aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/cselib.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/cselib.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/cselib.c1519
1 files changed, 1519 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/cselib.c b/gcc-4.2.1-5666.3/gcc/cselib.c
new file mode 100644
index 000000000..4070da7c0
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/cselib.c
@@ -0,0 +1,1519 @@
+/* Common subexpression elimination library for GNU compiler.
+ Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+
+#include "rtl.h"
+#include "tm_p.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "real.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "function.h"
+#include "emit-rtl.h"
+#include "toplev.h"
+#include "output.h"
+#include "ggc.h"
+#include "hashtab.h"
+#include "cselib.h"
+#include "params.h"
+#include "alloc-pool.h"
+#include "target.h"
+
+static bool cselib_record_memory;
+static int entry_and_rtx_equal_p (const void *, const void *);
+static hashval_t get_value_hash (const void *);
+static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
+static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
+static void unchain_one_value (cselib_val *);
+static void unchain_one_elt_list (struct elt_list **);
+static void unchain_one_elt_loc_list (struct elt_loc_list **);
+static int discard_useless_locs (void **, void *);
+static int discard_useless_values (void **, void *);
+static void remove_useless_values (void);
+static rtx wrap_constant (enum machine_mode, rtx);
+static unsigned int cselib_hash_rtx (rtx, int);
+static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
+static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
+static cselib_val *cselib_lookup_mem (rtx, int);
+static void cselib_invalidate_regno (unsigned int, enum machine_mode);
+static void cselib_invalidate_mem (rtx);
+static void cselib_record_set (rtx, cselib_val *, cselib_val *);
+static void cselib_record_sets (rtx);
+
+/* There are three ways in which cselib can look up an rtx:
+ - for a REG, the reg_values table (which is indexed by regno) is used
+ - for a MEM, we recursively look up its address and then follow the
+ addr_list of that value
+ - for everything else, we compute a hash value and go through the hash
+ table. Since different rtx's can still have the same hash value,
+ this involves walking the table entries for a given value and comparing
+ the locations of the entries with the rtx we are looking up. */
+
+/* A table that enables us to look up elts by their value. */
+static htab_t cselib_hash_table;
+
+/* This is a global so we don't have to pass this through every function.
+ It is used in new_elt_loc_list to set SETTING_INSN. */
+static rtx cselib_current_insn;
+static bool cselib_current_insn_in_libcall;
+
+/* Every new unknown value gets a unique number. */
+static unsigned int next_unknown_value;
+
+/* The number of registers we had when the varrays were last resized. */
+static unsigned int cselib_nregs;
+
+/* Count values without known locations. Whenever this grows too big, we
+ remove these useless values from the table. */
+static int n_useless_values;
+
+/* Number of useless values before we remove them from the hash table. */
+#define MAX_USELESS_VALUES 32
+
+/* This table maps from register number to values. It does not
+ contain pointers to cselib_val structures, but rather elt_lists.
+ The purpose is to be able to refer to the same register in
+ different modes. The first element of the list defines the mode in
+ which the register was set; if the mode is unknown or the value is
+ no longer valid in that mode, ELT will be NULL for the first
+ element. */
+static struct elt_list **reg_values;
+static unsigned int reg_values_size;
+#define REG_VALUES(i) reg_values[i]
+
+/* The largest number of hard regs used by any entry added to the
+ REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
+static unsigned int max_value_regs;
+
+/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
+ in cselib_clear_table() for fast emptying. */
+static unsigned int *used_regs;
+static unsigned int n_used_regs;
+
+/* We pass this to cselib_invalidate_mem to invalidate all of
+ memory for a non-const call instruction. */
+static GTY(()) rtx callmem;
+
+/* Set by discard_useless_locs if it deleted the last location of any
+ value. */
+static int values_became_useless;
+
+/* Used as stop element of the containing_mem list so we can check
+ presence in the list by checking the next pointer. */
+static cselib_val dummy_val;
+
+/* Used to list all values that contain memory reference.
