aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/ggc-page.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/ggc-page.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/ggc-page.c2320
1 files changed, 2320 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/ggc-page.c b/gcc-4.2.1-5666.3/gcc/ggc-page.c
new file mode 100644
index 000000000..5d880339d
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/ggc-page.c
@@ -0,0 +1,2320 @@
+/* "Bag-of-pages" garbage collector for the GNU compiler.
+ Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
+ Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "toplev.h"
+#include "flags.h"
+#include "ggc.h"
+#include "timevar.h"
+#include "params.h"
+#include "tree-flow.h"
+#ifdef ENABLE_VALGRIND_CHECKING
+# ifdef HAVE_VALGRIND_MEMCHECK_H
+# include <valgrind/memcheck.h>
+# elif defined HAVE_MEMCHECK_H
+# include <memcheck.h>
+# else
+# include <valgrind.h>
+# endif
+#else
+/* Avoid #ifdef:s when we can help it. */
+#define VALGRIND_DISCARD(x)
+#endif
+
+/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
+ file open. Prefer either to valloc. */
+#ifdef HAVE_MMAP_ANON
+# undef HAVE_MMAP_DEV_ZERO
+
+# include <sys/mman.h>
+# ifndef MAP_FAILED
+# define MAP_FAILED -1
+# endif
+# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
+# define MAP_ANONYMOUS MAP_ANON
+# endif
+# define USING_MMAP
+
+#endif
+
+#ifdef HAVE_MMAP_DEV_ZERO
+
+# include <sys/mman.h>
+# ifndef MAP_FAILED
+# define MAP_FAILED -1
+# endif
+# define USING_MMAP
+
+#endif
+
+#ifndef USING_MMAP
+#define USING_MALLOC_PAGE_GROUPS
+#endif
+
+/* Strategy:
+
+ This garbage-collecting allocator allocates objects on one of a set
+ of pages. Each page can allocate objects of a single size only;
+ available sizes are powers of two starting at four bytes. The size
+ of an allocation request is rounded up to the next power of two
+ (`order'), and satisfied from the appropriate page.
+
+ Each page is recorded in a page-entry, which also maintains an
+ in-use bitmap of object positions on the page. This allows the
+ allocation state of a particular object to be flipped without
+ touching the page itself.
+
+ Each page-entry also has a context depth, which is used to track
+ pushing and popping of allocation contexts. Only objects allocated
+ in the current (highest-numbered) context may be collected.
+
+ Page entries are arranged in an array of singly-linked lists. The
+ array is indexed by the allocation size, in bits, of the pages on
+ it; i.e. all pages on a list allocate objects of the same size.
+ Pages are ordered on the list such that all non-full pages precede
+ all full pages, with non-full pages arranged in order of decreasing
+ context depth.
+
+ Empty pages (of all orders) are kept on a single page cache list,
+ and are considered first when new pages are required; they are
+ deallocated at the start of the next collection if they haven't
+ been recycled by then. */
+
+/* Define GGC_DEBUG_LEVEL to print debugging information.
+ 0: No debugging output.
+ 1: GC statistics only.
+ 2: Page-entry allocations/deallocations as well.
+ 3: Object allocations as well.
+ 4: Object marks as well. */
+#define GGC_DEBUG_LEVEL (0)
+
+#ifndef HOST_BITS_PER_PTR
+#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
+#endif
+
+
+/* A two-level tree is used to look up the page-entry for a given
+ pointer. Two chunks of the pointer's bits are extracted to index
+ the first and second levels of the tree, as follows:
+
+ HOST_PAGE_SIZE_BITS
+ 32 | |
+ msb +----------------+----+------+------+ lsb
+ | | |
+ PAGE_L1_BITS |
+ | |
+ PAGE_L2_BITS
+
+ The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
+ pages are aligned on system page boundaries. The next most
+ significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
+ index values in the lookup table, respectively.
+
+ For 32-bit architectures and the settings below, there are no
+ leftover bits. For architectures with wider pointers, the lookup
+ tree points to a list of pages, which must be scanned to find the
+ correct one. */
+
+#define PAGE_L1_BITS (8)
+#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
+#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
+#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
+
+#define LOOKUP_L1(p) \
+ (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
+
+#define LOOKUP_L2(p) \
+ (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
+
+/* The number of objects per allocation page, for objects on a page of
+ the indicated ORDER. */
+#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
+
+/* The number of objects in P. */
+#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
+
+/* The size of an object on a page of the indicated ORDER. */
+#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
+
+/* For speed, we avoid doing a general integer divide to locate the
+ offset in the allocation bitmap, by precalculating numbers M, S
+ such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
+ within the page which is evenly divisible by the object size Z. */
+#define DIV_MULT(ORDER) inverse_table[ORDER].mult
+#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
+#define OFFSET_TO_BIT(OFFSET, ORDER) \
+ (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
+
+/* The number of extra orders, not corresponding to power-of-two sized
+ objects. */
+
+#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
+
+#define RTL_SIZE(NSLOTS) \
+ (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
+
+#define TREE_EXP_SIZE(OPS) \
+ (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
+
+/* The Ith entry is the maximum size of an object to be stored in the
+ Ith extra order. Adding a new entry to this array is the *only*
+ thing you need to do to add a new special allocation size. */
+
+static const size_t extra_order_size_table[] = {
+ sizeof (struct stmt_ann_d),
+ sizeof (struct var_ann_d),
+ sizeof (struct tree_decl_non_common),
+ sizeof (struct tree_field_decl),
+ sizeof (struct tree_parm_decl),
+ sizeof (struct tree_var_decl),
+ sizeof (struct tree_list),
+ sizeof (struct tree_ssa_name),
+ sizeof (struct function),
+ sizeof (struct basic_block_def),
+ sizeof (bitmap_element),
+ /* PHI nodes with one to three arguments are already covered by the
+ above sizes. */
+ sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
+ TREE_EXP_SIZE (2),
+ RTL_SIZE (2), /* MEM, PLUS, etc. */
+ RTL_SIZE (9), /* INSN */
+};
+
+/* The total number of orders. */
+
+#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
+
+/* We use this structure to determine the alignment required for
+ allocations. For power-of-two sized allocations, that's not a
+ problem, but it does matter for odd-sized allocations. */
+
+struct max_alignment {
+ char c;
+ union {
+ HOST_WIDEST_INT i;
+ long double d;
+ } u;
+};
+
+/* The biggest alignment required. */
+
+#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
+
+/* Compute the smallest nonnegative number which when added to X gives
+ a multiple of F. */
+
+#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
+
+/* Compute the smallest multiple of F that is >= X. */
+
+#define ROUND_UP(x, f) (CEIL (x, f) * (f))
+
+/* The Ith entry is the number of objects on a page or order I. */
+
+static unsigned objects_per_page_table[NUM_ORDERS];
+
+/* The Ith entry is the size of an object on a page of order I. */
+
+static size_t object_size_table[NUM_ORDERS];
+
+/* The Ith entry is a pair of numbers (mult, shift) such that
+ ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
+ for all k evenly divisible by OBJECT_SIZE(I). */
+
+static struct
+{
+ size_t mult;
+ unsigned int shift;
+}
+inverse_table[NUM_ORDERS];
+
+/* A page_entry records the status of an allocation page. This
+ structure is dynamically sized to fit the bitmap in_use_p. */
+typedef struct page_entry
+{
+ /* The next page-entry with objects of the same size, or NULL if
+ this is the last page-entry. */
+ struct page_entry *next;
+
+ /* The previous page-entry with objects of the same size, or NULL if
+ this is the first page-entry. The PREV pointer exists solely to
+ keep the cost of ggc_free manageable. */
+ struct page_entry *prev;
+
+ /* The number of bytes allocated. (This will always be a multiple
+ of the host system page size.) */
+ size_t bytes;
+
+ /* The address at which the memory is allocated. */
+ char *page;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ /* Back pointer to the page group this page came from. */
+ struct page_group *group;
+#endif
+
+ /* This is the index in the by_depth varray where this page table
+ can be found. */
+ unsigned long index_by_depth;
+
+ /* Context depth of this page. */
+ unsigned short context_depth;
+
+ /* The number of free objects remaining on this page. */
+ unsigned short num_free_objects;
+
+ /* A likely candidate for the bit position of a free object for the
+ next allocation from this page. */
+ unsigned short next_bit_hint;
+
+ /* The lg of size of objects allocated from this page. */
+ unsigned char order;
+
+ /* A bit vector indicating whether or not objects are in use. The
+ Nth bit is one if the Nth object on this page is allocated. This
+ array is dynamically sized. */
+ unsigned long in_use_p[1];
+} page_entry;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+/* A page_group describes a large allocation from malloc, from which
+ we parcel out aligned pages. */
+typedef struct page_group
+{
+ /* A linked list of all extant page groups. */
+ struct page_group *next;
+
+ /* The address we received from malloc. */
+ char *allocation;
+
+ /* The size of the block. */
+ size_t alloc_size;
+
+ /* A bitmask of pages in use. */
+ unsigned int in_use;
+} page_group;
+#endif
+
+#if HOST_BITS_PER_PTR <= 32
+
+/* On 32-bit hosts, we use a two level page table, as pictured above. */
+typedef page_entry **page_table[PAGE_L1_SIZE];
+
+#else
+
+/* On 64-bit hosts, we use the same two level page tables plus a linked
+ list that disambiguates the top 32-bits. There will almost always be
+ exactly one entry in the list. */
+typedef struct page_table_chain
+{
+ struct page_table_chain *next;
+ size_t high_bits;
+ page_entry **table[PAGE_L1_SIZE];
+} *page_table;
+
+#endif
+
+/* The rest of the global variables. */
+static struct globals
+{
+ /* The Nth element in this array is a page with objects of size 2^N.
