aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/lambda-code.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/lambda-code.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/lambda-code.c2708
1 files changed, 2708 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/lambda-code.c b/gcc-4.2.1-5666.3/gcc/lambda-code.c
new file mode 100644
index 000000000..2a8a5463e
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/lambda-code.c
@@ -0,0 +1,2708 @@
+/* Loop transformation code generation
+ Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
+ Contributed by Daniel Berlin <dberlin@dberlin.org>
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "target.h"
+#include "rtl.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "expr.h"
+#include "optabs.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-pass.h"
+#include "tree-scalar-evolution.h"
+#include "vec.h"
+#include "lambda.h"
+#include "vecprim.h"
+
+/* This loop nest code generation is based on non-singular matrix
+ math.
+
+ A little terminology and a general sketch of the algorithm. See "A singular
+ loop transformation framework based on non-singular matrices" by Wei Li and
+ Keshav Pingali for formal proofs that the various statements below are
+ correct.
+
+ A loop iteration space represents the points traversed by the loop. A point in the
+ iteration space can be represented by a vector of size <loop depth>. You can
+ therefore represent the iteration space as an integral combinations of a set
+ of basis vectors.
+
+ A loop iteration space is dense if every integer point between the loop
+ bounds is a point in the iteration space. Every loop with a step of 1
+ therefore has a dense iteration space.
+
+ for i = 1 to 3, step 1 is a dense iteration space.
+
+ A loop iteration space is sparse if it is not dense. That is, the iteration
+ space skips integer points that are within the loop bounds.
+
+ for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
+ 2 is skipped.
+
+ Dense source spaces are easy to transform, because they don't skip any
+ points to begin with. Thus we can compute the exact bounds of the target
+ space using min/max and floor/ceil.
+
+ For a dense source space, we take the transformation matrix, decompose it
+ into a lower triangular part (H) and a unimodular part (U).
+ We then compute the auxiliary space from the unimodular part (source loop
+ nest . U = auxiliary space) , which has two important properties:
+ 1. It traverses the iterations in the same lexicographic order as the source
+ space.
+ 2. It is a dense space when the source is a dense space (even if the target
+ space is going to be sparse).
+
+ Given the auxiliary space, we use the lower triangular part to compute the
+ bounds in the target space by simple matrix multiplication.
+ The gaps in the target space (IE the new loop step sizes) will be the
+ diagonals of the H matrix.
+
+ Sparse source spaces require another step, because you can't directly compute
+ the exact bounds of the auxiliary and target space from the sparse space.
+ Rather than try to come up with a separate algorithm to handle sparse source
+ spaces directly, we just find a legal transformation matrix that gives you
+ the sparse source space, from a dense space, and then transform the dense
+ space.
+
+ For a regular sparse space, you can represent the source space as an integer
+ lattice, and the base space of that lattice will always be dense. Thus, we
+ effectively use the lattice to figure out the transformation from the lattice
+ base space, to the sparse iteration space (IE what transform was applied to
+ the dense space to make it sparse). We then compose this transform with the
+ transformation matrix specified by the user (since our matrix transformations
+ are closed under composition, this is okay). We can then use the base space
+ (which is dense) plus the composed transformation matrix, to compute the rest
+ of the transform using the dense space algorithm above.
+
+ In other words, our sparse source space (B) is decomposed into a dense base
+ space (A), and a matrix (L) that transforms A into B, such that A.L = B.
+ We then compute the composition of L and the user transformation matrix (T),
+ so that T is now a transform from A to the result, instead of from B to the
+ result.
+ IE A.(LT) = result instead of B.T = result
+ Since A is now a dense source space, we can use the dense source space
+ algorithm above to compute the result of applying transform (LT) to A.
+
+ Fourier-Motzkin elimination is used to compute the bounds of the base space
+ of the lattice. */
+
+static bool perfect_nestify (struct loops *,
+ struct loop *, VEC(tree,heap) *,
+ VEC(tree,heap) *, VEC(int,heap) *,
+ VEC(tree,heap) *);
+/* Lattice stuff that is internal to the code generation algorithm. */
+
+typedef struct
+{
+ /* Lattice base matrix. */
+ lambda_matrix base;
+ /* Lattice dimension. */
+ int dimension;
+ /* Origin vector for the coefficients. */
+ lambda_vector origin;
+ /* Origin matrix for the invariants. */
+ lambda_matrix origin_invariants;
+ /* Number of invariants. */
+ int invariants;
+} *lambda_lattice;
+
+#define LATTICE_BASE(T) ((T)->base)
+#define LATTICE_DIMENSION(T) ((T)->dimension)
+#define LATTICE_ORIGIN(T) ((T)->origin)
+#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
+#define LATTICE_INVARIANTS(T) ((T)->invariants)
+
+static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
+ int, int);
+static lambda_lattice lambda_lattice_new (int, int);
+static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
+
+static tree find_induction_var_from_exit_cond (struct loop *);
+static bool can_convert_to_perfect_nest (struct loop *);
+
+/* Create a new lambda body vector. */
+
+lambda_body_vector
+lambda_body_vector_new (int size)
+{
+ lambda_body_vector ret;
+
+ ret = ggc_alloc (sizeof (*ret));
+ LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
+ LBV_SIZE (ret) = size;
+ LBV_DENOMINATOR (ret) = 1;
+ return ret;
+}
+
+/* Compute the new coefficients for the vector based on the
+ *inverse* of the transformation matrix. */
+
+lambda_body_vector
+lambda_body_vector_compute_new (lambda_trans_matrix transform,
+ lambda_body_vector vect)
+{
+ lambda_body_vector temp;
+ int depth;
+
+ /* Make sure the matrix is square. */
+ gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
+
+ depth = LTM_ROWSIZE (transform);
+
+ temp = lambda_body_vector_new (depth);
+ LBV_DENOMINATOR (temp) =
+ LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
+ lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
+ LTM_MATRIX (transform), depth,
+ LBV_COEFFICIENTS (temp));
+ LBV_SIZE (temp) = LBV_SIZE (vect);
+ return temp;
+}
+
+/* Print out a lambda body vector. */
+
+void
+print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
+{
+ print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
+}
+
+/* Return TRUE if two linear expressions are equal. */
+
+static bool
+lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
+ int depth, int invariants)
+{
+ int i;
+
+ if (lle1 == NULL || lle2 == NULL)
+ return false;
+ if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
+ return false;
+ if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
+ return false;
+ for (i = 0; i < depth; i++)
+ if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
+ return false;
+ for (i = 0; i < invariants; i++)
+ if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
+ LLE_INVARIANT_COEFFICIENTS (lle2)[i])
+ return false;
+ return true;
+}
+
+/* Create a new linear expression with dimension DIM, and total number
+ of invariants INVARIANTS. */
+
+lambda_linear_expression
+lambda_linear_expression_new (int dim, int invariants)
+{
+ lambda_linear_expression ret;
+
+ ret = ggc_alloc_cleared (sizeof (*ret));
+
+ LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
+ LLE_CONSTANT (ret) = 0;
+ LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
+ LLE_DENOMINATOR (ret) = 1;
+ LLE_NEXT (ret) = NULL;
+
+ return ret;
+}
+
+/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
+ The starting letter used for variable names is START. */
+
+static void
+print_linear_expression (FILE * outfile, lambda_vector expr, int size,
+ char start)
+{
+ int i;
+ bool first = true;
+ for (i = 0; i < size; i++)
+ {
+ if (expr[i] != 0)
+ {
+ if (first)
+ {
+ if (expr[i] < 0)
+ fprintf (outfile, "-");
+ first = false;
+ }
+ else if (expr[i] > 0)
+ fprintf (outfile, " + ");
+ else
+ fprintf (outfile, " - ");
+ if (abs (expr[i]) == 1)
+ fprintf (outfile, "%c", start + i);
+ else
+ fprintf (outfile, "%d%c", abs (expr[i]), start + i);
+ }
+ }
+}
+
+/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
+ depth/number of coefficients is given by DEPTH, the number of invariants is
+ given by INVARIANTS, and the character to start variable names with is given
+ by START. */
+
+void
+print_lambda_linear_expression (FILE * outfile,
+ lambda_linear_expression expr,
+ int depth, int invariants, char start)
+{
+ fprintf (outfile, "\tLinear expression: ");
+ print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
+ fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
+ fprintf (outfile, " invariants: ");
+ print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
+ invariants, 'A');
+ fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
+}
+
+/* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
+ coefficients is given by DEPTH, the number of invariants is
+ given by INVARIANTS, and the character to start variable names with is given
+ by START. */
+
+void
+print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
+ int invariants, char start)
+{
+ int step;
+ lambda_linear_expression expr;
+
+ gcc_assert (loop);
+
+ expr = LL_LINEAR_OFFSET (loop);
+ step = LL_STEP (loop);
+ fprintf (outfile, " step size = %d \n", step);
+
+ if (expr)
+ {
+ fprintf (outfile, " linear offset: \n");
+ print_lambda_linear_expression (outfile, expr, depth, invariants,
+ start);
+ }
+
+ fprintf (outfile, " lower bound: \n");
+ for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
+ print_lambda_linear_expression (outfile, expr, depth, invariants, start);
+ fprintf (outfile, " upper bound: \n");
+ for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
+ print_lambda_linear_expression (outfile, expr, depth, invariants, start);
+}
+
+/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
+ number of invariants. */
+
+lambda_loopnest
+lambda_loopnest_new (int depth, int invariants)
+{
+ lambda_loopnest ret;
+ ret = ggc_alloc (sizeof (*ret));
+
+ LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
+ LN_DEPTH (ret) = depth;
+ LN_INVARIANTS (ret) = invariants;
+
+ return ret;
+}
+
+/* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
+ character to use for loop names is given by START. */
+
+void
+print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
+{
+ int i;
+ for (i = 0; i < LN_DEPTH (nest); i++)
+ {
+ fprintf (outfile, "Loop %c\n", start + i);
+ print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
+ LN_INVARIANTS (nest), 'i');
+ fprintf (outfile, "\n");
+ }
+}
+
+/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
+ of invariants. */
+
+static lambda_lattice
+lambda_lattice_new (int depth, int invariants)
+{
+ lambda_lattice ret;
+ ret = ggc_alloc (sizeof (*ret));
+ LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
+ LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
+ LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
+ LATTICE_DIMENSION (ret) = depth;
+ LATTICE_INVARIANTS (ret) = invariants;
+ return ret;
+}
+
+/* Compute the lattice base for NEST. The lattice base is essentially a
+ non-singular transform from a dense base space to a sparse iteration space.
