aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-ssa-structalias.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/tree-ssa-structalias.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/tree-ssa-structalias.c')
-rw-r--r--gcc-4.9/gcc/tree-ssa-structalias.c7471
1 files changed, 7471 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-ssa-structalias.c b/gcc-4.9/gcc/tree-ssa-structalias.c
new file mode 100644
index 000000000..8201cb423
--- /dev/null
+++ b/gcc-4.9/gcc/tree-ssa-structalias.c
@@ -0,0 +1,7471 @@
+/* Tree based points-to analysis
+ Copyright (C) 2005-2014 Free Software Foundation, Inc.
+ Contributed by Daniel Berlin <dberlin@dberlin.org>
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ GCC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "obstack.h"
+#include "bitmap.h"
+#include "sbitmap.h"
+#include "flags.h"
+#include "basic-block.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "stmt.h"
+#include "pointer-set.h"
+#include "hash-table.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimple-iterator.h"
+#include "gimple-ssa.h"
+#include "cgraph.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-into-ssa.h"
+#include "expr.h"
+#include "tree-dfa.h"
+#include "tree-inline.h"
+#include "diagnostic-core.h"
+#include "function.h"
+#include "tree-pass.h"
+#include "alloc-pool.h"
+#include "splay-tree.h"
+#include "params.h"
+#include "alias.h"
+
+/* The idea behind this analyzer is to generate set constraints from the
+ program, then solve the resulting constraints in order to generate the
+ points-to sets.
+
+ Set constraints are a way of modeling program analysis problems that
+ involve sets. They consist of an inclusion constraint language,
+ describing the variables (each variable is a set) and operations that
+ are involved on the variables, and a set of rules that derive facts
+ from these operations. To solve a system of set constraints, you derive
+ all possible facts under the rules, which gives you the correct sets
+ as a consequence.
+
+ See "Efficient Field-sensitive pointer analysis for C" by "David
+ J. Pearce and Paul H. J. Kelly and Chris Hankin, at
+ http://citeseer.ist.psu.edu/pearce04efficient.html
+
+ Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
+ of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
+ http://citeseer.ist.psu.edu/heintze01ultrafast.html
+
+ There are three types of real constraint expressions, DEREF,
+ ADDRESSOF, and SCALAR. Each constraint expression consists
+ of a constraint type, a variable, and an offset.
+
+ SCALAR is a constraint expression type used to represent x, whether
+ it appears on the LHS or the RHS of a statement.
+ DEREF is a constraint expression type used to represent *x, whether
+ it appears on the LHS or the RHS of a statement.
+ ADDRESSOF is a constraint expression used to represent &x, whether
+ it appears on the LHS or the RHS of a statement.
+
+ Each pointer variable in the program is assigned an integer id, and
+ each field of a structure variable is assigned an integer id as well.
+
+ Structure variables are linked to their list of fields through a "next
+ field" in each variable that points to the next field in offset
+ order.
+ Each variable for a structure field has
+
+ 1. "size", that tells the size in bits of that field.
+ 2. "fullsize, that tells the size in bits of the entire structure.
+ 3. "offset", that tells the offset in bits from the beginning of the
+ structure to this field.
+
+ Thus,
+ struct f
+ {
+ int a;
+ int b;
+ } foo;
+ int *bar;
+
+ looks like
+
+ foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
+ foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
+ bar -> id 3, size 32, offset 0, fullsize 32, next NULL
+
+
+ In order to solve the system of set constraints, the following is
+ done:
+
+ 1. Each constraint variable x has a solution set associated with it,
+ Sol(x).
+
+ 2. Constraints are separated into direct, copy, and complex.
+ Direct constraints are ADDRESSOF constraints that require no extra
+ processing, such as P = &Q
+ Copy constraints are those of the form P = Q.
+ Complex constraints are all the constraints involving dereferences
+ and offsets (including offsetted copies).
+
+ 3. All direct constraints of the form P = &Q are processed, such
+ that Q is added to Sol(P)
+
+ 4. All complex constraints for a given constraint variable are stored in a
+ linked list attached to that variable's node.
+
+ 5. A directed graph is built out of the copy constraints. Each
+ constraint variable is a node in the graph, and an edge from
+ Q to P is added for each copy constraint of the form P = Q
+
+ 6. The graph is then walked, and solution sets are
+ propagated along the copy edges, such that an edge from Q to P
+ causes Sol(P) <- Sol(P) union Sol(Q).
+
+ 7. As we visit each node, all complex constraints associated with
+ that node are processed by adding appropriate copy edges to the graph, or the
+ appropriate variables to the solution set.
+
+ 8. The process of walking the graph is iterated until no solution
+ sets change.
+
+ Prior to walking the graph in steps 6 and 7, We perform static
+ cycle elimination on the constraint graph, as well
+ as off-line variable substitution.
+
+ TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
+ on and turned into anything), but isn't. You can just see what offset
+ inside the pointed-to struct it's going to access.
+
+ TODO: Constant bounded arrays can be handled as if they were structs of the
+ same number of elements.
+
+ TODO: Modeling heap and incoming pointers becomes much better if we
+ add fields to them as we discover them, which we could do.
+
+ TODO: We could handle unions, but to be honest, it's probably not
+ worth the pain or slowdown. */
+
+/* IPA-PTA optimizations possible.
+
+ When the indirect function called is ANYTHING we can add disambiguation
+ based on the function signatures (or simply the parameter count which
+ is the varinfo size). We also do not need to consider functions that
+ do not have their address taken.
+
+ The is_global_var bit which marks escape points is overly conservative
+ in IPA mode. Split it to is_escape_point and is_global_var - only
+ externally visible globals are escape points in IPA mode. This is
+ also needed to fix the pt_solution_includes_global predicate
+ (and thus ptr_deref_may_alias_global_p).
+
+ The way we introduce DECL_PT_UID to avoid fixing up all points-to
+ sets in the translation unit when we copy a DECL during inlining
+ pessimizes precision. The advantage is that the DECL_PT_UID keeps
+ compile-time and memory usage overhead low - the points-to sets
+ do not grow or get unshared as they would during a fixup phase.
+ An alternative solution is to delay IPA PTA until after all
+ inlining transformations have been applied.
+
+ The way we propagate clobber/use information isn't optimized.
+ It should use a new complex constraint that properly filters
+ out local variables of the callee (though that would make
+ the sets invalid after inlining). OTOH we might as well
+ admit defeat to WHOPR and simply do all the clobber/use analysis
+ and propagation after PTA finished but before we threw away
+ points-to information for memory variables. WHOPR and PTA
+ do not play along well anyway - the whole constraint solving
+ would need to be done in WPA phase and it will be very interesting
+ to apply the results to local SSA names during LTRANS phase.
+
+ We probably should compute a per-function unit-ESCAPE solution
+ propagating it simply like the clobber / uses solutions. The
+ solution can go alongside the non-IPA espaced solution and be
+ used to query which vars escape the unit through a function.
+
+ We never put function decls in points-to sets so we do not
+ keep the set of called functions for indirect calls.
+
+ And probably more. */
+
+static bool use_field_sensitive = true;
+static int in_ipa_mode = 0;
+
+/* Used for predecessor bitmaps. */
+static bitmap_obstack predbitmap_obstack;
+
+/* Used for points-to sets. */
+static bitmap_obstack pta_obstack;
+
+/* Used for oldsolution members of variables. */
+static bitmap_obstack oldpta_obstack;
+
+/* Used for per-solver-iteration bitmaps. */
+static bitmap_obstack iteration_obstack;
+
+static unsigned int create_variable_info_for (tree, const char *);
+typedef struct constraint_graph *constraint_graph_t;
+static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
+
+struct constraint;
+typedef struct constraint *constraint_t;
+
+
+#define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
+ if (a) \
+ EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
+
+static struct constraint_stats
+{
+ unsigned int total_vars;
+ unsigned int nonpointer_vars;
+ unsigned int unified_vars_static;
+ unsigned int unified_vars_dynamic;
+ unsigned int iterations;
+ unsigned int num_edges;
+ unsigned int num_implicit_edges;
+ unsigned int points_to_sets_created;
+} stats;
+
+struct variable_info
+{
+ /* ID of this variable */
+ unsigned int id;
+
+ /* True if this is a variable created by the constraint analysis, such as
+ heap variables and constraints we had to break up. */
+ unsigned int is_artificial_var : 1;
+
+ /* True if this is a special variable whose solution set should not be
+ changed. */
+ unsigned int is_special_var : 1;
+
+ /* True for variables whose size is not known or variable. */
+ unsigned int is_unknown_size_var : 1;
+
+ /* True for (sub-)fields that represent a whole variable. */
+ unsigned int is_full_var : 1;
+
+ /* True if this is a heap variable. */
+ unsigned int is_heap_var : 1;
+
+ /* True if this field may contain pointers. */
+ unsigned int may_have_pointers : 1;
+
+ /* True if this field has only restrict qualified pointers. */
+ unsigned int only_restrict_pointers : 1;
+
+ /* True if this represents a global variable. */
+ unsigned int is_global_var : 1;
+
+ /* True if this represents a IPA function info. */
+ unsigned int is_fn_info : 1;
+
+ /* The ID of the variable for the next field in this structure
+ or zero for the last field in this structure. */
+ unsigned next;
+
+ /* The ID of the variable for the first field in this structure. */
+ unsigned head;
+
+ /* Offset of this variable, in bits, from the base variable */
+ unsigned HOST_WIDE_INT offset;
+
+ /* Size of the variable, in bits. */
+ unsigned HOST_WIDE_INT size;
+
+ /* Full size of the base variable, in bits. */
+ unsigned HOST_WIDE_INT fullsize;
+
+ /* Name of this variable */
+ const char *name;
+
+ /* Tree that this variable is associated with. */
+ tree decl;
+
+ /* Points-to set for this variable. */
+ bitmap solution;
+
+ /* Old points-to set for this variable. */
+ bitmap oldsolution;
+};
+typedef struct variable_info *varinfo_t;
+
+static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
+static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
+ unsigned HOST_WIDE_INT);
+static varinfo_t lookup_vi_for_tree (tree);
+static inline bool type_can_have_subvars (const_tree);
+
+/* Pool of variable info structures. */
+static alloc_pool variable_info_pool;
+
+/* Map varinfo to final pt_solution. */
+static pointer_map_t *final_solutions;
+struct obstack final_solutions_obstack;
+
+/* Table of variable info structures for constraint variables.
+ Indexed directly by variable info id. */
+static vec<varinfo_t> varmap;
+
+/* Return the varmap element N */
+
+static inline varinfo_t
+get_varinfo (unsigned int n)
+{
+ return varmap[n];
+}
+
+/* Return the next variable in the list of sub-variables of VI
+ or NULL if VI is the last sub-variable. */
+
+static inline varinfo_t
+vi_next (varinfo_t vi)
+{
+ return get_varinfo (vi->next);
+}
+
+/* Static IDs for the special variables. Variable ID zero is unused
+ and used as terminator for the sub-variable chain. */
+enum { nothing_id = 1, anything_id = 2, readonly_id = 3,
+ escaped_id = 4, nonlocal_id = 5,
+ storedanything_id = 6, integer_id = 7 };
+
+/* Return a new variable info structure consisting for a variable
+ named NAME, and using constraint graph node NODE. Append it
+ to the vector of variable info structures. */
+
+static varinfo_t
+new_var_info (tree t, const char *name)
+{
+ unsigned index = varmap.length ();
+ varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
+
+ ret->id = index;
+ ret->name = name;
+ ret->decl = t;
+ /* Vars without decl are artificial and do not have sub-variables. */
+ ret->is_artificial_var = (t == NULL_TREE);
+ ret->is_special_var = false;
+ ret->is_unknown_size_var = false;
+ ret->is_full_var = (t == NULL_TREE);
+ ret->is_heap_var = false;
+ ret->may_have_pointers = true;
+ ret->only_restrict_pointers = false;
+ ret->is_global_var = (t == NULL_TREE);
+ ret->is_fn_info = false;
+ if (t && DECL_P (t))
+ ret->is_global_var = (is_global_var (t)
+ /* We have to treat even local register variables
+ as escape points. */
+ || (TREE_CODE (t) == VAR_DECL
+ && DECL_HARD_REGISTER (t)));
+ ret->solution = BITMAP_ALLOC (&pta_obstack);
+ ret->oldsolution = NULL;
+ ret->next = 0;
+ ret->head = ret->id;
+
+ stats.total_vars++;
+
+ varmap.safe_push (ret);
+
+ return ret;
+}
+
+
+/* A map mapping call statements to per-stmt variables for uses
+ and clobbers specific to the call. */
+static struct pointer_map_t *call_stmt_vars;
+
+/* Lookup or create the variable for the call statement CALL. */
+
+static varinfo_t
+get_call_vi (gimple call)
+{
+ void **slot_p;
+ varinfo_t vi, vi2;
+
+ slot_p = pointer_map_insert (call_stmt_vars, call);
+ if (*slot_p)
+ return (varinfo_t) *slot_p;
+
+ vi = new_var_info (NULL_TREE, "CALLUSED");
+ vi->offset = 0;
+ vi->size = 1;
+ vi->fullsize = 2;
+ vi->is_full_var = true;
+
+ vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
+ vi2->offset = 1;
+ vi2->size = 1;
+ vi2->fullsize = 2;
+ vi2->is_full_var = true;
+
+ vi->next = vi2->id;
+
+ *slot_p = (void *) vi;
+ return vi;
+}
+
+/* Lookup the variable for the call statement CALL representing
+ the uses. Returns NULL if there is nothing special about this call. */
+
+static varinfo_t
+lookup_call_use_vi (gimple call)
+{
+ void **slot_p;
+
+ slot_p = pointer_map_contains (call_stmt_vars, call);
+ if (slot_p)
+ return (varinfo_t) *slot_p;
+
+ return NULL;
+}
+
+/* Lookup the variable for the call statement CALL representing
+ the clobbers. Returns NULL if there is nothing special about this call. */
+
+static varinfo_t
+lookup_call_clobber_vi (gimple call)
+{
+ varinfo_t uses = lookup_call_use_vi (call);
+ if (!uses)
+ return NULL;
+
+ return vi_next (uses);
+}
+
+/* Lookup or create the variable for the call statement CALL representing
+ the uses. */
+
+static varinfo_t
+get_call_use_vi (gimple call)
+{
+ return get_call_vi (call);
+}
+
+/* Lookup or create the variable for the call statement CALL representing
+ the clobbers. */
+
+static varinfo_t ATTRIBUTE_UNUSED
+get_call_clobber_vi (gimple call)
+{
+ return vi_next (get_call_vi (call));
+}
+
+
+typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
+
+/* An expression that appears in a constraint. */
+
+struct constraint_expr
+{
+ /* Constraint type. */
+ constraint_expr_type type;
+
+ /* Variable we are referring to in the constraint. */
+ unsigned int var;
+
+ /* Offset, in bits, of this constraint from the beginning of
+ variables it ends up referring to.
+
+ IOW, in a deref constraint, we would deref, get the result set,
+ then add OFFSET to each member. */
+ HOST_WIDE_INT offset;
+};
+
+/* Use 0x8000... as special unknown offset. */
+#define UNKNOWN_OFFSET HOST_WIDE_INT_MIN
+
+typedef struct constraint_expr ce_s;
+static void get_constraint_for_1 (tree, vec<ce_s> *, bool, bool);
+static void get_constraint_for (tree, vec<ce_s> *);
+static void get_constraint_for_rhs (tree, vec<ce_s> *);
+static void do_deref (vec<ce_s> *);
+
+/* Our set constraints are made up of two constraint expressions, one
+ LHS, and one RHS.
+
+ As described in the introduction, our set constraints each represent an
+ operation between set valued variables.
+*/
+struct constraint
+{
+ struct constraint_expr lhs;
+ struct constraint_expr rhs;
+};
+
+/* List of constraints that we use to build the constraint graph from. */
+
+static vec<constraint_t> constraints;
+static alloc_pool constraint_pool;
+
+/* The constraint graph is represented as an array of bitmaps
+ containing successor nodes. */
+
+struct constraint_graph
+{
+ /* Size of this graph, which may be different than the number of
+ nodes in the variable map. */
+ unsigned int size;
+
+ /* Explicit successors of each node. */
+ bitmap *succs;
+
+ /* Implicit predecessors of each node (Used for variable
+ substitution). */
+ bitmap *implicit_preds;
+
+ /* Explicit predecessors of each node (Used for variable substitution). */
+ bitmap *preds;
+
+ /* Indirect cycle representatives, or -1 if the node has no indirect
+ cycles. */
+ int *indirect_cycles;
+
+ /* Representative node for a node. rep[a] == a unless the node has
+ been unified. */
+ unsigned int *rep;
+
+ /* Equivalence class representative for a label. This is used for
+ variable substitution. */
+ int *eq_rep;
+
+ /* Pointer equivalence label for a node. All nodes with the same
+ pointer equivalence label can be unified together at some point
+ (either during constraint optimization or after the constraint
+ graph is built). */
+ unsigned int *pe;
+
+ /* Pointer equivalence representative for a label. This is used to
+ handle nodes that are pointer equivalent but not location
+ equivalent. We can unite these once the addressof constraints
+ are transformed into initial points-to sets. */
+ int *pe_rep;
+
+ /* Pointer equivalence label for each node, used during variable
+ substitution. */
+ unsigned int *pointer_label;
+
+ /* Location equivalence label for each node, used during location
+ equivalence finding. */
+ unsigned int *loc_label;
+
+ /* Pointed-by set for each node, used during location equivalence
+ finding. This is pointed-by rather than pointed-to, because it
+ is constructed using the predecessor graph. */
+ bitmap *pointed_by;
+
+ /* Points to sets for pointer equivalence. This is *not* the actual
+ points-to sets for nodes. */
+ bitmap *points_to;
+
+ /* Bitmap of nodes where the bit is set if the node is a direct
+ node. Used for variable substitution. */
+ sbitmap direct_nodes;
+
+ /* Bitmap of nodes where the bit is set if the node is address
+ taken. Used for variable substitution. */
+ bitmap address_taken;
+
+ /* Vector of complex constraints for each graph node. Complex
+ constraints are those involving dereferences or offsets that are
+ not 0. */
+ vec<constraint_t> *complex;
+};
+
+static constraint_graph_t graph;
+
+/* During variable substitution and the offline version of indirect
+ cycle finding, we create nodes to represent dereferences and
+ address taken constraints. These represent where these start and
+ end. */
+#define FIRST_REF_NODE (varmap).length ()
+#define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
+
+/* Return the representative node for NODE, if NODE has been unioned
+ with another NODE.
+ This function performs path compression along the way to finding
+ the representative. */
+
+static unsigned int
+find (unsigned int node)
+{
+ gcc_checking_assert (node < graph->size);
+ if (graph->rep[node] != node)
+ return graph->rep[node] = find (graph->rep[node]);
+ return node;
+}
+
+/* Union the TO and FROM nodes to the TO nodes.
+ Note that at some point in the future, we may want to do
+ union-by-rank, in which case we are going to have to return the
+ node we unified to. */
+
+static bool
+unite (unsigned int to, unsigned int from)
+{
+ gcc_checking_assert (to < graph->size && from < graph->size);
+ if (to != from && graph->rep[from] != to)
+ {
+ graph->rep[from] = to;
+ return true;
+ }
+ return false;
+}
+
+/* Create a new constraint consisting of LHS and RHS expressions. */
+
+static constraint_t
+new_constraint (const struct constraint_expr lhs,
+ const struct constraint_expr rhs)
+{
+ constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
+ ret->lhs = lhs;
+ ret->rhs = rhs;
+ return ret;
+}
+
+/* Print out constraint C to FILE. */
+
+static void
+dump_constraint (FILE *file, constraint_t c)
+{
+ if (c->lhs.type == ADDRESSOF)
+ fprintf (file, "&");
+ else if (c->lhs.type == DEREF)
+ fprintf (file, "*");
+ fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
+ if (c->lhs.offset == UNKNOWN_OFFSET)
+ fprintf (file, " + UNKNOWN");
+ else if (c->lhs.offset != 0)
+ fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
+ fprintf (file, " = ");
+ if (c->rhs.type == ADDRESSOF)
+ fprintf (file, "&");
+ else if (c->rhs.type == DEREF)
+ fprintf (file, "*");
+ fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
+ if (c->rhs.offset == UNKNOWN_OFFSET)
+ fprintf (file, " + UNKNOWN");
+ else if (c->rhs.offset != 0)
+ fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
+}
+
+
+void debug_constraint (constraint_t);
+void debug_constraints (void);
+void debug_constraint_graph (void);
+void debug_solution_for_var (unsigned int);
+void debug_sa_points_to_info (void);
+
+/* Print out constraint C to stderr. */
+
+DEBUG_FUNCTION void
+debug_constraint (constraint_t c)
+{
+ dump_constraint (stderr, c);
+ fprintf (stderr, "\n");
+}
+
+/* Print out all constraints to FILE */
+
+static void
+dump_constraints (FILE *file, int from)
+{
+ int i;
+ constraint_t c;
+ for (i = from; constraints.iterate (i, &c); i++)
+ if (c)
+ {
+ dump_constraint (file, c);
+ fprintf (file, "\n");
+ }
+}
+
+/* Print out all constraints to stderr. */
+
+DEBUG_FUNCTION void
+debug_constraints (void)
+{
+ dump_constraints (stderr, 0);
+}
+
+/* Print the constraint graph in dot format. */
+
+static void
+dump_constraint_graph (FILE *file)
+{
+ unsigned int i;
+
+ /* Only print the graph if it has already been initialized: */
+ if (!graph)
+ return;
+
+ /* Prints the header of the dot file: */
+ fprintf (file, "strict digraph {\n");
+ fprintf (file, " node [\n shape = box\n ]\n");
+ fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
+ fprintf (file, "\n // List of nodes and complex constraints in "
+ "the constraint graph:\n");
+
+ /* The next lines print the nodes in the graph together with the
+ complex constraints attached to them. */
+ for (i = 1; i < graph->size; i++)
+ {
+ if (i == FIRST_REF_NODE)
+ continue;
+ if (find (i) != i)
+ continue;
+ if (i < FIRST_REF_NODE)
+ fprintf (file, "\"%s\"", get_varinfo (i)->name);
+ else
+ fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
+ if (graph->complex[i].exists ())
+ {
+ unsigned j;
+ constraint_t c;
+ fprintf (file, " [label=\"\\N\\n");
+ for (j = 0; graph->complex[i].iterate (j, &c); ++j)
+ {
+ dump_constraint (file, c);
+ fprintf (file, "\\l");
+ }
+ fprintf (file, "\"]");
+ }
+ fprintf (file, ";\n");
+ }
+
+ /* Go over the edges. */
+ fprintf (file, "\n // Edges in the constraint graph:\n");
+ for (i = 1; i < graph->size; i++)
+ {
+ unsigned j;
+ bitmap_iterator bi;
+ if (find (i) != i)
+ continue;
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
+ {
+ unsigned to = find (j);
+ if (i == to)
+ continue;
+ if (i < FIRST_REF_NODE)
+ fprintf (file, "\"%s\"", get_varinfo (i)->name);
+ else
+ fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
+ fprintf (file, " -> ");
+ if (to < FIRST_REF_NODE)
+ fprintf (file, "\"%s\"", get_varinfo (to)->name);
+ else
+ fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
+ fprintf (file, ";\n");
+ }
+ }
+
+ /* Prints the tail of the dot file. */
+ fprintf (file, "}\n");
+}
+
+/* Print out the constraint graph to stderr. */
+
+DEBUG_FUNCTION void
+debug_constraint_graph (void)
+{
+ dump_constraint_graph (stderr);
+}
+
+/* SOLVER FUNCTIONS
+
+ The solver is a simple worklist solver, that works on the following
+ algorithm:
+
+ sbitmap changed_nodes = all zeroes;
+ changed_count = 0;
+ For each node that is not already collapsed:
+ changed_count++;
+ set bit in changed nodes
+
+ while (changed_count > 0)
+ {
+ compute topological ordering for constraint graph
+
+ find and collapse cycles in the constraint graph (updating
+ changed if necessary)
+
+ for each node (n) in the graph in topological order:
+ changed_count--;
+
+ Process each complex constraint associated with the node,
+ updating changed if necessary.
