aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/ggc-page.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/ggc-page.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/ggc-page.c2320
1 files changed, 0 insertions, 2320 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/ggc-page.c b/gcc-4.2.1-5666.3/gcc/ggc-page.c
deleted file mode 100644
index 5d880339d..000000000
--- a/gcc-4.2.1-5666.3/gcc/ggc-page.c
+++ /dev/null
@@ -1,2320 +0,0 @@
-/* "Bag-of-pages" garbage collector for the GNU compiler.
- Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
- Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "toplev.h"
-#include "flags.h"
-#include "ggc.h"
-#include "timevar.h"
-#include "params.h"
-#include "tree-flow.h"
-#ifdef ENABLE_VALGRIND_CHECKING
-# ifdef HAVE_VALGRIND_MEMCHECK_H
-# include <valgrind/memcheck.h>
-# elif defined HAVE_MEMCHECK_H
-# include <memcheck.h>
-# else
-# include <valgrind.h>
-# endif
-#else
-/* Avoid #ifdef:s when we can help it. */
-#define VALGRIND_DISCARD(x)
-#endif
-
-/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
- file open. Prefer either to valloc. */
-#ifdef HAVE_MMAP_ANON
-# undef HAVE_MMAP_DEV_ZERO
-
-# include <sys/mman.h>
-# ifndef MAP_FAILED
-# define MAP_FAILED -1
-# endif
-# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
-# define MAP_ANONYMOUS MAP_ANON
-# endif
-# define USING_MMAP
-
-#endif
-
-#ifdef HAVE_MMAP_DEV_ZERO
-
-# include <sys/mman.h>
-# ifndef MAP_FAILED
-# define MAP_FAILED -1
-# endif
-# define USING_MMAP
-
-#endif
-
-#ifndef USING_MMAP
-#define USING_MALLOC_PAGE_GROUPS
-#endif
-
-/* Strategy:
-
- This garbage-collecting allocator allocates objects on one of a set
- of pages. Each page can allocate objects of a single size only;
- available sizes are powers of two starting at four bytes. The size
- of an allocation request is rounded up to the next power of two
- (`order'), and satisfied from the appropriate page.
-
- Each page is recorded in a page-entry, which also maintains an
- in-use bitmap of object positions on the page. This allows the
- allocation state of a particular object to be flipped without
- touching the page itself.
-
- Each page-entry also has a context depth, which is used to track
- pushing and popping of allocation contexts. Only objects allocated
- in the current (highest-numbered) context may be collected.
-
- Page entries are arranged in an array of singly-linked lists. The
- array is indexed by the allocation size, in bits, of the pages on
- it; i.e. all pages on a list allocate objects of the same size.
- Pages are ordered on the list such that all non-full pages precede
- all full pages, with non-full pages arranged in order of decreasing
- context depth.
-
- Empty pages (of all orders) are kept on a single page cache list,
- and are considered first when new pages are required; they are
- deallocated at the start of the next collection if they haven't
- been recycled by then. */
-
-/* Define GGC_DEBUG_LEVEL to print debugging information.
- 0: No debugging output.
- 1: GC statistics only.
- 2: Page-entry allocations/deallocations as well.
- 3: Object allocations as well.
- 4: Object marks as well. */
-#define GGC_DEBUG_LEVEL (0)
-
-#ifndef HOST_BITS_PER_PTR
-#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
-#endif
-
-
-/* A two-level tree is used to look up the page-entry for a given
- pointer. Two chunks of the pointer's bits are extracted to index
- the first and second levels of the tree, as follows:
-
- HOST_PAGE_SIZE_BITS
- 32 | |
- msb +----------------+----+------+------+ lsb
- | | |
- PAGE_L1_BITS |
- | |
- PAGE_L2_BITS
-
- The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
- pages are aligned on system page boundaries. The next most
- significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
- index values in the lookup table, respectively.
-
- For 32-bit architectures and the settings below, there are no
- leftover bits. For architectures with wider pointers, the lookup
- tree points to a list of pages, which must be scanned to find the
- correct one. */
-
-#define PAGE_L1_BITS (8)
-#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
-#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
-#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
-
-#define LOOKUP_L1(p) \
- (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
-
-#define LOOKUP_L2(p) \
- (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
-
-/* The number of objects per allocation page, for objects on a page of
- the indicated ORDER. */
-#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
-
-/* The number of objects in P. */
-#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
-
-/* The size of an object on a page of the indicated ORDER. */
-#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
-
-/* For speed, we avoid doing a general integer divide to locate the
- offset in the allocation bitmap, by precalculating numbers M, S
- such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
- within the page which is evenly divisible by the object size Z. */
-#define DIV_MULT(ORDER) inverse_table[ORDER].mult
-#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
-#define OFFSET_TO_BIT(OFFSET, ORDER) \
- (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
-
-/* The number of extra orders, not corresponding to power-of-two sized
- objects. */
-
-#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
-
-#define RTL_SIZE(NSLOTS) \
- (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
-
-#define TREE_EXP_SIZE(OPS) \
- (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
-
-/* The Ith entry is the maximum size of an object to be stored in the
- Ith extra order. Adding a new entry to this array is the *only*
- thing you need to do to add a new special allocation size. */
-
-static const size_t extra_order_size_table[] = {
- sizeof (struct stmt_ann_d),
- sizeof (struct var_ann_d),
- sizeof (struct tree_decl_non_common),
- sizeof (struct tree_field_decl),
- sizeof (struct tree_parm_decl),
- sizeof (struct tree_var_decl),
- sizeof (struct tree_list),
- sizeof (struct tree_ssa_name),
- sizeof (struct function),
- sizeof (struct basic_block_def),
- sizeof (bitmap_element),
- /* PHI nodes with one to three arguments are already covered by the
- above sizes. */
- sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
- TREE_EXP_SIZE (2),
- RTL_SIZE (2), /* MEM, PLUS, etc. */
- RTL_SIZE (9), /* INSN */
-};
-
-/* The total number of orders. */
-
-#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
-
-/* We use this structure to determine the alignment required for
- allocations. For power-of-two sized allocations, that's not a
- problem, but it does matter for odd-sized allocations. */
-
-struct max_alignment {
- char c;
- union {
- HOST_WIDEST_INT i;
- long double d;
- } u;
-};
-
-/* The biggest alignment required. */
-
-#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
-
-/* Compute the smallest nonnegative number which when added to X gives
- a multiple of F. */
-
-#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
-
-/* Compute the smallest multiple of F that is >= X. */
-
-#define ROUND_UP(x, f) (CEIL (x, f) * (f))
-
-/* The Ith entry is the number of objects on a page or order I. */
-
-static unsigned objects_per_page_table[NUM_ORDERS];
-
-/* The Ith entry is the size of an object on a page of order I. */
-
-static size_t object_size_table[NUM_ORDERS];
-
-/* The Ith entry is a pair of numbers (mult, shift) such that
- ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
- for all k evenly divisible by OBJECT_SIZE(I). */
-
-static struct
-{
- size_t mult;
- unsigned int shift;
-}
-inverse_table[NUM_ORDERS];
-
-/* A page_entry records the status of an allocation page. This
- structure is dynamically sized to fit the bitmap in_use_p. */
-typedef struct page_entry
-{
- /* The next page-entry with objects of the same size, or NULL if
- this is the last page-entry. */
- struct page_entry *next;
-
- /* The previous page-entry with objects of the same size, or NULL if
- this is the first page-entry. The PREV pointer exists solely to
- keep the cost of ggc_free manageable. */
- struct page_entry *prev;
-
- /* The number of bytes allocated. (This will always be a multiple
- of the host system page size.) */
- size_t bytes;
-
- /* The address at which the memory is allocated. */
- char *page;
-
-#ifdef USING_MALLOC_PAGE_GROUPS
- /* Back pointer to the page group this page came from. */
- struct page_group *group;
-#endif
-
- /* This is the index in the by_depth varray where this page table
- can be found. */
- unsigned long index_by_depth;
-
- /* Context depth of this page. */
- unsigned short context_depth;
-
- /* The number of free objects remaining on this page. */
- unsigned short num_free_objects;
-
- /* A likely candidate for the bit position of a free object for the
- next allocation from this page. */
- unsigned short next_bit_hint;
-
- /* The lg of size of objects allocated from this page. */
- unsigned char order;
-
- /* A bit vector indicating whether or not objects are in use. The
- Nth bit is one if the Nth object on this page is allocated. This
- array is dynamically sized. */
- unsigned long in_use_p[1];
-} page_entry;
-
-#ifdef USING_MALLOC_PAGE_GROUPS
-/* A page_group describes a large allocation from malloc, from which
- we parcel out aligned pages. */
-typedef struct page_group
-{
- /* A linked list of all extant page groups. */
- struct page_group *next;
-
- /* The address we received from malloc. */
- char *allocation;
-
- /* The size of the block. */
- size_t alloc_size;
-
- /* A bitmask of pages in use. */
- unsigned int in_use;
-} page_group;
-#endif
-
-#if HOST_BITS_PER_PTR <= 32
-
-/* On 32-bit hosts, we use a two level page table, as pictured above. */
-typedef page_entry **page_table[PAGE_L1_SIZE];
-
-#else
-
-/* On 64-bit hosts, we use the same two level page tables plus a linked
- list that disambiguates the top 32-bits. There will almost always be
- exactly one entry in the list. */
-typedef struct page_table_chain
-{
- struct page_table_chain *next;
- size_t high_bits;
- page_entry **table[PAGE_L1_SIZE];
-} *page_table;
-
-#endif
-
-/* The rest of the global variables. */
-static struct globals
-{
- /* The Nth element in this array is a page with objects of size 2^N.
