aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/convert.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/convert.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/convert.c910
1 files changed, 910 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/convert.c b/gcc-4.2.1-5666.3/gcc/convert.c
new file mode 100644
index 000000000..030c1b917
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/convert.c
@@ -0,0 +1,910 @@
+/* Utility routines for data type conversion for GCC.
+ Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
+ 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+
+/* These routines are somewhat language-independent utility function
+ intended to be called by the language-specific convert () functions. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "flags.h"
+#include "convert.h"
+/* APPLE LOCAL begin AltiVec */
+#include "c-tree.h"
+#include "c-common.h"
+/* APPLE LOCAL end AltiVec */
+#include "toplev.h"
+#include "langhooks.h"
+#include "real.h"
+
+/* Convert EXPR to some pointer or reference type TYPE.
+ EXPR must be pointer, reference, integer, enumeral, or literal zero;
+ in other cases error is called. */
+
+tree
+convert_to_pointer (tree type, tree expr)
+{
+ if (TREE_TYPE (expr) == type)
+ return expr;
+
+ if (integer_zerop (expr))
+ {
+ tree t = build_int_cst (type, 0);
+ if (TREE_OVERFLOW (expr) || TREE_CONSTANT_OVERFLOW (expr))
+ t = force_fit_type (t, 0, TREE_OVERFLOW (expr),
+ TREE_CONSTANT_OVERFLOW (expr));
+ return t;
+ }
+
+ switch (TREE_CODE (TREE_TYPE (expr)))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ return fold_build1 (NOP_EXPR, type, expr);
+
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
+ expr = fold_build1 (NOP_EXPR,
+ lang_hooks.types.type_for_size (POINTER_SIZE, 0),
+ expr);
+ return fold_build1 (CONVERT_EXPR, type, expr);
+
+ /* APPLE LOCAL begin blocks (C++ ck) */
+ case BLOCK_POINTER_TYPE:
+ /* APPLE LOCAL begin radar 5809099 */
+ if (objc_is_id (type)
+ || (TREE_CODE (type) == POINTER_TYPE && VOID_TYPE_P (TREE_TYPE (type))))
+ /* APPLE LOCAL end radar 5809099 */
+ return fold_build1 (NOP_EXPR, type, expr);
+ /* APPLE LOCAL end blocks (C++ ck) */
+ default:
+ error ("cannot convert to a pointer type");
+ return convert_to_pointer (type, integer_zero_node);
+ }
+}
+
+/* APPLE LOCAL begin blocks (C++ ck) */
+tree
+convert_to_block_pointer (tree type, tree expr)
+{
+ if (TREE_TYPE (expr) == type)
+ return expr;
+
+ if (integer_zerop (expr))
+ {
+ tree t = build_int_cst (type, 0);
+ if (TREE_OVERFLOW (expr) || TREE_CONSTANT_OVERFLOW (expr))
+ t = force_fit_type (t, 0, TREE_OVERFLOW (expr),
+ TREE_CONSTANT_OVERFLOW (expr));
+ return t;
+ }
+
+ switch (TREE_CODE (TREE_TYPE (expr)))
+ {
+ case BLOCK_POINTER_TYPE:
+ return fold_build1 (NOP_EXPR, type, expr);
+
+ case INTEGER_TYPE:
+ if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
+ expr = fold_build1 (NOP_EXPR,
+ lang_hooks.types.type_for_size (POINTER_SIZE, 0),
+ expr);
+ return fold_build1 (CONVERT_EXPR, type, expr);
+
+ case POINTER_TYPE:
+ /* APPLE LOCAL radar 5809099 */
+ if (objc_is_id (TREE_TYPE (expr)) || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (expr))))
+ return build1 (NOP_EXPR, type, expr);
+ /* fall thru */
+
+ default:
+ error ("cannot convert to a block pointer type");
+ return convert_to_block_pointer (type, integer_zero_node);
+ }
+}
+
+/* APPLE LOCAL end blocks (C++ ck) */
+
+/* Avoid any floating point extensions from EXP. */
+tree
+strip_float_extensions (tree exp)
+{
+ tree sub, expt, subt;
+
+ /* For floating point constant look up the narrowest type that can hold
+ it properly and handle it like (type)(narrowest_type)constant.