+
+ For each outgoing edge from n, propagate the solution from n to
+ the destination of the edge, updating changed as necessary.
+
+ } */
+
+/* Return true if two constraint expressions A and B are equal. */
+
+static bool
+constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
+{
+ return a.type == b.type && a.var == b.var && a.offset == b.offset;
+}
+
+/* Return true if constraint expression A is less than constraint expression
+ B. This is just arbitrary, but consistent, in order to give them an
+ ordering. */
+
+static bool
+constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
+{
+ if (a.type == b.type)
+ {
+ if (a.var == b.var)
+ return a.offset < b.offset;
+ else
+ return a.var < b.var;
+ }
+ else
+ return a.type < b.type;
+}
+
+/* Return true if constraint A is less than constraint B. This is just
+ arbitrary, but consistent, in order to give them an ordering. */
+
+static bool
+constraint_less (const constraint_t &a, const constraint_t &b)
+{
+ if (constraint_expr_less (a->lhs, b->lhs))
+ return true;
+ else if (constraint_expr_less (b->lhs, a->lhs))
+ return false;
+ else
+ return constraint_expr_less (a->rhs, b->rhs);
+}
+
+/* Return true if two constraints A and B are equal. */
+
+static bool
+constraint_equal (struct constraint a, struct constraint b)
+{
+ return constraint_expr_equal (a.lhs, b.lhs)
+ && constraint_expr_equal (a.rhs, b.rhs);
+}
+
+
+/* Find a constraint LOOKFOR in the sorted constraint vector VEC */
+
+static constraint_t
+constraint_vec_find (vec<constraint_t> vec,
+ struct constraint lookfor)
+{
+ unsigned int place;
+ constraint_t found;
+
+ if (!vec.exists ())
+ return NULL;
+
+ place = vec.lower_bound (&lookfor, constraint_less);
+ if (place >= vec.length ())
+ return NULL;
+ found = vec[place];
+ if (!constraint_equal (*found, lookfor))
+ return NULL;
+ return found;
+}
+
+/* Union two constraint vectors, TO and FROM. Put the result in TO.
+ Returns true of TO set is changed. */
+
+static bool
+constraint_set_union (vec<constraint_t> *to,
+ vec<constraint_t> *from)
+{
+ int i;
+ constraint_t c;
+ bool any_change = false;
+
+ FOR_EACH_VEC_ELT (*from, i, c)
+ {
+ if (constraint_vec_find (*to, *c) == NULL)
+ {
+ unsigned int place = to->lower_bound (c, constraint_less);
+ to->safe_insert (place, c);
+ any_change = true;
+ }
+ }
+ return any_change;
+}
+
+/* Expands the solution in SET to all sub-fields of variables included. */
+
+static bitmap
+solution_set_expand (bitmap set, bitmap *expanded)
+{
+ bitmap_iterator bi;
+ unsigned j;
+
+ if (*expanded)
+ return *expanded;
+
+ *expanded = BITMAP_ALLOC (&iteration_obstack);
+
+ /* In a first pass expand to the head of the variables we need to
+ add all sub-fields off. This avoids quadratic behavior. */
+ EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
+ {
+ varinfo_t v = get_varinfo (j);
+ if (v->is_artificial_var
+ || v->is_full_var)
+ continue;
+ bitmap_set_bit (*expanded, v->head);
+ }
+
+ /* In the second pass now expand all head variables with subfields. */
+ EXECUTE_IF_SET_IN_BITMAP (*expanded, 0, j, bi)
+ {
+ varinfo_t v = get_varinfo (j);
+ if (v->head != j)
+ continue;
+ for (v = vi_next (v); v != NULL; v = vi_next (v))
+ bitmap_set_bit (*expanded, v->id);
+ }
+
+ /* And finally set the rest of the bits from SET. */
+ bitmap_ior_into (*expanded, set);
+
+ return *expanded;
+}
+
+/* Union solution sets TO and DELTA, and add INC to each member of DELTA in the
+ process. */
+
+static bool
+set_union_with_increment (bitmap to, bitmap delta, HOST_WIDE_INT inc,
+ bitmap *expanded_delta)
+{
+ bool changed = false;
+ bitmap_iterator bi;
+ unsigned int i;
+
+ /* If the solution of DELTA contains anything it is good enough to transfer
+ this to TO. */
+ if (bitmap_bit_p (delta, anything_id))
+ return bitmap_set_bit (to, anything_id);
+
+ /* If the offset is unknown we have to expand the solution to
+ all subfields. */
+ if (inc == UNKNOWN_OFFSET)
+ {
+ delta = solution_set_expand (delta, expanded_delta);
+ changed |= bitmap_ior_into (to, delta);
+ return changed;
+ }
+
+ /* For non-zero offset union the offsetted solution into the destination. */
+ EXECUTE_IF_SET_IN_BITMAP (delta, 0, i, bi)
+ {
+ varinfo_t vi = get_varinfo (i);
+
+ /* If this is a variable with just one field just set its bit
+ in the result. */
+ if (vi->is_artificial_var
+ || vi->is_unknown_size_var
+ || vi->is_full_var)
+ changed |= bitmap_set_bit (to, i);
+ else
+ {
+ HOST_WIDE_INT fieldoffset = vi->offset + inc;
+ unsigned HOST_WIDE_INT size = vi->size;
+
+ /* If the offset makes the pointer point to before the
+ variable use offset zero for the field lookup. */
+ if (fieldoffset < 0)
+ vi = get_varinfo (vi->head);
+ else
+ vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
+
+ do
+ {
+ changed |= bitmap_set_bit (to, vi->id);
+ if (vi->is_full_var
+ || vi->next == 0)
+ break;
+
+ /* We have to include all fields that overlap the current field
+ shifted by inc. */
+ vi = vi_next (vi);
+ }
+ while (vi->offset < fieldoffset + size);
+ }
+ }
+
+ return changed;
+}
+
+/* Insert constraint C into the list of complex constraints for graph
+ node VAR. */
+
+static void
+insert_into_complex (constraint_graph_t graph,
+ unsigned int var, constraint_t c)
+{
+ vec<constraint_t> complex = graph->complex[var];
+ unsigned int place = complex.lower_bound (c, constraint_less);
+
+ /* Only insert constraints that do not already exist. */
+ if (place >= complex.length ()
+ || !constraint_equal (*c, *complex[place]))
+ graph->complex[var].safe_insert (place, c);
+}
+
+
+/* Condense two variable nodes into a single variable node, by moving
+ all associated info from FROM to TO. Returns true if TO node's
+ constraint set changes after the merge. */
+
+static bool
+merge_node_constraints (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ unsigned int i;
+ constraint_t c;
+ bool any_change = false;
+
+ gcc_checking_assert (find (from) == to);
+
+ /* Move all complex constraints from src node into to node */
+ FOR_EACH_VEC_ELT (graph->complex[from], i, c)
+ {
+ /* In complex constraints for node FROM, we may have either
+ a = *FROM, and *FROM = a, or an offseted constraint which are
+ always added to the rhs node's constraints. */
+
+ if (c->rhs.type == DEREF)
+ c->rhs.var = to;
+ else if (c->lhs.type == DEREF)
+ c->lhs.var = to;
+ else
+ c->rhs.var = to;
+
+ }
+ any_change = constraint_set_union (&graph->complex[to],
+ &graph->complex[from]);
+ graph->complex[from].release ();
+ return any_change;
+}
+
+
+/* Remove edges involving NODE from GRAPH. */
+
+static void
+clear_edges_for_node (constraint_graph_t graph, unsigned int node)
+{
+ if (graph->succs[node])
+ BITMAP_FREE (graph->succs[node]);
+}
+
+/* Merge GRAPH nodes FROM and TO into node TO. */
+
+static void
+merge_graph_nodes (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ if (graph->indirect_cycles[from] != -1)
+ {
+ /* If we have indirect cycles with the from node, and we have
+ none on the to node, the to node has indirect cycles from the
+ from node now that they are unified.
+ If indirect cycles exist on both, unify the nodes that they
+ are in a cycle with, since we know they are in a cycle with
+ each other. */
+ if (graph->indirect_cycles[to] == -1)
+ graph->indirect_cycles[to] = graph->indirect_cycles[from];
+ }
+
+ /* Merge all the successor edges. */
+ if (graph->succs[from])
+ {
+ if (!graph->succs[to])
+ graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
+ bitmap_ior_into (graph->succs[to],
+ graph->succs[from]);
+ }
+
+ clear_edges_for_node (graph, from);
+}
+
+
+/* Add an indirect graph edge to GRAPH, going from TO to FROM if
+ it doesn't exist in the graph already. */
+
+static void
+add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ if (to == from)
+ return;
+
+ if (!graph->implicit_preds[to])
+ graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
+
+ if (bitmap_set_bit (graph->implicit_preds[to], from))
+ stats.num_implicit_edges++;
+}
+
+/* Add a predecessor graph edge to GRAPH, going from TO to FROM if
+ it doesn't exist in the graph already.
+ Return false if the edge already existed, true otherwise. */
+
+static void
+add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ if (!graph->preds[to])
+ graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
+ bitmap_set_bit (graph->preds[to], from);
+}
+
+/* Add a graph edge to GRAPH, going from FROM to TO if
+ it doesn't exist in the graph already.
+ Return false if the edge already existed, true otherwise. */
+
+static bool
+add_graph_edge (constraint_graph_t graph, unsigned int to,
+ unsigned int from)
+{
+ if (to == from)
+ {
+ return false;
+ }
+ else
+ {
+ bool r = false;
+
+ if (!graph->succs[from])
+ graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
+ if (bitmap_set_bit (graph->succs[from], to))
+ {
+ r = true;
+ if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
+ stats.num_edges++;
+ }
+ return r;
+ }
+}
+
+
+/* Initialize the constraint graph structure to contain SIZE nodes. */
+
+static void
+init_graph (unsigned int size)
+{
+ unsigned int j;
+
+ graph = XCNEW (struct constraint_graph);
+ graph->size = size;
+ graph->succs = XCNEWVEC (bitmap, graph->size);
+ graph->indirect_cycles = XNEWVEC (int, graph->size);
+ graph->rep = XNEWVEC (unsigned int, graph->size);
+ /* ??? Macros do not support template types with multiple arguments,
+ so we use a typedef to work around it. */
+ typedef vec<constraint_t> vec_constraint_t_heap;
+ graph->complex = XCNEWVEC (vec_constraint_t_heap, size);
+ graph->pe = XCNEWVEC (unsigned int, graph->size);
+ graph->pe_rep = XNEWVEC (int, graph->size);
+
+ for (j = 0; j < graph->size; j++)
+ {
+ graph->rep[j] = j;
+ graph->pe_rep[j] = -1;
+ graph->indirect_cycles[j] = -1;
+ }
+}
+
+/* Build the constraint graph, adding only predecessor edges right now. */
+
+static void
+build_pred_graph (void)
+{
+ int i;
+ constraint_t c;
+ unsigned int j;
+
+ graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
+ graph->preds = XCNEWVEC (bitmap, graph->size);
+ graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
+ graph->loc_label = XCNEWVEC (unsigned int, graph->size);
+ graph->pointed_by = XCNEWVEC (bitmap, graph->size);
+ graph->points_to = XCNEWVEC (bitmap, graph->size);
+ graph->eq_rep = XNEWVEC (int, graph->size);
+ graph->direct_nodes = sbitmap_alloc (graph->size);
+ graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
+ bitmap_clear (graph->direct_nodes);
+
+ for (j = 1; j < FIRST_REF_NODE; j++)
+ {
+ if (!get_varinfo (j)->is_special_var)
+ bitmap_set_bit (graph->direct_nodes, j);
+ }
+
+ for (j = 0; j < graph->size; j++)
+ graph->eq_rep[j] = -1;
+
+ for (j = 0; j < varmap.length (); j++)
+ graph->indirect_cycles[j] = -1;
+
+ FOR_EACH_VEC_ELT (constraints, i, c)
+ {
+ struct constraint_expr lhs = c->lhs;
+ struct constraint_expr rhs = c->rhs;
+ unsigned int lhsvar = lhs.var;
+ unsigned int rhsvar = rhs.var;
+
+ if (lhs.type == DEREF)
+ {
+ /* *x = y. */
+ if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
+ add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
+ }
+ else if (rhs.type == DEREF)
+ {
+ /* x = *y */
+ if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
+ add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
+ else
+ bitmap_clear_bit (graph->direct_nodes, lhsvar);
+ }
+ else if (rhs.type == ADDRESSOF)
+ {
+ varinfo_t v;
+
+ /* x = &y */
+ if (graph->points_to[lhsvar] == NULL)
+ graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
+ bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
+
+ if (graph->pointed_by[rhsvar] == NULL)
+ graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
+ bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
+
+ /* Implicitly, *x = y */
+ add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
+
+ /* All related variables are no longer direct nodes. */
+ bitmap_clear_bit (graph->direct_nodes, rhsvar);
+ v = get_varinfo (rhsvar);
+ if (!v->is_full_var)
+ {
+ v = get_varinfo (v->head);
+ do
+ {
+ bitmap_clear_bit (graph->direct_nodes, v->id);
+ v = vi_next (v);
+ }
+ while (v != NULL);
+ }
+ bitmap_set_bit (graph->address_taken, rhsvar);
+ }
+ else if (lhsvar > anything_id
+ && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
+ {
+ /* x = y */
+ add_pred_graph_edge (graph, lhsvar, rhsvar);
+ /* Implicitly, *x = *y */
+ add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
+ FIRST_REF_NODE + rhsvar);
+ }
+ else if (lhs.offset != 0 || rhs.offset != 0)
+ {
+ if (rhs.offset != 0)
+ bitmap_clear_bit (graph->direct_nodes, lhs.var);
+ else if (lhs.offset != 0)
+ bitmap_clear_bit (graph->direct_nodes, rhs.var);
+ }
+ }
+}
+
+/* Build the constraint graph, adding successor edges. */
+
+static void
+build_succ_graph (void)
+{
+ unsigned i, t;
+ constraint_t c;
+
+ FOR_EACH_VEC_ELT (constraints, i, c)
+ {
+ struct constraint_expr lhs;
+ struct constraint_expr rhs;
+ unsigned int lhsvar;
+ unsigned int rhsvar;
+
+ if (!c)
+ continue;
+
+ lhs = c->lhs;
+ rhs = c->rhs;
+ lhsvar = find (lhs.var);
+ rhsvar = find (rhs.var);
+
+ if (lhs.type == DEREF)
+ {
+ if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
+ add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
+ }
+ else if (rhs.type == DEREF)
+ {
+ if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
+ add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
+ }
+ else if (rhs.type == ADDRESSOF)
+ {
+ /* x = &y */
+ gcc_checking_assert (find (rhs.var) == rhs.var);
+ bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
+ }
+ else if (lhsvar > anything_id
+ && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
+ {
+ add_graph_edge (graph, lhsvar, rhsvar);
+ }
+ }
+
+ /* Add edges from STOREDANYTHING to all non-direct nodes that can
+ receive pointers. */
+ t = find (storedanything_id);
+ for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
+ {
+ if (!bitmap_bit_p (graph->direct_nodes, i)
+ && get_varinfo (i)->may_have_pointers)
+ add_graph_edge (graph, find (i), t);
+ }
+
+ /* Everything stored to ANYTHING also potentially escapes. */
+ add_graph_edge (graph, find (escaped_id), t);
+}
+
+
+/* Changed variables on the last iteration. */
+static bitmap changed;
+
+/* Strongly Connected Component visitation info. */
+
+struct scc_info
+{
+ sbitmap visited;
+ sbitmap deleted;
+ unsigned int *dfs;
+ unsigned int *node_mapping;
+ int current_index;
+ vec<unsigned> scc_stack;
+};
+
+
+/* Recursive routine to find strongly connected components in GRAPH.
+ SI is the SCC info to store the information in, and N is the id of current
+ graph node we are processing.
+
+ This is Tarjan's strongly connected component finding algorithm, as
+ modified by Nuutila to keep only non-root nodes on the stack.
+ The algorithm can be found in "On finding the strongly connected
+ connected components in a directed graph" by Esko Nuutila and Eljas
+ Soisalon-Soininen, in Information Processing Letters volume 49,
+ number 1, pages 9-14. */
+
+static void
+scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
+{
+ unsigned int i;
+ bitmap_iterator bi;
+ unsigned int my_dfs;
+
+ bitmap_set_bit (si->visited, n);
+ si->dfs[n] = si->current_index ++;
+ my_dfs = si->dfs[n];
+
+ /* Visit all the successors. */
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
+ {
+ unsigned int w;
+
+ if (i > LAST_REF_NODE)
+ break;
+
+ w = find (i);
+ if (bitmap_bit_p (si->deleted, w))
+ continue;
+
+ if (!bitmap_bit_p (si->visited, w))
+ scc_visit (graph, si, w);
+
+ unsigned int t = find (w);
+ gcc_checking_assert (find (n) == n);
+ if (si->dfs[t] < si->dfs[n])
+ si->dfs[n] = si->dfs[t];
+ }
+
+ /* See if any components have been identified. */
+ if (si->dfs[n] == my_dfs)
+ {
+ if (si->scc_stack.length () > 0
+ && si->dfs[si->scc_stack.last ()] >= my_dfs)
+ {
+ bitmap scc = BITMAP_ALLOC (NULL);
+ unsigned int lowest_node;
+ bitmap_iterator bi;
+
+ bitmap_set_bit (scc, n);
+
+ while (si->scc_stack.length () != 0
+ && si->dfs[si->scc_stack.last ()] >= my_dfs)
+ {
+ unsigned int w = si->scc_stack.pop ();
+
+ bitmap_set_bit (scc, w);
+ }
+
+ lowest_node = bitmap_first_set_bit (scc);
+ gcc_assert (lowest_node < FIRST_REF_NODE);
+
+ /* Collapse the SCC nodes into a single node, and mark the
+ indirect cycles. */
+ EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
+ {
+ if (i < FIRST_REF_NODE)
+ {
+ if (unite (lowest_node, i))
+ unify_nodes (graph, lowest_node, i, false);
+ }
+ else
+ {
+ unite (lowest_node, i);
+ graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
+ }
+ }
+ }
+ bitmap_set_bit (si->deleted, n);
+ }
+ else
+ si->scc_stack.safe_push (n);
+}
+
+/* Unify node FROM into node TO, updating the changed count if
+ necessary when UPDATE_CHANGED is true. */
+
+static void
+unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
+ bool update_changed)
+{
+ gcc_checking_assert (to != from && find (to) == to);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Unifying %s to %s\n",
+ get_varinfo (from)->name,
+ get_varinfo (to)->name);
+
+ if (update_changed)
+ stats.unified_vars_dynamic++;
+ else
+ stats.unified_vars_static++;
+
+ merge_graph_nodes (graph, to, from);
+ if (merge_node_constraints (graph, to, from))
+ {
+ if (update_changed)
+ bitmap_set_bit (changed, to);
+ }
+
+ /* Mark TO as changed if FROM was changed. If TO was already marked
+ as changed, decrease the changed count. */
+
+ if (update_changed
+ && bitmap_clear_bit (changed, from))
+ bitmap_set_bit (changed, to);
+ varinfo_t fromvi = get_varinfo (from);
+ if (fromvi->solution)
+ {
+ /* If the solution changes because of the merging, we need to mark
+ the variable as changed. */
+ varinfo_t tovi = get_varinfo (to);
+ if (bitmap_ior_into (tovi->solution, fromvi->solution))
+ {
+ if (update_changed)
+ bitmap_set_bit (changed, to);
+ }
+
+ BITMAP_FREE (fromvi->solution);
+ if (fromvi->oldsolution)
+ BITMAP_FREE (fromvi->oldsolution);
+
+ if (stats.iterations > 0
+ && tovi->oldsolution)
+ BITMAP_FREE (tovi->oldsolution);
+ }
+ if (graph->succs[to])
+ bitmap_clear_bit (graph->succs[to], to);
+}
+
+/* Information needed to compute the topological ordering of a graph. */
+
+struct topo_info
+{
+ /* sbitmap of visited nodes. */
+ sbitmap visited;
+ /* Array that stores the topological order of the graph, *in
+ reverse*. */
+ vec<unsigned> topo_order;
+};
+
+
+/* Initialize and return a topological info structure. */
+
+static struct topo_info *
+init_topo_info (void)
+{
+ size_t size = graph->size;
+ struct topo_info *ti = XNEW (struct topo_info);
+ ti->visited = sbitmap_alloc (size);
+ bitmap_clear (ti->visited);
+ ti->topo_order.create (1);
+ return ti;
+}
+
+
+/* Free the topological sort info pointed to by TI. */
+
+static void
+free_topo_info (struct topo_info *ti)
+{
+ sbitmap_free (ti->visited);
+ ti->topo_order.release ();
+ free (ti);
+}
+
+/* Visit the graph in topological order, and store the order in the
+ topo_info structure. */
+
+static void
+topo_visit (constraint_graph_t graph, struct topo_info *ti,
+ unsigned int n)
+{
+ bitmap_iterator bi;
+ unsigned int j;
+
+ bitmap_set_bit (ti->visited, n);
+
+ if (graph->succs[n])
+ EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
+ {
+ if (!bitmap_bit_p (ti->visited, j))
+ topo_visit (graph, ti, j);
+ }
+
+ ti->topo_order.safe_push (n);
+}
+
+/* Process a constraint C that represents x = *(y + off), using DELTA as the
+ starting solution for y. */
+
+static void
+do_sd_constraint (constraint_graph_t graph, constraint_t c,
+ bitmap delta, bitmap *expanded_delta)
+{
+ unsigned int lhs = c->lhs.var;
+ bool flag = false;
+ bitmap sol = get_varinfo (lhs)->solution;
+ unsigned int j;
+ bitmap_iterator bi;
+ HOST_WIDE_INT roffset = c->rhs.offset;
+
+ /* Our IL does not allow this. */
+ gcc_checking_assert (c->lhs.offset == 0);
+
+ /* If the solution of Y contains anything it is good enough to transfer
+ this to the LHS. */
+ if (bitmap_bit_p (delta, anything_id))
+ {
+ flag |= bitmap_set_bit (sol, anything_id);
+ goto done;
+ }
+
+ /* If we do not know at with offset the rhs is dereferenced compute
+ the reachability set of DELTA, conservatively assuming it is
+ dereferenced at all valid offsets. */
+ if (roffset == UNKNOWN_OFFSET)
+ {
+ delta = solution_set_expand (delta, expanded_delta);
+ /* No further offset processing is necessary. */
+ roffset = 0;
+ }
+
+ /* For each variable j in delta (Sol(y)), add
+ an edge in the graph from j to x, and union Sol(j) into Sol(x). */
+ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
+ {
+ varinfo_t v = get_varinfo (j);
+ HOST_WIDE_INT fieldoffset = v->offset + roffset;
+ unsigned HOST_WIDE_INT size = v->size;
+ unsigned int t;
+
+ if (v->is_full_var)
+ ;
+ else if (roffset != 0)
+ {
+ if (fieldoffset < 0)
+ v = get_varinfo (v->head);
+ else
+ v = first_or_preceding_vi_for_offset (v, fieldoffset);
+ }
+
+ /* We have to include all fields that overlap the current field
+ shifted by roffset. */
+ do
+ {
+ t = find (v->id);
+
+ /* Adding edges from the special vars is pointless.