+ If there are any pages with free objects, they will be at the
+ head of the list. NULL if there are no page-entries for this
+ object size. */
+ page_entry *pages[NUM_ORDERS];
+
+ /* The Nth element in this array is the last page with objects of
+ size 2^N. NULL if there are no page-entries for this object
+ size. */
+ page_entry *page_tails[NUM_ORDERS];
+
+ /* Lookup table for associating allocation pages with object addresses. */
+ page_table lookup;
+
+ /* The system's page size. */
+ size_t pagesize;
+ size_t lg_pagesize;
+
+ /* Bytes currently allocated. */
+ size_t allocated;
+
+ /* Bytes currently allocated at the end of the last collection. */
+ size_t allocated_last_gc;
+
+ /* Total amount of memory mapped. */
+ size_t bytes_mapped;
+
+ /* Bit N set if any allocations have been done at context depth N. */
+ unsigned long context_depth_allocations;
+
+ /* Bit N set if any collections have been done at context depth N. */
+ unsigned long context_depth_collections;
+
+ /* The current depth in the context stack. */
+ unsigned short context_depth;
+
+ /* A file descriptor open to /dev/zero for reading. */
+#if defined (HAVE_MMAP_DEV_ZERO)
+ int dev_zero_fd;
+#endif
+
+ /* A cache of free system pages. */
+ page_entry *free_pages;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ page_group *page_groups;
+#endif
+
+ /* The file descriptor for debugging output. */
+ FILE *debug_file;
+
+ /* Current number of elements in use in depth below. */
+ unsigned int depth_in_use;
+
+ /* Maximum number of elements that can be used before resizing. */
+ unsigned int depth_max;
+
+ /* Each element of this arry is an index in by_depth where the given
+ depth starts. This structure is indexed by that given depth we
+ are interested in. */
+ unsigned int *depth;
+
+ /* Current number of elements in use in by_depth below. */
+ unsigned int by_depth_in_use;
+
+ /* Maximum number of elements that can be used before resizing. */
+ unsigned int by_depth_max;
+
+ /* Each element of this array is a pointer to a page_entry, all
+ page_entries can be found in here by increasing depth.
+ index_by_depth in the page_entry is the index into this data
+ structure where that page_entry can be found. This is used to
+ speed up finding all page_entries at a particular depth. */
+ page_entry **by_depth;
+
+ /* Each element is a pointer to the saved in_use_p bits, if any,
+ zero otherwise. We allocate them all together, to enable a
+ better runtime data access pattern. */
+ unsigned long **save_in_use;
+
+#ifdef ENABLE_GC_ALWAYS_COLLECT
+ /* List of free objects to be verified as actually free on the
+ next collection. */
+ struct free_object
+ {
+ void *object;
+ struct free_object *next;
+ } *free_object_list;
+#endif
+
+#ifdef GATHER_STATISTICS
+ struct
+ {
+ /* Total memory allocated with ggc_alloc. */
+ unsigned long long total_allocated;
+ /* Total overhead for memory to be allocated with ggc_alloc. */
+ unsigned long long total_overhead;
+
+ /* Total allocations and overhead for sizes less than 32, 64 and 128.
+ These sizes are interesting because they are typical cache line
+ sizes. */
+
+ unsigned long long total_allocated_under32;
+ unsigned long long total_overhead_under32;
+
+ unsigned long long total_allocated_under64;
+ unsigned long long total_overhead_under64;
+
+ unsigned long long total_allocated_under128;
+ unsigned long long total_overhead_under128;
+
+ /* The allocations for each of the allocation orders. */
+ unsigned long long total_allocated_per_order[NUM_ORDERS];
+
+ /* The overhead for each of the allocation orders. */
+ unsigned long long total_overhead_per_order[NUM_ORDERS];
+ } stats;
+#endif
+} G;
+
+/* The size in bytes required to maintain a bitmap for the objects
+ on a page-entry. */
+#define BITMAP_SIZE(Num_objects) \
+ (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
+
+/* Allocate pages in chunks of this size, to throttle calls to memory
+ allocation routines. The first page is used, the rest go onto the
+ free list. This cannot be larger than HOST_BITS_PER_INT for the
+ in_use bitmask for page_group. Hosts that need a different value
+ can override this by defining GGC_QUIRE_SIZE explicitly. */
+#ifndef GGC_QUIRE_SIZE
+# ifdef USING_MMAP
+# define GGC_QUIRE_SIZE 256
+# else
+# define GGC_QUIRE_SIZE 16
+# endif
+#endif
+
+/* Initial guess as to how many page table entries we might need. */
+#define INITIAL_PTE_COUNT 128
+
+static int ggc_allocated_p (const void *);
+static page_entry *lookup_page_table_entry (const void *);
+static void set_page_table_entry (void *, page_entry *);
+#ifdef USING_MMAP
+static char *alloc_anon (char *, size_t);
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+static size_t page_group_index (char *, char *);
+static void set_page_group_in_use (page_group *, char *);
+static void clear_page_group_in_use (page_group *, char *);
+#endif
+static struct page_entry * alloc_page (unsigned);
+static void free_page (struct page_entry *);
+static void release_pages (void);
+static void clear_marks (void);
+static void sweep_pages (void);
+static void ggc_recalculate_in_use_p (page_entry *);
+static void compute_inverse (unsigned);
+static inline void adjust_depth (void);
+static void move_ptes_to_front (int, int);
+
+void debug_print_page_list (int);
+static void push_depth (unsigned int);
+static void push_by_depth (page_entry *, unsigned long *);
+
+/* Push an entry onto G.depth. */
+
+inline static void
+push_depth (unsigned int i)
+{
+ if (G.depth_in_use >= G.depth_max)
+ {
+ G.depth_max *= 2;
+ G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
+ }
+ G.depth[G.depth_in_use++] = i;
+}
+
+/* Push an entry onto G.by_depth and G.save_in_use. */
+
+inline static void
+push_by_depth (page_entry *p, unsigned long *s)
+{
+ if (G.by_depth_in_use >= G.by_depth_max)
+ {
+ G.by_depth_max *= 2;
+ G.by_depth = xrealloc (G.by_depth,
+ G.by_depth_max * sizeof (page_entry *));
+ G.save_in_use = xrealloc (G.save_in_use,
+ G.by_depth_max * sizeof (unsigned long *));
+ }
+ G.by_depth[G.by_depth_in_use] = p;
+ G.save_in_use[G.by_depth_in_use++] = s;
+}
+
+#if (GCC_VERSION < 3001)
+#define prefetch(X) ((void) X)
+#else
+#define prefetch(X) __builtin_prefetch (X)
+#endif
+
+#define save_in_use_p_i(__i) \
+ (G.save_in_use[__i])
+#define save_in_use_p(__p) \
+ (save_in_use_p_i (__p->index_by_depth))
+
+/* Returns nonzero if P was allocated in GC'able memory. */
+
+static inline int
+ggc_allocated_p (const void *p)
+{
+ page_entry ***base;
+ size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+ base = &G.lookup[0];
+#else
+ page_table table = G.lookup;
+ size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+ while (1)
+ {
+ if (table == NULL)
+ return 0;
+ if (table->high_bits == high_bits)
+ break;
+ table = table->next;
+ }
+ base = &table->table[0];
+#endif
+
+ /* Extract the level 1 and 2 indices. */
+ L1 = LOOKUP_L1 (p);
+ L2 = LOOKUP_L2 (p);
+
+ return base[L1] && base[L1][L2];
+}
+
+/* Traverse the page table and find the entry for a page.
