aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/vec.h
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/vec.h
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/vec.h')
-rw-r--r--gcc-4.9/gcc/vec.h1727
1 files changed, 1727 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/vec.h b/gcc-4.9/gcc/vec.h
new file mode 100644
index 000000000..587302344
--- /dev/null
+++ b/gcc-4.9/gcc/vec.h
@@ -0,0 +1,1727 @@
+/* Vector API for GNU compiler.
+ Copyright (C) 2004-2014 Free Software Foundation, Inc.
+ Contributed by Nathan Sidwell <nathan@codesourcery.com>
+ Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_VEC_H
+#define GCC_VEC_H
+
+/* FIXME - When compiling some of the gen* binaries, we cannot enable GC
+ support because the headers generated by gengtype are still not
+ present. In particular, the header file gtype-desc.h is missing,
+ so compilation may fail if we try to include ggc.h.
+
+ Since we use some of those declarations, we need to provide them
+ (even if the GC-based templates are not used). This is not a
+ problem because the code that runs before gengtype is built will
+ never need to use GC vectors. But it does force us to declare
+ these functions more than once. */
+#ifdef GENERATOR_FILE
+#define VEC_GC_ENABLED 0
+#else
+#define VEC_GC_ENABLED 1
+#endif // GENERATOR_FILE
+
+#include "statistics.h" // For CXX_MEM_STAT_INFO.
+
+#if VEC_GC_ENABLED
+#include "ggc.h"
+#else
+# ifndef GCC_GGC_H
+ /* Even if we think that GC is not enabled, the test that sets it is
+ weak. There are files compiled with -DGENERATOR_FILE that already
+ include ggc.h. We only need to provide these definitions if ggc.h
+ has not been included. Sigh. */
+ extern void ggc_free (void *);
+ extern size_t ggc_round_alloc_size (size_t requested_size);
+ extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
+# endif // GCC_GGC_H
+#endif // VEC_GC_ENABLED
+
+/* Templated vector type and associated interfaces.
+
+ The interface functions are typesafe and use inline functions,
+ sometimes backed by out-of-line generic functions. The vectors are
+ designed to interoperate with the GTY machinery.
+
+ There are both 'index' and 'iterate' accessors. The index accessor
+ is implemented by operator[]. The iterator returns a boolean
+ iteration condition and updates the iteration variable passed by
+ reference. Because the iterator will be inlined, the address-of
+ can be optimized away.
+
+ Each operation that increases the number of active elements is
+ available in 'quick' and 'safe' variants. The former presumes that
+ there is sufficient allocated space for the operation to succeed
+ (it dies if there is not). The latter will reallocate the
+ vector, if needed. Reallocation causes an exponential increase in
+ vector size. If you know you will be adding N elements, it would
+ be more efficient to use the reserve operation before adding the
+ elements with the 'quick' operation. This will ensure there are at
+ least as many elements as you ask for, it will exponentially
+ increase if there are too few spare slots. If you want reserve a
+ specific number of slots, but do not want the exponential increase
+ (for instance, you know this is the last allocation), use the
+ reserve_exact operation. You can also create a vector of a
+ specific size from the get go.
+
+ You should prefer the push and pop operations, as they append and
+ remove from the end of the vector. If you need to remove several
+ items in one go, use the truncate operation. The insert and remove
+ operations allow you to change elements in the middle of the
+ vector. There are two remove operations, one which preserves the
+ element ordering 'ordered_remove', and one which does not
+ 'unordered_remove'. The latter function copies the end element
+ into the removed slot, rather than invoke a memmove operation. The
+ 'lower_bound' function will determine where to place an item in the
+ array using insert that will maintain sorted order.
+
+ Vectors are template types with three arguments: the type of the
+ elements in the vector, the allocation strategy, and the physical
+ layout to use
+
+ Four allocation strategies are supported:
+
+ - Heap: allocation is done using malloc/free. This is the
+ default allocation strategy.
+
+ - GC: allocation is done using ggc_alloc/ggc_free.
+
+ - GC atomic: same as GC with the exception that the elements
+ themselves are assumed to be of an atomic type that does
+ not need to be garbage collected. This means that marking
+ routines do not need to traverse the array marking the
+ individual elements. This increases the performance of
+ GC activities.
+
+ Two physical layouts are supported:
+
+ - Embedded: The vector is structured using the trailing array
+ idiom. The last member of the structure is an array of size
+ 1. When the vector is initially allocated, a single memory
+ block is created to hold the vector's control data and the
+ array of elements. These vectors cannot grow without
+ reallocation (see discussion on embeddable vectors below).
+
+ - Space efficient: The vector is structured as a pointer to an
+ embedded vector. This is the default layout. It means that
+ vectors occupy a single word of storage before initial
+ allocation. Vectors are allowed to grow (the internal
+ pointer is reallocated but the main vector instance does not
+ need to relocate).
+
+ The type, allocation and layout are specified when the vector is
+ declared.
+
+ If you need to directly manipulate a vector, then the 'address'
+ accessor will return the address of the start of the vector. Also
+ the 'space' predicate will tell you whether there is spare capacity
+ in the vector. You will not normally need to use these two functions.
+
+ Notes on the different layout strategies
+
+ * Embeddable vectors (vec<T, A, vl_embed>)
+
+ These vectors are suitable to be embedded in other data
+ structures so that they can be pre-allocated in a contiguous
+ memory block.
+
+ Embeddable vectors are implemented using the trailing array
+ idiom, thus they are not resizeable without changing the address
+ of the vector object itself. This means you cannot have
+ variables or fields of embeddable vector type -- always use a
+ pointer to a vector. The one exception is the final field of a
+ structure, which could be a vector type.
+
+ You will have to use the embedded_size & embedded_init calls to
+ create such objects, and they will not be resizeable (so the
+ 'safe' allocation variants are not available).