+ We use it so that we don't have to specially handle the case of a sparse
+ iteration space in other parts of the algorithm. As a result, this routine
+ only does something interesting (IE produce a matrix that isn't the
+ identity matrix) if NEST is a sparse space. */
+
+static lambda_lattice
+lambda_lattice_compute_base (lambda_loopnest nest)
+{
+ lambda_lattice ret;
+ int depth, invariants;
+ lambda_matrix base;
+
+ int i, j, step;
+ lambda_loop loop;
+ lambda_linear_expression expression;
+
+ depth = LN_DEPTH (nest);
+ invariants = LN_INVARIANTS (nest);
+
+ ret = lambda_lattice_new (depth, invariants);
+ base = LATTICE_BASE (ret);
+ for (i = 0; i < depth; i++)
+ {
+ loop = LN_LOOPS (nest)[i];
+ gcc_assert (loop);
+ step = LL_STEP (loop);
+ /* If we have a step of 1, then the base is one, and the
+ origin and invariant coefficients are 0. */
+ if (step == 1)
+ {
+ for (j = 0; j < depth; j++)
+ base[i][j] = 0;
+ base[i][i] = 1;
+ LATTICE_ORIGIN (ret)[i] = 0;
+ for (j = 0; j < invariants; j++)
+ LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
+ }
+ else
+ {
+ /* Otherwise, we need the lower bound expression (which must
+ be an affine function) to determine the base. */
+ expression = LL_LOWER_BOUND (loop);
+ gcc_assert (expression && !LLE_NEXT (expression)
+ && LLE_DENOMINATOR (expression) == 1);
+
+ /* The lower triangular portion of the base is going to be the
+ coefficient times the step */
+ for (j = 0; j < i; j++)
+ base[i][j] = LLE_COEFFICIENTS (expression)[j]
+ * LL_STEP (LN_LOOPS (nest)[j]);
+ base[i][i] = step;
+ for (j = i + 1; j < depth; j++)
+ base[i][j] = 0;
+
+ /* Origin for this loop is the constant of the lower bound
+ expression. */
+ LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
+
+ /* Coefficient for the invariants are equal to the invariant
+ coefficients in the expression. */
+ for (j = 0; j < invariants; j++)
+ LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
+ LLE_INVARIANT_COEFFICIENTS (expression)[j];
+ }
+ }
+ return ret;
+}
+
+/* Compute the least common multiple of two numbers A and B . */
+
+static int
+lcm (int a, int b)
+{
+ return (abs (a) * abs (b) / gcd (a, b));
+}
+
+/* Perform Fourier-Motzkin elimination to calculate the bounds of the
+ auxiliary nest.
+ Fourier-Motzkin is a way of reducing systems of linear inequalities so that
+ it is easy to calculate the answer and bounds.
+ A sketch of how it works:
+ Given a system of linear inequalities, ai * xj >= bk, you can always
+ rewrite the constraints so they are all of the form
+ a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
+ in b1 ... bk, and some a in a1...ai)
+ You can then eliminate this x from the non-constant inequalities by
+ rewriting these as a <= b, x >= constant, and delete the x variable.
+ You can then repeat this for any remaining x variables, and then we have
+ an easy to use variable <= constant (or no variables at all) form that we
+ can construct our bounds from.
+
+ In our case, each time we eliminate, we construct part of the bound from
+ the ith variable, then delete the ith variable.
+
+ Remember the constant are in our vector a, our coefficient matrix is A,
+ and our invariant coefficient matrix is B.
+
+ SIZE is the size of the matrices being passed.
+ DEPTH is the loop nest depth.
+ INVARIANTS is the number of loop invariants.
+ A, B, and a are the coefficient matrix, invariant coefficient, and a
+ vector of constants, respectively. */
+
+static lambda_loopnest
+compute_nest_using_fourier_motzkin (int size,
+ int depth,
+ int invariants,
+ lambda_matrix A,
+ lambda_matrix B,
+ lambda_vector a)
+{
+
+ int multiple, f1, f2;
+ int i, j, k;
+ lambda_linear_expression expression;
+ lambda_loop loop;
+ lambda_loopnest auxillary_nest;
+ lambda_matrix swapmatrix, A1, B1;
+ lambda_vector swapvector, a1;
+ int newsize;
+
+ A1 = lambda_matrix_new (128, depth);
+ B1 = lambda_matrix_new (128, invariants);
+ a1 = lambda_vector_new (128);
+
+ auxillary_nest = lambda_loopnest_new (depth, invariants);
+
+ for (i = depth - 1; i >= 0; i--)
+ {
+ loop = lambda_loop_new ();
+ LN_LOOPS (auxillary_nest)[i] = loop;
+ LL_STEP (loop) = 1;
+
+ for (j = 0; j < size; j++)
+ {
+ if (A[j][i] < 0)
+ {
+ /* Any linear expression in the matrix with a coefficient less
+ than 0 becomes part of the new lower bound. */
+ expression = lambda_linear_expression_new (depth, invariants);
+
+ for (k = 0; k < i; k++)
+ LLE_COEFFICIENTS (expression)[k] = A[j][k];
+
+ for (k = 0; k < invariants; k++)
+ LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
+
+ LLE_DENOMINATOR (expression) = -1 * A[j][i];
+ LLE_CONSTANT (expression) = -1 * a[j];
+
+ /* Ignore if identical to the existing lower bound. */
+ if (!lle_equal (LL_LOWER_BOUND (loop),
+ expression, depth, invariants))
+ {
+ LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
+ LL_LOWER_BOUND (loop) = expression;
+ }
+
+ }
+ else if (A[j][i] > 0)
+ {
+ /* Any linear expression with a coefficient greater than 0
+ becomes part of the new upper bound. */
+ expression = lambda_linear_expression_new (depth, invariants);
+ for (k = 0; k < i; k++)
+ LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
+
+ for (k = 0; k < invariants; k++)
+ LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
+
+ LLE_DENOMINATOR (expression) = A[j][i];
+ LLE_CONSTANT (expression) = a[j];
+
+ /* Ignore if identical to the existing upper bound. */
+ if (!lle_equal (LL_UPPER_BOUND (loop),
+ expression, depth, invariants))
+ {
+ LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
+ LL_UPPER_BOUND (loop) = expression;
+ }
+
+ }
+ }
+
+ /* This portion creates a new system of linear inequalities by deleting
+ the i'th variable, reducing the system by one variable. */
+ newsize = 0;
+ for (j = 0; j < size; j++)
+ {
+ /* If the coefficient for the i'th variable is 0, then we can just
+ eliminate the variable straightaway. Otherwise, we have to
+ multiply through by the coefficients we are eliminating. */
+ if (A[j][i] == 0)
+ {
+ lambda_vector_copy (A[j], A1[newsize], depth);
+ lambda_vector_copy (B[j], B1[newsize], invariants);
+ a1[newsize] = a[j];
+ newsize++;
+ }
+ else if (A[j][i] > 0)
+ {
+ for (k = 0; k < size; k++)
+ {
+ if (A[k][i] < 0)
+ {
+ multiple = lcm (A[j][i], A[k][i]);
+ f1 = multiple / A[j][i];
+ f2 = -1 * multiple / A[k][i];
+
+ lambda_vector_add_mc (A[j], f1, A[k], f2,
+ A1[newsize], depth);
+ lambda_vector_add_mc (B[j], f1, B[k], f2,
+ B1[newsize], invariants);
+ a1[newsize] = f1 * a[j] + f2 * a[k];
+ newsize++;
+ }
+ }
+ }
+ }
+
+ swapmatrix = A;
+ A = A1;
+ A1 = swapmatrix;
+
+ swapmatrix = B;
+ B = B1;
+ B1 = swapmatrix;
+
+ swapvector = a;
+ a = a1;
+ a1 = swapvector;
+
+ size = newsize;
+ }
+
+ return auxillary_nest;
+}
+
+/* Compute the loop bounds for the auxiliary space NEST.
+ Input system used is Ax <= b. TRANS is the unimodular transformation.
+ Given the original nest, this function will
+ 1. Convert the nest into matrix form, which consists of a matrix for the
+ coefficients, a matrix for the
+ invariant coefficients, and a vector for the constants.
+ 2. Use the matrix form to calculate the lattice base for the nest (which is
+ a dense space)
+ 3. Compose the dense space transform with the user specified transform, to
+ get a transform we can easily calculate transformed bounds for.
+ 4. Multiply the composed transformation matrix times the matrix form of the
+ loop.
+ 5. Transform the newly created matrix (from step 4) back into a loop nest
+ using Fourier-Motzkin elimination to figure out the bounds. */
+
+static lambda_loopnest
+lambda_compute_auxillary_space (lambda_loopnest nest,
+ lambda_trans_matrix trans)
+{
+ lambda_matrix A, B, A1, B1;
+ lambda_vector a, a1;
+ lambda_matrix invertedtrans;
+ int depth, invariants, size;
+ int i, j;
+ lambda_loop loop;
+ lambda_linear_expression expression;
+ lambda_lattice lattice;
+
+ depth = LN_DEPTH (nest);
+ invariants = LN_INVARIANTS (nest);
+
+ /* Unfortunately, we can't know the number of constraints we'll have
+ ahead of time, but this should be enough even in ridiculous loop nest
+ cases. We must not go over this limit. */
+ A = lambda_matrix_new (128, depth);
+ B = lambda_matrix_new (128, invariants);
+ a = lambda_vector_new (128);
+
+ A1 = lambda_matrix_new (128, depth);
+ B1 = lambda_matrix_new (128, invariants);
+ a1 = lambda_vector_new (128);
+
+ /* Store the bounds in the equation matrix A, constant vector a, and
+ invariant matrix B, so that we have Ax <= a + B.
