aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/cp/search.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/cp/search.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/cp/search.c2609
1 files changed, 2609 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/cp/search.c b/gcc-4.2.1-5666.3/gcc/cp/search.c
new file mode 100644
index 000000000..be3f18e4a
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/cp/search.c
@@ -0,0 +1,2609 @@
+/* Breadth-first and depth-first routines for
+ searching multiple-inheritance lattice for GNU C++.
+ Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
+ Contributed by Michael Tiemann (tiemann@cygnus.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to
+the Free Software Foundation, 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA. */
+
+/* High-level class interface. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "cp-tree.h"
+#include "obstack.h"
+#include "flags.h"
+#include "rtl.h"
+#include "output.h"
+#include "toplev.h"
+
+static int is_subobject_of_p (tree, tree);
+static tree dfs_lookup_base (tree, void *);
+static tree dfs_dcast_hint_pre (tree, void *);
+static tree dfs_dcast_hint_post (tree, void *);
+static tree dfs_debug_mark (tree, void *);
+static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
+ tree (*post_fn) (tree, void *), void *data);
+static void dfs_unmark_r (tree);
+static int check_hidden_convs (tree, int, int, tree, tree, tree);
+static tree split_conversions (tree, tree, tree, tree);
+static int lookup_conversions_r (tree, int, int,
+ tree, tree, tree, tree, tree *, tree *);
+static int look_for_overrides_r (tree, tree);
+static tree lookup_field_r (tree, void *);
+static tree dfs_accessible_post (tree, void *);
+static tree dfs_walk_once_accessible_r (tree, bool, bool,
+ tree (*pre_fn) (tree, void *),
+ tree (*post_fn) (tree, void *),
+ void *data);
+static tree dfs_walk_once_accessible (tree, bool,
+ tree (*pre_fn) (tree, void *),
+ tree (*post_fn) (tree, void *),
+ void *data);
+static tree dfs_access_in_type (tree, void *);
+static access_kind access_in_type (tree, tree);
+static int protected_accessible_p (tree, tree, tree);
+static int friend_accessible_p (tree, tree, tree);
+static int template_self_reference_p (tree, tree);
+static tree dfs_get_pure_virtuals (tree, void *);
+
+
+/* Variables for gathering statistics. */
+#ifdef GATHER_STATISTICS
+static int n_fields_searched;
+static int n_calls_lookup_field, n_calls_lookup_field_1;
+static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
+static int n_calls_get_base_type;
+static int n_outer_fields_searched;
+static int n_contexts_saved;
+#endif /* GATHER_STATISTICS */
+
+
+/* Data for lookup_base and its workers. */
+
+struct lookup_base_data_s
+{
+ tree t; /* type being searched. */
+ tree base; /* The base type we're looking for. */
+ tree binfo; /* Found binfo. */
+ bool via_virtual; /* Found via a virtual path. */
+ bool ambiguous; /* Found multiply ambiguous */
+ bool repeated_base; /* Whether there are repeated bases in the
+ hierarchy. */
+ bool want_any; /* Whether we want any matching binfo. */
+};
+
+/* Worker function for lookup_base. See if we've found the desired
+ base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
+
+static tree
+dfs_lookup_base (tree binfo, void *data_)
+{
+ struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
+
+ if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
+ {
+ if (!data->binfo)
+ {
+ data->binfo = binfo;
+ data->via_virtual
+ = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
+
+ if (!data->repeated_base)
+ /* If there are no repeated bases, we can stop now. */
+ return binfo;
+
+ if (data->want_any && !data->via_virtual)
+ /* If this is a non-virtual base, then we can't do
+ better. */
+ return binfo;
+
+ return dfs_skip_bases;
+ }
+ else
+ {
+ gcc_assert (binfo != data->binfo);
+
+ /* We've found more than one matching binfo. */
+ if (!data->want_any)
+ {
+ /* This is immediately ambiguous. */
+ data->binfo = NULL_TREE;
+ data->ambiguous = true;
+ return error_mark_node;
+ }
+
+ /* Prefer one via a non-virtual path. */
+ if (!binfo_via_virtual (binfo, data->t))
+ {
+ data->binfo = binfo;
+ data->via_virtual = false;
+ return binfo;
+ }
+
+ /* There must be repeated bases, otherwise we'd have stopped
+ on the first base we found. */
+ return dfs_skip_bases;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Returns true if type BASE is accessible in T. (BASE is known to be
+ a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
+ true, consider any special access of the current scope, or access
+ bestowed by friendship. */
+
+bool
+accessible_base_p (tree t, tree base, bool consider_local_p)
+{
+ tree decl;
+
+ /* [class.access.base]
+
+ A base class is said to be accessible if an invented public
+ member of the base class is accessible.
+
+ If BASE is a non-proper base, this condition is trivially
+ true. */
+ if (same_type_p (t, base))
+ return true;
+ /* Rather than inventing a public member, we use the implicit
+ public typedef created in the scope of every class. */
+ decl = TYPE_FIELDS (base);
+ while (!DECL_SELF_REFERENCE_P (decl))
+ decl = TREE_CHAIN (decl);
+ while (ANON_AGGR_TYPE_P (t))
+ t = TYPE_CONTEXT (t);
+ return accessible_p (t, decl, consider_local_p);
+}
+
+/* Lookup BASE in the hierarchy dominated by T. Do access checking as
+ ACCESS specifies. Return the binfo we discover. If KIND_PTR is
+ non-NULL, fill with information about what kind of base we
+ discovered.
+
+ If the base is inaccessible, or ambiguous, and the ba_quiet bit is
+ not set in ACCESS, then an error is issued and error_mark_node is
+ returned. If the ba_quiet bit is set, then no error is issued and
+ NULL_TREE is returned. */
+
+tree
+lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
+{
+ tree binfo;
+ tree t_binfo;
+ base_kind bk;
+
+ if (t == error_mark_node || base == error_mark_node)
+ {
+ if (kind_ptr)
+ *kind_ptr = bk_not_base;
+ return error_mark_node;
+ }
+ gcc_assert (TYPE_P (base));
+
+ if (!TYPE_P (t))
+ {
+ t_binfo = t;
+ t = BINFO_TYPE (t);
+ }
+ else
+ {
+ t = complete_type (TYPE_MAIN_VARIANT (t));
+ t_binfo = TYPE_BINFO (t);
+ }
+
+ base = complete_type (TYPE_MAIN_VARIANT (base));
+
+ if (t_binfo)
+ {
+ struct lookup_base_data_s data;
+
+ data.t = t;
+ data.base = base;
+ data.binfo = NULL_TREE;
+ data.ambiguous = data.via_virtual = false;
+ data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
+ data.want_any = access == ba_any;
+
+ dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
+ binfo = data.binfo;
+
+ if (!binfo)
+ bk = data.ambiguous ? bk_ambig : bk_not_base;
+ else if (binfo == t_binfo)
+ bk = bk_same_type;
+ else if (data.via_virtual)
+ bk = bk_via_virtual;
+ else
+ bk = bk_proper_base;
+ }
+ else
+ {
+ binfo = NULL_TREE;
+ bk = bk_not_base;
+ }
+
+ /* Check that the base is unambiguous and accessible. */
+ if (access != ba_any)
+ switch (bk)
+ {
+ case bk_not_base:
+ break;
+
+ case bk_ambig:
+ if (!(access & ba_quiet))
+ {
+ error ("%qT is an ambiguous base of %qT", base, t);
+ binfo = error_mark_node;
+ }
+ break;
+
+ default:
+ if ((access & ba_check_bit)
+ /* If BASE is incomplete, then BASE and TYPE are probably
+ the same, in which case BASE is accessible. If they
+ are not the same, then TYPE is invalid. In that case,
+ there's no need to issue another error here, and
+ there's no implicit typedef to use in the code that
+ follows, so we skip the check. */
+ && COMPLETE_TYPE_P (base)
+ && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
+ {
+ if (!(access & ba_quiet))
+ {
+ error ("%qT is an inaccessible base of %qT", base, t);
+ binfo = error_mark_node;
+ }
+ else
+ binfo = NULL_TREE;
+ bk = bk_inaccessible;
+ }
+ break;
+ }
+
+ if (kind_ptr)
+ *kind_ptr = bk;
+
+ return binfo;
+}
+
+/* Data for dcast_base_hint walker. */
+
+struct dcast_data_s
+{
+ tree subtype; /* The base type we're looking for. */
+ int virt_depth; /* Number of virtual bases encountered from most
+ derived. */
+ tree offset; /* Best hint offset discovered so far. */
+ bool repeated_base; /* Whether there are repeated bases in the
+ hierarchy. */
+};
+
+/* Worker for dcast_base_hint. Search for the base type being cast
+ from. */
+
+static tree
+dfs_dcast_hint_pre (tree binfo, void *data_)
+{
+ struct dcast_data_s *data = (struct dcast_data_s *) data_;
+
+ if (BINFO_VIRTUAL_P (binfo))
+ data->virt_depth++;
+
+ if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
+ {
+ if (data->virt_depth)
+ {
+ data->offset = ssize_int (-1);
+ return data->offset;
+ }
+ if (data->offset)
+ data->offset = ssize_int (-3);
+ else
+ data->offset = BINFO_OFFSET (binfo);
+
+ return data->repeated_base ? dfs_skip_bases : data->offset;
+ }
+
+ return NULL_TREE;
+}
+
+/* Worker for dcast_base_hint. Track the virtual depth. */
+
+static tree
+dfs_dcast_hint_post (tree binfo, void *data_)
+{
+ struct dcast_data_s *data = (struct dcast_data_s *) data_;
+
+ if (BINFO_VIRTUAL_P (binfo))
+ data->virt_depth--;
+
+ return NULL_TREE;
+}
+
+/* The dynamic cast runtime needs a hint about how the static SUBTYPE type
+ started from is related to the required TARGET type, in order to optimize
+ the inheritance graph search. This information is independent of the
+ current context, and ignores private paths, hence get_base_distance is
+ inappropriate. Return a TREE specifying the base offset, BOFF.
+ BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
+ and there are no public virtual SUBTYPE bases.
+ BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
+ BOFF == -2, SUBTYPE is not a public base.
+ BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
+
+tree
+dcast_base_hint (tree subtype, tree target)
+{
+ struct dcast_data_s data;
+
+ data.subtype = subtype;
+ data.virt_depth = 0;
+ data.offset = NULL_TREE;
+ data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
+
+ dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
+ dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
+ return data.offset ? data.offset : ssize_int (-2);
+}
+
+/* Search for a member with name NAME in a multiple inheritance
+ lattice specified by TYPE. If it does not exist, return NULL_TREE.
+ If the member is ambiguously referenced, return `error_mark_node'.
+ Otherwise, return a DECL with the indicated name. If WANT_TYPE is
+ true, type declarations are preferred. */
+
+/* Do a 1-level search for NAME as a member of TYPE. The caller must
+ figure out whether it can access this field. (Since it is only one
+ level, this is reasonable.) */
+
+tree
+lookup_field_1 (tree type, tree name, bool want_type)
+{
+ tree field;
+
+ if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
+ || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
+ || TREE_CODE (type) == TYPENAME_TYPE)
+ /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
+ BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
+ instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
+ the code often worked even when we treated the index as a list
+ of fields!)
+ The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
+ return NULL_TREE;
+
+ if (TYPE_NAME (type)
+ && DECL_LANG_SPECIFIC (TYPE_NAME (type))
+ && DECL_SORTED_FIELDS (TYPE_NAME (type)))
+ {
+ tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
+ int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
+ int i;
+
+ while (lo < hi)
+ {
+ i = (lo + hi) / 2;
+
+#ifdef GATHER_STATISTICS
+ n_fields_searched++;
+#endif /* GATHER_STATISTICS */
+
+ if (DECL_NAME (fields[i]) > name)
+ hi = i;
+ else if (DECL_NAME (fields[i]) < name)
+ lo = i + 1;
+ else
+ {
+ field = NULL_TREE;
+
+ /* We might have a nested class and a field with the
+ same name; we sorted them appropriately via
+ field_decl_cmp, so just look for the first or last
+ field with this name. */
+ if (want_type)
+ {
+ do
+ field = fields[i--];
+ while (i >= lo && DECL_NAME (fields[i]) == name);
+ if (TREE_CODE (field) != TYPE_DECL
+ && !DECL_CLASS_TEMPLATE_P (field))
+ field = NULL_TREE;
+ }
+ else
+ {
+ do
+ field = fields[i++];
+ while (i < hi && DECL_NAME (fields[i]) == name);
+ }
+ return field;
+ }
+ }
+ return NULL_TREE;
+ }
+
+ field = TYPE_FIELDS (type);
+
+#ifdef GATHER_STATISTICS
+ n_calls_lookup_field_1++;
+#endif /* GATHER_STATISTICS */
+ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
+ {
+#ifdef GATHER_STATISTICS
+ n_fields_searched++;
+#endif /* GATHER_STATISTICS */
+ gcc_assert (DECL_P (field));
+ if (DECL_NAME (field) == NULL_TREE
+ && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
+ {
+ tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
+ if (temp)
+ return temp;
+ }
+ if (TREE_CODE (field) == USING_DECL)
+ {
+ /* We generally treat class-scope using-declarations as
+ ARM-style access specifications, because support for the
+ ISO semantics has not been implemented. So, in general,
+ there's no reason to return a USING_DECL, and the rest of
+ the compiler cannot handle that. Once the class is
+ defined, USING_DECLs are purged from TYPE_FIELDS; see
+ handle_using_decl. However, we make special efforts to
+ make using-declarations in class templates and class
+ template partial specializations work correctly. */
+ if (!DECL_DEPENDENT_P (field))
+ continue;
+ }
+
+ if (DECL_NAME (field) == name
+ && (!want_type
+ || TREE_CODE (field) == TYPE_DECL
+ || DECL_CLASS_TEMPLATE_P (field)))
+ return field;
+ }
+ /* Not found. */
+ if (name == vptr_identifier)
+ {
+ /* Give the user what s/he thinks s/he wants. */
+ if (TYPE_POLYMORPHIC_P (type))
+ return TYPE_VFIELD (type);
+ }
+ return NULL_TREE;
+}
+
+/* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
+ NAMESPACE_DECL corresponding to the innermost non-block scope. */
+
+tree
+current_scope (void)
+{
+ /* There are a number of cases we need to be aware of here:
+ current_class_type current_function_decl
+ global NULL NULL
+ fn-local NULL SET
+ class-local SET NULL
+ class->fn SET SET
+ fn->class SET SET
+
+ Those last two make life interesting. If we're in a function which is
+ itself inside a class, we need decls to go into the fn's decls (our
+ second case below). But if we're in a class and the class itself is
+ inside a function, we need decls to go into the decls for the class. To
+ achieve this last goal, we must see if, when both current_class_ptr and
+ current_function_decl are set, the class was declared inside that
+ function. If so, we know to put the decls into the class's scope. */
+ if (current_function_decl && current_class_type
+ && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
+ && same_type_p (DECL_CONTEXT (current_function_decl),
+ current_class_type))
+ || (DECL_FRIEND_CONTEXT (current_function_decl)
+ && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
+ current_class_type))))
+ return current_function_decl;
+ if (current_class_type)
+ return current_class_type;
+ if (current_function_decl)
+ return current_function_decl;
+ return current_namespace;
+}
+
+/* Returns nonzero if we are currently in a function scope. Note
+ that this function returns zero if we are within a local class, but
+ not within a member function body of the local class. */
+
+int
+at_function_scope_p (void)
+{
+ tree cs = current_scope ();
+ return cs && TREE_CODE (cs) == FUNCTION_DECL;
+}
+
+/* Returns true if the innermost active scope is a class scope. */
+
+bool
+at_class_scope_p (void)
+{
+ tree cs = current_scope ();
+ return cs && TYPE_P (cs);
+}
+
+/* Returns true if the innermost active scope is a namespace scope. */
+
+bool
+at_namespace_scope_p (void)
+{
+ tree cs = current_scope ();
+ return cs && TREE_CODE (cs) == NAMESPACE_DECL;
+}
+
+/* Return the scope of DECL, as appropriate when doing name-lookup. */
+
+tree
+context_for_name_lookup (tree decl)
+{
+ /* [class.union]
+
+ For the purposes of name lookup, after the anonymous union
+ definition, the members of the anonymous union are considered to
+ have been defined in the scope in which the anonymous union is
+ declared. */
+ tree context = DECL_CONTEXT (decl);
+
+ while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
+ context = TYPE_CONTEXT (context);
+ if (!context)
+ context = global_namespace;
+
+ return context;
+}
+
+/* The accessibility routines use BINFO_ACCESS for scratch space
+ during the computation of the accessibility of some declaration. */
+
+#define BINFO_ACCESS(NODE) \
+ ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
+
+/* Set the access associated with NODE to ACCESS. */
+
+#define SET_BINFO_ACCESS(NODE, ACCESS) \
+ ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
+ (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
+
+/* Called from access_in_type via dfs_walk. Calculate the access to
+ DATA (which is really a DECL) in BINFO. */
+
+static tree
+dfs_access_in_type (tree binfo, void *data)
+{
+ tree decl = (tree) data;
+ tree type = BINFO_TYPE (binfo);
+ access_kind access = ak_none;
+
+ if (context_for_name_lookup (decl) == type)
+ {
+ /* If we have descended to the scope of DECL, just note the
+ appropriate access. */
+ if (TREE_PRIVATE (decl))
+ access = ak_private;
+ else if (TREE_PROTECTED (decl))
+ access = ak_protected;
+ else
+ access = ak_public;
+ }
+ else
+ {
+ /* First, check for an access-declaration that gives us more
+ access to the DECL. The CONST_DECL for an enumeration
+ constant will not have DECL_LANG_SPECIFIC, and thus no
+ DECL_ACCESS. */
+ if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
+ {
+ tree decl_access = purpose_member (type, DECL_ACCESS (decl));
+
+ if (decl_access)
+ {
+ decl_access = TREE_VALUE (decl_access);
+
+ if (decl_access == access_public_node)
+ access = ak_public;
+ else if (decl_access == access_protected_node)
+ access = ak_protected;
+ else if (decl_access == access_private_node)
+ access = ak_private;
+ else
+ gcc_unreachable ();
+ }
+ }
+
+ if (!access)
+ {
+ int i;
+ tree base_binfo;
+ VEC(tree,gc) *accesses;
+
+ /* Otherwise, scan our baseclasses, and pick the most favorable
+ access. */
+ accesses = BINFO_BASE_ACCESSES (binfo);
+ for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ {
+ tree base_access = VEC_index (tree, accesses, i);
+ access_kind base_access_now = BINFO_ACCESS (base_binfo);
+
+ if (base_access_now == ak_none || base_access_now == ak_private)
+ /* If it was not accessible in the base, or only
+ accessible as a private member, we can't access it
+ all. */
+ base_access_now = ak_none;
+ else if (base_access == access_protected_node)
+ /* Public and protected members in the base become
+ protected here. */
+ base_access_now = ak_protected;
+ else if (base_access == access_private_node)
+ /* Public and protected members in the base become
+ private here. */
+ base_access_now = ak_private;
+
+ /* See if the new access, via this base, gives more
+ access than our previous best access. */
+ if (base_access_now != ak_none
+ && (access == ak_none || base_access_now < access))
+ {
+ access = base_access_now;
+
+ /* If the new access is public, we can't do better. */
+ if (access == ak_public)
+ break;
+ }
+ }
+ }
+ }
+
+ /* Note the access to DECL in TYPE. */
+ SET_BINFO_ACCESS (binfo, access);
+
+ return NULL_TREE;
+}
+
+/* Return the access to DECL in TYPE. */
+
+static access_kind
+access_in_type (tree type, tree decl)
+{
+ tree binfo = TYPE_BINFO (type);
+
+ /* We must take into account
+
+ [class.paths]
+
+ If a name can be reached by several paths through a multiple
+ inheritance graph, the access is that of the path that gives
+ most access.
