aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/jump.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/jump.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/jump.c2023
1 files changed, 2023 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/jump.c b/gcc-4.2.1-5666.3/gcc/jump.c
new file mode 100644
index 000000000..4a4ad40af
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/jump.c
@@ -0,0 +1,2023 @@
+/* Optimize jump instructions, for GNU compiler.
+ Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
+ 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
+ Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+/* This is the pathetic reminder of old fame of the jump-optimization pass
+ of the compiler. Now it contains basically a set of utility functions to
+ operate with jumps.
+
+ Each CODE_LABEL has a count of the times it is used
+ stored in the LABEL_NUSES internal field, and each JUMP_INSN
+ has one label that it refers to stored in the
+ JUMP_LABEL internal field. With this we can detect labels that
+ become unused because of the deletion of all the jumps that
+ formerly used them. The JUMP_LABEL info is sometimes looked
+ at by later passes.
+
+ The subroutines redirect_jump and invert_jump are used
+ from other passes as well. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "flags.h"
+#include "hard-reg-set.h"
+#include "regs.h"
+#include "insn-config.h"
+#include "insn-attr.h"
+#include "recog.h"
+#include "function.h"
+#include "expr.h"
+#include "real.h"
+#include "except.h"
+#include "diagnostic.h"
+#include "toplev.h"
+#include "reload.h"
+#include "predict.h"
+#include "timevar.h"
+#include "tree-pass.h"
+#include "target.h"
+
+/* Optimize jump y; x: ... y: jumpif... x?
+ Don't know if it is worth bothering with. */
+/* Optimize two cases of conditional jump to conditional jump?
+ This can never delete any instruction or make anything dead,
+ or even change what is live at any point.
+ So perhaps let combiner do it. */
+
+static void init_label_info (rtx);
+static void mark_all_labels (rtx);
+static void delete_computation (rtx);
+static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
+static int invert_exp_1 (rtx, rtx);
+static int returnjump_p_1 (rtx *, void *);
+static void delete_prior_computation (rtx, rtx);
+
+/* Alternate entry into the jump optimizer. This entry point only rebuilds
+ the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
+ instructions. */
+void
+rebuild_jump_labels (rtx f)
+{
+ rtx insn;
+
+ timevar_push (TV_REBUILD_JUMP);
+ init_label_info (f);
+ mark_all_labels (f);
+
+ /* Keep track of labels used from static data; we don't track them
+ closely enough to delete them here, so make sure their reference
+ count doesn't drop to zero. */
+
+ for (insn = forced_labels; insn; insn = XEXP (insn, 1))
+ if (LABEL_P (XEXP (insn, 0)))
+ LABEL_NUSES (XEXP (insn, 0))++;
+ timevar_pop (TV_REBUILD_JUMP);
+}
+
+/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
+ non-fallthru insn. This is not generally true, as multiple barriers
+ may have crept in, or the BARRIER may be separated from the last
+ real insn by one or more NOTEs.
+
+ This simple pass moves barriers and removes duplicates so that the
+ old code is happy.
+ */
+unsigned int
+cleanup_barriers (void)
+{
+ rtx insn, next, prev;
+ for (insn = get_insns (); insn; insn = next)
+ {
+ next = NEXT_INSN (insn);
+ if (BARRIER_P (insn))
+ {
+ prev = prev_nonnote_insn (insn);
+ if (BARRIER_P (prev))
+ delete_insn (insn);
+ else if (prev != PREV_INSN (insn))
+ reorder_insns (insn, insn, prev);
+ }
+ }
+ return 0;
+}
+
+struct tree_opt_pass pass_cleanup_barriers =
+{
+ "barriers", /* name */
+ NULL, /* gate */
+ cleanup_barriers, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func, /* todo_flags_finish */
+ 0 /* letter */
+};
+
+unsigned int
+purge_line_number_notes (void)
+{
+ rtx last_note = 0;
+ rtx insn;
+ /* Delete extraneous line number notes.
+ Note that two consecutive notes for different lines are not really
+ extraneous. There should be some indication where that line belonged,
+ even if it became empty. */
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (NOTE_P (insn))
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
+ /* Any previous line note was for the prologue; gdb wants a new
+ note after the prologue even if it is for the same line. */
+ last_note = NULL_RTX;
+ else if (NOTE_LINE_NUMBER (insn) >= 0)
+ {
+ /* Delete this note if it is identical to previous note. */
+ if (last_note
+#ifdef USE_MAPPED_LOCATION
+ && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last_note)
+#else
+ && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
+ && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note)
+#endif
+)
+ {
+ delete_related_insns (insn);
+ continue;
+ }
+
+ last_note = insn;
+ }
+ }
+ return 0;
+}
+
+struct tree_opt_pass pass_purge_lineno_notes =
+{
+ "elnotes", /* name */
+ NULL, /* gate */
+ purge_line_number_notes, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func, /* todo_flags_finish */
+ 0 /* letter */
+};
+
+
+/* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
+ notes whose labels don't occur in the insn any more. Returns the
+ largest INSN_UID found. */
+static void
+init_label_info (rtx f)
+{
+ rtx insn;
+
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ if (LABEL_P (insn))
+ LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
+ else if (JUMP_P (insn))
+ JUMP_LABEL (insn) = 0;
+ else if (NONJUMP_INSN_P (insn) || CALL_P (insn))
+ {
+ rtx note, next;
+
+ for (note = REG_NOTES (insn); note; note = next)
+ {
+ next = XEXP (note, 1);
+ if (REG_NOTE_KIND (note) == REG_LABEL
+ && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
+ remove_note (insn, note);
+ }
+ }
+}
+
+/* Mark the label each jump jumps to.