+ May or may not contain the useless values - the list is compacted
+ each time memory is invalidated. */
+static cselib_val *first_containing_mem = &dummy_val;
+static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
+
+
+/* Allocate a struct elt_list and fill in its two elements with the
+ arguments. */
+
+static inline struct elt_list *
+new_elt_list (struct elt_list *next, cselib_val *elt)
+{
+ struct elt_list *el;
+ el = pool_alloc (elt_list_pool);
+ el->next = next;
+ el->elt = elt;
+ return el;
+}
+
+/* Allocate a struct elt_loc_list and fill in its two elements with the
+ arguments. */
+
+static inline struct elt_loc_list *
+new_elt_loc_list (struct elt_loc_list *next, rtx loc)
+{
+ struct elt_loc_list *el;
+ el = pool_alloc (elt_loc_list_pool);
+ el->next = next;
+ el->loc = loc;
+ el->setting_insn = cselib_current_insn;
+ el->in_libcall = cselib_current_insn_in_libcall;
+ return el;
+}
+
+/* The elt_list at *PL is no longer needed. Unchain it and free its
+ storage. */
+
+static inline void
+unchain_one_elt_list (struct elt_list **pl)
+{
+ struct elt_list *l = *pl;
+
+ *pl = l->next;
+ pool_free (elt_list_pool, l);
+}
+
+/* Likewise for elt_loc_lists. */
+
+static void
+unchain_one_elt_loc_list (struct elt_loc_list **pl)
+{
+ struct elt_loc_list *l = *pl;
+
+ *pl = l->next;
+ pool_free (elt_loc_list_pool, l);
+}
+
+/* Likewise for cselib_vals. This also frees the addr_list associated with
+ V. */
+
+static void
+unchain_one_value (cselib_val *v)
+{
+ while (v->addr_list)
+ unchain_one_elt_list (&v->addr_list);
+
+ pool_free (cselib_val_pool, v);
+}
+
+/* Remove all entries from the hash table. Also used during
+ initialization. If CLEAR_ALL isn't set, then only clear the entries
+ which are known to have been used. */
+
+void
+cselib_clear_table (void)
+{
+ unsigned int i;
+
+ for (i = 0; i < n_used_regs; i++)
+ REG_VALUES (used_regs[i]) = 0;
+
+ max_value_regs = 0;
+
+ n_used_regs = 0;
+
+ htab_empty (cselib_hash_table);
+
+ n_useless_values = 0;
+
+ next_unknown_value = 0;
+
+ first_containing_mem = &dummy_val;
+}
+
+/* The equality test for our hash table. The first argument ENTRY is a table
+ element (i.e. a cselib_val), while the second arg X is an rtx. We know
+ that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
+ CONST of an appropriate mode. */
+
+static int
+entry_and_rtx_equal_p (const void *entry, const void *x_arg)
+{
+ struct elt_loc_list *l;
+ const cselib_val *v = (const cselib_val *) entry;
+ rtx x = (rtx) x_arg;
+ enum machine_mode mode = GET_MODE (x);
+
+ gcc_assert (GET_CODE (x) != CONST_INT
+ && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
+
+ if (mode != GET_MODE (v->u.val_rtx))
+ return 0;
+
+ /* Unwrap X if necessary. */
+ if (GET_CODE (x) == CONST
+ && (GET_CODE (XEXP (x, 0)) == CONST_INT
+ || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
+ x = XEXP (x, 0);
+
+ /* We don't guarantee that distinct rtx's have different hash values,
+ so we need to do a comparison. */
+ for (l = v->locs; l; l = l->next)
+ if (rtx_equal_for_cselib_p (l->loc, x))
+ return 1;
+
+ return 0;
+}
+
+/* The hash function for our hash table. The value is always computed with
+ cselib_hash_rtx when adding an element; this function just extracts the
+ hash value from a cselib_val structure. */
+
+static hashval_t
+get_value_hash (const void *entry)
+{
+ const cselib_val *v = (const cselib_val *) entry;
+ return v->value;
+}
+
+/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
+ only return true for values which point to a cselib_val whose value
+ element has been set to zero, which implies the cselib_val will be
+ removed. */
+
+int
+references_value_p (rtx x, int only_useless)
+{
+ enum rtx_code code = GET_CODE (x);
+ const char *fmt = GET_RTX_FORMAT (code);
+ int i, j;
+
+ if (GET_CODE (x) == VALUE
+ && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
+ return 1;
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
+ return 1;
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (references_value_p (XVECEXP (x, i, j), only_useless))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* For all locations found in X, delete locations that reference useless
+ values (i.e. values without any location). Called through
+ htab_traverse. */
+
+static int
+discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
+{
+ cselib_val *v = (cselib_val *)*x;
+ struct elt_loc_list **p = &v->locs;
+ int had_locs = v->locs != 0;
+
+ while (*p)
+ {
+ if (references_value_p ((*p)->loc, 1))
+ unchain_one_elt_loc_list (p);
+ else
+ p = &(*p)->next;
+ }
+
+ if (had_locs && v->locs == 0)
+ {
+ n_useless_values++;
+ values_became_useless = 1;
+ }
+ return 1;
+}
+
+/* If X is a value with no locations, remove it from the hashtable. */
+
+static int
+discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
+{
+ cselib_val *v = (cselib_val *)*x;
+
+ if (v->locs == 0)
+ {
+ CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
+ htab_clear_slot (cselib_hash_table, x);
+ unchain_one_value (v);