+
+ Properties of embeddable vectors:
+
+ - The whole vector and control data are allocated in a single
+ contiguous block. It uses the trailing-vector idiom, so
+ allocation must reserve enough space for all the elements
+ in the vector plus its control data.
+ - The vector cannot be re-allocated.
+ - The vector cannot grow nor shrink.
+ - No indirections needed for access/manipulation.
+ - It requires 2 words of storage (prior to vector allocation).
+
+
+ * Space efficient vector (vec<T, A, vl_ptr>)
+
+ These vectors can grow dynamically and are allocated together
+ with their control data. They are suited to be included in data
+ structures. Prior to initial allocation, they only take a single
+ word of storage.
+
+ These vectors are implemented as a pointer to embeddable vectors.
+ The semantics allow for this pointer to be NULL to represent
+ empty vectors. This way, empty vectors occupy minimal space in
+ the structure containing them.
+
+ Properties:
+
+ - The whole vector and control data are allocated in a single
+ contiguous block.
+ - The whole vector may be re-allocated.
+ - Vector data may grow and shrink.
+ - Access and manipulation requires a pointer test and
+ indirection.
+ - It requires 1 word of storage (prior to vector allocation).
+
+ An example of their use would be,
+
+ struct my_struct {
+ // A space-efficient vector of tree pointers in GC memory.
+ vec<tree, va_gc, vl_ptr> v;
+ };
+
+ struct my_struct *s;
+
+ if (s->v.length ()) { we have some contents }
+ s->v.safe_push (decl); // append some decl onto the end
+ for (ix = 0; s->v.iterate (ix, &elt); ix++)
+ { do something with elt }
+*/
+
+/* Support function for statistics. */
+extern void dump_vec_loc_statistics (void);
+
+
+/* Control data for vectors. This contains the number of allocated
+ and used slots inside a vector. */
+
+struct vec_prefix
+{
+ /* FIXME - These fields should be private, but we need to cater to
+ compilers that have stricter notions of PODness for types. */
+
+ /* Memory allocation support routines in vec.c. */
+ void register_overhead (size_t, const char *, int, const char *);
+ void release_overhead (void);
+ static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
+ static unsigned calculate_allocation_1 (unsigned, unsigned);
+
+ /* Note that vec_prefix should be a base class for vec, but we use
+ offsetof() on vector fields of tree structures (e.g.,
+ tree_binfo::base_binfos), and offsetof only supports base types.
+
+ To compensate, we make vec_prefix a field inside vec and make
+ vec a friend class of vec_prefix so it can access its fields. */
+ template <typename, typename, typename> friend struct vec;
+
+ /* The allocator types also need access to our internals. */
+ friend struct va_gc;
+ friend struct va_gc_atomic;
+ friend struct va_heap;
+
+ unsigned m_alloc : 31;
+ unsigned m_using_auto_storage : 1;
+ unsigned m_num;
+};
+
+/* Calculate the number of slots to reserve a vector, making sure that
+ RESERVE slots are free. If EXACT grow exactly, otherwise grow
+ exponentially. PFX is the control data for the vector. */
+
+inline unsigned
+vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
+ bool exact)
+{
+ if (exact)
+ return (pfx ? pfx->m_num : 0) + reserve;
+ else if (!pfx)
+ return MAX (4, reserve);
+ return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
+}
+
+template<typename, typename, typename> struct vec;
+
+/* Valid vector layouts
+
+ vl_embed - Embeddable vector that uses the trailing array idiom.
+ vl_ptr - Space efficient vector that uses a pointer to an
+ embeddable vector. */
+struct vl_embed { };
+struct vl_ptr { };
+
+
+/* Types of supported allocations
+
+ va_heap - Allocation uses malloc/free.
+ va_gc - Allocation uses ggc_alloc.
+ va_gc_atomic - Same as GC, but individual elements of the array
+ do not need to be marked during collection. */
+
+/* Allocator type for heap vectors. */
+struct va_heap
+{
+ /* Heap vectors are frequently regular instances, so use the vl_ptr
+ layout for them. */
+ typedef vl_ptr default_layout;
+
+ template<typename T>
+ static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
+ CXX_MEM_STAT_INFO);
+
+ template<typename T>
+ static void release (vec<T, va_heap, vl_embed> *&);
+};
+
+
+/* Allocator for heap memory. Ensure there are at least RESERVE free
+ slots in V. If EXACT is true, grow exactly, else grow
+ exponentially. As a special case, if the vector had not been
+ allocated and and RESERVE is 0, no vector will be created. */
+
+template<typename T>
+inline void
+va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
+ MEM_STAT_DECL)
+{
+ unsigned alloc
+ = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
+ gcc_checking_assert (alloc);
+
+ if (GATHER_STATISTICS && v)
+ v->m_vecpfx.release_overhead ();
+
+ size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
+ unsigned nelem = v ? v->length () : 0;
+ v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
+ v->embedded_init (alloc, nelem);
+
+ if (GATHER_STATISTICS)
+ v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
+}
+
+
+/* Free the heap space allocated for vector V. */
+
+template<typename T>
+void
+va_heap::release (vec<T, va_heap, vl_embed> *&v)
+{
+ if (v == NULL)
+ return;
+
+ if (GATHER_STATISTICS)
+ v->m_vecpfx.release_overhead ();
+ ::free (v);
+ v = NULL;
+}
+
+
+/* Allocator type for GC vectors. Notice that we need the structure
+ declaration even if GC is not enabled. */
+
+struct va_gc
+{
+ /* Use vl_embed as the default layout for GC vectors. Due to GTY
+ limitations, GC vectors must always be pointers, so it is more
+ efficient to use a pointer to the vl_embed layout, rather than
+ using a pointer to a pointer as would be the case with vl_ptr. */
+ typedef vl_embed default_layout;
+
+ template<typename T, typename A>
+ static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
+ CXX_MEM_STAT_INFO);
