aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/modulo-sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/modulo-sched.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/modulo-sched.c2556
1 files changed, 0 insertions, 2556 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/modulo-sched.c b/gcc-4.2.1-5666.3/gcc/modulo-sched.c
deleted file mode 100644
index 56df63c89..000000000
--- a/gcc-4.2.1-5666.3/gcc/modulo-sched.c
+++ /dev/null
@@ -1,2556 +0,0 @@
-/* Swing Modulo Scheduling implementation.
- Copyright (C) 2004, 2005, 2006
- Free Software Foundation, Inc.
- Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "toplev.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "hard-reg-set.h"
-#include "regs.h"
-#include "function.h"
-#include "flags.h"
-#include "insn-config.h"
-#include "insn-attr.h"
-#include "except.h"
-#include "toplev.h"
-#include "recog.h"
-#include "sched-int.h"
-#include "target.h"
-#include "cfglayout.h"
-#include "cfgloop.h"
-#include "cfghooks.h"
-#include "expr.h"
-#include "params.h"
-#include "gcov-io.h"
-#include "df.h"
-#include "ddg.h"
-#include "timevar.h"
-#include "tree-pass.h"
-
-#ifdef INSN_SCHEDULING
-
-/* This file contains the implementation of the Swing Modulo Scheduler,
- described in the following references:
- [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
- Lifetime--sensitive modulo scheduling in a production environment.
- IEEE Trans. on Comps., 50(3), March 2001
- [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
- Swing Modulo Scheduling: A Lifetime Sensitive Approach.
- PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
-
- The basic structure is:
- 1. Build a data-dependence graph (DDG) for each loop.
- 2. Use the DDG to order the insns of a loop (not in topological order
- necessarily, but rather) trying to place each insn after all its
- predecessors _or_ after all its successors.
- 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
- 4. Use the ordering to perform list-scheduling of the loop:
- 1. Set II = MII. We will try to schedule the loop within II cycles.
- 2. Try to schedule the insns one by one according to the ordering.
- For each insn compute an interval of cycles by considering already-
- scheduled preds and succs (and associated latencies); try to place
- the insn in the cycles of this window checking for potential
- resource conflicts (using the DFA interface).
- Note: this is different from the cycle-scheduling of schedule_insns;
- here the insns are not scheduled monotonically top-down (nor bottom-
- up).
- 3. If failed in scheduling all insns - bump II++ and try again, unless
- II reaches an upper bound MaxII, in which case report failure.
- 5. If we succeeded in scheduling the loop within II cycles, we now
- generate prolog and epilog, decrease the counter of the loop, and
- perform modulo variable expansion for live ranges that span more than
- II cycles (i.e. use register copies to prevent a def from overwriting
- itself before reaching the use).
-*/
-
-
-/* This page defines partial-schedule structures and functions for
- modulo scheduling. */
-
-typedef struct partial_schedule *partial_schedule_ptr;
-typedef struct ps_insn *ps_insn_ptr;
-
-/* The minimum (absolute) cycle that a node of ps was scheduled in. */
-#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
-
-/* The maximum (absolute) cycle that a node of ps was scheduled in. */
-#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
-
-/* Perform signed modulo, always returning a non-negative value. */
-#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
-
-/* The number of different iterations the nodes in ps span, assuming
- the stage boundaries are placed efficiently. */
-#define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \
- + 1 + (ps)->ii - 1) / (ps)->ii)
-
-/* A single instruction in the partial schedule. */
-struct ps_insn
-{
- /* The corresponding DDG_NODE. */
- ddg_node_ptr node;
-
- /* The (absolute) cycle in which the PS instruction is scheduled.
- Same as SCHED_TIME (node). */
- int cycle;
-
- /* The next/prev PS_INSN in the same row. */
- ps_insn_ptr next_in_row,
- prev_in_row;
-
- /* The number of nodes in the same row that come after this node. */
- int row_rest_count;
-};
-
-/* Holds the partial schedule as an array of II rows. Each entry of the
- array points to a linked list of PS_INSNs, which represents the
- instructions that are scheduled for that row. */
-struct partial_schedule
-{
- int ii; /* Number of rows in the partial schedule. */
- int history; /* Threshold for conflict checking using DFA. */
-
- /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
- ps_insn_ptr *rows;
-
- /* The earliest absolute cycle of an insn in the partial schedule. */
- int min_cycle;
-
- /* The latest absolute cycle of an insn in the partial schedule. */
- int max_cycle;
-
- ddg_ptr g; /* The DDG of the insns in the partial schedule. */
-};
-
-/* We use this to record all the register replacements we do in
- the kernel so we can undo SMS if it is not profitable. */
-struct undo_replace_buff_elem
-{
- rtx insn;
- rtx orig_reg;
- rtx new_reg;
- struct undo_replace_buff_elem *next;
-};
-
-
-
-static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
-static void free_partial_schedule (partial_schedule_ptr);
-static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
-void print_partial_schedule (partial_schedule_ptr, FILE *);
-static int kernel_number_of_cycles (rtx first_insn, rtx last_insn);
-static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
- ddg_node_ptr node, int cycle,
- sbitmap must_precede,
- sbitmap must_follow);
-static void rotate_partial_schedule (partial_schedule_ptr, int);
-void set_row_column_for_ps (partial_schedule_ptr);
-static bool ps_unschedule_node (partial_schedule_ptr, ddg_node_ptr );
-
-
-/* This page defines constants and structures for the modulo scheduling
- driver. */
-
-/* As in haifa-sched.c: */
-/* issue_rate is the number of insns that can be scheduled in the same
- machine cycle. It can be defined in the config/mach/mach.h file,
- otherwise we set it to 1. */
-
-static int issue_rate;
-
-static int sms_order_nodes (ddg_ptr, int, int * result);
-static void set_node_sched_params (ddg_ptr);
-static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
-static void permute_partial_schedule (partial_schedule_ptr ps, rtx last);
-static void generate_prolog_epilog (partial_schedule_ptr ,struct loop * loop, rtx);
-static void duplicate_insns_of_cycles (partial_schedule_ptr ps,
- int from_stage, int to_stage,
- int is_prolog);
-
-#define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
-#define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
-#define SCHED_FIRST_REG_MOVE(x) \
- (((node_sched_params_ptr)(x)->aux.info)->first_reg_move)
-#define SCHED_NREG_MOVES(x) \
- (((node_sched_params_ptr)(x)->aux.info)->nreg_moves)
-#define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row)
-#define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage)
-#define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column)
-
-/* The scheduling parameters held for each node. */
-typedef struct node_sched_params
-{
- int asap; /* A lower-bound on the absolute scheduling cycle. */
- int time; /* The absolute scheduling cycle (time >= asap). */
-
- /* The following field (first_reg_move) is a pointer to the first
- register-move instruction added to handle the modulo-variable-expansion
- of the register defined by this node. This register-move copies the
- original register defined by the node. */
- rtx first_reg_move;
-
- /* The number of register-move instructions added, immediately preceding
- first_reg_move. */
- int nreg_moves;
-
- int row; /* Holds time % ii. */
- int stage; /* Holds time / ii. */
-
- /* The column of a node inside the ps. If nodes u, v are on the same row,
- u will precede v if column (u) < column (v). */
- int column;
-} *node_sched_params_ptr;
-
-
-/* The following three functions are copied from the current scheduler
- code in order to use sched_analyze() for computing the dependencies.
- They are used when initializing the sched_info structure. */
-static const char *
-sms_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED)
-{
- static char tmp[80];
-
- sprintf (tmp, "i%4d", INSN_UID (insn));
- return tmp;
-}
-
-static void
-compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
- regset cond_exec ATTRIBUTE_UNUSED,
- regset used ATTRIBUTE_UNUSED,
- regset set ATTRIBUTE_UNUSED)
-{
-}
-
-static struct sched_info sms_sched_info =
-{
- NULL,
- NULL,
- NULL,
- NULL,
- NULL,
- sms_print_insn,
- NULL,
- compute_jump_reg_dependencies,
- NULL, NULL,
- NULL, NULL,
- 0, 0, 0,
-
- NULL, NULL, NULL, NULL, NULL,
-#ifdef ENABLE_CHECKING
- NULL,
-#endif
- 0
-};
-
-
-/* Return the register decremented and tested in INSN,
- or zero if it is not a decrement-and-branch insn. */
-
-static rtx
-doloop_register_get (rtx insn ATTRIBUTE_UNUSED)
-{
-#ifdef HAVE_doloop_end
- rtx pattern, reg, condition;
-
- if (! JUMP_P (insn))
- return NULL_RTX;
-
- pattern = PATTERN (insn);
- condition = doloop_condition_get (pattern);
- if (! condition)
- return NULL_RTX;
-
- if (REG_P (XEXP (condition, 0)))
- reg = XEXP (condition, 0);
- else if (GET_CODE (XEXP (condition, 0)) == PLUS
- && REG_P (XEXP (XEXP (condition, 0), 0)))
- reg = XEXP (XEXP (condition, 0), 0);
- else
- gcc_unreachable ();
-
- return reg;
-#else
- return NULL_RTX;
-#endif
-}
-
-/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
- that the number of iterations is a compile-time constant. If so,
- return the rtx that sets COUNT_REG to a constant, and set COUNT to
- this constant. Otherwise return 0. */
-static rtx
-const_iteration_count (rtx count_reg, basic_block pre_header,
- HOST_WIDEST_INT * count)
-{
- rtx insn;
- rtx head, tail;
-
- if (! pre_header)
- return NULL_RTX;
-
- get_ebb_head_tail (pre_header, pre_header, &head, &tail);
-
- for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
- if (INSN_P (insn) && single_set (insn) &&
- rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
- {
- rtx pat = single_set (insn);
-
- if (GET_CODE (SET_SRC (pat)) == CONST_INT)
- {
- *count = INTVAL (SET_SRC (pat));
- return insn;
- }
-
- return NULL_RTX;
- }
-
- return NULL_RTX;
-}
-
-/* A very simple resource-based lower bound on the initiation interval.