+ n_useless_values--;
+ }
+
+ return 1;
+}
+
+/* Clean out useless values (i.e. those which no longer have locations
+ associated with them) from the hash table. */
+
+static void
+remove_useless_values (void)
+{
+ cselib_val **p, *v;
+ /* First pass: eliminate locations that reference the value. That in
+ turn can make more values useless. */
+ do
+ {
+ values_became_useless = 0;
+ htab_traverse (cselib_hash_table, discard_useless_locs, 0);
+ }
+ while (values_became_useless);
+
+ /* Second pass: actually remove the values. */
+
+ p = &first_containing_mem;
+ for (v = *p; v != &dummy_val; v = v->next_containing_mem)
+ if (v->locs)
+ {
+ *p = v;
+ p = &(*p)->next_containing_mem;
+ }
+ *p = &dummy_val;
+
+ htab_traverse (cselib_hash_table, discard_useless_values, 0);
+
+ gcc_assert (!n_useless_values);
+}
+
+/* Return the mode in which a register was last set. If X is not a
+ register, return its mode. If the mode in which the register was
+ set is not known, or the value was already clobbered, return
+ VOIDmode. */
+
+enum machine_mode
+cselib_reg_set_mode (rtx x)
+{
+ if (!REG_P (x))
+ return GET_MODE (x);
+
+ if (REG_VALUES (REGNO (x)) == NULL
+ || REG_VALUES (REGNO (x))->elt == NULL)
+ return VOIDmode;
+
+ return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
+}
+
+/* Return nonzero if we can prove that X and Y contain the same value, taking
+ our gathered information into account. */
+
+int
+rtx_equal_for_cselib_p (rtx x, rtx y)
+{
+ enum rtx_code code;
+ const char *fmt;
+ int i;
+
+ if (REG_P (x) || MEM_P (x))
+ {
+ cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
+
+ if (e)
+ x = e->u.val_rtx;
+ }
+
+ if (REG_P (y) || MEM_P (y))
+ {
+ cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
+
+ if (e)
+ y = e->u.val_rtx;
+ }
+
+ if (x == y)
+ return 1;
+
+ if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
+ return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
+
+ if (GET_CODE (x) == VALUE)
+ {
+ cselib_val *e = CSELIB_VAL_PTR (x);
+ struct elt_loc_list *l;
+
+ for (l = e->locs; l; l = l->next)
+ {
+ rtx t = l->loc;
+
+ /* Avoid infinite recursion. */
+ if (REG_P (t) || MEM_P (t))
+ continue;
+ else if (rtx_equal_for_cselib_p (t, y))
+ return 1;
+ }
+
+ return 0;
+ }
+
+ if (GET_CODE (y) == VALUE)
+ {
+ cselib_val *e = CSELIB_VAL_PTR (y);
+ struct elt_loc_list *l;
+
+ for (l = e->locs; l; l = l->next)
+ {
+ rtx t = l->loc;
+
+ if (REG_P (t) || MEM_P (t))
+ continue;
+ else if (rtx_equal_for_cselib_p (x, t))
+ return 1;
+ }
+
+ return 0;
+ }
+
+ if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ /* These won't be handled correctly by the code below. */
+ switch (GET_CODE (x))
+ {
+ case CONST_DOUBLE:
+ return 0;
+
+ case LABEL_REF:
+ return XEXP (x, 0) == XEXP (y, 0);
+
+ default:
+ break;
+ }
+
+ code = GET_CODE (x);
+ fmt = GET_RTX_FORMAT (code);
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ int j;
+
+ switch (fmt[i])
+ {
+ case 'w':
+ if (XWINT (x, i) != XWINT (y, i))
+ return 0;
+ break;
+
+ case 'n':
+ case 'i':
+ if (XINT (x, i) != XINT (y, i))
+ return 0;
+ break;
+
+ case 'V':
+ case 'E':
+ /* Two vectors must have the same length. */
+ if (XVECLEN (x, i) != XVECLEN (y, i))
+ return 0;
+
+ /* And the corresponding elements must match. */
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
+ XVECEXP (y, i, j)))
+ return 0;
+ break;
+
+ case 'e':
+ if (i == 1
+ && targetm.commutative_p (x, UNKNOWN)
+ && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
+ && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
+ return 1;
+ if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
+ return 0;
+ break;
+
+ case 'S':
+ case 's':
+ if (strcmp (XSTR (x, i), XSTR (y, i)))
+ return 0;
+ break;
+
+ case 'u':
+ /* These are just backpointers, so they don't matter. */
+ break;
+
+ case '0':
+ case 't':
+ break;
+
+ /* It is believed that rtx's at this level will never
+ contain anything but integers and other rtx's,
+ except for within LABEL_REFs and SYMBOL_REFs. */
+ default:
+ gcc_unreachable ();
+ }
+ }
+ return 1;
+}
+
+/* We need to pass down the mode of constants through the hash table
+ functions. For that purpose, wrap them in a CONST of the appropriate
+ mode. */
+static rtx
+wrap_constant (enum machine_mode mode, rtx x)
+{
+ if (GET_CODE (x) != CONST_INT
+ && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
+ return x;
+ gcc_assert (mode != VOIDmode);
+ return gen_rtx_CONST (mode, x);
+}
+
+/* Hash an rtx. Return 0 if we couldn't hash the rtx.
+ For registers and memory locations, we look up their cselib_val structure
+ and return its VALUE element.
+ Possible reasons for return 0 are: the object is volatile, or we couldn't
+ find a register or memory location in the table and CREATE is zero. If
+ CREATE is nonzero, table elts are created for regs and mem.
+ N.B. this hash function returns the same hash value for RTXes that
+ differ only in the order of operands, thus it is suitable for comparisons
+ that take commutativity into account.