- If there are any pages with free objects, they will be at the
- head of the list. NULL if there are no page-entries for this
- object size. */
- page_entry *pages[NUM_ORDERS];
-
- /* The Nth element in this array is the last page with objects of
- size 2^N. NULL if there are no page-entries for this object
- size. */
- page_entry *page_tails[NUM_ORDERS];
-
- /* Lookup table for associating allocation pages with object addresses. */
- page_table lookup;
-
- /* The system's page size. */
- size_t pagesize;
- size_t lg_pagesize;
-
- /* Bytes currently allocated. */
- size_t allocated;
-
- /* Bytes currently allocated at the end of the last collection. */
- size_t allocated_last_gc;
-
- /* Total amount of memory mapped. */
- size_t bytes_mapped;
-
- /* Bit N set if any allocations have been done at context depth N. */
- unsigned long context_depth_allocations;
-
- /* Bit N set if any collections have been done at context depth N. */
- unsigned long context_depth_collections;
-
- /* The current depth in the context stack. */
- unsigned short context_depth;
-
- /* A file descriptor open to /dev/zero for reading. */
-#if defined (HAVE_MMAP_DEV_ZERO)
- int dev_zero_fd;
-#endif
-
- /* A cache of free system pages. */
- page_entry *free_pages;
-
-#ifdef USING_MALLOC_PAGE_GROUPS
- page_group *page_groups;
-#endif
-
- /* The file descriptor for debugging output. */
- FILE *debug_file;
-
- /* Current number of elements in use in depth below. */
- unsigned int depth_in_use;
-
- /* Maximum number of elements that can be used before resizing. */
- unsigned int depth_max;
-
- /* Each element of this arry is an index in by_depth where the given
- depth starts. This structure is indexed by that given depth we
- are interested in. */
- unsigned int *depth;
-
- /* Current number of elements in use in by_depth below. */
- unsigned int by_depth_in_use;
-
- /* Maximum number of elements that can be used before resizing. */
- unsigned int by_depth_max;
-
- /* Each element of this array is a pointer to a page_entry, all
- page_entries can be found in here by increasing depth.
- index_by_depth in the page_entry is the index into this data
- structure where that page_entry can be found. This is used to
- speed up finding all page_entries at a particular depth. */
- page_entry **by_depth;
-
- /* Each element is a pointer to the saved in_use_p bits, if any,
- zero otherwise. We allocate them all together, to enable a
- better runtime data access pattern. */
- unsigned long **save_in_use;
-
-#ifdef ENABLE_GC_ALWAYS_COLLECT
- /* List of free objects to be verified as actually free on the
- next collection. */
- struct free_object
- {
- void *object;
- struct free_object *next;
- } *free_object_list;
-#endif
-
-#ifdef GATHER_STATISTICS
- struct
- {
- /* Total memory allocated with ggc_alloc. */
- unsigned long long total_allocated;
- /* Total overhead for memory to be allocated with ggc_alloc. */
- unsigned long long total_overhead;
-
- /* Total allocations and overhead for sizes less than 32, 64 and 128.
- These sizes are interesting because they are typical cache line
- sizes. */
-
- unsigned long long total_allocated_under32;
- unsigned long long total_overhead_under32;
-
- unsigned long long total_allocated_under64;
- unsigned long long total_overhead_under64;
-
- unsigned long long total_allocated_under128;
- unsigned long long total_overhead_under128;
-
- /* The allocations for each of the allocation orders. */
- unsigned long long total_allocated_per_order[NUM_ORDERS];
-
- /* The overhead for each of the allocation orders. */
- unsigned long long total_overhead_per_order[NUM_ORDERS];
- } stats;
-#endif
-} G;
-
-/* The size in bytes required to maintain a bitmap for the objects
- on a page-entry. */
-#define BITMAP_SIZE(Num_objects) \
- (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
-
-/* Allocate pages in chunks of this size, to throttle calls to memory
- allocation routines. The first page is used, the rest go onto the
- free list. This cannot be larger than HOST_BITS_PER_INT for the
- in_use bitmask for page_group. Hosts that need a different value
- can override this by defining GGC_QUIRE_SIZE explicitly. */
-#ifndef GGC_QUIRE_SIZE
-# ifdef USING_MMAP
-# define GGC_QUIRE_SIZE 256
-# else
-# define GGC_QUIRE_SIZE 16
-# endif
-#endif
-
-/* Initial guess as to how many page table entries we might need. */
-#define INITIAL_PTE_COUNT 128
-
-static int ggc_allocated_p (const void *);
-static page_entry *lookup_page_table_entry (const void *);
-static void set_page_table_entry (void *, page_entry *);
-#ifdef USING_MMAP
-static char *alloc_anon (char *, size_t);
-#endif
-#ifdef USING_MALLOC_PAGE_GROUPS
-static size_t page_group_index (char *, char *);
-static void set_page_group_in_use (page_group *, char *);
-static void clear_page_group_in_use (page_group *, char *);
-#endif
-static struct page_entry * alloc_page (unsigned);
-static void free_page (struct page_entry *);
-static void release_pages (void);
-static void clear_marks (void);
-static void sweep_pages (void);
-static void ggc_recalculate_in_use_p (page_entry *);
-static void compute_inverse (unsigned);
-static inline void adjust_depth (void);
-static void move_ptes_to_front (int, int);
-
-void debug_print_page_list (int);
-static void push_depth (unsigned int);
-static void push_by_depth (page_entry *, unsigned long *);
-
-/* Push an entry onto G.depth. */
-
-inline static void
-push_depth (unsigned int i)
-{
- if (G.depth_in_use >= G.depth_max)
- {
- G.depth_max *= 2;
- G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
- }
- G.depth[G.depth_in_use++] = i;
-}
-
-/* Push an entry onto G.by_depth and G.save_in_use. */
-
-inline static void
-push_by_depth (page_entry *p, unsigned long *s)
-{
- if (G.by_depth_in_use >= G.by_depth_max)
- {
- G.by_depth_max *= 2;
- G.by_depth = xrealloc (G.by_depth,
- G.by_depth_max * sizeof (page_entry *));
- G.save_in_use = xrealloc (G.save_in_use,
- G.by_depth_max * sizeof (unsigned long *));
- }
- G.by_depth[G.by_depth_in_use] = p;
- G.save_in_use[G.by_depth_in_use++] = s;
-}
-
-#if (GCC_VERSION < 3001)
-#define prefetch(X) ((void) X)
-#else
-#define prefetch(X) __builtin_prefetch (X)
-#endif
-
-#define save_in_use_p_i(__i) \
- (G.save_in_use[__i])
-#define save_in_use_p(__p) \
- (save_in_use_p_i (__p->index_by_depth))
-
-/* Returns nonzero if P was allocated in GC'able memory. */
-
-static inline int
-ggc_allocated_p (const void *p)
-{
- page_entry ***base;
- size_t L1, L2;
-
-#if HOST_BITS_PER_PTR <= 32
- base = &G.lookup[0];
-#else
- page_table table = G.lookup;
- size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
- while (1)
- {
- if (table == NULL)
- return 0;
- if (table->high_bits == high_bits)
- break;
- table = table->next;
- }
- base = &table->table[0];
-#endif
-
- /* Extract the level 1 and 2 indices. */
- L1 = LOOKUP_L1 (p);
- L2 = LOOKUP_L2 (p);
-
- return base[L1] && base[L1][L2];
-}
-
-/* Traverse the page table and find the entry for a page.