+ This way we can optimize for instance a=a*2.0 where "a" is float
+ but 2.0 is double constant. */
+ if (TREE_CODE (exp) == REAL_CST)
+ {
+ REAL_VALUE_TYPE orig;
+ tree type = NULL;
+
+ orig = TREE_REAL_CST (exp);
+ if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
+ && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
+ type = float_type_node;
+ else if (TYPE_PRECISION (TREE_TYPE (exp))
+ > TYPE_PRECISION (double_type_node)
+ && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
+ type = double_type_node;
+ if (type)
+ return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
+ }
+
+ if (TREE_CODE (exp) != NOP_EXPR
+ && TREE_CODE (exp) != CONVERT_EXPR)
+ return exp;
+
+ sub = TREE_OPERAND (exp, 0);
+ subt = TREE_TYPE (sub);
+ expt = TREE_TYPE (exp);
+
+ if (!FLOAT_TYPE_P (subt))
+ return exp;
+
+ if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
+ return exp;
+
+ return strip_float_extensions (sub);
+}
+
+
+/* Convert EXPR to some floating-point type TYPE.
+
+ EXPR must be float, integer, or enumeral;
+ in other cases error is called. */
+
+tree
+convert_to_real (tree type, tree expr)
+{
+ enum built_in_function fcode = builtin_mathfn_code (expr);
+ tree itype = TREE_TYPE (expr);
+
+ /* Disable until we figure out how to decide whether the functions are
+ present in runtime. */
+ /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
+ if (optimize
+ && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
+ || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
+ {
+ switch (fcode)
+ {
+#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
+ CASE_MATHFN (ACOS)
+ CASE_MATHFN (ACOSH)
+ CASE_MATHFN (ASIN)
+ CASE_MATHFN (ASINH)
+ CASE_MATHFN (ATAN)
+ CASE_MATHFN (ATANH)
+ CASE_MATHFN (CBRT)
+ CASE_MATHFN (COS)
+ CASE_MATHFN (COSH)
+ CASE_MATHFN (ERF)
+ CASE_MATHFN (ERFC)
+ CASE_MATHFN (EXP)
+ CASE_MATHFN (EXP10)
+ CASE_MATHFN (EXP2)
+ CASE_MATHFN (EXPM1)
+ CASE_MATHFN (FABS)
+ CASE_MATHFN (GAMMA)
+ CASE_MATHFN (J0)
+ CASE_MATHFN (J1)
+ CASE_MATHFN (LGAMMA)
+ CASE_MATHFN (LOG)
+ CASE_MATHFN (LOG10)
+ CASE_MATHFN (LOG1P)
+ CASE_MATHFN (LOG2)
+ CASE_MATHFN (LOGB)
+ CASE_MATHFN (POW10)
+ CASE_MATHFN (SIN)
+ CASE_MATHFN (SINH)
+ CASE_MATHFN (SQRT)
+ CASE_MATHFN (TAN)
+ CASE_MATHFN (TANH)
+ CASE_MATHFN (TGAMMA)
+ CASE_MATHFN (Y0)
+ CASE_MATHFN (Y1)
+#undef CASE_MATHFN
+ {
+ tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
+ tree newtype = type;
+
+ /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
+ the both as the safe type for operation. */
+ if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
+ newtype = TREE_TYPE (arg0);
+
+ /* Be careful about integer to fp conversions.
