return 1;
-}
-
-/* Generate the body of an instruction to copy Y into X.
- It may be a list of insns, if one insn isn't enough. */
-
-rtx
-gen_move_insn (rtx x, rtx y)
-{
- rtx seq;
-
- start_sequence ();
- emit_move_insn_1 (x, y);
- seq = get_insns ();
- end_sequence ();
- return seq;
-}
-
-/* Return the insn code used to extend FROM_MODE to TO_MODE.
- UNSIGNEDP specifies zero-extension instead of sign-extension. If
- no such operation exists, CODE_FOR_nothing will be returned. */
-
-enum insn_code
-can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
- int unsignedp)
-{
- convert_optab tab;
-#ifdef HAVE_ptr_extend
- if (unsignedp < 0)
- return CODE_FOR_ptr_extend;
-#endif
-
- tab = unsignedp ? zext_optab : sext_optab;
- return tab->handlers[to_mode][from_mode].insn_code;
-}
-
-/* Generate the body of an insn to extend Y (with mode MFROM)
- into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
-
-rtx
-gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
- enum machine_mode mfrom, int unsignedp)
-{
- enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
- return GEN_FCN (icode) (x, y);
-}
-
-/* can_fix_p and can_float_p say whether the target machine
- can directly convert a given fixed point type to
- a given floating point type, or vice versa.
- The returned value is the CODE_FOR_... value to use,
- or CODE_FOR_nothing if these modes cannot be directly converted.
-
- *TRUNCP_PTR is set to 1 if it is necessary to output
- an explicit FTRUNC insn before the fix insn; otherwise 0. */
-
-static enum insn_code
-can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
- int unsignedp, int *truncp_ptr)
-{
- convert_optab tab;
- enum insn_code icode;
-
- tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
- icode = tab->handlers[fixmode][fltmode].insn_code;
- if (icode != CODE_FOR_nothing)
- {
- *truncp_ptr = 0;
- return icode;
- }
-
- /* FIXME: This requires a port to define both FIX and FTRUNC pattern
- for this to work. We need to rework the fix* and ftrunc* patterns
- and documentation. */
- tab = unsignedp ? ufix_optab : sfix_optab;
- icode = tab->handlers[fixmode][fltmode].insn_code;
- if (icode != CODE_FOR_nothing
- && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
- {
- *truncp_ptr = 1;
- return icode;
- }
-
- *truncp_ptr = 0;
- return CODE_FOR_nothing;
-}
-
-static enum insn_code
-can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
- int unsignedp)
-{
- convert_optab tab;
-
- tab = unsignedp ? ufloat_optab : sfloat_optab;
- return tab->handlers[fltmode][fixmode].insn_code;
-}
-
-/* Generate code to convert FROM to floating point
- and store in TO. FROM must be fixed point and not VOIDmode.
- UNSIGNEDP nonzero means regard FROM as unsigned.
- Normally this is done by correcting the final value
- if it is negative. */
-
-void
-expand_float (rtx to, rtx from, int unsignedp)
-{
- enum insn_code icode;
- rtx target = to;
- enum machine_mode fmode, imode;
- bool can_do_signed = false;
-
- /* Crash now, because we won't be able to decide which mode to use. */
- gcc_assert (GET_MODE (from) != VOIDmode);
-
- /* Look for an insn to do the conversion. Do it in the specified
- modes if possible; otherwise convert either input, output or both to
- wider mode. If the integer mode is wider than the mode of FROM,
- we can do the conversion signed even if the input is unsigned. */
-
- for (fmode = GET_MODE (to); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- for (imode = GET_MODE (from); imode != VOIDmode;
- imode = GET_MODE_WIDER_MODE (imode))
- {
- int doing_unsigned = unsignedp;
-
- if (fmode != GET_MODE (to)
- && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
- continue;
-
- icode = can_float_p (fmode, imode, unsignedp);
- if (icode == CODE_FOR_nothing && unsignedp)
- {
- enum insn_code scode = can_float_p (fmode, imode, 0);
- if (scode != CODE_FOR_nothing)
- can_do_signed = true;
- if (imode != GET_MODE (from))
- icode = scode, doing_unsigned = 0;
- }
-
- if (icode != CODE_FOR_nothing)
- {
- if (imode != GET_MODE (from))
- from = convert_to_mode (imode, from, unsignedp);
-
- if (fmode != GET_MODE (to))
- target = gen_reg_rtx (fmode);
-
- emit_unop_insn (icode, target, from,
- doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
-
- if (target != to)
- convert_move (to, target, 0);
- return;
- }
- }
-
- /* Unsigned integer, and no way to convert directly. For binary
- floating point modes, convert as signed, then conditionally adjust
- the result. */
- if (unsignedp && can_do_signed && !DECIMAL_FLOAT_MODE_P (GET_MODE (to)))
- {
- rtx label = gen_label_rtx ();
- rtx temp;
- REAL_VALUE_TYPE offset;
-
- /* Look for a usable floating mode FMODE wider than the source and at
- least as wide as the target. Using FMODE will avoid rounding woes
- with unsigned values greater than the signed maximum value. */
-
- for (fmode = GET_MODE (to); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
- && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
- break;
-
- if (fmode == VOIDmode)
- {
- /* There is no such mode. Pretend the target is wide enough. */
- fmode = GET_MODE (to);
-
- /* Avoid double-rounding when TO is narrower than FROM. */
- if ((significand_size (fmode) + 1)
- < GET_MODE_BITSIZE (GET_MODE (from)))
- {
- rtx temp1;
- rtx neglabel = gen_label_rtx ();
-
- /* Don't use TARGET if it isn't a register, is a hard register,
- or is the wrong mode. */
- if (!REG_P (target)
- || REGNO (target) < FIRST_PSEUDO_REGISTER
- || GET_MODE (target) != fmode)
- target = gen_reg_rtx (fmode);
-
- imode = GET_MODE (from);
- do_pending_stack_adjust ();
-
- /* Test whether the sign bit is set. */
- emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
- 0, neglabel);
-
- /* The sign bit is not set. Convert as signed. */
- expand_float (target, from, 0);
- emit_jump_insn (gen_jump (label));
- emit_barrier ();
-
- /* The sign bit is set.