+ Die (probably) if the object wasn't allocated via GC. */
+
+static inline page_entry *
+lookup_page_table_entry (const void *p)
+{
+ page_entry ***base;
+ size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+ base = &G.lookup[0];
+#else
+ page_table table = G.lookup;
+ size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+ while (table->high_bits != high_bits)
+ table = table->next;
+ base = &table->table[0];
+#endif
+
+ /* Extract the level 1 and 2 indices. */
+ L1 = LOOKUP_L1 (p);
+ L2 = LOOKUP_L2 (p);
+
+ return base[L1][L2];
+}
+
+/* Set the page table entry for a page. */
+
+static void
+set_page_table_entry (void *p, page_entry *entry)
+{
+ page_entry ***base;
+ size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+ base = &G.lookup[0];
+#else
+ page_table table;
+ size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+ for (table = G.lookup; table; table = table->next)
+ if (table->high_bits == high_bits)
+ goto found;
+
+ /* Not found -- allocate a new table. */
+ table = xcalloc (1, sizeof(*table));
+ table->next = G.lookup;
+ table->high_bits = high_bits;
+ G.lookup = table;
+found:
+ base = &table->table[0];
+#endif
+
+ /* Extract the level 1 and 2 indices. */
+ L1 = LOOKUP_L1 (p);
+ L2 = LOOKUP_L2 (p);
+
+ if (base[L1] == NULL)
+ base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
+
+ base[L1][L2] = entry;
+}
+
+/* Prints the page-entry for object size ORDER, for debugging. */
+
+void
+debug_print_page_list (int order)
+{
+ page_entry *p;
+ printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
+ (void *) G.page_tails[order]);
+ p = G.pages[order];
+ while (p != NULL)
+ {
+ printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
+ p->num_free_objects);
+ p = p->next;
+ }
+ printf ("NULL\n");
+ fflush (stdout);
+}
+
+#ifdef USING_MMAP
+/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
+ (if non-null). The ifdef structure here is intended to cause a
+ compile error unless exactly one of the HAVE_* is defined. */
+
+static inline char *
+alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
+{
+#ifdef HAVE_MMAP_ANON
+ char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+#endif
+#ifdef HAVE_MMAP_DEV_ZERO
+ char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE, G.dev_zero_fd, 0);
+#endif
+
+ if (page == (char *) MAP_FAILED)
+ {
+ perror ("virtual memory exhausted");
+ exit (FATAL_EXIT_CODE);
+ }
+
+ /* Remember that we allocated this memory. */
+ G.bytes_mapped += size;
+
+ /* Pretend we don't have access to the allocated pages. We'll enable
+ access to smaller pieces of the area in ggc_alloc. Discard the
+ handle to avoid handle leak. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
+
+ return page;
+}
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+/* Compute the index for this page into the page group. */
+
+static inline size_t
+page_group_index (char *allocation, char *page)
+{
+ return (size_t) (page - allocation) >> G.lg_pagesize;
+}
+
+/* Set and clear the in_use bit for this page in the page group. */
+
+static inline void
+set_page_group_in_use (page_group *group, char *page)
+{
+ group->in_use |= 1 << page_group_index (group->allocation, page);
+}
+
+static inline void
+clear_page_group_in_use (page_group *group, char *page)
+{
+ group->in_use &= ~(1 << page_group_index (group->allocation, page));
+}
+#endif
+
+/* Allocate a new page for allocating objects of size 2^ORDER,
+ and return an entry for it. The entry is not added to the
+ appropriate page_table list. */
+
+static inline struct page_entry *
+alloc_page (unsigned order)
+{
+ struct page_entry *entry, *p, **pp;
+ char *page;
+ size_t num_objects;
+ size_t bitmap_size;
+ size_t page_entry_size;
+ size_t entry_size;
+#ifdef USING_MALLOC_PAGE_GROUPS
+ page_group *group;
+#endif
+
+ num_objects = OBJECTS_PER_PAGE (order);
+ bitmap_size = BITMAP_SIZE (num_objects + 1);
+ page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
+ entry_size = num_objects * OBJECT_SIZE (order);
+ if (entry_size < G.pagesize)
+ entry_size = G.pagesize;
+
+ entry = NULL;
+ page = NULL;
+
+ /* Check the list of free pages for one we can use. */
+ for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
+ if (p->bytes == entry_size)
+ break;
+
+ if (p != NULL)
+ {
+ /* Recycle the allocated memory from this page ... */
+ *pp = p->next;
+ page = p->page;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ group = p->group;
+#endif
+
+ /* ... and, if possible, the page entry itself. */
+ if (p->order == order)
+ {
+ entry = p;
+ memset (entry, 0, page_entry_size);
+ }
+ else
+ free (p);
+ }
+#ifdef USING_MMAP
+ else if (entry_size == G.pagesize)
+ {
+ /* We want just one page. Allocate a bunch of them and put the
+ extras on the freelist. (Can only do this optimization with
+ mmap for backing store.) */
+ struct page_entry *e, *f = G.free_pages;
+ int i;
+
+ page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
+
+ /* This loop counts down so that the chain will be in ascending
+ memory order. */
+ for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
+ {
+ e = xcalloc (1, page_entry_size);
+ e->order = order;
+ e->bytes = G.pagesize;
+ e->page = page + (i << G.lg_pagesize);
+ e->next = f;
+ f = e;
+ }
+
+ G.free_pages = f;
+ }
+ else
+ page = alloc_anon (NULL, entry_size);
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+ else
+ {
+ /* Allocate a large block of memory and serve out the aligned
+ pages therein. This results in much less memory wastage
+ than the traditional implementation of valloc. */
+
+ char *allocation, *a, *enda;
+ size_t alloc_size, head_slop, tail_slop;
+ int multiple_pages = (entry_size == G.pagesize);
+
+ if (multiple_pages)
+ alloc_size = GGC_QUIRE_SIZE * G.pagesize;
+ else
+ alloc_size = entry_size + G.pagesize - 1;
+ allocation = xmalloc (alloc_size);
+
+ page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
+ head_slop = page - allocation;
+ if (multiple_pages)
+ tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
+ else
+ tail_slop = alloc_size - entry_size - head_slop;
+ enda = allocation + alloc_size - tail_slop;
+
+ /* We allocated N pages, which are likely not aligned, leaving
+ us with N-1 usable pages. We plan to place the page_group
+ structure somewhere in the slop. */
+ if (head_slop >= sizeof (page_group))
+ group = (page_group *)page - 1;
+ else
+ {
+ /* We magically got an aligned allocation. Too bad, we have
+ to waste a page anyway. */
+ if (tail_slop == 0)
+ {
+ enda -= G.pagesize;
+ tail_slop += G.pagesize;
+ }
+ gcc_assert (tail_slop >= sizeof (page_group));
+ group = (page_group *)enda;
+ tail_slop -= sizeof (page_group);
+ }
+
+ /* Remember that we allocated this memory. */
+ group->next = G.page_groups;
+ group->allocation = allocation;
+ group->alloc_size = alloc_size;
+ group->in_use = 0;
+ G.page_groups = group;
+ G.bytes_mapped += alloc_size;
+
+ /* If we allocated multiple pages, put the rest on the free list. */
+ if (multiple_pages)
+ {
+ struct page_entry *e, *f = G.free_pages;
+ for (a = enda - G.pagesize; a != page; a -= G.pagesize)
+ {
+ e = xcalloc (1, page_entry_size);
+ e->order = order;
+ e->bytes = G.pagesize;
+ e->page = a;
+ e->group = group;
+ e->next = f;
+ f = e;
+ }
+ G.free_pages = f;
+ }
+ }
+#endif
+
+ if (entry == NULL)