+ If we wanted to also support associative rules, we'd have to use a different
+ strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
+ We used to have a MODE argument for hashing for CONST_INTs, but that
+ didn't make sense, since it caused spurious hash differences between
+ (set (reg:SI 1) (const_int))
+ (plus:SI (reg:SI 2) (reg:SI 1))
+ and
+ (plus:SI (reg:SI 2) (const_int))
+ If the mode is important in any context, it must be checked specifically
+ in a comparison anyway, since relying on hash differences is unsafe. */
+
+static unsigned int
+cselib_hash_rtx (rtx x, int create)
+{
+ cselib_val *e;
+ int i, j;
+ enum rtx_code code;
+ const char *fmt;
+ unsigned int hash = 0;
+
+ code = GET_CODE (x);
+ hash += (unsigned) code + (unsigned) GET_MODE (x);
+
+ switch (code)
+ {
+ case MEM:
+ case REG:
+ e = cselib_lookup (x, GET_MODE (x), create);
+ if (! e)
+ return 0;
+
+ return e->value;
+
+ case CONST_INT:
+ hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
+ return hash ? hash : (unsigned int) CONST_INT;
+
+ case CONST_DOUBLE:
+ /* This is like the general case, except that it only counts
+ the integers representing the constant. */
+ hash += (unsigned) code + (unsigned) GET_MODE (x);
+ if (GET_MODE (x) != VOIDmode)
+ hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
+ else
+ hash += ((unsigned) CONST_DOUBLE_LOW (x)
+ + (unsigned) CONST_DOUBLE_HIGH (x));
+ return hash ? hash : (unsigned int) CONST_DOUBLE;
+
+ case CONST_VECTOR:
+ {
+ int units;
+ rtx elt;
+
+ units = CONST_VECTOR_NUNITS (x);
+
+ for (i = 0; i < units; ++i)
+ {
+ elt = CONST_VECTOR_ELT (x, i);
+ hash += cselib_hash_rtx (elt, 0);
+ }
+
+ return hash;
+ }
+
+ /* Assume there is only one rtx object for any given label. */
+ case LABEL_REF:
+ /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
+ differences and differences between each stage's debugging dumps. */
+ hash += (((unsigned int) LABEL_REF << 7)
+ + CODE_LABEL_NUMBER (XEXP (x, 0)));
+ return hash ? hash : (unsigned int) LABEL_REF;
+
+ case SYMBOL_REF:
+ {
+ /* Don't hash on the symbol's address to avoid bootstrap differences.
+ Different hash values may cause expressions to be recorded in
+ different orders and thus different registers to be used in the
+ final assembler. This also avoids differences in the dump files
+ between various stages. */
+ unsigned int h = 0;
+ const unsigned char *p = (const unsigned char *) XSTR (x, 0);
+
+ while (*p)
+ h += (h << 7) + *p++; /* ??? revisit */
+
+ hash += ((unsigned int) SYMBOL_REF << 7) + h;
+ return hash ? hash : (unsigned int) SYMBOL_REF;
+ }
+
+ case PRE_DEC:
+ case PRE_INC:
+ case POST_DEC:
+ case POST_INC:
+ case POST_MODIFY:
+ case PRE_MODIFY:
+ case PC:
+ case CC0:
+ case CALL:
+ case UNSPEC_VOLATILE:
+ return 0;
+
+ case ASM_OPERANDS:
+ if (MEM_VOLATILE_P (x))
+ return 0;
+
+ break;
+
+ default:
+ break;
+ }
+
+ i = GET_RTX_LENGTH (code) - 1;
+ fmt = GET_RTX_FORMAT (code);
+ for (; i >= 0; i--)
+ {
+ switch (fmt[i])
+ {
+ case 'e':
+ {
+ rtx tem = XEXP (x, i);
+ unsigned int tem_hash = cselib_hash_rtx (tem, create);
+
+ if (tem_hash == 0)
+ return 0;
+
+ hash += tem_hash;
+ }
+ break;
+ case 'E':
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ unsigned int tem_hash
+ = cselib_hash_rtx (XVECEXP (x, i, j), create);
+
+ if (tem_hash == 0)
+ return 0;
+
+ hash += tem_hash;
+ }
+ break;
+
+ case 's':
+ {
+ const unsigned char *p = (const unsigned char *) XSTR (x, i);
+
+ if (p)
+ while (*p)
+ hash += *p++;
+ break;
+ }
+
+ case 'i':
+ hash += XINT (x, i);
+ break;
+
+ case '0':
+ case 't':
+ /* unused */
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ return hash ? hash : 1 + (unsigned int) GET_CODE (x);
+}
+
+/* Create a new value structure for VALUE and initialize it. The mode of the
+ value is MODE. */
+
+static inline cselib_val *
+new_cselib_val (unsigned int value, enum machine_mode mode)
+{
+ cselib_val *e = pool_alloc (cselib_val_pool);
+
+ gcc_assert (value);
+
+ e->value = value;
+ /* We use an alloc pool to allocate this RTL construct because it
+ accounts for about 8% of the overall memory usage. We know
+ precisely when we can have VALUE RTXen (when cselib is active)
+ so we don't need to put them in garbage collected memory.
