aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/lcm.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/lcm.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/lcm.c811
1 files changed, 0 insertions, 811 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/lcm.c b/gcc-4.2.1-5666.3/gcc/lcm.c
deleted file mode 100644
index 2571b56ff..000000000
--- a/gcc-4.2.1-5666.3/gcc/lcm.c
+++ /dev/null
@@ -1,811 +0,0 @@
-/* Generic partial redundancy elimination with lazy code motion support.
- Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
- Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-/* These routines are meant to be used by various optimization
- passes which can be modeled as lazy code motion problems.
- Including, but not limited to:
-
- * Traditional partial redundancy elimination.
-
- * Placement of caller/caller register save/restores.
-
- * Load/store motion.
-
- * Copy motion.
-
- * Conversion of flat register files to a stacked register
- model.
-
- * Dead load/store elimination.
-
- These routines accept as input:
-
- * Basic block information (number of blocks, lists of
- predecessors and successors). Note the granularity
- does not need to be basic block, they could be statements
- or functions.
-
- * Bitmaps of local properties (computed, transparent and
- anticipatable expressions).
-
- The output of these routines is bitmap of redundant computations
- and a bitmap of optimal placement points. */
-
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "flags.h"
-#include "real.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "basic-block.h"
-#include "output.h"
-#include "tm_p.h"
-#include "function.h"
-
-/* We want target macros for the mode switching code to be able to refer
- to instruction attribute values. */
-#include "insn-attr.h"
-
-/* Edge based LCM routines. */
-static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
-static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *);
-static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
- sbitmap *, sbitmap *);
-static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *, sbitmap *);
-
-/* Edge based LCM routines on a reverse flowgraph. */
-static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
- sbitmap*, sbitmap *, sbitmap *);
-static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
- sbitmap *, sbitmap *);
-static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *,
- sbitmap *);
-
-/* Edge based lcm routines. */
-
-/* Compute expression anticipatability at entrance and exit of each block.
- This is done based on the flow graph, and not on the pred-succ lists.
- Other than that, its pretty much identical to compute_antinout. */
-
-static void
-compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
- sbitmap *antout)
-{
- basic_block bb;
- edge e;
- basic_block *worklist, *qin, *qout, *qend;
- unsigned int qlen;
- edge_iterator ei;
-
- /* Allocate a worklist array/queue. Entries are only added to the
- list if they were not already on the list. So the size is
- bounded by the number of basic blocks. */
- qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks);
-
- /* We want a maximal solution, so make an optimistic initialization of
- ANTIN. */
- sbitmap_vector_ones (antin, last_basic_block);
-
- /* Put every block on the worklist; this is necessary because of the
- optimistic initialization of ANTIN above. */
- FOR_EACH_BB_REVERSE (bb)
- {
- *qin++ = bb;
- bb->aux = bb;
- }
-
- qin = worklist;
- qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
- qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
-
- /* Mark blocks which are predecessors of the exit block so that we
- can easily identify them below. */
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- e->src->aux = EXIT_BLOCK_PTR;
-
- /* Iterate until the worklist is empty. */
- while (qlen)
- {
- /* Take the first entry off the worklist. */
- bb = *qout++;
- qlen--;
-
- if (qout >= qend)
- qout = worklist;
-
- if (bb->aux == EXIT_BLOCK_PTR)
- /* Do not clear the aux field for blocks which are predecessors of