+ This requires a little equation rearranging so that everything is on the
+ correct side of the inequality. */
+ size = 0;
+ for (i = 0; i < depth; i++)
+ {
+ loop = LN_LOOPS (nest)[i];
+
+ /* First we do the lower bound. */
+ if (LL_STEP (loop) > 0)
+ expression = LL_LOWER_BOUND (loop);
+ else
+ expression = LL_UPPER_BOUND (loop);
+
+ for (; expression != NULL; expression = LLE_NEXT (expression))
+ {
+ /* Fill in the coefficient. */
+ for (j = 0; j < i; j++)
+ A[size][j] = LLE_COEFFICIENTS (expression)[j];
+
+ /* And the invariant coefficient. */
+ for (j = 0; j < invariants; j++)
+ B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
+
+ /* And the constant. */
+ a[size] = LLE_CONSTANT (expression);
+
+ /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
+ constants and single variables on */
+ A[size][i] = -1 * LLE_DENOMINATOR (expression);
+ a[size] *= -1;
+ for (j = 0; j < invariants; j++)
+ B[size][j] *= -1;
+
+ size++;
+ /* Need to increase matrix sizes above. */
+ gcc_assert (size <= 127);
+
+ }
+
+ /* Then do the exact same thing for the upper bounds. */
+ if (LL_STEP (loop) > 0)
+ expression = LL_UPPER_BOUND (loop);
+ else
+ expression = LL_LOWER_BOUND (loop);
+
+ for (; expression != NULL; expression = LLE_NEXT (expression))
+ {
+ /* Fill in the coefficient. */
+ for (j = 0; j < i; j++)
+ A[size][j] = LLE_COEFFICIENTS (expression)[j];
+
+ /* And the invariant coefficient. */
+ for (j = 0; j < invariants; j++)
+ B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
+
+ /* And the constant. */
+ a[size] = LLE_CONSTANT (expression);
+
+ /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
+ for (j = 0; j < i; j++)
+ A[size][j] *= -1;
+ A[size][i] = LLE_DENOMINATOR (expression);
+ size++;
+ /* Need to increase matrix sizes above. */
+ gcc_assert (size <= 127);
+
+ }
+ }
+
+ /* Compute the lattice base x = base * y + origin, where y is the
+ base space. */
+ lattice = lambda_lattice_compute_base (nest);
+
+ /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
+
+ /* A1 = A * L */
+ lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
+
+ /* a1 = a - A * origin constant. */
+ lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
+ lambda_vector_add_mc (a, 1, a1, -1, a1, size);
+
+ /* B1 = B - A * origin invariant. */
+ lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
+ invariants);
+ lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
+
+ /* Now compute the auxiliary space bounds by first inverting U, multiplying
+ it by A1, then performing Fourier-Motzkin. */
+
+ invertedtrans = lambda_matrix_new (depth, depth);
+
+ /* Compute the inverse of U. */
+ lambda_matrix_inverse (LTM_MATRIX (trans),
+ invertedtrans, depth);
+
+ /* A = A1 inv(U). */
+ lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
+
+ return compute_nest_using_fourier_motzkin (size, depth, invariants,
+ A, B1, a1);
+}
+
+/* Compute the loop bounds for the target space, using the bounds of
+ the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
+ The target space loop bounds are computed by multiplying the triangular
+ matrix H by the auxiliary nest, to get the new loop bounds. The sign of
+ the loop steps (positive or negative) is then used to swap the bounds if
+ the loop counts downwards.
+ Return the target loopnest. */
+
+static lambda_loopnest
+lambda_compute_target_space (lambda_loopnest auxillary_nest,
+ lambda_trans_matrix H, lambda_vector stepsigns)
+{
+ lambda_matrix inverse, H1;
+ int determinant, i, j;
+ int gcd1, gcd2;
+ int factor;
+
+ lambda_loopnest target_nest;
+ int depth, invariants;
+ lambda_matrix target;
+
+ lambda_loop auxillary_loop, target_loop;
+ lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
+
+ depth = LN_DEPTH (auxillary_nest);
+ invariants = LN_INVARIANTS (auxillary_nest);
+
+ inverse = lambda_matrix_new (depth, depth);
+ determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
+
+ /* H1 is H excluding its diagonal. */
+ H1 = lambda_matrix_new (depth, depth);
+ lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
+
+ for (i = 0; i < depth; i++)
+ H1[i][i] = 0;
+
+ /* Computes the linear offsets of the loop bounds. */
+ target = lambda_matrix_new (depth, depth);
+ lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
+
+ target_nest = lambda_loopnest_new (depth, invariants);
+
+ for (i = 0; i < depth; i++)
+ {
+
+ /* Get a new loop structure. */
+ target_loop = lambda_loop_new ();
+ LN_LOOPS (target_nest)[i] = target_loop;
+
+ /* Computes the gcd of the coefficients of the linear part. */
+ gcd1 = lambda_vector_gcd (target[i], i);
+
+ /* Include the denominator in the GCD. */
+ gcd1 = gcd (gcd1, determinant);
+
+ /* Now divide through by the gcd. */
+ for (j = 0; j < i; j++)
+ target[i][j] = target[i][j] / gcd1;
+
+ expression = lambda_linear_expression_new (depth, invariants);
+ lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
+ LLE_DENOMINATOR (expression) = determinant / gcd1;
+ LLE_CONSTANT (expression) = 0;
+ lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
+ invariants);
+ LL_LINEAR_OFFSET (target_loop) = expression;
+ }
+
+ /* For each loop, compute the new bounds from H. */
+ for (i = 0; i < depth; i++)
+ {
+ auxillary_loop = LN_LOOPS (auxillary_nest)[i];
+ target_loop = LN_LOOPS (target_nest)[i];
+ LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
+ factor = LTM_MATRIX (H)[i][i];
+
+ /* First we do the lower bound. */
+ auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
+
+ for (; auxillary_expr != NULL;
+ auxillary_expr = LLE_NEXT (auxillary_expr))
+ {
+ target_expr = lambda_linear_expression_new (depth, invariants);
+ lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
+ depth, inverse, depth,
+ LLE_COEFFICIENTS (target_expr));
+ lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
+ LLE_COEFFICIENTS (target_expr), depth,
+ factor);
+
+ LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
+ lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
+ LLE_INVARIANT_COEFFICIENTS (target_expr),
+ invariants);
+ lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
+ LLE_INVARIANT_COEFFICIENTS (target_expr),
+ invariants, factor);
+ LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
+
+ if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
+ {
+ LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
+ * determinant;
+ lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
+ (target_expr),
+ LLE_INVARIANT_COEFFICIENTS
+ (target_expr), invariants,
+ determinant);
+ LLE_DENOMINATOR (target_expr) =
+ LLE_DENOMINATOR (target_expr) * determinant;
+ }
+ /* Find the gcd and divide by it here, rather than doing it
+ at the tree level. */
+ gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
+ gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
+ invariants);
+ gcd1 = gcd (gcd1, gcd2);
+ gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
+ gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
+ for (j = 0; j < depth; j++)
+ LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
+ for (j = 0; j < invariants; j++)
+ LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
+ LLE_CONSTANT (target_expr) /= gcd1;
+ LLE_DENOMINATOR (target_expr) /= gcd1;
+ /* Ignore if identical to existing bound. */
+ if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
+ invariants))
+ {
+ LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
+ LL_LOWER_BOUND (target_loop) = target_expr;
+ }
+ }
+ /* Now do the upper bound. */
+ auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
+
+ for (; auxillary_expr != NULL;
+ auxillary_expr = LLE_NEXT (auxillary_expr))
+ {
+ target_expr = lambda_linear_expression_new (depth, invariants);
+ lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
+ depth, inverse, depth,
+ LLE_COEFFICIENTS (target_expr));
+ lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
+ LLE_COEFFICIENTS (target_expr), depth,
+ factor);
+ LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
+ lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
+ LLE_INVARIANT_COEFFICIENTS (target_expr),
+ invariants);
+ lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
+ LLE_INVARIANT_COEFFICIENTS (target_expr),
+ invariants, factor);
+ LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
+
+ if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
+ {
+ LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
+ * determinant;
+ lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
+ (target_expr),
+ LLE_INVARIANT_COEFFICIENTS
+ (target_expr), invariants,
+ determinant);
+ LLE_DENOMINATOR (target_expr) =
+ LLE_DENOMINATOR (target_expr) * determinant;
+ }
+ /* Find the gcd and divide by it here, instead of at the
+ tree level. */
+ gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
+ gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
+ invariants);
+ gcd1 = gcd (gcd1, gcd2);
+ gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
+ gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
+ for (j = 0; j < depth; j++)
+ LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
+ for (j = 0; j < invariants; j++)
+ LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
+ LLE_CONSTANT (target_expr) /= gcd1;
+ LLE_DENOMINATOR (target_expr) /= gcd1;
+ /* Ignore if equal to existing bound. */
+ if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
+ invariants))
+ {
+ LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
+ LL_UPPER_BOUND (target_loop) = target_expr;
+ }
+ }
+ }
+ for (i = 0; i < depth; i++)
+ {
+ target_loop = LN_LOOPS (target_nest)[i];
+ /* If necessary, exchange the upper and lower bounds and negate
+ the step size. */
+ if (stepsigns[i] < 0)
+ {
+ LL_STEP (target_loop) *= -1;
+ tmp_expr = LL_LOWER_BOUND (target_loop);
+ LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
+ LL_UPPER_BOUND (target_loop) = tmp_expr;
+ }
+ }
+ return target_nest;
+}
+
+/* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
+ result. */
+
+static lambda_vector
+lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
+{
+ lambda_matrix matrix, H;
+ int size;
+ lambda_vector newsteps;
+ int i, j, factor, minimum_column;
+ int temp;
+
+ matrix = LTM_MATRIX (trans);
+ size = LTM_ROWSIZE (trans);
+ H = lambda_matrix_new (size, size);
+
+ newsteps = lambda_vector_new (size);
+ lambda_vector_copy (stepsigns, newsteps, size);
+
+ lambda_matrix_copy (matrix, H, size, size);
+
+ for (j = 0; j < size; j++)
+ {
+ lambda_vector row;
+ row = H[j];
+ for (i = j; i < size; i++)
+ if (row[i] < 0)
+ lambda_matrix_col_negate (H, size, i);
+ while (lambda_vector_first_nz (row, size, j + 1) < size)
+ {
+ minimum_column = lambda_vector_min_nz (row, size, j);
+ lambda_matrix_col_exchange (H, size, j, minimum_column);
+
+ temp = newsteps[j];
+ newsteps[j] = newsteps[minimum_column];
+ newsteps[minimum_column] = temp;
+
+ for (i = j + 1; i < size; i++)
+ {
+ factor = row[i] / row[j];
+ lambda_matrix_col_add (H, size, j, i, -1 * factor);
+ }
+ }
+ }
+ return newsteps;
+}
+
+/* Transform NEST according to TRANS, and return the new loopnest.