+ These may overflow still. */
+ if (FLOAT_TYPE_P (TREE_TYPE (arg0))
+ && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
+ && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
+ || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
+ {
+ tree arglist;
+ tree fn = mathfn_built_in (newtype, fcode);
+
+ if (fn)
+ {
+ arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
+ expr = build_function_call_expr (fn, arglist);
+ if (newtype == type)
+ return expr;
+ }
+ }
+ }
+ default:
+ break;
+ }
+ }
+ if (optimize
+ && (((fcode == BUILT_IN_FLOORL
+ || fcode == BUILT_IN_CEILL
+ || fcode == BUILT_IN_ROUNDL
+ || fcode == BUILT_IN_RINTL
+ || fcode == BUILT_IN_TRUNCL
+ || fcode == BUILT_IN_NEARBYINTL)
+ && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
+ || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
+ || ((fcode == BUILT_IN_FLOOR
+ || fcode == BUILT_IN_CEIL
+ || fcode == BUILT_IN_ROUND
+ || fcode == BUILT_IN_RINT
+ || fcode == BUILT_IN_TRUNC
+ || fcode == BUILT_IN_NEARBYINT)
+ && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
+ {
+ tree fn = mathfn_built_in (type, fcode);
+
+ if (fn)
+ {
+ tree arg
+ = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
+
+ /* Make sure (type)arg0 is an extension, otherwise we could end up
+ changing (float)floor(double d) into floorf((float)d), which is
+ incorrect because (float)d uses round-to-nearest and can round
+ up to the next integer. */
+ if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
+ return
+ build_function_call_expr (fn,
+ build_tree_list (NULL_TREE,
+ fold (convert_to_real (type, arg))));
+ }
+ }
+
+ /* Propagate the cast into the operation. */
+ if (itype != type && FLOAT_TYPE_P (type))
+ switch (TREE_CODE (expr))
+ {
+ /* Convert (float)-x into -(float)x. This is safe for
+ round-to-nearest rounding mode. */
+ case ABS_EXPR:
+ case NEGATE_EXPR:
+ if (!flag_rounding_math
+ && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
+ return build1 (TREE_CODE (expr), type,
+ fold (convert_to_real (type,
+ TREE_OPERAND (expr, 0))));
+ break;
+ /* Convert (outertype)((innertype0)a+(innertype1)b)
+ into ((newtype)a+(newtype)b) where newtype
+ is the widest mode from all of these. */
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ case RDIV_EXPR:
+ {
+ tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
+ tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
+
+ if (FLOAT_TYPE_P (TREE_TYPE (arg0))
+ && FLOAT_TYPE_P (TREE_TYPE (arg1)))
+ {
+ tree newtype = type;
+
+ if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
+ || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
+ newtype = dfloat32_type_node;
+ if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
+ || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
+ newtype = dfloat64_type_node;
+ if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
+ || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
+ newtype = dfloat128_type_node;
+ if (newtype == dfloat32_type_node
+ || newtype == dfloat64_type_node
+ || newtype == dfloat128_type_node)
+ {
+ expr = build2 (TREE_CODE (expr), newtype,
+ fold (convert_to_real (newtype, arg0)),
+ fold (convert_to_real (newtype, arg1)));
+ if (newtype == type)
+ return expr;
+ break;
+ }
+
+ if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
+ newtype = TREE_TYPE (arg0);
+ if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
+ newtype = TREE_TYPE (arg1);
+ if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
+ {
+ expr = build2 (TREE_CODE (expr), newtype,
+ fold (convert_to_real (newtype, arg0)),
+ fold (convert_to_real (newtype, arg1)));
+ if (newtype == type)
+ return expr;
+ }
+ }
+ }
+ break;
+ default:
+ break;
+ }
+
+ switch (TREE_CODE (TREE_TYPE (expr)))
+ {
+ case REAL_TYPE:
+ /* Ignore the conversion if we don't need to store intermediate
+ results and neither type is a decimal float. */
+ return build1 ((flag_float_store
+ || DECIMAL_FLOAT_TYPE_P (type)
+ || DECIMAL_FLOAT_TYPE_P (itype))
+ ? CONVERT_EXPR : NOP_EXPR, type, expr);
+
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ return build1 (FLOAT_EXPR, type, expr);
+
+ case COMPLEX_TYPE:
+ return convert (type,
+ fold_build1 (REALPART_EXPR,
+ TREE_TYPE (TREE_TYPE (expr)), expr));
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ error ("pointer value used where a floating point value was expected");
+ return convert_to_real (type, integer_zero_node);
+
+ default:
+ error ("aggregate value used where a float was expected");
+ return convert_to_real (type, integer_zero_node);
+ }
+}
+
+/* Convert EXPR to some integer (or enum) type TYPE.
+
+ EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
+ vector; in other cases error is called.