- the EXIT block. That way we never add then to the worklist
- again. */
- sbitmap_zero (antout[bb->index]);
- else
- {
- /* Clear the aux field of this block so that it can be added to
- the worklist again if necessary. */
- bb->aux = NULL;
- sbitmap_intersection_of_succs (antout[bb->index], antin, bb->index);
- }
-
- if (sbitmap_a_or_b_and_c_cg (antin[bb->index], antloc[bb->index],
- transp[bb->index], antout[bb->index]))
- /* If the in state of this block changed, then we need
- to add the predecessors of this block to the worklist
- if they are not already on the worklist. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
- {
- *qin++ = e->src;
- e->src->aux = e;
- qlen++;
- if (qin >= qend)
- qin = worklist;
- }
- }
-
- clear_aux_for_edges ();
- clear_aux_for_blocks ();
- free (worklist);
-}
-
-/* Compute the earliest vector for edge based lcm. */
-
-static void
-compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
- sbitmap *antout, sbitmap *avout, sbitmap *kill,
- sbitmap *earliest)
-{
- sbitmap difference, temp_bitmap;
- int x, num_edges;
- basic_block pred, succ;
-
- num_edges = NUM_EDGES (edge_list);
-
- difference = sbitmap_alloc (n_exprs);
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- for (x = 0; x < num_edges; x++)
- {
- pred = INDEX_EDGE_PRED_BB (edge_list, x);
- succ = INDEX_EDGE_SUCC_BB (edge_list, x);
- if (pred == ENTRY_BLOCK_PTR)
- sbitmap_copy (earliest[x], antin[succ->index]);
- else
- {
- if (succ == EXIT_BLOCK_PTR)
- sbitmap_zero (earliest[x]);
- else
- {
- sbitmap_difference (difference, antin[succ->index],
- avout[pred->index]);
- sbitmap_not (temp_bitmap, antout[pred->index]);
- sbitmap_a_and_b_or_c (earliest[x], difference,
- kill[pred->index], temp_bitmap);
- }
- }
- }
-
- sbitmap_free (temp_bitmap);
- sbitmap_free (difference);
-}
-
-/* later(p,s) is dependent on the calculation of laterin(p).
- laterin(p) is dependent on the calculation of later(p2,p).
-
- laterin(ENTRY) is defined as all 0's
- later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
- laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
-
- If we progress in this manner, starting with all basic blocks
- in the work list, anytime we change later(bb), we need to add
- succs(bb) to the worklist if they are not already on the worklist.
-
- Boundary conditions:
-
- We prime the worklist all the normal basic blocks. The ENTRY block can
- never be added to the worklist since it is never the successor of any
- block. We explicitly prevent the EXIT block from being added to the
- worklist.
-
- We optimistically initialize LATER. That is the only time this routine
- will compute LATER for an edge out of the entry block since the entry
- block is never on the worklist. Thus, LATERIN is neither used nor
- computed for the ENTRY block.
-
- Since the EXIT block is never added to the worklist, we will neither
- use nor compute LATERIN for the exit block. Edges which reach the
- EXIT block are handled in the normal fashion inside the loop. However,
- the insertion/deletion computation needs LATERIN(EXIT), so we have
- to compute it. */
-
-static void
-compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
- sbitmap *antloc, sbitmap *later, sbitmap *laterin)
-{
- int num_edges, i;
- edge e;
- basic_block *worklist, *qin, *qout, *qend, bb;
- unsigned int qlen;
- edge_iterator ei;
-
- num_edges = NUM_EDGES (edge_list);
-
- /* Allocate a worklist array/queue. Entries are only added to the
- list if they were not already on the list. So the size is
- bounded by the number of basic blocks. */
- qin = qout = worklist
- = XNEWVEC (basic_block, n_basic_blocks);
-
- /* Initialize a mapping from each edge to its index. */
- for (i = 0; i < num_edges; i++)
- INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
-
- /* We want a maximal solution, so initially consider LATER true for
- all edges. This allows propagation through a loop since the incoming
- loop edge will have LATER set, so if all the other incoming edges
- to the loop are set, then LATERIN will be set for the head of the
- loop.