+ This involves
+ 1. Computing a lattice base for the transformation
+ 2. Composing the dense base with the specified transformation (TRANS)
+ 3. Decomposing the combined transformation into a lower triangular portion,
+ and a unimodular portion.
+ 4. Computing the auxiliary nest using the unimodular portion.
+ 5. Computing the target nest using the auxiliary nest and the lower
+ triangular portion. */
+
+lambda_loopnest
+lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
+{
+ lambda_loopnest auxillary_nest, target_nest;
+
+ int depth, invariants;
+ int i, j;
+ lambda_lattice lattice;
+ lambda_trans_matrix trans1, H, U;
+ lambda_loop loop;
+ lambda_linear_expression expression;
+ lambda_vector origin;
+ lambda_matrix origin_invariants;
+ lambda_vector stepsigns;
+ int f;
+
+ depth = LN_DEPTH (nest);
+ invariants = LN_INVARIANTS (nest);
+
+ /* Keep track of the signs of the loop steps. */
+ stepsigns = lambda_vector_new (depth);
+ for (i = 0; i < depth; i++)
+ {
+ if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
+ stepsigns[i] = 1;
+ else
+ stepsigns[i] = -1;
+ }
+
+ /* Compute the lattice base. */
+ lattice = lambda_lattice_compute_base (nest);
+ trans1 = lambda_trans_matrix_new (depth, depth);
+
+ /* Multiply the transformation matrix by the lattice base. */
+
+ lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
+ LTM_MATRIX (trans1), depth, depth, depth);
+
+ /* Compute the Hermite normal form for the new transformation matrix. */
+ H = lambda_trans_matrix_new (depth, depth);
+ U = lambda_trans_matrix_new (depth, depth);
+ lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
+ LTM_MATRIX (U));
+
+ /* Compute the auxiliary loop nest's space from the unimodular
+ portion. */
+ auxillary_nest = lambda_compute_auxillary_space (nest, U);
+
+ /* Compute the loop step signs from the old step signs and the
+ transformation matrix. */
+ stepsigns = lambda_compute_step_signs (trans1, stepsigns);
+
+ /* Compute the target loop nest space from the auxiliary nest and
+ the lower triangular matrix H. */
+ target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
+ origin = lambda_vector_new (depth);
+ origin_invariants = lambda_matrix_new (depth, invariants);
+ lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
+ LATTICE_ORIGIN (lattice), origin);
+ lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
+ origin_invariants, depth, depth, invariants);
+
+ for (i = 0; i < depth; i++)
+ {
+ loop = LN_LOOPS (target_nest)[i];
+ expression = LL_LINEAR_OFFSET (loop);
+ if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
+ f = 1;
+ else
+ f = LLE_DENOMINATOR (expression);
+
+ LLE_CONSTANT (expression) += f * origin[i];
+
+ for (j = 0; j < invariants; j++)
+ LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
+ f * origin_invariants[i][j];
+ }
+
+ return target_nest;
+
+}
+
+/* Convert a gcc tree expression EXPR to a lambda linear expression, and
+ return the new expression. DEPTH is the depth of the loopnest.
+ OUTERINDUCTIONVARS is an array of the induction variables for outer loops
+ in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
+ is the amount we have to add/subtract from the expression because of the
+ type of comparison it is used in. */
+
+static lambda_linear_expression
+gcc_tree_to_linear_expression (int depth, tree expr,
+ VEC(tree,heap) *outerinductionvars,
+ VEC(tree,heap) *invariants, int extra)
+{
+ lambda_linear_expression lle = NULL;
+ switch (TREE_CODE (expr))
+ {
+ case INTEGER_CST:
+ {
+ lle = lambda_linear_expression_new (depth, 2 * depth);
+ LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
+ if (extra != 0)
+ LLE_CONSTANT (lle) += extra;
+
+ LLE_DENOMINATOR (lle) = 1;
+ }
+ break;
+ case SSA_NAME:
+ {
+ tree iv, invar;
+ size_t i;
+ for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
+ if (iv != NULL)
+ {
+ if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
+ {
+ lle = lambda_linear_expression_new (depth, 2 * depth);
+ LLE_COEFFICIENTS (lle)[i] = 1;
+ if (extra != 0)
+ LLE_CONSTANT (lle) = extra;
+
+ LLE_DENOMINATOR (lle) = 1;
+ }
+ }
+ for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
+ if (invar != NULL)
+ {
+ if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
+ {
+ lle = lambda_linear_expression_new (depth, 2 * depth);
+ LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
+ if (extra != 0)
+ LLE_CONSTANT (lle) = extra;
+ LLE_DENOMINATOR (lle) = 1;
+ }
+ }
+ }
+ break;
+ default:
+ return NULL;
+ }
+
+ return lle;
+}
+
+/* Return the depth of the loopnest NEST */
+
+static int
+depth_of_nest (struct loop *nest)
+{
+ size_t depth = 0;
+ while (nest)
+ {
+ depth++;
+ nest = nest->inner;
+ }
+ return depth;
+}
+
+
+/* Return true if OP is invariant in LOOP and all outer loops. */
+
+static bool
+invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
+{
+ if (is_gimple_min_invariant (op))
+ return true;
+ if (loop->depth == 0)
+ return true;
+ if (!expr_invariant_in_loop_p (loop, op))
+ return false;
+ if (loop->outer
+ && !invariant_in_loop_and_outer_loops (loop->outer, op))
+ return false;
+ return true;
+}
+
+/* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
+ or NULL if it could not be converted.
+ DEPTH is the depth of the loop.
+ INVARIANTS is a pointer to the array of loop invariants.
+ The induction variable for this loop should be stored in the parameter
+ OURINDUCTIONVAR.
+ OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
+
+static lambda_loop
+gcc_loop_to_lambda_loop (struct loop *loop, int depth,
+ VEC(tree,heap) ** invariants,
+ tree * ourinductionvar,
+ VEC(tree,heap) * outerinductionvars,
+ VEC(tree,heap) ** lboundvars,
+ VEC(tree,heap) ** uboundvars,
+ VEC(int,heap) ** steps)
+{
+ tree phi;
+ tree exit_cond;
+ tree access_fn, inductionvar;
+ tree step;
+ lambda_loop lloop = NULL;
+ lambda_linear_expression lbound, ubound;
+ tree test;
+ int stepint;
+ int extra = 0;
+ tree lboundvar, uboundvar, uboundresult;
+
+ /* Find out induction var and exit condition. */
+ inductionvar = find_induction_var_from_exit_cond (loop);
+ exit_cond = get_loop_exit_condition (loop);
+
+ if (inductionvar == NULL || exit_cond == NULL)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
+ return NULL;
+ }
+
+ test = TREE_OPERAND (exit_cond, 0);
+
+ if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
+ {
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Cannot find PHI node for induction variable\n");
+
+ return NULL;
+ }
+
+ phi = SSA_NAME_DEF_STMT (inductionvar);
+ if (TREE_CODE (phi) != PHI_NODE)
+ {
+ phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
+ if (!phi)
+ {
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Cannot find PHI node for induction variable\n");
+
+ return NULL;
+ }
+
+ phi = SSA_NAME_DEF_STMT (phi);
+ if (TREE_CODE (phi) != PHI_NODE)
+ {
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Cannot find PHI node for induction variable\n");
+ return NULL;
+ }
+
+ }
+
+ /* The induction variable name/version we want to put in the array is the
+ result of the induction variable phi node. */
+ *ourinductionvar = PHI_RESULT (phi);
+ access_fn = instantiate_parameters
+ (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
+ if (access_fn == chrec_dont_know)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Access function for induction variable phi is unknown\n");
+
+ return NULL;
+ }
+
+ step = evolution_part_in_loop_num (access_fn, loop->num);
+ if (!step || step == chrec_dont_know)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Cannot determine step of loop.\n");
+
+ return NULL;
+ }
+ if (TREE_CODE (step) != INTEGER_CST)
+ {
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Step of loop is not integer.\n");
+ return NULL;
+ }
+
+ stepint = TREE_INT_CST_LOW (step);
+
+ /* Only want phis for induction vars, which will have two
+ arguments. */
+ if (PHI_NUM_ARGS (phi) != 2)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
+ return NULL;
+ }
+
+ /* Another induction variable check. One argument's source should be
+ in the loop, one outside the loop. */
+ if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
+ && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
+ {
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
+
+ return NULL;
+ }
+
+ if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
+ {
+ lboundvar = PHI_ARG_DEF (phi, 1);
+ lbound = gcc_tree_to_linear_expression (depth, lboundvar,
+ outerinductionvars, *invariants,
+ 0);
+ }
+ else
+ {
+ lboundvar = PHI_ARG_DEF (phi, 0);
+ lbound = gcc_tree_to_linear_expression (depth, lboundvar,
+ outerinductionvars, *invariants,
+ 0);
+ }
+
+ if (!lbound)
+ {
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Cannot convert lower bound to linear expression\n");
+
+ return NULL;
+ }
+ /* One part of the test may be a loop invariant tree. */
+ VEC_reserve (tree, heap, *invariants, 1);
+ if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
+ && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
+ VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
+ else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
+ && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
+ VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
+
+ /* The non-induction variable part of the test is the upper bound variable.