- ??? Improve the accuracy of this bound by considering the
- utilization of various units. */
-static int
-res_MII (ddg_ptr g)
-{
- return (g->num_nodes / issue_rate);
-}
-
-
-/* Points to the array that contains the sched data for each node. */
-static node_sched_params_ptr node_sched_params;
-
-/* Allocate sched_params for each node and initialize it. Assumes that
- the aux field of each node contain the asap bound (computed earlier),
- and copies it into the sched_params field. */
-static void
-set_node_sched_params (ddg_ptr g)
-{
- int i;
-
- /* Allocate for each node in the DDG a place to hold the "sched_data". */
- /* Initialize ASAP/ALAP/HIGHT to zero. */
- node_sched_params = (node_sched_params_ptr)
- xcalloc (g->num_nodes,
- sizeof (struct node_sched_params));
-
- /* Set the pointer of the general data of the node to point to the
- appropriate sched_params structure. */
- for (i = 0; i < g->num_nodes; i++)
- {
- /* Watch out for aliasing problems? */
- node_sched_params[i].asap = g->nodes[i].aux.count;
- g->nodes[i].aux.info = &node_sched_params[i];
- }
-}
-
-static void
-print_node_sched_params (FILE * file, int num_nodes)
-{
- int i;
-
- if (! file)
- return;
- for (i = 0; i < num_nodes; i++)
- {
- node_sched_params_ptr nsp = &node_sched_params[i];
- rtx reg_move = nsp->first_reg_move;
- int j;
-
- fprintf (file, "Node %d:\n", i);
- fprintf (file, " asap = %d:\n", nsp->asap);
- fprintf (file, " time = %d:\n", nsp->time);
- fprintf (file, " nreg_moves = %d:\n", nsp->nreg_moves);
- for (j = 0; j < nsp->nreg_moves; j++)
- {
- fprintf (file, " reg_move = ");
- print_rtl_single (file, reg_move);
- reg_move = PREV_INSN (reg_move);
- }
- }
-}
-
-/* Calculate an upper bound for II. SMS should not schedule the loop if it
- requires more cycles than this bound. Currently set to the sum of the
- longest latency edge for each node. Reset based on experiments. */
-static int
-calculate_maxii (ddg_ptr g)
-{
- int i;
- int maxii = 0;
-
- for (i = 0; i < g->num_nodes; i++)
- {
- ddg_node_ptr u = &g->nodes[i];
- ddg_edge_ptr e;
- int max_edge_latency = 0;
-
- for (e = u->out; e; e = e->next_out)
- max_edge_latency = MAX (max_edge_latency, e->latency);
-
- maxii += max_edge_latency;
- }
- return maxii;
-}
-
-/*
- Breaking intra-loop register anti-dependences:
- Each intra-loop register anti-dependence implies a cross-iteration true
- dependence of distance 1. Therefore, we can remove such false dependencies
- and figure out if the partial schedule broke them by checking if (for a
- true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
- if so generate a register move. The number of such moves is equal to:
- SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
- nreg_moves = ----------------------------------- + 1 - { dependence.
- ii { 1 if not.
-*/
-static struct undo_replace_buff_elem *
-generate_reg_moves (partial_schedule_ptr ps)
-{
- ddg_ptr g = ps->g;
- int ii = ps->ii;
- int i;
- struct undo_replace_buff_elem *reg_move_replaces = NULL;
-
- for (i = 0; i < g->num_nodes; i++)
- {
- ddg_node_ptr u = &g->nodes[i];
- ddg_edge_ptr e;
- int nreg_moves = 0, i_reg_move;
- sbitmap *uses_of_defs;
- rtx last_reg_move;
- rtx prev_reg, old_reg;
-
- /* Compute the number of reg_moves needed for u, by looking at life
- ranges started at u (excluding self-loops). */
- for (e = u->out; e; e = e->next_out)
- if (e->type == TRUE_DEP && e->dest != e->src)
- {
- int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
-
- if (e->distance == 1)
- nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
-
- /* If dest precedes src in the schedule of the kernel, then dest
- will read before src writes and we can save one reg_copy. */
- if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
- && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
- nreg_moves4e--;
-
- nreg_moves = MAX (nreg_moves, nreg_moves4e);
- }
-
- if (nreg_moves == 0)
- continue;
-
- /* Every use of the register defined by node may require a different
- copy of this register, depending on the time the use is scheduled.
- Set a bitmap vector, telling which nodes use each copy of this
- register. */
- uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes);
- sbitmap_vector_zero (uses_of_defs, nreg_moves);
- for (e = u->out; e; e = e->next_out)
- if (e->type == TRUE_DEP && e->dest != e->src)
- {
- int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
-
- if (e->distance == 1)
- dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
-
- if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
- && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
- dest_copy--;
-
- if (dest_copy)
- SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid);
- }
-
- /* Now generate the reg_moves, attaching relevant uses to them. */
- SCHED_NREG_MOVES (u) = nreg_moves;
- old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
- last_reg_move = u->insn;
-
- for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
- {
- unsigned int i_use = 0;
- rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
- rtx reg_move = gen_move_insn (new_reg, prev_reg);
- sbitmap_iterator sbi;
-
- add_insn_before (reg_move, last_reg_move);
- last_reg_move = reg_move;
-
- if (!SCHED_FIRST_REG_MOVE (u))
- SCHED_FIRST_REG_MOVE (u) = reg_move;
-
- EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi)
- {
- struct undo_replace_buff_elem *rep;
-
- rep = (struct undo_replace_buff_elem *)
- xcalloc (1, sizeof (struct undo_replace_buff_elem));
- rep->insn = g->nodes[i_use].insn;
- rep->orig_reg = old_reg;
- rep->new_reg = new_reg;
-
- if (! reg_move_replaces)
- reg_move_replaces = rep;
- else
- {
- rep->next = reg_move_replaces;
- reg_move_replaces = rep;
- }
-
- replace_rtx (g->nodes[i_use].insn, old_reg, new_reg);
- }
-
- prev_reg = new_reg;
- }
- sbitmap_vector_free (uses_of_defs);
- }
- return reg_move_replaces;
-}
-
-/* We call this when we want to undo the SMS schedule for a given loop.
- One of the things that we do is to delete the register moves generated
- for the sake of SMS; this function deletes the register move instructions
- recorded in the undo buffer. */
-static void
-undo_generate_reg_moves (partial_schedule_ptr ps,
- struct undo_replace_buff_elem *reg_move_replaces)
-{
- int i,j;
-
- for (i = 0; i < ps->g->num_nodes; i++)
- {
- ddg_node_ptr u = &ps->g->nodes[i];
- rtx prev;
- rtx crr = SCHED_FIRST_REG_MOVE (u);
-
- for (j = 0; j < SCHED_NREG_MOVES (u); j++)
- {
- prev = PREV_INSN (crr);
- delete_insn (crr);
- crr = prev;
- }
- SCHED_FIRST_REG_MOVE (u) = NULL_RTX;
- }
-
- while (reg_move_replaces)
- {
- struct undo_replace_buff_elem *rep = reg_move_replaces;
-
- reg_move_replaces = reg_move_replaces->next;
- replace_rtx (rep->insn, rep->new_reg, rep->orig_reg);
- }
-}
-
-/* Free memory allocated for the undo buffer. */
-static void
-free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces)
-{
-
- while (reg_move_replaces)
- {
- struct undo_replace_buff_elem *rep = reg_move_replaces;
-
- reg_move_replaces = reg_move_replaces->next;
- free (rep);
- }
-}
-
-/* Bump the SCHED_TIMEs of all nodes to start from zero. Set the values
- of SCHED_ROW and SCHED_STAGE. */
-static void
-normalize_sched_times (partial_schedule_ptr ps)
-{
- int i;
- ddg_ptr g = ps->g;
- int amount = PS_MIN_CYCLE (ps);
- int ii = ps->ii;
-
- /* Don't include the closing branch assuming that it is the last node. */
- for (i = 0; i < g->num_nodes - 1; i++)
- {
- ddg_node_ptr u = &g->nodes[i];
- int normalized_time = SCHED_TIME (u) - amount;
-
- gcc_assert (normalized_time >= 0);
-
- SCHED_TIME (u) = normalized_time;
- SCHED_ROW (u) = normalized_time % ii;
- SCHED_STAGE (u) = normalized_time / ii;
- }
-}
-
-/* Set SCHED_COLUMN of each node according to its position in PS. */
-static void
-set_columns_for_ps (partial_schedule_ptr ps)
-{
- int row;
-
- for (row = 0; row < ps->ii; row++)
- {
- ps_insn_ptr cur_insn = ps->rows[row];
- int column = 0;
-
- for (; cur_insn; cur_insn = cur_insn->next_in_row)
- SCHED_COLUMN (cur_insn->node) = column++;
- }
-}
-
-/* Permute the insns according to their order in PS, from row 0 to
- row ii-1, and position them right before LAST. This schedules
- the insns of the loop kernel. */
-static void
-permute_partial_schedule (partial_schedule_ptr ps, rtx last)
-{
- int ii = ps->ii;
- int row;
- ps_insn_ptr ps_ij;
-
- for (row = 0; row < ii ; row++)