- Convert to a usable (positive signed) value by shifting right
- one bit, while remembering if a nonzero bit was shifted
- out; i.e., compute (from & 1) | (from >> 1). */
-
- emit_label (neglabel);
- temp = expand_binop (imode, and_optab, from, const1_rtx,
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
- NULL_RTX, 1);
- temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
- OPTAB_LIB_WIDEN);
- expand_float (target, temp, 0);
-
- /* Multiply by 2 to undo the shift above. */
- temp = expand_binop (fmode, add_optab, target, target,
- target, 0, OPTAB_LIB_WIDEN);
- if (temp != target)
- emit_move_insn (target, temp);
-
- do_pending_stack_adjust ();
- emit_label (label);
- goto done;
- }
- }
-
- /* If we are about to do some arithmetic to correct for an
- unsigned operand, do it in a pseudo-register. */
-
- if (GET_MODE (to) != fmode
- || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
- target = gen_reg_rtx (fmode);
-
- /* Convert as signed integer to floating. */
- expand_float (target, from, 0);
-
- /* If FROM is negative (and therefore TO is negative),
- correct its value by 2**bitwidth. */
-
- do_pending_stack_adjust ();
- emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
- 0, label);
-
-
- real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
- temp = expand_binop (fmode, add_optab, target,
- CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
- target, 0, OPTAB_LIB_WIDEN);
- if (temp != target)
- emit_move_insn (target, temp);
-
- do_pending_stack_adjust ();
- emit_label (label);
- goto done;
- }
-
- /* No hardware instruction available; call a library routine. */
- {
- rtx libfunc;
- rtx insns;
- rtx value;
- convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
-
- if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
- from = convert_to_mode (SImode, from, unsignedp);
-
- libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
- gcc_assert (libfunc);
-
- start_sequence ();
-
- value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
- GET_MODE (to), 1, from,
- GET_MODE (from));
- insns = get_insns ();
- end_sequence ();
-
- emit_libcall_block (insns, target, value,
- gen_rtx_FLOAT (GET_MODE (to), from));
- }
-
- done:
-
- /* Copy result to requested destination
- if we have been computing in a temp location. */
-
- if (target != to)
- {
- if (GET_MODE (target) == GET_MODE (to))
- emit_move_insn (to, target);
- else
- convert_move (to, target, 0);
- }
-}
-
-/* Generate code to convert FROM to fixed point and store in TO. FROM
- must be floating point. */
-
-void
-expand_fix (rtx to, rtx from, int unsignedp)
-{
- enum insn_code icode;
- rtx target = to;
- enum machine_mode fmode, imode;
- int must_trunc = 0;
-
- /* We first try to find a pair of modes, one real and one integer, at
- least as wide as FROM and TO, respectively, in which we can open-code
- this conversion. If the integer mode is wider than the mode of TO,
- we can do the conversion either signed or unsigned. */
-
- for (fmode = GET_MODE (from); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- for (imode = GET_MODE (to); imode != VOIDmode;
- imode = GET_MODE_WIDER_MODE (imode))
- {
- int doing_unsigned = unsignedp;
-
- icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
- if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
- icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
-
- if (icode != CODE_FOR_nothing)
- {
- if (fmode != GET_MODE (from))
- from = convert_to_mode (fmode, from, 0);
-
- if (must_trunc)
- {
- rtx temp = gen_reg_rtx (GET_MODE (from));
- from = expand_unop (GET_MODE (from), ftrunc_optab, from,
- temp, 0);
- }
-
- if (imode != GET_MODE (to))
- target = gen_reg_rtx (imode);
-
- emit_unop_insn (icode, target, from,
- doing_unsigned ? UNSIGNED_FIX : FIX);
- if (target != to)
- convert_move (to, target, unsignedp);
- return;
- }
- }
-
- /* For an unsigned conversion, there is one more way to do it.
- If we have a signed conversion, we generate code that compares
- the real value to the largest representable positive number. If if
- is smaller, the conversion is done normally. Otherwise, subtract
- one plus the highest signed number, convert, and add it back.
-
- We only need to check all real modes, since we know we didn't find
- anything with a wider integer mode.
-
- This code used to extend FP value into mode wider than the destination.
- This is not needed. Consider, for instance conversion from SFmode
- into DImode.
-
- The hot path through the code is dealing with inputs smaller than 2^63
- and doing just the conversion, so there is no bits to lose.
-
- In the other path we know the value is positive in the range 2^63..2^64-1
- inclusive. (as for other imput overflow happens and result is undefined)
- So we know that the most important bit set in mantissa corresponds to
- 2^63. The subtraction of 2^63 should not generate any rounding as it
- simply clears out that bit. The rest is trivial. */
-
- if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
- for (fmode = GET_MODE (from); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
- &must_trunc))
- {
- int bitsize;
- REAL_VALUE_TYPE offset;
- rtx limit, lab1, lab2, insn;
-
- bitsize = GET_MODE_BITSIZE (GET_MODE (to));
- real_2expN (&offset, bitsize - 1);
- limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
- lab1 = gen_label_rtx ();
- lab2 = gen_label_rtx ();
-
- if (fmode != GET_MODE (from))
- from = convert_to_mode (fmode, from, 0);
-
- /* See if we need to do the subtraction. */
- do_pending_stack_adjust ();
- emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
- 0, lab1);
-
- /* If not, do the signed "fix" and branch around fixup code. */
- expand_fix (to, from, 0);
- emit_jump_insn (gen_jump (lab2));
- emit_barrier ();
-
- /* Otherwise, subtract 2**(N-1), convert to signed number,
- then add 2**(N-1). Do the addition using XOR since this
- will often generate better code. */
- emit_label (lab1);
- target = expand_binop (GET_MODE (from), sub_optab, from, limit,
- NULL_RTX, 0, OPTAB_LIB_WIDEN);
- expand_fix (to, target, 0);
- target = expand_binop (GET_MODE (to), xor_optab, to,
- gen_int_mode
- ((HOST_WIDE_INT) 1 << (bitsize - 1),
- GET_MODE (to)),
- to, 1, OPTAB_LIB_WIDEN);
-
- if (target != to)
- emit_move_insn (to, target);
-
- emit_label (lab2);
-
- if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
- != CODE_FOR_nothing)
- {
- /* Make a place for a REG_NOTE and add it. */
- insn = emit_move_insn (to, to);
- set_unique_reg_note (insn,
- REG_EQUAL,
- gen_rtx_fmt_e (UNSIGNED_FIX,
- GET_MODE (to),
- copy_rtx (from)));
- }
-
- return;
- }
-
- /* We can't do it with an insn, so use a library call. But first ensure
- that the mode of TO is at least as wide as SImode, since those are the
- only library calls we know about. */
-
- if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
- {
- target = gen_reg_rtx (SImode);
-
- expand_fix (target, from, unsignedp);
- }
- else
- {
- rtx insns;
- rtx value;
- rtx libfunc;
-
- convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
- libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
- gcc_assert (libfunc);
-
- start_sequence ();
-
- value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
- GET_MODE (to), 1, from,
- GET_MODE (from));
- insns = get_insns ();
- end_sequence ();
-
- emit_libcall_block (insns, target, value,
- gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
- GET_MODE (to), from));
- }
-
- if (target != to)
- {
- if (GET_MODE (to) == GET_MODE (target))
- emit_move_insn (to, target);
- else
- convert_move (to, target, 0);
- }
-}
-
-/* Report whether we have an instruction to perform the operation
- specified by CODE on operands of mode MODE. */
-int
-have_insn_for (enum rtx_code code, enum machine_mode mode)
-{
- return (code_to_optab[(int) code] != 0
- && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
- != CODE_FOR_nothing));
-}
-
-/* Create a blank optab. */
-static optab
-new_optab (void)
-{
- int i;
- optab op = ggc_alloc (sizeof (struct optab));
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- {
- op->handlers[i].insn_code = CODE_FOR_nothing;
- op->handlers[i].libfunc = 0;
- }
-
- return op;
-}
-
-static convert_optab
-new_convert_optab (void)
-{
- int i, j;
- convert_optab op = ggc_alloc (sizeof (struct convert_optab));
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- for (j = 0; j < NUM_MACHINE_MODES; j++)
- {
- op->handlers[i][j].insn_code = CODE_FOR_nothing;
- op->handlers[i][j].libfunc = 0;
- }
- return op;
-}
-
-/* Same, but fill in its code as CODE, and write it into the
- code_to_optab table. */
-static inline optab
-init_optab (enum rtx_code code)
-{
- optab op = new_optab ();
- op->code = code;
- code_to_optab[(int) code] = op;
- return op;
-}
-
-/* Same, but fill in its code as CODE, and do _not_ write it into
- the code_to_optab table. */
-static inline optab
-init_optabv (enum rtx_code code)
-{
- optab op = new_optab ();
- op->code = code;
- return op;
-}
-
-/* Conversion optabs never go in the code_to_optab table. */
-static inline convert_optab
-init_convert_optab (enum rtx_code code)
-{
- convert_optab op = new_convert_optab ();
- op->code = code;
- return op;
-}
-
-/* Initialize the libfunc fields of an entire group of entries in some
- optab. Each entry is set equal to a string consisting of a leading
- pair of underscores followed by a generic operation name followed by
- a mode name (downshifted to lowercase) followed by a single character
- representing the number of operands for the given operation (which is
- usually one of the characters '2', '3', or '4').