+
+ template<typename T, typename A>
+ static void release (vec<T, A, vl_embed> *&v);
+};
+
+
+/* Free GC memory used by V and reset V to NULL. */
+
+template<typename T, typename A>
+inline void
+va_gc::release (vec<T, A, vl_embed> *&v)
+{
+ if (v)
+ ::ggc_free (v);
+ v = NULL;
+}
+
+
+/* Allocator for GC memory. Ensure there are at least RESERVE free
+ slots in V. If EXACT is true, grow exactly, else grow
+ exponentially. As a special case, if the vector had not been
+ allocated and and RESERVE is 0, no vector will be created. */
+
+template<typename T, typename A>
+void
+va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
+ MEM_STAT_DECL)
+{
+ unsigned alloc
+ = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
+ if (!alloc)
+ {
+ ::ggc_free (v);
+ v = NULL;
+ return;
+ }
+
+ /* Calculate the amount of space we want. */
+ size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
+
+ /* Ask the allocator how much space it will really give us. */
+ size = ::ggc_round_alloc_size (size);
+
+ /* Adjust the number of slots accordingly. */
+ size_t vec_offset = sizeof (vec_prefix);
+ size_t elt_size = sizeof (T);
+ alloc = (size - vec_offset) / elt_size;
+
+ /* And finally, recalculate the amount of space we ask for. */
+ size = vec_offset + alloc * elt_size;
+
+ unsigned nelem = v ? v->length () : 0;
+ v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
+ PASS_MEM_STAT));
+ v->embedded_init (alloc, nelem);
+}
+
+
+/* Allocator type for GC vectors. This is for vectors of types
+ atomics w.r.t. collection, so allocation and deallocation is
+ completely inherited from va_gc. */
+struct va_gc_atomic : va_gc
+{
+};
+
+
+/* Generic vector template. Default values for A and L indicate the
+ most commonly used strategies.
+
+ FIXME - Ideally, they would all be vl_ptr to encourage using regular
+ instances for vectors, but the existing GTY machinery is limited
+ in that it can only deal with GC objects that are pointers
+ themselves.
+
+ This means that vector operations that need to deal with
+ potentially NULL pointers, must be provided as free
+ functions (see the vec_safe_* functions above). */
+template<typename T,
+ typename A = va_heap,
+ typename L = typename A::default_layout>
+struct GTY((user)) vec
+{
+};
+
+/* Type to provide NULL values for vec<T, A, L>. This is used to
+ provide nil initializers for vec instances. Since vec must be
+ a POD, we cannot have proper ctor/dtor for it. To initialize
+ a vec instance, you can assign it the value vNULL. */
+struct vnull
+{
+ template <typename T, typename A, typename L>
+ operator vec<T, A, L> () { return vec<T, A, L>(); }
+};
+extern vnull vNULL;
+
+
+/* Embeddable vector. These vectors are suitable to be embedded
+ in other data structures so that they can be pre-allocated in a
+ contiguous memory block.
+
+ Embeddable vectors are implemented using the trailing array idiom,
+ thus they are not resizeable without changing the address of the
+ vector object itself. This means you cannot have variables or
+ fields of embeddable vector type -- always use a pointer to a
+ vector. The one exception is the final field of a structure, which
+ could be a vector type.
+
+ You will have to use the embedded_size & embedded_init calls to
+ create such objects, and they will not be resizeable (so the 'safe'
+ allocation variants are not available).
+
+ Properties:
+
+ - The whole vector and control data are allocated in a single
+ contiguous block. It uses the trailing-vector idiom, so
+ allocation must reserve enough space for all the elements
+ in the vector plus its control data.
+ - The vector cannot be re-allocated.
+ - The vector cannot grow nor shrink.
+ - No indirections needed for access/manipulation.
+ - It requires 2 words of storage (prior to vector allocation). */
+
+template<typename T, typename A>
+struct GTY((user)) vec<T, A, vl_embed>
+{
+public:
+ unsigned allocated (void) const { return m_vecpfx.m_alloc; }
+ unsigned length (void) const { return m_vecpfx.m_num; }
+ bool is_empty (void) const { return m_vecpfx.m_num == 0; }
+ T *address (void) { return m_vecdata; }
+ const T *address (void) const { return m_vecdata; }
+ const T &operator[] (unsigned) const;
+ T &operator[] (unsigned);
+ T &last (void);
+ bool space (unsigned) const;
+ bool iterate (unsigned, T *) const;
+ bool iterate (unsigned, T **) const;
+ vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
+ void splice (vec &);
+ void splice (vec *src);
+ T *quick_push (const T &);
+ T &pop (void);
+ void truncate (unsigned);
+ void quick_insert (unsigned, const T &);
+ void ordered_remove (unsigned);
+ void unordered_remove (unsigned);
+ void block_remove (unsigned, unsigned);
+ void qsort (int (*) (const void *, const void *));
+ T *bsearch (const void *key, int (*compar)(const void *, const void *));
+ unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
+ static size_t embedded_size (unsigned);
+ void embedded_init (unsigned, unsigned = 0, unsigned = 0);
+ void quick_grow (unsigned len);
+ void quick_grow_cleared (unsigned len);
+
+ /* vec class can access our internal data and functions. */
+ template <typename, typename, typename> friend struct vec;
+
+ /* The allocator types also need access to our internals. */
+ friend struct va_gc;
+ friend struct va_gc_atomic;
+ friend struct va_heap;
+
+ /* FIXME - These fields should be private, but we need to cater to
+ compilers that have stricter notions of PODness for types. */
+ vec_prefix m_vecpfx;
+ T m_vecdata[1];
+};
+
+
+/* Convenience wrapper functions to use when dealing with pointers to
+ embedded vectors. Some functionality for these vectors must be
+ provided via free functions for these reasons:
+
+ 1- The pointer may be NULL (e.g., before initial allocation).
+
+ 2- When the vector needs to grow, it must be reallocated, so
+ the pointer will change its value.