+
+ The algorithm we use is to make a post-order depth-first traversal
+ of the base-class hierarchy. As we come up the tree, we annotate
+ each node with the most lenient access. */
+ dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
+
+ return BINFO_ACCESS (binfo);
+}
+
+/* Returns nonzero if it is OK to access DECL through an object
+ indicated by BINFO in the context of DERIVED. */
+
+static int
+protected_accessible_p (tree decl, tree derived, tree binfo)
+{
+ access_kind access;
+
+ /* We're checking this clause from [class.access.base]
+
+ m as a member of N is protected, and the reference occurs in a
+ member or friend of class N, or in a member or friend of a
+ class P derived from N, where m as a member of P is private or
+ protected.
+
+ Here DERIVED is a possible P and DECL is m. accessible_p will
+ iterate over various values of N, but the access to m in DERIVED
+ does not change.
+
+ Note that I believe that the passage above is wrong, and should read
+ "...is private or protected or public"; otherwise you get bizarre results
+ whereby a public using-decl can prevent you from accessing a protected
+ member of a base. (jason 2000/02/28) */
+
+ /* If DERIVED isn't derived from m's class, then it can't be a P. */
+ if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
+ return 0;
+
+ access = access_in_type (derived, decl);
+
+ /* If m is inaccessible in DERIVED, then it's not a P. */
+ if (access == ak_none)
+ return 0;
+
+ /* [class.protected]
+
+ When a friend or a member function of a derived class references
+ a protected nonstatic member of a base class, an access check
+ applies in addition to those described earlier in clause
+ _class.access_) Except when forming a pointer to member
+ (_expr.unary.op_), the access must be through a pointer to,
+ reference to, or object of the derived class itself (or any class
+ derived from that class) (_expr.ref_). If the access is to form
+ a pointer to member, the nested-name-specifier shall name the
+ derived class (or any class derived from that class). */
+ if (DECL_NONSTATIC_MEMBER_P (decl))
+ {
+ /* We can tell through what the reference is occurring by
+ chasing BINFO up to the root. */
+ tree t = binfo;
+ while (BINFO_INHERITANCE_CHAIN (t))
+ t = BINFO_INHERITANCE_CHAIN (t);
+
+ if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Returns nonzero if SCOPE is a friend of a type which would be able
+ to access DECL through the object indicated by BINFO. */
+
+static int
+friend_accessible_p (tree scope, tree decl, tree binfo)
+{
+ tree befriending_classes;
+ tree t;
+
+ if (!scope)
+ return 0;
+
+ if (TREE_CODE (scope) == FUNCTION_DECL
+ || DECL_FUNCTION_TEMPLATE_P (scope))
+ befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
+ else if (TYPE_P (scope))
+ befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
+ else
+ return 0;
+
+ for (t = befriending_classes; t; t = TREE_CHAIN (t))
+ if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
+ return 1;
+
+ /* Nested classes have the same access as their enclosing types, as
+ per DR 45 (this is a change from the standard). */
+ if (TYPE_P (scope))
+ for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
+ if (protected_accessible_p (decl, t, binfo))
+ return 1;
+
+ if (TREE_CODE (scope) == FUNCTION_DECL
+ || DECL_FUNCTION_TEMPLATE_P (scope))
+ {
+ /* Perhaps this SCOPE is a member of a class which is a
+ friend. */
+ if (DECL_CLASS_SCOPE_P (scope)
+ && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
+ return 1;
+
+ /* Or an instantiation of something which is a friend. */
+ if (DECL_TEMPLATE_INFO (scope))
+ {
+ int ret;
+ /* Increment processing_template_decl to make sure that
+ dependent_type_p works correctly. */
+ ++processing_template_decl;
+ ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
+ --processing_template_decl;
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+/* Called via dfs_walk_once_accessible from accessible_p */
+
+static tree
+dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
+{
+ if (BINFO_ACCESS (binfo) != ak_none)
+ {
+ tree scope = current_scope ();
+ if (scope && TREE_CODE (scope) != NAMESPACE_DECL
+ && is_friend (BINFO_TYPE (binfo), scope))
+ return binfo;
+ }
+
+ return NULL_TREE;
+}
+
+/* DECL is a declaration from a base class of TYPE, which was the
+ class used to name DECL. Return nonzero if, in the current
+ context, DECL is accessible. If TYPE is actually a BINFO node,
+ then we can tell in what context the access is occurring by looking
+ at the most derived class along the path indicated by BINFO. If
+ CONSIDER_LOCAL is true, do consider special access the current
+ scope or friendship thereof we might have. */
+
+int
+accessible_p (tree type, tree decl, bool consider_local_p)
+{
+ tree binfo;
+ tree scope;
+ access_kind access;
+
+ /* Nonzero if it's OK to access DECL if it has protected
+ accessibility in TYPE. */
+ int protected_ok = 0;
+
+ /* If this declaration is in a block or namespace scope, there's no
+ access control. */
+ if (!TYPE_P (context_for_name_lookup (decl)))
+ return 1;
+
+ /* There is no need to perform access checks inside a thunk. */
+ scope = current_scope ();
+ if (scope && DECL_THUNK_P (scope))
+ return 1;
+
+ /* In a template declaration, we cannot be sure whether the
+ particular specialization that is instantiated will be a friend
+ or not. Therefore, all access checks are deferred until
+ instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
+ parameter list for a template (because we may see dependent types
+ in default arguments for template parameters), and access
+ checking should be performed in the outermost parameter list. */
+ if (processing_template_decl
+ && (!processing_template_parmlist || processing_template_decl > 1))
+ return 1;
+
+ if (!TYPE_P (type))
+ {
+ binfo = type;
+ type = BINFO_TYPE (type);
+ }
+ else
+ binfo = TYPE_BINFO (type);
+
+ /* [class.access.base]
+
+ A member m is accessible when named in class N if
+
+ --m as a member of N is public, or
+
+ --m as a member of N is private, and the reference occurs in a
+ member or friend of class N, or
+
+ --m as a member of N is protected, and the reference occurs in a
+ member or friend of class N, or in a member or friend of a
+ class P derived from N, where m as a member of P is private or
+ protected, or
+
+ --there exists a base class B of N that is accessible at the point
+ of reference, and m is accessible when named in class B.
+
+ We walk the base class hierarchy, checking these conditions. */
+
+ if (consider_local_p)
+ {
+ /* Figure out where the reference is occurring. Check to see if
+ DECL is private or protected in this scope, since that will
+ determine whether protected access is allowed. */
+ if (current_class_type)
+ protected_ok = protected_accessible_p (decl,
+ current_class_type, binfo);
+
+ /* Now, loop through the classes of which we are a friend. */
+ if (!protected_ok)
+ protected_ok = friend_accessible_p (scope, decl, binfo);
+ }
+
+ /* Standardize the binfo that access_in_type will use. We don't
+ need to know what path was chosen from this point onwards. */
+ binfo = TYPE_BINFO (type);
+
+ /* Compute the accessibility of DECL in the class hierarchy
+ dominated by type. */
+ access = access_in_type (type, decl);
+ if (access == ak_public
+ || (access == ak_protected && protected_ok))
+ return 1;
+
+ if (!consider_local_p)
+ return 0;
+
+ /* Walk the hierarchy again, looking for a base class that allows
+ access. */
+ return dfs_walk_once_accessible (binfo, /*friends=*/true,
+ NULL, dfs_accessible_post, NULL)
+ != NULL_TREE;
+}
+
+struct lookup_field_info {
+ /* The type in which we're looking. */
+ tree type;
+ /* The name of the field for which we're looking. */
+ tree name;
+ /* If non-NULL, the current result of the lookup. */
+ tree rval;
+ /* The path to RVAL. */
+ tree rval_binfo;
+ /* If non-NULL, the lookup was ambiguous, and this is a list of the
+ candidates. */
+ tree ambiguous;
+ /* If nonzero, we are looking for types, not data members. */
+ int want_type;
+ /* If something went wrong, a message indicating what. */
+ const char *errstr;
+};
+
+/* Within the scope of a template class, you can refer to the to the
+ current specialization with the name of the template itself. For
+ example:
+
+ template <typename T> struct S { S* sp; }
+
+ Returns nonzero if DECL is such a declaration in a class TYPE. */
+
+static int
+template_self_reference_p (tree type, tree decl)
+{
+ return (CLASSTYPE_USE_TEMPLATE (type)
+ && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
+ && TREE_CODE (decl) == TYPE_DECL
+ && DECL_ARTIFICIAL (decl)
+ && DECL_NAME (decl) == constructor_name (type));
+}
+
+/* Nonzero for a class member means that it is shared between all objects
+ of that class.