- for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
- if (PREV_INSN (last) != ps_ij->node->insn)
- reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn,
- PREV_INSN (last));
-}
-
-/* As part of undoing SMS we return to the original ordering of the
- instructions inside the loop kernel. Given the partial schedule PS, this
- function returns the ordering of the instruction according to their CUID
- in the DDG (PS->G), which is the original order of the instruction before
- performing SMS. */
-static void
-undo_permute_partial_schedule (partial_schedule_ptr ps, rtx last)
-{
- int i;
-
- for (i = 0 ; i < ps->g->num_nodes; i++)
- if (last == ps->g->nodes[i].insn
- || last == ps->g->nodes[i].first_note)
- break;
- else if (PREV_INSN (last) != ps->g->nodes[i].insn)
- reorder_insns_nobb (ps->g->nodes[i].first_note, ps->g->nodes[i].insn,
- PREV_INSN (last));
-}
-
-/* Used to generate the prologue & epilogue. Duplicate the subset of
- nodes whose stages are between FROM_STAGE and TO_STAGE (inclusive
- of both), together with a prefix/suffix of their reg_moves. */
-static void
-duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
- int to_stage, int for_prolog)
-{
- int row;
- ps_insn_ptr ps_ij;
-
- for (row = 0; row < ps->ii; row++)
- for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
- {
- ddg_node_ptr u_node = ps_ij->node;
- int j, i_reg_moves;
- rtx reg_move = NULL_RTX;
-
- if (for_prolog)
- {
- /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing
- number of reg_moves starting with the second occurrence of
- u_node, which is generated if its SCHED_STAGE <= to_stage. */
- i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1;
- i_reg_moves = MAX (i_reg_moves, 0);
- i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
-
- /* The reg_moves start from the *first* reg_move backwards. */
- if (i_reg_moves)
- {
- reg_move = SCHED_FIRST_REG_MOVE (u_node);
- for (j = 1; j < i_reg_moves; j++)
- reg_move = PREV_INSN (reg_move);
- }
- }
- else /* It's for the epilog. */
- {
- /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves,
- starting to decrease one stage after u_node no longer occurs;
- that is, generate all reg_moves until
- SCHED_STAGE (u_node) == from_stage - 1. */
- i_reg_moves = SCHED_NREG_MOVES (u_node)
- - (from_stage - SCHED_STAGE (u_node) - 1);
- i_reg_moves = MAX (i_reg_moves, 0);
- i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
-
- /* The reg_moves start from the *last* reg_move forwards. */
- if (i_reg_moves)
- {
- reg_move = SCHED_FIRST_REG_MOVE (u_node);
- for (j = 1; j < SCHED_NREG_MOVES (u_node); j++)
- reg_move = PREV_INSN (reg_move);
- }
- }
-
- for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
- emit_insn (copy_rtx (PATTERN (reg_move)));
- if (SCHED_STAGE (u_node) >= from_stage
- && SCHED_STAGE (u_node) <= to_stage)
- duplicate_insn_chain (u_node->first_note, u_node->insn);
- }
-}
-
-
-/* Generate the instructions (including reg_moves) for prolog & epilog. */
-static void
-generate_prolog_epilog (partial_schedule_ptr ps, struct loop * loop, rtx count_reg)
-{
- int i;
- int last_stage = PS_STAGE_COUNT (ps) - 1;
- edge e;
-
- /* Generate the prolog, inserting its insns on the loop-entry edge. */
- start_sequence ();
-
- if (count_reg)
- /* Generate a subtract instruction at the beginning of the prolog to
- adjust the loop count by STAGE_COUNT. */
- emit_insn (gen_sub2_insn (count_reg, GEN_INT (last_stage)));
-
- for (i = 0; i < last_stage; i++)
- duplicate_insns_of_cycles (ps, 0, i, 1);
-
- /* Put the prolog , on the one and only entry edge. */
- e = loop_preheader_edge (loop);
- loop_split_edge_with(e , get_insns());
-
- end_sequence ();
-
- /* Generate the epilog, inserting its insns on the loop-exit edge. */
- start_sequence ();
-
- for (i = 0; i < last_stage; i++)
- duplicate_insns_of_cycles (ps, i + 1, last_stage, 0);
-
- /* Put the epilogue on the one and only one exit edge. */
- gcc_assert (loop->single_exit);
- e = loop->single_exit;
- loop_split_edge_with(e , get_insns());
- end_sequence ();
-}
-
-/* Return the line note insn preceding INSN, for debugging. Taken from
- emit-rtl.c. */
-static rtx
-find_line_note (rtx insn)
-{
- for (; insn; insn = PREV_INSN (insn))
- if (NOTE_P (insn)
- && NOTE_LINE_NUMBER (insn) >= 0)
- break;
-
- return insn;
-}
-
-/* Return true if all the BBs of the loop are empty except the
- loop header. */
-static bool
-loop_single_full_bb_p (struct loop *loop)
-{
- unsigned i;
- basic_block *bbs = get_loop_body (loop);
-
- for (i = 0; i < loop->num_nodes ; i++)
- {
- rtx head, tail;
- bool empty_bb = true;
-
- if (bbs[i] == loop->header)
- continue;
-
- /* Make sure that basic blocks other than the header
- have only notes labels or jumps. */
- get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
- for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
- {
- if (NOTE_P (head) || LABEL_P (head)
- || (INSN_P (head) && JUMP_P (head)))
- continue;
- empty_bb = false;
- break;
- }
-
- if (! empty_bb)
- {
- free (bbs);
- return false;
- }
- }
- free (bbs);
- return true;
-}
-
-/* A simple loop from SMS point of view; it is a loop that is composed of
- either a single basic block or two BBs - a header and a latch. */
-#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
- && (EDGE_COUNT (loop->latch->preds) == 1) \
- && (EDGE_COUNT (loop->latch->succs) == 1))
-
-/* Return true if the loop is in its canonical form and false if not.
- i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
-static bool
-loop_canon_p (struct loop *loop)
-{
-
- if (loop->inner || ! loop->outer)
- return false;
-
- if (!loop->single_exit)
- {
- if (dump_file)
- {
- rtx line_note = find_line_note (BB_END (loop->header));
-
- fprintf (dump_file, "SMS loop many exits ");
- if (line_note)
- {
- expanded_location xloc;
- NOTE_EXPANDED_LOCATION (xloc, line_note);
- fprintf (dump_file, " %s %d (file, line)\n",
- xloc.file, xloc.line);
- }
- }
- return false;
- }
-
- if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
- {
- if (dump_file)
- {
- rtx line_note = find_line_note (BB_END (loop->header));
-
- fprintf (dump_file, "SMS loop many BBs. ");
- if (line_note)
- {
- expanded_location xloc;
- NOTE_EXPANDED_LOCATION (xloc, line_note);
- fprintf (dump_file, " %s %d (file, line)\n",
- xloc.file, xloc.line);
- }
- }
- return false;
- }
-
- return true;
-}
-
-/* If there are more than one entry for the loop,
- make it one by splitting the first entry edge and
- redirecting the others to the new BB. */
-static void
-canon_loop (struct loop *loop)
-{
- edge e;
- edge_iterator i;
-
- /* Avoid annoying special cases of edges going to exit
- block. */
- FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
- if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
- loop_split_edge_with (e, NULL_RTX);
-
- if (loop->latch == loop->header
- || EDGE_COUNT (loop->latch->succs) > 1)
- {
- FOR_EACH_EDGE (e, i, loop->header->preds)
- if (e->src == loop->latch)
- break;
- loop_split_edge_with (e, NULL_RTX);
- }
-}
-
-/* Main entry point, perform SMS scheduling on the loops of the function
- that consist of single basic blocks. */
-static void
-sms_schedule (void)
-{
- static int passes = 0;
- rtx insn;
- ddg_ptr *g_arr, g;
- int * node_order;
- int maxii;
- unsigned i,num_loops;
- partial_schedule_ptr ps;
- struct df *df;
- struct loops *loops;
- basic_block bb = NULL;
- /* vars to the versioning only if needed*/
- struct loop * nloop;
- basic_block condition_bb = NULL;
- edge latch_edge;
- gcov_type trip_count = 0;
-
- loops = loop_optimizer_init (LOOPS_HAVE_PREHEADERS
- | LOOPS_HAVE_MARKED_SINGLE_EXITS);
- if (!loops)
- return; /* There is no loops to schedule. */
-
- /* Initialize issue_rate. */
- if (targetm.sched.issue_rate)
- {
- int temp = reload_completed;
-
- reload_completed = 1;
- issue_rate = targetm.sched.issue_rate ();
- reload_completed = temp;
- }
- else
- issue_rate = 1;
-
- /* Initialize the scheduler. */
- current_sched_info = &sms_sched_info;
- sched_init ();
-
- /* Init Data Flow analysis, to be used in interloop dep calculation. */
- df = df_init (DF_HARD_REGS | DF_EQUIV_NOTES | DF_SUBREGS);
- df_rd_add_problem (df, 0);
- df_ru_add_problem (df, 0);
- df_chain_add_problem (df, DF_DU_CHAIN | DF_UD_CHAIN);
- df_analyze (df);
-
- if (dump_file)
- df_dump (df, dump_file);
-
- /* Allocate memory to hold the DDG array one entry for each loop.