-
- OPTABLE is the table in which libfunc fields are to be initialized.
- FIRST_MODE is the first machine mode index in the given optab to
- initialize.
- LAST_MODE is the last machine mode index in the given optab to
- initialize.
- OPNAME is the generic (string) name of the operation.
- SUFFIX is the character which specifies the number of operands for
- the given generic operation.
-*/
-
-static void
-init_libfuncs (optab optable, int first_mode, int last_mode,
- const char *opname, int suffix)
-{
- int mode;
- unsigned opname_len = strlen (opname);
-
- for (mode = first_mode; (int) mode <= (int) last_mode;
- mode = (enum machine_mode) ((int) mode + 1))
- {
- const char *mname = GET_MODE_NAME (mode);
- unsigned mname_len = strlen (mname);
- char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
- char *p;
- const char *q;
-
- p = libfunc_name;
- *p++ = '_';
- *p++ = '_';
- for (q = opname; *q; )
- *p++ = *q++;
- for (q = mname; *q; q++)
- *p++ = TOLOWER (*q);
- *p++ = suffix;
- *p = '\0';
-
- optable->handlers[(int) mode].libfunc
- = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
- }
-}
-
-/* Initialize the libfunc fields of an entire group of entries in some
- optab which correspond to all integer mode operations. The parameters
- have the same meaning as similarly named ones for the `init_libfuncs'
- routine. (See above). */
-
-static void
-init_integral_libfuncs (optab optable, const char *opname, int suffix)
-{
- int maxsize = 2*BITS_PER_WORD;
- if (maxsize < LONG_LONG_TYPE_SIZE)
- maxsize = LONG_LONG_TYPE_SIZE;
- init_libfuncs (optable, word_mode,
- mode_for_size (maxsize, MODE_INT, 0),
- opname, suffix);
-}
-
-/* Initialize the libfunc fields of an entire group of entries in some
- optab which correspond to all real mode operations. The parameters
- have the same meaning as similarly named ones for the `init_libfuncs'
- routine. (See above). */
-
-static void
-init_floating_libfuncs (optab optable, const char *opname, int suffix)
-{
- init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
- init_libfuncs (optable, MIN_MODE_DECIMAL_FLOAT, MAX_MODE_DECIMAL_FLOAT,
- opname, suffix);
-}
-
-/* Initialize the libfunc fields of an entire group of entries of an
- inter-mode-class conversion optab. The string formation rules are
- similar to the ones for init_libfuncs, above, but instead of having
- a mode name and an operand count these functions have two mode names
- and no operand count. */
-static void
-init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
- enum mode_class from_class,
- enum mode_class to_class)
-{
- enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
- enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
- size_t opname_len = strlen (opname);
- size_t max_mname_len = 0;
-
- enum machine_mode fmode, tmode;
- const char *fname, *tname;
- const char *q;
- char *libfunc_name, *suffix;
- char *p;
-
- for (fmode = first_from_mode;
- fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
-
- for (tmode = first_to_mode;
- tmode != VOIDmode;
- tmode = GET_MODE_WIDER_MODE (tmode))
- max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
-
- libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
- libfunc_name[0] = '_';
- libfunc_name[1] = '_';
- memcpy (&libfunc_name[2], opname, opname_len);
- suffix = libfunc_name + opname_len + 2;
-
- for (fmode = first_from_mode; fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- for (tmode = first_to_mode; tmode != VOIDmode;
- tmode = GET_MODE_WIDER_MODE (tmode))
- {
- fname = GET_MODE_NAME (fmode);
- tname = GET_MODE_NAME (tmode);
-
- p = suffix;
- for (q = fname; *q; p++, q++)
- *p = TOLOWER (*q);
- for (q = tname; *q; p++, q++)
- *p = TOLOWER (*q);
-
- *p = '\0';
-
- tab->handlers[tmode][fmode].libfunc
- = init_one_libfunc (ggc_alloc_string (libfunc_name,
- p - libfunc_name));
- }
-}
-
-/* Initialize the libfunc fields of an entire group of entries of an
- intra-mode-class conversion optab. The string formation rules are
- similar to the ones for init_libfunc, above. WIDENING says whether
- the optab goes from narrow to wide modes or vice versa. These functions
- have two mode names _and_ an operand count. */
-static void
-init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
- enum mode_class class, bool widening)
-{
- enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
- size_t opname_len = strlen (opname);
- size_t max_mname_len = 0;
-
- enum machine_mode nmode, wmode;
- const char *nname, *wname;
- const char *q;
- char *libfunc_name, *suffix;
- char *p;
-
- for (nmode = first_mode; nmode != VOIDmode;
- nmode = GET_MODE_WIDER_MODE (nmode))
- max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
-
- libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
- libfunc_name[0] = '_';
- libfunc_name[1] = '_';
- memcpy (&libfunc_name[2], opname, opname_len);
- suffix = libfunc_name + opname_len + 2;
-
- for (nmode = first_mode; nmode != VOIDmode;
- nmode = GET_MODE_WIDER_MODE (nmode))
- for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
- wmode = GET_MODE_WIDER_MODE (wmode))
- {
- nname = GET_MODE_NAME (nmode);
- wname = GET_MODE_NAME (wmode);
-
- p = suffix;
- for (q = widening ? nname : wname; *q; p++, q++)
- *p = TOLOWER (*q);
- for (q = widening ? wname : nname; *q; p++, q++)
- *p = TOLOWER (*q);
-
- *p++ = '2';
- *p = '\0';
-
- tab->handlers[widening ? wmode : nmode]
- [widening ? nmode : wmode].libfunc
- = init_one_libfunc (ggc_alloc_string (libfunc_name,
- p - libfunc_name));
- }
-}
-
-
-rtx
-init_one_libfunc (const char *name)
-{
- rtx symbol;
-
- /* Create a FUNCTION_DECL that can be passed to
- targetm.encode_section_info. */
- /* ??? We don't have any type information except for this is
- a function. Pretend this is "int foo()". */
- tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
- build_function_type (integer_type_node, NULL_TREE));
- DECL_ARTIFICIAL (decl) = 1;
- DECL_EXTERNAL (decl) = 1;
- TREE_PUBLIC (decl) = 1;
-
- symbol = XEXP (DECL_RTL (decl), 0);
-
- /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
- are the flags assigned by targetm.encode_section_info. */
- SET_SYMBOL_REF_DECL (symbol, 0);