+
+ [class.member.lookup]:If the resulting set of declarations are not all
+ from sub-objects of the same type, or the set has a nonstatic member
+ and includes members from distinct sub-objects, there is an ambiguity
+ and the program is ill-formed.
+
+ This function checks that T contains no nonstatic members. */
+
+int
+shared_member_p (tree t)
+{
+ if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
+ || TREE_CODE (t) == CONST_DECL)
+ return 1;
+ if (is_overloaded_fn (t))
+ {
+ for (; t; t = OVL_NEXT (t))
+ {
+ tree fn = OVL_CURRENT (t);
+ if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
+ return 0;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/* Routine to see if the sub-object denoted by the binfo PARENT can be
+ found as a base class and sub-object of the object denoted by
+ BINFO. */
+
+static int
+is_subobject_of_p (tree parent, tree binfo)
+{
+ tree probe;
+
+ for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
+ {
+ if (probe == binfo)
+ return 1;
+ if (BINFO_VIRTUAL_P (probe))
+ return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
+ != NULL_TREE);
+ }
+ return 0;
+}
+
+/* DATA is really a struct lookup_field_info. Look for a field with
+ the name indicated there in BINFO. If this function returns a
+ non-NULL value it is the result of the lookup. Called from
+ lookup_field via breadth_first_search. */
+
+static tree
+lookup_field_r (tree binfo, void *data)
+{
+ struct lookup_field_info *lfi = (struct lookup_field_info *) data;
+ tree type = BINFO_TYPE (binfo);
+ tree nval = NULL_TREE;
+
+ /* If this is a dependent base, don't look in it. */
+ if (BINFO_DEPENDENT_BASE_P (binfo))
+ return NULL_TREE;
+
+ /* If this base class is hidden by the best-known value so far, we
+ don't need to look. */
+ if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
+ && !BINFO_VIRTUAL_P (binfo))
+ return dfs_skip_bases;
+
+ /* First, look for a function. There can't be a function and a data
+ member with the same name, and if there's a function and a type
+ with the same name, the type is hidden by the function. */
+ if (!lfi->want_type)
+ {
+ int idx = lookup_fnfields_1 (type, lfi->name);
+ if (idx >= 0)
+ nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
+ }
+
+ if (!nval)
+ /* Look for a data member or type. */
+ nval = lookup_field_1 (type, lfi->name, lfi->want_type);
+
+ /* If there is no declaration with the indicated name in this type,
+ then there's nothing to do. */
+ if (!nval)
+ goto done;
+
+ /* If we're looking up a type (as with an elaborated type specifier)
+ we ignore all non-types we find. */
+ if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
+ && !DECL_CLASS_TEMPLATE_P (nval))
+ {
+ if (lfi->name == TYPE_IDENTIFIER (type))
+ {
+ /* If the aggregate has no user defined constructors, we allow
+ it to have fields with the same name as the enclosing type.
+ If we are looking for that name, find the corresponding
+ TYPE_DECL. */
+ for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
+ if (DECL_NAME (nval) == lfi->name
+ && TREE_CODE (nval) == TYPE_DECL)
+ break;
+ }
+ else
+ nval = NULL_TREE;
+ if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
+ {
+ binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
+ lfi->name);
+ if (e != NULL)
+ nval = TYPE_MAIN_DECL (e->type);
+ else
+ goto done;
+ }
+ }
+
+ /* You must name a template base class with a template-id. */
+ if (!same_type_p (type, lfi->type)
+ && template_self_reference_p (type, nval))
+ goto done;
+
+ /* If the lookup already found a match, and the new value doesn't
+ hide the old one, we might have an ambiguity. */
+ if (lfi->rval_binfo
+ && !is_subobject_of_p (lfi->rval_binfo, binfo))
+
+ {
+ if (nval == lfi->rval && shared_member_p (nval))
+ /* The two things are really the same. */
+ ;
+ else if (is_subobject_of_p (binfo, lfi->rval_binfo))
+ /* The previous value hides the new one. */
+ ;
+ else
+ {
+ /* We have a real ambiguity. We keep a chain of all the
+ candidates. */
+ if (!lfi->ambiguous && lfi->rval)
+ {
+ /* This is the first time we noticed an ambiguity. Add
+ what we previously thought was a reasonable candidate
+ to the list. */
+ lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
+ TREE_TYPE (lfi->ambiguous) = error_mark_node;
+ }
+
+ /* Add the new value. */
+ lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
+ TREE_TYPE (lfi->ambiguous) = error_mark_node;
+ lfi->errstr = "request for member %qD is ambiguous";
+ }
+ }
+ else
+ {
+ lfi->rval = nval;
+ lfi->rval_binfo = binfo;
+ }
+
+ done:
+ /* Don't look for constructors or destructors in base classes. */
+ if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
+ return dfs_skip_bases;
+ return NULL_TREE;
+}
+
+/* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
+ BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
+ FUNCTIONS, and OPTYPE respectively. */
+
+tree
+build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
+{
+ tree baselink;
+
+ gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
+ || TREE_CODE (functions) == TEMPLATE_DECL
+ || TREE_CODE (functions) == TEMPLATE_ID_EXPR
+ || TREE_CODE (functions) == OVERLOAD);
+ gcc_assert (!optype || TYPE_P (optype));
+ gcc_assert (TREE_TYPE (functions));
+
+ baselink = make_node (BASELINK);
+ TREE_TYPE (baselink) = TREE_TYPE (functions);
+ BASELINK_BINFO (baselink) = binfo;
+ BASELINK_ACCESS_BINFO (baselink) = access_binfo;
+ BASELINK_FUNCTIONS (baselink) = functions;
+ BASELINK_OPTYPE (baselink) = optype;
+
+ return baselink;
+}
+
+/* Look for a member named NAME in an inheritance lattice dominated by
+ XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
+ is 1, we enforce accessibility. If PROTECT is zero, then, for an
+ ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
+ messages about inaccessible or ambiguous lookup. If PROTECT is 2,
+ we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
+ TREE_VALUEs are the list of ambiguous candidates.
+
+ WANT_TYPE is 1 when we should only return TYPE_DECLs.
+
+ If nothing can be found return NULL_TREE and do not issue an error. */
+
+tree
+lookup_member (tree xbasetype, tree name, int protect, bool want_type)
+{
+ tree rval, rval_binfo = NULL_TREE;
+ tree type = NULL_TREE, basetype_path = NULL_TREE;
+ struct lookup_field_info lfi;
+
+ /* rval_binfo is the binfo associated with the found member, note,
+ this can be set with useful information, even when rval is not
+ set, because it must deal with ALL members, not just non-function
+ members. It is used for ambiguity checking and the hidden
+ checks. Whereas rval is only set if a proper (not hidden)
+ non-function member is found. */
+
+ const char *errstr = 0;
+
+ gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
+
+ if (TREE_CODE (xbasetype) == TREE_BINFO)
+ {
+ type = BINFO_TYPE (xbasetype);
+ basetype_path = xbasetype;
+ }
+ else
+ {
+ if (!IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)))
+ return NULL_TREE;
+ type = xbasetype;
+ xbasetype = NULL_TREE;
+ }
+
+ type = complete_type (type);
+ if (!basetype_path)
+ basetype_path = TYPE_BINFO (type);
+
+ if (!basetype_path)
+ return NULL_TREE;
+
+#ifdef GATHER_STATISTICS
+ n_calls_lookup_field++;
+#endif /* GATHER_STATISTICS */
+
+ memset (&lfi, 0, sizeof (lfi));
+ lfi.type = type;
+ lfi.name = name;
+ lfi.want_type = want_type;
+ dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
+ rval = lfi.rval;
+ rval_binfo = lfi.rval_binfo;
+ if (rval_binfo)
+ type = BINFO_TYPE (rval_binfo);
+ errstr = lfi.errstr;
+
+ /* If we are not interested in ambiguities, don't report them;
+ just return NULL_TREE. */
+ if (!protect && lfi.ambiguous)
+ return NULL_TREE;
+
+ if (protect == 2)
+ {
+ if (lfi.ambiguous)
+ return lfi.ambiguous;
+ else
+ protect = 0;
+ }
+
+ /* [class.access]
+
+ In the case of overloaded function names, access control is
+ applied to the function selected by overloaded resolution.
+
+ We cannot check here, even if RVAL is only a single non-static
+ member function, since we do not know what the "this" pointer
+ will be. For:
+
+ class A { protected: void f(); };
+ class B : public A {
+ void g(A *p) {
+ f(); // OK
+ p->f(); // Not OK.