- Die (probably) if the object wasn't allocated via GC. */
-
-static inline page_entry *
-lookup_page_table_entry (const void *p)
-{
- page_entry ***base;
- size_t L1, L2;
-
-#if HOST_BITS_PER_PTR <= 32
- base = &G.lookup[0];
-#else
- page_table table = G.lookup;
- size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
- while (table->high_bits != high_bits)
- table = table->next;
- base = &table->table[0];
-#endif
-
- /* Extract the level 1 and 2 indices. */
- L1 = LOOKUP_L1 (p);
- L2 = LOOKUP_L2 (p);
-
- return base[L1][L2];
-}
-
-/* Set the page table entry for a page. */
-
-static void
-set_page_table_entry (void *p, page_entry *entry)
-{
- page_entry ***base;
- size_t L1, L2;
-
-#if HOST_BITS_PER_PTR <= 32
- base = &G.lookup[0];
-#else
- page_table table;
- size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
- for (table = G.lookup; table; table = table->next)
- if (table->high_bits == high_bits)
- goto found;
-
- /* Not found -- allocate a new table. */
- table = xcalloc (1, sizeof(*table));
- table->next = G.lookup;
- table->high_bits = high_bits;
- G.lookup = table;
-found:
- base = &table->table[0];
-#endif
-
- /* Extract the level 1 and 2 indices. */
- L1 = LOOKUP_L1 (p);
- L2 = LOOKUP_L2 (p);
-
- if (base[L1] == NULL)
- base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
-
- base[L1][L2] = entry;
-}
-
-/* Prints the page-entry for object size ORDER, for debugging. */
-
-void
-debug_print_page_list (int order)
-{
- page_entry *p;
- printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
- (void *) G.page_tails[order]);
- p = G.pages[order];
- while (p != NULL)
- {
- printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
- p->num_free_objects);
- p = p->next;
- }
- printf ("NULL\n");
- fflush (stdout);
-}
-
-#ifdef USING_MMAP
-/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
- (if non-null). The ifdef structure here is intended to cause a
- compile error unless exactly one of the HAVE_* is defined. */
-
-static inline char *
-alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
-{
-#ifdef HAVE_MMAP_ANON
- char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
- MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
-#endif
-#ifdef HAVE_MMAP_DEV_ZERO
- char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
- MAP_PRIVATE, G.dev_zero_fd, 0);
-#endif
-
- if (page == (char *) MAP_FAILED)
- {
- perror ("virtual memory exhausted");
- exit (FATAL_EXIT_CODE);
- }
-
- /* Remember that we allocated this memory. */
- G.bytes_mapped += size;
-
- /* Pretend we don't have access to the allocated pages. We'll enable
- access to smaller pieces of the area in ggc_alloc. Discard the
- handle to avoid handle leak. */
- VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
-
- return page;
-}
-#endif
-#ifdef USING_MALLOC_PAGE_GROUPS
-/* Compute the index for this page into the page group. */
-
-static inline size_t
-page_group_index (char *allocation, char *page)
-{
- return (size_t) (page - allocation) >> G.lg_pagesize;
-}
-
-/* Set and clear the in_use bit for this page in the page group. */
-
-static inline void
-set_page_group_in_use (page_group *group, char *page)
-{
- group->in_use |= 1 << page_group_index (group->allocation, page);
-}
-
-static inline void
-clear_page_group_in_use (page_group *group, char *page)
-{
- group->in_use &= ~(1 << page_group_index (group->allocation, page));
-}
-#endif
-
-/* Allocate a new page for allocating objects of size 2^ORDER,
- and return an entry for it. The entry is not added to the
- appropriate page_table list. */
-
-static inline struct page_entry *
-alloc_page (unsigned order)
-{
- struct page_entry *entry, *p, **pp;
- char *page;
- size_t num_objects;
- size_t bitmap_size;
- size_t page_entry_size;
- size_t entry_size;
-#ifdef USING_MALLOC_PAGE_GROUPS
- page_group *group;
-#endif
-
- num_objects = OBJECTS_PER_PAGE (order);
- bitmap_size = BITMAP_SIZE (num_objects + 1);
- page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
- entry_size = num_objects * OBJECT_SIZE (order);
- if (entry_size < G.pagesize)
- entry_size = G.pagesize;
-
- entry = NULL;
- page = NULL;
-
- /* Check the list of free pages for one we can use. */
- for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
- if (p->bytes == entry_size)
- break;
-
- if (p != NULL)
- {
- /* Recycle the allocated memory from this page ... */
- *pp = p->next;
- page = p->page;
-
-#ifdef USING_MALLOC_PAGE_GROUPS
- group = p->group;
-#endif
-
- /* ... and, if possible, the page entry itself. */
- if (p->order == order)
- {
- entry = p;
- memset (entry, 0, page_entry_size);
- }
- else
- free (p);
- }
-#ifdef USING_MMAP
- else if (entry_size == G.pagesize)
- {
- /* We want just one page. Allocate a bunch of them and put the
- extras on the freelist. (Can only do this optimization with
- mmap for backing store.) */
- struct page_entry *e, *f = G.free_pages;
- int i;
-
- page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
-
- /* This loop counts down so that the chain will be in ascending
- memory order. */
- for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
- {
- e = xcalloc (1, page_entry_size);
- e->order = order;
- e->bytes = G.pagesize;
- e->page = page + (i << G.lg_pagesize);
- e->next = f;
- f = e;
- }
-
- G.free_pages = f;
- }
- else
- page = alloc_anon (NULL, entry_size);
-#endif
-#ifdef USING_MALLOC_PAGE_GROUPS
- else
- {
- /* Allocate a large block of memory and serve out the aligned
- pages therein. This results in much less memory wastage
- than the traditional implementation of valloc. */
-
- char *allocation, *a, *enda;
- size_t alloc_size, head_slop, tail_slop;
- int multiple_pages = (entry_size == G.pagesize);
-
- if (multiple_pages)
- alloc_size = GGC_QUIRE_SIZE * G.pagesize;
- else
- alloc_size = entry_size + G.pagesize - 1;
- allocation = xmalloc (alloc_size);
-
- page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
- head_slop = page - allocation;
- if (multiple_pages)
- tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
- else
- tail_slop = alloc_size - entry_size - head_slop;
- enda = allocation + alloc_size - tail_slop;
-
- /* We allocated N pages, which are likely not aligned, leaving
- us with N-1 usable pages. We plan to place the page_group
- structure somewhere in the slop. */
- if (head_slop >= sizeof (page_group))
- group = (page_group *)page - 1;
- else
- {
- /* We magically got an aligned allocation. Too bad, we have
- to waste a page anyway. */
- if (tail_slop == 0)
- {
- enda -= G.pagesize;
- tail_slop += G.pagesize;
- }
- gcc_assert (tail_slop >= sizeof (page_group));
- group = (page_group *)enda;
- tail_slop -= sizeof (page_group);
- }
-
- /* Remember that we allocated this memory. */
- group->next = G.page_groups;
- group->allocation = allocation;
- group->alloc_size = alloc_size;
- group->in_use = 0;
- G.page_groups = group;
- G.bytes_mapped += alloc_size;
-
- /* If we allocated multiple pages, put the rest on the free list. */
- if (multiple_pages)
- {
- struct page_entry *e, *f = G.free_pages;
- for (a = enda - G.pagesize; a != page; a -= G.pagesize)
- {
- e = xcalloc (1, page_entry_size);
- e->order = order;
- e->bytes = G.pagesize;
- e->page = a;
- e->group = group;
- e->next = f;
- f = e;
- }
- G.free_pages = f;
- }
- }
-#endif
-
- if (entry == NULL)
- entry = xcalloc (1, page_entry_size);
-