+ entry = xcalloc (1, page_entry_size);
+
+ entry->bytes = entry_size;
+ entry->page = page;
+ entry->context_depth = G.context_depth;
+ entry->order = order;
+ entry->num_free_objects = num_objects;
+ entry->next_bit_hint = 1;
+
+ G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ entry->group = group;
+ set_page_group_in_use (group, page);
+#endif
+
+ /* Set the one-past-the-end in-use bit. This acts as a sentry as we
+ increment the hint. */
+ entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
+ = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
+
+ set_page_table_entry (page, entry);
+
+ if (GGC_DEBUG_LEVEL >= 2)
+ fprintf (G.debug_file,
+ "Allocating page at %p, object size=%lu, data %p-%p\n",
+ (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
+ page + entry_size - 1);
+
+ return entry;
+}
+
+/* Adjust the size of G.depth so that no index greater than the one
+ used by the top of the G.by_depth is used. */
+
+static inline void
+adjust_depth (void)
+{
+ page_entry *top;
+
+ if (G.by_depth_in_use)
+ {
+ top = G.by_depth[G.by_depth_in_use-1];
+
+ /* Peel back indices in depth that index into by_depth, so that
+ as new elements are added to by_depth, we note the indices
+ of those elements, if they are for new context depths. */
+ while (G.depth_in_use > (size_t)top->context_depth+1)
+ --G.depth_in_use;
+ }
+}
+
+/* For a page that is no longer needed, put it on the free page list. */
+
+static void
+free_page (page_entry *entry)
+{
+ if (GGC_DEBUG_LEVEL >= 2)
+ fprintf (G.debug_file,
+ "Deallocating page at %p, data %p-%p\n", (void *) entry,
+ entry->page, entry->page + entry->bytes - 1);
+
+ /* Mark the page as inaccessible. Discard the handle to avoid handle
+ leak. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
+
+ set_page_table_entry (entry->page, NULL);
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ clear_page_group_in_use (entry->group, entry->page);
+#endif
+
+ if (G.by_depth_in_use > 1)
+ {
+ page_entry *top = G.by_depth[G.by_depth_in_use-1];
+ int i = entry->index_by_depth;
+
+ /* We cannot free a page from a context deeper than the current
+ one. */
+ gcc_assert (entry->context_depth == top->context_depth);
+
+ /* Put top element into freed slot. */
+ G.by_depth[i] = top;
+ G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
+ top->index_by_depth = i;
+ }
+ --G.by_depth_in_use;
+
+ adjust_depth ();
+
+ entry->next = G.free_pages;
+ G.free_pages = entry;
+}
+
+/* Release the free page cache to the system. */
+
+static void
+release_pages (void)
+{
+#ifdef USING_MMAP
+ page_entry *p, *next;
+ char *start;
+ size_t len;
+
+ /* Gather up adjacent pages so they are unmapped together. */
+ p = G.free_pages;
+
+ while (p)
+ {
+ start = p->page;
+ next = p->next;
+ len = p->bytes;
+ free (p);
+ p = next;
+
+ while (p && p->page == start + len)
+ {
+ next = p->next;
+ len += p->bytes;
+ free (p);
+ p = next;
+ }
+
+ munmap (start, len);
+ G.bytes_mapped -= len;
+ }
+
+ G.free_pages = NULL;
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+ page_entry **pp, *p;
+ page_group **gp, *g;
+
+ /* Remove all pages from free page groups from the list. */
+ pp = &G.free_pages;
+ while ((p = *pp) != NULL)
+ if (p->group->in_use == 0)
+ {
+ *pp = p->next;
+ free (p);
+ }
+ else
+ pp = &p->next;
+
+ /* Remove all free page groups, and release the storage. */
+ gp = &G.page_groups;
+ while ((g = *gp) != NULL)
+ if (g->in_use == 0)
+ {
+ *gp = g->next;
+ G.bytes_mapped -= g->alloc_size;
+ free (g->allocation);
+ }
+ else
+ gp = &g->next;
+#endif
+}
+
+/* This table provides a fast way to determine ceil(log_2(size)) for
+ allocation requests. The minimum allocation size is eight bytes. */
+#define NUM_SIZE_LOOKUP 512
+static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
+{
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
+ 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
+};
+
+/* Typed allocation function. Does nothing special in this collector. */
+
+void *
+ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
+ MEM_STAT_DECL)
+{
+ return ggc_alloc_stat (size PASS_MEM_STAT);
+}
+
+/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
+
+void *
+ggc_alloc_stat (size_t size MEM_STAT_DECL)
+{
+ size_t order, word, bit, object_offset, object_size;
+ struct page_entry *entry;
+ void *result;
+
+ if (size < NUM_SIZE_LOOKUP)
+ {
+ order = size_lookup[size];
+ object_size = OBJECT_SIZE (order);
+ }
+ else
+ {
+ order = 10;
+ while (size > (object_size = OBJECT_SIZE (order)))
+ order++;
+ }
+
+ /* If there are non-full pages for this size allocation, they are at
+ the head of the list. */
+ entry = G.pages[order];
+
+ /* If there is no page for this object size, or all pages in this
+ context are full, allocate a new page. */
+ if (entry == NULL || entry->num_free_objects == 0)
+ {
+ struct page_entry *new_entry;
+ new_entry = alloc_page (order);
+
+ new_entry->index_by_depth = G.by_depth_in_use;
+ push_by_depth (new_entry, 0);
+
+ /* We can skip context depths, if we do, make sure we go all the
+ way to the new depth. */
+ while (new_entry->context_depth >= G.depth_in_use)
+ push_depth (G.by_depth_in_use-1);
+
+ /* If this is the only entry, it's also the tail. If it is not
+ the only entry, then we must update the PREV pointer of the
+ ENTRY (G.pages[order]) to point to our new page entry. */
+ if (entry == NULL)
+ G.page_tails[order] = new_entry;
+ else
+ entry->prev = new_entry;
+
+ /* Put new pages at the head of the page list. By definition the
+ entry at the head of the list always has a NULL pointer. */
+ new_entry->next = entry;
+ new_entry->prev = NULL;
+ entry = new_entry;
+ G.pages[order] = new_entry;
+
+ /* For a new page, we know the word and bit positions (in the
+ in_use bitmap) of the first available object -- they're zero. */
+ new_entry->next_bit_hint = 1;
+ word = 0;
+ bit = 0;
+ object_offset = 0;
+ }
+ else
+ {
+ /* First try to use the hint left from the previous allocation
+ to locate a clear bit in the in-use bitmap. We've made sure
+ that the one-past-the-end bit is always set, so if the hint
+ has run over, this test will fail. */
+ unsigned hint = entry->next_bit_hint;
+ word = hint / HOST_BITS_PER_LONG;
+ bit = hint % HOST_BITS_PER_LONG;
+
+ /* If the hint didn't work, scan the bitmap from the beginning. */
+ if ((entry->in_use_p[word] >> bit) & 1)
+ {
+ word = bit = 0;
+ while (~entry->in_use_p[word] == 0)
+ ++word;
+
+#if GCC_VERSION >= 3004
+ bit = __builtin_ctzl (~entry->in_use_p[word]);
+#else
+ while ((entry->in_use_p[word] >> bit) & 1)
+ ++bit;
+#endif
+
+ hint = word * HOST_BITS_PER_LONG + bit;
+ }
+
+ /* Next time, try the next bit. */
+ entry->next_bit_hint = hint + 1;
+
+ object_offset = hint * object_size;
+ }
+
+ /* Set the in-use bit. */
+ entry->in_use_p[word] |= ((unsigned long) 1 << bit);
+
+ /* Keep a running total of the number of free objects. If this page
+ fills up, we may have to move it to the end of the list if the
+ next page isn't full. If the next page is full, all subsequent
+ pages are full, so there's no need to move it. */
+ if (--entry->num_free_objects == 0
+ && entry->next != NULL
+ && entry->next->num_free_objects > 0)
+ {
+ /* We have a new head for the list. */
+ G.pages[order] = entry->next;
+
+ /* We are moving ENTRY to the end of the page table list.