+
+ The result of this is always supposed to be a newly created tree node
+ not in use in any existing structure. */
+
+tree
+convert_to_integer (tree type, tree expr)
+{
+ enum tree_code ex_form = TREE_CODE (expr);
+ tree intype = TREE_TYPE (expr);
+ unsigned int inprec = TYPE_PRECISION (intype);
+ unsigned int outprec = TYPE_PRECISION (type);
+
+ /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
+ be. Consider `enum E = { a, b = (enum E) 3 };'. */
+ if (!COMPLETE_TYPE_P (type))
+ {
+ error ("conversion to incomplete type");
+ return error_mark_node;
+ }
+
+ /* Convert e.g. (long)round(d) -> lround(d). */
+ /* If we're converting to char, we may encounter differing behavior
+ between converting from double->char vs double->long->char.
+ We're in "undefined" territory but we prefer to be conservative,
+ so only proceed in "unsafe" math mode. */
+ if (optimize
+ && (flag_unsafe_math_optimizations
+ || (long_integer_type_node
+ && outprec >= TYPE_PRECISION (long_integer_type_node))))
+ {
+ tree s_expr = strip_float_extensions (expr);
+ tree s_intype = TREE_TYPE (s_expr);
+ const enum built_in_function fcode = builtin_mathfn_code (s_expr);
+ tree fn = 0;
+
+ switch (fcode)
+ {
+ CASE_FLT_FN (BUILT_IN_CEIL):
+ /* Only convert in ISO C99 mode. */
+ if (!TARGET_C99_FUNCTIONS)
+ break;
+ if (outprec < TYPE_PRECISION (long_integer_type_node)
+ || (outprec == TYPE_PRECISION (long_integer_type_node)
+ && !TYPE_UNSIGNED (type)))
+ fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
+ else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
+ && !TYPE_UNSIGNED (type))
+ fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
+ break;
+
+ CASE_FLT_FN (BUILT_IN_FLOOR):
+ /* Only convert in ISO C99 mode. */
+ if (!TARGET_C99_FUNCTIONS)
+ break;
+ if (outprec < TYPE_PRECISION (long_integer_type_node)
+ || (outprec == TYPE_PRECISION (long_integer_type_node)
+ && !TYPE_UNSIGNED (type)))
+ fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
+ else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
+ && !TYPE_UNSIGNED (type))
+ fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
+ break;
+
+ CASE_FLT_FN (BUILT_IN_ROUND):
+ if (outprec < TYPE_PRECISION (long_integer_type_node)
+ || (outprec == TYPE_PRECISION (long_integer_type_node)
+ && !TYPE_UNSIGNED (type)))
+ fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
+ else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
+ && !TYPE_UNSIGNED (type))
+ fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
+ break;
+
+ CASE_FLT_FN (BUILT_IN_NEARBYINT):
+ /* Only convert nearbyint* if we can ignore math exceptions. */
+ if (flag_trapping_math)
+ break;
+ /* ... Fall through ... */
+ CASE_FLT_FN (BUILT_IN_RINT):
+ if (outprec < TYPE_PRECISION (long_integer_type_node)
+ || (outprec == TYPE_PRECISION (long_integer_type_node)
+ && !TYPE_UNSIGNED (type)))
+ fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
+ else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
+ && !TYPE_UNSIGNED (type))
+ fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
+ break;
+
+ CASE_FLT_FN (BUILT_IN_TRUNC):
+ {
+ tree arglist = TREE_OPERAND (s_expr, 1);
+ return convert_to_integer (type, TREE_VALUE (arglist));
+ }
+
+ default:
+ break;
+ }
+
+ if (fn)
+ {
+ tree arglist = TREE_OPERAND (s_expr, 1);
+ tree newexpr = build_function_call_expr (fn, arglist);
+ return convert_to_integer (type, newexpr);
+ }
+ }
+
+ switch (TREE_CODE (intype))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* APPLE LOCAL radar 6035389 */
+ case BLOCK_POINTER_TYPE:
+ if (integer_zerop (expr))
+ return build_int_cst (type, 0);
+
+ /* Convert to an unsigned integer of the correct width first,
+ and from there widen/truncate to the required type. */
+ expr = fold_build1 (CONVERT_EXPR,
+ lang_hooks.types.type_for_size (POINTER_SIZE, 0),
+ expr);
+ return fold_convert (type, expr);
+
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ /* If this is a logical operation, which just returns 0 or 1, we can
+ change the type of the expression. */
+
+ if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+ }
+
+ /* If we are widening the type, put in an explicit conversion.