+ */
+ if (TREE_OPERAND (test, 0) == inductionvar)
+ uboundvar = TREE_OPERAND (test, 1);
+ else
+ uboundvar = TREE_OPERAND (test, 0);
+
+
+ /* We only size the vectors assuming we have, at max, 2 times as many
+ invariants as we do loops (one for each bound).
+ This is just an arbitrary number, but it has to be matched against the
+ code below. */
+ gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
+
+
+ /* We might have some leftover. */
+ if (TREE_CODE (test) == LT_EXPR)
+ extra = -1 * stepint;
+ else if (TREE_CODE (test) == NE_EXPR)
+ extra = -1 * stepint;
+ else if (TREE_CODE (test) == GT_EXPR)
+ extra = -1 * stepint;
+ else if (TREE_CODE (test) == EQ_EXPR)
+ extra = 1 * stepint;
+
+ ubound = gcc_tree_to_linear_expression (depth, uboundvar,
+ outerinductionvars,
+ *invariants, extra);
+ uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
+ build_int_cst (TREE_TYPE (uboundvar), extra));
+ VEC_safe_push (tree, heap, *uboundvars, uboundresult);
+ VEC_safe_push (tree, heap, *lboundvars, lboundvar);
+ VEC_safe_push (int, heap, *steps, stepint);
+ if (!ubound)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Unable to convert loop: Cannot convert upper bound to linear expression\n");
+ return NULL;
+ }
+
+ lloop = lambda_loop_new ();
+ LL_STEP (lloop) = stepint;
+ LL_LOWER_BOUND (lloop) = lbound;
+ LL_UPPER_BOUND (lloop) = ubound;
+ return lloop;
+}
+
+/* Given a LOOP, find the induction variable it is testing against in the exit
+ condition. Return the induction variable if found, NULL otherwise. */
+
+static tree
+find_induction_var_from_exit_cond (struct loop *loop)
+{
+ tree expr = get_loop_exit_condition (loop);
+ tree ivarop;
+ tree test;
+ if (expr == NULL_TREE)
+ return NULL_TREE;
+ if (TREE_CODE (expr) != COND_EXPR)
+ return NULL_TREE;
+ test = TREE_OPERAND (expr, 0);
+ if (!COMPARISON_CLASS_P (test))
+ return NULL_TREE;
+
+ /* Find the side that is invariant in this loop. The ivar must be the other
+ side. */
+
+ if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
+ ivarop = TREE_OPERAND (test, 1);
+ else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
+ ivarop = TREE_OPERAND (test, 0);
+ else
+ return NULL_TREE;
+
+ if (TREE_CODE (ivarop) != SSA_NAME)
+ return NULL_TREE;
+ return ivarop;
+}
+
+DEF_VEC_P(lambda_loop);
+DEF_VEC_ALLOC_P(lambda_loop,heap);
+
+/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
+ Return the new loop nest.
+ INDUCTIONVARS is a pointer to an array of induction variables for the
+ loopnest that will be filled in during this process.
+ INVARIANTS is a pointer to an array of invariants that will be filled in
+ during this process. */
+
+lambda_loopnest
+gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
+ struct loop *loop_nest,
+ VEC(tree,heap) **inductionvars,
+ VEC(tree,heap) **invariants)
+{
+ lambda_loopnest ret = NULL;
+ struct loop *temp = loop_nest;
+ int depth = depth_of_nest (loop_nest);
+ size_t i;
+ VEC(lambda_loop,heap) *loops = NULL;
+ VEC(tree,heap) *uboundvars = NULL;
+ VEC(tree,heap) *lboundvars = NULL;
+ VEC(int,heap) *steps = NULL;
+ lambda_loop newloop;
+ tree inductionvar = NULL;
+ bool perfect_nest = perfect_nest_p (loop_nest);
+
+ if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
+ goto fail;
+
+ while (temp)
+ {
+ newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
+ &inductionvar, *inductionvars,
+ &lboundvars, &uboundvars,
+ &steps);
+ if (!newloop)
+ goto fail;
+
+ VEC_safe_push (tree, heap, *inductionvars, inductionvar);
+ VEC_safe_push (lambda_loop, heap, loops, newloop);
+ temp = temp->inner;
+ }
+
+ if (!perfect_nest)
+ {
+ if (!perfect_nestify (currloops, loop_nest,
+ lboundvars, uboundvars, steps, *inductionvars))
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "Not a perfect loop nest and couldn't convert to one.\n");
+ goto fail;
+ }
+ else if (dump_file)
+ fprintf (dump_file,
+ "Successfully converted loop nest to perfect loop nest.\n");
+ }
+
+ ret = lambda_loopnest_new (depth, 2 * depth);
+
+ for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
+ LN_LOOPS (ret)[i] = newloop;
+
+ fail:
+ VEC_free (lambda_loop, heap, loops);
+ VEC_free (tree, heap, uboundvars);
+ VEC_free (tree, heap, lboundvars);
+ VEC_free (int, heap, steps);
+
+ return ret;
+}
+
+/* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
+ STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
+ inserted for us are stored. INDUCTION_VARS is the array of induction
+ variables for the loop this LBV is from. TYPE is the tree type to use for
+ the variables and trees involved. */
+
+static tree
+lbv_to_gcc_expression (lambda_body_vector lbv,
+ tree type, VEC(tree,heap) *induction_vars,
+ tree *stmts_to_insert)
+{
+ tree stmts, stmt, resvar, name;
+ tree iv;
+ size_t i;
+ tree_stmt_iterator tsi;
+
+ /* Create a statement list and a linear expression temporary. */
+ stmts = alloc_stmt_list ();
+ resvar = create_tmp_var (type, "lbvtmp");
+ add_referenced_var (resvar);
+
+ /* Start at 0. */
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+
+ for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
+ {
+ if (LBV_COEFFICIENTS (lbv)[i] != 0)
+ {
+ tree newname;
+ tree coeffmult;
+
+ /* newname = coefficient * induction_variable */
+ coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
+ fold_build2 (MULT_EXPR, type, iv, coeffmult));
+
+ newname = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = newname;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+
+ /* name = name + newname */
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
+ build2 (PLUS_EXPR, type, name, newname));
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+
+ }
+ }
+
+ /* Handle any denominator that occurs. */
+ if (LBV_DENOMINATOR (lbv) != 1)
+ {
+ tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
+ build2 (CEIL_DIV_EXPR, type, name, denominator));
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ }
+ *stmts_to_insert = stmts;
+ return name;
+}
+
+/* Convert a linear expression from coefficient and constant form to a
+ gcc tree.
+ Return the tree that represents the final value of the expression.
+ LLE is the linear expression to convert.
+ OFFSET is the linear offset to apply to the expression.
+ TYPE is the tree type to use for the variables and math.
+ INDUCTION_VARS is a vector of induction variables for the loops.
+ INVARIANTS is a vector of the loop nest invariants.
+ WRAP specifies what tree code to wrap the results in, if there is more than
+ one (it is either MAX_EXPR, or MIN_EXPR).
+ STMTS_TO_INSERT Is a pointer to the statement list we fill in with
+ statements that need to be inserted for the linear expression. */
+
+static tree
+lle_to_gcc_expression (lambda_linear_expression lle,
+ lambda_linear_expression offset,
+ tree type,
+ VEC(tree,heap) *induction_vars,
+ VEC(tree,heap) *invariants,
+ enum tree_code wrap, tree *stmts_to_insert)
+{
+ tree stmts, stmt, resvar, name;
+ size_t i;
+ tree_stmt_iterator tsi;
+ tree iv, invar;
+ VEC(tree,heap) *results = NULL;
+
+ gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
+ name = NULL_TREE;
+ /* Create a statement list and a linear expression temporary. */
+ stmts = alloc_stmt_list ();
+ resvar = create_tmp_var (type, "lletmp");
+ add_referenced_var (resvar);
+
+ /* Build up the linear expressions, and put the variable representing the
+ result in the results array. */
+ for (; lle != NULL; lle = LLE_NEXT (lle))
+ {
+ /* Start at name = 0. */
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+
+ /* First do the induction variables.
+ at the end, name = name + all the induction variables added
+ together. */
+ for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
+ {
+ if (LLE_COEFFICIENTS (lle)[i] != 0)
+ {
+ tree newname;
+ tree mult;
+ tree coeff;
+
+ /* mult = induction variable * coefficient. */
+ if (LLE_COEFFICIENTS (lle)[i] == 1)
+ {
+ mult = VEC_index (tree, induction_vars, i);
+ }
+ else
+ {
+ coeff = build_int_cst (type,
+ LLE_COEFFICIENTS (lle)[i]);
+ mult = fold_build2 (MULT_EXPR, type, iv, coeff);
+ }
+
+ /* newname = mult */
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar, mult);
+ newname = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = newname;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+
+ /* name = name + newname */
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
+ build2 (PLUS_EXPR, type, name, newname));
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ }
+ }
+
+ /* Handle our invariants.