-
- return symbol;
-}
-
-/* Call this to reset the function entry for one optab (OPTABLE) in mode
- MODE to NAME, which should be either 0 or a string constant. */
-void
-set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
-{
- if (name)
- optable->handlers[mode].libfunc = init_one_libfunc (name);
- else
- optable->handlers[mode].libfunc = 0;
-}
-
-/* Call this to reset the function entry for one conversion optab
- (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
- either 0 or a string constant. */
-void
-set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
- enum machine_mode fmode, const char *name)
-{
- if (name)
- optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
- else
- optable->handlers[tmode][fmode].libfunc = 0;
-}
-
-/* Call this once to initialize the contents of the optabs
- appropriately for the current target machine. */
-
-void
-init_optabs (void)
-{
- unsigned int i;
-
- /* Start by initializing all tables to contain CODE_FOR_nothing. */
-
- for (i = 0; i < NUM_RTX_CODE; i++)
- setcc_gen_code[i] = CODE_FOR_nothing;
-
-#ifdef HAVE_conditional_move
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- movcc_gen_code[i] = CODE_FOR_nothing;
-#endif
-
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- {
- vcond_gen_code[i] = CODE_FOR_nothing;
- vcondu_gen_code[i] = CODE_FOR_nothing;
- }
-
- add_optab = init_optab (PLUS);
- addv_optab = init_optabv (PLUS);
- sub_optab = init_optab (MINUS);
- subv_optab = init_optabv (MINUS);
- smul_optab = init_optab (MULT);
- smulv_optab = init_optabv (MULT);
- smul_highpart_optab = init_optab (UNKNOWN);
- umul_highpart_optab = init_optab (UNKNOWN);
- smul_widen_optab = init_optab (UNKNOWN);
- umul_widen_optab = init_optab (UNKNOWN);
- usmul_widen_optab = init_optab (UNKNOWN);
- sdiv_optab = init_optab (DIV);
- sdivv_optab = init_optabv (DIV);
- sdivmod_optab = init_optab (UNKNOWN);
- udiv_optab = init_optab (UDIV);
- udivmod_optab = init_optab (UNKNOWN);
- smod_optab = init_optab (MOD);
- umod_optab = init_optab (UMOD);
- fmod_optab = init_optab (UNKNOWN);
- drem_optab = init_optab (UNKNOWN);
- ftrunc_optab = init_optab (UNKNOWN);
- and_optab = init_optab (AND);
- ior_optab = init_optab (IOR);
- xor_optab = init_optab (XOR);
- ashl_optab = init_optab (ASHIFT);
- ashr_optab = init_optab (ASHIFTRT);
- lshr_optab = init_optab (LSHIFTRT);
- rotl_optab = init_optab (ROTATE);
- rotr_optab = init_optab (ROTATERT);
- smin_optab = init_optab (SMIN);
- smax_optab = init_optab (SMAX);
- umin_optab = init_optab (UMIN);
- umax_optab = init_optab (UMAX);
- pow_optab = init_optab (UNKNOWN);
- atan2_optab = init_optab (UNKNOWN);
-
- /* These three have codes assigned exclusively for the sake of
- have_insn_for. */
- mov_optab = init_optab (SET);
- movstrict_optab = init_optab (STRICT_LOW_PART);
- cmp_optab = init_optab (COMPARE);
-
- ucmp_optab = init_optab (UNKNOWN);
- tst_optab = init_optab (UNKNOWN);
-
- eq_optab = init_optab (EQ);
- ne_optab = init_optab (NE);
- gt_optab = init_optab (GT);
- ge_optab = init_optab (GE);
- lt_optab = init_optab (LT);
- le_optab = init_optab (LE);
- unord_optab = init_optab (UNORDERED);
-
- neg_optab = init_optab (NEG);
- negv_optab = init_optabv (NEG);
- abs_optab = init_optab (ABS);
- absv_optab = init_optabv (ABS);
- addcc_optab = init_optab (UNKNOWN);
- one_cmpl_optab = init_optab (NOT);
- /* APPLE LOCAL mainline bswap */
- bswap_optab = init_optab (BSWAP);
- ffs_optab = init_optab (FFS);
- clz_optab = init_optab (CLZ);
- ctz_optab = init_optab (CTZ);
- popcount_optab = init_optab (POPCOUNT);
- parity_optab = init_optab (PARITY);
- sqrt_optab = init_optab (SQRT);
- floor_optab = init_optab (UNKNOWN);
- lfloor_optab = init_optab (UNKNOWN);
- ceil_optab = init_optab (UNKNOWN);
- lceil_optab = init_optab (UNKNOWN);
- round_optab = init_optab (UNKNOWN);
- btrunc_optab = init_optab (UNKNOWN);
- nearbyint_optab = init_optab (UNKNOWN);
- rint_optab = init_optab (UNKNOWN);
- lrint_optab = init_optab (UNKNOWN);
- sincos_optab = init_optab (UNKNOWN);
- sin_optab = init_optab (UNKNOWN);
- asin_optab = init_optab (UNKNOWN);
- cos_optab = init_optab (UNKNOWN);
- acos_optab = init_optab (UNKNOWN);
- exp_optab = init_optab (UNKNOWN);
- exp10_optab = init_optab (UNKNOWN);
- exp2_optab = init_optab (UNKNOWN);
- expm1_optab = init_optab (UNKNOWN);
- ldexp_optab = init_optab (UNKNOWN);
- logb_optab = init_optab (UNKNOWN);
- ilogb_optab = init_optab (UNKNOWN);
- log_optab = init_optab (UNKNOWN);
- log10_optab = init_optab (UNKNOWN);
- log2_optab = init_optab (UNKNOWN);
- log1p_optab = init_optab (UNKNOWN);
- tan_optab = init_optab (UNKNOWN);
- atan_optab = init_optab (UNKNOWN);
- copysign_optab = init_optab (UNKNOWN);
-
- strlen_optab = init_optab (UNKNOWN);
- cbranch_optab = init_optab (UNKNOWN);
- cmov_optab = init_optab (UNKNOWN);
- cstore_optab = init_optab (UNKNOWN);
- push_optab = init_optab (UNKNOWN);
-
- reduc_smax_optab = init_optab (UNKNOWN);
- reduc_umax_optab = init_optab (UNKNOWN);
- reduc_smin_optab = init_optab (UNKNOWN);
- reduc_umin_optab = init_optab (UNKNOWN);
- reduc_splus_optab = init_optab (UNKNOWN);
- reduc_uplus_optab = init_optab (UNKNOWN);
-
- ssum_widen_optab = init_optab (UNKNOWN);
- usum_widen_optab = init_optab (UNKNOWN);
- sdot_prod_optab = init_optab (UNKNOWN);
- udot_prod_optab = init_optab (UNKNOWN);
-
- vec_extract_optab = init_optab (UNKNOWN);
- vec_set_optab = init_optab (UNKNOWN);
- vec_init_optab = init_optab (UNKNOWN);
- vec_shl_optab = init_optab (UNKNOWN);
- vec_shr_optab = init_optab (UNKNOWN);
- vec_realign_load_optab = init_optab (UNKNOWN);
- movmisalign_optab = init_optab (UNKNOWN);
-
- powi_optab = init_optab (UNKNOWN);
-
- /* Conversions. */
- sext_optab = init_convert_optab (SIGN_EXTEND);
- zext_optab = init_convert_optab (ZERO_EXTEND);
- trunc_optab = init_convert_optab (TRUNCATE);
- sfix_optab = init_convert_optab (FIX);
- ufix_optab = init_convert_optab (UNSIGNED_FIX);
- sfixtrunc_optab = init_convert_optab (UNKNOWN);
- ufixtrunc_optab = init_convert_optab (UNKNOWN);
- sfloat_optab = init_convert_optab (FLOAT);
- ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
-