-
- If the optimistic setting of LATER on that edge was incorrect (for
- example the expression is ANTLOC in a block within the loop) then
- this algorithm will detect it when we process the block at the head
- of the optimistic edge. That will requeue the affected blocks. */
- sbitmap_vector_ones (later, num_edges);
-
- /* Note that even though we want an optimistic setting of LATER, we
- do not want to be overly optimistic. Consider an outgoing edge from
- the entry block. That edge should always have a LATER value the
- same as EARLIEST for that edge. */
- FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
- sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
-
- /* Add all the blocks to the worklist. This prevents an early exit from
- the loop given our optimistic initialization of LATER above. */
- FOR_EACH_BB (bb)
- {
- *qin++ = bb;
- bb->aux = bb;
- }
-
- /* Note that we do not use the last allocated element for our queue,
- as EXIT_BLOCK is never inserted into it. */
- qin = worklist;
- qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
- qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
-
- /* Iterate until the worklist is empty. */
- while (qlen)
- {
- /* Take the first entry off the worklist. */
- bb = *qout++;
- bb->aux = NULL;
- qlen--;
- if (qout >= qend)
- qout = worklist;
-
- /* Compute the intersection of LATERIN for each incoming edge to B. */
- sbitmap_ones (laterin[bb->index]);
- FOR_EACH_EDGE (e, ei, bb->preds)
- sbitmap_a_and_b (laterin[bb->index], laterin[bb->index],
- later[(size_t)e->aux]);
-
- /* Calculate LATER for all outgoing edges. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (sbitmap_union_of_diff_cg (later[(size_t) e->aux],
- earliest[(size_t) e->aux],
- laterin[e->src->index],
- antloc[e->src->index])
- /* If LATER for an outgoing edge was changed, then we need
- to add the target of the outgoing edge to the worklist. */
- && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
- {
- *qin++ = e->dest;
- e->dest->aux = e;
- qlen++;
- if (qin >= qend)
- qin = worklist;
- }
- }
-
- /* Computation of insertion and deletion points requires computing LATERIN
- for the EXIT block. We allocated an extra entry in the LATERIN array
- for just this purpose. */
- sbitmap_ones (laterin[last_basic_block]);
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- sbitmap_a_and_b (laterin[last_basic_block],
- laterin[last_basic_block],
- later[(size_t) e->aux]);
-
- clear_aux_for_edges ();
- free (worklist);
-}
-
-/* Compute the insertion and deletion points for edge based LCM. */
-
-static void
-compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
- sbitmap *later, sbitmap *laterin, sbitmap *insert,
- sbitmap *delete)
-{
- int x;
- basic_block bb;
-
- FOR_EACH_BB (bb)
- sbitmap_difference (delete[bb->index], antloc[bb->index],
- laterin[bb->index]);
-
- for (x = 0; x < NUM_EDGES (edge_list); x++)
- {
- basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
-
- if (b == EXIT_BLOCK_PTR)
- sbitmap_difference (insert[x], later[x], laterin[last_basic_block]);
- else
- sbitmap_difference (insert[x], later[x], laterin[b->index]);
- }
-}
-
-/* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
- delete vectors for edge based LCM. Returns an edgelist which is used to
- map the insert vector to what edge an expression should be inserted on. */
-
-struct edge_list *
-pre_edge_lcm (int n_exprs, sbitmap *transp,
- sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
- sbitmap **insert, sbitmap **delete)
-{
- sbitmap *antin, *antout, *earliest;
- sbitmap *avin, *avout;
- sbitmap *later, *laterin;
- struct edge_list *edge_list;
- int num_edges;
-
- edge_list = create_edge_list ();
- num_edges = NUM_EDGES (edge_list);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- {
- fprintf (dump_file, "Edge List:\n");
- verify_edge_list (dump_file, edge_list);
- print_edge_list (dump_file, edge_list);
- dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
- dump_sbitmap_vector (dump_file, "antloc", "", antloc, last_basic_block);
- dump_sbitmap_vector (dump_file, "avloc", "", avloc, last_basic_block);