+ Combine consecutive labels, and count uses of labels. */
+
+static void
+mark_all_labels (rtx f)
+{
+ rtx insn;
+
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ if (INSN_P (insn))
+ {
+ mark_jump_label (PATTERN (insn), insn, 0);
+ if (! INSN_DELETED_P (insn) && JUMP_P (insn))
+ {
+ /* When we know the LABEL_REF contained in a REG used in
+ an indirect jump, we'll have a REG_LABEL note so that
+ flow can tell where it's going. */
+ if (JUMP_LABEL (insn) == 0)
+ {
+ rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
+ if (label_note)
+ {
+ /* But a LABEL_REF around the REG_LABEL note, so
+ that we can canonicalize it. */
+ rtx label_ref = gen_rtx_LABEL_REF (Pmode,
+ XEXP (label_note, 0));
+
+ mark_jump_label (label_ref, insn, 0);
+ XEXP (label_note, 0) = XEXP (label_ref, 0);
+ JUMP_LABEL (insn) = XEXP (label_note, 0);
+ }
+ }
+ }
+ }
+}
+
+/* Move all block-beg, block-end and loop-beg notes between START and END out
+ before START. START and END may be such notes. Returns the values of the
+ new starting and ending insns, which may be different if the original ones
+ were such notes. Return true if there were only such notes and no real
+ instructions. */
+
+bool
+squeeze_notes (rtx* startp, rtx* endp)
+{
+ rtx start = *startp;
+ rtx end = *endp;
+
+ rtx insn;
+ rtx next;
+ rtx last = NULL;
+ rtx past_end = NEXT_INSN (end);
+
+ for (insn = start; insn != past_end; insn = next)
+ {
+ next = NEXT_INSN (insn);
+ if (NOTE_P (insn)
+ && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG))
+ {
+ /* BLOCK_BEG or BLOCK_END notes only exist in the `final' pass. */
+ gcc_assert (NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_BEG
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_END);
+
+ if (insn == start)
+ start = next;
+ else
+ {
+ rtx prev = PREV_INSN (insn);
+ PREV_INSN (insn) = PREV_INSN (start);
+ NEXT_INSN (insn) = start;
+ NEXT_INSN (PREV_INSN (insn)) = insn;
+ PREV_INSN (NEXT_INSN (insn)) = insn;
+ NEXT_INSN (prev) = next;
+ PREV_INSN (next) = prev;
+ }
+ }
+ else
+ last = insn;
+ }
+
+ /* There were no real instructions. */
+ if (start == past_end)
+ return true;
+
+ end = last;
+
+ *startp = start;
+ *endp = end;
+ return false;
+}
+
+/* Return the label before INSN, or put a new label there. */
+
+rtx
+get_label_before (rtx insn)
+{
+ rtx label;
+
+ /* Find an existing label at this point
+ or make a new one if there is none. */
+ label = prev_nonnote_insn (insn);
+
+ if (label == 0 || !LABEL_P (label))
+ {
+ rtx prev = PREV_INSN (insn);
+
+ label = gen_label_rtx ();
+ emit_label_after (label, prev);
+ LABEL_NUSES (label) = 0;
+ }
+ return label;
+}
+
+/* Return the label after INSN, or put a new label there. */
+
+rtx
+get_label_after (rtx insn)
+{
+ rtx label;
+
+ /* Find an existing label at this point
+ or make a new one if there is none. */
+ label = next_nonnote_insn (insn);
+
+ if (label == 0 || !LABEL_P (label))
+ {
+ label = gen_label_rtx ();
+ emit_label_after (label, insn);
+ LABEL_NUSES (label) = 0;
+ }
+ return label;
+}
+
+/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
+ of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
+ UNKNOWN may be returned in case we are having CC_MODE compare and we don't
+ know whether it's source is floating point or integer comparison. Machine
+ description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
+ to help this function avoid overhead in these cases. */
+enum rtx_code
+reversed_comparison_code_parts (enum rtx_code code, rtx arg0, rtx arg1, rtx insn)
+{
+ enum machine_mode mode;
+
+ /* If this is not actually a comparison, we can't reverse it. */
+ if (GET_RTX_CLASS (code) != RTX_COMPARE
+ && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
+ return UNKNOWN;
+
+ mode = GET_MODE (arg0);
+ if (mode == VOIDmode)
+ mode = GET_MODE (arg1);
+
+ /* First see if machine description supplies us way to reverse the
+ comparison. Give it priority over everything else to allow
+ machine description to do tricks. */
+ if (GET_MODE_CLASS (mode) == MODE_CC
+ && REVERSIBLE_CC_MODE (mode))
+ {
+#ifdef REVERSE_CONDITION
+ return REVERSE_CONDITION (code, mode);
+#endif
+ return reverse_condition (code);
+ }
+
+ /* Try a few special cases based on the comparison code. */
+ switch (code)
+ {
+ case GEU:
+ case GTU:
+ case LEU:
+ case LTU:
+ case NE:
+ case EQ:
+ /* It is always safe to reverse EQ and NE, even for the floating
+ point. Similarly the unsigned comparisons are never used for
+ floating point so we can reverse them in the default way. */
+ return reverse_condition (code);
+ case ORDERED:
+ case UNORDERED:
+ case LTGT:
+ case UNEQ:
+ /* In case we already see unordered comparison, we can be sure to
+ be dealing with floating point so we don't need any more tests. */
+ return reverse_condition_maybe_unordered (code);
+ case UNLT:
+ case UNLE:
+ case UNGT:
+ case UNGE:
+ /* We don't have safe way to reverse these yet. */
+ return UNKNOWN;
+ default:
+ break;
+ }
+
+ if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
+ {
+ rtx prev;
+ /* Try to search for the comparison to determine the real mode.
+ This code is expensive, but with sane machine description it
+ will be never used, since REVERSIBLE_CC_MODE will return true
+ in all cases. */
+ if (! insn)
+ return UNKNOWN;
+
+ for (prev = prev_nonnote_insn (insn);
+ prev != 0 && !LABEL_P (prev);
+ prev = prev_nonnote_insn (prev))
+ {
+ rtx set = set_of (arg0, prev);
+ if (set && GET_CODE (set) == SET
+ && rtx_equal_p (SET_DEST (set), arg0))
+ {
+ rtx src = SET_SRC (set);
+
+ if (GET_CODE (src) == COMPARE)
+ {
+ rtx comparison = src;
+ arg0 = XEXP (src, 0);
+ mode = GET_MODE (arg0);
+ if (mode == VOIDmode)
+ mode = GET_MODE (XEXP (comparison, 1));
+ break;
+ }
+ /* We can get past reg-reg moves. This may be useful for model
+ of i387 comparisons that first move flag registers around. */
+ if (REG_P (src))
+ {
+ arg0 = src;
+ continue;
+ }
+ }
+ /* If register is clobbered in some ununderstandable way,
+ give up. */
+ if (set)
+ return UNKNOWN;
+ }
+ }
+
+ /* Test for an integer condition, or a floating-point comparison
+ in which NaNs can be ignored. */
+ if (GET_CODE (arg0) == CONST_INT
+ || (GET_MODE (arg0) != VOIDmode
+ && GET_MODE_CLASS (mode) != MODE_CC
+ && !HONOR_NANS (mode)))
+ return reverse_condition (code);
+
+ return UNKNOWN;
+}
+
+/* A wrapper around the previous function to take COMPARISON as rtx
+ expression. This simplifies many callers. */
+enum rtx_code
+reversed_comparison_code (rtx comparison, rtx insn)
+{
+ if (!COMPARISON_P (comparison))
+ return UNKNOWN;
+ return reversed_comparison_code_parts (GET_CODE (comparison),
+ XEXP (comparison, 0),
+ XEXP (comparison, 1), insn);
+}
+
+/* Return comparison with reversed code of EXP.