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- {
- movmem_optab[i] = CODE_FOR_nothing;
- cmpstr_optab[i] = CODE_FOR_nothing;
- cmpstrn_optab[i] = CODE_FOR_nothing;
- cmpmem_optab[i] = CODE_FOR_nothing;
- setmem_optab[i] = CODE_FOR_nothing;
-
- sync_add_optab[i] = CODE_FOR_nothing;
- sync_sub_optab[i] = CODE_FOR_nothing;
- sync_ior_optab[i] = CODE_FOR_nothing;
- sync_and_optab[i] = CODE_FOR_nothing;
- sync_xor_optab[i] = CODE_FOR_nothing;
- sync_nand_optab[i] = CODE_FOR_nothing;
- sync_old_add_optab[i] = CODE_FOR_nothing;
- sync_old_sub_optab[i] = CODE_FOR_nothing;
- sync_old_ior_optab[i] = CODE_FOR_nothing;
- sync_old_and_optab[i] = CODE_FOR_nothing;
- sync_old_xor_optab[i] = CODE_FOR_nothing;
- sync_old_nand_optab[i] = CODE_FOR_nothing;
- sync_new_add_optab[i] = CODE_FOR_nothing;
- sync_new_sub_optab[i] = CODE_FOR_nothing;
- sync_new_ior_optab[i] = CODE_FOR_nothing;
- sync_new_and_optab[i] = CODE_FOR_nothing;
- sync_new_xor_optab[i] = CODE_FOR_nothing;
- sync_new_nand_optab[i] = CODE_FOR_nothing;
- sync_compare_and_swap[i] = CODE_FOR_nothing;
- sync_compare_and_swap_cc[i] = CODE_FOR_nothing;
- sync_lock_test_and_set[i] = CODE_FOR_nothing;
- sync_lock_release[i] = CODE_FOR_nothing;
-
- reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
- }
-
- /* Fill in the optabs with the insns we support. */
- init_all_optabs ();
-
- /* Initialize the optabs with the names of the library functions. */
- init_integral_libfuncs (add_optab, "add", '3');
- init_floating_libfuncs (add_optab, "add", '3');
- init_integral_libfuncs (addv_optab, "addv", '3');
- init_floating_libfuncs (addv_optab, "add", '3');
- init_integral_libfuncs (sub_optab, "sub", '3');
- init_floating_libfuncs (sub_optab, "sub", '3');
- init_integral_libfuncs (subv_optab, "subv", '3');
- init_floating_libfuncs (subv_optab, "sub", '3');
- init_integral_libfuncs (smul_optab, "mul", '3');
- init_floating_libfuncs (smul_optab, "mul", '3');
- init_integral_libfuncs (smulv_optab, "mulv", '3');
- init_floating_libfuncs (smulv_optab, "mul", '3');
- init_integral_libfuncs (sdiv_optab, "div", '3');
- init_floating_libfuncs (sdiv_optab, "div", '3');
- init_integral_libfuncs (sdivv_optab, "divv", '3');
- init_integral_libfuncs (udiv_optab, "udiv", '3');
- init_integral_libfuncs (sdivmod_optab, "divmod", '4');
- init_integral_libfuncs (udivmod_optab, "udivmod", '4');
- init_integral_libfuncs (smod_optab, "mod", '3');
- init_integral_libfuncs (umod_optab, "umod", '3');
- init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
- init_integral_libfuncs (and_optab, "and", '3');
- init_integral_libfuncs (ior_optab, "ior", '3');
- init_integral_libfuncs (xor_optab, "xor", '3');
- init_integral_libfuncs (ashl_optab, "ashl", '3');
- init_integral_libfuncs (ashr_optab, "ashr", '3');
- init_integral_libfuncs (lshr_optab, "lshr", '3');
- init_integral_libfuncs (smin_optab, "min", '3');
- init_floating_libfuncs (smin_optab, "min", '3');
- init_integral_libfuncs (smax_optab, "max", '3');
- init_floating_libfuncs (smax_optab, "max", '3');
- init_integral_libfuncs (umin_optab, "umin", '3');
- init_integral_libfuncs (umax_optab, "umax", '3');
- init_integral_libfuncs (neg_optab, "neg", '2');
- init_floating_libfuncs (neg_optab, "neg", '2');
- init_integral_libfuncs (negv_optab, "negv", '2');
- init_floating_libfuncs (negv_optab, "neg", '2');
- init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
- init_integral_libfuncs (ffs_optab, "ffs", '2');
- init_integral_libfuncs (clz_optab, "clz", '2');
- init_integral_libfuncs (ctz_optab, "ctz", '2');
- init_integral_libfuncs (popcount_optab, "popcount", '2');
- init_integral_libfuncs (parity_optab, "parity", '2');
-
- /* Comparison libcalls for integers MUST come in pairs,
- signed/unsigned. */
- init_integral_libfuncs (cmp_optab, "cmp", '2');
- init_integral_libfuncs (ucmp_optab, "ucmp", '2');
- init_floating_libfuncs (cmp_optab, "cmp", '2');
-
- /* EQ etc are floating point only. */
- init_floating_libfuncs (eq_optab, "eq", '2');
- init_floating_libfuncs (ne_optab, "ne", '2');
- init_floating_libfuncs (gt_optab, "gt", '2');
- init_floating_libfuncs (ge_optab, "ge", '2');
- init_floating_libfuncs (lt_optab, "lt", '2');
- init_floating_libfuncs (le_optab, "le", '2');
- init_floating_libfuncs (unord_optab, "unord", '2');
-
- init_floating_libfuncs (powi_optab, "powi", '2');
-
- /* Conversions. */
- init_interclass_conv_libfuncs (sfloat_optab, "float",
- MODE_INT, MODE_FLOAT);
- init_interclass_conv_libfuncs (sfloat_optab, "float",
- MODE_INT, MODE_DECIMAL_FLOAT);
- init_interclass_conv_libfuncs (ufloat_optab, "floatun",
- MODE_INT, MODE_FLOAT);
- init_interclass_conv_libfuncs (ufloat_optab, "floatun",
- MODE_INT, MODE_DECIMAL_FLOAT);
- init_interclass_conv_libfuncs (sfix_optab, "fix",
- MODE_FLOAT, MODE_INT);
- init_interclass_conv_libfuncs (sfix_optab, "fix",
- MODE_DECIMAL_FLOAT, MODE_INT);
- init_interclass_conv_libfuncs (ufix_optab, "fixuns",
- MODE_FLOAT, MODE_INT);
- init_interclass_conv_libfuncs (ufix_optab, "fixuns",
- MODE_DECIMAL_FLOAT, MODE_INT);
- init_interclass_conv_libfuncs (ufloat_optab, "floatuns",
- MODE_INT, MODE_DECIMAL_FLOAT);
- /* APPLE LOCAL begin mainline bswap */
- /* Explicitly initialize the bswap libfuncs since we need them to be
- valid for things other than word_mode. */
- set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
- set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
- /* APPLE LOCAL end mainline bswap */
-
- /* sext_optab is also used for FLOAT_EXTEND. */
- init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
- init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, true);
- init_interclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, MODE_DECIMAL_FLOAT);
- init_interclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, MODE_FLOAT);
- init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
- init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, false);
- init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, MODE_DECIMAL_FLOAT);
- init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, MODE_FLOAT);
-
- /* Use cabs for double complex abs, since systems generally have cabs.