+ They don't have sets that can change. */
+ if (get_varinfo (t)->is_special_var)
+ flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
+ /* Merging the solution from ESCAPED needlessly increases
+ the set. Use ESCAPED as representative instead. */
+ else if (v->id == escaped_id)
+ flag |= bitmap_set_bit (sol, escaped_id);
+ else if (v->may_have_pointers
+ && add_graph_edge (graph, lhs, t))
+ flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
+
+ if (v->is_full_var
+ || v->next == 0)
+ break;
+
+ v = vi_next (v);
+ }
+ while (v->offset < fieldoffset + size);
+ }
+
+done:
+ /* If the LHS solution changed, mark the var as changed. */
+ if (flag)
+ {
+ get_varinfo (lhs)->solution = sol;
+ bitmap_set_bit (changed, lhs);
+ }
+}
+
+/* Process a constraint C that represents *(x + off) = y using DELTA
+ as the starting solution for x. */
+
+static void
+do_ds_constraint (constraint_t c, bitmap delta, bitmap *expanded_delta)
+{
+ unsigned int rhs = c->rhs.var;
+ bitmap sol = get_varinfo (rhs)->solution;
+ unsigned int j;
+ bitmap_iterator bi;
+ HOST_WIDE_INT loff = c->lhs.offset;
+ bool escaped_p = false;
+
+ /* Our IL does not allow this. */
+ gcc_checking_assert (c->rhs.offset == 0);
+
+ /* If the solution of y contains ANYTHING simply use the ANYTHING
+ solution. This avoids needlessly increasing the points-to sets. */
+ if (bitmap_bit_p (sol, anything_id))
+ sol = get_varinfo (find (anything_id))->solution;
+
+ /* If the solution for x contains ANYTHING we have to merge the
+ solution of y into all pointer variables which we do via
+ STOREDANYTHING. */
+ if (bitmap_bit_p (delta, anything_id))
+ {
+ unsigned t = find (storedanything_id);
+ if (add_graph_edge (graph, t, rhs))
+ {
+ if (bitmap_ior_into (get_varinfo (t)->solution, sol))
+ bitmap_set_bit (changed, t);
+ }
+ return;
+ }
+
+ /* If we do not know at with offset the rhs is dereferenced compute
+ the reachability set of DELTA, conservatively assuming it is
+ dereferenced at all valid offsets. */
+ if (loff == UNKNOWN_OFFSET)
+ {
+ delta = solution_set_expand (delta, expanded_delta);
+ loff = 0;
+ }
+
+ /* For each member j of delta (Sol(x)), add an edge from y to j and
+ union Sol(y) into Sol(j) */
+ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
+ {
+ varinfo_t v = get_varinfo (j);
+ unsigned int t;
+ HOST_WIDE_INT fieldoffset = v->offset + loff;
+ unsigned HOST_WIDE_INT size = v->size;
+
+ if (v->is_full_var)
+ ;
+ else if (loff != 0)
+ {
+ if (fieldoffset < 0)
+ v = get_varinfo (v->head);
+ else
+ v = first_or_preceding_vi_for_offset (v, fieldoffset);
+ }
+
+ /* We have to include all fields that overlap the current field
+ shifted by loff. */
+ do
+ {
+ if (v->may_have_pointers)
+ {
+ /* If v is a global variable then this is an escape point. */
+ if (v->is_global_var
+ && !escaped_p)
+ {
+ t = find (escaped_id);
+ if (add_graph_edge (graph, t, rhs)
+ && bitmap_ior_into (get_varinfo (t)->solution, sol))
+ bitmap_set_bit (changed, t);
+ /* Enough to let rhs escape once. */
+ escaped_p = true;
+ }
+
+ if (v->is_special_var)
+ break;
+
+ t = find (v->id);
+ if (add_graph_edge (graph, t, rhs)
+ && bitmap_ior_into (get_varinfo (t)->solution, sol))
+ bitmap_set_bit (changed, t);
+ }
+
+ if (v->is_full_var
+ || v->next == 0)
+ break;
+
+ v = vi_next (v);
+ }
+ while (v->offset < fieldoffset + size);
+ }
+}
+
+/* Handle a non-simple (simple meaning requires no iteration),
+ constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
+
+static void
+do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta,
+ bitmap *expanded_delta)
+{
+ if (c->lhs.type == DEREF)
+ {
+ if (c->rhs.type == ADDRESSOF)
+ {
+ gcc_unreachable ();
+ }
+ else
+ {
+ /* *x = y */
+ do_ds_constraint (c, delta, expanded_delta);
+ }
+ }
+ else if (c->rhs.type == DEREF)
+ {
+ /* x = *y */
+ if (!(get_varinfo (c->lhs.var)->is_special_var))
+ do_sd_constraint (graph, c, delta, expanded_delta);
+ }
+ else
+ {
+ bitmap tmp;
+ bool flag = false;
+
+ gcc_checking_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR
+ && c->rhs.offset != 0 && c->lhs.offset == 0);
+ tmp = get_varinfo (c->lhs.var)->solution;
+
+ flag = set_union_with_increment (tmp, delta, c->rhs.offset,
+ expanded_delta);
+
+ if (flag)
+ bitmap_set_bit (changed, c->lhs.var);
+ }
+}
+
+/* Initialize and return a new SCC info structure. */
+
+static struct scc_info *
+init_scc_info (size_t size)
+{
+ struct scc_info *si = XNEW (struct scc_info);
+ size_t i;
+
+ si->current_index = 0;
+ si->visited = sbitmap_alloc (size);
+ bitmap_clear (si->visited);
+ si->deleted = sbitmap_alloc (size);
+ bitmap_clear (si->deleted);
+ si->node_mapping = XNEWVEC (unsigned int, size);
+ si->dfs = XCNEWVEC (unsigned int, size);
+
+ for (i = 0; i < size; i++)
+ si->node_mapping[i] = i;
+
+ si->scc_stack.create (1);
+ return si;
+}
+
+/* Free an SCC info structure pointed to by SI */
+
+static void
+free_scc_info (struct scc_info *si)
+{
+ sbitmap_free (si->visited);
+ sbitmap_free (si->deleted);
+ free (si->node_mapping);
+ free (si->dfs);
+ si->scc_stack.release ();
+ free (si);
+}
+
+
+/* Find indirect cycles in GRAPH that occur, using strongly connected
+ components, and note them in the indirect cycles map.
+
+ This technique comes from Ben Hardekopf and Calvin Lin,
+ "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
+ Lines of Code", submitted to PLDI 2007. */
+
+static void
+find_indirect_cycles (constraint_graph_t graph)
+{
+ unsigned int i;
+ unsigned int size = graph->size;
+ struct scc_info *si = init_scc_info (size);
+
+ for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
+ if (!bitmap_bit_p (si->visited, i) && find (i) == i)
+ scc_visit (graph, si, i);
+
+ free_scc_info (si);
+}
+
+/* Compute a topological ordering for GRAPH, and store the result in the
+ topo_info structure TI. */
+
+static void
+compute_topo_order (constraint_graph_t graph,
+ struct topo_info *ti)
+{
+ unsigned int i;
+ unsigned int size = graph->size;
+
+ for (i = 0; i != size; ++i)
+ if (!bitmap_bit_p (ti->visited, i) && find (i) == i)
+ topo_visit (graph, ti, i);
+}
+
+/* Structure used to for hash value numbering of pointer equivalence
+ classes. */
+
+typedef struct equiv_class_label
+{
+ hashval_t hashcode;
+ unsigned int equivalence_class;
+ bitmap labels;
+} *equiv_class_label_t;
+typedef const struct equiv_class_label *const_equiv_class_label_t;
+
+/* Equiv_class_label hashtable helpers. */
+
+struct equiv_class_hasher : typed_free_remove <equiv_class_label>
+{
+ typedef equiv_class_label value_type;
+ typedef equiv_class_label compare_type;
+ static inline hashval_t hash (const value_type *);
+ static inline bool equal (const value_type *, const compare_type *);
+};
+
+/* Hash function for a equiv_class_label_t */
+
+inline hashval_t
+equiv_class_hasher::hash (const value_type *ecl)
+{
+ return ecl->hashcode;
+}
+
+/* Equality function for two equiv_class_label_t's. */
+
+inline bool
+equiv_class_hasher::equal (const value_type *eql1, const compare_type *eql2)
+{
+ return (eql1->hashcode == eql2->hashcode
+ && bitmap_equal_p (eql1->labels, eql2->labels));
+}
+
+/* A hashtable for mapping a bitmap of labels->pointer equivalence
+ classes. */
+static hash_table <equiv_class_hasher> pointer_equiv_class_table;
+
+/* A hashtable for mapping a bitmap of labels->location equivalence
+ classes. */
+static hash_table <equiv_class_hasher> location_equiv_class_table;
+
+/* Lookup a equivalence class in TABLE by the bitmap of LABELS with
+ hash HAS it contains. Sets *REF_LABELS to the bitmap LABELS
+ is equivalent to. */
+
+static equiv_class_label *
+equiv_class_lookup_or_add (hash_table <equiv_class_hasher> table, bitmap labels)
+{
+ equiv_class_label **slot;
+ equiv_class_label ecl;
+
+ ecl.labels = labels;
+ ecl.hashcode = bitmap_hash (labels);
+ slot = table.find_slot_with_hash (&ecl, ecl.hashcode, INSERT);
+ if (!*slot)
+ {
+ *slot = XNEW (struct equiv_class_label);
+ (*slot)->labels = labels;
+ (*slot)->hashcode = ecl.hashcode;
+ (*slot)->equivalence_class = 0;
+ }
+
+ return *slot;
+}
+
+/* Perform offline variable substitution.
+
+ This is a worst case quadratic time way of identifying variables
+ that must have equivalent points-to sets, including those caused by
+ static cycles, and single entry subgraphs, in the constraint graph.
+
+ The technique is described in "Exploiting Pointer and Location
+ Equivalence to Optimize Pointer Analysis. In the 14th International
+ Static Analysis Symposium (SAS), August 2007." It is known as the
+ "HU" algorithm, and is equivalent to value numbering the collapsed
+ constraint graph including evaluating unions.
+
+ The general method of finding equivalence classes is as follows:
+ Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
+ Initialize all non-REF nodes to be direct nodes.
+ For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
+ variable}
+ For each constraint containing the dereference, we also do the same
+ thing.
+
+ We then compute SCC's in the graph and unify nodes in the same SCC,
+ including pts sets.
+
+ For each non-collapsed node x:
+ Visit all unvisited explicit incoming edges.
+ Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
+ where y->x.
+ Lookup the equivalence class for pts(x).
+ If we found one, equivalence_class(x) = found class.
+ Otherwise, equivalence_class(x) = new class, and new_class is
+ added to the lookup table.
+
+ All direct nodes with the same equivalence class can be replaced
+ with a single representative node.
+ All unlabeled nodes (label == 0) are not pointers and all edges
+ involving them can be eliminated.
+ We perform these optimizations during rewrite_constraints
+
+ In addition to pointer equivalence class finding, we also perform
+ location equivalence class finding. This is the set of variables
+ that always appear together in points-to sets. We use this to
+ compress the size of the points-to sets. */
+
+/* Current maximum pointer equivalence class id. */
+static int pointer_equiv_class;
+
+/* Current maximum location equivalence class id. */
+static int location_equiv_class;
+
+/* Recursive routine to find strongly connected components in GRAPH,
+ and label it's nodes with DFS numbers. */
+
+static void
+condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
+{
+ unsigned int i;
+ bitmap_iterator bi;
+ unsigned int my_dfs;
+
+ gcc_checking_assert (si->node_mapping[n] == n);
+ bitmap_set_bit (si->visited, n);
+ si->dfs[n] = si->current_index ++;
+ my_dfs = si->dfs[n];
+
+ /* Visit all the successors. */
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
+ {
+ unsigned int w = si->node_mapping[i];
+
+ if (bitmap_bit_p (si->deleted, w))
+ continue;
+
+ if (!bitmap_bit_p (si->visited, w))
+ condense_visit (graph, si, w);
+
+ unsigned int t = si->node_mapping[w];
+ gcc_checking_assert (si->node_mapping[n] == n);
+ if (si->dfs[t] < si->dfs[n])
+ si->dfs[n] = si->dfs[t];
+ }
+
+ /* Visit all the implicit predecessors. */
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
+ {
+ unsigned int w = si->node_mapping[i];
+
+ if (bitmap_bit_p (si->deleted, w))
+ continue;
+
+ if (!bitmap_bit_p (si->visited, w))
+ condense_visit (graph, si, w);
+
+ unsigned int t = si->node_mapping[w];
+ gcc_assert (si->node_mapping[n] == n);
+ if (si->dfs[t] < si->dfs[n])
+ si->dfs[n] = si->dfs[t];
+ }
+
+ /* See if any components have been identified. */
+ if (si->dfs[n] == my_dfs)
+ {
+ while (si->scc_stack.length () != 0
+ && si->dfs[si->scc_stack.last ()] >= my_dfs)
+ {
+ unsigned int w = si->scc_stack.pop ();
+ si->node_mapping[w] = n;
+
+ if (!bitmap_bit_p (graph->direct_nodes, w))
+ bitmap_clear_bit (graph->direct_nodes, n);
+
+ /* Unify our nodes. */
+ if (graph->preds[w])
+ {
+ if (!graph->preds[n])
+ graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
+ bitmap_ior_into (graph->preds[n], graph->preds[w]);
+ }
+ if (graph->implicit_preds[w])
+ {
+ if (!graph->implicit_preds[n])
+ graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
+ bitmap_ior_into (graph->implicit_preds[n],
+ graph->implicit_preds[w]);
+ }
+ if (graph->points_to[w])
+ {
+ if (!graph->points_to[n])
+ graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
+ bitmap_ior_into (graph->points_to[n],
+ graph->points_to[w]);
+ }
+ }
+ bitmap_set_bit (si->deleted, n);
+ }
+ else
+ si->scc_stack.safe_push (n);
+}
+
+/* Label pointer equivalences.
+
+ This performs a value numbering of the constraint graph to
+ discover which variables will always have the same points-to sets
+ under the current set of constraints.
+
+ The way it value numbers is to store the set of points-to bits
+ generated by the constraints and graph edges. This is just used as a
+ hash and equality comparison. The *actual set of points-to bits* is
+ completely irrelevant, in that we don't care about being able to
+ extract them later.
+
+ The equality values (currently bitmaps) just have to satisfy a few
+ constraints, the main ones being:
+ 1. The combining operation must be order independent.
+ 2. The end result of a given set of operations must be unique iff the
+ combination of input values is unique
+ 3. Hashable. */
+
+static void
+label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
+{
+ unsigned int i, first_pred;
+ bitmap_iterator bi;
+
+ bitmap_set_bit (si->visited, n);
+
+ /* Label and union our incoming edges's points to sets. */
+ first_pred = -1U;
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
+ {
+ unsigned int w = si->node_mapping[i];
+ if (!bitmap_bit_p (si->visited, w))
+ label_visit (graph, si, w);
+
+ /* Skip unused edges */
+ if (w == n || graph->pointer_label[w] == 0)
+ continue;
+
+ if (graph->points_to[w])
+ {
+ if (!graph->points_to[n])
+ {
+ if (first_pred == -1U)
+ first_pred = w;
+ else
+ {
+ graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
+ bitmap_ior (graph->points_to[n],
+ graph->points_to[first_pred],
+ graph->points_to[w]);
+ }
+ }
+ else
+ bitmap_ior_into (graph->points_to[n], graph->points_to[w]);
+ }
+ }
+
+ /* Indirect nodes get fresh variables and a new pointer equiv class. */
+ if (!bitmap_bit_p (graph->direct_nodes, n))
+ {
+ if (!graph->points_to[n])
+ {
+ graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
+ if (first_pred != -1U)
+ bitmap_copy (graph->points_to[n], graph->points_to[first_pred]);
+ }
+ bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
+ graph->pointer_label[n] = pointer_equiv_class++;
+ equiv_class_label_t ecl;
+ ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
+ graph->points_to[n]);
+ ecl->equivalence_class = graph->pointer_label[n];
+ return;
+ }
+
+ /* If there was only a single non-empty predecessor the pointer equiv
+ class is the same. */
+ if (!graph->points_to[n])
+ {
+ if (first_pred != -1U)
+ {
+ graph->pointer_label[n] = graph->pointer_label[first_pred];
+ graph->points_to[n] = graph->points_to[first_pred];
+ }
+ return;
+ }
+
+ if (!bitmap_empty_p (graph->points_to[n]))
+ {
+ equiv_class_label_t ecl;
+ ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
+ graph->points_to[n]);
+ if (ecl->equivalence_class == 0)
+ ecl->equivalence_class = pointer_equiv_class++;
+ else
+ {
+ BITMAP_FREE (graph->points_to[n]);
+ graph->points_to[n] = ecl->labels;
+ }
+ graph->pointer_label[n] = ecl->equivalence_class;
+ }
+}
+
+/* Print the pred graph in dot format. */
+
+static void
+dump_pred_graph (struct scc_info *si, FILE *file)
+{
+ unsigned int i;
+
+ /* Only print the graph if it has already been initialized: */
+ if (!graph)
+ return;
+
+ /* Prints the header of the dot file: */
+ fprintf (file, "strict digraph {\n");
+ fprintf (file, " node [\n shape = box\n ]\n");
+ fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
+ fprintf (file, "\n // List of nodes and complex constraints in "
+ "the constraint graph:\n");
+
+ /* The next lines print the nodes in the graph together with the
+ complex constraints attached to them. */
+ for (i = 1; i < graph->size; i++)
+ {
+ if (i == FIRST_REF_NODE)
+ continue;
+ if (si->node_mapping[i] != i)
+ continue;
+ if (i < FIRST_REF_NODE)
+ fprintf (file, "\"%s\"", get_varinfo (i)->name);
+ else
+ fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
+ if (graph->points_to[i]
+ && !bitmap_empty_p (graph->points_to[i]))
+ {
+ fprintf (file, "[label=\"%s = {", get_varinfo (i)->name);
+ unsigned j;
+ bitmap_iterator bi;
+ EXECUTE_IF_SET_IN_BITMAP (graph->points_to[i], 0, j, bi)
+ fprintf (file, " %d", j);
+ fprintf (file, " }\"]");
+ }
+ fprintf (file, ";\n");
+ }
+
+ /* Go over the edges. */
+ fprintf (file, "\n // Edges in the constraint graph:\n");
+ for (i = 1; i < graph->size; i++)
+ {
+ unsigned j;
+ bitmap_iterator bi;
+ if (si->node_mapping[i] != i)
+ continue;
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[i], 0, j, bi)
+ {
+ unsigned from = si->node_mapping[j];
+ if (from < FIRST_REF_NODE)
+ fprintf (file, "\"%s\"", get_varinfo (from)->name);
+ else
+ fprintf (file, "\"*%s\"", get_varinfo (from - FIRST_REF_NODE)->name);
+ fprintf (file, " -> ");
+ if (i < FIRST_REF_NODE)
+ fprintf (file, "\"%s\"", get_varinfo (i)->name);
+ else
+ fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
+ fprintf (file, ";\n");
+ }
+ }
+
+ /* Prints the tail of the dot file. */
+ fprintf (file, "}\n");
+}
+
+/* Perform offline variable substitution, discovering equivalence
+ classes, and eliminating non-pointer variables. */
+
+static struct scc_info *
+perform_var_substitution (constraint_graph_t graph)
+{
+ unsigned int i;
+ unsigned int size = graph->size;
+ struct scc_info *si = init_scc_info (size);
+
+ bitmap_obstack_initialize (&iteration_obstack);
+ pointer_equiv_class_table.create (511);
+ location_equiv_class_table.create (511);
+ pointer_equiv_class = 1;
+ location_equiv_class = 1;
+
+ /* Condense the nodes, which means to find SCC's, count incoming
+ predecessors, and unite nodes in SCC's. */
+ for (i = 1; i < FIRST_REF_NODE; i++)
+ if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
+ condense_visit (graph, si, si->node_mapping[i]);
+
+ if (dump_file && (dump_flags & TDF_GRAPH))
+ {
+ fprintf (dump_file, "\n\n// The constraint graph before var-substitution "
+ "in dot format:\n");
+ dump_pred_graph (si, dump_file);
+ fprintf (dump_file, "\n\n");
+ }
+
+ bitmap_clear (si->visited);
+ /* Actually the label the nodes for pointer equivalences */
+ for (i = 1; i < FIRST_REF_NODE; i++)
+ if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
+ label_visit (graph, si, si->node_mapping[i]);
+
+ /* Calculate location equivalence labels. */
+ for (i = 1; i < FIRST_REF_NODE; i++)
+ {
+ bitmap pointed_by;
+ bitmap_iterator bi;
+ unsigned int j;
+
+ if (!graph->pointed_by[i])
+ continue;
+ pointed_by = BITMAP_ALLOC (&iteration_obstack);
+
+ /* Translate the pointed-by mapping for pointer equivalence
+ labels. */
+ EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
+ {
+ bitmap_set_bit (pointed_by,
+ graph->pointer_label[si->node_mapping[j]]);
+ }
+ /* The original pointed_by is now dead. */
+ BITMAP_FREE (graph->pointed_by[i]);
+
+ /* Look up the location equivalence label if one exists, or make
+ one otherwise. */
+ equiv_class_label_t ecl;
+ ecl = equiv_class_lookup_or_add (location_equiv_class_table, pointed_by);
+ if (ecl->equivalence_class == 0)
+ ecl->equivalence_class = location_equiv_class++;
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Found location equivalence for node %s\n",
+ get_varinfo (i)->name);
+ BITMAP_FREE (pointed_by);
+ }
+ graph->loc_label[i] = ecl->equivalence_class;
+
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ for (i = 1; i < FIRST_REF_NODE; i++)
+ {
+ unsigned j = si->node_mapping[i];
+ if (j != i)
+ {
+ fprintf (dump_file, "%s node id %d ",
+ bitmap_bit_p (graph->direct_nodes, i)
+ ? "Direct" : "Indirect", i);
+ if (i < FIRST_REF_NODE)
+ fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
+ else
+ fprintf (dump_file, "\"*%s\"",
+ get_varinfo (i - FIRST_REF_NODE)->name);
+ fprintf (dump_file, " mapped to SCC leader node id %d ", j);
+ if (j < FIRST_REF_NODE)
+ fprintf (dump_file, "\"%s\"\n", get_varinfo (j)->name);
+ else
+ fprintf (dump_file, "\"*%s\"\n",
+ get_varinfo (j - FIRST_REF_NODE)->name);
+ }
+ else
+ {
+ fprintf (dump_file,
+ "Equivalence classes for %s node id %d ",
+ bitmap_bit_p (graph->direct_nodes, i)
+ ? "direct" : "indirect", i);
+ if (i < FIRST_REF_NODE)
+ fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
+ else
+ fprintf (dump_file, "\"*%s\"",
+ get_varinfo (i - FIRST_REF_NODE)->name);
+ fprintf (dump_file,
+ ": pointer %d, location %d\n",
+ graph->pointer_label[i], graph->loc_label[i]);
+ }
+ }
+
+ /* Quickly eliminate our non-pointer variables. */
+
+ for (i = 1; i < FIRST_REF_NODE; i++)
+ {
+ unsigned int node = si->node_mapping[i];
+
+ if (graph->pointer_label[node] == 0)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "%s is a non-pointer variable, eliminating edges.\n",
+ get_varinfo (node)->name);
+ stats.nonpointer_vars++;
+ clear_edges_for_node (graph, node);
+ }
+ }
+
+ return si;
+}
+
+/* Free information that was only necessary for variable
+ substitution. */
+
+static void
+free_var_substitution_info (struct scc_info *si)
+{
+ free_scc_info (si);
+ free (graph->pointer_label);
+ free (graph->loc_label);
+ free (graph->pointed_by);
+ free (graph->points_to);
+ free (graph->eq_rep);
+ sbitmap_free (graph->direct_nodes);
+ pointer_equiv_class_table.dispose ();
+ location_equiv_class_table.dispose ();
+ bitmap_obstack_release (&iteration_obstack);
+}
+
+/* Return an existing node that is equivalent to NODE, which has
+ equivalence class LABEL, if one exists. Return NODE otherwise. */
+
+static unsigned int
+find_equivalent_node (constraint_graph_t graph,
+ unsigned int node, unsigned int label)
+{
+ /* If the address version of this variable is unused, we can
+ substitute it for anything else with the same label.