+ }
+ };
+
+ only the first call to "f" is valid. However, if the function is
+ static, we can check. */
+ if (rval && protect
+ && !really_overloaded_fn (rval)
+ && !(TREE_CODE (rval) == FUNCTION_DECL
+ && DECL_NONSTATIC_MEMBER_FUNCTION_P (rval)))
+ perform_or_defer_access_check (basetype_path, rval, rval);
+
+ if (errstr && protect)
+ {
+ error (errstr, name, type);
+ if (lfi.ambiguous)
+ print_candidates (lfi.ambiguous);
+ rval = error_mark_node;
+ }
+
+ if (rval && is_overloaded_fn (rval))
+ rval = build_baselink (rval_binfo, basetype_path, rval,
+ (IDENTIFIER_TYPENAME_P (name)
+ ? TREE_TYPE (name): NULL_TREE));
+ return rval;
+}
+
+/* Like lookup_member, except that if we find a function member we
+ return NULL_TREE. */
+
+tree
+lookup_field (tree xbasetype, tree name, int protect, bool want_type)
+{
+ tree rval = lookup_member (xbasetype, name, protect, want_type);
+
+ /* Ignore functions, but propagate the ambiguity list. */
+ if (!error_operand_p (rval)
+ && (rval && BASELINK_P (rval)))
+ return NULL_TREE;
+
+ return rval;
+}
+
+/* Like lookup_member, except that if we find a non-function member we
+ return NULL_TREE. */
+
+tree
+lookup_fnfields (tree xbasetype, tree name, int protect)
+{
+ tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
+
+ /* Ignore non-functions, but propagate the ambiguity list. */
+ if (!error_operand_p (rval)
+ && (rval && !BASELINK_P (rval)))
+ return NULL_TREE;
+
+ return rval;
+}
+
+/* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
+ corresponding to "operator TYPE ()", or -1 if there is no such
+ operator. Only CLASS_TYPE itself is searched; this routine does
+ not scan the base classes of CLASS_TYPE. */
+
+static int
+lookup_conversion_operator (tree class_type, tree type)
+{
+ int tpl_slot = -1;
+
+ if (TYPE_HAS_CONVERSION (class_type))
+ {
+ int i;
+ tree fn;
+ VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
+
+ for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
+ VEC_iterate (tree, methods, i, fn); ++i)
+ {
+ /* All the conversion operators come near the beginning of
+ the class. Therefore, if FN is not a conversion
+ operator, there is no matching conversion operator in
+ CLASS_TYPE. */
+ fn = OVL_CURRENT (fn);
+ if (!DECL_CONV_FN_P (fn))
+ break;
+
+ if (TREE_CODE (fn) == TEMPLATE_DECL)
+ /* All the templated conversion functions are on the same
+ slot, so remember it. */
+ tpl_slot = i;
+ else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
+ return i;
+ }
+ }
+
+ return tpl_slot;
+}
+
+/* TYPE is a class type. Return the index of the fields within
+ the method vector with name NAME, or -1 is no such field exists. */
+
+int
+lookup_fnfields_1 (tree type, tree name)
+{
+ VEC(tree,gc) *method_vec;
+ tree fn;
+ tree tmp;
+ size_t i;
+
+ if (!CLASS_TYPE_P (type))
+ return -1;
+
+ if (COMPLETE_TYPE_P (type))
+ {
+ if ((name == ctor_identifier
+ || name == base_ctor_identifier
+ || name == complete_ctor_identifier))
+ {
+ if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
+ lazily_declare_fn (sfk_constructor, type);
+ if (CLASSTYPE_LAZY_COPY_CTOR (type))
+ lazily_declare_fn (sfk_copy_constructor, type);
+ }
+ else if (name == ansi_assopname(NOP_EXPR)
+ && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
+ lazily_declare_fn (sfk_assignment_operator, type);
+ else if ((name == dtor_identifier
+ || name == base_dtor_identifier
+ || name == complete_dtor_identifier
+ || name == deleting_dtor_identifier)
+ && CLASSTYPE_LAZY_DESTRUCTOR (type))
+ lazily_declare_fn (sfk_destructor, type);
+ }
+
+ method_vec = CLASSTYPE_METHOD_VEC (type);
+ if (!method_vec)
+ return -1;
+
+#ifdef GATHER_STATISTICS
+ n_calls_lookup_fnfields_1++;
+#endif /* GATHER_STATISTICS */
+
+ /* Constructors are first... */
+ if (name == ctor_identifier)
+ {
+ fn = CLASSTYPE_CONSTRUCTORS (type);
+ return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
+ }
+ /* and destructors are second. */
+ if (name == dtor_identifier)
+ {
+ fn = CLASSTYPE_DESTRUCTORS (type);
+ return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
+ }
+ if (IDENTIFIER_TYPENAME_P (name))
+ return lookup_conversion_operator (type, TREE_TYPE (name));
+
+ /* Skip the conversion operators. */
+ for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
+ VEC_iterate (tree, method_vec, i, fn);
+ ++i)
+ if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
+ break;
+
+ /* If the type is complete, use binary search. */
+ if (COMPLETE_TYPE_P (type))
+ {
+ int lo;
+ int hi;
+
+ lo = i;
+ hi = VEC_length (tree, method_vec);
+ while (lo < hi)
+ {
+ i = (lo + hi) / 2;
+
+#ifdef GATHER_STATISTICS
+ n_outer_fields_searched++;
+#endif /* GATHER_STATISTICS */
+
+ tmp = VEC_index (tree, method_vec, i);
+ tmp = DECL_NAME (OVL_CURRENT (tmp));
+ if (tmp > name)
+ hi = i;
+ else if (tmp < name)
+ lo = i + 1;
+ else
+ return i;
+ }
+ }
+ else
+ for (; VEC_iterate (tree, method_vec, i, fn); ++i)
+ {
+#ifdef GATHER_STATISTICS
+ n_outer_fields_searched++;
+#endif /* GATHER_STATISTICS */
+ if (DECL_NAME (OVL_CURRENT (fn)) == name)
+ return i;
+ }
+
+ return -1;
+}
+
+/* Like lookup_fnfields_1, except that the name is extracted from
+ FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
+
+int
+class_method_index_for_fn (tree class_type, tree function)
+{
+ gcc_assert (TREE_CODE (function) == FUNCTION_DECL
+ || DECL_FUNCTION_TEMPLATE_P (function));
+
+ return lookup_fnfields_1 (class_type,
+ DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
+ DECL_DESTRUCTOR_P (function) ? dtor_identifier :
+ DECL_NAME (function));
+}
+
+
+/* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
+ the class or namespace used to qualify the name. CONTEXT_CLASS is
+ the class corresponding to the object in which DECL will be used.
+ Return a possibly modified version of DECL that takes into account
+ the CONTEXT_CLASS.
+
+ In particular, consider an expression like `B::m' in the context of
+ a derived class `D'. If `B::m' has been resolved to a BASELINK,
+ then the most derived class indicated by the BASELINK_BINFO will be
+ `B', not `D'. This function makes that adjustment. */
+
+tree
+adjust_result_of_qualified_name_lookup (tree decl,
+ tree qualifying_scope,
+ tree context_class)
+{
+ if (context_class && context_class != error_mark_node
+ && CLASS_TYPE_P (context_class)
+ && CLASS_TYPE_P (qualifying_scope)
+ && DERIVED_FROM_P (qualifying_scope, context_class)
+ && BASELINK_P (decl))
+ {
+ tree base;
+
+ /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
+ Because we do not yet know which function will be chosen by
+ overload resolution, we cannot yet check either accessibility
+ or ambiguity -- in either case, the choice of a static member
+ function might make the usage valid. */
+ base = lookup_base (context_class, qualifying_scope,
+ ba_unique | ba_quiet, NULL);
+ if (base)
+ {
+ BASELINK_ACCESS_BINFO (decl) = base;
+ BASELINK_BINFO (decl)
+ = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
+ ba_unique | ba_quiet,
+ NULL);
+ }
+ }
+
+ return decl;
+}
+
+
+/* Walk the class hierarchy within BINFO, in a depth-first traversal.
+ PRE_FN is called in preorder, while POST_FN is called in postorder.
+ If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
+ walked. If PRE_FN or POST_FN returns a different non-NULL value,
+ that value is immediately returned and the walk is terminated. One
+ of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
+ POST_FN are passed the binfo to examine and the caller's DATA
+ value. All paths are walked, thus virtual and morally virtual
+ binfos can be multiply walked. */
+
+tree
+dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
+ tree (*post_fn) (tree, void *), void *data)
+{
+ tree rval;
+ unsigned ix;
+ tree base_binfo;
+
+ /* Call the pre-order walking function. */
+ if (pre_fn)
+ {
+ rval = pre_fn (binfo, data);
+ if (rval)
+ {
+ if (rval == dfs_skip_bases)
+ goto skip_bases;
+ return rval;
+ }
+ }
+
+ /* Find the next child binfo to walk. */
+ for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
+ {
+ rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
+ if (rval)
+ return rval;
+ }
+
+ skip_bases:
+ /* Call the post-order walking function. */
+ if (post_fn)
+ {
+ rval = post_fn (binfo, data);
+ gcc_assert (rval != dfs_skip_bases);
+ return rval;
+ }
+
+ return NULL_TREE;
+}
+
+/* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
+ that binfos are walked at most once. */
+
+static tree
+dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
+ tree (*post_fn) (tree, void *), void *data)
+{
+ tree rval;
+ unsigned ix;
+ tree base_binfo;
+
+ /* Call the pre-order walking function. */
+ if (pre_fn)
+ {
+ rval = pre_fn (binfo, data);
+ if (rval)
+ {
+ if (rval == dfs_skip_bases)
+ goto skip_bases;
+
+ return rval;
+ }
+ }
+
+ /* Find the next child binfo to walk. */
+ for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
+ {
+ if (BINFO_VIRTUAL_P (base_binfo))
+ {
+ if (BINFO_MARKED (base_binfo))
+ continue;
+ BINFO_MARKED (base_binfo) = 1;
+ }
+
+ rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
+ if (rval)
+ return rval;
+ }
+
+ skip_bases:
+ /* Call the post-order walking function. */
+ if (post_fn)
+ {
+ rval = post_fn (binfo, data);
+ gcc_assert (rval != dfs_skip_bases);
+ return rval;
+ }
+
+ return NULL_TREE;
+}
+
+/* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
+ BINFO. */
+
+static void
+dfs_unmark_r (tree binfo)
+{
+ unsigned ix;
+ tree base_binfo;
+
+ /* Process the basetypes. */
+ for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
+ {
+ if (BINFO_VIRTUAL_P (base_binfo))
+ {
+ if (!BINFO_MARKED (base_binfo))
+ continue;
+ BINFO_MARKED (base_binfo) = 0;
+ }
+ /* Only walk, if it can contain more virtual bases. */
+ if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
+ dfs_unmark_r (base_binfo);
+ }
+}
+
+/* Like dfs_walk_all, except that binfos are not multiply walked. For
+ non-diamond shaped hierarchies this is the same as dfs_walk_all.