+ Return NULL_RTX in case we fail to do the reversal. */
+rtx
+reversed_comparison (rtx exp, enum machine_mode mode)
+{
+ enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
+ if (reversed_code == UNKNOWN)
+ return NULL_RTX;
+ else
+ return simplify_gen_relational (reversed_code, mode, VOIDmode,
+ XEXP (exp, 0), XEXP (exp, 1));
+}
+
+
+/* Given an rtx-code for a comparison, return the code for the negated
+ comparison. If no such code exists, return UNKNOWN.
+
+ WATCH OUT! reverse_condition is not safe to use on a jump that might
+ be acting on the results of an IEEE floating point comparison, because
+ of the special treatment of non-signaling nans in comparisons.
+ Use reversed_comparison_code instead. */
+
+enum rtx_code
+reverse_condition (enum rtx_code code)
+{
+ switch (code)
+ {
+ case EQ:
+ return NE;
+ case NE:
+ return EQ;
+ case GT:
+ return LE;
+ case GE:
+ return LT;
+ case LT:
+ return GE;
+ case LE:
+ return GT;
+ case GTU:
+ return LEU;
+ case GEU:
+ return LTU;
+ case LTU:
+ return GEU;
+ case LEU:
+ return GTU;
+ case UNORDERED:
+ return ORDERED;
+ case ORDERED:
+ return UNORDERED;
+
+ case UNLT:
+ case UNLE:
+ case UNGT:
+ case UNGE:
+ case UNEQ:
+ case LTGT:
+ return UNKNOWN;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Similar, but we're allowed to generate unordered comparisons, which
+ makes it safe for IEEE floating-point. Of course, we have to recognize
+ that the target will support them too... */
+
+enum rtx_code
+reverse_condition_maybe_unordered (enum rtx_code code)
+{
+ switch (code)
+ {
+ case EQ:
+ return NE;
+ case NE:
+ return EQ;
+ case GT:
+ return UNLE;
+ case GE:
+ return UNLT;
+ case LT:
+ return UNGE;
+ case LE:
+ return UNGT;
+ case LTGT:
+ return UNEQ;
+ case UNORDERED:
+ return ORDERED;
+ case ORDERED:
+ return UNORDERED;
+ case UNLT:
+ return GE;
+ case UNLE:
+ return GT;
+ case UNGT:
+ return LE;
+ case UNGE:
+ return LT;
+ case UNEQ:
+ return LTGT;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Similar, but return the code when two operands of a comparison are swapped.
+ This IS safe for IEEE floating-point. */
+
+enum rtx_code
+swap_condition (enum rtx_code code)
+{
+ switch (code)
+ {
+ case EQ:
+ case NE:
+ case UNORDERED:
+ case ORDERED:
+ case UNEQ:
+ case LTGT:
+ return code;
+
+ case GT:
+ return LT;
+ case GE:
+ return LE;
+ case LT:
+ return GT;
+ case LE:
+ return GE;
+ case GTU:
+ return LTU;
+ case GEU:
+ return LEU;
+ case LTU:
+ return GTU;
+ case LEU:
+ return GEU;
+ case UNLT:
+ return UNGT;
+ case UNLE:
+ return UNGE;
+ case UNGT:
+ return UNLT;
+ case UNGE:
+ return UNLE;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Given a comparison CODE, return the corresponding unsigned comparison.
+ If CODE is an equality comparison or already an unsigned comparison,
+ CODE is returned. */
+
+enum rtx_code
+unsigned_condition (enum rtx_code code)
+{
+ switch (code)
+ {
+ case EQ:
+ case NE:
+ case GTU:
+ case GEU:
+ case LTU:
+ case LEU:
+ return code;
+
+ case GT:
+ return GTU;
+ case GE:
+ return GEU;
+ case LT:
+ return LTU;
+ case LE:
+ return LEU;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Similarly, return the signed version of a comparison. */
+
+enum rtx_code
+signed_condition (enum rtx_code code)
+{
+ switch (code)
+ {
+ case EQ:
+ case NE:
+ case GT:
+ case GE:
+ case LT:
+ case LE:
+ return code;
+
+ case GTU:
+ return GT;
+ case GEU:
+ return GE;
+ case LTU:
+ return LT;
+ case LEU:
+ return LE;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
+ truth of CODE1 implies the truth of CODE2. */
+
+int
+comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
+{
+ /* UNKNOWN comparison codes can happen as a result of trying to revert
+ comparison codes.
+ They can't match anything, so we have to reject them here. */
+ if (code1 == UNKNOWN || code2 == UNKNOWN)
+ return 0;
+
+ if (code1 == code2)
+ return 1;
+
+ switch (code1)
+ {
+ case UNEQ:
+ if (code2 == UNLE || code2 == UNGE)
+ return 1;
+ break;
+
+ case EQ:
+ if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
+ || code2 == ORDERED)
+ return 1;
+ break;
+
+ case UNLT:
+ if (code2 == UNLE || code2 == NE)
+ return 1;
+ break;
+
+ case LT:
+ if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
+ return 1;
+ break;
+
+ case UNGT:
+ if (code2 == UNGE || code2 == NE)
+ return 1;
+ break;
+
+ case GT:
+ if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
+ return 1;
+ break;
+
+ case GE:
+ case LE:
+ if (code2 == ORDERED)
+ return 1;
+ break;
+
+ case LTGT:
+ if (code2 == NE || code2 == ORDERED)
+ return 1;
+ break;
+
+ case LTU:
+ if (code2 == LEU || code2 == NE)
+ return 1;
+ break;
+
+ case GTU:
+ if (code2 == GEU || code2 == NE)
+ return 1;
+ break;
+
+ case UNORDERED:
+ if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
+ || code2 == UNGE || code2 == UNGT)
+ return 1;
+ break;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* Return 1 if INSN is an unconditional jump and nothing else. */
+
+int
+simplejump_p (rtx insn)
+{
+ return (JUMP_P (insn)
+ && GET_CODE (PATTERN (insn)) == SET
+ && GET_CODE (SET_DEST (PATTERN (insn))) == PC
+ && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
+}
+
+/* Return nonzero if INSN is a (possibly) conditional jump
+ and nothing more.