- entry->bytes = entry_size;
- entry->page = page;
- entry->context_depth = G.context_depth;
- entry->order = order;
- entry->num_free_objects = num_objects;
- entry->next_bit_hint = 1;
-
- G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
-
-#ifdef USING_MALLOC_PAGE_GROUPS
- entry->group = group;
- set_page_group_in_use (group, page);
-#endif
-
- /* Set the one-past-the-end in-use bit. This acts as a sentry as we
- increment the hint. */
- entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
- = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
-
- set_page_table_entry (page, entry);
-
- if (GGC_DEBUG_LEVEL >= 2)
- fprintf (G.debug_file,
- "Allocating page at %p, object size=%lu, data %p-%p\n",
- (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
- page + entry_size - 1);
-
- return entry;
-}
-
-/* Adjust the size of G.depth so that no index greater than the one
- used by the top of the G.by_depth is used. */
-
-static inline void
-adjust_depth (void)
-{
- page_entry *top;
-
- if (G.by_depth_in_use)
- {
- top = G.by_depth[G.by_depth_in_use-1];
-
- /* Peel back indices in depth that index into by_depth, so that
- as new elements are added to by_depth, we note the indices
- of those elements, if they are for new context depths. */
- while (G.depth_in_use > (size_t)top->context_depth+1)
- --G.depth_in_use;
- }
-}
-
-/* For a page that is no longer needed, put it on the free page list. */
-
-static void
-free_page (page_entry *entry)
-{
- if (GGC_DEBUG_LEVEL >= 2)
- fprintf (G.debug_file,
- "Deallocating page at %p, data %p-%p\n", (void *) entry,
- entry->page, entry->page + entry->bytes - 1);
-
- /* Mark the page as inaccessible. Discard the handle to avoid handle
- leak. */
- VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
-
- set_page_table_entry (entry->page, NULL);
-
-#ifdef USING_MALLOC_PAGE_GROUPS
- clear_page_group_in_use (entry->group, entry->page);
-#endif
-
- if (G.by_depth_in_use > 1)
- {
- page_entry *top = G.by_depth[G.by_depth_in_use-1];
- int i = entry->index_by_depth;
-
- /* We cannot free a page from a context deeper than the current
- one. */
- gcc_assert (entry->context_depth == top->context_depth);
-
- /* Put top element into freed slot. */
- G.by_depth[i] = top;
- G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
- top->index_by_depth = i;
- }
- --G.by_depth_in_use;
-
- adjust_depth ();
-
- entry->next = G.free_pages;
- G.free_pages = entry;
-}
-
-/* Release the free page cache to the system. */
-
-static void
-release_pages (void)
-{
-#ifdef USING_MMAP
- page_entry *p, *next;
- char *start;
- size_t len;
-
- /* Gather up adjacent pages so they are unmapped together. */
- p = G.free_pages;
-
- while (p)
- {
- start = p->page;
- next = p->next;
- len = p->bytes;
- free (p);
- p = next;
-
- while (p && p->page == start + len)
- {
- next = p->next;
- len += p->bytes;
- free (p);
- p = next;
- }
-
- munmap (start, len);
- G.bytes_mapped -= len;
- }
-
- G.free_pages = NULL;
-#endif
-#ifdef USING_MALLOC_PAGE_GROUPS
- page_entry **pp, *p;
- page_group **gp, *g;
-
- /* Remove all pages from free page groups from the list. */
- pp = &G.free_pages;
- while ((p = *pp) != NULL)
- if (p->group->in_use == 0)
- {
- *pp = p->next;
- free (p);
- }
- else
- pp = &p->next;
-
- /* Remove all free page groups, and release the storage. */
- gp = &G.page_groups;
- while ((g = *gp) != NULL)
- if (g->in_use == 0)
- {
- *gp = g->next;
- G.bytes_mapped -= g->alloc_size;
- free (g->allocation);
- }
- else
- gp = &g->next;
-#endif
-}
-
-/* This table provides a fast way to determine ceil(log_2(size)) for
- allocation requests. The minimum allocation size is eight bytes. */
-#define NUM_SIZE_LOOKUP 512
-static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
-{
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
- 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
- 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
-};
-
-/* Typed allocation function. Does nothing special in this collector. */
-
-void *
-ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
- MEM_STAT_DECL)
-{
- return ggc_alloc_stat (size PASS_MEM_STAT);
-}
-
-/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
-
-void *
-ggc_alloc_stat (size_t size MEM_STAT_DECL)
-{
- size_t order, word, bit, object_offset, object_size;
- struct page_entry *entry;
- void *result;
-
- if (size < NUM_SIZE_LOOKUP)
- {
- order = size_lookup[size];
- object_size = OBJECT_SIZE (order);
- }
- else
- {
- order = 10;
- while (size > (object_size = OBJECT_SIZE (order)))
- order++;
- }
-
- /* If there are non-full pages for this size allocation, they are at
- the head of the list. */
- entry = G.pages[order];
-
- /* If there is no page for this object size, or all pages in this
- context are full, allocate a new page. */
- if (entry == NULL || entry->num_free_objects == 0)
- {
- struct page_entry *new_entry;
- new_entry = alloc_page (order);
-
- new_entry->index_by_depth = G.by_depth_in_use;
- push_by_depth (new_entry, 0);
-
- /* We can skip context depths, if we do, make sure we go all the
- way to the new depth. */
- while (new_entry->context_depth >= G.depth_in_use)
- push_depth (G.by_depth_in_use-1);
-
- /* If this is the only entry, it's also the tail. If it is not
- the only entry, then we must update the PREV pointer of the
- ENTRY (G.pages[order]) to point to our new page entry. */
- if (entry == NULL)
- G.page_tails[order] = new_entry;
- else
- entry->prev = new_entry;
-
- /* Put new pages at the head of the page list. By definition the
- entry at the head of the list always has a NULL pointer. */
- new_entry->next = entry;
- new_entry->prev = NULL;
- entry = new_entry;
- G.pages[order] = new_entry;
-
- /* For a new page, we know the word and bit positions (in the
- in_use bitmap) of the first available object -- they're zero. */
- new_entry->next_bit_hint = 1;
- word = 0;
- bit = 0;
- object_offset = 0;
- }
- else
- {
- /* First try to use the hint left from the previous allocation
- to locate a clear bit in the in-use bitmap. We've made sure
- that the one-past-the-end bit is always set, so if the hint
- has run over, this test will fail. */
- unsigned hint = entry->next_bit_hint;
- word = hint / HOST_BITS_PER_LONG;
- bit = hint % HOST_BITS_PER_LONG;
-
- /* If the hint didn't work, scan the bitmap from the beginning. */
- if ((entry->in_use_p[word] >> bit) & 1)
- {
- word = bit = 0;
- while (~entry->in_use_p[word] == 0)
- ++word;
-
-#if GCC_VERSION >= 3004
- bit = __builtin_ctzl (~entry->in_use_p[word]);
-#else
- while ((entry->in_use_p[word] >> bit) & 1)
- ++bit;
-#endif
-
- hint = word * HOST_BITS_PER_LONG + bit;
- }
-
- /* Next time, try the next bit. */
- entry->next_bit_hint = hint + 1;
-
- object_offset = hint * object_size;
- }
-
- /* Set the in-use bit. */
- entry->in_use_p[word] |= ((unsigned long) 1 << bit);
-
- /* Keep a running total of the number of free objects. If this page
- fills up, we may have to move it to the end of the list if the
- next page isn't full. If the next page is full, all subsequent
- pages are full, so there's no need to move it. */
- if (--entry->num_free_objects == 0
- && entry->next != NULL
- && entry->next->num_free_objects > 0)
- {
- /* We have a new head for the list. */
- G.pages[order] = entry->next;
-
- /* We are moving ENTRY to the end of the page table list.