+ The new page at the head of the list will have NULL in
+ its PREV field and ENTRY will have NULL in its NEXT field. */
+ entry->next->prev = NULL;
+ entry->next = NULL;
+
+ /* Append ENTRY to the tail of the list. */
+ entry->prev = G.page_tails[order];
+ G.page_tails[order]->next = entry;
+ G.page_tails[order] = entry;
+ }
+
+ /* Calculate the object's address. */
+ result = entry->page + object_offset;
+#ifdef GATHER_STATISTICS
+ ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
+ result PASS_MEM_STAT);
+#endif
+
+#ifdef ENABLE_GC_CHECKING
+ /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
+ exact same semantics in presence of memory bugs, regardless of
+ ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
+ handle to avoid handle leak. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
+
+ /* `Poison' the entire allocated object, including any padding at
+ the end. */
+ memset (result, 0xaf, object_size);
+
+ /* Make the bytes after the end of the object unaccessible. Discard the
+ handle to avoid handle leak. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
+ object_size - size));
+#endif
+
+ /* Tell Valgrind that the memory is there, but its content isn't
+ defined. The bytes at the end of the object are still marked
+ unaccessible. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
+
+ /* Keep track of how many bytes are being allocated. This
+ information is used in deciding when to collect. */
+ G.allocated += object_size;
+
+ /* For timevar statistics. */
+ timevar_ggc_mem_total += object_size;
+
+#ifdef GATHER_STATISTICS
+ {
+ size_t overhead = object_size - size;
+
+ G.stats.total_overhead += overhead;
+ G.stats.total_allocated += object_size;
+ G.stats.total_overhead_per_order[order] += overhead;
+ G.stats.total_allocated_per_order[order] += object_size;
+
+ if (size <= 32)
+ {
+ G.stats.total_overhead_under32 += overhead;
+ G.stats.total_allocated_under32 += object_size;
+ }
+ if (size <= 64)
+ {
+ G.stats.total_overhead_under64 += overhead;
+ G.stats.total_allocated_under64 += object_size;
+ }
+ if (size <= 128)
+ {
+ G.stats.total_overhead_under128 += overhead;
+ G.stats.total_allocated_under128 += object_size;
+ }
+ }
+#endif
+
+ if (GGC_DEBUG_LEVEL >= 3)
+ fprintf (G.debug_file,
+ "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
+ (unsigned long) size, (unsigned long) object_size, result,
+ (void *) entry);
+
+ return result;
+}
+
+/* If P is not marked, marks it and return false. Otherwise return true.
+ P must have been allocated by the GC allocator; it mustn't point to
+ static objects, stack variables, or memory allocated with malloc. */
+
+int
+ggc_set_mark (const void *p)
+{
+ page_entry *entry;
+ unsigned bit, word;
+ unsigned long mask;
+
+ /* Look up the page on which the object is alloced. If the object
+ wasn't allocated by the collector, we'll probably die. */
+ entry = lookup_page_table_entry (p);
+ gcc_assert (entry);
+
+ /* Calculate the index of the object on the page; this is its bit
+ position in the in_use_p bitmap. */
+ bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
+ word = bit / HOST_BITS_PER_LONG;
+ mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
+
+ /* If the bit was previously set, skip it. */
+ if (entry->in_use_p[word] & mask)
+ return 1;
+
+ /* Otherwise set it, and decrement the free object count. */
+ entry->in_use_p[word] |= mask;
+ entry->num_free_objects -= 1;
+
+ if (GGC_DEBUG_LEVEL >= 4)
+ fprintf (G.debug_file, "Marking %p\n", p);
+
+ return 0;
+}
+
+/* Return 1 if P has been marked, zero otherwise.
+ P must have been allocated by the GC allocator; it mustn't point to
+ static objects, stack variables, or memory allocated with malloc. */
+
+int
+ggc_marked_p (const void *p)
+{
+ page_entry *entry;
+ unsigned bit, word;
+ unsigned long mask;
+
+ /* Look up the page on which the object is alloced. If the object
+ wasn't allocated by the collector, we'll probably die. */
+ entry = lookup_page_table_entry (p);
+ gcc_assert (entry);
+
+ /* Calculate the index of the object on the page; this is its bit
+ position in the in_use_p bitmap. */
+ bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
+ word = bit / HOST_BITS_PER_LONG;
+ mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
+
+ return (entry->in_use_p[word] & mask) != 0;
+}
+
+/* Return the size of the gc-able object P. */
+
+size_t
+ggc_get_size (const void *p)
+{
+ page_entry *pe = lookup_page_table_entry (p);
+ return OBJECT_SIZE (pe->order);
+}
+
+/* Release the memory for object P. */
+
+void
+ggc_free (void *p)
+{
+ page_entry *pe = lookup_page_table_entry (p);
+ size_t order = pe->order;
+ size_t size = OBJECT_SIZE (order);
+
+#ifdef GATHER_STATISTICS
+ ggc_free_overhead (p);
+#endif
+
+ if (GGC_DEBUG_LEVEL >= 3)
+ fprintf (G.debug_file,
+ "Freeing object, actual size=%lu, at %p on %p\n",
+ (unsigned long) size, p, (void *) pe);
+
+#ifdef ENABLE_GC_CHECKING
+ /* Poison the data, to indicate the data is garbage. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
+ memset (p, 0xa5, size);
+#endif
+ /* Let valgrind know the object is free. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
+
+#ifdef ENABLE_GC_ALWAYS_COLLECT
+ /* In the completely-anal-checking mode, we do *not* immediately free
+ the data, but instead verify that the data is *actually* not
+ reachable the next time we collect. */
+ {
+ struct free_object *fo = XNEW (struct free_object);
+ fo->object = p;
+ fo->next = G.free_object_list;
+ G.free_object_list = fo;
+ }
+#else
+ {
+ unsigned int bit_offset, word, bit;
+
+ G.allocated -= size;
+
+ /* Mark the object not-in-use. */
+ bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
+ word = bit_offset / HOST_BITS_PER_LONG;
+ bit = bit_offset % HOST_BITS_PER_LONG;
+ pe->in_use_p[word] &= ~(1UL << bit);
+
+ if (pe->num_free_objects++ == 0)
+ {
+ page_entry *p, *q;
+
+ /* If the page is completely full, then it's supposed to
+ be after all pages that aren't. Since we've freed one
+ object from a page that was full, we need to move the
+ page to the head of the list.
+
+ PE is the node we want to move. Q is the previous node
+ and P is the next node in the list. */
+ q = pe->prev;
+ if (q && q->num_free_objects == 0)
+ {
+ p = pe->next;
+
+ q->next = p;
+
+ /* If PE was at the end of the list, then Q becomes the
+ new end of the list. If PE was not the end of the
+ list, then we need to update the PREV field for P. */
+ if (!p)
+ G.page_tails[order] = q;
+ else
+ p->prev = q;
+
+ /* Move PE to the head of the list. */
+ pe->next = G.pages[order];
+ pe->prev = NULL;
+ G.pages[order]->prev = pe;
+ G.pages[order] = pe;
+ }
+
+ /* Reset the hint bit to point to the only free object. */
+ pe->next_bit_hint = bit_offset;
+ }
+ }
+#endif
+}
+
+/* Subroutine of init_ggc which computes the pair of numbers used to
+ perform division by OBJECT_SIZE (order) and fills in inverse_table[].