+ At the end, we have name = name + result of adding all multiplied
+ invariants. */
+ for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
+ {
+ if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
+ {
+ tree newname;
+ tree mult;
+ tree coeff;
+ int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
+ /* mult = invariant * coefficient */
+ if (invcoeff == 1)
+ {
+ mult = invar;
+ }
+ else
+ {
+ coeff = build_int_cst (type, invcoeff);
+ mult = fold_build2 (MULT_EXPR, type, invar, coeff);
+ }
+
+ /* newname = mult */
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar, mult);
+ newname = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = newname;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+
+ /* name = name + newname */
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
+ build2 (PLUS_EXPR, type, name, newname));
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ }
+ }
+
+ /* Now handle the constant.
+ name = name + constant. */
+ if (LLE_CONSTANT (lle) != 0)
+ {
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
+ build2 (PLUS_EXPR, type, name,
+ build_int_cst (type, LLE_CONSTANT (lle))));
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ }
+
+ /* Now handle the offset.
+ name = name + linear offset. */
+ if (LLE_CONSTANT (offset) != 0)
+ {
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
+ build2 (PLUS_EXPR, type, name,
+ build_int_cst (type, LLE_CONSTANT (offset))));
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ fold_stmt (&stmt);
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ }
+
+ /* Handle any denominator that occurs. */
+ if (LLE_DENOMINATOR (lle) != 1)
+ {
+ stmt = build_int_cst (type, LLE_DENOMINATOR (lle));
+ stmt = build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
+ type, name, stmt);
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar, stmt);
+
+ /* name = {ceil, floor}(name/denominator) */
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ }
+ VEC_safe_push (tree, heap, results, name);
+ }
+
+ /* Again, out of laziness, we don't handle this case yet. It's not
+ hard, it just hasn't occurred. */
+ gcc_assert (VEC_length (tree, results) <= 2);
+
+ /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
+ if (VEC_length (tree, results) > 1)
+ {
+ tree op1 = VEC_index (tree, results, 0);
+ tree op2 = VEC_index (tree, results, 1);
+ stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
+ build2 (wrap, type, op1, op2));
+ name = make_ssa_name (resvar, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+ tsi = tsi_last (stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ }
+
+ VEC_free (tree, heap, results);
+
+ *stmts_to_insert = stmts;
+ return name;
+}
+
+/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
+ it, back into gcc code. This changes the
+ loops, their induction variables, and their bodies, so that they
+ match the transformed loopnest.
+ OLD_LOOPNEST is the loopnest before we've replaced it with the new
+ loopnest.
+ OLD_IVS is a vector of induction variables from the old loopnest.
+ INVARIANTS is a vector of loop invariants from the old loopnest.
+ NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
+ TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
+ NEW_LOOPNEST. */
+
+void
+lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
+ VEC(tree,heap) *old_ivs,
+ VEC(tree,heap) *invariants,
+ lambda_loopnest new_loopnest,
+ lambda_trans_matrix transform)
+{
+ struct loop *temp;
+ size_t i = 0;
+ size_t depth = 0;
+ VEC(tree,heap) *new_ivs = NULL;
+ tree oldiv;
+
+ block_stmt_iterator bsi;
+
+ if (dump_file)
+ {
+ transform = lambda_trans_matrix_inverse (transform);
+ fprintf (dump_file, "Inverse of transformation matrix:\n");
+ print_lambda_trans_matrix (dump_file, transform);
+ }
+ depth = depth_of_nest (old_loopnest);
+ temp = old_loopnest;
+
+ while (temp)
+ {
+ lambda_loop newloop;
+ basic_block bb;
+ edge exit;
+ tree ivvar, ivvarinced, exitcond, stmts;
+ enum tree_code testtype;
+ tree newupperbound, newlowerbound;
+ lambda_linear_expression offset;
+ tree type;
+ bool insert_after;
+ tree inc_stmt;
+
+ oldiv = VEC_index (tree, old_ivs, i);
+ type = TREE_TYPE (oldiv);
+
+ /* First, build the new induction variable temporary */
+
+ ivvar = create_tmp_var (type, "lnivtmp");
+ add_referenced_var (ivvar);
+
+ VEC_safe_push (tree, heap, new_ivs, ivvar);
+
+ newloop = LN_LOOPS (new_loopnest)[i];
+
+ /* Linear offset is a bit tricky to handle. Punt on the unhandled
+ cases for now. */
+ offset = LL_LINEAR_OFFSET (newloop);
+
+ gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
+ lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
+
+ /* Now build the new lower bounds, and insert the statements
+ necessary to generate it on the loop preheader. */
+ newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
+ LL_LINEAR_OFFSET (newloop),
+ type,
+ new_ivs,
+ invariants, MAX_EXPR, &stmts);
+ bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
+ bsi_commit_edge_inserts ();
+ /* Build the new upper bound and insert its statements in the
+ basic block of the exit condition */
+ newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
+ LL_LINEAR_OFFSET (newloop),
+ type,
+ new_ivs,
+ invariants, MIN_EXPR, &stmts);
+ exit = temp->single_exit;
+ exitcond = get_loop_exit_condition (temp);
+ bb = bb_for_stmt (exitcond);
+ bsi = bsi_start (bb);
+ bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
+
+ /* Create the new iv. */
+
+ standard_iv_increment_position (temp, &bsi, &insert_after);
+ create_iv (newlowerbound,
+ build_int_cst (type, LL_STEP (newloop)),
+ ivvar, temp, &bsi, insert_after, &ivvar,
+ NULL);
+
+ /* Unfortunately, the incremented ivvar that create_iv inserted may not
+ dominate the block containing the exit condition.
+ So we simply create our own incremented iv to use in the new exit
+ test, and let redundancy elimination sort it out. */
+ inc_stmt = build2 (PLUS_EXPR, type,
+ ivvar, build_int_cst (type, LL_STEP (newloop)));
+ inc_stmt = build2 (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
+ inc_stmt);
+ ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
+ TREE_OPERAND (inc_stmt, 0) = ivvarinced;
+ bsi = bsi_for_stmt (exitcond);
+ bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
+
+ /* Replace the exit condition with the new upper bound
+ comparison. */
+
+ testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
+
+ /* We want to build a conditional where true means exit the loop, and
+ false means continue the loop.
+ So swap the testtype if this isn't the way things are.*/
+
+ if (exit->flags & EDGE_FALSE_VALUE)
+ testtype = swap_tree_comparison (testtype);
+
+ COND_EXPR_COND (exitcond) = build2 (testtype,
+ boolean_type_node,
+ newupperbound, ivvarinced);
+ update_stmt (exitcond);
+ VEC_replace (tree, new_ivs, i, ivvar);
+
+ i++;
+ temp = temp->inner;
+ }
+
+ /* Rewrite uses of the old ivs so that they are now specified in terms of
+ the new ivs. */
+
+ for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
+ {
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ tree oldiv_def;
+ tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
+ tree stmt;
+
+ if (TREE_CODE (oldiv_stmt) == PHI_NODE)
+ oldiv_def = PHI_RESULT (oldiv_stmt);
+ else
+ oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
+ gcc_assert (oldiv_def != NULL_TREE);
+
+ FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
+ {
+ tree newiv, stmts;
+ lambda_body_vector lbv, newlbv;
+
+ gcc_assert (TREE_CODE (stmt) != PHI_NODE);
+
+ /* Compute the new expression for the induction
+ variable. */
+ depth = VEC_length (tree, new_ivs);
+ lbv = lambda_body_vector_new (depth);
+ LBV_COEFFICIENTS (lbv)[i] = 1;
+
+ newlbv = lambda_body_vector_compute_new (transform, lbv);
+
+ newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
+ new_ivs, &stmts);
+ bsi = bsi_for_stmt (stmt);
+ /* Insert the statements to build that
+ expression. */
+ bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
+
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ propagate_value (use_p, newiv);
+ update_stmt (stmt);
+ }
+ }
+ VEC_free (tree, heap, new_ivs);
+}
+
+/* Return TRUE if this is not interesting statement from the perspective of
+ determining if we have a perfect loop nest. */
+
+static bool
+not_interesting_stmt (tree stmt)
+{
+ /* Note that COND_EXPR's aren't interesting because if they were exiting the
+ loop, we would have already failed the number of exits tests. */
+ if (TREE_CODE (stmt) == LABEL_EXPR
+ || TREE_CODE (stmt) == GOTO_EXPR
+ || TREE_CODE (stmt) == COND_EXPR)
+ return true;
+ return false;
+}
+
+/* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
+
+static bool
+phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
+{
+ int i;
+ for (i = 0; i < PHI_NUM_ARGS (phi); i++)
+ if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
+ if (PHI_ARG_DEF (phi, i) == def)
+ return true;
+ return false;
+}
+
+/* Return TRUE if STMT is a use of PHI_RESULT. */
+
+static bool
+stmt_uses_phi_result (tree stmt, tree phi_result)
+{
+ tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
+
+ /* This is conservatively true, because we only want SIMPLE bumpers
+ of the form x +- constant for our pass. */
+ return (use == phi_result);
+}
+
+/* STMT is a bumper stmt for LOOP if the version it defines is used in the
+ in-loop-edge in a phi node, and the operand it uses is the result of that
+ phi node.
+ I.E. i_29 = i_3 + 1
+ i_3 = PHI (0, i_29); */
+
+static bool
+stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
+{
+ tree use;
+ tree def;
+ imm_use_iterator iter;
+ use_operand_p use_p;
+
+ def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
+ if (!def)
+ return false;
+
+ FOR_EACH_IMM_USE_FAST (use_p, iter, def)
+ {
+ use = USE_STMT (use_p);
+ if (TREE_CODE (use) == PHI_NODE)
+ {
+ if (phi_loop_edge_uses_def (loop, use, def))
+ if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/* Return true if LOOP is a perfect loop nest.
+ Perfect loop nests are those loop nests where all code occurs in the
+ innermost loop body.