+ ??? Why should a VALUE be an RTX in the first place? */
+ e->u.val_rtx = pool_alloc (value_pool);
+ memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
+ PUT_CODE (e->u.val_rtx, VALUE);
+ PUT_MODE (e->u.val_rtx, mode);
+ CSELIB_VAL_PTR (e->u.val_rtx) = e;
+ e->addr_list = 0;
+ e->locs = 0;
+ e->next_containing_mem = 0;
+ return e;
+}
+
+/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
+ contains the data at this address. X is a MEM that represents the
+ value. Update the two value structures to represent this situation. */
+
+static void
+add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
+{
+ struct elt_loc_list *l;
+
+ /* Avoid duplicates. */
+ for (l = mem_elt->locs; l; l = l->next)
+ if (MEM_P (l->loc)
+ && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
+ return;
+
+ addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
+ mem_elt->locs
+ = new_elt_loc_list (mem_elt->locs,
+ replace_equiv_address_nv (x, addr_elt->u.val_rtx));
+ if (mem_elt->next_containing_mem == NULL)
+ {
+ mem_elt->next_containing_mem = first_containing_mem;
+ first_containing_mem = mem_elt;
+ }
+}
+
+/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
+ If CREATE, make a new one if we haven't seen it before. */
+
+static cselib_val *
+cselib_lookup_mem (rtx x, int create)
+{
+ enum machine_mode mode = GET_MODE (x);
+ void **slot;
+ cselib_val *addr;
+ cselib_val *mem_elt;
+ struct elt_list *l;
+
+ if (MEM_VOLATILE_P (x) || mode == BLKmode
+ || !cselib_record_memory
+ || (FLOAT_MODE_P (mode) && flag_float_store))
+ return 0;
+
+ /* Look up the value for the address. */
+ addr = cselib_lookup (XEXP (x, 0), mode, create);
+ if (! addr)
+ return 0;
+
+ /* Find a value that describes a value of our mode at that address. */
+ for (l = addr->addr_list; l; l = l->next)
+ if (GET_MODE (l->elt->u.val_rtx) == mode)
+ return l->elt;
+
+ if (! create)
+ return 0;
+
+ mem_elt = new_cselib_val (++next_unknown_value, mode);
+ add_mem_for_addr (addr, mem_elt, x);
+ slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
+ mem_elt->value, INSERT);
+ *slot = mem_elt;
+ return mem_elt;
+}
+
+/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
+ with VALUE expressions. This way, it becomes independent of changes
+ to registers and memory.
+ X isn't actually modified; if modifications are needed, new rtl is
+ allocated. However, the return value can share rtl with X. */
+
+rtx
+cselib_subst_to_values (rtx x)
+{
+ enum rtx_code code = GET_CODE (x);
+ const char *fmt = GET_RTX_FORMAT (code);
+ cselib_val *e;
+ struct elt_list *l;
+ rtx copy = x;
+ int i;
+
+ switch (code)
+ {
+ case REG:
+ l = REG_VALUES (REGNO (x));
+ if (l && l->elt == NULL)
+ l = l->next;
+ for (; l; l = l->next)
+ if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
+ return l->elt->u.val_rtx;
+
+ gcc_unreachable ();
+
+ case MEM:
+ e = cselib_lookup_mem (x, 0);
+ if (! e)
+ {
+ /* This happens for autoincrements. Assign a value that doesn't
+ match any other. */
+ e = new_cselib_val (++next_unknown_value, GET_MODE (x));
+ }
+ return e->u.val_rtx;
+
+ case CONST_DOUBLE:
+ case CONST_VECTOR:
+ case CONST_INT:
+ return x;
+
+ case POST_INC:
+ case PRE_INC:
+ case POST_DEC:
+ case PRE_DEC:
+ case POST_MODIFY:
+ case PRE_MODIFY:
+ e = new_cselib_val (++next_unknown_value, GET_MODE (x));
+ return e->u.val_rtx;
+
+ default:
+ break;
+ }
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ rtx t = cselib_subst_to_values (XEXP (x, i));
+
+ if (t != XEXP (x, i) && x == copy)
+ copy = shallow_copy_rtx (x);
+
+ XEXP (copy, i) = t;
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j, k;
+
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
+
+ if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
+ {
+ if (x == copy)
+ copy = shallow_copy_rtx (x);
+
+ XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
+ for (k = 0; k < j; k++)
+ XVECEXP (copy, i, k) = XVECEXP (x, i, k);
+ }
+
+ XVECEXP (copy, i, j) = t;
+ }
+ }
+ }
+
+ return copy;
+}
+
+/* Look up the rtl expression X in our tables and return the value it has.
+ If CREATE is zero, we return NULL if we don't know the value. Otherwise,
+ we create a new one if possible, using mode MODE if X doesn't have a mode
+ (i.e. because it's a constant). */
+
+cselib_val *
+cselib_lookup (rtx x, enum machine_mode mode, int create)
+{
+ void **slot;
+ cselib_val *e;
+ unsigned int hashval;
+
+ if (GET_MODE (x) != VOIDmode)
+ mode = GET_MODE (x);
+
+ if (GET_CODE (x) == VALUE)
+ return CSELIB_VAL_PTR (x);
+
+ if (REG_P (x))
+ {
+ struct elt_list *l;
+ unsigned int i = REGNO (x);
+
+ l = REG_VALUES (i);
+ if (l && l->elt == NULL)
+ l = l->next;
+ for (; l; l = l->next)
+ if (mode == GET_MODE (l->elt->u.val_rtx))
+ return l->elt;
+
+ if (! create)
+ return 0;
+
+ if (i < FIRST_PSEUDO_REGISTER)
+ {
+ unsigned int n = hard_regno_nregs[i][mode];
+
+ if (n > max_value_regs)
+ max_value_regs = n;
+ }
+
+ e = new_cselib_val (++next_unknown_value, GET_MODE (x));