+
+ Because of limitations with the current GC machinery, all vectors
+ in GC memory *must* be pointers. */
+
+
+/* If V contains no room for NELEMS elements, return false. Otherwise,
+ return true. */
+template<typename T, typename A>
+inline bool
+vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
+{
+ return v ? v->space (nelems) : nelems == 0;
+}
+
+
+/* If V is NULL, return 0. Otherwise, return V->length(). */
+template<typename T, typename A>
+inline unsigned
+vec_safe_length (const vec<T, A, vl_embed> *v)
+{
+ return v ? v->length () : 0;
+}
+
+
+/* If V is NULL, return NULL. Otherwise, return V->address(). */
+template<typename T, typename A>
+inline T *
+vec_safe_address (vec<T, A, vl_embed> *v)
+{
+ return v ? v->address () : NULL;
+}
+
+
+/* If V is NULL, return true. Otherwise, return V->is_empty(). */
+template<typename T, typename A>
+inline bool
+vec_safe_is_empty (vec<T, A, vl_embed> *v)
+{
+ return v ? v->is_empty () : true;
+}
+
+
+/* If V does not have space for NELEMS elements, call
+ V->reserve(NELEMS, EXACT). */
+template<typename T, typename A>
+inline bool
+vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
+ CXX_MEM_STAT_INFO)
+{
+ bool extend = nelems ? !vec_safe_space (v, nelems) : false;
+ if (extend)
+ A::reserve (v, nelems, exact PASS_MEM_STAT);
+ return extend;
+}
+
+template<typename T, typename A>
+inline bool
+vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
+ CXX_MEM_STAT_INFO)
+{
+ return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
+}
+
+
+/* Allocate GC memory for V with space for NELEMS slots. If NELEMS
+ is 0, V is initialized to NULL. */
+
+template<typename T, typename A>
+inline void
+vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
+{
+ v = NULL;
+ vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
+}
+
+
+/* Free the GC memory allocated by vector V and set it to NULL. */
+
+template<typename T, typename A>
+inline void
+vec_free (vec<T, A, vl_embed> *&v)
+{
+ A::release (v);
+}
+
+
+/* Grow V to length LEN. Allocate it, if necessary. */
+template<typename T, typename A>
+inline void
+vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
+{
+ unsigned oldlen = vec_safe_length (v);
+ gcc_checking_assert (len >= oldlen);
+ vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
+ v->quick_grow (len);
+}
+
+
+/* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
+template<typename T, typename A>
+inline void
+vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
+{
+ unsigned oldlen = vec_safe_length (v);
+ vec_safe_grow (v, len PASS_MEM_STAT);
+ memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
+}
+
+
+/* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
+template<typename T, typename A>
+inline bool
+vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
+{
+ if (v)
+ return v->iterate (ix, ptr);
+ else
+ {
+ *ptr = 0;
+ return false;
+ }
+}
+
+template<typename T, typename A>
+inline bool
+vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
+{
+ if (v)
+ return v->iterate (ix, ptr);
+ else
+ {
+ *ptr = 0;
+ return false;
+ }
+}
+
+
+/* If V has no room for one more element, reallocate it. Then call
+ V->quick_push(OBJ). */
+template<typename T, typename A>
+inline T *
+vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
+{
+ vec_safe_reserve (v, 1, false PASS_MEM_STAT);
+ return v->quick_push (obj);
+}
+
+
+/* if V has no room for one more element, reallocate it. Then call
+ V->quick_insert(IX, OBJ). */
+template<typename T, typename A>
+inline void
+vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
+ CXX_MEM_STAT_INFO)
+{
+ vec_safe_reserve (v, 1, false PASS_MEM_STAT);
+ v->quick_insert (ix, obj);
+}
+
+
+/* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
+template<typename T, typename A>
+inline void
+vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
+{
+ if (v)
+ v->truncate (size);
+}
+
+
+/* If SRC is not NULL, return a pointer to a copy of it. */
+template<typename T, typename A>
+inline vec<T, A, vl_embed> *
+vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
+{
+ return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
+}
+
+/* Copy the elements from SRC to the end of DST as if by memcpy.
+ Reallocate DST, if necessary. */
+template<typename T, typename A>
+inline void
+vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
+ CXX_MEM_STAT_INFO)
+{
+ unsigned src_len = vec_safe_length (src);
+ if (src_len)
+ {
+ vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
+ PASS_MEM_STAT);
+ dst->splice (*src);
+ }
+}
+
+
+/* Index into vector. Return the IX'th element. IX must be in the
+ domain of the vector. */
+
+template<typename T, typename A>
+inline const T &
+vec<T, A, vl_embed>::operator[] (unsigned ix) const
+{
+ gcc_checking_assert (ix < m_vecpfx.m_num);
+ return m_vecdata[ix];
+}
+
+template<typename T, typename A>
+inline T &
+vec<T, A, vl_embed>::operator[] (unsigned ix)
+{
+ gcc_checking_assert (ix < m_vecpfx.m_num);
+ return m_vecdata[ix];
+}
+
+
+/* Get the final element of the vector, which must not be empty. */
+
+template<typename T, typename A>
+inline T &
+vec<T, A, vl_embed>::last (void)
+{
+ gcc_checking_assert (m_vecpfx.m_num > 0);
+ return (*this)[m_vecpfx.m_num - 1];
+}
+
+
+/* If this vector has space for NELEMS additional entries, return
+ true. You usually only need to use this if you are doing your
+ own vector reallocation, for instance on an embedded vector. This
+ returns true in exactly the same circumstances that vec::reserve
+ will. */
+
+template<typename T, typename A>
+inline bool
+vec<T, A, vl_embed>::space (unsigned nelems) const
+{
+ return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
+}
+
+
+/* Return iteration condition and update PTR to point to the IX'th
+ element of this vector. Use this to iterate over the elements of a
+ vector as follows,
+
+ for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
+ continue; */
+
+template<typename T, typename A>
+inline bool
+vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
+{
+ if (ix < m_vecpfx.m_num)
+ {
+ *ptr = m_vecdata[ix];
+ return true;
+ }
+ else
+ {
+ *ptr = 0;
+ return false;
+ }
+}
+
+
+/* Return iteration condition and update *PTR to point to the
+ IX'th element of this vector. Use this to iterate over the
+ elements of a vector as follows,
+
+ for (ix = 0; v->iterate (ix, &ptr); ix++)
+ continue;
+
+ This variant is for vectors of objects. */
+
+template<typename T, typename A>
+inline bool
+vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
+{
+ if (ix < m_vecpfx.m_num)
+ {
+ *ptr = CONST_CAST (T *, &m_vecdata[ix]);
+ return true;
+ }
+ else
+ {
+ *ptr = 0;
+ return false;
+ }
+}
+
+
+/* Return a pointer to a copy of this vector. */
+
+template<typename T, typename A>
+inline vec<T, A, vl_embed> *
+vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
+{
+ vec<T, A, vl_embed> *new_vec = NULL;
+ unsigned len = length ();
+ if (len)
+ {
+ vec_alloc (new_vec, len PASS_MEM_STAT);
+ new_vec->embedded_init (len, len);
+ memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
+ }
+ return new_vec;
+}
+
+
+/* Copy the elements from SRC to the end of this vector as if by memcpy.