- dump_sbitmap_vector (dump_file, "kill", "", kill, last_basic_block);
- }
-#endif
-
- /* Compute global availability. */
- avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
- avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
- compute_available (avloc, kill, avout, avin);
- sbitmap_vector_free (avin);
-
- /* Compute global anticipatability. */
- antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
- antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
- compute_antinout_edge (antloc, transp, antin, antout);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- {
- dump_sbitmap_vector (dump_file, "antin", "", antin, last_basic_block);
- dump_sbitmap_vector (dump_file, "antout", "", antout, last_basic_block);
- }
-#endif
-
- /* Compute earliestness. */
- earliest = sbitmap_vector_alloc (num_edges, n_exprs);
- compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- dump_sbitmap_vector (dump_file, "earliest", "", earliest, num_edges);
-#endif
-
- sbitmap_vector_free (antout);
- sbitmap_vector_free (antin);
- sbitmap_vector_free (avout);
-
- later = sbitmap_vector_alloc (num_edges, n_exprs);
-
- /* Allocate an extra element for the exit block in the laterin vector. */
- laterin = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
- compute_laterin (edge_list, earliest, antloc, later, laterin);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- {
- dump_sbitmap_vector (dump_file, "laterin", "", laterin, last_basic_block + 1);
- dump_sbitmap_vector (dump_file, "later", "", later, num_edges);
- }
-#endif
-
- sbitmap_vector_free (earliest);
-
- *insert = sbitmap_vector_alloc (num_edges, n_exprs);
- *delete = sbitmap_vector_alloc (last_basic_block, n_exprs);
- compute_insert_delete (edge_list, antloc, later, laterin, *insert, *delete);
-
- sbitmap_vector_free (laterin);
- sbitmap_vector_free (later);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- {
- dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
- dump_sbitmap_vector (dump_file, "pre_delete_map", "", *delete,
- last_basic_block);
- }
-#endif
-
- return edge_list;
-}
-
-/* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
- Return the number of passes we performed to iterate to a solution. */
-
-void
-compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
- sbitmap *avin)
-{
- edge e;
- basic_block *worklist, *qin, *qout, *qend, bb;
- unsigned int qlen;
- edge_iterator ei;
-
- /* Allocate a worklist array/queue. Entries are only added to the
- list if they were not already on the list. So the size is
- bounded by the number of basic blocks. */
- qin = qout = worklist =
- XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS);
-
- /* We want a maximal solution. */
- sbitmap_vector_ones (avout, last_basic_block);
-
- /* Put every block on the worklist; this is necessary because of the
- optimistic initialization of AVOUT above. */
- FOR_EACH_BB (bb)
- {
- *qin++ = bb;
- bb->aux = bb;
- }
-
- qin = worklist;
- qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
- qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
-
- /* Mark blocks which are successors of the entry block so that we
- can easily identify them below. */
- FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
- e->dest->aux = ENTRY_BLOCK_PTR;
-
- /* Iterate until the worklist is empty. */
- while (qlen)
- {
- /* Take the first entry off the worklist. */
- bb = *qout++;
- qlen--;
-
- if (qout >= qend)
- qout = worklist;
-
- /* If one of the predecessor blocks is the ENTRY block, then the
- intersection of avouts is the null set. We can identify such blocks
- by the special value in the AUX field in the block structure. */
- if (bb->aux == ENTRY_BLOCK_PTR)
- /* Do not clear the aux field for blocks which are successors of the
- ENTRY block. That way we never add then to the worklist again. */
- sbitmap_zero (avin[bb->index]);
- else
- {
- /* Clear the aux field of this block so that it can be added to
- the worklist again if necessary. */
- bb->aux = NULL;
- sbitmap_intersection_of_preds (avin[bb->index], avout, bb->index);
- }
-
- if (sbitmap_union_of_diff_cg (avout[bb->index], avloc[bb->index],