+ If S is a program statement, then
+
+ i.e.
+ DO I = 1, 20
+ S1
+ DO J = 1, 20
+ ...
+ END DO
+ END DO
+ is not a perfect loop nest because of S1.
+
+ DO I = 1, 20
+ DO J = 1, 20
+ S1
+ ...
+ END DO
+ END DO
+ is a perfect loop nest.
+
+ Since we don't have high level loops anymore, we basically have to walk our
+ statements and ignore those that are there because the loop needs them (IE
+ the induction variable increment, and jump back to the top of the loop). */
+
+bool
+perfect_nest_p (struct loop *loop)
+{
+ basic_block *bbs;
+ size_t i;
+ tree exit_cond;
+
+ if (!loop->inner)
+ return true;
+ bbs = get_loop_body (loop);
+ exit_cond = get_loop_exit_condition (loop);
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ if (bbs[i]->loop_father == loop)
+ {
+ block_stmt_iterator bsi;
+ for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
+ {
+ tree stmt = bsi_stmt (bsi);
+ if (stmt == exit_cond
+ || not_interesting_stmt (stmt)
+ || stmt_is_bumper_for_loop (loop, stmt))
+ continue;
+ free (bbs);
+ return false;
+ }
+ }
+ }
+ free (bbs);
+ /* See if the inner loops are perfectly nested as well. */
+ if (loop->inner)
+ return perfect_nest_p (loop->inner);
+ return true;
+}
+
+/* Replace the USES of X in STMT, or uses with the same step as X with Y.
+ YINIT is the initial value of Y, REPLACEMENTS is a hash table to
+ avoid creating duplicate temporaries and FIRSTBSI is statement
+ iterator where new temporaries should be inserted at the beginning
+ of body basic block. */
+
+static void
+replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
+ int xstep, tree y, tree yinit,
+ htab_t replacements,
+ block_stmt_iterator *firstbsi)
+{
+ ssa_op_iter iter;
+ use_operand_p use_p;
+
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
+ {
+ tree use = USE_FROM_PTR (use_p);
+ tree step = NULL_TREE;
+ tree scev, init, val, var, setstmt;
+ struct tree_map *h, in;
+ void **loc;
+
+ /* Replace uses of X with Y right away. */
+ if (use == x)
+ {
+ SET_USE (use_p, y);
+ continue;
+ }
+
+ scev = instantiate_parameters (loop,
+ analyze_scalar_evolution (loop, use));
+
+ if (scev == NULL || scev == chrec_dont_know)
+ continue;
+
+ step = evolution_part_in_loop_num (scev, loop->num);
+ if (step == NULL
+ || step == chrec_dont_know
+ || TREE_CODE (step) != INTEGER_CST
+ || int_cst_value (step) != xstep)
+ continue;
+
+ /* Use REPLACEMENTS hash table to cache already created
+ temporaries. */
+ in.hash = htab_hash_pointer (use);
+ in.from = use;
+ h = htab_find_with_hash (replacements, &in, in.hash);
+ if (h != NULL)
+ {
+ SET_USE (use_p, h->to);
+ continue;
+ }
+
+ /* USE which has the same step as X should be replaced
+ with a temporary set to Y + YINIT - INIT. */
+ init = initial_condition_in_loop_num (scev, loop->num);
+ gcc_assert (init != NULL && init != chrec_dont_know);
+ if (TREE_TYPE (use) == TREE_TYPE (y))
+ {
+ val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
+ val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
+ if (val == y)
+ {
+ /* If X has the same type as USE, the same step
+ and same initial value, it can be replaced by Y. */
+ SET_USE (use_p, y);
+ continue;
+ }
+ }
+ else
+ {
+ val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
+ val = fold_convert (TREE_TYPE (use), val);
+ val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
+ }
+
+ /* Create a temporary variable and insert it at the beginning
+ of the loop body basic block, right after the PHI node
+ which sets Y. */
+ var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
+ add_referenced_var (var);
+ val = force_gimple_operand_bsi (firstbsi, val, false, NULL);
+ setstmt = build2 (MODIFY_EXPR, void_type_node, var, val);
+ var = make_ssa_name (var, setstmt);
+ TREE_OPERAND (setstmt, 0) = var;
+ bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
+ update_stmt (setstmt);
+ SET_USE (use_p, var);
+ h = ggc_alloc (sizeof (struct tree_map));
+ h->hash = in.hash;
+ h->from = use;
+ h->to = var;
+ loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
+ gcc_assert ((*(struct tree_map **)loc) == NULL);
+ *(struct tree_map **) loc = h;
+ }
+}
+
+/* Return true if STMT is an exit PHI for LOOP */
+
+static bool
+exit_phi_for_loop_p (struct loop *loop, tree stmt)
+{
+
+ if (TREE_CODE (stmt) != PHI_NODE
+ || PHI_NUM_ARGS (stmt) != 1
+ || bb_for_stmt (stmt) != loop->single_exit->dest)
+ return false;
+
+ return true;
+}
+
+/* Return true if STMT can be put back into the loop INNER, by
+ copying it to the beginning of that loop and changing the uses. */
+
+static bool
+can_put_in_inner_loop (struct loop *inner, tree stmt)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+
+ gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
+ if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
+ || !expr_invariant_in_loop_p (inner, TREE_OPERAND (stmt, 1)))
+ return false;
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
+ {
+ if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
+ {
+ basic_block immbb = bb_for_stmt (USE_STMT (use_p));
+
+ if (!flow_bb_inside_loop_p (inner, immbb))
+ return false;
+ }
+ }
+ return true;
+}
+
+/* Return true if STMT can be put *after* the inner loop of LOOP. */
+static bool
+can_put_after_inner_loop (struct loop *loop, tree stmt)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+
+ if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+ return false;
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
+ {
+ if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
+ {
+ basic_block immbb = bb_for_stmt (USE_STMT (use_p));
+
+ if (!dominated_by_p (CDI_DOMINATORS,
+ immbb,
+ loop->inner->header)
+ && !can_put_in_inner_loop (loop->inner, stmt))
+ return false;
+ }
+ }
+ return true;
+}
+
+
+
+/* Return TRUE if LOOP is an imperfect nest that we can convert to a
+ perfect one. At the moment, we only handle imperfect nests of
+ depth 2, where all of the statements occur after the inner loop. */
+
+static bool
+can_convert_to_perfect_nest (struct loop *loop)
+{
+ basic_block *bbs;
+ tree exit_condition, phi;
+ size_t i;
+ block_stmt_iterator bsi;
+ basic_block exitdest;
+
+ /* Can't handle triply nested+ loops yet. */
+ if (!loop->inner || loop->inner->inner)
+ return false;
+
+ bbs = get_loop_body (loop);
+ exit_condition = get_loop_exit_condition (loop);
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ if (bbs[i]->loop_father == loop)
+ {
+ for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
+ {
+ tree stmt = bsi_stmt (bsi);
+
+ if (stmt == exit_condition
+ || not_interesting_stmt (stmt)
+ || stmt_is_bumper_for_loop (loop, stmt))
+ continue;
+
+ /* If this is a scalar operation that can be put back
+ into the inner loop, or after the inner loop, through
+ copying, then do so. This works on the theory that
+ any amount of scalar code we have to reduplicate
+ into or after the loops is less expensive that the
+ win we get from rearranging the memory walk
+ the loop is doing so that it has better
+ cache behavior. */
+ if (TREE_CODE (stmt) == MODIFY_EXPR)
+ {
+ use_operand_p use_a, use_b;
+ imm_use_iterator imm_iter;
+ ssa_op_iter op_iter, op_iter1;
+ tree op0 = TREE_OPERAND (stmt, 0);
+ tree scev = instantiate_parameters
+ (loop, analyze_scalar_evolution (loop, op0));
+
+ /* If the IV is simple, it can be duplicated. */
+ if (!automatically_generated_chrec_p (scev))
+ {
+ tree step = evolution_part_in_loop_num (scev, loop->num);
+ if (step && step != chrec_dont_know
+ && TREE_CODE (step) == INTEGER_CST)
+ continue;
+ }
+
+ /* The statement should not define a variable used
+ in the inner loop. */
+ if (TREE_CODE (op0) == SSA_NAME)
+ FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
+ if (bb_for_stmt (USE_STMT (use_a))->loop_father
+ == loop->inner)
+ goto fail;
+
+ FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
+ {
+ tree node, op = USE_FROM_PTR (use_a);
+
+ /* The variables should not be used in both loops. */
+ FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
+ if (bb_for_stmt (USE_STMT (use_b))->loop_father
+ == loop->inner)
+ goto fail;
+
+ /* The statement should not use the value of a
+ scalar that was modified in the loop. */
+ node = SSA_NAME_DEF_STMT (op);
+ if (TREE_CODE (node) == PHI_NODE)
+ FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
+ {
+ tree arg = USE_FROM_PTR (use_b);
+
+ if (TREE_CODE (arg) == SSA_NAME)
+ {
+ tree arg_stmt = SSA_NAME_DEF_STMT (arg);
+
+ if (bb_for_stmt (arg_stmt)->loop_father
+ == loop->inner)
+ goto fail;
+ }
+ }
+ }
+
+ if (can_put_in_inner_loop (loop->inner, stmt)
+ || can_put_after_inner_loop (loop, stmt))
+ continue;
+ }
+
+ /* Otherwise, if the bb of a statement we care about isn't
+ dominated by the header of the inner loop, then we can't
+ handle this case right now. This test ensures that the
+ statement comes completely *after* the inner loop. */
+ if (!dominated_by_p (CDI_DOMINATORS,
+ bb_for_stmt (stmt),
+ loop->inner->header))
+ goto fail;
+ }
+ }
+ }
+
+ /* We also need to make sure the loop exit only has simple copy phis in it,
+ otherwise we don't know how to transform it into a perfect nest right
+ now. */
+ exitdest = loop->single_exit->dest;
+
+ for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
+ if (PHI_NUM_ARGS (phi) != 1)
+ goto fail;
+
+ free (bbs);
+ return true;
+
+ fail:
+ free (bbs);
+ return false;
+}
+
+/* Transform the loop nest into a perfect nest, if possible.