+ The vector must have sufficient headroom available. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
+{
+ unsigned len = src.length ();
+ if (len)
+ {
+ gcc_checking_assert (space (len));
+ memcpy (address () + length (), src.address (), len * sizeof (T));
+ m_vecpfx.m_num += len;
+ }
+}
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
+{
+ if (src)
+ splice (*src);
+}
+
+
+/* Push OBJ (a new element) onto the end of the vector. There must be
+ sufficient space in the vector. Return a pointer to the slot
+ where OBJ was inserted. */
+
+template<typename T, typename A>
+inline T *
+vec<T, A, vl_embed>::quick_push (const T &obj)
+{
+ gcc_checking_assert (space (1));
+ T *slot = &m_vecdata[m_vecpfx.m_num++];
+ *slot = obj;
+ return slot;
+}
+
+
+/* Pop and return the last element off the end of the vector. */
+
+template<typename T, typename A>
+inline T &
+vec<T, A, vl_embed>::pop (void)
+{
+ gcc_checking_assert (length () > 0);
+ return m_vecdata[--m_vecpfx.m_num];
+}
+
+
+/* Set the length of the vector to SIZE. The new length must be less
+ than or equal to the current length. This is an O(1) operation. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::truncate (unsigned size)
+{
+ gcc_checking_assert (length () >= size);
+ m_vecpfx.m_num = size;
+}
+
+
+/* Insert an element, OBJ, at the IXth position of this vector. There
+ must be sufficient space. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
+{
+ gcc_checking_assert (length () < allocated ());
+ gcc_checking_assert (ix <= length ());
+ T *slot = &m_vecdata[ix];
+ memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
+ *slot = obj;
+}
+
+
+/* Remove an element from the IXth position of this vector. Ordering of
+ remaining elements is preserved. This is an O(N) operation due to
+ memmove. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::ordered_remove (unsigned ix)
+{
+ gcc_checking_assert (ix < length ());
+ T *slot = &m_vecdata[ix];
+ memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
+}
+
+
+/* Remove an element from the IXth position of this vector. Ordering of
+ remaining elements is destroyed. This is an O(1) operation. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::unordered_remove (unsigned ix)
+{
+ gcc_checking_assert (ix < length ());
+ m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
+}
+
+
+/* Remove LEN elements starting at the IXth. Ordering is retained.
+ This is an O(N) operation due to memmove. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
+{
+ gcc_checking_assert (ix + len <= length ());
+ T *slot = &m_vecdata[ix];
+ m_vecpfx.m_num -= len;
+ memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
+}
+
+
+/* Sort the contents of this vector with qsort. CMP is the comparison
+ function to pass to qsort. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
+{
+ if (length () > 1)
+ ::qsort (address (), length (), sizeof (T), cmp);
+}
+
+
+/* Search the contents of the sorted vector with a binary search.
+ CMP is the comparison function to pass to bsearch. */
+
+template<typename T, typename A>
+inline T *
+vec<T, A, vl_embed>::bsearch (const void *key,
+ int (*compar) (const void *, const void *))
+{
+ const void *base = this->address ();
+ size_t nmemb = this->length ();
+ size_t size = sizeof (T);
+ /* The following is a copy of glibc stdlib-bsearch.h. */
+ size_t l, u, idx;
+ const void *p;
+ int comparison;
+
+ l = 0;
+ u = nmemb;
+ while (l < u)
+ {
+ idx = (l + u) / 2;
+ p = (const void *) (((const char *) base) + (idx * size));
+ comparison = (*compar) (key, p);
+ if (comparison < 0)
+ u = idx;
+ else if (comparison > 0)
+ l = idx + 1;
+ else
+ return (T *)const_cast<void *>(p);
+ }
+
+ return NULL;
+}
+
+
+/* Find and return the first position in which OBJ could be inserted
+ without changing the ordering of this vector. LESSTHAN is a
+ function that returns true if the first argument is strictly less
+ than the second. */
+
+template<typename T, typename A>
+unsigned
+vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
+ const
+{
+ unsigned int len = length ();
+ unsigned int half, middle;
+ unsigned int first = 0;
+ while (len > 0)
+ {
+ half = len / 2;
+ middle = first;
+ middle += half;
+ T middle_elem = (*this)[middle];
+ if (lessthan (middle_elem, obj))
+ {
+ first = middle;
+ ++first;
+ len = len - half - 1;
+ }
+ else
+ len = half;
+ }
+ return first;
+}
+
+
+/* Return the number of bytes needed to embed an instance of an
+ embeddable vec inside another data structure.