- avin[bb->index], kill[bb->index]))
- /* If the out state of this block changed, then we need
- to add the successors of this block to the worklist
- if they are not already on the worklist. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
- {
- *qin++ = e->dest;
- e->dest->aux = e;
- qlen++;
-
- if (qin >= qend)
- qin = worklist;
- }
- }
-
- clear_aux_for_edges ();
- clear_aux_for_blocks ();
- free (worklist);
-}
-
-/* Compute the farthest vector for edge based lcm. */
-
-static void
-compute_farthest (struct edge_list *edge_list, int n_exprs,
- sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
- sbitmap *kill, sbitmap *farthest)
-{
- sbitmap difference, temp_bitmap;
- int x, num_edges;
- basic_block pred, succ;
-
- num_edges = NUM_EDGES (edge_list);
-
- difference = sbitmap_alloc (n_exprs);
- temp_bitmap = sbitmap_alloc (n_exprs);
-
- for (x = 0; x < num_edges; x++)
- {
- pred = INDEX_EDGE_PRED_BB (edge_list, x);
- succ = INDEX_EDGE_SUCC_BB (edge_list, x);
- if (succ == EXIT_BLOCK_PTR)
- sbitmap_copy (farthest[x], st_avout[pred->index]);
- else
- {
- if (pred == ENTRY_BLOCK_PTR)
- sbitmap_zero (farthest[x]);
- else
- {
- sbitmap_difference (difference, st_avout[pred->index],
- st_antin[succ->index]);
- sbitmap_not (temp_bitmap, st_avin[succ->index]);
- sbitmap_a_and_b_or_c (farthest[x], difference,
- kill[succ->index], temp_bitmap);
- }
- }
- }
-
- sbitmap_free (temp_bitmap);
- sbitmap_free (difference);
-}
-
-/* Compute nearer and nearerout vectors for edge based lcm.
-
- This is the mirror of compute_laterin, additional comments on the
- implementation can be found before compute_laterin. */
-
-static void
-compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
- sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
-{
- int num_edges, i;
- edge e;
- basic_block *worklist, *tos, bb;
- edge_iterator ei;
-
- num_edges = NUM_EDGES (edge_list);
-
- /* Allocate a worklist array/queue. Entries are only added to the
- list if they were not already on the list. So the size is
- bounded by the number of basic blocks. */
- tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
-
- /* Initialize NEARER for each edge and build a mapping from an edge to
- its index. */
- for (i = 0; i < num_edges; i++)
- INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
-
- /* We want a maximal solution. */
- sbitmap_vector_ones (nearer, num_edges);
-
- /* Note that even though we want an optimistic setting of NEARER, we
- do not want to be overly optimistic. Consider an incoming edge to
- the exit block. That edge should always have a NEARER value the
- same as FARTHEST for that edge. */
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
-
- /* Add all the blocks to the worklist. This prevents an early exit
- from the loop given our optimistic initialization of NEARER. */
- FOR_EACH_BB (bb)
- {
- *tos++ = bb;
- bb->aux = bb;
- }
-
- /* Iterate until the worklist is empty. */
- while (tos != worklist)
- {
- /* Take the first entry off the worklist. */
- bb = *--tos;
- bb->aux = NULL;
-
- /* Compute the intersection of NEARER for each outgoing edge from B. */
- sbitmap_ones (nearerout[bb->index]);
- FOR_EACH_EDGE (e, ei, bb->succs)
- sbitmap_a_and_b (nearerout[bb->index], nearerout[bb->index],
- nearer[(size_t) e->aux]);
-
- /* Calculate NEARER for all incoming edges. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (sbitmap_union_of_diff_cg (nearer[(size_t) e->aux],
- farthest[(size_t) e->aux],
- nearerout[e->dest->index],
- st_avloc[e->dest->index])
- /* If NEARER for an incoming edge was changed, then we need
- to add the source of the incoming edge to the worklist. */
- && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
- {
- *tos++ = e->src;
- e->src->aux = e;
- }
- }
-
- /* Computation of insertion and deletion points requires computing NEAREROUT
- for the ENTRY block. We allocated an extra entry in the NEAREROUT array
- for just this purpose. */
- sbitmap_ones (nearerout[last_basic_block]);
- FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
- sbitmap_a_and_b (nearerout[last_basic_block],