+ Otherwise, we know the pointers are equivalent, but not the
+ locations, and we can unite them later. */
+
+ if (!bitmap_bit_p (graph->address_taken, node))
+ {
+ gcc_checking_assert (label < graph->size);
+
+ if (graph->eq_rep[label] != -1)
+ {
+ /* Unify the two variables since we know they are equivalent. */
+ if (unite (graph->eq_rep[label], node))
+ unify_nodes (graph, graph->eq_rep[label], node, false);
+ return graph->eq_rep[label];
+ }
+ else
+ {
+ graph->eq_rep[label] = node;
+ graph->pe_rep[label] = node;
+ }
+ }
+ else
+ {
+ gcc_checking_assert (label < graph->size);
+ graph->pe[node] = label;
+ if (graph->pe_rep[label] == -1)
+ graph->pe_rep[label] = node;
+ }
+
+ return node;
+}
+
+/* Unite pointer equivalent but not location equivalent nodes in
+ GRAPH. This may only be performed once variable substitution is
+ finished. */
+
+static void
+unite_pointer_equivalences (constraint_graph_t graph)
+{
+ unsigned int i;
+
+ /* Go through the pointer equivalences and unite them to their
+ representative, if they aren't already. */
+ for (i = 1; i < FIRST_REF_NODE; i++)
+ {
+ unsigned int label = graph->pe[i];
+ if (label)
+ {
+ int label_rep = graph->pe_rep[label];
+
+ if (label_rep == -1)
+ continue;
+
+ label_rep = find (label_rep);
+ if (label_rep >= 0 && unite (label_rep, find (i)))
+ unify_nodes (graph, label_rep, i, false);
+ }
+ }
+}
+
+/* Move complex constraints to the GRAPH nodes they belong to. */
+
+static void
+move_complex_constraints (constraint_graph_t graph)
+{
+ int i;
+ constraint_t c;
+
+ FOR_EACH_VEC_ELT (constraints, i, c)
+ {
+ if (c)
+ {
+ struct constraint_expr lhs = c->lhs;
+ struct constraint_expr rhs = c->rhs;
+
+ if (lhs.type == DEREF)
+ {
+ insert_into_complex (graph, lhs.var, c);
+ }
+ else if (rhs.type == DEREF)
+ {
+ if (!(get_varinfo (lhs.var)->is_special_var))
+ insert_into_complex (graph, rhs.var, c);
+ }
+ else if (rhs.type != ADDRESSOF && lhs.var > anything_id
+ && (lhs.offset != 0 || rhs.offset != 0))
+ {
+ insert_into_complex (graph, rhs.var, c);
+ }
+ }
+ }
+}
+
+
+/* Optimize and rewrite complex constraints while performing
+ collapsing of equivalent nodes. SI is the SCC_INFO that is the
+ result of perform_variable_substitution. */
+
+static void
+rewrite_constraints (constraint_graph_t graph,
+ struct scc_info *si)
+{
+ int i;
+ constraint_t c;
+
+#ifdef ENABLE_CHECKING
+ for (unsigned int j = 0; j < graph->size; j++)
+ gcc_assert (find (j) == j);
+#endif
+
+ FOR_EACH_VEC_ELT (constraints, i, c)
+ {
+ struct constraint_expr lhs = c->lhs;
+ struct constraint_expr rhs = c->rhs;
+ unsigned int lhsvar = find (lhs.var);
+ unsigned int rhsvar = find (rhs.var);
+ unsigned int lhsnode, rhsnode;
+ unsigned int lhslabel, rhslabel;
+
+ lhsnode = si->node_mapping[lhsvar];
+ rhsnode = si->node_mapping[rhsvar];
+ lhslabel = graph->pointer_label[lhsnode];
+ rhslabel = graph->pointer_label[rhsnode];
+
+ /* See if it is really a non-pointer variable, and if so, ignore
+ the constraint. */
+ if (lhslabel == 0)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+
+ fprintf (dump_file, "%s is a non-pointer variable,"
+ "ignoring constraint:",
+ get_varinfo (lhs.var)->name);
+ dump_constraint (dump_file, c);
+ fprintf (dump_file, "\n");
+ }
+ constraints[i] = NULL;
+ continue;
+ }
+
+ if (rhslabel == 0)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+
+ fprintf (dump_file, "%s is a non-pointer variable,"
+ "ignoring constraint:",
+ get_varinfo (rhs.var)->name);
+ dump_constraint (dump_file, c);
+ fprintf (dump_file, "\n");
+ }
+ constraints[i] = NULL;
+ continue;
+ }
+
+ lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
+ rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
+ c->lhs.var = lhsvar;
+ c->rhs.var = rhsvar;
+ }
+}
+
+/* Eliminate indirect cycles involving NODE. Return true if NODE was
+ part of an SCC, false otherwise. */
+
+static bool
+eliminate_indirect_cycles (unsigned int node)
+{
+ if (graph->indirect_cycles[node] != -1
+ && !bitmap_empty_p (get_varinfo (node)->solution))
+ {
+ unsigned int i;
+ auto_vec<unsigned> queue;
+ int queuepos;
+ unsigned int to = find (graph->indirect_cycles[node]);
+ bitmap_iterator bi;
+
+ /* We can't touch the solution set and call unify_nodes
+ at the same time, because unify_nodes is going to do
+ bitmap unions into it. */
+
+ EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
+ {
+ if (find (i) == i && i != to)
+ {
+ if (unite (to, i))
+ queue.safe_push (i);
+ }
+ }
+
+ for (queuepos = 0;
+ queue.iterate (queuepos, &i);
+ queuepos++)
+ {
+ unify_nodes (graph, to, i, true);
+ }
+ return true;
+ }
+ return false;
+}
+
+/* Solve the constraint graph GRAPH using our worklist solver.
+ This is based on the PW* family of solvers from the "Efficient Field
+ Sensitive Pointer Analysis for C" paper.
+ It works by iterating over all the graph nodes, processing the complex
+ constraints and propagating the copy constraints, until everything stops
+ changed. This corresponds to steps 6-8 in the solving list given above. */
+
+static void
+solve_graph (constraint_graph_t graph)
+{
+ unsigned int size = graph->size;
+ unsigned int i;
+ bitmap pts;
+
+ changed = BITMAP_ALLOC (NULL);
+
+ /* Mark all initial non-collapsed nodes as changed. */
+ for (i = 1; i < size; i++)
+ {
+ varinfo_t ivi = get_varinfo (i);
+ if (find (i) == i && !bitmap_empty_p (ivi->solution)
+ && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
+ || graph->complex[i].length () > 0))
+ bitmap_set_bit (changed, i);
+ }
+
+ /* Allocate a bitmap to be used to store the changed bits. */
+ pts = BITMAP_ALLOC (&pta_obstack);
+
+ while (!bitmap_empty_p (changed))
+ {
+ unsigned int i;
+ struct topo_info *ti = init_topo_info ();
+ stats.iterations++;
+
+ bitmap_obstack_initialize (&iteration_obstack);
+
+ compute_topo_order (graph, ti);
+
+ while (ti->topo_order.length () != 0)
+ {
+
+ i = ti->topo_order.pop ();
+
+ /* If this variable is not a representative, skip it. */
+ if (find (i) != i)
+ continue;
+
+ /* In certain indirect cycle cases, we may merge this
+ variable to another. */
+ if (eliminate_indirect_cycles (i) && find (i) != i)
+ continue;
+
+ /* If the node has changed, we need to process the
+ complex constraints and outgoing edges again. */
+ if (bitmap_clear_bit (changed, i))
+ {
+ unsigned int j;
+ constraint_t c;
+ bitmap solution;
+ vec<constraint_t> complex = graph->complex[i];
+ varinfo_t vi = get_varinfo (i);
+ bool solution_empty;
+
+ /* Compute the changed set of solution bits. If anything
+ is in the solution just propagate that. */
+ if (bitmap_bit_p (vi->solution, anything_id))
+ {
+ /* If anything is also in the old solution there is
+ nothing to do.
+ ??? But we shouldn't ended up with "changed" set ... */
+ if (vi->oldsolution
+ && bitmap_bit_p (vi->oldsolution, anything_id))
+ continue;
+ bitmap_copy (pts, get_varinfo (find (anything_id))->solution);
+ }
+ else if (vi->oldsolution)
+ bitmap_and_compl (pts, vi->solution, vi->oldsolution);
+ else
+ bitmap_copy (pts, vi->solution);
+
+ if (bitmap_empty_p (pts))
+ continue;
+
+ if (vi->oldsolution)
+ bitmap_ior_into (vi->oldsolution, pts);
+ else
+ {
+ vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
+ bitmap_copy (vi->oldsolution, pts);
+ }
+
+ solution = vi->solution;
+ solution_empty = bitmap_empty_p (solution);
+
+ /* Process the complex constraints */
+ bitmap expanded_pts = NULL;
+ FOR_EACH_VEC_ELT (complex, j, c)
+ {
+ /* XXX: This is going to unsort the constraints in
+ some cases, which will occasionally add duplicate
+ constraints during unification. This does not
+ affect correctness. */
+ c->lhs.var = find (c->lhs.var);
+ c->rhs.var = find (c->rhs.var);
+
+ /* The only complex constraint that can change our
+ solution to non-empty, given an empty solution,
+ is a constraint where the lhs side is receiving
+ some set from elsewhere. */
+ if (!solution_empty || c->lhs.type != DEREF)
+ do_complex_constraint (graph, c, pts, &expanded_pts);
+ }
+ BITMAP_FREE (expanded_pts);
+
+ solution_empty = bitmap_empty_p (solution);
+
+ if (!solution_empty)
+ {
+ bitmap_iterator bi;
+ unsigned eff_escaped_id = find (escaped_id);
+
+ /* Propagate solution to all successors. */
+ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
+ 0, j, bi)
+ {
+ bitmap tmp;
+ bool flag;
+
+ unsigned int to = find (j);
+ tmp = get_varinfo (to)->solution;
+ flag = false;
+
+ /* Don't try to propagate to ourselves. */
+ if (to == i)
+ continue;
+
+ /* If we propagate from ESCAPED use ESCAPED as
+ placeholder. */
+ if (i == eff_escaped_id)
+ flag = bitmap_set_bit (tmp, escaped_id);
+ else
+ flag = bitmap_ior_into (tmp, pts);
+
+ if (flag)
+ bitmap_set_bit (changed, to);
+ }
+ }
+ }
+ }
+ free_topo_info (ti);
+ bitmap_obstack_release (&iteration_obstack);
+ }
+
+ BITMAP_FREE (pts);
+ BITMAP_FREE (changed);
+ bitmap_obstack_release (&oldpta_obstack);
+}
+
+/* Map from trees to variable infos. */
+static struct pointer_map_t *vi_for_tree;
+
+
+/* Insert ID as the variable id for tree T in the vi_for_tree map. */
+
+static void
+insert_vi_for_tree (tree t, varinfo_t vi)
+{
+ void **slot = pointer_map_insert (vi_for_tree, t);
+ gcc_assert (vi);
+ gcc_assert (*slot == NULL);
+ *slot = vi;
+}
+
+/* Find the variable info for tree T in VI_FOR_TREE. If T does not
+ exist in the map, return NULL, otherwise, return the varinfo we found. */
+
+static varinfo_t
+lookup_vi_for_tree (tree t)
+{
+ void **slot = pointer_map_contains (vi_for_tree, t);
+ if (slot == NULL)
+ return NULL;
+
+ return (varinfo_t) *slot;
+}
+
+/* Return a printable name for DECL */
+
+static const char *
+alias_get_name (tree decl)
+{
+ const char *res = NULL;
+ char *temp;
+ int num_printed = 0;
+
+ if (!dump_file)
+ return "NULL";
+
+ if (TREE_CODE (decl) == SSA_NAME)
+ {
+ res = get_name (decl);
+ if (res)
+ num_printed = asprintf (&temp, "%s_%u", res, SSA_NAME_VERSION (decl));
+ else
+ num_printed = asprintf (&temp, "_%u", SSA_NAME_VERSION (decl));
+ if (num_printed > 0)
+ {
+ res = ggc_strdup (temp);
+ free (temp);
+ }
+ }
+ else if (DECL_P (decl))
+ {
+ if (DECL_ASSEMBLER_NAME_SET_P (decl))
+ res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
+ else
+ {
+ res = get_name (decl);
+ if (!res)
+ {
+ num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
+ if (num_printed > 0)
+ {
+ res = ggc_strdup (temp);
+ free (temp);
+ }
+ }
+ }
+ }
+ if (res != NULL)
+ return res;
+
+ return "NULL";
+}
+
+/* Find the variable id for tree T in the map.
+ If T doesn't exist in the map, create an entry for it and return it. */
+
+static varinfo_t
+get_vi_for_tree (tree t)
+{
+ void **slot = pointer_map_contains (vi_for_tree, t);
+ if (slot == NULL)
+ return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
+
+ return (varinfo_t) *slot;
+}
+
+/* Get a scalar constraint expression for a new temporary variable. */
+
+static struct constraint_expr
+new_scalar_tmp_constraint_exp (const char *name)
+{
+ struct constraint_expr tmp;
+ varinfo_t vi;
+
+ vi = new_var_info (NULL_TREE, name);
+ vi->offset = 0;
+ vi->size = -1;
+ vi->fullsize = -1;
+ vi->is_full_var = 1;
+
+ tmp.var = vi->id;
+ tmp.type = SCALAR;
+ tmp.offset = 0;
+
+ return tmp;
+}
+
+/* Get a constraint expression vector from an SSA_VAR_P node.
+ If address_p is true, the result will be taken its address of. */
+
+static void
+get_constraint_for_ssa_var (tree t, vec<ce_s> *results, bool address_p)
+{
+ struct constraint_expr cexpr;
+ varinfo_t vi;
+
+ /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
+ gcc_assert (TREE_CODE (t) == SSA_NAME || DECL_P (t));
+
+ /* For parameters, get at the points-to set for the actual parm
+ decl. */
+ if (TREE_CODE (t) == SSA_NAME
+ && SSA_NAME_IS_DEFAULT_DEF (t)
+ && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
+ || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL))
+ {
+ get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
+ return;
+ }
+
+ /* For global variables resort to the alias target. */
+ if (TREE_CODE (t) == VAR_DECL
+ && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
+ {
+ varpool_node *node = varpool_get_node (t);
+ if (node && node->alias && node->analyzed)
+ {
+ node = varpool_variable_node (node, NULL);
+ t = node->decl;
+ }
+ }
+
+ vi = get_vi_for_tree (t);
+ cexpr.var = vi->id;
+ cexpr.type = SCALAR;
+ cexpr.offset = 0;
+ /* If we determine the result is "anything", and we know this is readonly,
+ say it points to readonly memory instead. */
+ if (cexpr.var == anything_id && TREE_READONLY (t))
+ {
+ gcc_unreachable ();
+ cexpr.type = ADDRESSOF;
+ cexpr.var = readonly_id;
+ }
+
+ /* If we are not taking the address of the constraint expr, add all
+ sub-fiels of the variable as well. */
+ if (!address_p
+ && !vi->is_full_var)
+ {
+ for (; vi; vi = vi_next (vi))
+ {
+ cexpr.var = vi->id;
+ results->safe_push (cexpr);
+ }
+ return;
+ }
+
+ results->safe_push (cexpr);
+}
+
+/* Process constraint T, performing various simplifications and then
+ adding it to our list of overall constraints. */
+
+static void
+process_constraint (constraint_t t)
+{
+ struct constraint_expr rhs = t->rhs;
+ struct constraint_expr lhs = t->lhs;
+
+ gcc_assert (rhs.var < varmap.length ());
+ gcc_assert (lhs.var < varmap.length ());
+
+ /* If we didn't get any useful constraint from the lhs we get
+ &ANYTHING as fallback from get_constraint_for. Deal with
+ it here by turning it into *ANYTHING. */
+ if (lhs.type == ADDRESSOF
+ && lhs.var == anything_id)
+ lhs.type = DEREF;
+
+ /* ADDRESSOF on the lhs is invalid. */
+ gcc_assert (lhs.type != ADDRESSOF);
+
+ /* We shouldn't add constraints from things that cannot have pointers.
+ It's not completely trivial to avoid in the callers, so do it here. */
+ if (rhs.type != ADDRESSOF
+ && !get_varinfo (rhs.var)->may_have_pointers)
+ return;
+
+ /* Likewise adding to the solution of a non-pointer var isn't useful. */
+ if (!get_varinfo (lhs.var)->may_have_pointers)
+ return;
+
+ /* This can happen in our IR with things like n->a = *p */
+ if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
+ {
+ /* Split into tmp = *rhs, *lhs = tmp */
+ struct constraint_expr tmplhs;
+ tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
+ process_constraint (new_constraint (tmplhs, rhs));
+ process_constraint (new_constraint (lhs, tmplhs));
+ }
+ else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
+ {
+ /* Split into tmp = &rhs, *lhs = tmp */
+ struct constraint_expr tmplhs;
+ tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
+ process_constraint (new_constraint (tmplhs, rhs));
+ process_constraint (new_constraint (lhs, tmplhs));
+ }
+ else
+ {
+ gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
+ constraints.safe_push (t);
+ }
+}
+
+
+/* Return the position, in bits, of FIELD_DECL from the beginning of its
+ structure. */
+
+static HOST_WIDE_INT
+bitpos_of_field (const tree fdecl)
+{
+ if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl))
+ || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl)))
+ return -1;
+
+ return (tree_to_shwi (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
+ + tree_to_shwi (DECL_FIELD_BIT_OFFSET (fdecl)));
+}
+
+
+/* Get constraint expressions for offsetting PTR by OFFSET. Stores the
+ resulting constraint expressions in *RESULTS. */
+
+static void
+get_constraint_for_ptr_offset (tree ptr, tree offset,
+ vec<ce_s> *results)
+{
+ struct constraint_expr c;
+ unsigned int j, n;
+ HOST_WIDE_INT rhsoffset;
+
+ /* If we do not do field-sensitive PTA adding offsets to pointers
+ does not change the points-to solution. */
+ if (!use_field_sensitive)
+ {
+ get_constraint_for_rhs (ptr, results);
+ return;
+ }
+
+ /* If the offset is not a non-negative integer constant that fits
+ in a HOST_WIDE_INT, we have to fall back to a conservative
+ solution which includes all sub-fields of all pointed-to
+ variables of ptr. */
+ if (offset == NULL_TREE
+ || TREE_CODE (offset) != INTEGER_CST)
+ rhsoffset = UNKNOWN_OFFSET;
+ else
+ {
+ /* Sign-extend the offset. */
+ double_int soffset = tree_to_double_int (offset)
+ .sext (TYPE_PRECISION (TREE_TYPE (offset)));
+ if (!soffset.fits_shwi ())
+ rhsoffset = UNKNOWN_OFFSET;
+ else
+ {
+ /* Make sure the bit-offset also fits. */
+ HOST_WIDE_INT rhsunitoffset = soffset.low;
+ rhsoffset = rhsunitoffset * BITS_PER_UNIT;
+ if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
+ rhsoffset = UNKNOWN_OFFSET;
+ }
+ }
+
+ get_constraint_for_rhs (ptr, results);
+ if (rhsoffset == 0)
+ return;
+
+ /* As we are eventually appending to the solution do not use
+ vec::iterate here. */
+ n = results->length ();
+ for (j = 0; j < n; j++)
+ {
+ varinfo_t curr;
+ c = (*results)[j];
+ curr = get_varinfo (c.var);
+
+ if (c.type == ADDRESSOF
+ /* If this varinfo represents a full variable just use it. */
+ && curr->is_full_var)
+ ;
+ else if (c.type == ADDRESSOF
+ /* If we do not know the offset add all subfields. */
+ && rhsoffset == UNKNOWN_OFFSET)
+ {
+ varinfo_t temp = get_varinfo (curr->head);
+ do
+ {
+ struct constraint_expr c2;
+ c2.var = temp->id;
+ c2.type = ADDRESSOF;
+ c2.offset = 0;
+ if (c2.var != c.var)
+ results->safe_push (c2);
+ temp = vi_next (temp);
+ }
+ while (temp);
+ }
+ else if (c.type == ADDRESSOF)
+ {
+ varinfo_t temp;
+ unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
+
+ /* If curr->offset + rhsoffset is less than zero adjust it. */
+ if (rhsoffset < 0
+ && curr->offset < offset)
+ offset = 0;
+
+ /* We have to include all fields that overlap the current
+ field shifted by rhsoffset. And we include at least
+ the last or the first field of the variable to represent
+ reachability of off-bound addresses, in particular &object + 1,
+ conservatively correct. */
+ temp = first_or_preceding_vi_for_offset (curr, offset);
+ c.var = temp->id;
+ c.offset = 0;
+ temp = vi_next (temp);
+ while (temp
+ && temp->offset < offset + curr->size)
+ {
+ struct constraint_expr c2;
+ c2.var = temp->id;
+ c2.type = ADDRESSOF;
+ c2.offset = 0;
+ results->safe_push (c2);
+ temp = vi_next (temp);
+ }
+ }
+ else if (c.type == SCALAR)
+ {
+ gcc_assert (c.offset == 0);
+ c.offset = rhsoffset;
+ }
+ else
+ /* We shouldn't get any DEREFs here. */
+ gcc_unreachable ();
+
+ (*results)[j] = c;
+ }
+}
+
+
+/* Given a COMPONENT_REF T, return the constraint_expr vector for it.
+ If address_p is true the result will be taken its address of.