+
+ Use these methods to determine the required size and initialization
+ of a vector V of type T embedded within another structure (as the
+ final member):
+
+ size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
+ void v->embedded_init (unsigned alloc, unsigned num);
+
+ These allow the caller to perform the memory allocation. */
+
+template<typename T, typename A>
+inline size_t
+vec<T, A, vl_embed>::embedded_size (unsigned alloc)
+{
+ typedef vec<T, A, vl_embed> vec_embedded;
+ return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
+}
+
+
+/* Initialize the vector to contain room for ALLOC elements and
+ NUM active elements. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
+{
+ m_vecpfx.m_alloc = alloc;
+ m_vecpfx.m_using_auto_storage = aut;
+ m_vecpfx.m_num = num;
+}
+
+
+/* Grow the vector to a specific length. LEN must be as long or longer than
+ the current length. The new elements are uninitialized. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::quick_grow (unsigned len)
+{
+ gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
+ m_vecpfx.m_num = len;
+}
+
+
+/* Grow the vector to a specific length. LEN must be as long or longer than
+ the current length. The new elements are initialized to zero. */
+
+template<typename T, typename A>
+inline void
+vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
+{
+ unsigned oldlen = length ();
+ quick_grow (len);
+ memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
+}
+
+
+/* Garbage collection support for vec<T, A, vl_embed>. */
+
+template<typename T>
+void
+gt_ggc_mx (vec<T, va_gc> *v)
+{
+ extern void gt_ggc_mx (T &);
+ for (unsigned i = 0; i < v->length (); i++)
+ gt_ggc_mx ((*v)[i]);
+}
+
+template<typename T>
+void
+gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
+{
+ /* Nothing to do. Vectors of atomic types wrt GC do not need to
+ be traversed. */
+}
+
+
+/* PCH support for vec<T, A, vl_embed>. */
+
+template<typename T, typename A>
+void
+gt_pch_nx (vec<T, A, vl_embed> *v)
+{
+ extern void gt_pch_nx (T &);
+ for (unsigned i = 0; i < v->length (); i++)
+ gt_pch_nx ((*v)[i]);
+}
+
+template<typename T, typename A>
+void
+gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
+{
+ for (unsigned i = 0; i < v->length (); i++)
+ op (&((*v)[i]), cookie);
+}
+
+template<typename T, typename A>
+void
+gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
+{
+ extern void gt_pch_nx (T *, gt_pointer_operator, void *);
+ for (unsigned i = 0; i < v->length (); i++)
+ gt_pch_nx (&((*v)[i]), op, cookie);
+}
+
+
+/* Space efficient vector. These vectors can grow dynamically and are
+ allocated together with their control data. They are suited to be
+ included in data structures. Prior to initial allocation, they
+ only take a single word of storage.
+
+ These vectors are implemented as a pointer to an embeddable vector.
+ The semantics allow for this pointer to be NULL to represent empty
+ vectors. This way, empty vectors occupy minimal space in the
+ structure containing them.
+
+ Properties:
+
+ - The whole vector and control data are allocated in a single
+ contiguous block.
+ - The whole vector may be re-allocated.
+ - Vector data may grow and shrink.
+ - Access and manipulation requires a pointer test and
+ indirection.
+ - It requires 1 word of storage (prior to vector allocation).
+
+
+ Limitations:
+
+ These vectors must be PODs because they are stored in unions.
+ (http://en.wikipedia.org/wiki/Plain_old_data_structures).
+ As long as we use C++03, we cannot have constructors nor
+ destructors in classes that are stored in unions. */
+
+template<typename T>
+struct vec<T, va_heap, vl_ptr>
+{
+public:
+ /* Memory allocation and deallocation for the embedded vector.
+ Needed because we cannot have proper ctors/dtors defined. */
+ void create (unsigned nelems CXX_MEM_STAT_INFO);
+ void release (void);
+
+ /* Vector operations. */
+ bool exists (void) const
+ { return m_vec != NULL; }
+
+ bool is_empty (void) const
+ { return m_vec ? m_vec->is_empty () : true; }
+
+ unsigned length (void) const
+ { return m_vec ? m_vec->length () : 0; }
+
+ T *address (void)
+ { return m_vec ? m_vec->m_vecdata : NULL; }
+
+ const T *address (void) const
+ { return m_vec ? m_vec->m_vecdata : NULL; }
+
+ const T &operator[] (unsigned ix) const
+ { return (*m_vec)[ix]; }
+
+ bool operator!=(const vec &other) const
+ { return !(*this == other); }
+
+ bool operator==(const vec &other) const
+ { return address () == other.address (); }
+
+ T &operator[] (unsigned ix)
+ { return (*m_vec)[ix]; }
+
+ T &last (void)
+ { return m_vec->last (); }
+
+ bool space (int nelems) const
+ { return m_vec ? m_vec->space (nelems) : nelems == 0; }
+
+ bool iterate (unsigned ix, T *p) const;
+ bool iterate (unsigned ix, T **p) const;
+ vec copy (ALONE_CXX_MEM_STAT_INFO) const;
+ bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
+ bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
+ void splice (vec &);
+ void safe_splice (vec & CXX_MEM_STAT_INFO);
+ T *quick_push (const T &);
+ T *safe_push (const T &CXX_MEM_STAT_INFO);
+ T &pop (void);
+ void truncate (unsigned);
+ void safe_grow (unsigned CXX_MEM_STAT_INFO);
+ void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
+ void quick_grow (unsigned);
+ void quick_grow_cleared (unsigned);
+ void quick_insert (unsigned, const T &);
+ void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
+ void ordered_remove (unsigned);
+ void unordered_remove (unsigned);
+ void block_remove (unsigned, unsigned);
+ void qsort (int (*) (const void *, const void *));
+ T *bsearch (const void *key, int (*compar)(const void *, const void *));
+ unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
+
+ bool using_auto_storage () const;
+
+ /* FIXME - This field should be private, but we need to cater to
+ compilers that have stricter notions of PODness for types. */
+ vec<T, va_heap, vl_embed> *m_vec;
+};
+
+
+/* auto_vec is a subclass of vec that automatically manages creating and
+ releasing the internal vector. If N is non zero then it has N elements of
+ internal storage. The default is no internal storage, and you probably only
+ want to ask for internal storage for vectors on the stack because if the
+ size of the vector is larger than the internal storage that space is wasted.