+
+ Use of this function is deprecated, since we need to support combined
+ branch and compare insns. Use any_condjump_p instead whenever possible. */
+
+int
+condjump_p (rtx insn)
+{
+ rtx x = PATTERN (insn);
+
+ if (GET_CODE (x) != SET
+ || GET_CODE (SET_DEST (x)) != PC)
+ return 0;
+
+ x = SET_SRC (x);
+ if (GET_CODE (x) == LABEL_REF)
+ return 1;
+ else
+ return (GET_CODE (x) == IF_THEN_ELSE
+ && ((GET_CODE (XEXP (x, 2)) == PC
+ && (GET_CODE (XEXP (x, 1)) == LABEL_REF
+ || GET_CODE (XEXP (x, 1)) == RETURN))
+ || (GET_CODE (XEXP (x, 1)) == PC
+ && (GET_CODE (XEXP (x, 2)) == LABEL_REF
+ || GET_CODE (XEXP (x, 2)) == RETURN))));
+}
+
+/* Return nonzero if INSN is a (possibly) conditional jump inside a
+ PARALLEL.
+
+ Use this function is deprecated, since we need to support combined
+ branch and compare insns. Use any_condjump_p instead whenever possible. */
+
+int
+condjump_in_parallel_p (rtx insn)
+{
+ rtx x = PATTERN (insn);
+
+ if (GET_CODE (x) != PARALLEL)
+ return 0;
+ else
+ x = XVECEXP (x, 0, 0);
+
+ if (GET_CODE (x) != SET)
+ return 0;
+ if (GET_CODE (SET_DEST (x)) != PC)
+ return 0;
+ if (GET_CODE (SET_SRC (x)) == LABEL_REF)
+ return 1;
+ if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
+ return 0;
+ if (XEXP (SET_SRC (x), 2) == pc_rtx
+ && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
+ || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
+ return 1;
+ if (XEXP (SET_SRC (x), 1) == pc_rtx
+ && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
+ || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
+ return 1;
+ return 0;
+}
+
+/* Return set of PC, otherwise NULL. */
+
+rtx
+pc_set (rtx insn)
+{
+ rtx pat;
+ if (!JUMP_P (insn))
+ return NULL_RTX;
+ pat = PATTERN (insn);
+
+ /* The set is allowed to appear either as the insn pattern or
+ the first set in a PARALLEL. */
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+ if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
+ return pat;
+
+ return NULL_RTX;
+}
+
+/* Return true when insn is an unconditional direct jump,
+ possibly bundled inside a PARALLEL. */
+
+int
+any_uncondjump_p (rtx insn)
+{
+ rtx x = pc_set (insn);
+ if (!x)
+ return 0;
+ if (GET_CODE (SET_SRC (x)) != LABEL_REF)
+ return 0;
+ if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
+ return 0;
+ return 1;
+}
+
+/* Return true when insn is a conditional jump. This function works for
+ instructions containing PC sets in PARALLELs. The instruction may have
+ various other effects so before removing the jump you must verify
+ onlyjump_p.
+
+ Note that unlike condjump_p it returns false for unconditional jumps. */
+
+int
+any_condjump_p (rtx insn)
+{
+ rtx x = pc_set (insn);
+ enum rtx_code a, b;
+
+ if (!x)
+ return 0;
+ if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
+ return 0;
+
+ a = GET_CODE (XEXP (SET_SRC (x), 1));
+ b = GET_CODE (XEXP (SET_SRC (x), 2));
+
+ return ((b == PC && (a == LABEL_REF || a == RETURN))
+ || (a == PC && (b == LABEL_REF || b == RETURN)));
+}
+
+/* Return the label of a conditional jump. */
+
+rtx
+condjump_label (rtx insn)
+{
+ rtx x = pc_set (insn);
+
+ if (!x)
+ return NULL_RTX;
+ x = SET_SRC (x);
+ if (GET_CODE (x) == LABEL_REF)
+ return x;
+ if (GET_CODE (x) != IF_THEN_ELSE)
+ return NULL_RTX;
+ if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
+ return XEXP (x, 1);
+ if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
+ return XEXP (x, 2);
+ return NULL_RTX;
+}
+
+/* Return true if INSN is a (possibly conditional) return insn. */
+
+static int
+returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
+{
+ rtx x = *loc;
+
+ return x && (GET_CODE (x) == RETURN
+ || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
+}
+
+int
+returnjump_p (rtx insn)
+{
+ if (!JUMP_P (insn))
+ return 0;
+ return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
+}
+
+/* Return true if INSN is a jump that only transfers control and
+ nothing more. */
+
+int
+onlyjump_p (rtx insn)
+{
+ rtx set;
+
+ if (!JUMP_P (insn))
+ return 0;
+
+ set = single_set (insn);
+ if (set == NULL)
+ return 0;
+ if (GET_CODE (SET_DEST (set)) != PC)
+ return 0;
+ if (side_effects_p (SET_SRC (set)))
+ return 0;
+
+ return 1;
+}
+
+#ifdef HAVE_cc0
+
+/* Return nonzero if X is an RTX that only sets the condition codes
+ and has no side effects. */
+
+int
+only_sets_cc0_p (rtx x)
+{
+ if (! x)
+ return 0;
+
+ if (INSN_P (x))
+ x = PATTERN (x);
+
+ return sets_cc0_p (x) == 1 && ! side_effects_p (x);
+}
+
+/* Return 1 if X is an RTX that does nothing but set the condition codes
+ and CLOBBER or USE registers.
+ Return -1 if X does explicitly set the condition codes,
+ but also does other things. */
+
+int
+sets_cc0_p (rtx x)
+{
+ if (! x)
+ return 0;
+
+ if (INSN_P (x))
+ x = PATTERN (x);
+
+ if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
+ return 1;
+ if (GET_CODE (x) == PARALLEL)
+ {
+ int i;
+ int sets_cc0 = 0;
+ int other_things = 0;
+ for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
+ {
+ if (GET_CODE (XVECEXP (x, 0, i)) == SET
+ && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
+ sets_cc0 = 1;
+ else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
+ other_things = 1;
+ }
+ return ! sets_cc0 ? 0 : other_things ? -1 : 1;
+ }
+ return 0;
+}
+#endif
+
+/* Follow any unconditional jump at LABEL;
+ return the ultimate label reached by any such chain of jumps.
+ Return null if the chain ultimately leads to a return instruction.
+ If LABEL is not followed by a jump, return LABEL.
+ If the chain loops or we can't find end, return LABEL,
+ since that tells caller to avoid changing the insn.