+ If lhs_p is true then the constraint expression is assumed to be used
+ as the lhs. */
+
+static void
+get_constraint_for_component_ref (tree t, vec<ce_s> *results,
+ bool address_p, bool lhs_p)
+{
+ tree orig_t = t;
+ HOST_WIDE_INT bitsize = -1;
+ HOST_WIDE_INT bitmaxsize = -1;
+ HOST_WIDE_INT bitpos;
+ tree forzero;
+
+ /* Some people like to do cute things like take the address of
+ &0->a.b */
+ forzero = t;
+ while (handled_component_p (forzero)
+ || INDIRECT_REF_P (forzero)
+ || TREE_CODE (forzero) == MEM_REF)
+ forzero = TREE_OPERAND (forzero, 0);
+
+ if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
+ {
+ struct constraint_expr temp;
+
+ temp.offset = 0;
+ temp.var = integer_id;
+ temp.type = SCALAR;
+ results->safe_push (temp);
+ return;
+ }
+
+ t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
+
+ /* Pretend to take the address of the base, we'll take care of
+ adding the required subset of sub-fields below. */
+ get_constraint_for_1 (t, results, true, lhs_p);
+ gcc_assert (results->length () == 1);
+ struct constraint_expr &result = results->last ();
+
+ if (result.type == SCALAR
+ && get_varinfo (result.var)->is_full_var)
+ /* For single-field vars do not bother about the offset. */
+ result.offset = 0;
+ else if (result.type == SCALAR)
+ {
+ /* In languages like C, you can access one past the end of an
+ array. You aren't allowed to dereference it, so we can
+ ignore this constraint. When we handle pointer subtraction,
+ we may have to do something cute here. */
+
+ if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result.var)->fullsize
+ && bitmaxsize != 0)
+ {
+ /* It's also not true that the constraint will actually start at the
+ right offset, it may start in some padding. We only care about
+ setting the constraint to the first actual field it touches, so
+ walk to find it. */
+ struct constraint_expr cexpr = result;
+ varinfo_t curr;
+ results->pop ();
+ cexpr.offset = 0;
+ for (curr = get_varinfo (cexpr.var); curr; curr = vi_next (curr))
+ {
+ if (ranges_overlap_p (curr->offset, curr->size,
+ bitpos, bitmaxsize))
+ {
+ cexpr.var = curr->id;
+ results->safe_push (cexpr);
+ if (address_p)
+ break;
+ }
+ }
+ /* If we are going to take the address of this field then
+ to be able to compute reachability correctly add at least
+ the last field of the variable. */
+ if (address_p && results->length () == 0)
+ {
+ curr = get_varinfo (cexpr.var);
+ while (curr->next != 0)
+ curr = vi_next (curr);
+ cexpr.var = curr->id;
+ results->safe_push (cexpr);
+ }
+ else if (results->length () == 0)
+ /* Assert that we found *some* field there. The user couldn't be
+ accessing *only* padding. */
+ /* Still the user could access one past the end of an array
+ embedded in a struct resulting in accessing *only* padding. */
+ /* Or accessing only padding via type-punning to a type
+ that has a filed just in padding space. */
+ {
+ cexpr.type = SCALAR;
+ cexpr.var = anything_id;
+ cexpr.offset = 0;
+ results->safe_push (cexpr);
+ }
+ }
+ else if (bitmaxsize == 0)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Access to zero-sized part of variable,"
+ "ignoring\n");
+ }
+ else
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Access to past the end of variable, ignoring\n");
+ }
+ else if (result.type == DEREF)
+ {
+ /* If we do not know exactly where the access goes say so. Note
+ that only for non-structure accesses we know that we access
+ at most one subfiled of any variable. */
+ if (bitpos == -1
+ || bitsize != bitmaxsize
+ || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
+ || result.offset == UNKNOWN_OFFSET)
+ result.offset = UNKNOWN_OFFSET;
+ else
+ result.offset += bitpos;
+ }
+ else if (result.type == ADDRESSOF)
+ {
+ /* We can end up here for component references on a
+ VIEW_CONVERT_EXPR <>(&foobar). */
+ result.type = SCALAR;
+ result.var = anything_id;
+ result.offset = 0;
+ }
+ else
+ gcc_unreachable ();
+}
+
+
+/* Dereference the constraint expression CONS, and return the result.
+ DEREF (ADDRESSOF) = SCALAR
+ DEREF (SCALAR) = DEREF
+ DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
+ This is needed so that we can handle dereferencing DEREF constraints. */
+
+static void
+do_deref (vec<ce_s> *constraints)
+{
+ struct constraint_expr *c;
+ unsigned int i = 0;
+
+ FOR_EACH_VEC_ELT (*constraints, i, c)
+ {
+ if (c->type == SCALAR)
+ c->type = DEREF;
+ else if (c->type == ADDRESSOF)
+ c->type = SCALAR;
+ else if (c->type == DEREF)
+ {
+ struct constraint_expr tmplhs;
+ tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
+ process_constraint (new_constraint (tmplhs, *c));
+ c->var = tmplhs.var;
+ }
+ else
+ gcc_unreachable ();
+ }
+}
+
+/* Given a tree T, return the constraint expression for taking the
+ address of it. */
+
+static void
+get_constraint_for_address_of (tree t, vec<ce_s> *results)
+{
+ struct constraint_expr *c;
+ unsigned int i;
+
+ get_constraint_for_1 (t, results, true, true);
+
+ FOR_EACH_VEC_ELT (*results, i, c)
+ {
+ if (c->type == DEREF)
+ c->type = SCALAR;
+ else
+ c->type = ADDRESSOF;
+ }
+}
+
+/* Given a tree T, return the constraint expression for it. */
+
+static void
+get_constraint_for_1 (tree t, vec<ce_s> *results, bool address_p,
+ bool lhs_p)
+{
+ struct constraint_expr temp;
+
+ /* x = integer is all glommed to a single variable, which doesn't
+ point to anything by itself. That is, of course, unless it is an
+ integer constant being treated as a pointer, in which case, we
+ will return that this is really the addressof anything. This
+ happens below, since it will fall into the default case. The only
+ case we know something about an integer treated like a pointer is
+ when it is the NULL pointer, and then we just say it points to
+ NULL.
+
+ Do not do that if -fno-delete-null-pointer-checks though, because
+ in that case *NULL does not fail, so it _should_ alias *anything.
+ It is not worth adding a new option or renaming the existing one,
+ since this case is relatively obscure. */
+ if ((TREE_CODE (t) == INTEGER_CST
+ && integer_zerop (t))
+ /* The only valid CONSTRUCTORs in gimple with pointer typed
+ elements are zero-initializer. But in IPA mode we also
+ process global initializers, so verify at least. */
+ || (TREE_CODE (t) == CONSTRUCTOR
+ && CONSTRUCTOR_NELTS (t) == 0))
+ {
+ if (flag_delete_null_pointer_checks)
+ temp.var = nothing_id;
+ else
+ temp.var = nonlocal_id;
+ temp.type = ADDRESSOF;
+ temp.offset = 0;
+ results->safe_push (temp);
+ return;
+ }
+
+ /* String constants are read-only. */
+ if (TREE_CODE (t) == STRING_CST)
+ {
+ temp.var = readonly_id;
+ temp.type = SCALAR;
+ temp.offset = 0;
+ results->safe_push (temp);
+ return;
+ }
+
+ switch (TREE_CODE_CLASS (TREE_CODE (t)))
+ {
+ case tcc_expression:
+ {
+ switch (TREE_CODE (t))
+ {
+ case ADDR_EXPR:
+ get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
+ return;
+ default:;
+ }
+ break;
+ }
+ case tcc_reference:
+ {
+ switch (TREE_CODE (t))
+ {
+ case MEM_REF:
+ {
+ struct constraint_expr cs;
+ varinfo_t vi, curr;
+ get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
+ TREE_OPERAND (t, 1), results);
+ do_deref (results);
+
+ /* If we are not taking the address then make sure to process
+ all subvariables we might access. */
+ if (address_p)
+ return;
+
+ cs = results->last ();
+ if (cs.type == DEREF
+ && type_can_have_subvars (TREE_TYPE (t)))
+ {
+ /* For dereferences this means we have to defer it
+ to solving time. */
+ results->last ().offset = UNKNOWN_OFFSET;
+ return;
+ }
+ if (cs.type != SCALAR)
+ return;
+
+ vi = get_varinfo (cs.var);
+ curr = vi_next (vi);
+ if (!vi->is_full_var
+ && curr)
+ {
+ unsigned HOST_WIDE_INT size;
+ if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t))))
+ size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t)));
+ else
+ size = -1;
+ for (; curr; curr = vi_next (curr))
+ {
+ if (curr->offset - vi->offset < size)
+ {
+ cs.var = curr->id;
+ results->safe_push (cs);
+ }
+ else
+ break;
+ }
+ }
+ return;
+ }
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ case COMPONENT_REF:
+ get_constraint_for_component_ref (t, results, address_p, lhs_p);
+ return;
+ case VIEW_CONVERT_EXPR:
+ get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
+ lhs_p);
+ return;
+ /* We are missing handling for TARGET_MEM_REF here. */
+ default:;
+ }
+ break;
+ }
+ case tcc_exceptional:
+ {
+ switch (TREE_CODE (t))
+ {
+ case SSA_NAME:
+ {
+ get_constraint_for_ssa_var (t, results, address_p);
+ return;
+ }
+ case CONSTRUCTOR:
+ {
+ unsigned int i;
+ tree val;
+ auto_vec<ce_s> tmp;
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
+ {
+ struct constraint_expr *rhsp;
+ unsigned j;
+ get_constraint_for_1 (val, &tmp, address_p, lhs_p);
+ FOR_EACH_VEC_ELT (tmp, j, rhsp)
+ results->safe_push (*rhsp);
+ tmp.truncate (0);
+ }
+ /* We do not know whether the constructor was complete,
+ so technically we have to add &NOTHING or &ANYTHING
+ like we do for an empty constructor as well. */
+ return;
+ }
+ default:;
+ }
+ break;
+ }
+ case tcc_declaration:
+ {
+ get_constraint_for_ssa_var (t, results, address_p);
+ return;
+ }
+ case tcc_constant:
+ {
+ /* We cannot refer to automatic variables through constants. */
+ temp.type = ADDRESSOF;
+ temp.var = nonlocal_id;
+ temp.offset = 0;
+ results->safe_push (temp);
+ return;
+ }
+ default:;
+ }
+
+ /* The default fallback is a constraint from anything. */
+ temp.type = ADDRESSOF;
+ temp.var = anything_id;
+ temp.offset = 0;
+ results->safe_push (temp);
+}
+
+/* Given a gimple tree T, return the constraint expression vector for it. */
+
+static void
+get_constraint_for (tree t, vec<ce_s> *results)
+{
+ gcc_assert (results->length () == 0);
+
+ get_constraint_for_1 (t, results, false, true);
+}
+
+/* Given a gimple tree T, return the constraint expression vector for it
+ to be used as the rhs of a constraint. */
+
+static void
+get_constraint_for_rhs (tree t, vec<ce_s> *results)
+{
+ gcc_assert (results->length () == 0);
+
+ get_constraint_for_1 (t, results, false, false);
+}
+
+
+/* Efficiently generates constraints from all entries in *RHSC to all
+ entries in *LHSC. */
+
+static void
+process_all_all_constraints (vec<ce_s> lhsc,
+ vec<ce_s> rhsc)
+{
+ struct constraint_expr *lhsp, *rhsp;
+ unsigned i, j;
+
+ if (lhsc.length () <= 1 || rhsc.length () <= 1)
+ {
+ FOR_EACH_VEC_ELT (lhsc, i, lhsp)
+ FOR_EACH_VEC_ELT (rhsc, j, rhsp)
+ process_constraint (new_constraint (*lhsp, *rhsp));
+ }
+ else
+ {
+ struct constraint_expr tmp;
+ tmp = new_scalar_tmp_constraint_exp ("allalltmp");
+ FOR_EACH_VEC_ELT (rhsc, i, rhsp)
+ process_constraint (new_constraint (tmp, *rhsp));
+ FOR_EACH_VEC_ELT (lhsc, i, lhsp)
+ process_constraint (new_constraint (*lhsp, tmp));
+ }
+}
+
+/* Handle aggregate copies by expanding into copies of the respective
+ fields of the structures. */
+
+static void
+do_structure_copy (tree lhsop, tree rhsop)
+{
+ struct constraint_expr *lhsp, *rhsp;
+ auto_vec<ce_s> lhsc;
+ auto_vec<ce_s> rhsc;
+ unsigned j;
+
+ get_constraint_for (lhsop, &lhsc);
+ get_constraint_for_rhs (rhsop, &rhsc);
+ lhsp = &lhsc[0];
+ rhsp = &rhsc[0];
+ if (lhsp->type == DEREF
+ || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
+ || rhsp->type == DEREF)
+ {
+ if (lhsp->type == DEREF)
+ {
+ gcc_assert (lhsc.length () == 1);
+ lhsp->offset = UNKNOWN_OFFSET;
+ }
+ if (rhsp->type == DEREF)
+ {
+ gcc_assert (rhsc.length () == 1);
+ rhsp->offset = UNKNOWN_OFFSET;
+ }
+ process_all_all_constraints (lhsc, rhsc);
+ }
+ else if (lhsp->type == SCALAR
+ && (rhsp->type == SCALAR
+ || rhsp->type == ADDRESSOF))
+ {
+ HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
+ HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
+ unsigned k = 0;
+ get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
+ get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
+ for (j = 0; lhsc.iterate (j, &lhsp);)
+ {
+ varinfo_t lhsv, rhsv;
+ rhsp = &rhsc[k];
+ lhsv = get_varinfo (lhsp->var);
+ rhsv = get_varinfo (rhsp->var);
+ if (lhsv->may_have_pointers
+ && (lhsv->is_full_var
+ || rhsv->is_full_var
+ || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
+ rhsv->offset + lhsoffset, rhsv->size)))
+ process_constraint (new_constraint (*lhsp, *rhsp));
+ if (!rhsv->is_full_var
+ && (lhsv->is_full_var
+ || (lhsv->offset + rhsoffset + lhsv->size
+ > rhsv->offset + lhsoffset + rhsv->size)))
+ {
+ ++k;
+ if (k >= rhsc.length ())
+ break;
+ }
+ else
+ ++j;
+ }
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Create constraints ID = { rhsc }. */
+
+static void
+make_constraints_to (unsigned id, vec<ce_s> rhsc)
+{
+ struct constraint_expr *c;
+ struct constraint_expr includes;
+ unsigned int j;
+
+ includes.var = id;
+ includes.offset = 0;
+ includes.type = SCALAR;
+
+ FOR_EACH_VEC_ELT (rhsc, j, c)
+ process_constraint (new_constraint (includes, *c));
+}
+
+/* Create a constraint ID = OP. */
+
+static void
+make_constraint_to (unsigned id, tree op)
+{
+ auto_vec<ce_s> rhsc;
+ get_constraint_for_rhs (op, &rhsc);
+ make_constraints_to (id, rhsc);
+}
+
+/* Create a constraint ID = &FROM. */
+
+static void
+make_constraint_from (varinfo_t vi, int from)
+{
+ struct constraint_expr lhs, rhs;
+
+ lhs.var = vi->id;
+ lhs.offset = 0;
+ lhs.type = SCALAR;
+
+ rhs.var = from;
+ rhs.offset = 0;
+ rhs.type = ADDRESSOF;
+ process_constraint (new_constraint (lhs, rhs));
+}
+
+/* Create a constraint ID = FROM. */
+
+static void
+make_copy_constraint (varinfo_t vi, int from)
+{
+ struct constraint_expr lhs, rhs;
+
+ lhs.var = vi->id;
+ lhs.offset = 0;
+ lhs.type = SCALAR;
+
+ rhs.var = from;
+ rhs.offset = 0;
+ rhs.type = SCALAR;
+ process_constraint (new_constraint (lhs, rhs));
+}
+
+/* Make constraints necessary to make OP escape. */
+
+static void
+make_escape_constraint (tree op)
+{
+ make_constraint_to (escaped_id, op);
+}
+
+/* Add constraints to that the solution of VI is transitively closed. */
+
+static void
+make_transitive_closure_constraints (varinfo_t vi)
+{
+ struct constraint_expr lhs, rhs;
+
+ /* VAR = *VAR; */
+ lhs.type = SCALAR;
+ lhs.var = vi->id;
+ lhs.offset = 0;
+ rhs.type = DEREF;
+ rhs.var = vi->id;
+ rhs.offset = UNKNOWN_OFFSET;
+ process_constraint (new_constraint (lhs, rhs));
+}
+
+/* Temporary storage for fake var decls. */
+struct obstack fake_var_decl_obstack;
+
+/* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
+
+static tree
+build_fake_var_decl (tree type)
+{
+ tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
+ memset (decl, 0, sizeof (struct tree_var_decl));
+ TREE_SET_CODE (decl, VAR_DECL);
+ TREE_TYPE (decl) = type;
+ DECL_UID (decl) = allocate_decl_uid ();
+ SET_DECL_PT_UID (decl, -1);
+ layout_decl (decl, 0);
+ return decl;
+}
+
+/* Create a new artificial heap variable with NAME.
+ Return the created variable. */
+
+static varinfo_t
+make_heapvar (const char *name)
+{
+ varinfo_t vi;
+ tree heapvar;
+
+ heapvar = build_fake_var_decl (ptr_type_node);
+ DECL_EXTERNAL (heapvar) = 1;
+
+ vi = new_var_info (heapvar, name);
+ vi->is_artificial_var = true;
+ vi->is_heap_var = true;
+ vi->is_unknown_size_var = true;
+ vi->offset = 0;
+ vi->fullsize = ~0;
+ vi->size = ~0;
+ vi->is_full_var = true;
+ insert_vi_for_tree (heapvar, vi);
+
+ return vi;
+}
+
+/* Create a new artificial heap variable with NAME and make a
+ constraint from it to LHS. Set flags according to a tag used
+ for tracking restrict pointers. */
+
+static varinfo_t
+make_constraint_from_restrict (varinfo_t lhs, const char *name)
+{
+ varinfo_t vi = make_heapvar (name);
+ vi->is_global_var = 1;
+ vi->may_have_pointers = 1;
+ make_constraint_from (lhs, vi->id);
+ return vi;
+}
+
+/* Create a new artificial heap variable with NAME and make a
+ constraint from it to LHS. Set flags according to a tag used
+ for tracking restrict pointers and make the artificial heap
+ point to global memory. */
+
+static varinfo_t
+make_constraint_from_global_restrict (varinfo_t lhs, const char *name)
+{
+ varinfo_t vi = make_constraint_from_restrict (lhs, name);
+ make_copy_constraint (vi, nonlocal_id);
+ return vi;
+}
+
+/* In IPA mode there are varinfos for different aspects of reach
+ function designator. One for the points-to set of the return
+ value, one for the variables that are clobbered by the function,
+ one for its uses and one for each parameter (including a single
+ glob for remaining variadic arguments). */
+
+enum { fi_clobbers = 1, fi_uses = 2,
+ fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
+
+/* Get a constraint for the requested part of a function designator FI
+ when operating in IPA mode. */
+
+static struct constraint_expr
+get_function_part_constraint (varinfo_t fi, unsigned part)
+{
+ struct constraint_expr c;
+
+ gcc_assert (in_ipa_mode);
+
+ if (fi->id == anything_id)
+ {
+ /* ??? We probably should have a ANYFN special variable. */
+ c.var = anything_id;
+ c.offset = 0;
+ c.type = SCALAR;
+ }
+ else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
+ {
+ varinfo_t ai = first_vi_for_offset (fi, part);
+ if (ai)
+ c.var = ai->id;
+ else
+ c.var = anything_id;
+ c.offset = 0;
+ c.type = SCALAR;
+ }
+ else
+ {
+ c.var = fi->id;
+ c.offset = part;
+ c.type = DEREF;
+ }
+
+ return c;
+}
+
+/* For non-IPA mode, generate constraints necessary for a call on the
+ RHS. */
+
+static void
+handle_rhs_call (gimple stmt, vec<ce_s> *results)
+{
+ struct constraint_expr rhsc;
+ unsigned i;
+ bool returns_uses = false;
+
+ for (i = 0; i < gimple_call_num_args (stmt); ++i)
+ {
+ tree arg = gimple_call_arg (stmt, i);
+ int flags = gimple_call_arg_flags (stmt, i);
+
+ /* If the argument is not used we can ignore it. */
+ if (flags & EAF_UNUSED)
+ continue;
+
+ /* As we compute ESCAPED context-insensitive we do not gain
+ any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
+ set. The argument would still get clobbered through the
+ escape solution. */
+ if ((flags & EAF_NOCLOBBER)
+ && (flags & EAF_NOESCAPE))
+ {
+ varinfo_t uses = get_call_use_vi (stmt);
+ if (!(flags & EAF_DIRECT))
+ {
+ varinfo_t tem = new_var_info (NULL_TREE, "callarg");
+ make_constraint_to (tem->id, arg);
+ make_transitive_closure_constraints (tem);
+ make_copy_constraint (uses, tem->id);
+ }
+ else
+ make_constraint_to (uses->id, arg);
+ returns_uses = true;
+ }
+ else if (flags & EAF_NOESCAPE)
+ {
+ struct constraint_expr lhs, rhs;
+ varinfo_t uses = get_call_use_vi (stmt);
+ varinfo_t clobbers = get_call_clobber_vi (stmt);
+ varinfo_t tem = new_var_info (NULL_TREE, "callarg");
+ make_constraint_to (tem->id, arg);
+ if (!(flags & EAF_DIRECT))
+ make_transitive_closure_constraints (tem);
+ make_copy_constraint (uses, tem->id);
+ make_copy_constraint (clobbers, tem->id);
+ /* Add *tem = nonlocal, do not add *tem = callused as
+ EAF_NOESCAPE parameters do not escape to other parameters
+ and all other uses appear in NONLOCAL as well. */
+ lhs.type = DEREF;
+ lhs.var = tem->id;
+ lhs.offset = 0;
+ rhs.type = SCALAR;
+ rhs.var = nonlocal_id;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+ returns_uses = true;
+ }
+ else
+ make_escape_constraint (arg);
+ }
+
+ /* If we added to the calls uses solution make sure we account for
+ pointers to it to be returned. */
+ if (returns_uses)
+ {
+ rhsc.var = get_call_use_vi (stmt)->id;
+ rhsc.offset = 0;
+ rhsc.type = SCALAR;
+ results->safe_push (rhsc);
+ }
+
+ /* The static chain escapes as well. */
+ if (gimple_call_chain (stmt))
+ make_escape_constraint (gimple_call_chain (stmt));
+
+ /* And if we applied NRV the address of the return slot escapes as well. */
+ if (gimple_call_return_slot_opt_p (stmt)
+ && gimple_call_lhs (stmt) != NULL_TREE
+ && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
+ {
+ auto_vec<ce_s> tmpc;
+ struct constraint_expr lhsc, *c;
+ get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
+ lhsc.var = escaped_id;
+ lhsc.offset = 0;
+ lhsc.type = SCALAR;
+ FOR_EACH_VEC_ELT (tmpc, i, c)
+ process_constraint (new_constraint (lhsc, *c));
+ }
+
+ /* Regular functions return nonlocal memory. */
+ rhsc.var = nonlocal_id;
+ rhsc.offset = 0;
+ rhsc.type = SCALAR;
+ results->safe_push (rhsc);
+}
+
+/* For non-IPA mode, generate constraints necessary for a call
+ that returns a pointer and assigns it to LHS. This simply makes
+ the LHS point to global and escaped variables. */
+
+static void
+handle_lhs_call (gimple stmt, tree lhs, int flags, vec<ce_s> rhsc,
+ tree fndecl)
+{
+ auto_vec<ce_s> lhsc;
+
+ get_constraint_for (lhs, &lhsc);
+ /* If the store is to a global decl make sure to
+ add proper escape constraints. */
+ lhs = get_base_address (lhs);
+ if (lhs
+ && DECL_P (lhs)
+ && is_global_var (lhs))
+ {
+ struct constraint_expr tmpc;
+ tmpc.var = escaped_id;
+ tmpc.offset = 0;
+ tmpc.type = SCALAR;
+ lhsc.safe_push (tmpc);
+ }
+
+ /* If the call returns an argument unmodified override the rhs
+ constraints. */
+ flags = gimple_call_return_flags (stmt);
+ if (flags & ERF_RETURNS_ARG
+ && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
+ {
+ tree arg;
+ rhsc.create (0);
+ arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
+ get_constraint_for (arg, &rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ rhsc.release ();
+ }
+ else if (flags & ERF_NOALIAS)
+ {
+ varinfo_t vi;
+ struct constraint_expr tmpc;
+ rhsc.create (0);
+ vi = make_heapvar ("HEAP");
+ /* We are marking allocated storage local, we deal with it becoming
+ global by escaping and setting of vars_contains_escaped_heap. */
+ DECL_EXTERNAL (vi->decl) = 0;
+ vi->is_global_var = 0;
+ /* If this is not a real malloc call assume the memory was
+ initialized and thus may point to global memory. All
+ builtin functions with the malloc attribute behave in a sane way. */
+ if (!fndecl
+ || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
+ make_constraint_from (vi, nonlocal_id);
+ tmpc.var = vi->id;
+ tmpc.offset = 0;
+ tmpc.type = ADDRESSOF;
+ rhsc.safe_push (tmpc);
+ process_all_all_constraints (lhsc, rhsc);
+ rhsc.release ();
+ }
+ else
+ process_all_all_constraints (lhsc, rhsc);
+}
+
+/* For non-IPA mode, generate constraints necessary for a call of a
+ const function that returns a pointer in the statement STMT. */
+
+static void
+handle_const_call (gimple stmt, vec<ce_s> *results)
+{
+ struct constraint_expr rhsc;
+ unsigned int k;
+
+ /* Treat nested const functions the same as pure functions as far
+ as the static chain is concerned. */
+ if (gimple_call_chain (stmt))
+ {
+ varinfo_t uses = get_call_use_vi (stmt);
+ make_transitive_closure_constraints (uses);
+ make_constraint_to (uses->id, gimple_call_chain (stmt));
+ rhsc.var = uses->id;
+ rhsc.offset = 0;
+ rhsc.type = SCALAR;
+ results->safe_push (rhsc);
+ }
+
+ /* May return arguments. */
+ for (k = 0; k < gimple_call_num_args (stmt); ++k)
+ {
+ tree arg = gimple_call_arg (stmt, k);
+ auto_vec<ce_s> argc;
+ unsigned i;
+ struct constraint_expr *argp;
+ get_constraint_for_rhs (arg, &argc);
+ FOR_EACH_VEC_ELT (argc, i, argp)
+ results->safe_push (*argp);
+ }
+
+ /* May return addresses of globals. */
+ rhsc.var = nonlocal_id;
+ rhsc.offset = 0;
+ rhsc.type = ADDRESSOF;
+ results->safe_push (rhsc);
+}
+
+/* For non-IPA mode, generate constraints necessary for a call to a
+ pure function in statement STMT. */
+
+static void
+handle_pure_call (gimple stmt, vec<ce_s> *results)
+{
+ struct constraint_expr rhsc;
+ unsigned i;
+ varinfo_t uses = NULL;
+
+ /* Memory reached from pointer arguments is call-used. */
+ for (i = 0; i < gimple_call_num_args (stmt); ++i)
+ {
+ tree arg = gimple_call_arg (stmt, i);
+ if (!uses)
+ {
+ uses = get_call_use_vi (stmt);
+ make_transitive_closure_constraints (uses);
+ }
+ make_constraint_to (uses->id, arg);
+ }
+
+ /* The static chain is used as well. */
+ if (gimple_call_chain (stmt))
+ {
+ if (!uses)
+ {
+ uses = get_call_use_vi (stmt);
+ make_transitive_closure_constraints (uses);
+ }
+ make_constraint_to (uses->id, gimple_call_chain (stmt));
+ }
+
+ /* Pure functions may return call-used and nonlocal memory. */
+ if (uses)
+ {
+ rhsc.var = uses->id;
+ rhsc.offset = 0;
+ rhsc.type = SCALAR;
+ results->safe_push (rhsc);
+ }
+ rhsc.var = nonlocal_id;
+ rhsc.offset = 0;
+ rhsc.type = SCALAR;
+ results->safe_push (rhsc);
+}
+
+
+/* Return the varinfo for the callee of CALL. */
+
+static varinfo_t
+get_fi_for_callee (gimple call)
+{
+ tree decl, fn = gimple_call_fn (call);
+
+ if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
+ fn = OBJ_TYPE_REF_EXPR (fn);
+
+ /* If we can directly resolve the function being called, do so.