+ Similarly if we are not changing the width. After this, we know
+ we are truncating EXPR. */
+
+ else if (outprec >= inprec)
+ {
+ enum tree_code code;
+ tree tem;
+
+ /* If the precision of the EXPR's type is K bits and the
+ destination mode has more bits, and the sign is changing,
+ it is not safe to use a NOP_EXPR. For example, suppose
+ that EXPR's type is a 3-bit unsigned integer type, the
+ TYPE is a 3-bit signed integer type, and the machine mode
+ for the types is 8-bit QImode. In that case, the
+ conversion necessitates an explicit sign-extension. In
+ the signed-to-unsigned case the high-order bits have to
+ be cleared. */
+ if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
+ && (TYPE_PRECISION (TREE_TYPE (expr))
+ != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
+ code = CONVERT_EXPR;
+ else
+ code = NOP_EXPR;
+
+ tem = fold_unary (code, type, expr);
+ if (tem)
+ return tem;
+
+ tem = build1 (code, type, expr);
+ TREE_NO_WARNING (tem) = 1;
+ return tem;
+ }
+
+ /* If TYPE is an enumeral type or a type with a precision less
+ than the number of bits in its mode, do the conversion to the
+ type corresponding to its mode, then do a nop conversion
+ to TYPE. */
+ else if (TREE_CODE (type) == ENUMERAL_TYPE
+ || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
+ return build1 (NOP_EXPR, type,
+ convert (lang_hooks.types.type_for_mode
+ (TYPE_MODE (type), TYPE_UNSIGNED (type)),
+ expr));
+
+ /* Here detect when we can distribute the truncation down past some
+ arithmetic. For example, if adding two longs and converting to an
+ int, we can equally well convert both to ints and then add.
+ For the operations handled here, such truncation distribution
+ is always safe.
+ It is desirable in these cases:
+ 1) when truncating down to full-word from a larger size
+ 2) when truncating takes no work.
+ 3) when at least one operand of the arithmetic has been extended
+ (as by C's default conversions). In this case we need two conversions
+ if we do the arithmetic as already requested, so we might as well
+ truncate both and then combine. Perhaps that way we need only one.
+
+ Note that in general we cannot do the arithmetic in a type
+ shorter than the desired result of conversion, even if the operands
+ are both extended from a shorter type, because they might overflow
+ if combined in that type. The exceptions to this--the times when
+ two narrow values can be combined in their narrow type even to
+ make a wider result--are handled by "shorten" in build_binary_op. */
+
+ switch (ex_form)
+ {
+ case RSHIFT_EXPR:
+ /* We can pass truncation down through right shifting
+ when the shift count is a nonpositive constant. */
+ if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
+ && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
+ goto trunc1;
+ break;
+
+ case LSHIFT_EXPR:
+ /* We can pass truncation down through left shifting
+ when the shift count is a nonnegative constant and
+ the target type is unsigned. */
+ if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
+ && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
+ && TYPE_UNSIGNED (type)
+ && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
+ {
+ /* If shift count is less than the width of the truncated type,
+ really shift. */
+ if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
+ /* In this case, shifting is like multiplication. */
+ goto trunc1;
+ else
+ {
+ /* If it is >= that width, result is zero.