+
+ If RELOAD_COMPLETED is 0, we do not chain across a USE or CLOBBER. */
+
+rtx
+follow_jumps (rtx label)
+{
+ rtx insn;
+ rtx next;
+ rtx value = label;
+ int depth;
+
+ for (depth = 0;
+ (depth < 10
+ && (insn = next_active_insn (value)) != 0
+ && JUMP_P (insn)
+ && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
+ && onlyjump_p (insn))
+ || GET_CODE (PATTERN (insn)) == RETURN)
+ && (next = NEXT_INSN (insn))
+ && BARRIER_P (next));
+ depth++)
+ {
+ rtx tem;
+ if (!reload_completed && flag_test_coverage)
+ {
+ /* ??? Optional. Disables some optimizations, but makes
+ gcov output more accurate with -O. */
+ for (tem = value; tem != insn; tem = NEXT_INSN (tem))
+ if (NOTE_P (tem) && NOTE_LINE_NUMBER (tem) > 0)
+ return value;
+ }
+
+ /* If we have found a cycle, make the insn jump to itself. */
+ if (JUMP_LABEL (insn) == label)
+ return label;
+
+ tem = next_active_insn (JUMP_LABEL (insn));
+ if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
+ || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
+ break;
+
+ value = JUMP_LABEL (insn);
+ }
+ if (depth == 10)
+ return label;
+ return value;
+}
+
+
+/* Find all CODE_LABELs referred to in X, and increment their use counts.
+ If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
+ in INSN, then store one of them in JUMP_LABEL (INSN).
+ If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
+ referenced in INSN, add a REG_LABEL note containing that label to INSN.
+ Also, when there are consecutive labels, canonicalize on the last of them.
+
+ Note that two labels separated by a loop-beginning note
+ must be kept distinct if we have not yet done loop-optimization,
+ because the gap between them is where loop-optimize
+ will want to move invariant code to. CROSS_JUMP tells us
+ that loop-optimization is done with. */
+
+void
+mark_jump_label (rtx x, rtx insn, int in_mem)
+{
+ RTX_CODE code = GET_CODE (x);
+ int i;
+ const char *fmt;
+
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ case REG:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CLOBBER:
+ case CALL:
+ return;
+
+ case MEM:
+ in_mem = 1;
+ break;
+
+ case SYMBOL_REF:
+ if (!in_mem)
+ return;
+
+ /* If this is a constant-pool reference, see if it is a label. */
+ if (CONSTANT_POOL_ADDRESS_P (x))
+ mark_jump_label (get_pool_constant (x), insn, in_mem);
+ break;
+
+ case LABEL_REF:
+ {
+ rtx label = XEXP (x, 0);
+
+ /* Ignore remaining references to unreachable labels that
+ have been deleted. */
+ if (NOTE_P (label)
+ && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
+ break;
+
+ gcc_assert (LABEL_P (label));
+
+ /* Ignore references to labels of containing functions. */
+ if (LABEL_REF_NONLOCAL_P (x))
+ break;
+
+ XEXP (x, 0) = label;
+ if (! insn || ! INSN_DELETED_P (insn))
+ ++LABEL_NUSES (label);
+
+ if (insn)
+ {
+ if (JUMP_P (insn))
+ JUMP_LABEL (insn) = label;
+ else
+ {
+ /* Add a REG_LABEL note for LABEL unless there already
+ is one. All uses of a label, except for labels
+ that are the targets of jumps, must have a
+ REG_LABEL note. */
+ if (! find_reg_note (insn, REG_LABEL, label))
+ REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
+ REG_NOTES (insn));
+ }
+ }
+ return;
+ }
+
+ /* Do walk the labels in a vector, but not the first operand of an
+ ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ if (! INSN_DELETED_P (insn))
+ {
+ int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
+
+ for (i = 0; i < XVECLEN (x, eltnum); i++)
+ mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
+ }
+ return;
+
+ default:
+ break;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ mark_jump_label (XEXP (x, i), insn, in_mem);
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
+ }
+ }
+}
+
+/* If all INSN does is set the pc, delete it,
+ and delete the insn that set the condition codes for it
+ if that's what the previous thing was. */
+
+void
+delete_jump (rtx insn)
+{
+ rtx set = single_set (insn);
+
+ if (set && GET_CODE (SET_DEST (set)) == PC)
+ delete_computation (insn);
+}
+
+/* Recursively delete prior insns that compute the value (used only by INSN
+ which the caller is deleting) stored in the register mentioned by NOTE
+ which is a REG_DEAD note associated with INSN. */
+
+static void
+delete_prior_computation (rtx note, rtx insn)
+{
+ rtx our_prev;
+ rtx reg = XEXP (note, 0);
+
+ for (our_prev = prev_nonnote_insn (insn);
+ our_prev && (NONJUMP_INSN_P (our_prev)
+ || CALL_P (our_prev));
+ our_prev = prev_nonnote_insn (our_prev))
+ {
+ rtx pat = PATTERN (our_prev);
+
+ /* If we reach a CALL which is not calling a const function
+ or the callee pops the arguments, then give up. */
+ if (CALL_P (our_prev)
+ && (! CONST_OR_PURE_CALL_P (our_prev)
+ || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
+ break;
+
+ /* If we reach a SEQUENCE, it is too complex to try to
+ do anything with it, so give up. We can be run during
+ and after reorg, so SEQUENCE rtl can legitimately show
+ up here. */
+ if (GET_CODE (pat) == SEQUENCE)
+ break;
+
+ if (GET_CODE (pat) == USE
+ && NONJUMP_INSN_P (XEXP (pat, 0)))
+ /* reorg creates USEs that look like this. We leave them
+ alone because reorg needs them for its own purposes. */
+ break;
+
+ if (reg_set_p (reg, pat))
+ {
+ if (side_effects_p (pat) && !CALL_P (our_prev))
+ break;
+
+ if (GET_CODE (pat) == PARALLEL)
+ {
+ /* If we find a SET of something else, we can't
+ delete the insn. */
+
+ int i;
+
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ {
+ rtx part = XVECEXP (pat, 0, i);
+
+ if (GET_CODE (part) == SET
+ && SET_DEST (part) != reg)
+ break;
+ }
+
+ if (i == XVECLEN (pat, 0))
+ delete_computation (our_prev);
+ }
+ else if (GET_CODE (pat) == SET
+ && REG_P (SET_DEST (pat)))
+ {
+ int dest_regno = REGNO (SET_DEST (pat));
+ int dest_endregno
+ = (dest_regno
+ + (dest_regno < FIRST_PSEUDO_REGISTER
+ ? hard_regno_nregs[dest_regno]
+ [GET_MODE (SET_DEST (pat))] : 1));
+ int regno = REGNO (reg);
+ int endregno
+ = (regno
+ + (regno < FIRST_PSEUDO_REGISTER
+ ? hard_regno_nregs[regno][GET_MODE (reg)] : 1));
+
+ if (dest_regno >= regno
+ && dest_endregno <= endregno)
+ delete_computation (our_prev);
+
+ /* We may have a multi-word hard register and some, but not
+ all, of the words of the register are needed in subsequent
+ insns. Write REG_UNUSED notes for those parts that were not
+ needed. */
+ else if (dest_regno <= regno
+ && dest_endregno >= endregno)
+ {
+ int i;
+
+ REG_NOTES (our_prev)
+ = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
+ REG_NOTES (our_prev));
+
+ for (i = dest_regno; i < dest_endregno; i++)
+ if (! find_regno_note (our_prev, REG_UNUSED, i))
+ break;
+
+ if (i == dest_endregno)
+ delete_computation (our_prev);
+ }
+ }
+
+ break;
+ }
+
+ /* If PAT references the register that dies here, it is an
+ additional use. Hence any prior SET isn't dead. However, this
+ insn becomes the new place for the REG_DEAD note. */
+ if (reg_overlap_mentioned_p (reg, pat))
+ {
+ XEXP (note, 1) = REG_NOTES (our_prev);
+ REG_NOTES (our_prev) = note;
+ break;
+ }
+ }
+}
+
+/* Delete INSN and recursively delete insns that compute values used only
+ by INSN. This uses the REG_DEAD notes computed during flow analysis.