- We use loop->num as index into this array. */
- g_arr = XCNEWVEC (ddg_ptr, loops->num);
-
-
- /* Build DDGs for all the relevant loops and hold them in G_ARR
- indexed by the loop index. */
- for (i = 0; i < loops->num; i++)
- {
- rtx head, tail;
- rtx count_reg;
- struct loop *loop = loops->parray[i];
-
- /* For debugging. */
- if ((passes++ > MAX_SMS_LOOP_NUMBER) && (MAX_SMS_LOOP_NUMBER != -1))
- {
- if (dump_file)
- fprintf (dump_file, "SMS reached MAX_PASSES... \n");
-
- break;
- }
-
- if (! loop_canon_p (loop))
- continue;
-
- if (! loop_single_full_bb_p (loop))
- continue;
-
- bb = loop->header;
-
- get_ebb_head_tail (bb, bb, &head, &tail);
- latch_edge = loop_latch_edge (loop);
- gcc_assert (loop->single_exit);
- if (loop->single_exit->count)
- trip_count = latch_edge->count / loop->single_exit->count;
-
- /* Perfrom SMS only on loops that their average count is above threshold. */
-
- if ( latch_edge->count
- && (latch_edge->count < loop->single_exit->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
- {
- if (dump_file)
- {
- rtx line_note = find_line_note (tail);
-
- if (line_note)
- {
- expanded_location xloc;
- NOTE_EXPANDED_LOCATION (xloc, line_note);
- fprintf (dump_file, "SMS bb %s %d (file, line)\n",
- xloc.file, xloc.line);
- }
- fprintf (dump_file, "SMS single-bb-loop\n");
- if (profile_info && flag_branch_probabilities)
- {
- fprintf (dump_file, "SMS loop-count ");
- fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
- (HOST_WIDEST_INT) bb->count);
- fprintf (dump_file, "\n");
- fprintf (dump_file, "SMS trip-count ");
- fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
- (HOST_WIDEST_INT) trip_count);
- fprintf (dump_file, "\n");
- fprintf (dump_file, "SMS profile-sum-max ");
- fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
- (HOST_WIDEST_INT) profile_info->sum_max);
- fprintf (dump_file, "\n");
- }
- }
- continue;
- }
-
- /* Make sure this is a doloop. */
- if ( !(count_reg = doloop_register_get (tail)))
- continue;
-
- /* Don't handle BBs with calls or barriers, or !single_set insns. */
- for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
- if (CALL_P (insn)
- || BARRIER_P (insn)
- || (INSN_P (insn) && !JUMP_P (insn)
- && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
- break;
-
- if (insn != NEXT_INSN (tail))
- {
- if (dump_file)
- {
- if (CALL_P (insn))
- fprintf (dump_file, "SMS loop-with-call\n");
- else if (BARRIER_P (insn))
- fprintf (dump_file, "SMS loop-with-barrier\n");
- else
- fprintf (dump_file, "SMS loop-with-not-single-set\n");
- print_rtl_single (dump_file, insn);
- }
-
- continue;
- }
-
- if (! (g = create_ddg (bb, df, 0)))
- {
- if (dump_file)
- fprintf (dump_file, "SMS doloop\n");
- continue;
- }
-
- g_arr[i] = g;
- }
-
- /* Release Data Flow analysis data structures. */
- df_finish (df);
- df = NULL;
-
- /* We don't want to perform SMS on new loops - created by versioning. */
- num_loops = loops->num;
- /* Go over the built DDGs and perfrom SMS for each one of them. */
- for (i = 0; i < num_loops; i++)
- {
- rtx head, tail;
- rtx count_reg, count_init;
- int mii, rec_mii;
- unsigned stage_count = 0;
- HOST_WIDEST_INT loop_count = 0;
- struct loop *loop = loops->parray[i];
-
- if (! (g = g_arr[i]))
- continue;
-
- if (dump_file)
- print_ddg (dump_file, g);
-
- get_ebb_head_tail (loop->header, loop->header, &head, &tail);
-
- latch_edge = loop_latch_edge (loop);
- gcc_assert (loop->single_exit);
- if (loop->single_exit->count)
- trip_count = latch_edge->count / loop->single_exit->count;
-
- if (dump_file)
- {
- rtx line_note = find_line_note (tail);
-
- if (line_note)
- {
- expanded_location xloc;
- NOTE_EXPANDED_LOCATION (xloc, line_note);
- fprintf (dump_file, "SMS bb %s %d (file, line)\n",
- xloc.file, xloc.line);
- }
- fprintf (dump_file, "SMS single-bb-loop\n");
- if (profile_info && flag_branch_probabilities)
- {
- fprintf (dump_file, "SMS loop-count ");
- fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
- (HOST_WIDEST_INT) bb->count);
- fprintf (dump_file, "\n");
- fprintf (dump_file, "SMS profile-sum-max ");
- fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
- (HOST_WIDEST_INT) profile_info->sum_max);
- fprintf (dump_file, "\n");
- }
- fprintf (dump_file, "SMS doloop\n");
- fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
- fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
- fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
- }
-
-
- /* In case of th loop have doloop register it gets special
- handling. */
- count_init = NULL_RTX;
- if ((count_reg = doloop_register_get (tail)))
- {
- basic_block pre_header;
-
- pre_header = loop_preheader_edge (loop)->src;
- count_init = const_iteration_count (count_reg, pre_header,
- &loop_count);
- }
- gcc_assert (count_reg);
-
- if (dump_file && count_init)
- {
- fprintf (dump_file, "SMS const-doloop ");
- fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
- loop_count);
- fprintf (dump_file, "\n");
- }
-
- node_order = XNEWVEC (int, g->num_nodes);
-
- mii = 1; /* Need to pass some estimate of mii. */
- rec_mii = sms_order_nodes (g, mii, node_order);
- mii = MAX (res_MII (g), rec_mii);
- maxii = (calculate_maxii (g) * SMS_MAX_II_FACTOR) / 100;
-
- if (dump_file)
- fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
- rec_mii, mii, maxii);
-
- /* After sms_order_nodes and before sms_schedule_by_order, to copy over
- ASAP. */
- set_node_sched_params (g);
-
- ps = sms_schedule_by_order (g, mii, maxii, node_order);
-
- if (ps)
- stage_count = PS_STAGE_COUNT (ps);
-
- /* Stage count of 1 means that there is no interleaving between
- iterations, let the scheduling passes do the job. */
- if (stage_count < 1
- || (count_init && (loop_count <= stage_count))
- || (flag_branch_probabilities && (trip_count <= stage_count)))
- {
- if (dump_file)
- {
- fprintf (dump_file, "SMS failed... \n");
- fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count);
- fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
- fprintf (dump_file, ", trip-count=");
- fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
- fprintf (dump_file, ")\n");
- }
- continue;
- }
- else
- {
- int orig_cycles = kernel_number_of_cycles (BB_HEAD (g->bb), BB_END (g->bb));
- int new_cycles;
- struct undo_replace_buff_elem *reg_move_replaces;
-
- if (dump_file)
- {
- fprintf (dump_file,
- "SMS succeeded %d %d (with ii, sc)\n", ps->ii,
- stage_count);
- print_partial_schedule (ps, dump_file);
- fprintf (dump_file,
- "SMS Branch (%d) will later be scheduled at cycle %d.\n",
- g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1);
- }
-
- /* Set the stage boundaries. If the DDG is built with closing_branch_deps,
- the closing_branch was scheduled and should appear in the last (ii-1)
- row. Otherwise, we are free to schedule the branch, and we let nodes
- that were scheduled at the first PS_MIN_CYCLE cycle appear in the first
- row; this should reduce stage_count to minimum. */
- normalize_sched_times (ps);
- rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
- set_columns_for_ps (ps);
-
- /* Generate the kernel just to be able to measure its cycles. */
- permute_partial_schedule (ps, g->closing_branch->first_note);
- reg_move_replaces = generate_reg_moves (ps);
-
- /* Get the number of cycles the new kernel expect to execute in. */
- new_cycles = kernel_number_of_cycles (BB_HEAD (g->bb), BB_END (g->bb));
-
- /* Get back to the original loop so we can do loop versioning. */
- undo_permute_partial_schedule (ps, g->closing_branch->first_note);
- if (reg_move_replaces)
- undo_generate_reg_moves (ps, reg_move_replaces);
-
- if ( new_cycles >= orig_cycles)
- {
- /* SMS is not profitable so undo the permutation and reg move generation
- and return the kernel to its original state. */
- if (dump_file)
- fprintf (dump_file, "Undoing SMS because it is not profitable.\n");
-
- }
- else
- {
- canon_loop (loop);
-
- /* case the BCT count is not known , Do loop-versioning */
- if (count_reg && ! count_init)
- {
- rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
- GEN_INT(stage_count));
-
- nloop = loop_version (loops, loop, comp_rtx, &condition_bb,
- true);
- }
-
- /* Set new iteration count of loop kernel. */
- if (count_reg && count_init)
- SET_SRC (single_set (count_init)) = GEN_INT (loop_count
- - stage_count + 1);
-
- /* Now apply the scheduled kernel to the RTL of the loop. */
- permute_partial_schedule (ps, g->closing_branch->first_note);
-
- /* Mark this loop as software pipelined so the later
- scheduling passes doesn't touch it. */
- if (! flag_resched_modulo_sched)
- g->bb->flags |= BB_DISABLE_SCHEDULE;
- /* The life-info is not valid any more. */
- g->bb->flags |= BB_DIRTY;
-
- reg_move_replaces = generate_reg_moves (ps);
- if (dump_file)
- print_node_sched_params (dump_file, g->num_nodes);
- /* Generate prolog and epilog. */
- if (count_reg && !count_init)
- generate_prolog_epilog (ps, loop, count_reg);
- else
- generate_prolog_epilog (ps, loop, NULL_RTX);
- }
- free_undo_replace_buff (reg_move_replaces);
- }
-
- free_partial_schedule (ps);
- free (node_sched_params);
- free (node_order);
- free_ddg (g);
- }
-
- free (g_arr);
-
- /* Release scheduler data, needed until now because of DFA. */
- sched_finish ();
- loop_optimizer_finalize (loops);
-}
-
-/* The SMS scheduling algorithm itself
- -----------------------------------
- Input: 'O' an ordered list of insns of a loop.