+ For diamond shaped hierarchies we must mark the virtual bases, to
+ avoid multiple walks. */
+
+tree
+dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
+ tree (*post_fn) (tree, void *), void *data)
+{
+ static int active = 0; /* We must not be called recursively. */
+ tree rval;
+
+ gcc_assert (pre_fn || post_fn);
+ gcc_assert (!active);
+ active++;
+
+ if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
+ /* We are not diamond shaped, and therefore cannot encounter the
+ same binfo twice. */
+ rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
+ else
+ {
+ rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
+ if (!BINFO_INHERITANCE_CHAIN (binfo))
+ {
+ /* We are at the top of the hierarchy, and can use the
+ CLASSTYPE_VBASECLASSES list for unmarking the virtual
+ bases. */
+ VEC(tree,gc) *vbases;
+ unsigned ix;
+ tree base_binfo;
+
+ for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
+ VEC_iterate (tree, vbases, ix, base_binfo); ix++)
+ BINFO_MARKED (base_binfo) = 0;
+ }
+ else
+ dfs_unmark_r (binfo);
+ }
+
+ active--;
+
+ return rval;
+}
+
+/* Worker function for dfs_walk_once_accessible. Behaves like
+ dfs_walk_once_r, except (a) FRIENDS_P is true if special
+ access given by the current context should be considered, (b) ONCE
+ indicates whether bases should be marked during traversal. */
+
+static tree
+dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
+ tree (*pre_fn) (tree, void *),
+ tree (*post_fn) (tree, void *), void *data)
+{
+ tree rval = NULL_TREE;
+ unsigned ix;
+ tree base_binfo;
+
+ /* Call the pre-order walking function. */
+ if (pre_fn)
+ {
+ rval = pre_fn (binfo, data);
+ if (rval)
+ {
+ if (rval == dfs_skip_bases)
+ goto skip_bases;
+
+ return rval;
+ }
+ }
+
+ /* Find the next child binfo to walk. */
+ for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
+ {
+ bool mark = once && BINFO_VIRTUAL_P (base_binfo);
+
+ if (mark && BINFO_MARKED (base_binfo))
+ continue;
+
+ /* If the base is inherited via private or protected
+ inheritance, then we can't see it, unless we are a friend of
+ the current binfo. */
+ if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
+ {
+ tree scope;
+ if (!friends_p)
+ continue;
+ scope = current_scope ();
+ if (!scope
+ || TREE_CODE (scope) == NAMESPACE_DECL
+ || !is_friend (BINFO_TYPE (binfo), scope))
+ continue;
+ }
+
+ if (mark)
+ BINFO_MARKED (base_binfo) = 1;
+
+ rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
+ pre_fn, post_fn, data);
+ if (rval)
+ return rval;
+ }
+
+ skip_bases:
+ /* Call the post-order walking function. */
+ if (post_fn)
+ {
+ rval = post_fn (binfo, data);
+ gcc_assert (rval != dfs_skip_bases);
+ return rval;
+ }
+
+ return NULL_TREE;
+}
+
+/* Like dfs_walk_once except that only accessible bases are walked.
+ FRIENDS_P indicates whether friendship of the local context
+ should be considered when determining accessibility. */
+
+static tree
+dfs_walk_once_accessible (tree binfo, bool friends_p,
+ tree (*pre_fn) (tree, void *),
+ tree (*post_fn) (tree, void *), void *data)
+{
+ bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
+ tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
+ pre_fn, post_fn, data);
+
+ if (diamond_shaped)
+ {
+ if (!BINFO_INHERITANCE_CHAIN (binfo))
+ {
+ /* We are at the top of the hierarchy, and can use the
+ CLASSTYPE_VBASECLASSES list for unmarking the virtual
+ bases. */
+ VEC(tree,gc) *vbases;
+ unsigned ix;
+ tree base_binfo;
+
+ for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
+ VEC_iterate (tree, vbases, ix, base_binfo); ix++)
+ BINFO_MARKED (base_binfo) = 0;
+ }
+ else
+ dfs_unmark_r (binfo);
+ }
+ return rval;
+}
+
+/* Check that virtual overrider OVERRIDER is acceptable for base function
+ BASEFN. Issue diagnostic, and return zero, if unacceptable. */
+
+static int
+check_final_overrider (tree overrider, tree basefn)
+{
+ tree over_type = TREE_TYPE (overrider);
+ tree base_type = TREE_TYPE (basefn);
+ tree over_return = TREE_TYPE (over_type);
+ tree base_return = TREE_TYPE (base_type);
+ tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
+ tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
+ int fail = 0;
+
+ if (DECL_INVALID_OVERRIDER_P (overrider))
+ return 0;
+
+ if (same_type_p (base_return, over_return))
+ /* OK */;
+ else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
+ || (TREE_CODE (base_return) == TREE_CODE (over_return)
+ && POINTER_TYPE_P (base_return)))
+ {
+ /* Potentially covariant. */
+ unsigned base_quals, over_quals;
+
+ fail = !POINTER_TYPE_P (base_return);
+ if (!fail)
+ {
+ fail = cp_type_quals (base_return) != cp_type_quals (over_return);
+
+ base_return = TREE_TYPE (base_return);
+ over_return = TREE_TYPE (over_return);
+ }
+ base_quals = cp_type_quals (base_return);
+ over_quals = cp_type_quals (over_return);
+
+ if ((base_quals & over_quals) != over_quals)
+ fail = 1;
+
+ if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
+ {
+ tree binfo = lookup_base (over_return, base_return,
+ ba_check | ba_quiet, NULL);
+
+ if (!binfo)
+ fail = 1;
+ }
+ else if (!pedantic
+ && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
+ /* GNU extension, allow trivial pointer conversions such as
+ converting to void *, or qualification conversion. */
+ {
+ /* can_convert will permit user defined conversion from a
+ (reference to) class type. We must reject them. */
+ over_return = non_reference (TREE_TYPE (over_type));
+ if (CLASS_TYPE_P (over_return))
+ fail = 2;
+ else
+ {
+ warning (0, "deprecated covariant return type for %q+#D",
+ overrider);
+ warning (0, " overriding %q+#D", basefn);
+ }
+ }
+ else
+ fail = 2;
+ }
+ else
+ fail = 2;
+ if (!fail)
+ /* OK */;
+ else
+ {
+ if (fail == 1)
+ {
+ error ("invalid covariant return type for %q+#D", overrider);
+ error (" overriding %q+#D", basefn);
+ }
+ else
+ {
+ error ("conflicting return type specified for %q+#D", overrider);
+ error (" overriding %q+#D", basefn);
+ }
+ DECL_INVALID_OVERRIDER_P (overrider) = 1;
+ return 0;
+ }
+
+ /* Check throw specifier is at least as strict. */
+ if (!comp_except_specs (base_throw, over_throw, 0))
+ {
+ error ("looser throw specifier for %q+#F", overrider);
+ error (" overriding %q+#F", basefn);
+ DECL_INVALID_OVERRIDER_P (overrider) = 1;
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Given a class TYPE, and a function decl FNDECL, look for
+ virtual functions in TYPE's hierarchy which FNDECL overrides.
+ We do not look in TYPE itself, only its bases.
+
+ Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
+ find that it overrides anything.