+ e->locs = new_elt_loc_list (e->locs, x);
+ if (REG_VALUES (i) == 0)
+ {
+ /* Maintain the invariant that the first entry of
+ REG_VALUES, if present, must be the value used to set the
+ register, or NULL. */
+ used_regs[n_used_regs++] = i;
+ REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
+ }
+ REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
+ slot = htab_find_slot_with_hash (cselib_hash_table, x, e->value, INSERT);
+ *slot = e;
+ return e;
+ }
+
+ if (MEM_P (x))
+ return cselib_lookup_mem (x, create);
+
+ hashval = cselib_hash_rtx (x, create);
+ /* Can't even create if hashing is not possible. */
+ if (! hashval)
+ return 0;
+
+ slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
+ hashval, create ? INSERT : NO_INSERT);
+ if (slot == 0)
+ return 0;
+
+ e = (cselib_val *) *slot;
+ if (e)
+ return e;
+
+ e = new_cselib_val (hashval, mode);
+
+ /* We have to fill the slot before calling cselib_subst_to_values:
+ the hash table is inconsistent until we do so, and
+ cselib_subst_to_values will need to do lookups. */
+ *slot = (void *) e;
+ e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
+ return e;
+}
+
+/* Invalidate any entries in reg_values that overlap REGNO. This is called
+ if REGNO is changing. MODE is the mode of the assignment to REGNO, which
+ is used to determine how many hard registers are being changed. If MODE
+ is VOIDmode, then only REGNO is being changed; this is used when
+ invalidating call clobbered registers across a call. */
+
+static void
+cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
+{
+ unsigned int endregno;
+ unsigned int i;
+
+ /* If we see pseudos after reload, something is _wrong_. */
+ gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
+ || reg_renumber[regno] < 0);
+
+ /* Determine the range of registers that must be invalidated. For
+ pseudos, only REGNO is affected. For hard regs, we must take MODE
+ into account, and we must also invalidate lower register numbers
+ if they contain values that overlap REGNO. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ gcc_assert (mode != VOIDmode);
+
+ if (regno < max_value_regs)
+ i = 0;
+ else
+ i = regno - max_value_regs;
+
+ endregno = regno + hard_regno_nregs[regno][mode];
+ }
+ else
+ {
+ i = regno;
+ endregno = regno + 1;
+ }
+
+ for (; i < endregno; i++)
+ {
+ struct elt_list **l = &REG_VALUES (i);
+
+ /* Go through all known values for this reg; if it overlaps the range
+ we're invalidating, remove the value. */
+ while (*l)
+ {
+ cselib_val *v = (*l)->elt;
+ struct elt_loc_list **p;
+ unsigned int this_last = i;
+
+ if (i < FIRST_PSEUDO_REGISTER && v != NULL)
+ this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
+
+ if (this_last < regno || v == NULL)
+ {
+ l = &(*l)->next;
+ continue;
+ }
+
+ /* We have an overlap. */
+ if (*l == REG_VALUES (i))
+ {
+ /* Maintain the invariant that the first entry of
+ REG_VALUES, if present, must be the value used to set
+ the register, or NULL. This is also nice because
+ then we won't push the same regno onto user_regs
+ multiple times. */
+ (*l)->elt = NULL;
+ l = &(*l)->next;
+ }
+ else
+ unchain_one_elt_list (l);
+
+ /* Now, we clear the mapping from value to reg. It must exist, so
+ this code will crash intentionally if it doesn't. */
+ for (p = &v->locs; ; p = &(*p)->next)
+ {
+ rtx x = (*p)->loc;
+
+ if (REG_P (x) && REGNO (x) == i)
+ {
+ unchain_one_elt_loc_list (p);
+ break;
+ }
+ }
+ if (v->locs == 0)
+ n_useless_values++;
+ }
+ }
+}
+
+/* Return 1 if X has a value that can vary even between two
+ executions of the program. 0 means X can be compared reliably
+ against certain constants or near-constants. */
+
+static int
+cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
+{
+ /* We actually don't need to verify very hard. This is because
+ if X has actually changed, we invalidate the memory anyway,
+ so assume that all common memory addresses are
+ invariant. */
+ return 0;
+}
+
+/* Invalidate any locations in the table which are changed because of a
+ store to MEM_RTX. If this is called because of a non-const call
+ instruction, MEM_RTX is (mem:BLK const0_rtx). */
+
+static void
+cselib_invalidate_mem (rtx mem_rtx)
+{
+ cselib_val **vp, *v, *next;
+ int num_mems = 0;
+ rtx mem_addr;
+
+ mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
+ mem_rtx = canon_rtx (mem_rtx);
+
+ vp = &first_containing_mem;
+ for (v = *vp; v != &dummy_val; v = next)
+ {
+ bool has_mem = false;
+ struct elt_loc_list **p = &v->locs;
+ int had_locs = v->locs != 0;
+
+ while (*p)
+ {
+ rtx x = (*p)->loc;
+ cselib_val *addr;
+ struct elt_list **mem_chain;
+
+ /* MEMs may occur in locations only at the top level; below
+ that every MEM or REG is substituted by its VALUE. */
+ if (!MEM_P (x))
+ {
+ p = &(*p)->next;
+ continue;
+ }
+ if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
+ && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
+ x, cselib_rtx_varies_p))