- Output: A scheduling of the loop - kernel, prolog, and epilogue.
-
- 'Q' is the empty Set
- 'PS' is the partial schedule; it holds the currently scheduled nodes with
- their cycle/slot.
- 'PSP' previously scheduled predecessors.
- 'PSS' previously scheduled successors.
- 't(u)' the cycle where u is scheduled.
- 'l(u)' is the latency of u.
- 'd(v,u)' is the dependence distance from v to u.
- 'ASAP(u)' the earliest time at which u could be scheduled as computed in
- the node ordering phase.
- 'check_hardware_resources_conflicts(u, PS, c)'
- run a trace around cycle/slot through DFA model
- to check resource conflicts involving instruction u
- at cycle c given the partial schedule PS.
- 'add_to_partial_schedule_at_time(u, PS, c)'
- Add the node/instruction u to the partial schedule
- PS at time c.
- 'calculate_register_pressure(PS)'
- Given a schedule of instructions, calculate the register
- pressure it implies. One implementation could be the
- maximum number of overlapping live ranges.
- 'maxRP' The maximum allowed register pressure, it is usually derived from the number
- registers available in the hardware.
-
- 1. II = MII.
- 2. PS = empty list
- 3. for each node u in O in pre-computed order
- 4. if (PSP(u) != Q && PSS(u) == Q) then
- 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
- 6. start = Early_start; end = Early_start + II - 1; step = 1
- 11. else if (PSP(u) == Q && PSS(u) != Q) then
- 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
- 13. start = Late_start; end = Late_start - II + 1; step = -1
- 14. else if (PSP(u) != Q && PSS(u) != Q) then
- 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
- 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
- 17. start = Early_start;
- 18. end = min(Early_start + II - 1 , Late_start);
- 19. step = 1
- 20. else "if (PSP(u) == Q && PSS(u) == Q)"
- 21. start = ASAP(u); end = start + II - 1; step = 1
- 22. endif
-
- 23. success = false
- 24. for (c = start ; c != end ; c += step)
- 25. if check_hardware_resources_conflicts(u, PS, c) then
- 26. add_to_partial_schedule_at_time(u, PS, c)
- 27. success = true
- 28. break
- 29. endif
- 30. endfor
- 31. if (success == false) then
- 32. II = II + 1
- 33. if (II > maxII) then
- 34. finish - failed to schedule
- 35. endif
- 36. goto 2.
- 37. endif
- 38. endfor
- 39. if (calculate_register_pressure(PS) > maxRP) then
- 40. goto 32.
- 41. endif
- 42. compute epilogue & prologue
- 43. finish - succeeded to schedule
-*/
-
-/* A limit on the number of cycles that resource conflicts can span. ??? Should
- be provided by DFA, and be dependent on the type of insn scheduled. Currently
- set to 0 to save compile time. */
-#define DFA_HISTORY SMS_DFA_HISTORY
-
-/* Given the partial schedule PS, this function calculates and returns the
- cycles in which we can schedule the node with the given index I.
- NOTE: Here we do the backtracking in SMS, in some special cases. We have
- noticed that there are several cases in which we fail to SMS the loop
- because the sched window of a node is empty due to tight data-deps. In
- such cases we want to unschedule some of the predecessors/successors
- until we get non-empty scheduling window. It returns -1 if the
- scheduling window is empty and zero otherwise. */
-
-static int
-get_sched_window (partial_schedule_ptr ps, int *nodes_order, int i,
- sbitmap sched_nodes, int ii, int *start_p, int *step_p, int *end_p)
-{
- int start, step, end;
- ddg_edge_ptr e;
- int u = nodes_order [i];
- ddg_node_ptr u_node = &ps->g->nodes[u];
- sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
- sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
- sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
- sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
- int psp_not_empty;
- int pss_not_empty;
-
- /* 1. compute sched window for u (start, end, step). */
- sbitmap_zero (psp);
- sbitmap_zero (pss);
- psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
- pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
-
- if (psp_not_empty && !pss_not_empty)
- {
- int early_start = INT_MIN;
-
- end = INT_MAX;
- for (e = u_node->in; e != 0; e = e->next_in)
- {
- ddg_node_ptr v_node = e->src;
- if (TEST_BIT (sched_nodes, v_node->cuid))
- {
- int node_st = SCHED_TIME (v_node)
- + e->latency - (e->distance * ii);
-
- early_start = MAX (early_start, node_st);
-
- if (e->data_type == MEM_DEP)
- end = MIN (end, SCHED_TIME (v_node) + ii - 1);
- }
- }
- start = early_start;
- end = MIN (end, early_start + ii);
- step = 1;
- }
-
- else if (!psp_not_empty && pss_not_empty)
- {
- int late_start = INT_MAX;
-
- end = INT_MIN;
- for (e = u_node->out; e != 0; e = e->next_out)
- {
- ddg_node_ptr v_node = e->dest;
- if (TEST_BIT (sched_nodes, v_node->cuid))
- {
- late_start = MIN (late_start,
- SCHED_TIME (v_node) - e->latency
- + (e->distance * ii));
- if (e->data_type == MEM_DEP)
- end = MAX (end, SCHED_TIME (v_node) - ii + 1);
- }
- }
- start = late_start;
- end = MAX (end, late_start - ii);
- step = -1;
- }
-
- else if (psp_not_empty && pss_not_empty)
- {
- int early_start = INT_MIN;
- int late_start = INT_MAX;
-
- start = INT_MIN;
- end = INT_MAX;
- for (e = u_node->in; e != 0; e = e->next_in)
- {
- ddg_node_ptr v_node = e->src;
-
- if (TEST_BIT (sched_nodes, v_node->cuid))
- {
- early_start = MAX (early_start,
- SCHED_TIME (v_node) + e->latency
- - (e->distance * ii));
- if (e->data_type == MEM_DEP)
- end = MIN (end, SCHED_TIME (v_node) + ii - 1);
- }
- }
- for (e = u_node->out; e != 0; e = e->next_out)
- {
- ddg_node_ptr v_node = e->dest;
-
- if (TEST_BIT (sched_nodes, v_node->cuid))
- {
- late_start = MIN (late_start,
- SCHED_TIME (v_node) - e->latency
- + (e->distance * ii));
- if (e->data_type == MEM_DEP)
- start = MAX (start, SCHED_TIME (v_node) - ii + 1);
- }
- }
- start = MAX (start, early_start);
- end = MIN (end, MIN (early_start + ii, late_start + 1));
- step = 1;
- }
- else /* psp is empty && pss is empty. */
- {
- start = SCHED_ASAP (u_node);
- end = start + ii;
- step = 1;
- }
-
- *start_p = start;
- *step_p = step;
- *end_p = end;
- sbitmap_free (psp);
- sbitmap_free (pss);
-
- if ((start >= end && step == 1) || (start <= end && step == -1))
- return -1;
- else
- return 0;
-}
-
-/* This function implements the scheduling algorithm for SMS according to the
- above algorithm. */
-static partial_schedule_ptr
-sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
-{
- int ii = mii;
- int i, c, success;
- int try_again_with_larger_ii = true;
- int num_nodes = g->num_nodes;
- ddg_edge_ptr e;
- int start, end, step; /* Place together into one struct? */
- sbitmap sched_nodes = sbitmap_alloc (num_nodes);
- sbitmap must_precede = sbitmap_alloc (num_nodes);
- sbitmap must_follow = sbitmap_alloc (num_nodes);
- sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
-
- partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
-
- sbitmap_ones (tobe_scheduled);
- sbitmap_zero (sched_nodes);
-
- while ((! sbitmap_equal (tobe_scheduled, sched_nodes)
- || try_again_with_larger_ii ) && ii < maxii)
- {
- int j;
- bool unscheduled_nodes = false;
-
- if (dump_file)
- fprintf(dump_file, "Starting with ii=%d\n", ii);
- if (try_again_with_larger_ii)
- {
- try_again_with_larger_ii = false;
- sbitmap_zero (sched_nodes);
- }
-
- for (i = 0; i < num_nodes; i++)
- {
- int u = nodes_order[i];
- ddg_node_ptr u_node = &ps->g->nodes[u];
- rtx insn = u_node->insn;
-
- if (!INSN_P (insn))
- {
- RESET_BIT (tobe_scheduled, u);
- continue;
- }
-
- if (JUMP_P (insn)) /* Closing branch handled later. */
- {
- RESET_BIT (tobe_scheduled, u);
- continue;
- }
-
- if (TEST_BIT (sched_nodes, u))
- continue;
-
- /* Try to get non-empty scheduling window. */
- j = i;
- while (get_sched_window (ps, nodes_order, i, sched_nodes, ii, &start, &step, &end) < 0
- && j > 0)
- {
- unscheduled_nodes = true;
- if (TEST_BIT (NODE_PREDECESSORS (u_node), nodes_order[j - 1])
- || TEST_BIT (NODE_SUCCESSORS (u_node), nodes_order[j - 1]))
- {
- ps_unschedule_node (ps, &ps->g->nodes[nodes_order[j - 1]]);
- RESET_BIT (sched_nodes, nodes_order [j - 1]);
- }
- j--;
- }
- if (j < 0)
- {
- /* ??? Try backtracking instead of immediately ii++? */
- ii++;
- try_again_with_larger_ii = true;
- reset_partial_schedule (ps, ii);
- break;
- }
- /* 2. Try scheduling u in window. */
- if (dump_file)
- fprintf(dump_file, "Trying to schedule node %d in (%d .. %d) step %d\n",
- u, start, end, step);
-