+ If we are running before flow.c, we need do nothing since flow.c will
+ delete dead code. We also can't know if the registers being used are
+ dead or not at this point.
+
+ Otherwise, look at all our REG_DEAD notes. If a previous insn does
+ nothing other than set a register that dies in this insn, we can delete
+ that insn as well.
+
+ On machines with CC0, if CC0 is used in this insn, we may be able to
+ delete the insn that set it. */
+
+static void
+delete_computation (rtx insn)
+{
+ rtx note, next;
+
+#ifdef HAVE_cc0
+ if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
+ {
+ rtx prev = prev_nonnote_insn (insn);
+ /* We assume that at this stage
+ CC's are always set explicitly
+ and always immediately before the jump that
+ will use them. So if the previous insn
+ exists to set the CC's, delete it
+ (unless it performs auto-increments, etc.). */
+ if (prev && NONJUMP_INSN_P (prev)
+ && sets_cc0_p (PATTERN (prev)))
+ {
+ if (sets_cc0_p (PATTERN (prev)) > 0
+ && ! side_effects_p (PATTERN (prev)))
+ delete_computation (prev);
+ else
+ /* Otherwise, show that cc0 won't be used. */
+ REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
+ cc0_rtx, REG_NOTES (prev));
+ }
+ }
+#endif
+
+ for (note = REG_NOTES (insn); note; note = next)
+ {
+ next = XEXP (note, 1);
+
+ if (REG_NOTE_KIND (note) != REG_DEAD
+ /* Verify that the REG_NOTE is legitimate. */
+ || !REG_P (XEXP (note, 0)))
+ continue;
+
+ delete_prior_computation (note, insn);
+ }
+
+ delete_related_insns (insn);
+}
+
+/* Delete insn INSN from the chain of insns and update label ref counts
+ and delete insns now unreachable.
+
+ Returns the first insn after INSN that was not deleted.
+
+ Usage of this instruction is deprecated. Use delete_insn instead and
+ subsequent cfg_cleanup pass to delete unreachable code if needed. */
+
+rtx
+delete_related_insns (rtx insn)
+{
+ int was_code_label = (LABEL_P (insn));
+ rtx note;
+ rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
+
+ while (next && INSN_DELETED_P (next))
+ next = NEXT_INSN (next);
+
+ /* This insn is already deleted => return first following nondeleted. */
+ if (INSN_DELETED_P (insn))
+ return next;
+
+ delete_insn (insn);
+
+ /* If instruction is followed by a barrier,
+ delete the barrier too. */
+
+ if (next != 0 && BARRIER_P (next))
+ delete_insn (next);
+
+ /* If deleting a jump, decrement the count of the label,
+ and delete the label if it is now unused. */
+
+ if (JUMP_P (insn) && JUMP_LABEL (insn))
+ {
+ rtx lab = JUMP_LABEL (insn), lab_next;
+
+ if (LABEL_NUSES (lab) == 0)
+ {
+ /* This can delete NEXT or PREV,
+ either directly if NEXT is JUMP_LABEL (INSN),
+ or indirectly through more levels of jumps. */
+ delete_related_insns (lab);
+
+ /* I feel a little doubtful about this loop,
+ but I see no clean and sure alternative way
+ to find the first insn after INSN that is not now deleted.
+ I hope this works. */
+ while (next && INSN_DELETED_P (next))
+ next = NEXT_INSN (next);
+ return next;
+ }
+ else if (tablejump_p (insn, NULL, &lab_next))
+ {
+ /* If we're deleting the tablejump, delete the dispatch table.
+ We may not be able to kill the label immediately preceding
+ just yet, as it might be referenced in code leading up to
+ the tablejump. */
+ delete_related_insns (lab_next);
+ }
+ }
+
+ /* Likewise if we're deleting a dispatch table. */
+
+ if (JUMP_P (insn)
+ && (GET_CODE (PATTERN (insn)) == ADDR_VEC
+ || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
+ {
+ rtx pat = PATTERN (insn);
+ int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
+ int len = XVECLEN (pat, diff_vec_p);
+
+ for (i = 0; i < len; i++)
+ if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
+ delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
+ while (next && INSN_DELETED_P (next))
+ next = NEXT_INSN (next);
+ return next;
+ }
+
+ /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
+ if (NONJUMP_INSN_P (insn) || CALL_P (insn))
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_LABEL
+ /* This could also be a NOTE_INSN_DELETED_LABEL note. */
+ && LABEL_P (XEXP (note, 0)))
+ if (LABEL_NUSES (XEXP (note, 0)) == 0)
+ delete_related_insns (XEXP (note, 0));
+
+ while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
+ prev = PREV_INSN (prev);
+
+ /* If INSN was a label and a dispatch table follows it,
+ delete the dispatch table. The tablejump must have gone already.
+ It isn't useful to fall through into a table. */
+
+ if (was_code_label
+ && NEXT_INSN (insn) != 0
+ && JUMP_P (NEXT_INSN (insn))
+ && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
+ || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
+ next = delete_related_insns (NEXT_INSN (insn));
+
+ /* If INSN was a label, delete insns following it if now unreachable. */
+
+ if (was_code_label && prev && BARRIER_P (prev))
+ {
+ enum rtx_code code;
+ while (next)
+ {
+ code = GET_CODE (next);
+ if (code == NOTE
+ && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
+ next = NEXT_INSN (next);
+ /* Keep going past other deleted labels to delete what follows. */
+ else if (code == CODE_LABEL && INSN_DELETED_P (next))
+ next = NEXT_INSN (next);
+ else if (code == BARRIER || INSN_P (next))
+ /* Note: if this deletes a jump, it can cause more
+ deletion of unreachable code, after a different label.