+ Handling this with trunc1 would give the wrong result:
+ (int) ((long long) a << 32) is well defined (as 0)
+ but (int) a << 32 is undefined and would get a
+ warning. */
+
+ tree t = build_int_cst (type, 0);
+
+ /* If the original expression had side-effects, we must
+ preserve it. */
+ if (TREE_SIDE_EFFECTS (expr))
+ return build2 (COMPOUND_EXPR, type, expr, t);
+ else
+ return t;
+ }
+ }
+ break;
+
+ case MAX_EXPR:
+ case MIN_EXPR:
+ case MULT_EXPR:
+ {
+ tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
+ tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
+
+ /* Don't distribute unless the output precision is at least as big
+ as the actual inputs. Otherwise, the comparison of the
+ truncated values will be wrong. */
+ if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
+ && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
+ /* If signedness of arg0 and arg1 don't match,
+ we can't necessarily find a type to compare them in. */
+ && (TYPE_UNSIGNED (TREE_TYPE (arg0))
+ == TYPE_UNSIGNED (TREE_TYPE (arg1))))
+ goto trunc1;
+ break;
+ }
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case BIT_AND_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ trunc1:
+ {
+ tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
+ tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
+
+ if (outprec >= BITS_PER_WORD
+ || TRULY_NOOP_TRUNCATION (outprec, inprec)
+ || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
+ || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
+ {
+ /* Do the arithmetic in type TYPEX,
+ then convert result to TYPE. */
+ tree typex = type;
+
+ /* Can't do arithmetic in enumeral types
+ so use an integer type that will hold the values. */
+ if (TREE_CODE (typex) == ENUMERAL_TYPE)
+ typex = lang_hooks.types.type_for_size
+ (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
+
+ /* But now perhaps TYPEX is as wide as INPREC.
+ In that case, do nothing special here.
+ (Otherwise would recurse infinitely in convert. */
+ if (TYPE_PRECISION (typex) != inprec)
+ {
+ /* Don't do unsigned arithmetic where signed was wanted,
+ or vice versa.
+ Exception: if both of the original operands were
+ unsigned then we can safely do the work as unsigned.
+ Exception: shift operations take their type solely
+ from the first argument.
+ Exception: the LSHIFT_EXPR case above requires that
+ we perform this operation unsigned lest we produce
+ signed-overflow undefinedness.
+ And we may need to do it as unsigned
+ if we truncate to the original size. */
+ if (TYPE_UNSIGNED (TREE_TYPE (expr))
+ || (TYPE_UNSIGNED (TREE_TYPE (arg0))
+ && (TYPE_UNSIGNED (TREE_TYPE (arg1))
+ || ex_form == LSHIFT_EXPR
+ || ex_form == RSHIFT_EXPR
+ || ex_form == LROTATE_EXPR
+ || ex_form == RROTATE_EXPR))
+ || ex_form == LSHIFT_EXPR
+ /* If we have !flag_wrapv, and either ARG0 or
+ ARG1 is of a signed type, we have to do
+ PLUS_EXPR or MINUS_EXPR in an unsigned
+ type. Otherwise, we would introduce
+ signed-overflow undefinedness. */
+ || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
+ || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
+ && (ex_form == PLUS_EXPR
+ || ex_form == MINUS_EXPR)))
+ typex = lang_hooks.types.unsigned_type (typex);
+ else
+ typex = lang_hooks.types.signed_type (typex);
+ return convert (type,
+ fold_build2 (ex_form, typex,
+ convert (typex, arg0),
+ convert (typex, arg1)));
+ }
+ }
+ }
+ break;
+
+ case NEGATE_EXPR:
+ case BIT_NOT_EXPR:
+ /* This is not correct for ABS_EXPR,
+ since we must test the sign before truncation. */
+ {
+ tree typex;
+
+ /* Don't do unsigned arithmetic where signed was wanted,
+ or vice versa. */
+ if (TYPE_UNSIGNED (TREE_TYPE (expr)))
+ typex = lang_hooks.types.unsigned_type (type);
+ else
+ typex = lang_hooks.types.signed_type (type);
+ return convert (type,
+ fold_build1 (ex_form, typex,
+ convert (typex,
+ TREE_OPERAND (expr, 0))));
+ }
+
+ case NOP_EXPR:
+ /* Don't introduce a
+ "can't convert between vector values of different size" error. */
+ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
+ && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
+ != GET_MODE_SIZE (TYPE_MODE (type))))
+ break;
+ /* If truncating after truncating, might as well do all at once.