- /* use must_follow & must_precede bitmaps to determine order
- of nodes within the cycle. */
- sbitmap_zero (must_precede);
- sbitmap_zero (must_follow);
- for (e = u_node->in; e != 0; e = e->next_in)
- if (TEST_BIT (sched_nodes, e->src->cuid)
- && e->latency == (ii * e->distance)
- && start == SCHED_TIME (e->src))
- SET_BIT (must_precede, e->src->cuid);
-
- for (e = u_node->out; e != 0; e = e->next_out)
- if (TEST_BIT (sched_nodes, e->dest->cuid)
- && e->latency == (ii * e->distance)
- && end == SCHED_TIME (e->dest))
- SET_BIT (must_follow, e->dest->cuid);
-
- success = 0;
- if ((step > 0 && start < end) || (step < 0 && start > end))
- for (c = start; c != end; c += step)
- {
- ps_insn_ptr psi;
-
- psi = ps_add_node_check_conflicts (ps, u_node, c,
- must_precede,
- must_follow);
-
- if (psi)
- {
- SCHED_TIME (u_node) = c;
- SET_BIT (sched_nodes, u);
- success = 1;
- if (dump_file)
- fprintf(dump_file, "Schedule in %d\n", c);
- break;
- }
- }
- if (!success)
- {
- /* ??? Try backtracking instead of immediately ii++? */
- ii++;
- try_again_with_larger_ii = true;
- reset_partial_schedule (ps, ii);
- break;
- }
- if (unscheduled_nodes)
- break;
-
- /* ??? If (success), check register pressure estimates. */
- } /* Continue with next node. */
- } /* While try_again_with_larger_ii. */
-
- sbitmap_free (sched_nodes);
- sbitmap_free (must_precede);
- sbitmap_free (must_follow);
- sbitmap_free (tobe_scheduled);
-
- if (ii >= maxii)
- {
- free_partial_schedule (ps);
- ps = NULL;
- }
- return ps;
-}
-
-
-/* This page implements the algorithm for ordering the nodes of a DDG
- for modulo scheduling, activated through the
- "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
-
-#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
-#define ASAP(x) (ORDER_PARAMS ((x))->asap)
-#define ALAP(x) (ORDER_PARAMS ((x))->alap)
-#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
-#define MOB(x) (ALAP ((x)) - ASAP ((x)))
-#define DEPTH(x) (ASAP ((x)))
-
-typedef struct node_order_params * nopa;
-
-static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
-static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
-static nopa calculate_order_params (ddg_ptr, int mii);
-static int find_max_asap (ddg_ptr, sbitmap);
-static int find_max_hv_min_mob (ddg_ptr, sbitmap);
-static int find_max_dv_min_mob (ddg_ptr, sbitmap);
-
-enum sms_direction {BOTTOMUP, TOPDOWN};
-
-struct node_order_params
-{
- int asap;
- int alap;
- int height;
-};
-
-/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
-static void
-check_nodes_order (int *node_order, int num_nodes)
-{
- int i;
- sbitmap tmp = sbitmap_alloc (num_nodes);
-
- sbitmap_zero (tmp);
-
- for (i = 0; i < num_nodes; i++)
- {
- int u = node_order[i];
-
- gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
-
- SET_BIT (tmp, u);
- }
-
- sbitmap_free (tmp);
-}
-
-/* Order the nodes of G for scheduling and pass the result in
- NODE_ORDER. Also set aux.count of each node to ASAP.
- Return the recMII for the given DDG. */
-static int
-sms_order_nodes (ddg_ptr g, int mii, int * node_order)
-{
- int i;
- int rec_mii = 0;
- ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
-
- nopa nops = calculate_order_params (g, mii);
-
- order_nodes_of_sccs (sccs, node_order);
-
- if (sccs->num_sccs > 0)
- /* First SCC has the largest recurrence_length. */
- rec_mii = sccs->sccs[0]->recurrence_length;
-
- /* Save ASAP before destroying node_order_params. */
- for (i = 0; i < g->num_nodes; i++)
- {
- ddg_node_ptr v = &g->nodes[i];
- v->aux.count = ASAP (v);
- }
-
- free (nops);
- free_ddg_all_sccs (sccs);
- check_nodes_order (node_order, g->num_nodes);
-
- return rec_mii;
-}
-
-static void
-order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
-{
- int i, pos = 0;
- ddg_ptr g = all_sccs->ddg;
- int num_nodes = g->num_nodes;
- sbitmap prev_sccs = sbitmap_alloc (num_nodes);
- sbitmap on_path = sbitmap_alloc (num_nodes);
- sbitmap tmp = sbitmap_alloc (num_nodes);
- sbitmap ones = sbitmap_alloc (num_nodes);
-
- sbitmap_zero (prev_sccs);
- sbitmap_ones (ones);
-
- /* Perfrom the node ordering starting from the SCC with the highest recMII.
- For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
- for (i = 0; i < all_sccs->num_sccs; i++)
- {
- ddg_scc_ptr scc = all_sccs->sccs[i];
-
- /* Add nodes on paths from previous SCCs to the current SCC. */
- find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
- sbitmap_a_or_b (tmp, scc->nodes, on_path);
-
- /* Add nodes on paths from the current SCC to previous SCCs. */
- find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
- sbitmap_a_or_b (tmp, tmp, on_path);
-
- /* Remove nodes of previous SCCs from current extended SCC. */
- sbitmap_difference (tmp, tmp, prev_sccs);
-
- pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
- /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
- }
-
- /* Handle the remaining nodes that do not belong to any scc. Each call
- to order_nodes_in_scc handles a single connected component. */
- while (pos < g->num_nodes)
- {
- sbitmap_difference (tmp, ones, prev_sccs);
- pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
- }
- sbitmap_free (prev_sccs);
- sbitmap_free (on_path);
- sbitmap_free (tmp);
- sbitmap_free (ones);
-}
-
-/* MII is needed if we consider backarcs (that do not close recursive cycles). */
-static struct node_order_params *
-calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED)
-{
- int u;
- int max_asap;
- int num_nodes = g->num_nodes;
- ddg_edge_ptr e;
- /* Allocate a place to hold ordering params for each node in the DDG. */
- nopa node_order_params_arr;
-
- /* Initialize of ASAP/ALAP/HEIGHT to zero. */
- node_order_params_arr = (nopa) xcalloc (num_nodes,
- sizeof (struct node_order_params));
-
- /* Set the aux pointer of each node to point to its order_params structure. */
- for (u = 0; u < num_nodes; u++)
- g->nodes[u].aux.info = &node_order_params_arr[u];
-
- /* Disregarding a backarc from each recursive cycle to obtain a DAG,
- calculate ASAP, ALAP, mobility, distance, and height for each node
- in the dependence (direct acyclic) graph. */
-
- /* We assume that the nodes in the array are in topological order. */
-
- max_asap = 0;
- for (u = 0; u < num_nodes; u++)
- {
- ddg_node_ptr u_node = &g->nodes[u];
-
- ASAP (u_node) = 0;
- for (e = u_node->in; e; e = e->next_in)
- if (e->distance == 0)
- ASAP (u_node) = MAX (ASAP (u_node),
- ASAP (e->src) + e->latency);
- max_asap = MAX (max_asap, ASAP (u_node));
- }
-
- for (u = num_nodes - 1; u > -1; u--)
- {
- ddg_node_ptr u_node = &g->nodes[u];
-
- ALAP (u_node) = max_asap;
- HEIGHT (u_node) = 0;
- for (e = u_node->out; e; e = e->next_out)
- if (e->distance == 0)
- {
- ALAP (u_node) = MIN (ALAP (u_node),
- ALAP (e->dest) - e->latency);
- HEIGHT (u_node) = MAX (HEIGHT (u_node),
- HEIGHT (e->dest) + e->latency);
- }
- }
-
- return node_order_params_arr;
-}
-
-static int
-find_max_asap (ddg_ptr g, sbitmap nodes)
-{
- unsigned int u = 0;
- int max_asap = -1;
- int result = -1;
- sbitmap_iterator sbi;
-
- EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
- {
- ddg_node_ptr u_node = &g->nodes[u];
-
- if (max_asap < ASAP (u_node))
- {
- max_asap = ASAP (u_node);
- result = u;
- }
- }
- return result;
-}
-
-static int
-find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
-{
- unsigned int u = 0;
- int max_hv = -1;
- int min_mob = INT_MAX;
- int result = -1;
- sbitmap_iterator sbi;
-
- EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
- {
- ddg_node_ptr u_node = &g->nodes[u];
-
- if (max_hv < HEIGHT (u_node))
- {
- max_hv = HEIGHT (u_node);
- min_mob = MOB (u_node);
- result = u;
- }
- else if ((max_hv == HEIGHT (u_node))
- && (min_mob > MOB (u_node)))
- {
- min_mob = MOB (u_node);
- result = u;
- }
- }
- return result;
-}
-
-static int
-find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
-{
- unsigned int u = 0;
- int max_dv = -1;
- int min_mob = INT_MAX;
- int result = -1;
- sbitmap_iterator sbi;
-
- EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
- {
- ddg_node_ptr u_node = &g->nodes[u];
-
- if (max_dv < DEPTH (u_node))
- {
- max_dv = DEPTH (u_node);
- min_mob = MOB (u_node);
- result = u;
- }
- else if ((max_dv == DEPTH (u_node))
- && (min_mob > MOB (u_node)))
- {
- min_mob = MOB (u_node);
- result = u;
- }
- }
- return result;
-}
-
-/* Places the nodes of SCC into the NODE_ORDER array starting
- at position POS, according to the SMS ordering algorithm.
- NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
- the NODE_ORDER array, starting from position zero. */
-static int
-order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
- int * node_order, int pos)
-{
- enum sms_direction dir;
- int num_nodes = g->num_nodes;
- sbitmap workset = sbitmap_alloc (num_nodes);
- sbitmap tmp = sbitmap_alloc (num_nodes);
- sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
- sbitmap predecessors = sbitmap_alloc (num_nodes);
- sbitmap successors = sbitmap_alloc (num_nodes);
-
- sbitmap_zero (predecessors);
- find_predecessors (predecessors, g, nodes_ordered);
-
- sbitmap_zero (successors);
- find_successors (successors, g, nodes_ordered);
-
- sbitmap_zero (tmp);
- if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
- {
- sbitmap_copy (workset, tmp);
- dir = BOTTOMUP;
- }
- else if (sbitmap_a_and_b_cg (tmp, successors, scc))
- {
- sbitmap_copy (workset, tmp);
- dir = TOPDOWN;
- }
- else
- {
- int u;
-
- sbitmap_zero (workset);
- if ((u = find_max_asap (g, scc)) >= 0)
- SET_BIT (workset, u);
- dir = BOTTOMUP;
- }
-
- sbitmap_zero (zero_bitmap);
- while (!sbitmap_equal (workset, zero_bitmap))
- {
- int v;
- ddg_node_ptr v_node;
- sbitmap v_node_preds;
- sbitmap v_node_succs;
-
- if (dir == TOPDOWN)
- {
- while (!sbitmap_equal (workset, zero_bitmap))
- {
- v = find_max_hv_min_mob (g, workset);
- v_node = &g->nodes[v];
- node_order[pos++] = v;
- v_node_succs = NODE_SUCCESSORS (v_node);
- sbitmap_a_and_b (tmp, v_node_succs, scc);
-
- /* Don't consider the already ordered successors again. */
- sbitmap_difference (tmp, tmp, nodes_ordered);
- sbitmap_a_or_b (workset, workset, tmp);
- RESET_BIT (workset, v);
- SET_BIT (nodes_ordered, v);
- }
- dir = BOTTOMUP;
- sbitmap_zero (predecessors);
- find_predecessors (predecessors, g, nodes_ordered);
- sbitmap_a_and_b (workset, predecessors, scc);
- }
- else
- {
- while (!sbitmap_equal (workset, zero_bitmap))
- {
- v = find_max_dv_min_mob (g, workset);
- v_node = &g->nodes[v];
- node_order[pos++] = v;
- v_node_preds = NODE_PREDECESSORS (v_node);
- sbitmap_a_and_b (tmp, v_node_preds, scc);
-
- /* Don't consider the already ordered predecessors again. */
- sbitmap_difference (tmp, tmp, nodes_ordered);
- sbitmap_a_or_b (workset, workset, tmp);
- RESET_BIT (workset, v);
- SET_BIT (nodes_ordered, v);
- }
- dir = TOPDOWN;
- sbitmap_zero (successors);
- find_successors (successors, g, nodes_ordered);
- sbitmap_a_and_b (workset, successors, scc);
- }
- }
- sbitmap_free (tmp);
- sbitmap_free (workset);
- sbitmap_free (zero_bitmap);
- sbitmap_free (predecessors);
- sbitmap_free (successors);
- return pos;
-}
-
-
-/* This page contains functions for manipulating partial-schedules during
- modulo scheduling. */
-
-/* Create a partial schedule and allocate a memory to hold II rows. */
-
-static partial_schedule_ptr
-create_partial_schedule (int ii, ddg_ptr g, int history)
-{
- partial_schedule_ptr ps = XNEW (struct partial_schedule);
- ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
- ps->ii = ii;
- ps->history = history;
- ps->min_cycle = INT_MAX;
- ps->max_cycle = INT_MIN;
- ps->g = g;
-
- return ps;
-}
-
-/* Free the PS_INSNs in rows array of the given partial schedule.
- ??? Consider caching the PS_INSN's. */
-static void
-free_ps_insns (partial_schedule_ptr ps)
-{
- int i;
-
- for (i = 0; i < ps->ii; i++)
- {
- while (ps->rows[i])
- {
- ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
-
- free (ps->rows[i]);
- ps->rows[i] = ps_insn;
- }
- ps->rows[i] = NULL;
- }
-}
-
-/* Free all the memory allocated to the partial schedule. */
-
-static void
-free_partial_schedule (partial_schedule_ptr ps)
-{
- if (!ps)
- return;
- free_ps_insns (ps);
- free (ps->rows);
- free (ps);
-}
-
-/* Clear the rows array with its PS_INSNs, and create a new one with
- NEW_II rows. */
-
-static void
-reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
-{
- if (!ps)
- return;
- free_ps_insns (ps);
- if (new_ii == ps->ii)
- return;
- ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
- * sizeof (ps_insn_ptr));
- memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
- ps->ii = new_ii;
- ps->min_cycle = INT_MAX;
- ps->max_cycle = INT_MIN;
-}
-
-/* Prints the partial schedule as an ii rows array, for each rows
- print the ids of the insns in it. */
-void
-print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
-{
- int i;
-
- for (i = 0; i < ps->ii; i++)
- {
- ps_insn_ptr ps_i = ps->rows[i];
-
- fprintf (dump, "\n[CYCLE %d ]: ", i);
- while (ps_i)
- {
- fprintf (dump, "%d, ",
- INSN_UID (ps_i->node->insn));
- ps_i = ps_i->next_in_row;
- }
- }
-}
-
-/* Creates an object of PS_INSN and initializes it to the given parameters. */
-static ps_insn_ptr
-create_ps_insn (ddg_node_ptr node, int rest_count, int cycle)
-{
- ps_insn_ptr ps_i = XNEW (struct ps_insn);
-
- ps_i->node = node;
- ps_i->next_in_row = NULL;
- ps_i->prev_in_row = NULL;
- ps_i->row_rest_count = rest_count;
- ps_i->cycle = cycle;
-
- return ps_i;
-}
-
-
-/* Removes the given PS_INSN from the partial schedule. Returns false if the
- node is not found in the partial schedule, else returns true. */
-static bool
-remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
-{
- int row;
-
- if (!ps || !ps_i)
- return false;
-
- row = SMODULO (ps_i->cycle, ps->ii);
- if (! ps_i->prev_in_row)
- {
- if (ps_i != ps->rows[row])
- return false;
-
- ps->rows[row] = ps_i->next_in_row;
- if (ps->rows[row])
- ps->rows[row]->prev_in_row = NULL;
- }
- else
- {
- ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
- if (ps_i->next_in_row)
- ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
- }
- free (ps_i);
- return true;
-}
-
-/* Unlike what literature describes for modulo scheduling (which focuses
- on VLIW machines) the order of the instructions inside a cycle is
- important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
- where the current instruction should go relative to the already
- scheduled instructions in the given cycle. Go over these
- instructions and find the first possible column to put it in. */
-static bool
-ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
- sbitmap must_precede, sbitmap must_follow)
-{
- ps_insn_ptr next_ps_i;
- ps_insn_ptr first_must_follow = NULL;
- ps_insn_ptr last_must_precede = NULL;
- int row;
-
- if (! ps_i)
- return false;
-
- row = SMODULO (ps_i->cycle, ps->ii);
-
- /* Find the first must follow and the last must precede
- and insert the node immediately after the must precede
- but make sure that it there is no must follow after it. */
- for (next_ps_i = ps->rows[row];
- next_ps_i;
- next_ps_i = next_ps_i->next_in_row)
- {
- if (TEST_BIT (must_follow, next_ps_i->node->cuid)
- && ! first_must_follow)
- first_must_follow = next_ps_i;
- if (TEST_BIT (must_precede, next_ps_i->node->cuid))
- {
- /* If we have already met a node that must follow, then
- there is no possible column. */
- if (first_must_follow)
- return false;
- else
- last_must_precede = next_ps_i;
- }
- }
-
- /* Now insert the node after INSERT_AFTER_PSI. */
-
- if (! last_must_precede)
- {
- ps_i->next_in_row = ps->rows[row];
- ps_i->prev_in_row = NULL;
- if (ps_i->next_in_row)
- ps_i->next_in_row->prev_in_row = ps_i;
- ps->rows[row] = ps_i;
- }
- else
- {
- ps_i->next_in_row = last_must_precede->next_in_row;
- last_must_precede->next_in_row = ps_i;
- ps_i->prev_in_row = last_must_precede;
- if (ps_i->next_in_row)
- ps_i->next_in_row->prev_in_row = ps_i;
- }
-
- return true;
-}
-
-/* Advances the PS_INSN one column in its current row; returns false
- in failure and true in success. Bit N is set in MUST_FOLLOW if
- the node with cuid N must be come after the node pointed to by
- PS_I when scheduled in the same cycle. */
-static int
-ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
- sbitmap must_follow)
-{
- ps_insn_ptr prev, next;
- int row;
- ddg_node_ptr next_node;
-
- if (!ps || !ps_i)
- return false;
-
- row = SMODULO (ps_i->cycle, ps->ii);
-
- if (! ps_i->next_in_row)
- return false;
-
- next_node = ps_i->next_in_row->node;
-
- /* Check if next_in_row is dependent on ps_i, both having same sched
- times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
- if (TEST_BIT (must_follow, next_node->cuid))
- return false;
-
- /* Advance PS_I over its next_in_row in the doubly linked list. */
- prev = ps_i->prev_in_row;
- next = ps_i->next_in_row;
-
- if (ps_i == ps->rows[row])
- ps->rows[row] = next;
-
- ps_i->next_in_row = next->next_in_row;