- Don't define any libcall for float complex, so that cabs will be used. */
- if (complex_double_type_node)
- abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
- = init_one_libfunc ("cabs");
-
- /* The ffs function operates on `int'. */
- ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
- = init_one_libfunc ("ffs");
-
- abort_libfunc = init_one_libfunc ("abort");
- memcpy_libfunc = init_one_libfunc ("memcpy");
- memmove_libfunc = init_one_libfunc ("memmove");
- memcmp_libfunc = init_one_libfunc ("memcmp");
- memset_libfunc = init_one_libfunc ("memset");
- setbits_libfunc = init_one_libfunc ("__setbits");
-
-#ifndef DONT_USE_BUILTIN_SETJMP
- setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
- longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
-#else
- setjmp_libfunc = init_one_libfunc ("setjmp");
- longjmp_libfunc = init_one_libfunc ("longjmp");
-#endif
- unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
- unwind_sjlj_unregister_libfunc
- = init_one_libfunc ("_Unwind_SjLj_Unregister");
-
- /* For function entry/exit instrumentation. */
- profile_function_entry_libfunc
- = init_one_libfunc ("__cyg_profile_func_enter");
- profile_function_exit_libfunc
- = init_one_libfunc ("__cyg_profile_func_exit");
-
- gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
-
- if (HAVE_conditional_trap)
- trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
-
- /* Allow the target to add more libcalls or rename some, etc. */
- targetm.init_libfuncs ();
-}
-
-#ifdef DEBUG
-
-/* Print information about the current contents of the optabs on
- STDERR. */
-
-static void
-debug_optab_libfuncs (void)
-{
- int i;
- int j;
- int k;
-
- /* Dump the arithmetic optabs. */
- for (i = 0; i != (int) OTI_MAX; i++)
- for (j = 0; j < NUM_MACHINE_MODES; ++j)
- {
- optab o;
- struct optab_handlers *h;
-
- o = optab_table[i];
- h = &o->handlers[j];
- if (h->libfunc)
- {
- gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF);
- fprintf (stderr, "%s\t%s:\t%s\n",
- GET_RTX_NAME (o->code),
- GET_MODE_NAME (j),
- XSTR (h->libfunc, 0));
- }
- }
-
- /* Dump the conversion optabs. */
- for (i = 0; i < (int) COI_MAX; ++i)
- for (j = 0; j < NUM_MACHINE_MODES; ++j)
- for (k = 0; k < NUM_MACHINE_MODES; ++k)
- {
- convert_optab o;
- struct optab_handlers *h;
-
- o = &convert_optab_table[i];
- h = &o->handlers[j][k];
- if (h->libfunc)
- {
- gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF);
- fprintf (stderr, "%s\t%s\t%s:\t%s\n",
- GET_RTX_NAME (o->code),
- GET_MODE_NAME (j),
- GET_MODE_NAME (k),
- XSTR (h->libfunc, 0));
- }
- }
-}
-
-#endif /* DEBUG */
-
-
-/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
- CODE. Return 0 on failure. */
-
-rtx
-gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
- rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
-{
- enum machine_mode mode = GET_MODE (op1);
- enum insn_code icode;
- rtx insn;
-
- if (!HAVE_conditional_trap)
- return 0;
-
- if (mode == VOIDmode)
- return 0;
-
- icode = cmp_optab->handlers[(int) mode].insn_code;
- if (icode == CODE_FOR_nothing)
- return 0;
-
- start_sequence ();
- op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
- op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
- if (!op1 || !op2)
- {
- end_sequence ();
- return 0;
- }
- emit_insn (GEN_FCN (icode) (op1, op2));
-
- PUT_CODE (trap_rtx, code);
- gcc_assert (HAVE_conditional_trap);
- insn = gen_conditional_trap (trap_rtx, tcode);
- if (insn)
- {
- emit_insn (insn);
- insn = get_insns ();
- }
- end_sequence ();
-
- return insn;
-}
-
-/* Return rtx code for TCODE. Use UNSIGNEDP to select signed
- or unsigned operation code. */
-
-static enum rtx_code
-get_rtx_code (enum tree_code tcode, bool unsignedp)
-{
- enum rtx_code code;
- switch (tcode)
- {
- case EQ_EXPR:
- code = EQ;
- break;
- case NE_EXPR:
- code = NE;
- break;
- case LT_EXPR:
- code = unsignedp ? LTU : LT;
- break;
- case LE_EXPR:
- code = unsignedp ? LEU : LE;
- break;
- case GT_EXPR:
- code = unsignedp ? GTU : GT;
- break;
- case GE_EXPR:
- code = unsignedp ? GEU : GE;
- break;
-
- case UNORDERED_EXPR:
- code = UNORDERED;
- break;
- case ORDERED_EXPR:
- code = ORDERED;
- break;
- case UNLT_EXPR:
- code = UNLT;
- break;
- case UNLE_EXPR:
- code = UNLE;
- break;
- case UNGT_EXPR:
- code = UNGT;
- break;
- case UNGE_EXPR:
- code = UNGE;
- break;
- case UNEQ_EXPR:
- code = UNEQ;
- break;
- case LTGT_EXPR:
- code = LTGT;
- break;
-
- default:
- gcc_unreachable ();
- }
- return code;
-}
-
-/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
- unsigned operators. Do not generate compare instruction. */
-
-static rtx
-vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
-{
- enum rtx_code rcode;
- tree t_op0, t_op1;
- rtx rtx_op0, rtx_op1;
-
- /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
- ensures that condition is a relational operation. */
- gcc_assert (COMPARISON_CLASS_P (cond));
-
- rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
- t_op0 = TREE_OPERAND (cond, 0);
- t_op1 = TREE_OPERAND (cond, 1);
-
- /* Expand operands. */
- rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)), 1);
- rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)), 1);
-
- if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
- && GET_MODE (rtx_op0) != VOIDmode)
- rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
-
- if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
- && GET_MODE (rtx_op1) != VOIDmode)
- rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
-
- return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
-}
-
-/* Return insn code for VEC_COND_EXPR EXPR. */
-
-static inline enum insn_code
-get_vcond_icode (tree expr, enum machine_mode mode)
-{
- enum insn_code icode = CODE_FOR_nothing;
-
- if (TYPE_UNSIGNED (TREE_TYPE (expr)))
- icode = vcondu_gen_code[mode];
- else
- icode = vcond_gen_code[mode];
- return icode;
-}
-
-/* Return TRUE iff, appropriate vector insns are available
- for vector cond expr expr in VMODE mode. */
-
-bool
-expand_vec_cond_expr_p (tree expr, enum machine_mode vmode)
-{
- if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing)
- return false;
- return true;
-}
-
-/* Generate insns for VEC_COND_EXPR. */
-
-rtx
-expand_vec_cond_expr (tree vec_cond_expr, rtx target)
-{
- enum insn_code icode;
- rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
- enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr));
- bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr));
-
- icode = get_vcond_icode (vec_cond_expr, mode);
- if (icode == CODE_FOR_nothing)
- return 0;
-
- if (!target || !insn_data[icode].operand[0].predicate (target, mode))
- target = gen_reg_rtx (mode);
-
- /* Get comparison rtx. First expand both cond expr operands. */
- comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0),
- unsignedp, icode);
- cc_op0 = XEXP (comparison, 0);
- cc_op1 = XEXP (comparison, 1);
- /* Expand both operands and force them in reg, if required. */
- rtx_op1 = expand_expr (TREE_OPERAND (vec_cond_expr, 1),
- NULL_RTX, VOIDmode, EXPAND_NORMAL);
- if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
- && mode != VOIDmode)
- rtx_op1 = force_reg (mode, rtx_op1);
-
- rtx_op2 = expand_expr (TREE_OPERAND (vec_cond_expr, 2),
- NULL_RTX, VOIDmode, EXPAND_NORMAL);
- if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
- && mode != VOIDmode)
- rtx_op2 = force_reg (mode, rtx_op2);
-
- /* Emit instruction! */
- emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
- comparison, cc_op0, cc_op1));
-
- return target;
-}
-
-
-/* This is an internal subroutine of the other compare_and_swap expanders.
- MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
- operation. TARGET is an optional place to store the value result of
- the operation. ICODE is the particular instruction to expand. Return
- the result of the operation. */
-
-static rtx
-expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
- rtx target, enum insn_code icode)
-{
- enum machine_mode mode = GET_MODE (mem);
- rtx insn;
-
- if (!target || !insn_data[icode].operand[0].predicate (target, mode))
- target = gen_reg_rtx (mode);
-
- if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
- old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
- if (!insn_data[icode].operand[2].predicate (old_val, mode))
- old_val = force_reg (mode, old_val);
-
- if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
- new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
- if (!insn_data[icode].operand[3].predicate (new_val, mode))
- new_val = force_reg (mode, new_val);
-
- insn = GEN_FCN (icode) (target, mem, old_val, new_val);
- if (insn == NULL_RTX)
- return NULL_RTX;
- emit_insn (insn);
-
- return target;
-}
-
-/* Expand a compare-and-swap operation and return its value. */
-
-rtx
-expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
-{
- enum machine_mode mode = GET_MODE (mem);
- enum insn_code icode = sync_compare_and_swap[mode];
-
- if (icode == CODE_FOR_nothing)
- return NULL_RTX;
-
- return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
-}
-
-/* Expand a compare-and-swap operation and store true into the result if
- the operation was successful and false otherwise. Return the result.
- Unlike other routines, TARGET is not optional. */
-
-rtx
-expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
-{
- enum machine_mode mode = GET_MODE (mem);
- enum insn_code icode;
- rtx subtarget, label0, label1;
-
- /* If the target supports a compare-and-swap pattern that simultaneously
- sets some flag for success, then use it. Otherwise use the regular
- compare-and-swap and follow that immediately with a compare insn. */
- icode = sync_compare_and_swap_cc[mode];
- switch (icode)
- {
- default:
- subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
- NULL_RTX, icode);
- if (subtarget != NULL_RTX)
- break;
-
- /* FALLTHRU */
- case CODE_FOR_nothing:
- icode = sync_compare_and_swap[mode];
- if (icode == CODE_FOR_nothing)
- return NULL_RTX;
-
- /* Ensure that if old_val == mem, that we're not comparing
- against an old value. */
- if (MEM_P (old_val))
- old_val = force_reg (mode, old_val);
-
- subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
- NULL_RTX, icode);
- if (subtarget == NULL_RTX)
- return NULL_RTX;
-
- emit_cmp_insn (subtarget, old_val, EQ, const0_rtx, mode, true);
- }
-
- /* If the target has a sane STORE_FLAG_VALUE, then go ahead and use a
- setcc instruction from the beginning. We don't work too hard here,
- but it's nice to not be stupid about initial code gen either. */
- if (STORE_FLAG_VALUE == 1)
- {
- icode = setcc_gen_code[EQ];
- if (icode != CODE_FOR_nothing)
- {
- enum machine_mode cmode = insn_data[icode].operand[0].mode;
- rtx insn;
-
- subtarget = target;
- if (!insn_data[icode].operand[0].predicate (target, cmode))
- subtarget = gen_reg_rtx (cmode);
-
- insn = GEN_FCN (icode) (subtarget);
- if (insn)
- {
- emit_insn (insn);
- if (GET_MODE (target) != GET_MODE (subtarget))
- {
- convert_move (target, subtarget, 1);
- subtarget = target;
- }
- return subtarget;
- }
- }
- }
-
- /* Without an appropriate setcc instruction, use a set of branches to
- get 1 and 0 stored into target. Presumably if the target has a
- STORE_FLAG_VALUE that isn't 1, then this will get cleaned up by ifcvt. */
-
- label0 = gen_label_rtx ();
- label1 = gen_label_rtx ();
-
- emit_jump_insn (bcc_gen_fctn[EQ] (label0));
- emit_move_insn (target, const0_rtx);
- emit_jump_insn (gen_jump (label1));
- emit_barrier ();
- emit_label (label0);
- emit_move_insn (target, const1_rtx);
- emit_label (label1);
-
- return target;
-}
-
-/* This is a helper function for the other atomic operations. This function
- emits a loop that contains SEQ that iterates until a compare-and-swap
- operation at the end succeeds. MEM is the memory to be modified. SEQ is
- a set of instructions that takes a value from OLD_REG as an input and
- produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
- set to the current contents of MEM. After SEQ, a compare-and-swap will
- attempt to update MEM with NEW_REG. The function returns true when the
- loop was generated successfully. */
-
-static bool
-expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
-{
- enum machine_mode mode = GET_MODE (mem);
- enum insn_code icode;
- rtx label, cmp_reg, subtarget;
-
- /* The loop we want to generate looks like
-
- cmp_reg = mem;
- label:
- old_reg = cmp_reg;
- seq;
- cmp_reg = compare-and-swap(mem, old_reg, new_reg)
- if (cmp_reg != old_reg)
- goto label;
-
- Note that we only do the plain load from memory once. Subsequent
- iterations use the value loaded by the compare-and-swap pattern. */
-
- label = gen_label_rtx ();
- cmp_reg = gen_reg_rtx (mode);
-
- emit_move_insn (cmp_reg, mem);
- emit_label (label);
- emit_move_insn (old_reg, cmp_reg);
- if (seq)
- emit_insn (seq);
-
- /* If the target supports a compare-and-swap pattern that simultaneously
- sets some flag for success, then use it. Otherwise use the regular
- compare-and-swap and follow that immediately with a compare insn. */
- icode = sync_compare_and_swap_cc[mode];
- switch (icode)
- {
- default:
- subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
- cmp_reg, icode);
- if (subtarget != NULL_RTX)
- {
- gcc_assert (subtarget == cmp_reg);
- break;
- }
-
- /* FALLTHRU */
- case CODE_FOR_nothing:
- icode = sync_compare_and_swap[mode];
- if (icode == CODE_FOR_nothing)
- return false;
-
- subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
- cmp_reg, icode);
- if (subtarget == NULL_RTX)
- return false;
- if (subtarget != cmp_reg)
- emit_move_insn (cmp_reg, subtarget);
-
- emit_cmp_insn (cmp_reg, old_reg, EQ, const0_rtx, mode, true);
- }
-
- /* ??? Mark this jump predicted not taken? */
- emit_jump_insn (bcc_gen_fctn[NE] (label));
-
- return true;
-}
-
-/* This function generates the atomic operation MEM CODE= VAL. In this
- case, we do not care about any resulting value. Returns NULL if we
- cannot generate the operation. */
-
-rtx
-expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
-{
- enum machine_mode mode = GET_MODE (mem);
- enum insn_code icode;
- rtx insn;
-
- /* Look to see if the target supports the operation directly. */
- switch (code)
- {
- case PLUS:
- icode = sync_add_optab[mode];
- break;
- case IOR:
- icode = sync_ior_optab[mode];
- break;
- case XOR:
- icode = sync_xor_optab[mode];
- break;
- case AND:
- icode = sync_and_optab[mode];
- break;
- case NOT:
- icode = sync_nand_optab[mode];
- break;
-