- The new page at the head of the list will have NULL in
- its PREV field and ENTRY will have NULL in its NEXT field. */
- entry->next->prev = NULL;
- entry->next = NULL;
-
- /* Append ENTRY to the tail of the list. */
- entry->prev = G.page_tails[order];
- G.page_tails[order]->next = entry;
- G.page_tails[order] = entry;
- }
-
- /* Calculate the object's address. */
- result = entry->page + object_offset;
-#ifdef GATHER_STATISTICS
- ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
- result PASS_MEM_STAT);
-#endif
-
-#ifdef ENABLE_GC_CHECKING
- /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
- exact same semantics in presence of memory bugs, regardless of
- ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
- handle to avoid handle leak. */
- VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
-
- /* `Poison' the entire allocated object, including any padding at
- the end. */
- memset (result, 0xaf, object_size);
-
- /* Make the bytes after the end of the object unaccessible. Discard the
- handle to avoid handle leak. */
- VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
- object_size - size));
-#endif
-
- /* Tell Valgrind that the memory is there, but its content isn't
- defined. The bytes at the end of the object are still marked
- unaccessible. */
- VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
-
- /* Keep track of how many bytes are being allocated. This
- information is used in deciding when to collect. */
- G.allocated += object_size;
-
- /* For timevar statistics. */
- timevar_ggc_mem_total += object_size;
-
-#ifdef GATHER_STATISTICS
- {
- size_t overhead = object_size - size;
-
- G.stats.total_overhead += overhead;
- G.stats.total_allocated += object_size;
- G.stats.total_overhead_per_order[order] += overhead;
- G.stats.total_allocated_per_order[order] += object_size;
-
- if (size <= 32)
- {
- G.stats.total_overhead_under32 += overhead;
- G.stats.total_allocated_under32 += object_size;
- }
- if (size <= 64)
- {
- G.stats.total_overhead_under64 += overhead;
- G.stats.total_allocated_under64 += object_size;
- }
- if (size <= 128)
- {
- G.stats.total_overhead_under128 += overhead;
- G.stats.total_allocated_under128 += object_size;
- }
- }
-#endif
-
- if (GGC_DEBUG_LEVEL >= 3)
- fprintf (G.debug_file,
- "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
- (unsigned long) size, (unsigned long) object_size, result,
- (void *) entry);
-
- return result;
-}
-
-/* If P is not marked, marks it and return false. Otherwise return true.
- P must have been allocated by the GC allocator; it mustn't point to
- static objects, stack variables, or memory allocated with malloc. */
-
-int
-ggc_set_mark (const void *p)
-{
- page_entry *entry;
- unsigned bit, word;
- unsigned long mask;
-
- /* Look up the page on which the object is alloced. If the object
- wasn't allocated by the collector, we'll probably die. */
- entry = lookup_page_table_entry (p);
- gcc_assert (entry);
-
- /* Calculate the index of the object on the page; this is its bit
- position in the in_use_p bitmap. */
- bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
- word = bit / HOST_BITS_PER_LONG;
- mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
-
- /* If the bit was previously set, skip it. */
- if (entry->in_use_p[word] & mask)
- return 1;
-
- /* Otherwise set it, and decrement the free object count. */
- entry->in_use_p[word] |= mask;
- entry->num_free_objects -= 1;
-
- if (GGC_DEBUG_LEVEL >= 4)
- fprintf (G.debug_file, "Marking %p\n", p);
-
- return 0;
-}
-
-/* Return 1 if P has been marked, zero otherwise.
- P must have been allocated by the GC allocator; it mustn't point to
- static objects, stack variables, or memory allocated with malloc. */
-
-int
-ggc_marked_p (const void *p)
-{
- page_entry *entry;
- unsigned bit, word;
- unsigned long mask;
-
- /* Look up the page on which the object is alloced. If the object
- wasn't allocated by the collector, we'll probably die. */
- entry = lookup_page_table_entry (p);
- gcc_assert (entry);
-
- /* Calculate the index of the object on the page; this is its bit
- position in the in_use_p bitmap. */
- bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
- word = bit / HOST_BITS_PER_LONG;
- mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
-
- return (entry->in_use_p[word] & mask) != 0;
-}
-
-/* Return the size of the gc-able object P. */
-
-size_t
-ggc_get_size (const void *p)
-{
- page_entry *pe = lookup_page_table_entry (p);
- return OBJECT_SIZE (pe->order);
-}
-
-/* Release the memory for object P. */
-
-void
-ggc_free (void *p)
-{
- page_entry *pe = lookup_page_table_entry (p);
- size_t order = pe->order;
- size_t size = OBJECT_SIZE (order);
-
-#ifdef GATHER_STATISTICS
- ggc_free_overhead (p);
-#endif
-
- if (GGC_DEBUG_LEVEL >= 3)
- fprintf (G.debug_file,
- "Freeing object, actual size=%lu, at %p on %p\n",
- (unsigned long) size, p, (void *) pe);
-
-#ifdef ENABLE_GC_CHECKING
- /* Poison the data, to indicate the data is garbage. */
- VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
- memset (p, 0xa5, size);
-#endif
- /* Let valgrind know the object is free. */
- VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
-
-#ifdef ENABLE_GC_ALWAYS_COLLECT
- /* In the completely-anal-checking mode, we do *not* immediately free
- the data, but instead verify that the data is *actually* not
- reachable the next time we collect. */
- {
- struct free_object *fo = XNEW (struct free_object);
- fo->object = p;
- fo->next = G.free_object_list;
- G.free_object_list = fo;
- }
-#else
- {
- unsigned int bit_offset, word, bit;
-
- G.allocated -= size;
-
- /* Mark the object not-in-use. */
- bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
- word = bit_offset / HOST_BITS_PER_LONG;
- bit = bit_offset % HOST_BITS_PER_LONG;
- pe->in_use_p[word] &= ~(1UL << bit);
-
- if (pe->num_free_objects++ == 0)
- {
- page_entry *p, *q;
-
- /* If the page is completely full, then it's supposed to
- be after all pages that aren't. Since we've freed one
- object from a page that was full, we need to move the
- page to the head of the list.
-
- PE is the node we want to move. Q is the previous node
- and P is the next node in the list. */
- q = pe->prev;
- if (q && q->num_free_objects == 0)
- {
- p = pe->next;
-
- q->next = p;
-
- /* If PE was at the end of the list, then Q becomes the
- new end of the list. If PE was not the end of the
- list, then we need to update the PREV field for P. */
- if (!p)
- G.page_tails[order] = q;
- else
- p->prev = q;
-
- /* Move PE to the head of the list. */
- pe->next = G.pages[order];
- pe->prev = NULL;
- G.pages[order]->prev = pe;
- G.pages[order] = pe;
- }
-
- /* Reset the hint bit to point to the only free object. */
- pe->next_bit_hint = bit_offset;
- }
- }
-#endif
-}
-
-/* Subroutine of init_ggc which computes the pair of numbers used to
- perform division by OBJECT_SIZE (order) and fills in inverse_table[].