+ If truncating after extending, we may get rid of wasted work. */
+ return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
+
+ case COND_EXPR:
+ /* It is sometimes worthwhile to push the narrowing down through
+ the conditional and never loses. */
+ return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
+ convert (type, TREE_OPERAND (expr, 1)),
+ convert (type, TREE_OPERAND (expr, 2)));
+
+ default:
+ break;
+ }
+
+ return build1 (CONVERT_EXPR, type, expr);
+
+ case REAL_TYPE:
+ return build1 (FIX_TRUNC_EXPR, type, expr);
+
+ case COMPLEX_TYPE:
+ return convert (type,
+ fold_build1 (REALPART_EXPR,
+ TREE_TYPE (TREE_TYPE (expr)), expr));
+
+ case VECTOR_TYPE:
+ if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
+ {
+ error ("can't convert between vector values of different size");
+ return error_mark_node;
+ }
+ return build1 (VIEW_CONVERT_EXPR, type, expr);
+
+ default:
+ error ("aggregate value used where an integer was expected");
+ return convert (type, integer_zero_node);
+ }
+}
+
+/* Convert EXPR to the complex type TYPE in the usual ways. */
+
+tree
+convert_to_complex (tree type, tree expr)
+{
+ tree subtype = TREE_TYPE (type);
+
+ switch (TREE_CODE (TREE_TYPE (expr)))
+ {
+ case REAL_TYPE:
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
+ convert (subtype, integer_zero_node));
+
+ case COMPLEX_TYPE:
+ {
+ tree elt_type = TREE_TYPE (TREE_TYPE (expr));
+
+ if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
+ return expr;
+ else if (TREE_CODE (expr) == COMPLEX_EXPR)
+ return fold_build2 (COMPLEX_EXPR, type,
+ convert (subtype, TREE_OPERAND (expr, 0)),
+ convert (subtype, TREE_OPERAND (expr, 1)));
+ else
+ {
+ expr = save_expr (expr);
+ return
+ fold_build2 (COMPLEX_EXPR, type,
+ convert (subtype,
+ fold_build1 (REALPART_EXPR,
+ TREE_TYPE (TREE_TYPE (expr)),
+ expr)),
+ convert (subtype,
+ fold_build1 (IMAGPART_EXPR,
+ TREE_TYPE (TREE_TYPE (expr)),
+ expr)));
+ }
+ }
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ error ("pointer value used where a complex was expected");
+ return convert_to_complex (type, integer_zero_node);
+
+ default:
+ error ("aggregate value used where a complex was expected");
+ return convert_to_complex (type, integer_zero_node);
+ }
+}
+
+/* APPLE LOCAL begin AltiVec */
+/* Build a COMPOUND_LITERAL_EXPR. TYPE is the type given in the compound
+ literal. INIT is a CONSTRUCTOR that initializes the compound literal. */
+
+static tree
+build_compound_literal_vector (tree type, tree init)
+{
+ tree decl;
+ tree complit;
+ tree stmt;
+
+ decl = build_decl (VAR_DECL, NULL_TREE, type);
+ DECL_EXTERNAL (decl) = 0;
+ TREE_PUBLIC (decl) = 0;
+ TREE_USED (decl) = 1;
+ TREE_TYPE (decl) = type;
+ TREE_READONLY (decl) = TYPE_READONLY (type);
+ store_init_value (decl, init);
+ stmt = build_stmt (DECL_EXPR, decl);
+ complit = build1 (COMPOUND_LITERAL_EXPR, TREE_TYPE (decl), stmt);
+ layout_decl (decl, 0);
+ return complit;
+}
+/* APPLE LOCAL end AltiVec */
+
+/* Convert EXPR to the vector type TYPE in the usual ways. */
+
+tree
+convert_to_vector (tree type, tree expr)
+{
+ switch (TREE_CODE (TREE_TYPE (expr)))
+ {
+ case INTEGER_TYPE:
+ case VECTOR_TYPE:
+ if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
+ {
+ error ("can't convert between vector values of different size");
+ return error_mark_node;
+ }
+ /* APPLE LOCAL begin AltiVec */
+ if (TREE_CODE (type) == VECTOR_TYPE
+ && TREE_CODE (TREE_TYPE (expr)) == VECTOR_TYPE
+ && TREE_CODE (expr) == CONSTRUCTOR && TREE_CONSTANT (expr))
+ /* converting a constant vector to new vector type with Motorola Syntax. */
+ return convert (type, build_compound_literal_vector (TREE_TYPE (expr), expr));
+ /* APPLE LOCAL end AltiVec */
+
+ return build1 (VIEW_CONVERT_EXPR, type, expr);
+
+ default:
+ error ("can't convert value to a vector");
+ return error_mark_node;
+ }
+}