+ {
+ has_mem = true;
+ num_mems++;
+ p = &(*p)->next;
+ continue;
+ }
+
+ /* This one overlaps. */
+ /* We must have a mapping from this MEM's address to the
+ value (E). Remove that, too. */
+ addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
+ mem_chain = &addr->addr_list;
+ for (;;)
+ {
+ if ((*mem_chain)->elt == v)
+ {
+ unchain_one_elt_list (mem_chain);
+ break;
+ }
+
+ mem_chain = &(*mem_chain)->next;
+ }
+
+ unchain_one_elt_loc_list (p);
+ }
+
+ if (had_locs && v->locs == 0)
+ n_useless_values++;
+
+ next = v->next_containing_mem;
+ if (has_mem)
+ {
+ *vp = v;
+ vp = &(*vp)->next_containing_mem;
+ }
+ else
+ v->next_containing_mem = NULL;
+ }
+ *vp = &dummy_val;
+}
+
+/* Invalidate DEST, which is being assigned to or clobbered. */
+
+void
+cselib_invalidate_rtx (rtx dest)
+{
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+
+ if (REG_P (dest))
+ cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
+ else if (MEM_P (dest))
+ cselib_invalidate_mem (dest);
+
+ /* Some machines don't define AUTO_INC_DEC, but they still use push
+ instructions. We need to catch that case here in order to
+ invalidate the stack pointer correctly. Note that invalidating
+ the stack pointer is different from invalidating DEST. */
+ if (push_operand (dest, GET_MODE (dest)))
+ cselib_invalidate_rtx (stack_pointer_rtx);
+}
+
+/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
+
+static void
+cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
+ void *data ATTRIBUTE_UNUSED)
+{
+ cselib_invalidate_rtx (dest);
+}
+
+/* Record the result of a SET instruction. DEST is being set; the source
+ contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
+ describes its address. */
+
+static void
+cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
+{
+ int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
+
+ if (src_elt == 0 || side_effects_p (dest))
+ return;
+
+ if (dreg >= 0)
+ {
+ if (dreg < FIRST_PSEUDO_REGISTER)
+ {
+ unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
+
+ if (n > max_value_regs)
+ max_value_regs = n;
+ }
+
+ if (REG_VALUES (dreg) == 0)
+ {
+ used_regs[n_used_regs++] = dreg;
+ REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
+ }
+ else
+ {
+ /* The register should have been invalidated. */
+ gcc_assert (REG_VALUES (dreg)->elt == 0);
+ REG_VALUES (dreg)->elt = src_elt;
+ }
+
+ if (src_elt->locs == 0)
+ n_useless_values--;
+ src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
+ }
+ else if (MEM_P (dest) && dest_addr_elt != 0
+ && cselib_record_memory)
+ {
+ if (src_elt->locs == 0)
+ n_useless_values--;
+ add_mem_for_addr (dest_addr_elt, src_elt, dest);
+ }
+}
+
+/* Describe a single set that is part of an insn. */
+struct set
+{
+ rtx src;
+ rtx dest;
+ cselib_val *src_elt;
+ cselib_val *dest_addr_elt;
+};
+
+/* There is no good way to determine how many elements there can be
+ in a PARALLEL. Since it's fairly cheap, use a really large number. */
+#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
+
+/* Record the effects of any sets in INSN. */
+static void
+cselib_record_sets (rtx insn)
+{
+ int n_sets = 0;
+ int i;
+ struct set sets[MAX_SETS];
+ rtx body = PATTERN (insn);
+ rtx cond = 0;
+
+ body = PATTERN (insn);
+ if (GET_CODE (body) == COND_EXEC)
+ {
+ cond = COND_EXEC_TEST (body);
+ body = COND_EXEC_CODE (body);
+ }
+
+ /* Find all sets. */
+ if (GET_CODE (body) == SET)
+ {
+ sets[0].src = SET_SRC (body);
+ sets[0].dest = SET_DEST (body);
+ n_sets = 1;
+ }
+ else if (GET_CODE (body) == PARALLEL)
+ {
+ /* Look through the PARALLEL and record the values being
+ set, if possible. Also handle any CLOBBERs. */
+ for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
+ {
+ rtx x = XVECEXP (body, 0, i);
+
+ if (GET_CODE (x) == SET)
+ {
+ sets[n_sets].src = SET_SRC (x);
+ sets[n_sets].dest = SET_DEST (x);
+ n_sets++;
+ }
+ }
+ }
+
+ /* Look up the values that are read. Do this before invalidating the
+ locations that are written. */
+ for (i = 0; i < n_sets; i++)
+ {
+ rtx dest = sets[i].dest;
+
+ /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
+ the low part after invalidating any knowledge about larger modes. */
+ if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
+ sets[i].dest = dest = XEXP (dest, 0);
+
+ /* We don't know how to record anything but REG or MEM. */
+ if (REG_P (dest)
+ || (MEM_P (dest) && cselib_record_memory))
+ {
+ rtx src = sets[i].src;
+ if (cond)
+ src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
+ sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
+ if (MEM_P (dest))
+ sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
+ else
+ sets[i].dest_addr_elt = 0;
+ }
+ }
+
+ /* Invalidate all locations written by this insn. Note that the elts we
+ looked up in the previous loop aren't affected, just some of their
+ locations may go away. */
+ note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
+
+ /* If this is an asm, look for duplicate sets. This can happen when the