-
- This algorithm is taken from Granlund and Montgomery's paper
- "Division by Invariant Integers using Multiplication"
- (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
- constants). */
-
-static void
-compute_inverse (unsigned order)
-{
- size_t size, inv;
- unsigned int e;
-
- size = OBJECT_SIZE (order);
- e = 0;
- while (size % 2 == 0)
- {
- e++;
- size >>= 1;
- }
-
- inv = size;
- while (inv * size != 1)
- inv = inv * (2 - inv*size);
-
- DIV_MULT (order) = inv;
- DIV_SHIFT (order) = e;
-}
-
-/* Initialize the ggc-mmap allocator. */
-void
-init_ggc (void)
-{
- unsigned order;
-
- G.pagesize = getpagesize();
- G.lg_pagesize = exact_log2 (G.pagesize);
-
-#ifdef HAVE_MMAP_DEV_ZERO
- G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
- if (G.dev_zero_fd == -1)
- internal_error ("open /dev/zero: %m");
-#endif
-
-#if 0
- G.debug_file = fopen ("ggc-mmap.debug", "w");
-#else
- G.debug_file = stdout;
-#endif
-
-#ifdef USING_MMAP
- /* StunOS has an amazing off-by-one error for the first mmap allocation
- after fiddling with RLIMIT_STACK. The result, as hard as it is to
- believe, is an unaligned page allocation, which would cause us to
- hork badly if we tried to use it. */
- {
- char *p = alloc_anon (NULL, G.pagesize);
- struct page_entry *e;
- if ((size_t)p & (G.pagesize - 1))
- {
- /* How losing. Discard this one and try another. If we still
- can't get something useful, give up. */
-
- p = alloc_anon (NULL, G.pagesize);
- gcc_assert (!((size_t)p & (G.pagesize - 1)));
- }
-
- /* We have a good page, might as well hold onto it... */
- e = XCNEW (struct page_entry);
- e->bytes = G.pagesize;
- e->page = p;
- e->next = G.free_pages;
- G.free_pages = e;
- }
-#endif
-
- /* Initialize the object size table. */
- for (order = 0; order < HOST_BITS_PER_PTR; ++order)
- object_size_table[order] = (size_t) 1 << order;
- for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
- {
- size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
-
- /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
- so that we're sure of getting aligned memory. */
- s = ROUND_UP (s, MAX_ALIGNMENT);
- object_size_table[order] = s;
- }
-
- /* Initialize the objects-per-page and inverse tables. */
- for (order = 0; order < NUM_ORDERS; ++order)
- {
- objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
- if (objects_per_page_table[order] == 0)
- objects_per_page_table[order] = 1;
- compute_inverse (order);
- }
-
- /* Reset the size_lookup array to put appropriately sized objects in
- the special orders. All objects bigger than the previous power
- of two, but no greater than the special size, should go in the
- new order. */
- for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
- {
- int o;
- int i;
-
- i = OBJECT_SIZE (order);
- if (i >= NUM_SIZE_LOOKUP)
- continue;
-
- for (o = size_lookup[i]; o == size_lookup [i]; --i)
- size_lookup[i] = order;
- }
-
- G.depth_in_use = 0;
- G.depth_max = 10;
- G.depth = XNEWVEC (unsigned int, G.depth_max);
-
- G.by_depth_in_use = 0;
- G.by_depth_max = INITIAL_PTE_COUNT;
- G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
- G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
-}
-
-/* Start a new GGC zone. */
-
-struct alloc_zone *
-new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
-{
- return NULL;
-}
-
-/* Destroy a GGC zone. */
-void
-destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
-{
-}
-
-/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
- reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
-
-static void
-ggc_recalculate_in_use_p (page_entry *p)
-{
- unsigned int i;
- size_t num_objects;
-
- /* Because the past-the-end bit in in_use_p is always set, we
- pretend there is one additional object. */
- num_objects = OBJECTS_IN_PAGE (p) + 1;
-
- /* Reset the free object count. */
- p->num_free_objects = num_objects;
-
- /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
- for (i = 0;
- i < CEIL (BITMAP_SIZE (num_objects),
- sizeof (*p->in_use_p));
- ++i)
- {
- unsigned long j;
-
- /* Something is in use if it is marked, or if it was in use in a
- context further down the context stack. */
- p->in_use_p[i] |= save_in_use_p (p)[i];
-
- /* Decrement the free object count for every object allocated. */
- for (j = p->in_use_p[i]; j; j >>= 1)
- p->num_free_objects -= (j & 1);
- }
-
- gcc_assert (p->num_free_objects < num_objects);
-}
-
-/* Unmark all objects. */
-
-static void
-clear_marks (void)
-{
- unsigned order;
-
- for (order = 2; order < NUM_ORDERS; order++)
- {
- page_entry *p;
-
- for (p = G.pages[order]; p != NULL; p = p->next)
- {
- size_t num_objects = OBJECTS_IN_PAGE (p);
- size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
-
- /* The data should be page-aligned. */
- gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
-
- /* Pages that aren't in the topmost context are not collected;
- nevertheless, we need their in-use bit vectors to store GC
- marks. So, back them up first. */
- if (p->context_depth < G.context_depth)
- {
- if (! save_in_use_p (p))
- save_in_use_p (p) = xmalloc (bitmap_size);
- memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
- }
-
- /* Reset reset the number of free objects and clear the
- in-use bits. These will be adjusted by mark_obj. */
- p->num_free_objects = num_objects;
- memset (p->in_use_p, 0, bitmap_size);
-
- /* Make sure the one-past-the-end bit is always set. */
- p->in_use_p[num_objects / HOST_BITS_PER_LONG]
- = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
- }
- }
-}
-
-/* Free all empty pages. Partially empty pages need no attention
- because the `mark' bit doubles as an `unused' bit. */
-
-static void
-sweep_pages (void)
-{
- unsigned order;
-
- for (order = 2; order < NUM_ORDERS; order++)
- {
- /* The last page-entry to consider, regardless of entries
- placed at the end of the list. */
- page_entry * const last = G.page_tails[order];
-
- size_t num_objects;
- size_t live_objects;
- page_entry *p, *previous;
- int done;
-
- p = G.pages[order];
- if (p == NULL)
- continue;
-
- previous = NULL;
- do
- {
- page_entry *next = p->next;
-
- /* Loop until all entries have been examined. */
- done = (p == last);
-
- num_objects = OBJECTS_IN_PAGE (p);
-
- /* Add all live objects on this page to the count of
- allocated memory. */
- live_objects = num_objects - p->num_free_objects;
-
- G.allocated += OBJECT_SIZE (order) * live_objects;
-
- /* Only objects on pages in the topmost context should get
- collected. */
- if (p->context_depth < G.context_depth)
- ;
-
- /* Remove the page if it's empty. */
- else if (live_objects == 0)
- {
- /* If P was the first page in the list, then NEXT
- becomes the new first page in the list, otherwise
- splice P out of the forward pointers. */
- if (! previous)
- G.pages[order] = next;
- else
- previous->next = next;
-
- /* Splice P out of the back pointers too. */
- if (next)
- next->prev = previous;
-
- /* Are we removing the last element? */
- if (p == G.page_tails[order])
- G.page_tails[order] = previous;
- free_page (p);
- p = previous;
- }
-
- /* If the page is full, move it to the end. */
- else if (p->num_free_objects == 0)
- {
- /* Don't move it if it's already at the end. */
- if (p != G.page_tails[order])
- {
- /* Move p to the end of the list. */
- p->next = NULL;
- p->prev = G.page_tails[order];
- G.page_tails[order]->next = p;
-
- /* Update the tail pointer... */
- G.page_tails[order] = p;
-
- /* ... and the head pointer, if necessary. */
- if (! previous)
- G.pages[order] = next;
- else
- previous->next = next;
-
- /* And update the backpointer in NEXT if necessary. */