+
+ We check that every function which is overridden, is correctly
+ overridden. */
+
+int
+look_for_overrides (tree type, tree fndecl)
+{
+ tree binfo = TYPE_BINFO (type);
+ tree base_binfo;
+ int ix;
+ int found = 0;
+
+ /* APPLE LOCAL begin ctor name 6202462 */
+ /* A constructor doesn't have a name, so the concept of name lookup
+ of its name doesn't make sense. */
+ if (DECL_CONSTRUCTOR_P (fndecl))
+ return false;
+ /* APPLE LOCAL end ctor name 6202462 */
+
+ for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
+ {
+ tree basetype = BINFO_TYPE (base_binfo);
+
+ if (TYPE_POLYMORPHIC_P (basetype))
+ found += look_for_overrides_r (basetype, fndecl);
+ }
+ return found;
+}
+
+/* Look in TYPE for virtual functions with the same signature as
+ FNDECL. */
+
+tree
+look_for_overrides_here (tree type, tree fndecl)
+{
+ int ix;
+
+ /* If there are no methods in TYPE (meaning that only implicitly
+ declared methods will ever be provided for TYPE), then there are
+ no virtual functions. */
+ if (!CLASSTYPE_METHOD_VEC (type))
+ return NULL_TREE;
+
+ if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
+ ix = CLASSTYPE_DESTRUCTOR_SLOT;
+ else
+ ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
+ if (ix >= 0)
+ {
+ tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
+
+ for (; fns; fns = OVL_NEXT (fns))
+ {
+ tree fn = OVL_CURRENT (fns);
+
+ if (!DECL_VIRTUAL_P (fn))
+ /* Not a virtual. */;
+ else if (DECL_CONTEXT (fn) != type)
+ /* Introduced with a using declaration. */;
+ else if (DECL_STATIC_FUNCTION_P (fndecl))
+ {
+ tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
+ tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
+ if (compparms (TREE_CHAIN (btypes), dtypes))
+ return fn;
+ }
+ else if (same_signature_p (fndecl, fn))
+ return fn;
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Look in TYPE for virtual functions overridden by FNDECL. Check both
+ TYPE itself and its bases. */
+
+static int
+look_for_overrides_r (tree type, tree fndecl)
+{
+ tree fn = look_for_overrides_here (type, fndecl);
+ if (fn)
+ {
+ if (DECL_STATIC_FUNCTION_P (fndecl))
+ {
+ /* A static member function cannot match an inherited
+ virtual member function. */
+ error ("%q+#D cannot be declared", fndecl);
+ error (" since %q+#D declared in base class", fn);
+ }
+ else
+ {
+ /* It's definitely virtual, even if not explicitly set. */
+ DECL_VIRTUAL_P (fndecl) = 1;
+ check_final_overrider (fndecl, fn);
+ }
+ return 1;
+ }
+
+ /* We failed to find one declared in this class. Look in its bases. */
+ return look_for_overrides (type, fndecl);
+}
+
+/* Called via dfs_walk from dfs_get_pure_virtuals. */
+
+static tree
+dfs_get_pure_virtuals (tree binfo, void *data)
+{
+ tree type = (tree) data;
+
+ /* We're not interested in primary base classes; the derived class
+ of which they are a primary base will contain the information we
+ need. */
+ if (!BINFO_PRIMARY_P (binfo))
+ {
+ tree virtuals;
+
+ for (virtuals = BINFO_VIRTUALS (binfo);
+ virtuals;
+ virtuals = TREE_CHAIN (virtuals))
+ if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
+ VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
+ BV_FN (virtuals));
+ }
+
+ return NULL_TREE;
+}
+
+/* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
+
+void
+get_pure_virtuals (tree type)
+{
+ /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
+ is going to be overridden. */
+ CLASSTYPE_PURE_VIRTUALS (type) = NULL;
+ /* Now, run through all the bases which are not primary bases, and
+ collect the pure virtual functions. We look at the vtable in
+ each class to determine what pure virtual functions are present.
+ (A primary base is not interesting because the derived class of
+ which it is a primary base will contain vtable entries for the
+ pure virtuals in the base class. */
+ dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
+}
+
+/* Debug info for C++ classes can get very large; try to avoid
+ emitting it everywhere.
+
+ Note that this optimization wins even when the target supports
+ BINCL (if only slightly), and reduces the amount of work for the
+ linker. */
+
+void
+maybe_suppress_debug_info (tree t)
+{
+ if (write_symbols == NO_DEBUG)
+ return;
+
+ /* We might have set this earlier in cp_finish_decl. */
+ TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
+
+ /* Always emit the information for each class every time. */
+ if (flag_emit_class_debug_always)
+ return;
+
+ /* If we already know how we're handling this class, handle debug info
+ the same way. */
+ if (CLASSTYPE_INTERFACE_KNOWN (t))
+ {
+ if (CLASSTYPE_INTERFACE_ONLY (t))
+ TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
+ /* else don't set it. */
+ }
+ /* If the class has a vtable, write out the debug info along with
+ the vtable. */
+ else if (TYPE_CONTAINS_VPTR_P (t))
+ TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
+
+ /* Otherwise, just emit the debug info normally. */
+}
+
+/* Note that we want debugging information for a base class of a class
+ whose vtable is being emitted. Normally, this would happen because
+ calling the constructor for a derived class implies calling the
+ constructors for all bases, which involve initializing the
+ appropriate vptr with the vtable for the base class; but in the
+ presence of optimization, this initialization may be optimized
+ away, so we tell finish_vtable_vardecl that we want the debugging
+ information anyway. */
+
+static tree
+dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
+{
+ tree t = BINFO_TYPE (binfo);
+
+ if (CLASSTYPE_DEBUG_REQUESTED (t))
+ return dfs_skip_bases;
+
+ CLASSTYPE_DEBUG_REQUESTED (t) = 1;
+
+ return NULL_TREE;
+}
+
+/* Write out the debugging information for TYPE, whose vtable is being
+ emitted. Also walk through our bases and note that we want to
+ write out information for them. This avoids the problem of not
+ writing any debug info for intermediate basetypes whose
+ constructors, and thus the references to their vtables, and thus
+ the vtables themselves, were optimized away. */
+
+void
+note_debug_info_needed (tree type)
+{
+ if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
+ {
+ TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
+ /* APPLE LOCAL 4167759 */
+ cp_set_decl_ignore_flag (type, 1);
+ rest_of_type_compilation (type, toplevel_bindings_p ());
+ /* APPLE LOCAL 4167759 */
+ cp_set_decl_ignore_flag (type, 0);
+ }
+
+ dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
+}
+
+void
+print_search_statistics (void)
+{
+#ifdef GATHER_STATISTICS
+ fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
+ n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
+ fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
+ n_outer_fields_searched, n_calls_lookup_fnfields);
+ fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
+#else /* GATHER_STATISTICS */
+ fprintf (stderr, "no search statistics\n");
+#endif /* GATHER_STATISTICS */
+}
+
+void
+reinit_search_statistics (void)
+{
+#ifdef GATHER_STATISTICS
+ n_fields_searched = 0;
+ n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
+ n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
+ n_calls_get_base_type = 0;
+ n_outer_fields_searched = 0;
+ n_contexts_saved = 0;
+#endif /* GATHER_STATISTICS */
+}
+
+/* Helper for lookup_conversions_r. TO_TYPE is the type converted to
+ by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
+ BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
+ bases have been encountered already in the tree walk. PARENT_CONVS
+ is the list of lists of conversion functions that could hide CONV
+ and OTHER_CONVS is the list of lists of conversion functions that
+ could hide or be hidden by CONV, should virtualness be involved in
+ the hierarchy. Merely checking the conversion op's name is not
+ enough because two conversion operators to the same type can have
+ different names. Return nonzero if we are visible. */
+
+static int
+check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
+ tree to_type, tree parent_convs, tree other_convs)
+{
+ tree level, probe;
+
+ /* See if we are hidden by a parent conversion. */
+ for (level = parent_convs; level; level = TREE_CHAIN (level))
+ for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
+ if (same_type_p (to_type, TREE_TYPE (probe)))
+ return 0;
+
+ if (virtual_depth || virtualness)
+ {
+ /* In a virtual hierarchy, we could be hidden, or could hide a
+ conversion function on the other_convs list. */
+ for (level = other_convs; level; level = TREE_CHAIN (level))
+ {
+ int we_hide_them;
+ int they_hide_us;
+ tree *prev, other;
+
+ if (!(virtual_depth || TREE_STATIC (level)))
+ /* Neither is morally virtual, so cannot hide each other. */
+ continue;
+
+ if (!TREE_VALUE (level))
+ /* They evaporated away already. */
+ continue;
+
+ they_hide_us = (virtual_depth
+ && original_binfo (binfo, TREE_PURPOSE (level)));
+ we_hide_them = (!they_hide_us && TREE_STATIC (level)
+ && original_binfo (TREE_PURPOSE (level), binfo));
+
+ if (!(we_hide_them || they_hide_us))
+ /* Neither is within the other, so no hiding can occur. */
+ continue;
+
+ for (prev = &TREE_VALUE (level), other = *prev; other;)
+ {
+ if (same_type_p (to_type, TREE_TYPE (other)))
+ {
+ if (they_hide_us)
+ /* We are hidden. */
+ return 0;
+
+ if (we_hide_them)
+ {
+ /* We hide the other one. */
+ other = TREE_CHAIN (other);
+ *prev = other;
+ continue;
+ }
+ }
+ prev = &TREE_CHAIN (other);
+ other = *prev;
+ }
+ }
+ }
+ return 1;
+}
+
+/* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
+ of conversion functions, the first slot will be for the current
+ binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
+ of conversion functions from children of the current binfo,
+ concatenated with conversions from elsewhere in the hierarchy --
+ that list begins with OTHER_CONVS. Return a single list of lists
+ containing only conversions from the current binfo and its
+ children. */
+
+static tree
+split_conversions (tree my_convs, tree parent_convs,
+ tree child_convs, tree other_convs)
+{
+ tree t;
+ tree prev;
+
+ /* Remove the original other_convs portion from child_convs. */
+ for (prev = NULL, t = child_convs;
+ t != other_convs; prev = t, t = TREE_CHAIN (t))
+ continue;
+
+ if (prev)
+ TREE_CHAIN (prev) = NULL_TREE;
+ else
+ child_convs = NULL_TREE;
+
+ /* Attach the child convs to any we had at this level. */
+ if (my_convs)
+ {
+ my_convs = parent_convs;
+ TREE_CHAIN (my_convs) = child_convs;
+ }
+ else
+ my_convs = child_convs;
+
+ return my_convs;
+}
+
+/* Worker for lookup_conversions. Lookup conversion functions in
+ BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
+ a morally virtual base, and VIRTUALNESS is nonzero, if we've
+ encountered virtual bases already in the tree walk. PARENT_CONVS &
+ PARENT_TPL_CONVS are lists of list of conversions within parent
+ binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
+ elsewhere in the tree. Return the conversions found within this
+ portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
+ encountered virtualness. We keep template and non-template
+ conversions separate, to avoid unnecessary type comparisons.