+ LOOPS is the current struct loops *
+ LOOP is the loop nest to transform into a perfect nest
+ LBOUNDS are the lower bounds for the loops to transform
+ UBOUNDS are the upper bounds for the loops to transform
+ STEPS is the STEPS for the loops to transform.
+ LOOPIVS is the induction variables for the loops to transform.
+
+ Basically, for the case of
+
+ FOR (i = 0; i < 50; i++)
+ {
+ FOR (j =0; j < 50; j++)
+ {
+ <whatever>
+ }
+ <some code>
+ }
+
+ This function will transform it into a perfect loop nest by splitting the
+ outer loop into two loops, like so:
+
+ FOR (i = 0; i < 50; i++)
+ {
+ FOR (j = 0; j < 50; j++)
+ {
+ <whatever>
+ }
+ }
+
+ FOR (i = 0; i < 50; i ++)
+ {
+ <some code>
+ }
+
+ Return FALSE if we can't make this loop into a perfect nest. */
+
+static bool
+perfect_nestify (struct loops *loops,
+ struct loop *loop,
+ VEC(tree,heap) *lbounds,
+ VEC(tree,heap) *ubounds,
+ VEC(int,heap) *steps,
+ VEC(tree,heap) *loopivs)
+{
+ basic_block *bbs;
+ tree exit_condition;
+ tree then_label, else_label, cond_stmt;
+ basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
+ int i;
+ block_stmt_iterator bsi, firstbsi;
+ bool insert_after;
+ edge e;
+ struct loop *newloop;
+ tree phi;
+ tree uboundvar;
+ tree stmt;
+ tree oldivvar, ivvar, ivvarinced;
+ VEC(tree,heap) *phis = NULL;
+ htab_t replacements = NULL;
+
+ /* Create the new loop. */
+ olddest = loop->single_exit->dest;
+ preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
+ headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
+
+ /* Push the exit phi nodes that we are moving. */
+ for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
+ {
+ VEC_reserve (tree, heap, phis, 2);
+ VEC_quick_push (tree, phis, PHI_RESULT (phi));
+ VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
+ }
+ e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
+
+ /* Remove the exit phis from the old basic block. Make sure to set
+ PHI_RESULT to null so it doesn't get released. */
+ while (phi_nodes (olddest) != NULL)
+ {
+ SET_PHI_RESULT (phi_nodes (olddest), NULL);
+ remove_phi_node (phi_nodes (olddest), NULL);
+ }
+
+ /* and add them back to the new basic block. */
+ while (VEC_length (tree, phis) != 0)
+ {
+ tree def;
+ tree phiname;
+ def = VEC_pop (tree, phis);
+ phiname = VEC_pop (tree, phis);
+ phi = create_phi_node (phiname, preheaderbb);
+ add_phi_arg (phi, def, single_pred_edge (preheaderbb));
+ }
+ flush_pending_stmts (e);
+ VEC_free (tree, heap, phis);
+
+ bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
+ latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
+ make_edge (headerbb, bodybb, EDGE_FALLTHRU);
+ then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
+ else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
+ cond_stmt = build3 (COND_EXPR, void_type_node,
+ build2 (NE_EXPR, boolean_type_node,
+ integer_one_node,
+ integer_zero_node),
+ then_label, else_label);
+ bsi = bsi_start (bodybb);
+ bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
+ e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
+ make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
+ make_edge (latchbb, headerbb, EDGE_FALLTHRU);
+
+ /* Update the loop structures. */
+ newloop = duplicate_loop (loops, loop, olddest->loop_father);
+ newloop->header = headerbb;
+ newloop->latch = latchbb;
+ newloop->single_exit = e;
+ add_bb_to_loop (latchbb, newloop);
+ add_bb_to_loop (bodybb, newloop);
+ add_bb_to_loop (headerbb, newloop);
+ set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
+ set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
+ set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
+ loop->single_exit->src);
+ set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
+ set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
+ /* Create the new iv. */
+ oldivvar = VEC_index (tree, loopivs, 0);
+ ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
+ add_referenced_var (ivvar);
+ standard_iv_increment_position (newloop, &bsi, &insert_after);
+ create_iv (VEC_index (tree, lbounds, 0),
+ build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
+ ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
+
+ /* Create the new upper bound. This may be not just a variable, so we copy
+ it to one just in case. */
+
+ exit_condition = get_loop_exit_condition (newloop);
+ uboundvar = create_tmp_var (integer_type_node, "uboundvar");
+ add_referenced_var (uboundvar);
+ stmt = build2 (MODIFY_EXPR, void_type_node, uboundvar,
+ VEC_index (tree, ubounds, 0));
+ uboundvar = make_ssa_name (uboundvar, stmt);
+ TREE_OPERAND (stmt, 0) = uboundvar;
+
+ if (insert_after)
+ bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
+ else
+ bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
+ update_stmt (stmt);
+ COND_EXPR_COND (exit_condition) = build2 (GE_EXPR,
+ boolean_type_node,
+ uboundvar,
+ ivvarinced);
+ update_stmt (exit_condition);
+ replacements = htab_create_ggc (20, tree_map_hash,
+ tree_map_eq, NULL);
+ bbs = get_loop_body_in_dom_order (loop);
+ /* Now move the statements, and replace the induction variable in the moved
+ statements with the correct loop induction variable. */
+ oldivvar = VEC_index (tree, loopivs, 0);
+ firstbsi = bsi_start (bodybb);
+ for (i = loop->num_nodes - 1; i >= 0 ; i--)
+ {
+ block_stmt_iterator tobsi = bsi_last (bodybb);
+ if (bbs[i]->loop_father == loop)
+ {
+ /* If this is true, we are *before* the inner loop.
+ If this isn't true, we are *after* it.
+
+ The only time can_convert_to_perfect_nest returns true when we
+ have statements before the inner loop is if they can be moved
+ into the inner loop.
+
+ The only time can_convert_to_perfect_nest returns true when we
+ have statements after the inner loop is if they can be moved into
+ the new split loop. */
+
+ if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
+ {
+ block_stmt_iterator header_bsi
+ = bsi_after_labels (loop->inner->header);
+
+ for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
+ {
+ tree stmt = bsi_stmt (bsi);
+
+ if (stmt == exit_condition
+ || not_interesting_stmt (stmt)
+ || stmt_is_bumper_for_loop (loop, stmt))
+ {
+ bsi_next (&bsi);
+ continue;
+ }
+
+ bsi_move_before (&bsi, &header_bsi);
+ }
+ }
+ else
+ {
+ /* Note that the bsi only needs to be explicitly incremented
+ when we don't move something, since it is automatically
+ incremented when we do. */
+ for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
+ {
+ ssa_op_iter i;
+ tree n, stmt = bsi_stmt (bsi);
+
+ if (stmt == exit_condition
+ || not_interesting_stmt (stmt)
+ || stmt_is_bumper_for_loop (loop, stmt))
+ {
+ bsi_next (&bsi);
+ continue;
+ }
+
+ replace_uses_equiv_to_x_with_y
+ (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
+ VEC_index (tree, lbounds, 0), replacements, &firstbsi);
+
+ bsi_move_before (&bsi, &tobsi);
+
+ /* If the statement has any virtual operands, they may
+ need to be rewired because the original loop may
+ still reference them. */
+ FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
+ mark_sym_for_renaming (SSA_NAME_VAR (n));
+ }
+ }
+
+ }
+ }
+
+ free (bbs);
+ htab_delete (replacements);
+ return perfect_nest_p (loop);
+}
+
+/* Return true if TRANS is a legal transformation matrix that respects
+ the dependence vectors in DISTS and DIRS. The conservative answer
+ is false.
+
+ "Wolfe proves that a unimodular transformation represented by the
+ matrix T is legal when applied to a loop nest with a set of
+ lexicographically non-negative distance vectors RDG if and only if
+ for each vector d in RDG, (T.d >= 0) is lexicographically positive.
+ i.e.: if and only if it transforms the lexicographically positive
+ distance vectors to lexicographically positive vectors. Note that
+ a unimodular matrix must transform the zero vector (and only it) to
+ the zero vector." S.Muchnick. */
+
+bool
+lambda_transform_legal_p (lambda_trans_matrix trans,
+ int nb_loops,
+ VEC (ddr_p, heap) *dependence_relations)
+{
+ unsigned int i, j;
+ lambda_vector distres;
+ struct data_dependence_relation *ddr;
+
+ gcc_assert (LTM_COLSIZE (trans) == nb_loops
+ && LTM_ROWSIZE (trans) == nb_loops);
+
+ /* When there is an unknown relation in the dependence_relations, we
+ know that it is no worth looking at this loop nest: give up. */
+ ddr = VEC_index (ddr_p, dependence_relations, 0);
+ if (ddr == NULL)
+ return true;
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ return false;
+
+ distres = lambda_vector_new (nb_loops);
+
+ /* For each distance vector in the dependence graph. */
+ for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
+ {
+ /* Don't care about relations for which we know that there is no
+ dependence, nor about read-read (aka. output-dependences):
+ these data accesses can happen in any order. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known
+ || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
+ continue;
+
+ /* Conservatively answer: "this transformation is not valid". */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ return false;
+
+ /* If the dependence could not be captured by a distance vector,
+ conservatively answer that the transform is not valid. */
+ if (DDR_NUM_DIST_VECTS (ddr) == 0)
+ return false;
+
+ /* Compute trans.dist_vect */
+ for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
+ {
+ lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
+ DDR_DIST_VECT (ddr, j), distres);
+
+ if (!lambda_vector_lexico_pos (distres, nb_loops))
+ return false;
+ }
+ }
+ return true;
+}