- case MINUS:
- icode = sync_sub_optab[mode];
- if (icode == CODE_FOR_nothing)
- {
- icode = sync_add_optab[mode];
- if (icode != CODE_FOR_nothing)
- {
- val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
- code = PLUS;
- }
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- /* Generate the direct operation, if present. */
- if (icode != CODE_FOR_nothing)
- {
- if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
- val = convert_modes (mode, GET_MODE (val), val, 1);
- if (!insn_data[icode].operand[1].predicate (val, mode))
- val = force_reg (mode, val);
-
- insn = GEN_FCN (icode) (mem, val);
- if (insn)
- {
- emit_insn (insn);
- return const0_rtx;
- }
- }
-
- /* Failing that, generate a compare-and-swap loop in which we perform the
- operation with normal arithmetic instructions. */
- if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
- {
- rtx t0 = gen_reg_rtx (mode), t1;
-
- start_sequence ();
-
- t1 = t0;
- if (code == NOT)
- {
- t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
- code = AND;
- }
- t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
- true, OPTAB_LIB_WIDEN);
-
- insn = get_insns ();
- end_sequence ();
-
- if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
- return const0_rtx;
- }
-
- return NULL_RTX;
-}
-
-/* This function generates the atomic operation MEM CODE= VAL. In this
- case, we do care about the resulting value: if AFTER is true then
- return the value MEM holds after the operation, if AFTER is false
- then return the value MEM holds before the operation. TARGET is an
- optional place for the result value to be stored. */
-
-rtx
-expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
- bool after, rtx target)
-{
- enum machine_mode mode = GET_MODE (mem);
- enum insn_code old_code, new_code, icode;
- bool compensate;
- rtx insn;
-
- /* Look to see if the target supports the operation directly. */
- switch (code)
- {
- case PLUS:
- old_code = sync_old_add_optab[mode];
- new_code = sync_new_add_optab[mode];
- break;
- case IOR:
- old_code = sync_old_ior_optab[mode];
- new_code = sync_new_ior_optab[mode];
- break;
- case XOR:
- old_code = sync_old_xor_optab[mode];
- new_code = sync_new_xor_optab[mode];
- break;
- case AND:
- old_code = sync_old_and_optab[mode];
- new_code = sync_new_and_optab[mode];
- break;
- case NOT:
- old_code = sync_old_nand_optab[mode];
- new_code = sync_new_nand_optab[mode];
- break;
-
- case MINUS:
- old_code = sync_old_sub_optab[mode];
- new_code = sync_new_sub_optab[mode];
- if (old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
- {
- old_code = sync_old_add_optab[mode];
- new_code = sync_new_add_optab[mode];
- if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
- {
- val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
- code = PLUS;
- }
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- /* If the target does supports the proper new/old operation, great. But
- if we only support the opposite old/new operation, check to see if we
- can compensate. In the case in which the old value is supported, then
- we can always perform the operation again with normal arithmetic. In
- the case in which the new value is supported, then we can only handle
- this in the case the operation is reversible. */
- compensate = false;
- if (after)
- {
- icode = new_code;
- if (icode == CODE_FOR_nothing)
- {
- icode = old_code;
- if (icode != CODE_FOR_nothing)
- compensate = true;
- }
- }
- else
- {
- icode = old_code;
- if (icode == CODE_FOR_nothing
- && (code == PLUS || code == MINUS || code == XOR))
- {
- icode = new_code;
- if (icode != CODE_FOR_nothing)
- compensate = true;
- }
- }
-
- /* If we found something supported, great. */
- if (icode != CODE_FOR_nothing)
- {
- if (!target || !insn_data[icode].operand[0].predicate (target, mode))
- target = gen_reg_rtx (mode);
-
- if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
- val = convert_modes (mode, GET_MODE (val), val, 1);
- if (!insn_data[icode].operand[2].predicate (val, mode))
- val = force_reg (mode, val);
-
- insn = GEN_FCN (icode) (target, mem, val);
- if (insn)
- {
- emit_insn (insn);
-
- /* If we need to compensate for using an operation with the
- wrong return value, do so now. */
- if (compensate)
- {
- if (!after)
- {
- if (code == PLUS)
- code = MINUS;
- else if (code == MINUS)
- code = PLUS;
- }
-
- if (code == NOT)
- target = expand_simple_unop (mode, NOT, target, NULL_RTX, true);
- target = expand_simple_binop (mode, code, target, val, NULL_RTX,
- true, OPTAB_LIB_WIDEN);
- }
-
- return target;
- }
- }
-
- /* Failing that, generate a compare-and-swap loop in which we perform the
- operation with normal arithmetic instructions. */
- if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
- {
- rtx t0 = gen_reg_rtx (mode), t1;
-
- if (!target || !register_operand (target, mode))
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- if (!after)
- emit_move_insn (target, t0);
- t1 = t0;
- if (code == NOT)
- {
- t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
- code = AND;
- }
- t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
- true, OPTAB_LIB_WIDEN);
- if (after)
- emit_move_insn (target, t1);
-
- insn = get_insns ();
- end_sequence ();
-
- if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
- return target;
- }
-
- return NULL_RTX;
-}
-
-/* This function expands a test-and-set operation. Ideally we atomically
- store VAL in MEM and return the previous value in MEM. Some targets
- may not support this operation and only support VAL with the constant 1;
- in this case while the return value will be 0/1, but the exact value
- stored in MEM is target defined. TARGET is an option place to stick
- the return value. */
-
-rtx
-expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
-{
- enum machine_mode mode = GET_MODE (mem);
- enum insn_code icode;
- rtx insn;
-
- /* If the target supports the test-and-set directly, great. */
- icode = sync_lock_test_and_set[mode];
- if (icode != CODE_FOR_nothing)
- {
- if (!target || !insn_data[icode].operand[0].predicate (target, mode))
- target = gen_reg_rtx (mode);
-
- if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
- val = convert_modes (mode, GET_MODE (val), val, 1);
- if (!insn_data[icode].operand[2].predicate (val, mode))
- val = force_reg (mode, val);
-
- insn = GEN_FCN (icode) (target, mem, val);
- if (insn)
- {
- emit_insn (insn);
- return target;
- }
- }
-
- /* Otherwise, use a compare-and-swap loop for the exchange. */
- if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
- {
- if (!target || !register_operand (target, mode))
- target = gen_reg_rtx (mode);
- if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
- val = convert_modes (mode, GET_MODE (val), val, 1);
- if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
- return target;
- }
-
- return NULL_RTX;
-}
-
-#include "gt-optabs.h"