- if (next)
- next->prev = previous;
-
- p = previous;
- }
- }
-
- /* If we've fallen through to here, it's a page in the
- topmost context that is neither full nor empty. Such a
- page must precede pages at lesser context depth in the
- list, so move it to the head. */
- else if (p != G.pages[order])
- {
- previous->next = p->next;
-
- /* Update the backchain in the next node if it exists. */
- if (p->next)
- p->next->prev = previous;
-
- /* Move P to the head of the list. */
- p->next = G.pages[order];
- p->prev = NULL;
- G.pages[order]->prev = p;
-
- /* Update the head pointer. */
- G.pages[order] = p;
-
- /* Are we moving the last element? */
- if (G.page_tails[order] == p)
- G.page_tails[order] = previous;
- p = previous;
- }
-
- previous = p;
- p = next;
- }
- while (! done);
-
- /* Now, restore the in_use_p vectors for any pages from contexts
- other than the current one. */
- for (p = G.pages[order]; p; p = p->next)
- if (p->context_depth != G.context_depth)
- ggc_recalculate_in_use_p (p);
- }
-}
-
-#ifdef ENABLE_GC_CHECKING
-/* Clobber all free objects. */
-
-static void
-poison_pages (void)
-{
- unsigned order;
-
- for (order = 2; order < NUM_ORDERS; order++)
- {
- size_t size = OBJECT_SIZE (order);
- page_entry *p;
-
- for (p = G.pages[order]; p != NULL; p = p->next)
- {
- size_t num_objects;
- size_t i;
-
- if (p->context_depth != G.context_depth)
- /* Since we don't do any collection for pages in pushed
- contexts, there's no need to do any poisoning. And
- besides, the IN_USE_P array isn't valid until we pop
- contexts. */
- continue;
-
- num_objects = OBJECTS_IN_PAGE (p);
- for (i = 0; i < num_objects; i++)
- {
- size_t word, bit;
- word = i / HOST_BITS_PER_LONG;
- bit = i % HOST_BITS_PER_LONG;
- if (((p->in_use_p[word] >> bit) & 1) == 0)
- {
- char *object = p->page + i * size;
-
- /* Keep poison-by-write when we expect to use Valgrind,
- so the exact same memory semantics is kept, in case
- there are memory errors. We override this request
- below. */
- VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
- memset (object, 0xa5, size);
-
- /* Drop the handle to avoid handle leak. */
- VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
- }
- }
- }
- }
-}
-#else
-#define poison_pages()
-#endif
-
-#ifdef ENABLE_GC_ALWAYS_COLLECT
-/* Validate that the reportedly free objects actually are. */
-
-static void
-validate_free_objects (void)
-{
- struct free_object *f, *next, *still_free = NULL;
-
- for (f = G.free_object_list; f ; f = next)
- {
- page_entry *pe = lookup_page_table_entry (f->object);
- size_t bit, word;
-
- bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
- word = bit / HOST_BITS_PER_LONG;
- bit = bit % HOST_BITS_PER_LONG;
- next = f->next;
-
- /* Make certain it isn't visible from any root. Notice that we
- do this check before sweep_pages merges save_in_use_p. */
- gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
-
- /* If the object comes from an outer context, then retain the
- free_object entry, so that we can verify that the address
- isn't live on the stack in some outer context. */
- if (pe->context_depth != G.context_depth)
- {
- f->next = still_free;
- still_free = f;
- }
- else
- free (f);
- }
-
- G.free_object_list = still_free;
-}
-#else
-#define validate_free_objects()
-#endif
-
-/* Top level mark-and-sweep routine. */
-
-void
-ggc_collect (void)
-{
- /* Avoid frequent unnecessary work by skipping collection if the
- total allocations haven't expanded much since the last
- collection. */
- float allocated_last_gc =
- MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
-
- float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
-
- if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
- return;
-
- timevar_push (TV_GC);
- if (!quiet_flag)
- fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
- if (GGC_DEBUG_LEVEL >= 2)
- fprintf (G.debug_file, "BEGIN COLLECTING\n");
-
- /* Zero the total allocated bytes. This will be recalculated in the
- sweep phase. */
- G.allocated = 0;
-
- /* Release the pages we freed the last time we collected, but didn't
- reuse in the interim. */
- release_pages ();
-
- /* Indicate that we've seen collections at this context depth. */
- G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
-
- clear_marks ();
- ggc_mark_roots ();
-#ifdef GATHER_STATISTICS
- ggc_prune_overhead_list ();
-#endif
- poison_pages ();
- validate_free_objects ();
- sweep_pages ();
-
- G.allocated_last_gc = G.allocated;
-
- timevar_pop (TV_GC);
-
- if (!quiet_flag)
- fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
- if (GGC_DEBUG_LEVEL >= 2)
- fprintf (G.debug_file, "END COLLECTING\n");
-}
-
-/* Print allocation statistics. */
-#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
- ? (x) \
- : ((x) < 1024*1024*10 \
- ? (x) / 1024 \
- : (x) / (1024*1024))))
-#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
-
-void
-ggc_print_statistics (void)
-{
- struct ggc_statistics stats;
- unsigned int i;
- size_t total_overhead = 0;
-
- /* Clear the statistics. */
- memset (&stats, 0, sizeof (stats));
-
- /* Make sure collection will really occur. */
- G.allocated_last_gc = 0;
-
- /* Collect and print the statistics common across collectors. */
- ggc_print_common_statistics (stderr, &stats);
-
- /* Release free pages so that we will not count the bytes allocated
- there as part of the total allocated memory. */
- release_pages ();
-
- /* Collect some information about the various sizes of
- allocation. */
- fprintf (stderr,
- "Memory still allocated at the end of the compilation process\n");
- fprintf (stderr, "%-5s %10s %10s %10s\n",
- "Size", "Allocated", "Used", "Overhead");
- for (i = 0; i < NUM_ORDERS; ++i)
- {
- page_entry *p;
- size_t allocated;
- size_t in_use;
- size_t overhead;
-
- /* Skip empty entries. */
- if (!G.pages[i])
- continue;
-
- overhead = allocated = in_use = 0;
-
- /* Figure out the total number of bytes allocated for objects of
- this size, and how many of them are actually in use. Also figure
- out how much memory the page table is using. */
- for (p = G.pages[i]; p; p = p->next)
- {
- allocated += p->bytes;
- in_use +=
- (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
-
- overhead += (sizeof (page_entry) - sizeof (long)
- + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
- }
- fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
- (unsigned long) OBJECT_SIZE (i),
- SCALE (allocated), STAT_LABEL (allocated),
- SCALE (in_use), STAT_LABEL (in_use),
- SCALE (overhead), STAT_LABEL (overhead));
- total_overhead += overhead;
- }
- fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
- SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
- SCALE (G.allocated), STAT_LABEL(G.allocated),
- SCALE (total_overhead), STAT_LABEL (total_overhead));
-
-#ifdef GATHER_STATISTICS
- {
- fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
-
- fprintf (stderr, "Total Overhead: %10lld\n",
- G.stats.total_overhead);
- fprintf (stderr, "Total Allocated: %10lld\n",
- G.stats.total_allocated);
-
- fprintf (stderr, "Total Overhead under 32B: %10lld\n",
- G.stats.total_overhead_under32);
- fprintf (stderr, "Total Allocated under 32B: %10lld\n",
- G.stats.total_allocated_under32);
- fprintf (stderr, "Total Overhead under 64B: %10lld\n",
- G.stats.total_overhead_under64);
- fprintf (stderr, "Total Allocated under 64B: %10lld\n",
- G.stats.total_allocated_under64);
- fprintf (stderr, "Total Overhead under 128B: %10lld\n",
- G.stats.total_overhead_under128);
- fprintf (stderr, "Total Allocated under 128B: %10lld\n",
- G.stats.total_allocated_under128);
-