+
+ This algorithm is taken from Granlund and Montgomery's paper
+ "Division by Invariant Integers using Multiplication"
+ (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
+ constants). */
+
+static void
+compute_inverse (unsigned order)
+{
+ size_t size, inv;
+ unsigned int e;
+
+ size = OBJECT_SIZE (order);
+ e = 0;
+ while (size % 2 == 0)
+ {
+ e++;
+ size >>= 1;
+ }
+
+ inv = size;
+ while (inv * size != 1)
+ inv = inv * (2 - inv*size);
+
+ DIV_MULT (order) = inv;
+ DIV_SHIFT (order) = e;
+}
+
+/* Initialize the ggc-mmap allocator. */
+void
+init_ggc (void)
+{
+ unsigned order;
+
+ G.pagesize = getpagesize();
+ G.lg_pagesize = exact_log2 (G.pagesize);
+
+#ifdef HAVE_MMAP_DEV_ZERO
+ G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
+ if (G.dev_zero_fd == -1)
+ internal_error ("open /dev/zero: %m");
+#endif
+
+#if 0
+ G.debug_file = fopen ("ggc-mmap.debug", "w");
+#else
+ G.debug_file = stdout;
+#endif
+
+#ifdef USING_MMAP
+ /* StunOS has an amazing off-by-one error for the first mmap allocation
+ after fiddling with RLIMIT_STACK. The result, as hard as it is to
+ believe, is an unaligned page allocation, which would cause us to
+ hork badly if we tried to use it. */
+ {
+ char *p = alloc_anon (NULL, G.pagesize);
+ struct page_entry *e;
+ if ((size_t)p & (G.pagesize - 1))
+ {
+ /* How losing. Discard this one and try another. If we still
+ can't get something useful, give up. */
+
+ p = alloc_anon (NULL, G.pagesize);
+ gcc_assert (!((size_t)p & (G.pagesize - 1)));
+ }
+
+ /* We have a good page, might as well hold onto it... */
+ e = XCNEW (struct page_entry);
+ e->bytes = G.pagesize;
+ e->page = p;
+ e->next = G.free_pages;
+ G.free_pages = e;
+ }
+#endif
+
+ /* Initialize the object size table. */
+ for (order = 0; order < HOST_BITS_PER_PTR; ++order)
+ object_size_table[order] = (size_t) 1 << order;
+ for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
+ {
+ size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
+
+ /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
+ so that we're sure of getting aligned memory. */
+ s = ROUND_UP (s, MAX_ALIGNMENT);
+ object_size_table[order] = s;
+ }
+
+ /* Initialize the objects-per-page and inverse tables. */
+ for (order = 0; order < NUM_ORDERS; ++order)
+ {
+ objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
+ if (objects_per_page_table[order] == 0)
+ objects_per_page_table[order] = 1;
+ compute_inverse (order);
+ }
+
+ /* Reset the size_lookup array to put appropriately sized objects in
+ the special orders. All objects bigger than the previous power
+ of two, but no greater than the special size, should go in the
+ new order. */
+ for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
+ {
+ int o;
+ int i;
+
+ i = OBJECT_SIZE (order);
+ if (i >= NUM_SIZE_LOOKUP)
+ continue;
+
+ for (o = size_lookup[i]; o == size_lookup [i]; --i)
+ size_lookup[i] = order;
+ }
+
+ G.depth_in_use = 0;
+ G.depth_max = 10;
+ G.depth = XNEWVEC (unsigned int, G.depth_max);
+
+ G.by_depth_in_use = 0;
+ G.by_depth_max = INITIAL_PTE_COUNT;
+ G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
+ G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
+}
+
+/* Start a new GGC zone. */
+
+struct alloc_zone *
+new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
+{
+ return NULL;
+}
+
+/* Destroy a GGC zone. */
+void
+destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
+{
+}
+
+/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
+ reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
+
+static void
+ggc_recalculate_in_use_p (page_entry *p)
+{
+ unsigned int i;
+ size_t num_objects;
+
+ /* Because the past-the-end bit in in_use_p is always set, we
+ pretend there is one additional object. */
+ num_objects = OBJECTS_IN_PAGE (p) + 1;
+
+ /* Reset the free object count. */
+ p->num_free_objects = num_objects;
+
+ /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
+ for (i = 0;
+ i < CEIL (BITMAP_SIZE (num_objects),
+ sizeof (*p->in_use_p));
+ ++i)
+ {
+ unsigned long j;
+
+ /* Something is in use if it is marked, or if it was in use in a
+ context further down the context stack. */
+ p->in_use_p[i] |= save_in_use_p (p)[i];
+
+ /* Decrement the free object count for every object allocated. */
+ for (j = p->in_use_p[i]; j; j >>= 1)
+ p->num_free_objects -= (j & 1);
+ }
+
+ gcc_assert (p->num_free_objects < num_objects);
+}
+
+/* Unmark all objects. */
+
+static void
+clear_marks (void)
+{
+ unsigned order;
+
+ for (order = 2; order < NUM_ORDERS; order++)
+ {
+ page_entry *p;
+
+ for (p = G.pages[order]; p != NULL; p = p->next)
+ {
+ size_t num_objects = OBJECTS_IN_PAGE (p);
+ size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
+
+ /* The data should be page-aligned. */
+ gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
+
+ /* Pages that aren't in the topmost context are not collected;
+ nevertheless, we need their in-use bit vectors to store GC
+ marks. So, back them up first. */
+ if (p->context_depth < G.context_depth)
+ {
+ if (! save_in_use_p (p))
+ save_in_use_p (p) = xmalloc (bitmap_size);
+ memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
+ }
+
+ /* Reset reset the number of free objects and clear the
+ in-use bits. These will be adjusted by mark_obj. */
+ p->num_free_objects = num_objects;
+ memset (p->in_use_p, 0, bitmap_size);
+
+ /* Make sure the one-past-the-end bit is always set. */
+ p->in_use_p[num_objects / HOST_BITS_PER_LONG]
+ = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
+ }
+ }
+}
+
+/* Free all empty pages. Partially empty pages need no attention
+ because the `mark' bit doubles as an `unused' bit. */
+
+static void
+sweep_pages (void)
+{
+ unsigned order;
+
+ for (order = 2; order < NUM_ORDERS; order++)
+ {
+ /* The last page-entry to consider, regardless of entries
+ placed at the end of the list. */
+ page_entry * const last = G.page_tails[order];
+
+ size_t num_objects;
+ size_t live_objects;
+ page_entry *p, *previous;
+ int done;
+
+ p = G.pages[order];
+ if (p == NULL)
+ continue;
+
+ previous = NULL;
+ do
+ {
+ page_entry *next = p->next;
+
+ /* Loop until all entries have been examined. */
+ done = (p == last);
+
+ num_objects = OBJECTS_IN_PAGE (p);
+
+ /* Add all live objects on this page to the count of
+ allocated memory. */
+ live_objects = num_objects - p->num_free_objects;
+
+ G.allocated += OBJECT_SIZE (order) * live_objects;
+
+ /* Only objects on pages in the topmost context should get
+ collected. */
+ if (p->context_depth < G.context_depth)
+ ;
+
+ /* Remove the page if it's empty. */
+ else if (live_objects == 0)
+ {
+ /* If P was the first page in the list, then NEXT
+ becomes the new first page in the list, otherwise
+ splice P out of the forward pointers. */
+ if (! previous)
+ G.pages[order] = next;
+ else
+ previous->next = next;
+
+ /* Splice P out of the back pointers too. */
+ if (next)
+ next->prev = previous;
+
+ /* Are we removing the last element? */
+ if (p == G.page_tails[order])
+ G.page_tails[order] = previous;
+ free_page (p);
+ p = previous;
+ }
+
+ /* If the page is full, move it to the end. */
+ else if (p->num_free_objects == 0)
+ {
+ /* Don't move it if it's already at the end. */
+ if (p != G.page_tails[order])
+ {
+ /* Move p to the end of the list. */
+ p->next = NULL;
+ p->prev = G.page_tails[order];
+ G.page_tails[order]->next = p;
+
+ /* Update the tail pointer... */
+ G.page_tails[order] = p;
+
+ /* ... and the head pointer, if necessary. */
+ if (! previous)
+ G.pages[order] = next;
+ else
+ previous->next = next;
+
+ /* And update the backpointer in NEXT if necessary. */