+ Otherwise, it must be some sort of indirect expression that
+ we should still be able to handle. */
+ decl = gimple_call_addr_fndecl (fn);
+ if (decl)
+ return get_vi_for_tree (decl);
+
+ /* If the function is anything other than a SSA name pointer we have no
+ clue and should be getting ANYFN (well, ANYTHING for now). */
+ if (!fn || TREE_CODE (fn) != SSA_NAME)
+ return get_varinfo (anything_id);
+
+ if (SSA_NAME_IS_DEFAULT_DEF (fn)
+ && (TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
+ || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL))
+ fn = SSA_NAME_VAR (fn);
+
+ return get_vi_for_tree (fn);
+}
+
+/* Create constraints for the builtin call T. Return true if the call
+ was handled, otherwise false. */
+
+static bool
+find_func_aliases_for_builtin_call (gimple t)
+{
+ tree fndecl = gimple_call_fndecl (t);
+ vec<ce_s> lhsc = vNULL;
+ vec<ce_s> rhsc = vNULL;
+ varinfo_t fi;
+
+ if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
+ /* ??? All builtins that are handled here need to be handled
+ in the alias-oracle query functions explicitly! */
+ switch (DECL_FUNCTION_CODE (fndecl))
+ {
+ /* All the following functions return a pointer to the same object
+ as their first argument points to. The functions do not add
+ to the ESCAPED solution. The functions make the first argument
+ pointed to memory point to what the second argument pointed to
+ memory points to. */
+ case BUILT_IN_STRCPY:
+ case BUILT_IN_STRNCPY:
+ case BUILT_IN_BCOPY:
+ case BUILT_IN_MEMCPY:
+ case BUILT_IN_MEMMOVE:
+ case BUILT_IN_MEMPCPY:
+ case BUILT_IN_STPCPY:
+ case BUILT_IN_STPNCPY:
+ case BUILT_IN_STRCAT:
+ case BUILT_IN_STRNCAT:
+ case BUILT_IN_STRCPY_CHK:
+ case BUILT_IN_STRNCPY_CHK:
+ case BUILT_IN_MEMCPY_CHK:
+ case BUILT_IN_MEMMOVE_CHK:
+ case BUILT_IN_MEMPCPY_CHK:
+ case BUILT_IN_STPCPY_CHK:
+ case BUILT_IN_STPNCPY_CHK:
+ case BUILT_IN_STRCAT_CHK:
+ case BUILT_IN_STRNCAT_CHK:
+ case BUILT_IN_TM_MEMCPY:
+ case BUILT_IN_TM_MEMMOVE:
+ {
+ tree res = gimple_call_lhs (t);
+ tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
+ == BUILT_IN_BCOPY ? 1 : 0));
+ tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
+ == BUILT_IN_BCOPY ? 0 : 1));
+ if (res != NULL_TREE)
+ {
+ get_constraint_for (res, &lhsc);
+ if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
+ || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
+ || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
+ || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
+ || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK
+ || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK)
+ get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
+ else
+ get_constraint_for (dest, &rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ }
+ get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
+ get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
+ do_deref (&lhsc);
+ do_deref (&rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ return true;
+ }
+ case BUILT_IN_MEMSET:
+ case BUILT_IN_MEMSET_CHK:
+ case BUILT_IN_TM_MEMSET:
+ {
+ tree res = gimple_call_lhs (t);
+ tree dest = gimple_call_arg (t, 0);
+ unsigned i;
+ ce_s *lhsp;
+ struct constraint_expr ac;
+ if (res != NULL_TREE)
+ {
+ get_constraint_for (res, &lhsc);
+ get_constraint_for (dest, &rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ }
+ get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
+ do_deref (&lhsc);
+ if (flag_delete_null_pointer_checks
+ && integer_zerop (gimple_call_arg (t, 1)))
+ {
+ ac.type = ADDRESSOF;
+ ac.var = nothing_id;
+ }
+ else
+ {
+ ac.type = SCALAR;
+ ac.var = integer_id;
+ }
+ ac.offset = 0;
+ FOR_EACH_VEC_ELT (lhsc, i, lhsp)
+ process_constraint (new_constraint (*lhsp, ac));
+ lhsc.release ();
+ return true;
+ }
+ case BUILT_IN_POSIX_MEMALIGN:
+ {
+ tree ptrptr = gimple_call_arg (t, 0);
+ get_constraint_for (ptrptr, &lhsc);
+ do_deref (&lhsc);
+ varinfo_t vi = make_heapvar ("HEAP");
+ /* We are marking allocated storage local, we deal with it becoming
+ global by escaping and setting of vars_contains_escaped_heap. */
+ DECL_EXTERNAL (vi->decl) = 0;
+ vi->is_global_var = 0;
+ struct constraint_expr tmpc;
+ tmpc.var = vi->id;
+ tmpc.offset = 0;
+ tmpc.type = ADDRESSOF;
+ rhsc.safe_push (tmpc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ return true;
+ }
+ case BUILT_IN_ASSUME_ALIGNED:
+ {
+ tree res = gimple_call_lhs (t);
+ tree dest = gimple_call_arg (t, 0);
+ if (res != NULL_TREE)
+ {
+ get_constraint_for (res, &lhsc);
+ get_constraint_for (dest, &rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ }
+ return true;
+ }
+ /* All the following functions do not return pointers, do not
+ modify the points-to sets of memory reachable from their
+ arguments and do not add to the ESCAPED solution. */
+ case BUILT_IN_SINCOS:
+ case BUILT_IN_SINCOSF:
+ case BUILT_IN_SINCOSL:
+ case BUILT_IN_FREXP:
+ case BUILT_IN_FREXPF:
+ case BUILT_IN_FREXPL:
+ case BUILT_IN_GAMMA_R:
+ case BUILT_IN_GAMMAF_R:
+ case BUILT_IN_GAMMAL_R:
+ case BUILT_IN_LGAMMA_R:
+ case BUILT_IN_LGAMMAF_R:
+ case BUILT_IN_LGAMMAL_R:
+ case BUILT_IN_MODF:
+ case BUILT_IN_MODFF:
+ case BUILT_IN_MODFL:
+ case BUILT_IN_REMQUO:
+ case BUILT_IN_REMQUOF:
+ case BUILT_IN_REMQUOL:
+ case BUILT_IN_FREE:
+ return true;
+ case BUILT_IN_STRDUP:
+ case BUILT_IN_STRNDUP:
+ if (gimple_call_lhs (t))
+ {
+ handle_lhs_call (t, gimple_call_lhs (t), gimple_call_flags (t),
+ vNULL, fndecl);
+ get_constraint_for_ptr_offset (gimple_call_lhs (t),
+ NULL_TREE, &lhsc);
+ get_constraint_for_ptr_offset (gimple_call_arg (t, 0),
+ NULL_TREE, &rhsc);
+ do_deref (&lhsc);
+ do_deref (&rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ return true;
+ }
+ break;
+ /* String / character search functions return a pointer into the
+ source string or NULL. */
+ case BUILT_IN_INDEX:
+ case BUILT_IN_STRCHR:
+ case BUILT_IN_STRRCHR:
+ case BUILT_IN_MEMCHR:
+ case BUILT_IN_STRSTR:
+ case BUILT_IN_STRPBRK:
+ if (gimple_call_lhs (t))
+ {
+ tree src = gimple_call_arg (t, 0);
+ get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
+ constraint_expr nul;
+ nul.var = nothing_id;
+ nul.offset = 0;
+ nul.type = ADDRESSOF;
+ rhsc.safe_push (nul);
+ get_constraint_for (gimple_call_lhs (t), &lhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ }
+ return true;
+ /* Trampolines are special - they set up passing the static
+ frame. */
+ case BUILT_IN_INIT_TRAMPOLINE:
+ {
+ tree tramp = gimple_call_arg (t, 0);
+ tree nfunc = gimple_call_arg (t, 1);
+ tree frame = gimple_call_arg (t, 2);
+ unsigned i;
+ struct constraint_expr lhs, *rhsp;
+ if (in_ipa_mode)
+ {
+ varinfo_t nfi = NULL;
+ gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
+ nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
+ if (nfi)
+ {
+ lhs = get_function_part_constraint (nfi, fi_static_chain);
+ get_constraint_for (frame, &rhsc);
+ FOR_EACH_VEC_ELT (rhsc, i, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ rhsc.release ();
+
+ /* Make the frame point to the function for
+ the trampoline adjustment call. */
+ get_constraint_for (tramp, &lhsc);
+ do_deref (&lhsc);
+ get_constraint_for (nfunc, &rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ rhsc.release ();
+ lhsc.release ();
+
+ return true;
+ }
+ }
+ /* Else fallthru to generic handling which will let
+ the frame escape. */
+ break;
+ }
+ case BUILT_IN_ADJUST_TRAMPOLINE:
+ {
+ tree tramp = gimple_call_arg (t, 0);
+ tree res = gimple_call_lhs (t);
+ if (in_ipa_mode && res)
+ {
+ get_constraint_for (res, &lhsc);
+ get_constraint_for (tramp, &rhsc);
+ do_deref (&rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ rhsc.release ();
+ lhsc.release ();
+ }
+ return true;
+ }
+ CASE_BUILT_IN_TM_STORE (1):
+ CASE_BUILT_IN_TM_STORE (2):
+ CASE_BUILT_IN_TM_STORE (4):
+ CASE_BUILT_IN_TM_STORE (8):
+ CASE_BUILT_IN_TM_STORE (FLOAT):
+ CASE_BUILT_IN_TM_STORE (DOUBLE):
+ CASE_BUILT_IN_TM_STORE (LDOUBLE):
+ CASE_BUILT_IN_TM_STORE (M64):
+ CASE_BUILT_IN_TM_STORE (M128):
+ CASE_BUILT_IN_TM_STORE (M256):
+ {
+ tree addr = gimple_call_arg (t, 0);
+ tree src = gimple_call_arg (t, 1);
+
+ get_constraint_for (addr, &lhsc);
+ do_deref (&lhsc);
+ get_constraint_for (src, &rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ return true;
+ }
+ CASE_BUILT_IN_TM_LOAD (1):
+ CASE_BUILT_IN_TM_LOAD (2):
+ CASE_BUILT_IN_TM_LOAD (4):
+ CASE_BUILT_IN_TM_LOAD (8):
+ CASE_BUILT_IN_TM_LOAD (FLOAT):
+ CASE_BUILT_IN_TM_LOAD (DOUBLE):
+ CASE_BUILT_IN_TM_LOAD (LDOUBLE):
+ CASE_BUILT_IN_TM_LOAD (M64):
+ CASE_BUILT_IN_TM_LOAD (M128):
+ CASE_BUILT_IN_TM_LOAD (M256):
+ {
+ tree dest = gimple_call_lhs (t);
+ tree addr = gimple_call_arg (t, 0);
+
+ get_constraint_for (dest, &lhsc);
+ get_constraint_for (addr, &rhsc);
+ do_deref (&rhsc);
+ process_all_all_constraints (lhsc, rhsc);
+ lhsc.release ();
+ rhsc.release ();
+ return true;
+ }
+ /* Variadic argument handling needs to be handled in IPA
+ mode as well. */
+ case BUILT_IN_VA_START:
+ {
+ tree valist = gimple_call_arg (t, 0);
+ struct constraint_expr rhs, *lhsp;
+ unsigned i;
+ get_constraint_for (valist, &lhsc);
+ do_deref (&lhsc);
+ /* The va_list gets access to pointers in variadic
+ arguments. Which we know in the case of IPA analysis
+ and otherwise are just all nonlocal variables. */
+ if (in_ipa_mode)
+ {
+ fi = lookup_vi_for_tree (cfun->decl);
+ rhs = get_function_part_constraint (fi, ~0);
+ rhs.type = ADDRESSOF;
+ }
+ else
+ {
+ rhs.var = nonlocal_id;
+ rhs.type = ADDRESSOF;
+ rhs.offset = 0;
+ }
+ FOR_EACH_VEC_ELT (lhsc, i, lhsp)
+ process_constraint (new_constraint (*lhsp, rhs));
+ lhsc.release ();
+ /* va_list is clobbered. */
+ make_constraint_to (get_call_clobber_vi (t)->id, valist);
+ return true;
+ }
+ /* va_end doesn't have any effect that matters. */
+ case BUILT_IN_VA_END:
+ return true;
+ /* Alternate return. Simply give up for now. */
+ case BUILT_IN_RETURN:
+ {
+ fi = NULL;
+ if (!in_ipa_mode
+ || !(fi = get_vi_for_tree (cfun->decl)))
+ make_constraint_from (get_varinfo (escaped_id), anything_id);
+ else if (in_ipa_mode
+ && fi != NULL)
+ {
+ struct constraint_expr lhs, rhs;
+ lhs = get_function_part_constraint (fi, fi_result);
+ rhs.var = anything_id;
+ rhs.offset = 0;
+ rhs.type = SCALAR;
+ process_constraint (new_constraint (lhs, rhs));
+ }
+ return true;
+ }
+ /* printf-style functions may have hooks to set pointers to
+ point to somewhere into the generated string. Leave them
+ for a later exercise... */
+ default:
+ /* Fallthru to general call handling. */;
+ }
+
+ return false;
+}
+
+/* Create constraints for the call T. */
+
+static void
+find_func_aliases_for_call (gimple t)
+{
+ tree fndecl = gimple_call_fndecl (t);
+ vec<ce_s> lhsc = vNULL;
+ vec<ce_s> rhsc = vNULL;
+ varinfo_t fi;
+
+ if (fndecl != NULL_TREE
+ && DECL_BUILT_IN (fndecl)
+ && find_func_aliases_for_builtin_call (t))
+ return;
+
+ fi = get_fi_for_callee (t);
+ if (!in_ipa_mode
+ || (fndecl && !fi->is_fn_info))
+ {
+ vec<ce_s> rhsc = vNULL;
+ int flags = gimple_call_flags (t);
+
+ /* Const functions can return their arguments and addresses
+ of global memory but not of escaped memory. */
+ if (flags & (ECF_CONST|ECF_NOVOPS))
+ {
+ if (gimple_call_lhs (t))
+ handle_const_call (t, &rhsc);
+ }
+ /* Pure functions can return addresses in and of memory
+ reachable from their arguments, but they are not an escape
+ point for reachable memory of their arguments. */
+ else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
+ handle_pure_call (t, &rhsc);
+ else
+ handle_rhs_call (t, &rhsc);
+ if (gimple_call_lhs (t))
+ handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
+ rhsc.release ();
+ }
+ else
+ {
+ tree lhsop;
+ unsigned j;
+
+ /* Assign all the passed arguments to the appropriate incoming
+ parameters of the function. */
+ for (j = 0; j < gimple_call_num_args (t); j++)
+ {
+ struct constraint_expr lhs ;
+ struct constraint_expr *rhsp;
+ tree arg = gimple_call_arg (t, j);
+
+ get_constraint_for_rhs (arg, &rhsc);
+ lhs = get_function_part_constraint (fi, fi_parm_base + j);
+ while (rhsc.length () != 0)
+ {
+ rhsp = &rhsc.last ();
+ process_constraint (new_constraint (lhs, *rhsp));
+ rhsc.pop ();
+ }
+ }
+
+ /* If we are returning a value, assign it to the result. */
+ lhsop = gimple_call_lhs (t);
+ if (lhsop)
+ {
+ struct constraint_expr rhs;
+ struct constraint_expr *lhsp;
+
+ get_constraint_for (lhsop, &lhsc);
+ rhs = get_function_part_constraint (fi, fi_result);
+ if (fndecl
+ && DECL_RESULT (fndecl)
+ && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
+ {
+ vec<ce_s> tem = vNULL;
+ tem.safe_push (rhs);
+ do_deref (&tem);
+ rhs = tem[0];
+ tem.release ();
+ }
+ FOR_EACH_VEC_ELT (lhsc, j, lhsp)
+ process_constraint (new_constraint (*lhsp, rhs));
+ }
+
+ /* If we pass the result decl by reference, honor that. */
+ if (lhsop
+ && fndecl
+ && DECL_RESULT (fndecl)
+ && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
+ {
+ struct constraint_expr lhs;
+ struct constraint_expr *rhsp;
+
+ get_constraint_for_address_of (lhsop, &rhsc);
+ lhs = get_function_part_constraint (fi, fi_result);
+ FOR_EACH_VEC_ELT (rhsc, j, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ rhsc.release ();
+ }
+
+ /* If we use a static chain, pass it along. */
+ if (gimple_call_chain (t))
+ {
+ struct constraint_expr lhs;
+ struct constraint_expr *rhsp;
+
+ get_constraint_for (gimple_call_chain (t), &rhsc);
+ lhs = get_function_part_constraint (fi, fi_static_chain);
+ FOR_EACH_VEC_ELT (rhsc, j, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ }
+ }
+}
+
+/* Walk statement T setting up aliasing constraints according to the
+ references found in T. This function is the main part of the
+ constraint builder. AI points to auxiliary alias information used
+ when building alias sets and computing alias grouping heuristics. */
+
+static void
+find_func_aliases (gimple origt)
+{
+ gimple t = origt;
+ vec<ce_s> lhsc = vNULL;
+ vec<ce_s> rhsc = vNULL;
+ struct constraint_expr *c;
+ varinfo_t fi;
+
+ /* Now build constraints expressions. */
+ if (gimple_code (t) == GIMPLE_PHI)
+ {
+ size_t i;
+ unsigned int j;
+
+ /* For a phi node, assign all the arguments to
+ the result. */
+ get_constraint_for (gimple_phi_result (t), &lhsc);
+ for (i = 0; i < gimple_phi_num_args (t); i++)
+ {
+ tree strippedrhs = PHI_ARG_DEF (t, i);
+
+ STRIP_NOPS (strippedrhs);
+ get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
+
+ FOR_EACH_VEC_ELT (lhsc, j, c)
+ {
+ struct constraint_expr *c2;
+ while (rhsc.length () > 0)
+ {
+ c2 = &rhsc.last ();
+ process_constraint (new_constraint (*c, *c2));
+ rhsc.pop ();
+ }
+ }
+ }
+ }
+ /* In IPA mode, we need to generate constraints to pass call
+ arguments through their calls. There are two cases,
+ either a GIMPLE_CALL returning a value, or just a plain
+ GIMPLE_CALL when we are not.