- for (i = 0; i < NUM_ORDERS; i++)
- if (G.stats.total_allocated_per_order[i])
- {
- fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
- OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
- fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
- OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
- }
- }
-#endif
-}
-
-struct ggc_pch_data
-{
- struct ggc_pch_ondisk
- {
- unsigned totals[NUM_ORDERS];
- } d;
- size_t base[NUM_ORDERS];
- size_t written[NUM_ORDERS];
-};
-
-struct ggc_pch_data *
-init_ggc_pch (void)
-{
- return XCNEW (struct ggc_pch_data);
-}
-
-void
-ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
- size_t size, bool is_string ATTRIBUTE_UNUSED,
- enum gt_types_enum type ATTRIBUTE_UNUSED)
-{
- unsigned order;
-
- if (size < NUM_SIZE_LOOKUP)
- order = size_lookup[size];
- else
- {
- order = 10;
- while (size > OBJECT_SIZE (order))
- order++;
- }
-
- d->d.totals[order]++;
-}
-
-size_t
-ggc_pch_total_size (struct ggc_pch_data *d)
-{
- size_t a = 0;
- unsigned i;
-
- for (i = 0; i < NUM_ORDERS; i++)
- a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
- return a;
-}
-
-void
-ggc_pch_this_base (struct ggc_pch_data *d, void *base)
-{
- size_t a = (size_t) base;
- unsigned i;
-
- for (i = 0; i < NUM_ORDERS; i++)
- {
- d->base[i] = a;
- a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
- }
-}
-
-
-char *
-ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
- size_t size, bool is_string ATTRIBUTE_UNUSED,
- enum gt_types_enum type ATTRIBUTE_UNUSED)
-{
- unsigned order;
- char *result;
-
- if (size < NUM_SIZE_LOOKUP)
- order = size_lookup[size];
- else
- {
- order = 10;
- while (size > OBJECT_SIZE (order))
- order++;
- }
-
- result = (char *) d->base[order];
- d->base[order] += OBJECT_SIZE (order);
- return result;
-}
-
-void
-ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
- FILE *f ATTRIBUTE_UNUSED)
-{
- /* Nothing to do. */
-}
-
-void
-ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
- FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
- size_t size, bool is_string ATTRIBUTE_UNUSED)
-{
- unsigned order;
- static const char emptyBytes[256];
-
- if (size < NUM_SIZE_LOOKUP)
- order = size_lookup[size];
- else
- {
- order = 10;
- while (size > OBJECT_SIZE (order))
- order++;
- }
-
- if (fwrite (x, size, 1, f) != 1)
- fatal_error ("can't write PCH file: %m");
-
- /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
- object out to OBJECT_SIZE(order). This happens for strings. */
-
- if (size != OBJECT_SIZE (order))
- {
- unsigned padding = OBJECT_SIZE(order) - size;
-
- /* To speed small writes, we use a nulled-out array that's larger
- than most padding requests as the source for our null bytes. This
- permits us to do the padding with fwrite() rather than fseek(), and
- limits the chance the OS may try to flush any outstanding writes. */
- if (padding <= sizeof(emptyBytes))
- {
- if (fwrite (emptyBytes, 1, padding, f) != padding)
- fatal_error ("can't write PCH file");
- }
- else
- {
- /* Larger than our buffer? Just default to fseek. */
- if (fseek (f, padding, SEEK_CUR) != 0)
- fatal_error ("can't write PCH file");
- }
- }
-
- d->written[order]++;
- if (d->written[order] == d->d.totals[order]
- && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
- G.pagesize),
- SEEK_CUR) != 0)
- fatal_error ("can't write PCH file: %m");
-}
-
-void
-ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
-{
- if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
- fatal_error ("can't write PCH file: %m");
- free (d);
-}
-
-/* Move the PCH PTE entries just added to the end of by_depth, to the
- front. */
-
-static void
-move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
-{
- unsigned i;
-
- /* First, we swap the new entries to the front of the varrays. */
- page_entry **new_by_depth;
- unsigned long **new_save_in_use;
-
- new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
- new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
-
- memcpy (&new_by_depth[0],
- &G.by_depth[count_old_page_tables],
- count_new_page_tables * sizeof (void *));
- memcpy (&new_by_depth[count_new_page_tables],
- &G.by_depth[0],
- count_old_page_tables * sizeof (void *));
- memcpy (&new_save_in_use[0],
- &G.save_in_use[count_old_page_tables],
- count_new_page_tables * sizeof (void *));
- memcpy (&new_save_in_use[count_new_page_tables],
- &G.save_in_use[0],
- count_old_page_tables * sizeof (void *));
-
- free (G.by_depth);
- free (G.save_in_use);
-
- G.by_depth = new_by_depth;
- G.save_in_use = new_save_in_use;
-
- /* Now update all the index_by_depth fields. */
- for (i = G.by_depth_in_use; i > 0; --i)
- {
- page_entry *p = G.by_depth[i-1];
- p->index_by_depth = i-1;
- }
-
- /* And last, we update the depth pointers in G.depth. The first
- entry is already 0, and context 0 entries always start at index
- 0, so there is nothing to update in the first slot. We need a
- second slot, only if we have old ptes, and if we do, they start
- at index count_new_page_tables. */
- if (count_old_page_tables)
- push_depth (count_new_page_tables);
-}
-
-void
-ggc_pch_read (FILE *f, void *addr)
-{
- struct ggc_pch_ondisk d;
- unsigned i;
- char *offs = addr;
- unsigned long count_old_page_tables;
- unsigned long count_new_page_tables;
-
- count_old_page_tables = G.by_depth_in_use;
-
- /* We've just read in a PCH file. So, every object that used to be
- allocated is now free. */
- clear_marks ();
-#ifdef ENABLE_GC_CHECKING
- poison_pages ();
-#endif
-
- /* No object read from a PCH file should ever be freed. So, set the
- context depth to 1, and set the depth of all the currently-allocated
- pages to be 1 too. PCH pages will have depth 0. */
- gcc_assert (!G.context_depth);
- G.context_depth = 1;
- for (i = 0; i < NUM_ORDERS; i++)
- {
- page_entry *p;
- for (p = G.pages[i]; p != NULL; p = p->next)
- p->context_depth = G.context_depth;
- }
-
- /* Allocate the appropriate page-table entries for the pages read from
- the PCH file. */
- if (fread (&d, sizeof (d), 1, f) != 1)
- fatal_error ("can't read PCH file: %m");
-
- for (i = 0; i < NUM_ORDERS; i++)
- {
- struct page_entry *entry;
- char *pte;
- size_t bytes;
- size_t num_objs;
- size_t j;
-
- if (d.totals[i] == 0)
- continue;
-
- bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
- num_objs = bytes / OBJECT_SIZE (i);
- entry = xcalloc (1, (sizeof (struct page_entry)
- - sizeof (long)
- + BITMAP_SIZE (num_objs + 1)));
- entry->bytes = bytes;
- entry->page = offs;
- entry->context_depth = 0;
- offs += bytes;
- entry->num_free_objects = 0;
- entry->order = i;
-
- for (j = 0;
- j + HOST_BITS_PER_LONG <= num_objs + 1;
- j += HOST_BITS_PER_LONG)
- entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
- for (; j < num_objs + 1; j++)
- entry->in_use_p[j / HOST_BITS_PER_LONG]
- |= 1L << (j % HOST_BITS_PER_LONG);
-
- for (pte = entry->page;
- pte < entry->page + entry->bytes;
- pte += G.pagesize)
- set_page_table_entry (pte, entry);
-
- if (G.page_tails[i] != NULL)
- G.page_tails[i]->next = entry;
- else
- G.pages[i] = entry;
- G.page_tails[i] = entry;
-
- /* We start off by just adding all the new information to the
- end of the varrays, later, we will move the new information
- to the front of the varrays, as the PCH page tables are at
- context 0. */
- push_by_depth (entry, 0);
- }
-
- /* Now, we update the various data structures that speed page table
- handling. */
- count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
-
- move_ptes_to_front (count_old_page_tables, count_new_page_tables);
-
- /* Update the statistics. */
- G.allocated = G.allocated_last_gc = offs - (char *)addr;
-}