+ if (next)
+ next->prev = previous;
+
+ p = previous;
+ }
+ }
+
+ /* If we've fallen through to here, it's a page in the
+ topmost context that is neither full nor empty. Such a
+ page must precede pages at lesser context depth in the
+ list, so move it to the head. */
+ else if (p != G.pages[order])
+ {
+ previous->next = p->next;
+
+ /* Update the backchain in the next node if it exists. */
+ if (p->next)
+ p->next->prev = previous;
+
+ /* Move P to the head of the list. */
+ p->next = G.pages[order];
+ p->prev = NULL;
+ G.pages[order]->prev = p;
+
+ /* Update the head pointer. */
+ G.pages[order] = p;
+
+ /* Are we moving the last element? */
+ if (G.page_tails[order] == p)
+ G.page_tails[order] = previous;
+ p = previous;
+ }
+
+ previous = p;
+ p = next;
+ }
+ while (! done);
+
+ /* Now, restore the in_use_p vectors for any pages from contexts
+ other than the current one. */
+ for (p = G.pages[order]; p; p = p->next)
+ if (p->context_depth != G.context_depth)
+ ggc_recalculate_in_use_p (p);
+ }
+}
+
+#ifdef ENABLE_GC_CHECKING
+/* Clobber all free objects. */
+
+static void
+poison_pages (void)
+{
+ unsigned order;
+
+ for (order = 2; order < NUM_ORDERS; order++)
+ {
+ size_t size = OBJECT_SIZE (order);
+ page_entry *p;
+
+ for (p = G.pages[order]; p != NULL; p = p->next)
+ {
+ size_t num_objects;
+ size_t i;
+
+ if (p->context_depth != G.context_depth)
+ /* Since we don't do any collection for pages in pushed
+ contexts, there's no need to do any poisoning. And
+ besides, the IN_USE_P array isn't valid until we pop
+ contexts. */
+ continue;
+
+ num_objects = OBJECTS_IN_PAGE (p);
+ for (i = 0; i < num_objects; i++)
+ {
+ size_t word, bit;
+ word = i / HOST_BITS_PER_LONG;
+ bit = i % HOST_BITS_PER_LONG;
+ if (((p->in_use_p[word] >> bit) & 1) == 0)
+ {
+ char *object = p->page + i * size;
+
+ /* Keep poison-by-write when we expect to use Valgrind,
+ so the exact same memory semantics is kept, in case
+ there are memory errors. We override this request
+ below. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
+ memset (object, 0xa5, size);
+
+ /* Drop the handle to avoid handle leak. */
+ VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
+ }
+ }
+ }
+ }
+}
+#else
+#define poison_pages()
+#endif
+
+#ifdef ENABLE_GC_ALWAYS_COLLECT
+/* Validate that the reportedly free objects actually are. */
+
+static void
+validate_free_objects (void)
+{
+ struct free_object *f, *next, *still_free = NULL;
+
+ for (f = G.free_object_list; f ; f = next)
+ {
+ page_entry *pe = lookup_page_table_entry (f->object);
+ size_t bit, word;
+
+ bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
+ word = bit / HOST_BITS_PER_LONG;
+ bit = bit % HOST_BITS_PER_LONG;
+ next = f->next;
+
+ /* Make certain it isn't visible from any root. Notice that we
+ do this check before sweep_pages merges save_in_use_p. */
+ gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
+
+ /* If the object comes from an outer context, then retain the
+ free_object entry, so that we can verify that the address
+ isn't live on the stack in some outer context. */
+ if (pe->context_depth != G.context_depth)
+ {
+ f->next = still_free;
+ still_free = f;
+ }
+ else
+ free (f);
+ }
+
+ G.free_object_list = still_free;
+}
+#else
+#define validate_free_objects()
+#endif
+
+/* Top level mark-and-sweep routine. */
+
+void
+ggc_collect (void)
+{
+ /* Avoid frequent unnecessary work by skipping collection if the
+ total allocations haven't expanded much since the last
+ collection. */
+ float allocated_last_gc =
+ MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
+
+ float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
+
+ if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
+ return;
+
+ timevar_push (TV_GC);
+ if (!quiet_flag)
+ fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
+ if (GGC_DEBUG_LEVEL >= 2)
+ fprintf (G.debug_file, "BEGIN COLLECTING\n");
+
+ /* Zero the total allocated bytes. This will be recalculated in the
+ sweep phase. */
+ G.allocated = 0;
+
+ /* Release the pages we freed the last time we collected, but didn't
+ reuse in the interim. */
+ release_pages ();
+
+ /* Indicate that we've seen collections at this context depth. */
+ G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
+
+ clear_marks ();
+ ggc_mark_roots ();
+#ifdef GATHER_STATISTICS
+ ggc_prune_overhead_list ();
+#endif
+ poison_pages ();
+ validate_free_objects ();
+ sweep_pages ();
+
+ G.allocated_last_gc = G.allocated;
+
+ timevar_pop (TV_GC);
+
+ if (!quiet_flag)
+ fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
+ if (GGC_DEBUG_LEVEL >= 2)
+ fprintf (G.debug_file, "END COLLECTING\n");
+}
+
+/* Print allocation statistics. */
+#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
+ ? (x) \
+ : ((x) < 1024*1024*10 \
+ ? (x) / 1024 \
+ : (x) / (1024*1024))))
+#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
+
+void
+ggc_print_statistics (void)
+{
+ struct ggc_statistics stats;
+ unsigned int i;
+ size_t total_overhead = 0;
+
+ /* Clear the statistics. */
+ memset (&stats, 0, sizeof (stats));
+
+ /* Make sure collection will really occur. */
+ G.allocated_last_gc = 0;
+
+ /* Collect and print the statistics common across collectors. */
+ ggc_print_common_statistics (stderr, &stats);
+
+ /* Release free pages so that we will not count the bytes allocated
+ there as part of the total allocated memory. */
+ release_pages ();
+
+ /* Collect some information about the various sizes of
+ allocation. */
+ fprintf (stderr,
+ "Memory still allocated at the end of the compilation process\n");
+ fprintf (stderr, "%-5s %10s %10s %10s\n",
+ "Size", "Allocated", "Used", "Overhead");
+ for (i = 0; i < NUM_ORDERS; ++i)
+ {
+ page_entry *p;
+ size_t allocated;
+ size_t in_use;
+ size_t overhead;
+
+ /* Skip empty entries. */
+ if (!G.pages[i])
+ continue;
+
+ overhead = allocated = in_use = 0;
+
+ /* Figure out the total number of bytes allocated for objects of
+ this size, and how many of them are actually in use. Also figure
+ out how much memory the page table is using. */
+ for (p = G.pages[i]; p; p = p->next)
+ {
+ allocated += p->bytes;
+ in_use +=
+ (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
+
+ overhead += (sizeof (page_entry) - sizeof (long)
+ + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
+ }
+ fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
+ (unsigned long) OBJECT_SIZE (i),
+ SCALE (allocated), STAT_LABEL (allocated),
+ SCALE (in_use), STAT_LABEL (in_use),
+ SCALE (overhead), STAT_LABEL (overhead));
+ total_overhead += overhead;
+ }
+ fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
+ SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
+ SCALE (G.allocated), STAT_LABEL(G.allocated),
+ SCALE (total_overhead), STAT_LABEL (total_overhead));
+
+#ifdef GATHER_STATISTICS
+ {
+ fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
+
+ fprintf (stderr, "Total Overhead: %10lld\n",
+ G.stats.total_overhead);
+ fprintf (stderr, "Total Allocated: %10lld\n",
+ G.stats.total_allocated);
+
+ fprintf (stderr, "Total Overhead under 32B: %10lld\n",
+ G.stats.total_overhead_under32);
+ fprintf (stderr, "Total Allocated under 32B: %10lld\n",
+ G.stats.total_allocated_under32);
+ fprintf (stderr, "Total Overhead under 64B: %10lld\n",
+ G.stats.total_overhead_under64);
+ fprintf (stderr, "Total Allocated under 64B: %10lld\n",
+ G.stats.total_allocated_under64);
+ fprintf (stderr, "Total Overhead under 128B: %10lld\n",
+ G.stats.total_overhead_under128);
+ fprintf (stderr, "Total Allocated under 128B: %10lld\n",
+ G.stats.total_allocated_under128);
+