- nearerout[last_basic_block],
- nearer[(size_t) e->aux]);
-
- clear_aux_for_edges ();
- free (tos);
-}
-
-/* Compute the insertion and deletion points for edge based LCM. */
-
-static void
-compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
- sbitmap *nearer, sbitmap *nearerout,
- sbitmap *insert, sbitmap *delete)
-{
- int x;
- basic_block bb;
-
- FOR_EACH_BB (bb)
- sbitmap_difference (delete[bb->index], st_avloc[bb->index],
- nearerout[bb->index]);
-
- for (x = 0; x < NUM_EDGES (edge_list); x++)
- {
- basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
- if (b == ENTRY_BLOCK_PTR)
- sbitmap_difference (insert[x], nearer[x], nearerout[last_basic_block]);
- else
- sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
- }
-}
-
-/* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
- insert and delete vectors for edge based reverse LCM. Returns an
- edgelist which is used to map the insert vector to what edge
- an expression should be inserted on. */
-
-struct edge_list *
-pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
- sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
- sbitmap **insert, sbitmap **delete)
-{
- sbitmap *st_antin, *st_antout;
- sbitmap *st_avout, *st_avin, *farthest;
- sbitmap *nearer, *nearerout;
- struct edge_list *edge_list;
- int num_edges;
-
- edge_list = create_edge_list ();
- num_edges = NUM_EDGES (edge_list);
-
- st_antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
- st_antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
- sbitmap_vector_zero (st_antin, last_basic_block);
- sbitmap_vector_zero (st_antout, last_basic_block);
- compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
-
- /* Compute global anticipatability. */
- st_avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
- st_avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
- compute_available (st_avloc, kill, st_avout, st_avin);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- {
- fprintf (dump_file, "Edge List:\n");
- verify_edge_list (dump_file, edge_list);
- print_edge_list (dump_file, edge_list);
- dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
- dump_sbitmap_vector (dump_file, "st_avloc", "", st_avloc, last_basic_block);
- dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
- dump_sbitmap_vector (dump_file, "st_antin", "", st_antin, last_basic_block);
- dump_sbitmap_vector (dump_file, "st_antout", "", st_antout, last_basic_block);
- dump_sbitmap_vector (dump_file, "st_kill", "", kill, last_basic_block);
- }
-#endif
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- {
- dump_sbitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block);
- dump_sbitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block);
- }
-#endif
-
- /* Compute farthestness. */
- farthest = sbitmap_vector_alloc (num_edges, n_exprs);
- compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
- kill, farthest);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- dump_sbitmap_vector (dump_file, "farthest", "", farthest, num_edges);
-#endif
-
- sbitmap_vector_free (st_antin);
- sbitmap_vector_free (st_antout);
-
- sbitmap_vector_free (st_avin);
- sbitmap_vector_free (st_avout);
-
- nearer = sbitmap_vector_alloc (num_edges, n_exprs);
-
- /* Allocate an extra element for the entry block. */
- nearerout = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
- compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- {
- dump_sbitmap_vector (dump_file, "nearerout", "", nearerout,
- last_basic_block + 1);
- dump_sbitmap_vector (dump_file, "nearer", "", nearer, num_edges);
- }
-#endif
-
- sbitmap_vector_free (farthest);
-
- *insert = sbitmap_vector_alloc (num_edges, n_exprs);
- *delete = sbitmap_vector_alloc (last_basic_block, n_exprs);
- compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
- *insert, *delete);
-
- sbitmap_vector_free (nearerout);
- sbitmap_vector_free (nearer);
-
-#ifdef LCM_DEBUG_INFO
- if (dump_file)
- {
- dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
- dump_sbitmap_vector (dump_file, "pre_delete_map", "", *delete,
- last_basic_block);
- }
-#endif
- return edge_list;
-}
-