+ */
+template<typename T, size_t N = 0>
+class auto_vec : public vec<T, va_heap>
+{
+public:
+ auto_vec ()
+ {
+ m_auto.embedded_init (MAX (N, 2), 0, 1);
+ this->m_vec = &m_auto;
+ }
+
+ ~auto_vec ()
+ {
+ this->release ();
+ }
+
+private:
+ vec<T, va_heap, vl_embed> m_auto;
+ T m_data[MAX (N - 1, 1)];
+};
+
+/* auto_vec is a sub class of vec whose storage is released when it is
+ destroyed. */
+template<typename T>
+class auto_vec<T, 0> : public vec<T, va_heap>
+{
+public:
+ auto_vec () { this->m_vec = NULL; }
+ auto_vec (size_t n) { this->create (n); }
+ ~auto_vec () { this->release (); }
+};
+
+
+/* Allocate heap memory for pointer V and create the internal vector
+ with space for NELEMS elements. If NELEMS is 0, the internal
+ vector is initialized to empty. */
+
+template<typename T>
+inline void
+vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
+{
+ v = new vec<T>;
+ v->create (nelems PASS_MEM_STAT);
+}
+
+
+/* Conditionally allocate heap memory for VEC and its internal vector. */
+
+template<typename T>
+inline void
+vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
+{
+ if (!vec)
+ vec_alloc (vec, nelems PASS_MEM_STAT);
+}
+
+
+/* Free the heap memory allocated by vector V and set it to NULL. */
+
+template<typename T>
+inline void
+vec_free (vec<T> *&v)
+{
+ if (v == NULL)
+ return;
+
+ v->release ();
+ delete v;
+ v = NULL;
+}
+
+
+/* Return iteration condition and update PTR to point to the IX'th
+ element of this vector. Use this to iterate over the elements of a
+ vector as follows,
+
+ for (ix = 0; v.iterate (ix, &ptr); ix++)
+ continue; */
+
+template<typename T>
+inline bool
+vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
+{
+ if (m_vec)
+ return m_vec->iterate (ix, ptr);
+ else
+ {
+ *ptr = 0;
+ return false;
+ }
+}
+
+
+/* Return iteration condition and update *PTR to point to the
+ IX'th element of this vector. Use this to iterate over the
+ elements of a vector as follows,
+
+ for (ix = 0; v->iterate (ix, &ptr); ix++)
+ continue;
+
+ This variant is for vectors of objects. */
+
+template<typename T>
+inline bool
+vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
+{
+ if (m_vec)
+ return m_vec->iterate (ix, ptr);
+ else
+ {
+ *ptr = 0;
+ return false;
+ }
+}
+
+
+/* Convenience macro for forward iteration. */
+#define FOR_EACH_VEC_ELT(V, I, P) \
+ for (I = 0; (V).iterate ((I), &(P)); ++(I))
+
+#define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
+ for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
+
+/* Likewise, but start from FROM rather than 0. */
+#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
+ for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
+
+/* Convenience macro for reverse iteration. */
+#define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
+ for (I = (V).length () - 1; \
+ (V).iterate ((I), &(P)); \
+ (I)--)
+
+#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
+ for (I = vec_safe_length (V) - 1; \
+ vec_safe_iterate ((V), (I), &(P)); \
+ (I)--)
+
+
+/* Return a copy of this vector. */
+
+template<typename T>
+inline vec<T, va_heap, vl_ptr>
+vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
+{
+ vec<T, va_heap, vl_ptr> new_vec = vNULL;
+ if (length ())
+ new_vec.m_vec = m_vec->copy ();
+ return new_vec;
+}
+
+
+/* Ensure that the vector has at least RESERVE slots available (if
+ EXACT is false), or exactly RESERVE slots available (if EXACT is
+ true).
+
+ This may create additional headroom if EXACT is false.
+
+ Note that this can cause the embedded vector to be reallocated.
+ Returns true iff reallocation actually occurred. */
+
+template<typename T>
+inline bool
+vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
+{
+ if (space (nelems))
+ return false;
+
+ /* For now play a game with va_heap::reserve to hide our auto storage if any,
+ this is necessary because it doesn't have enough information to know the
+ embedded vector is in auto storage, and so should not be freed. */
+ vec<T, va_heap, vl_embed> *oldvec = m_vec;
+ unsigned int oldsize = 0;
+ bool handle_auto_vec = m_vec && using_auto_storage ();
+ if (handle_auto_vec)
+ {
+ m_vec = NULL;
+ oldsize = oldvec->length ();
+ nelems += oldsize;
+ }
+
+ va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
+ if (handle_auto_vec)
+ {
+ memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
+ m_vec->m_vecpfx.m_num = oldsize;
+ }
+
+ return true;
+}
+
+
+/* Ensure that this vector has exactly NELEMS slots available. This
+ will not create additional headroom. Note this can cause the
+ embedded vector to be reallocated. Returns true iff reallocation
+ actually occurred. */
+
+template<typename T>
+inline bool
+vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
+{
+ return reserve (nelems, true PASS_MEM_STAT);
+}
+
+
+/* Create the internal vector and reserve NELEMS for it. This is
+ exactly like vec::reserve, but the internal vector is
+ unconditionally allocated from scratch. The old one, if it
+ existed, is lost. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
+{
+ m_vec = NULL;
+ if (nelems > 0)
+ reserve_exact (nelems PASS_MEM_STAT);
+}
+
+
+/* Free the memory occupied by the embedded vector. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::release (void)
+{
+ if (!m_vec)
+ return;
+
+ if (using_auto_storage ())
+ {
+ m_vec->m_vecpfx.m_num = 0;
+ return;
+ }
+
+ va_heap::release (m_vec);
+}
+
+/* Copy the elements from SRC to the end of this vector as if by memcpy.