+
+ The located conversion functions are held in lists of lists. The
+ TREE_VALUE of the outer list is the list of conversion functions
+ found in a particular binfo. The TREE_PURPOSE of both the outer
+ and inner lists is the binfo at which those conversions were
+ found. TREE_STATIC is set for those lists within of morally
+ virtual binfos. The TREE_VALUE of the inner list is the conversion
+ function or overload itself. The TREE_TYPE of each inner list node
+ is the converted-to type. */
+
+static int
+lookup_conversions_r (tree binfo,
+ int virtual_depth, int virtualness,
+ tree parent_convs, tree parent_tpl_convs,
+ tree other_convs, tree other_tpl_convs,
+ tree *convs, tree *tpl_convs)
+{
+ int my_virtualness = 0;
+ tree my_convs = NULL_TREE;
+ tree my_tpl_convs = NULL_TREE;
+ tree child_convs = NULL_TREE;
+ tree child_tpl_convs = NULL_TREE;
+ unsigned i;
+ tree base_binfo;
+ VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
+ tree conv;
+
+ /* If we have no conversion operators, then don't look. */
+ if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
+ {
+ *convs = *tpl_convs = NULL_TREE;
+
+ return 0;
+ }
+
+ if (BINFO_VIRTUAL_P (binfo))
+ virtual_depth++;
+
+ /* First, locate the unhidden ones at this level. */
+ for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
+ VEC_iterate (tree, method_vec, i, conv);
+ ++i)
+ {
+ tree cur = OVL_CURRENT (conv);
+
+ if (!DECL_CONV_FN_P (cur))
+ break;
+
+ if (TREE_CODE (cur) == TEMPLATE_DECL)
+ {
+ /* Only template conversions can be overloaded, and we must
+ flatten them out and check each one individually. */
+ tree tpls;
+
+ for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
+ {
+ tree tpl = OVL_CURRENT (tpls);
+ tree type = DECL_CONV_FN_TYPE (tpl);
+
+ if (check_hidden_convs (binfo, virtual_depth, virtualness,
+ type, parent_tpl_convs, other_tpl_convs))
+ {
+ my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
+ TREE_TYPE (my_tpl_convs) = type;
+ if (virtual_depth)
+ {
+ TREE_STATIC (my_tpl_convs) = 1;
+ my_virtualness = 1;
+ }
+ }
+ }
+ }
+ else
+ {
+ tree name = DECL_NAME (cur);
+
+ if (!IDENTIFIER_MARKED (name))
+ {
+ tree type = DECL_CONV_FN_TYPE (cur);
+
+ if (check_hidden_convs (binfo, virtual_depth, virtualness,
+ type, parent_convs, other_convs))
+ {
+ my_convs = tree_cons (binfo, conv, my_convs);
+ TREE_TYPE (my_convs) = type;
+ if (virtual_depth)
+ {
+ TREE_STATIC (my_convs) = 1;
+ my_virtualness = 1;
+ }
+ IDENTIFIER_MARKED (name) = 1;
+ }
+ }
+ }
+ }
+
+ if (my_convs)
+ {
+ parent_convs = tree_cons (binfo, my_convs, parent_convs);
+ if (virtual_depth)
+ TREE_STATIC (parent_convs) = 1;
+ }
+
+ if (my_tpl_convs)
+ {
+ parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
+ if (virtual_depth)
+ TREE_STATIC (parent_tpl_convs) = 1;
+ }
+
+ child_convs = other_convs;
+ child_tpl_convs = other_tpl_convs;
+
+ /* Now iterate over each base, looking for more conversions. */
+ for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ {
+ tree base_convs, base_tpl_convs;
+ unsigned base_virtualness;
+
+ base_virtualness = lookup_conversions_r (base_binfo,
+ virtual_depth, virtualness,
+ parent_convs, parent_tpl_convs,
+ child_convs, child_tpl_convs,
+ &base_convs, &base_tpl_convs);
+ if (base_virtualness)
+ my_virtualness = virtualness = 1;
+ child_convs = chainon (base_convs, child_convs);
+ child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
+ }
+
+ /* Unmark the conversions found at this level */
+ for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
+ IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
+
+ *convs = split_conversions (my_convs, parent_convs,
+ child_convs, other_convs);
+ *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
+ child_tpl_convs, other_tpl_convs);
+
+ return my_virtualness;
+}
+
+/* Return a TREE_LIST containing all the non-hidden user-defined
+ conversion functions for TYPE (and its base-classes). The
+ TREE_VALUE of each node is the FUNCTION_DECL of the conversion
+ function. The TREE_PURPOSE is the BINFO from which the conversion
+ functions in this node were selected. This function is effectively
+ performing a set of member lookups as lookup_fnfield does, but
+ using the type being converted to as the unique key, rather than the
+ field name. */
+
+tree
+lookup_conversions (tree type)
+{
+ tree convs, tpl_convs;
+ tree list = NULL_TREE;
+
+ complete_type (type);
+ if (!TYPE_BINFO (type))
+ return NULL_TREE;
+
+ lookup_conversions_r (TYPE_BINFO (type), 0, 0,
+ NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
+ &convs, &tpl_convs);
+
+ /* Flatten the list-of-lists */
+ for (; convs; convs = TREE_CHAIN (convs))
+ {
+ tree probe, next;
+
+ for (probe = TREE_VALUE (convs); probe; probe = next)
+ {
+ next = TREE_CHAIN (probe);
+
+ TREE_CHAIN (probe) = list;
+ list = probe;
+ }
+ }
+
+ for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
+ {
+ tree probe, next;
+
+ for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
+ {
+ next = TREE_CHAIN (probe);
+
+ TREE_CHAIN (probe) = list;
+ list = probe;
+ }
+ }
+
+ return list;
+}
+
+/* Returns the binfo of the first direct or indirect virtual base derived
+ from BINFO, or NULL if binfo is not via virtual. */
+
+tree
+binfo_from_vbase (tree binfo)
+{
+ for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
+ {
+ if (BINFO_VIRTUAL_P (binfo))
+ return binfo;
+ }
+ return NULL_TREE;
+}
+
+/* Returns the binfo of the first direct or indirect virtual base derived
+ from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
+ via virtual. */
+
+tree
+binfo_via_virtual (tree binfo, tree limit)
+{
+ if (limit && !CLASSTYPE_VBASECLASSES (limit))
+ /* LIMIT has no virtual bases, so BINFO cannot be via one. */
+ return NULL_TREE;
+
+ for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
+ binfo = BINFO_INHERITANCE_CHAIN (binfo))
+ {
+ if (BINFO_VIRTUAL_P (binfo))
+ return binfo;
+ }
+ return NULL_TREE;
+}
+
+/* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
+ Find the equivalent binfo within whatever graph HERE is located.
+ This is the inverse of original_binfo. */
+
+tree
+copied_binfo (tree binfo, tree here)
+{
+ tree result = NULL_TREE;
+
+ if (BINFO_VIRTUAL_P (binfo))
+ {
+ tree t;
+
+ for (t = here; BINFO_INHERITANCE_CHAIN (t);
+ t = BINFO_INHERITANCE_CHAIN (t))
+ continue;
+
+ result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
+ }
+ else if (BINFO_INHERITANCE_CHAIN (binfo))
+ {
+ tree cbinfo;
+ tree base_binfo;
+ int ix;
+
+ cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
+ for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
+ if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
+ {
+ result = base_binfo;
+ break;
+ }
+ }
+ else
+ {
+ gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
+ result = here;
+ }
+
+ gcc_assert (result);
+ return result;
+}
+
+tree
+binfo_for_vbase (tree base, tree t)
+{
+ unsigned ix;
+ tree binfo;
+ VEC(tree,gc) *vbases;
+
+ for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
+ VEC_iterate (tree, vbases, ix, binfo); ix++)
+ if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
+ return binfo;
+ return NULL;
+}
+
+/* BINFO is some base binfo of HERE, within some other
+ hierarchy. Return the equivalent binfo, but in the hierarchy
+ dominated by HERE. This is the inverse of copied_binfo. If BINFO
+ is not a base binfo of HERE, returns NULL_TREE. */
+
+tree
+original_binfo (tree binfo, tree here)
+{
+ tree result = NULL;
+
+ if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
+ result = here;
+ else if (BINFO_VIRTUAL_P (binfo))
+ result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
+ ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
+ : NULL_TREE);
+ else if (BINFO_INHERITANCE_CHAIN (binfo))
+ {
+ tree base_binfos;
+
+ base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
+ if (base_binfos)
+ {
+ int ix;
+ tree base_binfo;
+
+ for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
+ if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
+ BINFO_TYPE (binfo)))
+ {
+ result = base_binfo;
+ break;
+ }
+ }
+ }
+
+ return result;
+}
+