+ As long as the value from this recursive call is correct,
+ this invocation functions correctly. */
+ next = delete_related_insns (next);
+ else
+ break;
+ }
+ }
+
+ return next;
+}
+
+/* Delete a range of insns from FROM to TO, inclusive.
+ This is for the sake of peephole optimization, so assume
+ that whatever these insns do will still be done by a new
+ peephole insn that will replace them. */
+
+void
+delete_for_peephole (rtx from, rtx to)
+{
+ rtx insn = from;
+
+ while (1)
+ {
+ rtx next = NEXT_INSN (insn);
+ rtx prev = PREV_INSN (insn);
+
+ if (!NOTE_P (insn))
+ {
+ INSN_DELETED_P (insn) = 1;
+
+ /* Patch this insn out of the chain. */
+ /* We don't do this all at once, because we
+ must preserve all NOTEs. */
+ if (prev)
+ NEXT_INSN (prev) = next;
+
+ if (next)
+ PREV_INSN (next) = prev;
+ }
+
+ if (insn == to)
+ break;
+ insn = next;
+ }
+
+ /* Note that if TO is an unconditional jump
+ we *do not* delete the BARRIER that follows,
+ since the peephole that replaces this sequence
+ is also an unconditional jump in that case. */
+}
+
+/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
+ NLABEL as a return. Accrue modifications into the change group. */
+
+static void
+redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
+{
+ rtx x = *loc;
+ RTX_CODE code = GET_CODE (x);
+ int i;
+ const char *fmt;
+
+ if (code == LABEL_REF)
+ {
+ if (XEXP (x, 0) == olabel)
+ {
+ rtx n;
+ if (nlabel)
+ n = gen_rtx_LABEL_REF (Pmode, nlabel);
+ else
+ n = gen_rtx_RETURN (VOIDmode);
+
+ validate_change (insn, loc, n, 1);
+ return;
+ }
+ }
+ else if (code == RETURN && olabel == 0)
+ {
+ if (nlabel)
+ x = gen_rtx_LABEL_REF (Pmode, nlabel);
+ else
+ x = gen_rtx_RETURN (VOIDmode);
+ if (loc == &PATTERN (insn))
+ x = gen_rtx_SET (VOIDmode, pc_rtx, x);
+ validate_change (insn, loc, x, 1);
+ return;
+ }
+
+ if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
+ && GET_CODE (SET_SRC (x)) == LABEL_REF
+ && XEXP (SET_SRC (x), 0) == olabel)
+ {
+ validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
+ }
+ }
+}
+
+/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
+ the modifications into the change group. Return false if we did
+ not see how to do that. */
+
+int
+redirect_jump_1 (rtx jump, rtx nlabel)
+{
+ int ochanges = num_validated_changes ();
+ rtx *loc;
+
+ if (GET_CODE (PATTERN (jump)) == PARALLEL)
+ loc = &XVECEXP (PATTERN (jump), 0, 0);
+ else
+ loc = &PATTERN (jump);
+
+ redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
+ return num_validated_changes () > ochanges;
+}
+
+/* Make JUMP go to NLABEL instead of where it jumps now. If the old
+ jump target label is unused as a result, it and the code following
+ it may be deleted.
+
+ If NLABEL is zero, we are to turn the jump into a (possibly conditional)
+ RETURN insn.
+
+ The return value will be 1 if the change was made, 0 if it wasn't
+ (this can only occur for NLABEL == 0). */
+
+int
+redirect_jump (rtx jump, rtx nlabel, int delete_unused)
+{
+ rtx olabel = JUMP_LABEL (jump);
+
+ if (nlabel == olabel)
+ return 1;
+
+ if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
+ return 0;
+
+ redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
+ return 1;
+}
+
+/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
+ NLABEL in JUMP. If DELETE_UNUSED is non-negative, copy a
+ NOTE_INSN_FUNCTION_END found after OLABEL to the place after NLABEL.
+ If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
+ count has dropped to zero. */
+void
+redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
+ int invert)
+{
+ rtx note;
+
+ JUMP_LABEL (jump) = nlabel;
+ if (nlabel)
+ ++LABEL_NUSES (nlabel);
+
+ /* Update labels in any REG_EQUAL note. */
+ if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
+ {
+ if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
+ remove_note (jump, note);
+ else
+ {
+ redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
+ confirm_change_group ();
+ }
+ }
+
+ /* If we're eliding the jump over exception cleanups at the end of a
+ function, move the function end note so that -Wreturn-type works. */
+ if (olabel && nlabel
+ && NEXT_INSN (olabel)
+ && NOTE_P (NEXT_INSN (olabel))
+ && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END
+ && delete_unused >= 0)
+ emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
+
+ if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
+ /* Undefined labels will remain outside the insn stream. */
+ && INSN_UID (olabel))
+ delete_related_insns (olabel);
+ if (invert)
+ invert_br_probabilities (jump);
+}
+
+/* Invert the jump condition X contained in jump insn INSN. Accrue the
+ modifications into the change group. Return nonzero for success. */
+static int
+invert_exp_1 (rtx x, rtx insn)
+{
+ RTX_CODE code = GET_CODE (x);
+
+ if (code == IF_THEN_ELSE)
+ {
+ rtx comp = XEXP (x, 0);
+ rtx tem;
+ enum rtx_code reversed_code;
+
+ /* We can do this in two ways: The preferable way, which can only
+ be done if this is not an integer comparison, is to reverse
+ the comparison code. Otherwise, swap the THEN-part and ELSE-part
+ of the IF_THEN_ELSE. If we can't do either, fail. */
+
+ reversed_code = reversed_comparison_code (comp, insn);
+
+ if (reversed_code != UNKNOWN)
+ {
+ validate_change (insn, &XEXP (x, 0),
+ gen_rtx_fmt_ee (reversed_code,
+ GET_MODE (comp), XEXP (comp, 0),
+ XEXP (comp, 1)),
+ 1);
+ return 1;
+ }
+
+ tem = XEXP (x, 1);
+ validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
+ validate_change (insn, &XEXP (x, 2), tem, 1);
+ return 1;
+ }
+ else
+ return 0;
+}
+
+/* Invert the condition of the jump JUMP, and make it jump to label
+ NLABEL instead of where it jumps now. Accrue changes into the
+ change group. Return false if we didn't see how to perform the
+ inversion and redirection. */
+
+int
+invert_jump_1 (rtx jump, rtx nlabel)
+{
+ rtx x = pc_set (jump);
+ int ochanges;
+ int ok;
+
+ ochanges = num_validated_changes ();
+ gcc_assert (x);
+ ok = invert_exp_1 (SET_SRC (x), jump);
+ gcc_assert (ok);
+
+ if (num_validated_changes () == ochanges)
+ return 0;
+