+ SRC and this vector must be allocated with the same memory
+ allocation mechanism. This vector is assumed to have sufficient
+ headroom available. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
+{
+ if (src.m_vec)
+ m_vec->splice (*(src.m_vec));
+}
+
+
+/* Copy the elements in SRC to the end of this vector as if by memcpy.
+ SRC and this vector must be allocated with the same mechanism.
+ If there is not enough headroom in this vector, it will be reallocated
+ as needed. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
+ MEM_STAT_DECL)
+{
+ if (src.length ())
+ {
+ reserve_exact (src.length ());
+ splice (src);
+ }
+}
+
+
+/* Push OBJ (a new element) onto the end of the vector. There must be
+ sufficient space in the vector. Return a pointer to the slot
+ where OBJ was inserted. */
+
+template<typename T>
+inline T *
+vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
+{
+ return m_vec->quick_push (obj);
+}
+
+
+/* Push a new element OBJ onto the end of this vector. Reallocates
+ the embedded vector, if needed. Return a pointer to the slot where
+ OBJ was inserted. */
+
+template<typename T>
+inline T *
+vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
+{
+ reserve (1, false PASS_MEM_STAT);
+ return quick_push (obj);
+}
+
+
+/* Pop and return the last element off the end of the vector. */
+
+template<typename T>
+inline T &
+vec<T, va_heap, vl_ptr>::pop (void)
+{
+ return m_vec->pop ();
+}
+
+
+/* Set the length of the vector to LEN. The new length must be less
+ than or equal to the current length. This is an O(1) operation. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::truncate (unsigned size)
+{
+ if (m_vec)
+ m_vec->truncate (size);
+ else
+ gcc_checking_assert (size == 0);
+}
+
+
+/* Grow the vector to a specific length. LEN must be as long or
+ longer than the current length. The new elements are
+ uninitialized. Reallocate the internal vector, if needed. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
+{
+ unsigned oldlen = length ();
+ gcc_checking_assert (oldlen <= len);
+ reserve_exact (len - oldlen PASS_MEM_STAT);
+ m_vec->quick_grow (len);
+}
+
+
+/* Grow the embedded vector to a specific length. LEN must be as
+ long or longer than the current length. The new elements are
+ initialized to zero. Reallocate the internal vector, if needed. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
+{
+ unsigned oldlen = length ();
+ safe_grow (len PASS_MEM_STAT);
+ memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
+}
+
+
+/* Same as vec::safe_grow but without reallocation of the internal vector.
+ If the vector cannot be extended, a runtime assertion will be triggered. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
+{
+ gcc_checking_assert (m_vec);
+ m_vec->quick_grow (len);
+}
+
+
+/* Same as vec::quick_grow_cleared but without reallocation of the
+ internal vector. If the vector cannot be extended, a runtime
+ assertion will be triggered. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
+{
+ gcc_checking_assert (m_vec);
+ m_vec->quick_grow_cleared (len);
+}
+
+
+/* Insert an element, OBJ, at the IXth position of this vector. There
+ must be sufficient space. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
+{
+ m_vec->quick_insert (ix, obj);
+}
+
+
+/* Insert an element, OBJ, at the IXth position of the vector.
+ Reallocate the embedded vector, if necessary. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
+{
+ reserve (1, false PASS_MEM_STAT);
+ quick_insert (ix, obj);
+}
+
+
+/* Remove an element from the IXth position of this vector. Ordering of
+ remaining elements is preserved. This is an O(N) operation due to
+ a memmove. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
+{
+ m_vec->ordered_remove (ix);
+}
+
+
+/* Remove an element from the IXth position of this vector. Ordering
+ of remaining elements is destroyed. This is an O(1) operation. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
+{
+ m_vec->unordered_remove (ix);
+}
+
+
+/* Remove LEN elements starting at the IXth. Ordering is retained.
+ This is an O(N) operation due to memmove. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
+{
+ m_vec->block_remove (ix, len);
+}
+
+
+/* Sort the contents of this vector with qsort. CMP is the comparison
+ function to pass to qsort. */
+
+template<typename T>
+inline void
+vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
+{
+ if (m_vec)
+ m_vec->qsort (cmp);
+}
+
+
+/* Search the contents of the sorted vector with a binary search.
+ CMP is the comparison function to pass to bsearch. */
+
+template<typename T>
+inline T *
+vec<T, va_heap, vl_ptr>::bsearch (const void *key,
+ int (*cmp) (const void *, const void *))
+{
+ if (m_vec)
+ return m_vec->bsearch (key, cmp);
+ return NULL;
+}
+
+
+/* Find and return the first position in which OBJ could be inserted
+ without changing the ordering of this vector. LESSTHAN is a
+ function that returns true if the first argument is strictly less
+ than the second. */
+
+template<typename T>
+inline unsigned
+vec<T, va_heap, vl_ptr>::lower_bound (T obj,
+ bool (*lessthan)(const T &, const T &))
+ const
+{
+ return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
+}
+
+template<typename T>
+inline bool
+vec<T, va_heap, vl_ptr>::using_auto_storage () const
+{
+ return m_vec->m_vecpfx.m_using_auto_storage;
+}
+
+#if (GCC_VERSION >= 3000)
+# pragma GCC poison m_vec m_vecpfx m_vecdata
+#endif
+
+#endif // GCC_VEC_H