-
- if (next->next_in_row)
- next->next_in_row->prev_in_row = ps_i;
-
- next->next_in_row = ps_i;
- ps_i->prev_in_row = next;
-
- next->prev_in_row = prev;
- if (prev)
- prev->next_in_row = next;
-
- return true;
-}
-
-/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
- Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
- set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
- before/after (respectively) the node pointed to by PS_I when scheduled
- in the same cycle. */
-static ps_insn_ptr
-add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
- sbitmap must_precede, sbitmap must_follow)
-{
- ps_insn_ptr ps_i;
- int rest_count = 1;
- int row = SMODULO (cycle, ps->ii);
-
- if (ps->rows[row]
- && ps->rows[row]->row_rest_count >= issue_rate)
- return NULL;
-
- if (ps->rows[row])
- rest_count += ps->rows[row]->row_rest_count;
-
- ps_i = create_ps_insn (node, rest_count, cycle);
-
- /* Finds and inserts PS_I according to MUST_FOLLOW and
- MUST_PRECEDE. */
- if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
- {
- free (ps_i);
- return NULL;
- }
-
- return ps_i;
-}
-
-/* Advance time one cycle. Assumes DFA is being used. */
-static void
-advance_one_cycle (void)
-{
- if (targetm.sched.dfa_pre_cycle_insn)
- state_transition (curr_state,
- targetm.sched.dfa_pre_cycle_insn ());
-
- state_transition (curr_state, NULL);
-
- if (targetm.sched.dfa_post_cycle_insn)
- state_transition (curr_state,
- targetm.sched.dfa_post_cycle_insn ());
-}
-
-/* Given the kernel of a loop (from FIRST_INSN to LAST_INSN), finds
- the number of cycles according to DFA that the kernel fits in,
- we use this to check if we done well with SMS after we add
- register moves. In some cases register moves overhead makes
- it even worse than the original loop. We want SMS to be performed
- when it gives less cycles after register moves are added. */
-static int
-kernel_number_of_cycles (rtx first_insn, rtx last_insn)
-{
- int cycles = 0;
- rtx insn;
- int can_issue_more = issue_rate;
-
- state_reset (curr_state);
-
- for (insn = first_insn;
- insn != NULL_RTX && insn != last_insn;
- insn = NEXT_INSN (insn))
- {
- if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
- continue;
-
- /* Check if there is room for the current insn. */
- if (!can_issue_more || state_dead_lock_p (curr_state))
- {
- cycles ++;
- advance_one_cycle ();
- can_issue_more = issue_rate;
- }
-
- /* Update the DFA state and return with failure if the DFA found
- recource conflicts. */
- if (state_transition (curr_state, insn) >= 0)
- {
- cycles ++;
- advance_one_cycle ();
- can_issue_more = issue_rate;
- }
-
- if (targetm.sched.variable_issue)
- can_issue_more =
- targetm.sched.variable_issue (sched_dump, sched_verbose,
- insn, can_issue_more);
- /* A naked CLOBBER or USE generates no instruction, so don't
- let them consume issue slots. */
- else if (GET_CODE (PATTERN (insn)) != USE
- && GET_CODE (PATTERN (insn)) != CLOBBER)
- can_issue_more--;
- }
- return cycles;
-}
-
-/* Checks if PS has resource conflicts according to DFA, starting from
- FROM cycle to TO cycle; returns true if there are conflicts and false
- if there are no conflicts. Assumes DFA is being used. */
-static int
-ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
-{
- int cycle;
-
- state_reset (curr_state);
-
- for (cycle = from; cycle <= to; cycle++)
- {
- ps_insn_ptr crr_insn;
- /* Holds the remaining issue slots in the current row. */
- int can_issue_more = issue_rate;
-
- /* Walk through the DFA for the current row. */
- for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
- crr_insn;
- crr_insn = crr_insn->next_in_row)
- {
- rtx insn = crr_insn->node->insn;
-
- if (!INSN_P (insn))
- continue;
-
- /* Check if there is room for the current insn. */
- if (!can_issue_more || state_dead_lock_p (curr_state))
- return true;
-
- /* Update the DFA state and return with failure if the DFA found
- recource conflicts. */
- if (state_transition (curr_state, insn) >= 0)
- return true;
-
- if (targetm.sched.variable_issue)
- can_issue_more =
- targetm.sched.variable_issue (sched_dump, sched_verbose,
- insn, can_issue_more);
- /* A naked CLOBBER or USE generates no instruction, so don't
- let them consume issue slots. */
- else if (GET_CODE (PATTERN (insn)) != USE
- && GET_CODE (PATTERN (insn)) != CLOBBER)
- can_issue_more--;
- }
-
- /* Advance the DFA to the next cycle. */
- advance_one_cycle ();
- }
- return false;
-}
-
-/* Checks if the given node causes resource conflicts when added to PS at
- cycle C. If not the node is added to PS and returned; otherwise zero
- is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
- cuid N must be come before/after (respectively) the node pointed to by
- PS_I when scheduled in the same cycle. */
-ps_insn_ptr
-ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
- int c, sbitmap must_precede,
- sbitmap must_follow)
-{
- int has_conflicts = 0;
- ps_insn_ptr ps_i;
-
- /* First add the node to the PS, if this succeeds check for
- conflicts, trying different issue slots in the same row. */
- if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
- return NULL; /* Failed to insert the node at the given cycle. */
-
- has_conflicts = ps_has_conflicts (ps, c, c)
- || (ps->history > 0
- && ps_has_conflicts (ps,
- c - ps->history,
- c + ps->history));
-
- /* Try different issue slots to find one that the given node can be
- scheduled in without conflicts. */
- while (has_conflicts)
- {
- if (! ps_insn_advance_column (ps, ps_i, must_follow))
- break;
- has_conflicts = ps_has_conflicts (ps, c, c)
- || (ps->history > 0
- && ps_has_conflicts (ps,
- c - ps->history,
- c + ps->history));
- }
-
- if (has_conflicts)
- {
- remove_node_from_ps (ps, ps_i);
- return NULL;
- }
-
- ps->min_cycle = MIN (ps->min_cycle, c);
- ps->max_cycle = MAX (ps->max_cycle, c);
- return ps_i;
-}
-
-/* Rotate the rows of PS such that insns scheduled at time
- START_CYCLE will appear in row 0. Updates max/min_cycles. */
-void
-rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
-{
- int i, row, backward_rotates;
- int last_row = ps->ii - 1;
-
- if (start_cycle == 0)
- return;
-
- backward_rotates = SMODULO (start_cycle, ps->ii);
-
- /* Revisit later and optimize this into a single loop. */
- for (i = 0; i < backward_rotates; i++)
- {
- ps_insn_ptr first_row = ps->rows[0];
-
- for (row = 0; row < last_row; row++)
- ps->rows[row] = ps->rows[row+1];
-
- ps->rows[last_row] = first_row;
- }
-
- ps->max_cycle -= start_cycle;
- ps->min_cycle -= start_cycle;
-}
-
-/* Remove the node N from the partial schedule PS; because we restart the DFA
- each time we want to check for resource conflicts; this is equivalent to
- unscheduling the node N. */
-static bool
-ps_unschedule_node (partial_schedule_ptr ps, ddg_node_ptr n)
-{
- ps_insn_ptr ps_i;
- int row = SMODULO (SCHED_TIME (n), ps->ii);
-
- if (row < 0 || row > ps->ii)
- return false;
-
- for (ps_i = ps->rows[row];
- ps_i && ps_i->node != n;
- ps_i = ps_i->next_in_row);
- if (!ps_i)
- return false;
-
- return remove_node_from_ps (ps, ps_i);
-}
-#endif /* INSN_SCHEDULING */
-
-static bool
-gate_handle_sms (void)
-{
- return (optimize > 0 && flag_modulo_sched);
-}
-
-
-/* Run instruction scheduler. */
-/* Perform SMS module scheduling. */
-static unsigned int
-rest_of_handle_sms (void)
-{
-#ifdef INSN_SCHEDULING
- basic_block bb;
-
- /* We want to be able to create new pseudos. */
- no_new_pseudos = 0;
- /* Collect loop information to be used in SMS. */
- cfg_layout_initialize (CLEANUP_UPDATE_LIFE);
- sms_schedule ();
-
- /* Update the life information, because we add pseudos. */
- max_regno = max_reg_num ();
- allocate_reg_info (max_regno, FALSE, FALSE);
- update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
- (PROP_DEATH_NOTES
- | PROP_REG_INFO
- | PROP_KILL_DEAD_CODE
- | PROP_SCAN_DEAD_CODE));
-
- no_new_pseudos = 1;
-
- /* Finalize layout changes. */
- FOR_EACH_BB (bb)
- if (bb->next_bb != EXIT_BLOCK_PTR)
- bb->aux = bb->next_bb;
- cfg_layout_finalize ();
- free_dominance_info (CDI_DOMINATORS);
-#endif /* INSN_SCHEDULING */
- return 0;
-}
-
-struct tree_opt_pass pass_sms =
-{
- "sms", /* name */
- gate_handle_sms, /* gate */
- rest_of_handle_sms, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_SMS, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- TODO_dump_func, /* todo_flags_start */
- TODO_dump_func |
- TODO_ggc_collect, /* todo_flags_finish */
- 'm' /* letter */
-};
-