+ user uses the same value as an output multiple times. This is valid
+ if the outputs are not actually used thereafter. Treat this case as
+ if the value isn't actually set. We do this by smashing the destination
+ to pc_rtx, so that we won't record the value later. */
+ if (n_sets >= 2 && asm_noperands (body) >= 0)
+ {
+ for (i = 0; i < n_sets; i++)
+ {
+ rtx dest = sets[i].dest;
+ if (REG_P (dest) || MEM_P (dest))
+ {
+ int j;
+ for (j = i + 1; j < n_sets; j++)
+ if (rtx_equal_p (dest, sets[j].dest))
+ {
+ sets[i].dest = pc_rtx;
+ sets[j].dest = pc_rtx;
+ }
+ }
+ }
+ }
+
+ /* Now enter the equivalences in our tables. */
+ for (i = 0; i < n_sets; i++)
+ {
+ rtx dest = sets[i].dest;
+ if (REG_P (dest)
+ || (MEM_P (dest) && cselib_record_memory))
+ cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
+ }
+}
+
+/* Record the effects of INSN. */
+
+void
+cselib_process_insn (rtx insn)
+{
+ int i;
+ rtx x;
+
+ if (find_reg_note (insn, REG_LIBCALL, NULL))
+ cselib_current_insn_in_libcall = true;
+ cselib_current_insn = insn;
+
+ /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
+ if (LABEL_P (insn)
+ || (CALL_P (insn)
+ && find_reg_note (insn, REG_SETJMP, NULL))
+ || (NONJUMP_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
+ && MEM_VOLATILE_P (PATTERN (insn))))
+ {
+ if (find_reg_note (insn, REG_RETVAL, NULL))
+ cselib_current_insn_in_libcall = false;
+ cselib_clear_table ();
+ return;
+ }
+
+ if (! INSN_P (insn))
+ {
+ if (find_reg_note (insn, REG_RETVAL, NULL))
+ cselib_current_insn_in_libcall = false;
+ cselib_current_insn = 0;
+ return;
+ }
+
+ /* If this is a call instruction, forget anything stored in a
+ call clobbered register, or, if this is not a const call, in
+ memory. */
+ if (CALL_P (insn))
+ {
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (call_used_regs[i]
+ || (REG_VALUES (i) && REG_VALUES (i)->elt
+ && HARD_REGNO_CALL_PART_CLOBBERED (i,
+ GET_MODE (REG_VALUES (i)->elt->u.val_rtx))))
+ cselib_invalidate_regno (i, reg_raw_mode[i]);
+
+ if (! CONST_OR_PURE_CALL_P (insn))
+ cselib_invalidate_mem (callmem);
+ }
+
+ cselib_record_sets (insn);
+
+#ifdef AUTO_INC_DEC
+ /* Clobber any registers which appear in REG_INC notes. We
+ could keep track of the changes to their values, but it is
+ unlikely to help. */
+ for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
+ if (REG_NOTE_KIND (x) == REG_INC)
+ cselib_invalidate_rtx (XEXP (x, 0));
+#endif
+
+ /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
+ after we have processed the insn. */
+ if (CALL_P (insn))
+ for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
+ if (GET_CODE (XEXP (x, 0)) == CLOBBER)
+ cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
+
+ if (find_reg_note (insn, REG_RETVAL, NULL))
+ cselib_current_insn_in_libcall = false;
+ cselib_current_insn = 0;
+
+ if (n_useless_values > MAX_USELESS_VALUES
+ /* remove_useless_values is linear in the hash table size. Avoid
+ quadratic behaviour for very large hashtables with very few
+ useless elements. */
+ && (unsigned int)n_useless_values > cselib_hash_table->n_elements / 4)
+ remove_useless_values ();
+}
+
+/* Initialize cselib for one pass. The caller must also call
+ init_alias_analysis. */
+
+void
+cselib_init (bool record_memory)
+{
+ elt_list_pool = create_alloc_pool ("elt_list",
+ sizeof (struct elt_list), 10);
+ elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
+ sizeof (struct elt_loc_list), 10);
+ cselib_val_pool = create_alloc_pool ("cselib_val_list",
+ sizeof (cselib_val), 10);
+ value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
+ cselib_record_memory = record_memory;
+ /* This is only created once. */
+ if (! callmem)
+ callmem = gen_rtx_MEM (BLKmode, const0_rtx);
+
+ cselib_nregs = max_reg_num ();
+
+ /* We preserve reg_values to allow expensive clearing of the whole thing.
+ Reallocate it however if it happens to be too large. */
+ if (!reg_values || reg_values_size < cselib_nregs
+ || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
+ {
+ if (reg_values)
+ free (reg_values);
+ /* Some space for newly emit instructions so we don't end up
+ reallocating in between passes. */
+ reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
+ reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
+ }
+ used_regs = XNEWVEC (unsigned int, cselib_nregs);
+ n_used_regs = 0;
+ cselib_hash_table = htab_create (31, get_value_hash,
+ entry_and_rtx_equal_p, NULL);
+ cselib_current_insn_in_libcall = false;
+}
+
+/* Called when the current user is done with cselib. */
+
+void
+cselib_finish (void)
+{
+ free_alloc_pool (elt_list_pool);
+ free_alloc_pool (elt_loc_list_pool);
+ free_alloc_pool (cselib_val_pool);
+ free_alloc_pool (value_pool);
+ cselib_clear_table ();
+ htab_delete (cselib_hash_table);
+ free (used_regs);
+ used_regs = 0;
+ cselib_hash_table = 0;
+ n_useless_values = 0;
+ next_unknown_value = 0;
+}
+
+#include "gt-cselib.h"