+
+ In non-ipa mode, we need to generate constraints for each
+ pointer passed by address. */
+ else if (is_gimple_call (t))
+ find_func_aliases_for_call (t);
+
+ /* Otherwise, just a regular assignment statement. Only care about
+ operations with pointer result, others are dealt with as escape
+ points if they have pointer operands. */
+ else if (is_gimple_assign (t))
+ {
+ /* Otherwise, just a regular assignment statement. */
+ tree lhsop = gimple_assign_lhs (t);
+ tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
+
+ if (rhsop && TREE_CLOBBER_P (rhsop))
+ /* Ignore clobbers, they don't actually store anything into
+ the LHS. */
+ ;
+ else if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
+ do_structure_copy (lhsop, rhsop);
+ else
+ {
+ enum tree_code code = gimple_assign_rhs_code (t);
+
+ get_constraint_for (lhsop, &lhsc);
+
+ if (FLOAT_TYPE_P (TREE_TYPE (lhsop)))
+ /* If the operation produces a floating point result then
+ assume the value is not produced to transfer a pointer. */
+ ;
+ else if (code == POINTER_PLUS_EXPR)
+ get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
+ gimple_assign_rhs2 (t), &rhsc);
+ else if (code == BIT_AND_EXPR
+ && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
+ {
+ /* Aligning a pointer via a BIT_AND_EXPR is offsetting
+ the pointer. Handle it by offsetting it by UNKNOWN. */
+ get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
+ NULL_TREE, &rhsc);
+ }
+ else if ((CONVERT_EXPR_CODE_P (code)
+ && !(POINTER_TYPE_P (gimple_expr_type (t))
+ && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
+ || gimple_assign_single_p (t))
+ get_constraint_for_rhs (rhsop, &rhsc);
+ else if (code == COND_EXPR)
+ {
+ /* The result is a merge of both COND_EXPR arms. */
+ vec<ce_s> tmp = vNULL;
+ struct constraint_expr *rhsp;
+ unsigned i;
+ get_constraint_for_rhs (gimple_assign_rhs2 (t), &rhsc);
+ get_constraint_for_rhs (gimple_assign_rhs3 (t), &tmp);
+ FOR_EACH_VEC_ELT (tmp, i, rhsp)
+ rhsc.safe_push (*rhsp);
+ tmp.release ();
+ }
+ else if (truth_value_p (code))
+ /* Truth value results are not pointer (parts). Or at least
+ very very unreasonable obfuscation of a part. */
+ ;
+ else
+ {
+ /* All other operations are merges. */
+ vec<ce_s> tmp = vNULL;
+ struct constraint_expr *rhsp;
+ unsigned i, j;
+ get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
+ for (i = 2; i < gimple_num_ops (t); ++i)
+ {
+ get_constraint_for_rhs (gimple_op (t, i), &tmp);
+ FOR_EACH_VEC_ELT (tmp, j, rhsp)
+ rhsc.safe_push (*rhsp);
+ tmp.truncate (0);
+ }
+ tmp.release ();
+ }
+ process_all_all_constraints (lhsc, rhsc);
+ }
+ /* If there is a store to a global variable the rhs escapes. */
+ if ((lhsop = get_base_address (lhsop)) != NULL_TREE
+ && DECL_P (lhsop)
+ && is_global_var (lhsop)
+ && (!in_ipa_mode
+ || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
+ make_escape_constraint (rhsop);
+ }
+ /* Handle escapes through return. */
+ else if (gimple_code (t) == GIMPLE_RETURN
+ && gimple_return_retval (t) != NULL_TREE)
+ {
+ fi = NULL;
+ if (!in_ipa_mode
+ || !(fi = get_vi_for_tree (cfun->decl)))
+ make_escape_constraint (gimple_return_retval (t));
+ else if (in_ipa_mode
+ && fi != NULL)
+ {
+ struct constraint_expr lhs ;
+ struct constraint_expr *rhsp;
+ unsigned i;
+
+ lhs = get_function_part_constraint (fi, fi_result);
+ get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
+ FOR_EACH_VEC_ELT (rhsc, i, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ }
+ }
+ /* Handle asms conservatively by adding escape constraints to everything. */
+ else if (gimple_code (t) == GIMPLE_ASM)
+ {
+ unsigned i, noutputs;
+ const char **oconstraints;
+ const char *constraint;
+ bool allows_mem, allows_reg, is_inout;
+
+ noutputs = gimple_asm_noutputs (t);
+ oconstraints = XALLOCAVEC (const char *, noutputs);
+
+ for (i = 0; i < noutputs; ++i)
+ {
+ tree link = gimple_asm_output_op (t, i);
+ tree op = TREE_VALUE (link);
+
+ constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
+ oconstraints[i] = constraint;
+ parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
+ &allows_reg, &is_inout);
+
+ /* A memory constraint makes the address of the operand escape. */
+ if (!allows_reg && allows_mem)
+ make_escape_constraint (build_fold_addr_expr (op));
+
+ /* The asm may read global memory, so outputs may point to
+ any global memory. */
+ if (op)
+ {
+ vec<ce_s> lhsc = vNULL;
+ struct constraint_expr rhsc, *lhsp;
+ unsigned j;
+ get_constraint_for (op, &lhsc);
+ rhsc.var = nonlocal_id;
+ rhsc.offset = 0;
+ rhsc.type = SCALAR;
+ FOR_EACH_VEC_ELT (lhsc, j, lhsp)
+ process_constraint (new_constraint (*lhsp, rhsc));
+ lhsc.release ();
+ }
+ }
+ for (i = 0; i < gimple_asm_ninputs (t); ++i)
+ {
+ tree link = gimple_asm_input_op (t, i);
+ tree op = TREE_VALUE (link);
+
+ constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
+
+ parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
+ &allows_mem, &allows_reg);
+
+ /* A memory constraint makes the address of the operand escape. */
+ if (!allows_reg && allows_mem)
+ make_escape_constraint (build_fold_addr_expr (op));
+ /* Strictly we'd only need the constraint to ESCAPED if
+ the asm clobbers memory, otherwise using something
+ along the lines of per-call clobbers/uses would be enough. */
+ else if (op)
+ make_escape_constraint (op);
+ }
+ }
+
+ rhsc.release ();
+ lhsc.release ();
+}
+
+
+/* Create a constraint adding to the clobber set of FI the memory
+ pointed to by PTR. */
+
+static void
+process_ipa_clobber (varinfo_t fi, tree ptr)
+{
+ vec<ce_s> ptrc = vNULL;
+ struct constraint_expr *c, lhs;
+ unsigned i;
+ get_constraint_for_rhs (ptr, &ptrc);
+ lhs = get_function_part_constraint (fi, fi_clobbers);
+ FOR_EACH_VEC_ELT (ptrc, i, c)
+ process_constraint (new_constraint (lhs, *c));
+ ptrc.release ();
+}
+
+/* Walk statement T setting up clobber and use constraints according to the
+ references found in T. This function is a main part of the
+ IPA constraint builder. */
+
+static void
+find_func_clobbers (gimple origt)
+{
+ gimple t = origt;
+ vec<ce_s> lhsc = vNULL;
+ auto_vec<ce_s> rhsc;
+ varinfo_t fi;
+
+ /* Add constraints for clobbered/used in IPA mode.
+ We are not interested in what automatic variables are clobbered
+ or used as we only use the information in the caller to which
+ they do not escape. */
+ gcc_assert (in_ipa_mode);
+
+ /* If the stmt refers to memory in any way it better had a VUSE. */
+ if (gimple_vuse (t) == NULL_TREE)
+ return;
+
+ /* We'd better have function information for the current function. */
+ fi = lookup_vi_for_tree (cfun->decl);
+ gcc_assert (fi != NULL);
+
+ /* Account for stores in assignments and calls. */
+ if (gimple_vdef (t) != NULL_TREE
+ && gimple_has_lhs (t))
+ {
+ tree lhs = gimple_get_lhs (t);
+ tree tem = lhs;
+ while (handled_component_p (tem))
+ tem = TREE_OPERAND (tem, 0);
+ if ((DECL_P (tem)
+ && !auto_var_in_fn_p (tem, cfun->decl))
+ || INDIRECT_REF_P (tem)
+ || (TREE_CODE (tem) == MEM_REF
+ && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
+ && auto_var_in_fn_p
+ (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
+ {
+ struct constraint_expr lhsc, *rhsp;
+ unsigned i;
+ lhsc = get_function_part_constraint (fi, fi_clobbers);
+ get_constraint_for_address_of (lhs, &rhsc);
+ FOR_EACH_VEC_ELT (rhsc, i, rhsp)
+ process_constraint (new_constraint (lhsc, *rhsp));
+ rhsc.release ();
+ }
+ }
+
+ /* Account for uses in assigments and returns. */
+ if (gimple_assign_single_p (t)
+ || (gimple_code (t) == GIMPLE_RETURN
+ && gimple_return_retval (t) != NULL_TREE))
+ {
+ tree rhs = (gimple_assign_single_p (t)
+ ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
+ tree tem = rhs;
+ while (handled_component_p (tem))
+ tem = TREE_OPERAND (tem, 0);
+ if ((DECL_P (tem)
+ && !auto_var_in_fn_p (tem, cfun->decl))
+ || INDIRECT_REF_P (tem)
+ || (TREE_CODE (tem) == MEM_REF
+ && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
+ && auto_var_in_fn_p
+ (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
+ {
+ struct constraint_expr lhs, *rhsp;
+ unsigned i;
+ lhs = get_function_part_constraint (fi, fi_uses);
+ get_constraint_for_address_of (rhs, &rhsc);
+ FOR_EACH_VEC_ELT (rhsc, i, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ rhsc.release ();
+ }
+ }
+
+ if (is_gimple_call (t))
+ {
+ varinfo_t cfi = NULL;
+ tree decl = gimple_call_fndecl (t);
+ struct constraint_expr lhs, rhs;
+ unsigned i, j;
+
+ /* For builtins we do not have separate function info. For those
+ we do not generate escapes for we have to generate clobbers/uses. */
+ if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
+ switch (DECL_FUNCTION_CODE (decl))
+ {
+ /* The following functions use and clobber memory pointed to
+ by their arguments. */
+ case BUILT_IN_STRCPY:
+ case BUILT_IN_STRNCPY:
+ case BUILT_IN_BCOPY:
+ case BUILT_IN_MEMCPY:
+ case BUILT_IN_MEMMOVE:
+ case BUILT_IN_MEMPCPY:
+ case BUILT_IN_STPCPY:
+ case BUILT_IN_STPNCPY:
+ case BUILT_IN_STRCAT:
+ case BUILT_IN_STRNCAT:
+ case BUILT_IN_STRCPY_CHK:
+ case BUILT_IN_STRNCPY_CHK:
+ case BUILT_IN_MEMCPY_CHK:
+ case BUILT_IN_MEMMOVE_CHK:
+ case BUILT_IN_MEMPCPY_CHK:
+ case BUILT_IN_STPCPY_CHK:
+ case BUILT_IN_STPNCPY_CHK:
+ case BUILT_IN_STRCAT_CHK:
+ case BUILT_IN_STRNCAT_CHK:
+ {
+ tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
+ == BUILT_IN_BCOPY ? 1 : 0));
+ tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
+ == BUILT_IN_BCOPY ? 0 : 1));
+ unsigned i;
+ struct constraint_expr *rhsp, *lhsp;
+ get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
+ lhs = get_function_part_constraint (fi, fi_clobbers);
+ FOR_EACH_VEC_ELT (lhsc, i, lhsp)
+ process_constraint (new_constraint (lhs, *lhsp));
+ lhsc.release ();
+ get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
+ lhs = get_function_part_constraint (fi, fi_uses);
+ FOR_EACH_VEC_ELT (rhsc, i, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ rhsc.release ();
+ return;
+ }
+ /* The following function clobbers memory pointed to by
+ its argument. */
+ case BUILT_IN_MEMSET:
+ case BUILT_IN_MEMSET_CHK:
+ case BUILT_IN_POSIX_MEMALIGN:
+ {
+ tree dest = gimple_call_arg (t, 0);
+ unsigned i;
+ ce_s *lhsp;
+ get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
+ lhs = get_function_part_constraint (fi, fi_clobbers);
+ FOR_EACH_VEC_ELT (lhsc, i, lhsp)
+ process_constraint (new_constraint (lhs, *lhsp));
+ lhsc.release ();
+ return;
+ }
+ /* The following functions clobber their second and third
+ arguments. */
+ case BUILT_IN_SINCOS:
+ case BUILT_IN_SINCOSF:
+ case BUILT_IN_SINCOSL:
+ {
+ process_ipa_clobber (fi, gimple_call_arg (t, 1));
+ process_ipa_clobber (fi, gimple_call_arg (t, 2));
+ return;
+ }
+ /* The following functions clobber their second argument. */
+ case BUILT_IN_FREXP:
+ case BUILT_IN_FREXPF:
+ case BUILT_IN_FREXPL:
+ case BUILT_IN_LGAMMA_R:
+ case BUILT_IN_LGAMMAF_R:
+ case BUILT_IN_LGAMMAL_R:
+ case BUILT_IN_GAMMA_R:
+ case BUILT_IN_GAMMAF_R:
+ case BUILT_IN_GAMMAL_R:
+ case BUILT_IN_MODF:
+ case BUILT_IN_MODFF:
+ case BUILT_IN_MODFL:
+ {
+ process_ipa_clobber (fi, gimple_call_arg (t, 1));
+ return;
+ }
+ /* The following functions clobber their third argument. */
+ case BUILT_IN_REMQUO:
+ case BUILT_IN_REMQUOF:
+ case BUILT_IN_REMQUOL:
+ {
+ process_ipa_clobber (fi, gimple_call_arg (t, 2));
+ return;
+ }
+ /* The following functions neither read nor clobber memory. */
+ case BUILT_IN_ASSUME_ALIGNED:
+ case BUILT_IN_FREE:
+ return;
+ /* Trampolines are of no interest to us. */
+ case BUILT_IN_INIT_TRAMPOLINE:
+ case BUILT_IN_ADJUST_TRAMPOLINE:
+ return;
+ case BUILT_IN_VA_START:
+ case BUILT_IN_VA_END:
+ return;
+ /* printf-style functions may have hooks to set pointers to
+ point to somewhere into the generated string. Leave them
+ for a later exercise... */
+ default:
+ /* Fallthru to general call handling. */;
+ }
+
+ /* Parameters passed by value are used. */
+ lhs = get_function_part_constraint (fi, fi_uses);
+ for (i = 0; i < gimple_call_num_args (t); i++)
+ {
+ struct constraint_expr *rhsp;
+ tree arg = gimple_call_arg (t, i);
+
+ if (TREE_CODE (arg) == SSA_NAME
+ || is_gimple_min_invariant (arg))
+ continue;
+
+ get_constraint_for_address_of (arg, &rhsc);
+ FOR_EACH_VEC_ELT (rhsc, j, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ rhsc.release ();
+ }
+
+ /* Build constraints for propagating clobbers/uses along the
+ callgraph edges. */
+ cfi = get_fi_for_callee (t);
+ if (cfi->id == anything_id)
+ {
+ if (gimple_vdef (t))
+ make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
+ anything_id);
+ make_constraint_from (first_vi_for_offset (fi, fi_uses),
+ anything_id);
+ return;
+ }
+
+ /* For callees without function info (that's external functions),
+ ESCAPED is clobbered and used. */
+ if (gimple_call_fndecl (t)
+ && !cfi->is_fn_info)
+ {
+ varinfo_t vi;
+
+ if (gimple_vdef (t))
+ make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
+ escaped_id);
+ make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
+
+ /* Also honor the call statement use/clobber info. */
+ if ((vi = lookup_call_clobber_vi (t)) != NULL)
+ make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
+ vi->id);
+ if ((vi = lookup_call_use_vi (t)) != NULL)
+ make_copy_constraint (first_vi_for_offset (fi, fi_uses),
+ vi->id);
+ return;
+ }
+
+ /* Otherwise the caller clobbers and uses what the callee does.
+ ??? This should use a new complex constraint that filters
+ local variables of the callee. */
+ if (gimple_vdef (t))
+ {
+ lhs = get_function_part_constraint (fi, fi_clobbers);
+ rhs = get_function_part_constraint (cfi, fi_clobbers);
+ process_constraint (new_constraint (lhs, rhs));
+ }
+ lhs = get_function_part_constraint (fi, fi_uses);
+ rhs = get_function_part_constraint (cfi, fi_uses);
+ process_constraint (new_constraint (lhs, rhs));
+ }
+ else if (gimple_code (t) == GIMPLE_ASM)
+ {
+ /* ??? Ick. We can do better. */
+ if (gimple_vdef (t))
+ make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
+ anything_id);
+ make_constraint_from (first_vi_for_offset (fi, fi_uses),
+ anything_id);
+ }
+}
+
+
+/* Find the first varinfo in the same variable as START that overlaps with
+ OFFSET. Return NULL if we can't find one. */
+
+static varinfo_t
+first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
+{
+ /* If the offset is outside of the variable, bail out. */
+ if (offset >= start->fullsize)
+ return NULL;
+
+ /* If we cannot reach offset from start, lookup the first field
+ and start from there. */
+ if (start->offset > offset)
+ start = get_varinfo (start->head);
+
+ while (start)
+ {
+ /* We may not find a variable in the field list with the actual
+ offset when when we have glommed a structure to a variable.
+ In that case, however, offset should still be within the size
+ of the variable. */
+ if (offset >= start->offset
+ && (offset - start->offset) < start->size)
+ return start;
+
+ start = vi_next (start);
+ }
+
+ return NULL;
+}
+
+/* Find the first varinfo in the same variable as START that overlaps with
+ OFFSET. If there is no such varinfo the varinfo directly preceding
+ OFFSET is returned. */
+
+static varinfo_t
+first_or_preceding_vi_for_offset (varinfo_t start,
+ unsigned HOST_WIDE_INT offset)
+{
+ /* If we cannot reach offset from start, lookup the first field
+ and start from there. */
+ if (start->offset > offset)
+ start = get_varinfo (start->head);
+
+ /* We may not find a variable in the field list with the actual
+ offset when when we have glommed a structure to a variable.
+ In that case, however, offset should still be within the size
+ of the variable.
+ If we got beyond the offset we look for return the field
+ directly preceding offset which may be the last field. */
+ while (start->next
+ && offset >= start->offset
+ && !((offset - start->offset) < start->size))
+ start = vi_next (start);
+
+ return start;
+}
+
+
+/* This structure is used during pushing fields onto the fieldstack
+ to track the offset of the field, since bitpos_of_field gives it
+ relative to its immediate containing type, and we want it relative
+ to the ultimate containing object. */
+
+struct fieldoff
+{
+ /* Offset from the base of the base containing object to this field. */
+ HOST_WIDE_INT offset;
+
+ /* Size, in bits, of the field. */
+ unsigned HOST_WIDE_INT size;
+
+ unsigned has_unknown_size : 1;
+
+ unsigned must_have_pointers : 1;
+
+ unsigned may_have_pointers : 1;
+
+ unsigned only_restrict_pointers : 1;
+};
+typedef struct fieldoff fieldoff_s;
+
+
+/* qsort comparison function for two fieldoff's PA and PB */
+
+static int
+fieldoff_compare (const void *pa, const void *pb)
+{
+ const fieldoff_s *foa = (const fieldoff_s *)pa;
+ const fieldoff_s *fob = (const fieldoff_s *)pb;
+ unsigned HOST_WIDE_INT foasize, fobsize;
+
+ if (foa->offset < fob->offset)
+ return -1;
+ else if (foa->offset > fob->offset)
+ return 1;
+
+ foasize = foa->size;
+ fobsize = fob->size;
+ if (foasize < fobsize)
+ return -1;
+ else if (foasize > fobsize)
+ return 1;
+ return 0;
+}
+
+/* Sort a fieldstack according to the field offset and sizes. */
+static void
+sort_fieldstack (vec<fieldoff_s> fieldstack)
+{
+ fieldstack.qsort (fieldoff_compare);
+}
+
+/* Return true if T is a type that can have subvars. */
+
+static inline bool
+type_can_have_subvars (const_tree t)
+{
+ /* Aggregates without overlapping fields can have subvars. */
+ return TREE_CODE (t) == RECORD_TYPE;
+}
+
+/* Return true if V is a tree that we can have subvars for.
+ Normally, this is any aggregate type. Also complex
+ types which are not gimple registers can have subvars. */
+
+static inline bool
+var_can_have_subvars (const_tree v)
+{
+ /* Volatile variables should never have subvars. */
+ if (TREE_THIS_VOLATILE (v))
+ return false;
+
+ /* Non decls or memory tags can never have subvars. */
+ if (!DECL_P (v))
+ return false;
+
+ return type_can_have_subvars (TREE_TYPE (v));
+}
+
+/* Return true if T is a type that does contain pointers. */
+
+static bool
+type_must_have_pointers (tree type)
+{
+ if (POINTER_TYPE_P (type))
+ return true;
+
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ return type_must_have_pointers (TREE_TYPE (type));
+
+ /* A function or method can have pointers as arguments, so track
+ those separately. */
+ if (TREE_CODE (type) == FUNCTION_TYPE
+ || TREE_CODE (type) == METHOD_TYPE)
+ return true;
+
+ return false;
+}
+
+static bool
+field_must_have_pointers (tree t)
+{
+ return type_must_have_pointers (TREE_TYPE (t));
+}
+
+/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
+ the fields of TYPE onto fieldstack, recording their offsets along
+ the way.
+
+ OFFSET is used to keep track of the offset in this entire
+ structure, rather than just the immediately containing structure.
+ Returns false if the caller is supposed to handle the field we
+ recursed for. */
+
+static bool
+push_fields_onto_fieldstack (tree type, vec<fieldoff_s> *fieldstack,
+ HOST_WIDE_INT offset)
+{
+ tree field;
+ bool empty_p = true;
+
+ if (TREE_CODE (type) != RECORD_TYPE)
+ return false;
+
+ /* If the vector of fields is growing too big, bail out early.