+ for (i = 0; i < NUM_ORDERS; i++)
+ if (G.stats.total_allocated_per_order[i])
+ {
+ fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
+ OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
+ fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
+ OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
+ }
+ }
+#endif
+}
+
+struct ggc_pch_data
+{
+ struct ggc_pch_ondisk
+ {
+ unsigned totals[NUM_ORDERS];
+ } d;
+ size_t base[NUM_ORDERS];
+ size_t written[NUM_ORDERS];
+};
+
+struct ggc_pch_data *
+init_ggc_pch (void)
+{
+ return XCNEW (struct ggc_pch_data);
+}
+
+void
+ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
+ size_t size, bool is_string ATTRIBUTE_UNUSED,
+ enum gt_types_enum type ATTRIBUTE_UNUSED)
+{
+ unsigned order;
+
+ if (size < NUM_SIZE_LOOKUP)
+ order = size_lookup[size];
+ else
+ {
+ order = 10;
+ while (size > OBJECT_SIZE (order))
+ order++;
+ }
+
+ d->d.totals[order]++;
+}
+
+size_t
+ggc_pch_total_size (struct ggc_pch_data *d)
+{
+ size_t a = 0;
+ unsigned i;
+
+ for (i = 0; i < NUM_ORDERS; i++)
+ a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
+ return a;
+}
+
+void
+ggc_pch_this_base (struct ggc_pch_data *d, void *base)
+{
+ size_t a = (size_t) base;
+ unsigned i;
+
+ for (i = 0; i < NUM_ORDERS; i++)
+ {
+ d->base[i] = a;
+ a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
+ }
+}
+
+
+char *
+ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
+ size_t size, bool is_string ATTRIBUTE_UNUSED,
+ enum gt_types_enum type ATTRIBUTE_UNUSED)
+{
+ unsigned order;
+ char *result;
+
+ if (size < NUM_SIZE_LOOKUP)
+ order = size_lookup[size];
+ else
+ {
+ order = 10;
+ while (size > OBJECT_SIZE (order))
+ order++;
+ }
+
+ result = (char *) d->base[order];
+ d->base[order] += OBJECT_SIZE (order);
+ return result;
+}
+
+void
+ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
+ FILE *f ATTRIBUTE_UNUSED)
+{
+ /* Nothing to do. */
+}
+
+void
+ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
+ FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
+ size_t size, bool is_string ATTRIBUTE_UNUSED)
+{
+ unsigned order;
+ static const char emptyBytes[256];
+
+ if (size < NUM_SIZE_LOOKUP)
+ order = size_lookup[size];
+ else
+ {
+ order = 10;
+ while (size > OBJECT_SIZE (order))
+ order++;
+ }
+
+ if (fwrite (x, size, 1, f) != 1)
+ fatal_error ("can't write PCH file: %m");
+
+ /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
+ object out to OBJECT_SIZE(order). This happens for strings. */
+
+ if (size != OBJECT_SIZE (order))
+ {
+ unsigned padding = OBJECT_SIZE(order) - size;
+
+ /* To speed small writes, we use a nulled-out array that's larger
+ than most padding requests as the source for our null bytes. This
+ permits us to do the padding with fwrite() rather than fseek(), and
+ limits the chance the OS may try to flush any outstanding writes. */
+ if (padding <= sizeof(emptyBytes))
+ {
+ if (fwrite (emptyBytes, 1, padding, f) != padding)
+ fatal_error ("can't write PCH file");
+ }
+ else
+ {
+ /* Larger than our buffer? Just default to fseek. */
+ if (fseek (f, padding, SEEK_CUR) != 0)
+ fatal_error ("can't write PCH file");
+ }
+ }
+
+ d->written[order]++;
+ if (d->written[order] == d->d.totals[order]
+ && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
+ G.pagesize),
+ SEEK_CUR) != 0)
+ fatal_error ("can't write PCH file: %m");
+}
+
+void
+ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
+{
+ if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
+ fatal_error ("can't write PCH file: %m");
+ free (d);
+}
+
+/* Move the PCH PTE entries just added to the end of by_depth, to the
+ front. */
+
+static void
+move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
+{
+ unsigned i;
+
+ /* First, we swap the new entries to the front of the varrays. */
+ page_entry **new_by_depth;
+ unsigned long **new_save_in_use;
+
+ new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
+ new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
+
+ memcpy (&new_by_depth[0],
+ &G.by_depth[count_old_page_tables],
+ count_new_page_tables * sizeof (void *));
+ memcpy (&new_by_depth[count_new_page_tables],
+ &G.by_depth[0],
+ count_old_page_tables * sizeof (void *));
+ memcpy (&new_save_in_use[0],
+ &G.save_in_use[count_old_page_tables],
+ count_new_page_tables * sizeof (void *));
+ memcpy (&new_save_in_use[count_new_page_tables],
+ &G.save_in_use[0],
+ count_old_page_tables * sizeof (void *));
+
+ free (G.by_depth);
+ free (G.save_in_use);
+
+ G.by_depth = new_by_depth;
+ G.save_in_use = new_save_in_use;
+
+ /* Now update all the index_by_depth fields. */
+ for (i = G.by_depth_in_use; i > 0; --i)
+ {
+ page_entry *p = G.by_depth[i-1];
+ p->index_by_depth = i-1;
+ }
+
+ /* And last, we update the depth pointers in G.depth. The first
+ entry is already 0, and context 0 entries always start at index
+ 0, so there is nothing to update in the first slot. We need a
+ second slot, only if we have old ptes, and if we do, they start
+ at index count_new_page_tables. */
+ if (count_old_page_tables)
+ push_depth (count_new_page_tables);
+}
+
+void
+ggc_pch_read (FILE *f, void *addr)
+{
+ struct ggc_pch_ondisk d;
+ unsigned i;
+ char *offs = addr;
+ unsigned long count_old_page_tables;
+ unsigned long count_new_page_tables;
+
+ count_old_page_tables = G.by_depth_in_use;
+
+ /* We've just read in a PCH file. So, every object that used to be
+ allocated is now free. */
+ clear_marks ();
+#ifdef ENABLE_GC_CHECKING
+ poison_pages ();
+#endif
+
+ /* No object read from a PCH file should ever be freed. So, set the
+ context depth to 1, and set the depth of all the currently-allocated
+ pages to be 1 too. PCH pages will have depth 0. */
+ gcc_assert (!G.context_depth);
+ G.context_depth = 1;
+ for (i = 0; i < NUM_ORDERS; i++)
+ {
+ page_entry *p;
+ for (p = G.pages[i]; p != NULL; p = p->next)
+ p->context_depth = G.context_depth;
+ }
+
+ /* Allocate the appropriate page-table entries for the pages read from
+ the PCH file. */
+ if (fread (&d, sizeof (d), 1, f) != 1)
+ fatal_error ("can't read PCH file: %m");
+
+ for (i = 0; i < NUM_ORDERS; i++)
+ {
+ struct page_entry *entry;
+ char *pte;
+ size_t bytes;
+ size_t num_objs;
+ size_t j;
+
+ if (d.totals[i] == 0)
+ continue;
+
+ bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
+ num_objs = bytes / OBJECT_SIZE (i);
+ entry = xcalloc (1, (sizeof (struct page_entry)
+ - sizeof (long)
+ + BITMAP_SIZE (num_objs + 1)));
+ entry->bytes = bytes;
+ entry->page = offs;
+ entry->context_depth = 0;
+ offs += bytes;
+ entry->num_free_objects = 0;
+ entry->order = i;
+
+ for (j = 0;
+ j + HOST_BITS_PER_LONG <= num_objs + 1;
+ j += HOST_BITS_PER_LONG)
+ entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
+ for (; j < num_objs + 1; j++)
+ entry->in_use_p[j / HOST_BITS_PER_LONG]
+ |= 1L << (j % HOST_BITS_PER_LONG);
+
+ for (pte = entry->page;
+ pte < entry->page + entry->bytes;
+ pte += G.pagesize)
+ set_page_table_entry (pte, entry);
+
+ if (G.page_tails[i] != NULL)
+ G.page_tails[i]->next = entry;
+ else
+ G.pages[i] = entry;
+ G.page_tails[i] = entry;
+
+ /* We start off by just adding all the new information to the
+ end of the varrays, later, we will move the new information
+ to the front of the varrays, as the PCH page tables are at
+ context 0. */
+ push_by_depth (entry, 0);
+ }
+
+ /* Now, we update the various data structures that speed page table
+ handling. */
+ count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
+
+ move_ptes_to_front (count_old_page_tables, count_new_page_tables);
+
+ /* Update the statistics. */
+ G.allocated = G.allocated_last_gc = offs - (char *)addr;
+}