+ /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
+ in Pmode, so checking this is not merely an optimization. */
+ return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
+}
+
+/* Invert the condition of the jump JUMP, and make it jump to label
+ NLABEL instead of where it jumps now. Return true if successful. */
+
+int
+invert_jump (rtx jump, rtx nlabel, int delete_unused)
+{
+ rtx olabel = JUMP_LABEL (jump);
+
+ if (invert_jump_1 (jump, nlabel) && apply_change_group ())
+ {
+ redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
+ return 1;
+ }
+ cancel_changes (0);
+ return 0;
+}
+
+
+/* Like rtx_equal_p except that it considers two REGs as equal
+ if they renumber to the same value and considers two commutative
+ operations to be the same if the order of the operands has been
+ reversed. */
+
+int
+rtx_renumbered_equal_p (rtx x, rtx y)
+{
+ int i;
+ enum rtx_code code = GET_CODE (x);
+ const char *fmt;
+
+ if (x == y)
+ return 1;
+
+ if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
+ && (REG_P (y) || (GET_CODE (y) == SUBREG
+ && REG_P (SUBREG_REG (y)))))
+ {
+ int reg_x = -1, reg_y = -1;
+ int byte_x = 0, byte_y = 0;
+
+ if (GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ /* If we haven't done any renumbering, don't
+ make any assumptions. */
+ if (reg_renumber == 0)
+ return rtx_equal_p (x, y);
+
+ if (code == SUBREG)
+ {
+ reg_x = REGNO (SUBREG_REG (x));
+ byte_x = SUBREG_BYTE (x);
+
+ if (reg_renumber[reg_x] >= 0)
+ {
+ reg_x = subreg_regno_offset (reg_renumber[reg_x],
+ GET_MODE (SUBREG_REG (x)),
+ byte_x,
+ GET_MODE (x));
+ byte_x = 0;
+ }
+ }
+ else
+ {
+ reg_x = REGNO (x);
+ if (reg_renumber[reg_x] >= 0)
+ reg_x = reg_renumber[reg_x];
+ }
+
+ if (GET_CODE (y) == SUBREG)
+ {
+ reg_y = REGNO (SUBREG_REG (y));
+ byte_y = SUBREG_BYTE (y);
+
+ if (reg_renumber[reg_y] >= 0)
+ {
+ reg_y = subreg_regno_offset (reg_renumber[reg_y],
+ GET_MODE (SUBREG_REG (y)),
+ byte_y,
+ GET_MODE (y));
+ byte_y = 0;
+ }
+ }
+ else
+ {
+ reg_y = REGNO (y);
+ if (reg_renumber[reg_y] >= 0)
+ reg_y = reg_renumber[reg_y];
+ }
+
+ return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
+ }
+
+ /* Now we have disposed of all the cases
+ in which different rtx codes can match. */
+ if (code != GET_CODE (y))
+ return 0;
+
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ return 0;
+
+ case LABEL_REF:
+ /* We can't assume nonlocal labels have their following insns yet. */
+ if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
+ return XEXP (x, 0) == XEXP (y, 0);
+
+ /* APPLE LOCAL begin ARM pic support */
+ /* ARM uses label_refs to contant pool entries in
+ pic_add_dot_plus_eight that must not compare equal, but, they
+ are not emitted into the function body, so, there is no
+ next_real_insn for them. Unfortunately, different labels
+ both return 0, leading to a false equality. Found on
+ libiberty build. */
+ if (next_real_insn (XEXP (x, 0)) == 0)
+ return 0;
+ /* APPLE LOCAL end ARM pic support */
+
+ /* Two label-refs are equivalent if they point at labels
+ in the same position in the instruction stream. */
+ return (next_real_insn (XEXP (x, 0))
+ == next_real_insn (XEXP (y, 0)));
+
+ case SYMBOL_REF:
+ return XSTR (x, 0) == XSTR (y, 0);
+
+ case CODE_LABEL:
+ /* If we didn't match EQ equality above, they aren't the same. */
+ return 0;
+
+ default:
+ break;
+ }
+
+ /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
+
+ if (GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ /* For commutative operations, the RTX match if the operand match in any
+ order. Also handle the simple binary and unary cases without a loop. */
+ if (targetm.commutative_p (x, UNKNOWN))
+ return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
+ && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
+ || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
+ && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
+ else if (NON_COMMUTATIVE_P (x))
+ return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
+ && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
+ else if (UNARY_P (x))
+ return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
+
+ /* Compare the elements. If any pair of corresponding elements
+ fail to match, return 0 for the whole things. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ int j;
+ switch (fmt[i])
+ {
+ case 'w':
+ if (XWINT (x, i) != XWINT (y, i))
+ return 0;
+ break;
+
+ case 'i':
+ if (XINT (x, i) != XINT (y, i))
+ return 0;
+ break;
+
+ case 't':
+ if (XTREE (x, i) != XTREE (y, i))
+ return 0;
+ break;
+
+ case 's':
+ if (strcmp (XSTR (x, i), XSTR (y, i)))
+ return 0;
+ break;
+
+ case 'e':
+ if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
+ return 0;
+ break;
+
+ case 'u':
+ if (XEXP (x, i) != XEXP (y, i))
+ return 0;
+ /* Fall through. */
+ case '0':
+ break;
+
+ case 'E':
+ if (XVECLEN (x, i) != XVECLEN (y, i))
+ return 0;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
+ return 0;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ return 1;
+}
+
+/* If X is a hard register or equivalent to one or a subregister of one,
+ return the hard register number. If X is a pseudo register that was not
+ assigned a hard register, return the pseudo register number. Otherwise,
+ return -1. Any rtx is valid for X. */
+
+int
+true_regnum (rtx x)
+{
+ if (REG_P (x))
+ {
+ if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
+ return reg_renumber[REGNO (x)];
+ return REGNO (x);
+ }
+ if (GET_CODE (x) == SUBREG)
+ {
+ int base = true_regnum (SUBREG_REG (x));
+ if (base >= 0
+ && base < FIRST_PSEUDO_REGISTER
+ && subreg_offset_representable_p (REGNO (SUBREG_REG (x)),
+ GET_MODE (SUBREG_REG (x)),
+ SUBREG_BYTE (x), GET_MODE (x)))
+ return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
+ GET_MODE (SUBREG_REG (x)),
+ SUBREG_BYTE (x), GET_MODE (x));
+ }
+ return -1;
+}
+
+/* Return regno of the register REG and handle subregs too. */
+unsigned int
+reg_or_subregno (rtx reg)
+{
+ if (GET_CODE (reg) == SUBREG)
+ reg = SUBREG_REG (reg);
+ gcc_assert (REG_P (reg));
+ return REGNO (reg);
+}