+ Callers check for vec::length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
+ sure this fails. */
+ if (fieldstack->length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
+ return false;
+
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL)
+ {
+ bool push = false;
+ HOST_WIDE_INT foff = bitpos_of_field (field);
+
+ if (!var_can_have_subvars (field)
+ || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
+ || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
+ push = true;
+ else if (!push_fields_onto_fieldstack
+ (TREE_TYPE (field), fieldstack, offset + foff)
+ && (DECL_SIZE (field)
+ && !integer_zerop (DECL_SIZE (field))))
+ /* Empty structures may have actual size, like in C++. So
+ see if we didn't push any subfields and the size is
+ nonzero, push the field onto the stack. */
+ push = true;
+
+ if (push)
+ {
+ fieldoff_s *pair = NULL;
+ bool has_unknown_size = false;
+ bool must_have_pointers_p;
+
+ if (!fieldstack->is_empty ())
+ pair = &fieldstack->last ();
+
+ /* If there isn't anything at offset zero, create sth. */
+ if (!pair
+ && offset + foff != 0)
+ {
+ fieldoff_s e = {0, offset + foff, false, false, false, false};
+ pair = fieldstack->safe_push (e);
+ }
+
+ if (!DECL_SIZE (field)
+ || !tree_fits_uhwi_p (DECL_SIZE (field)))
+ has_unknown_size = true;
+
+ /* If adjacent fields do not contain pointers merge them. */
+ must_have_pointers_p = field_must_have_pointers (field);
+ if (pair
+ && !has_unknown_size
+ && !must_have_pointers_p
+ && !pair->must_have_pointers
+ && !pair->has_unknown_size
+ && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
+ {
+ pair->size += tree_to_uhwi (DECL_SIZE (field));
+ }
+ else
+ {
+ fieldoff_s e;
+ e.offset = offset + foff;
+ e.has_unknown_size = has_unknown_size;
+ if (!has_unknown_size)
+ e.size = tree_to_uhwi (DECL_SIZE (field));
+ else
+ e.size = -1;
+ e.must_have_pointers = must_have_pointers_p;
+ e.may_have_pointers = true;
+ e.only_restrict_pointers
+ = (!has_unknown_size
+ && POINTER_TYPE_P (TREE_TYPE (field))
+ && TYPE_RESTRICT (TREE_TYPE (field)));
+ fieldstack->safe_push (e);
+ }
+ }
+
+ empty_p = false;
+ }
+
+ return !empty_p;
+}
+
+/* Count the number of arguments DECL has, and set IS_VARARGS to true
+ if it is a varargs function. */
+
+static unsigned int
+count_num_arguments (tree decl, bool *is_varargs)
+{
+ unsigned int num = 0;
+ tree t;
+
+ /* Capture named arguments for K&R functions. They do not
+ have a prototype and thus no TYPE_ARG_TYPES. */
+ for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
+ ++num;
+
+ /* Check if the function has variadic arguments. */
+ for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
+ if (TREE_VALUE (t) == void_type_node)
+ break;
+ if (!t)
+ *is_varargs = true;
+
+ return num;
+}
+
+/* Creation function node for DECL, using NAME, and return the index
+ of the variable we've created for the function. */
+
+static varinfo_t
+create_function_info_for (tree decl, const char *name)
+{
+ struct function *fn = DECL_STRUCT_FUNCTION (decl);
+ varinfo_t vi, prev_vi;
+ tree arg;
+ unsigned int i;
+ bool is_varargs = false;
+ unsigned int num_args = count_num_arguments (decl, &is_varargs);
+
+ /* Create the variable info. */
+
+ vi = new_var_info (decl, name);
+ vi->offset = 0;
+ vi->size = 1;
+ vi->fullsize = fi_parm_base + num_args;
+ vi->is_fn_info = 1;
+ vi->may_have_pointers = false;
+ if (is_varargs)
+ vi->fullsize = ~0;
+ insert_vi_for_tree (vi->decl, vi);
+
+ prev_vi = vi;
+
+ /* Create a variable for things the function clobbers and one for
+ things the function uses. */
+ {
+ varinfo_t clobbervi, usevi;
+ const char *newname;
+ char *tempname;
+
+ asprintf (&tempname, "%s.clobber", name);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+
+ clobbervi = new_var_info (NULL, newname);
+ clobbervi->offset = fi_clobbers;
+ clobbervi->size = 1;
+ clobbervi->fullsize = vi->fullsize;
+ clobbervi->is_full_var = true;
+ clobbervi->is_global_var = false;
+ gcc_assert (prev_vi->offset < clobbervi->offset);
+ prev_vi->next = clobbervi->id;
+ prev_vi = clobbervi;
+
+ asprintf (&tempname, "%s.use", name);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+
+ usevi = new_var_info (NULL, newname);
+ usevi->offset = fi_uses;
+ usevi->size = 1;
+ usevi->fullsize = vi->fullsize;
+ usevi->is_full_var = true;
+ usevi->is_global_var = false;
+ gcc_assert (prev_vi->offset < usevi->offset);
+ prev_vi->next = usevi->id;
+ prev_vi = usevi;
+ }
+
+ /* And one for the static chain. */
+ if (fn->static_chain_decl != NULL_TREE)
+ {
+ varinfo_t chainvi;
+ const char *newname;
+ char *tempname;
+
+ asprintf (&tempname, "%s.chain", name);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+
+ chainvi = new_var_info (fn->static_chain_decl, newname);
+ chainvi->offset = fi_static_chain;
+ chainvi->size = 1;
+ chainvi->fullsize = vi->fullsize;
+ chainvi->is_full_var = true;
+ chainvi->is_global_var = false;
+ gcc_assert (prev_vi->offset < chainvi->offset);
+ prev_vi->next = chainvi->id;
+ prev_vi = chainvi;
+ insert_vi_for_tree (fn->static_chain_decl, chainvi);
+ }
+
+ /* Create a variable for the return var. */
+ if (DECL_RESULT (decl) != NULL
+ || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
+ {
+ varinfo_t resultvi;
+ const char *newname;
+ char *tempname;
+ tree resultdecl = decl;
+
+ if (DECL_RESULT (decl))
+ resultdecl = DECL_RESULT (decl);
+
+ asprintf (&tempname, "%s.result", name);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+
+ resultvi = new_var_info (resultdecl, newname);
+ resultvi->offset = fi_result;
+ resultvi->size = 1;
+ resultvi->fullsize = vi->fullsize;
+ resultvi->is_full_var = true;
+ if (DECL_RESULT (decl))
+ resultvi->may_have_pointers = true;
+ gcc_assert (prev_vi->offset < resultvi->offset);
+ prev_vi->next = resultvi->id;
+ prev_vi = resultvi;
+ if (DECL_RESULT (decl))
+ insert_vi_for_tree (DECL_RESULT (decl), resultvi);
+ }
+
+ /* Set up variables for each argument. */
+ arg = DECL_ARGUMENTS (decl);
+ for (i = 0; i < num_args; i++)
+ {
+ varinfo_t argvi;
+ const char *newname;
+ char *tempname;
+ tree argdecl = decl;
+
+ if (arg)
+ argdecl = arg;
+
+ asprintf (&tempname, "%s.arg%d", name, i);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+
+ argvi = new_var_info (argdecl, newname);
+ argvi->offset = fi_parm_base + i;
+ argvi->size = 1;
+ argvi->is_full_var = true;
+ argvi->fullsize = vi->fullsize;
+ if (arg)
+ argvi->may_have_pointers = true;
+ gcc_assert (prev_vi->offset < argvi->offset);
+ prev_vi->next = argvi->id;
+ prev_vi = argvi;
+ if (arg)
+ {
+ insert_vi_for_tree (arg, argvi);
+ arg = DECL_CHAIN (arg);
+ }
+ }
+
+ /* Add one representative for all further args. */
+ if (is_varargs)
+ {
+ varinfo_t argvi;
+ const char *newname;
+ char *tempname;
+ tree decl;
+
+ asprintf (&tempname, "%s.varargs", name);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+
+ /* We need sth that can be pointed to for va_start. */
+ decl = build_fake_var_decl (ptr_type_node);
+
+ argvi = new_var_info (decl, newname);
+ argvi->offset = fi_parm_base + num_args;
+ argvi->size = ~0;
+ argvi->is_full_var = true;
+ argvi->is_heap_var = true;
+ argvi->fullsize = vi->fullsize;
+ gcc_assert (prev_vi->offset < argvi->offset);
+ prev_vi->next = argvi->id;
+ prev_vi = argvi;
+ }
+
+ return vi;
+}
+
+
+/* Return true if FIELDSTACK contains fields that overlap.
+ FIELDSTACK is assumed to be sorted by offset. */
+
+static bool
+check_for_overlaps (vec<fieldoff_s> fieldstack)
+{
+ fieldoff_s *fo = NULL;
+ unsigned int i;
+ HOST_WIDE_INT lastoffset = -1;
+
+ FOR_EACH_VEC_ELT (fieldstack, i, fo)
+ {
+ if (fo->offset == lastoffset)
+ return true;
+ lastoffset = fo->offset;
+ }
+ return false;
+}
+
+/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
+ This will also create any varinfo structures necessary for fields
+ of DECL. */
+
+static varinfo_t
+create_variable_info_for_1 (tree decl, const char *name)
+{
+ varinfo_t vi, newvi;
+ tree decl_type = TREE_TYPE (decl);
+ tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
+ auto_vec<fieldoff_s> fieldstack;
+ fieldoff_s *fo;
+ unsigned int i;
+
+ if (!declsize
+ || !tree_fits_uhwi_p (declsize))
+ {
+ vi = new_var_info (decl, name);
+ vi->offset = 0;
+ vi->size = ~0;
+ vi->fullsize = ~0;
+ vi->is_unknown_size_var = true;
+ vi->is_full_var = true;
+ vi->may_have_pointers = true;
+ return vi;
+ }
+
+ /* Collect field information. */
+ if (use_field_sensitive
+ && var_can_have_subvars (decl)
+ /* ??? Force us to not use subfields for global initializers
+ in IPA mode. Else we'd have to parse arbitrary initializers. */
+ && !(in_ipa_mode
+ && is_global_var (decl)
+ && DECL_INITIAL (decl)))
+ {
+ fieldoff_s *fo = NULL;
+ bool notokay = false;
+ unsigned int i;
+
+ push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
+
+ for (i = 0; !notokay && fieldstack.iterate (i, &fo); i++)
+ if (fo->has_unknown_size
+ || fo->offset < 0)
+ {
+ notokay = true;
+ break;
+ }
+
+ /* We can't sort them if we have a field with a variable sized type,
+ which will make notokay = true. In that case, we are going to return
+ without creating varinfos for the fields anyway, so sorting them is a
+ waste to boot. */
+ if (!notokay)
+ {
+ sort_fieldstack (fieldstack);
+ /* Due to some C++ FE issues, like PR 22488, we might end up
+ what appear to be overlapping fields even though they,
+ in reality, do not overlap. Until the C++ FE is fixed,
+ we will simply disable field-sensitivity for these cases. */
+ notokay = check_for_overlaps (fieldstack);
+ }
+
+ if (notokay)
+ fieldstack.release ();
+ }
+
+ /* If we didn't end up collecting sub-variables create a full
+ variable for the decl. */
+ if (fieldstack.length () <= 1
+ || fieldstack.length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
+ {
+ vi = new_var_info (decl, name);
+ vi->offset = 0;
+ vi->may_have_pointers = true;
+ vi->fullsize = tree_to_uhwi (declsize);
+ vi->size = vi->fullsize;
+ vi->is_full_var = true;
+ fieldstack.release ();
+ return vi;
+ }
+
+ vi = new_var_info (decl, name);
+ vi->fullsize = tree_to_uhwi (declsize);
+ for (i = 0, newvi = vi;
+ fieldstack.iterate (i, &fo);
+ ++i, newvi = vi_next (newvi))
+ {
+ const char *newname = "NULL";
+ char *tempname;
+
+ if (dump_file)
+ {
+ asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
+ "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
+ newname = ggc_strdup (tempname);
+ free (tempname);
+ }
+ newvi->name = newname;
+ newvi->offset = fo->offset;
+ newvi->size = fo->size;
+ newvi->fullsize = vi->fullsize;
+ newvi->may_have_pointers = fo->may_have_pointers;
+ newvi->only_restrict_pointers = fo->only_restrict_pointers;
+ if (i + 1 < fieldstack.length ())
+ {
+ varinfo_t tem = new_var_info (decl, name);
+ newvi->next = tem->id;
+ tem->head = vi->id;
+ }
+ }
+
+ return vi;
+}
+
+static unsigned int
+create_variable_info_for (tree decl, const char *name)
+{
+ varinfo_t vi = create_variable_info_for_1 (decl, name);
+ unsigned int id = vi->id;
+
+ insert_vi_for_tree (decl, vi);
+
+ if (TREE_CODE (decl) != VAR_DECL)
+ return id;
+
+ /* Create initial constraints for globals. */
+ for (; vi; vi = vi_next (vi))
+ {
+ if (!vi->may_have_pointers
+ || !vi->is_global_var)
+ continue;
+
+ /* Mark global restrict qualified pointers. */
+ if ((POINTER_TYPE_P (TREE_TYPE (decl))
+ && TYPE_RESTRICT (TREE_TYPE (decl)))
+ || vi->only_restrict_pointers)
+ {
+ make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT");
+ continue;
+ }
+
+ /* In non-IPA mode the initializer from nonlocal is all we need. */
+ if (!in_ipa_mode
+ || DECL_HARD_REGISTER (decl))
+ make_copy_constraint (vi, nonlocal_id);
+
+ /* In IPA mode parse the initializer and generate proper constraints
+ for it. */
+ else
+ {
+ varpool_node *vnode = varpool_get_node (decl);
+
+ /* For escaped variables initialize them from nonlocal. */
+ if (!varpool_all_refs_explicit_p (vnode))
+ make_copy_constraint (vi, nonlocal_id);
+
+ /* If this is a global variable with an initializer and we are in
+ IPA mode generate constraints for it. */
+ if (DECL_INITIAL (decl)
+ && vnode->definition)
+ {
+ auto_vec<ce_s> rhsc;
+ struct constraint_expr lhs, *rhsp;
+ unsigned i;
+ get_constraint_for_rhs (DECL_INITIAL (decl), &rhsc);
+ lhs.var = vi->id;
+ lhs.offset = 0;
+ lhs.type = SCALAR;
+ FOR_EACH_VEC_ELT (rhsc, i, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ /* If this is a variable that escapes from the unit
+ the initializer escapes as well. */
+ if (!varpool_all_refs_explicit_p (vnode))
+ {
+ lhs.var = escaped_id;
+ lhs.offset = 0;
+ lhs.type = SCALAR;
+ FOR_EACH_VEC_ELT (rhsc, i, rhsp)
+ process_constraint (new_constraint (lhs, *rhsp));
+ }
+ }
+ }
+ }
+
+ return id;
+}
+
+/* Print out the points-to solution for VAR to FILE. */
+
+static void
+dump_solution_for_var (FILE *file, unsigned int var)
+{
+ varinfo_t vi = get_varinfo (var);
+ unsigned int i;
+ bitmap_iterator bi;
+
+ /* Dump the solution for unified vars anyway, this avoids difficulties
+ in scanning dumps in the testsuite. */
+ fprintf (file, "%s = { ", vi->name);
+ vi = get_varinfo (find (var));
+ EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
+ fprintf (file, "%s ", get_varinfo (i)->name);
+ fprintf (file, "}");
+
+ /* But note when the variable was unified. */
+ if (vi->id != var)
+ fprintf (file, " same as %s", vi->name);
+
+ fprintf (file, "\n");
+}
+
+/* Print the points-to solution for VAR to stdout. */
+
+DEBUG_FUNCTION void
+debug_solution_for_var (unsigned int var)
+{
+ dump_solution_for_var (stdout, var);
+}
+
+/* Create varinfo structures for all of the variables in the
+ function for intraprocedural mode. */
+
+static void
+intra_create_variable_infos (void)
+{
+ tree t;
+
+ /* For each incoming pointer argument arg, create the constraint ARG
+ = NONLOCAL or a dummy variable if it is a restrict qualified
+ passed-by-reference argument. */
+ for (t = DECL_ARGUMENTS (current_function_decl); t; t = DECL_CHAIN (t))
+ {
+ varinfo_t p = get_vi_for_tree (t);
+
+ /* For restrict qualified pointers to objects passed by
+ reference build a real representative for the pointed-to object.
+ Treat restrict qualified references the same. */
+ if (TYPE_RESTRICT (TREE_TYPE (t))
+ && ((DECL_BY_REFERENCE (t) && POINTER_TYPE_P (TREE_TYPE (t)))
+ || TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE)
+ && !type_contains_placeholder_p (TREE_TYPE (TREE_TYPE (t))))
+ {
+ struct constraint_expr lhsc, rhsc;
+ varinfo_t vi;
+ tree heapvar = build_fake_var_decl (TREE_TYPE (TREE_TYPE (t)));
+ DECL_EXTERNAL (heapvar) = 1;
+ vi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS");
+ insert_vi_for_tree (heapvar, vi);
+ lhsc.var = p->id;
+ lhsc.type = SCALAR;
+ lhsc.offset = 0;
+ rhsc.var = vi->id;
+ rhsc.type = ADDRESSOF;
+ rhsc.offset = 0;
+ process_constraint (new_constraint (lhsc, rhsc));
+ for (; vi; vi = vi_next (vi))
+ if (vi->may_have_pointers)
+ {
+ if (vi->only_restrict_pointers)
+ make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT");
+ else
+ make_copy_constraint (vi, nonlocal_id);
+ }
+ continue;
+ }
+
+ if (POINTER_TYPE_P (TREE_TYPE (t))
+ && TYPE_RESTRICT (TREE_TYPE (t)))
+ make_constraint_from_global_restrict (p, "PARM_RESTRICT");
+ else
+ {
+ for (; p; p = vi_next (p))
+ {
+ if (p->only_restrict_pointers)
+ make_constraint_from_global_restrict (p, "PARM_RESTRICT");
+ else if (p->may_have_pointers)
+ make_constraint_from (p, nonlocal_id);
+ }
+ }
+ }
+
+ /* Add a constraint for a result decl that is passed by reference. */
+ if (DECL_RESULT (cfun->decl)
+ && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
+ {
+ varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
+
+ for (p = result_vi; p; p = vi_next (p))
+ make_constraint_from (p, nonlocal_id);
+ }
+
+ /* Add a constraint for the incoming static chain parameter. */
+ if (cfun->static_chain_decl != NULL_TREE)
+ {
+ varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
+
+ for (p = chain_vi; p; p = vi_next (p))
+ make_constraint_from (p, nonlocal_id);
+ }
+}
+
+/* Structure used to put solution bitmaps in a hashtable so they can
+ be shared among variables with the same points-to set. */
+
+typedef struct shared_bitmap_info
+{
+ bitmap pt_vars;
+ hashval_t hashcode;
+} *shared_bitmap_info_t;
+typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
+
+/* Shared_bitmap hashtable helpers. */
+
+struct shared_bitmap_hasher : typed_free_remove <shared_bitmap_info>
+{
+ typedef shared_bitmap_info value_type;
+ typedef shared_bitmap_info compare_type;
+ static inline hashval_t hash (const value_type *);
+ static inline bool equal (const value_type *, const compare_type *);
+};
+
+/* Hash function for a shared_bitmap_info_t */
+
+inline hashval_t
+shared_bitmap_hasher::hash (const value_type *bi)
+{
+ return bi->hashcode;
+}
+
+/* Equality function for two shared_bitmap_info_t's. */
+
+inline bool
+shared_bitmap_hasher::equal (const value_type *sbi1, const compare_type *sbi2)
+{
+ return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
+}
+
+/* Shared_bitmap hashtable. */
+
+static hash_table <shared_bitmap_hasher> shared_bitmap_table;
+
+/* Lookup a bitmap in the shared bitmap hashtable, and return an already
+ existing instance if there is one, NULL otherwise. */
+
+static bitmap
+shared_bitmap_lookup (bitmap pt_vars)
+{
+ shared_bitmap_info **slot;
+ struct shared_bitmap_info sbi;
+
+ sbi.pt_vars = pt_vars;
+ sbi.hashcode = bitmap_hash (pt_vars);
+
+ slot = shared_bitmap_table.find_slot_with_hash (&sbi, sbi.hashcode,
+ NO_INSERT);
+ if (!slot)
+ return NULL;
+ else
+ return (*slot)->pt_vars;
+}
+
+
+/* Add a bitmap to the shared bitmap hashtable. */
+
+static void
+shared_bitmap_add (bitmap pt_vars)
+{
+ shared_bitmap_info **slot;
+ shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
+
+ sbi->pt_vars = pt_vars;
+ sbi->hashcode = bitmap_hash (pt_vars);
+
+ slot = shared_bitmap_table.find_slot_with_hash (sbi, sbi->hashcode, INSERT);
+ gcc_assert (!*slot);
+ *slot = sbi;
+}
+
+
+/* Set bits in INTO corresponding to the variable uids in solution set FROM. */
+
+static void
+set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
+{
+ unsigned int i;
+ bitmap_iterator bi;
+ varinfo_t escaped_vi = get_varinfo (find (escaped_id));
+ bool everything_escaped
+ = escaped_vi->solution && bitmap_bit_p (escaped_vi->solution, anything_id);
+
+ EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
+ {
+ varinfo_t vi = get_varinfo (i);
+
+ /* The only artificial variables that are allowed in a may-alias
+ set are heap variables. */
+ if (vi->is_artificial_var && !vi->is_heap_var)
+ continue;
+
+ if (everything_escaped
+ || (escaped_vi->solution
+ && bitmap_bit_p (escaped_vi->solution, i)))
+ {
+ pt->vars_contains_escaped = true;
+ pt->vars_contains_escaped_heap = vi->is_heap_var;
+ }
+
+ if (TREE_CODE (vi->decl) == VAR_DECL
+ || TREE_CODE (vi->decl) == PARM_DECL
+ || TREE_CODE (vi->decl) == RESULT_DECL)
+ {
+ /* If we are in IPA mode we will not recompute points-to
+ sets after inlining so make sure they stay valid. */
+ if (in_ipa_mode
+ && !DECL_PT_UID_SET_P (vi->decl))
+ SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
+
+ /* Add the decl to the points-to set. Note that the points-to
+ set contains global variables. */
+ bitmap_set_bit (into, DECL_PT_UID (vi->decl));
+ if (vi->is_global_var)
+ pt->vars_contains_nonlocal = true;
+ }
+ }
+}
+
+
+/* Compute the points-to solution *PT for the variable VI. */
+
+static struct pt_solution
+find_what_var_points_to (varinfo_t orig_vi)
+{
+ unsigned int i;
+ bitmap_iterator bi;
+ bitmap finished_solution;
+ bitmap result;
+ varinfo_t vi;
+ void **slot;
+ struct pt_solution *pt;
+
+ /* This variable may have been collapsed, let's get the real
+ variable. */
+ vi = get_varinfo (find (orig_vi->id));
+
+ /* See if we have already computed the solution and return it. */
+ slot = pointer_map_insert (final_solutions, vi);
+ if (*slot != NULL)
+ return *(struct pt_solution *)*slot;
+
+ *slot = pt = XOBNEW (&final_solutions_obstack, struct pt_solution);
+ memset (pt, 0, sizeof (struct pt_solution));
+
+ /* Translate artificial variables into SSA_NAME_PTR_INFO
+ attributes. */
+ EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
+ {
+ varinfo_t vi = get_varinfo (i);
+
+ if (vi->is_artificial_var)
+ {
+ if (vi->id == nothing_id)
+ pt->null = 1;
+ else if (vi->id == escaped_id)
+ {
+ if (in_ipa_mode)
+ pt->ipa_escaped = 1;
+ else
+ pt->escaped = 1;
+ }
+ else if (vi->id == nonlocal_id)
+ pt->nonlocal = 1;
+ else if (vi->is_heap_var)
+ /* We represent heapvars in the points-to set properly. */
+ ;
+ else if (vi->id == readonly_id)
+ /* Nobody cares. */
+ ;
+ else if (vi->id == anything_id
+ || vi->id == integer_id)
+ pt->anything = 1;
+ }
+ }
+
+ /* Instead of doing extra work, simply do not create
+ elaborate points-to information for pt_anything pointers. */
+ if (pt->anything)
+ return *pt;
+
+ /* Share the final set of variables when possible. */
+ finished_solution = BITMAP_GGC_ALLOC ();
+ stats.points_to_sets_created++;
+
+ set_uids_in_ptset (finished_solution, vi->solution, pt);
+ result = shared_bitmap_lookup (finished_solution);
+ if (!result)
+ {
+ shared_bitmap_add (finished_solution);
+ pt->vars = finished_solution;
+ }
+ else
+ {
+ pt->vars = result;
+ bitmap_clear (finished_solution);
+ }
+
+ return *pt;
+}
+
+/* Given a pointer variable P, fill in its points-to set. */
+
+static void
+find_what_p_points_to (tree p)
+{
+ struct ptr_info_def *pi;
+ tree lookup_p = p;
+ varinfo_t vi;
+
+ /* For parameters, get at the points-to set for the actual parm
+ decl. */
+ if (TREE_CODE (p) == SSA_NAME
+ && SSA_NAME_IS_DEFAULT_DEF (p)
+ && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
+ || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL))
+ lookup_p = SSA_NAME_VAR (p);
+
+ vi = lookup_vi_for_tree (lookup_p);
+ if (!vi)
+ return;
+
+ pi = get_ptr_info (p);
+ pi->pt = find_what_var_points_to (vi);
+}
+
+
+/* Query statistics for points-to solutions. */
+
+static struct {
+ unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
+ unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
+ unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
+ unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
+} pta_stats;
+
+void
+dump_pta_stats (FILE *s)
+{
+ fprintf (s, "\nPTA query stats:\n");
+ fprintf (s, " pt_solution_includes: "
+ HOST_WIDE_INT_PRINT_DEC" disambiguations, "
+ HOST_WIDE_INT_PRINT_DEC" queries\n",
+ pta_stats.pt_solution_includes_no_alias,
+ pta_stats.pt_solution_includes_no_alias
+ + pta_stats.pt_solution_includes_may_alias);
+ fprintf (s, " pt_solutions_intersect: "
+ HOST_WIDE_INT_PRINT_DEC" disambiguations, "
+ HOST_WIDE_INT_PRINT_DEC" queries\n",
+ pta_stats.pt_solutions_intersect_no_alias,
+ pta_stats.pt_solutions_intersect_no_alias
+ + pta_stats.pt_solutions_intersect_may_alias);
+}
+
+
+/* Reset the points-to solution *PT to a conservative default
+ (point to anything). */
+
+void
+pt_solution_reset (struct pt_solution *pt)
+{
+ memset (pt, 0, sizeof (struct pt_solution));
+ pt->anything = true;
+}
+
+/* Set the points-to solution *PT to point only to the variables
+ in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
+ global variables and VARS_CONTAINS_RESTRICT specifies whether
+ it contains restrict tag variables. */
+
+void
+pt_solution_set (struct pt_solution *pt, bitmap vars,
+ bool vars_contains_nonlocal)
+{
+ memset (pt, 0, sizeof (struct pt_solution));
+ pt->vars = vars;
+ pt->vars_contains_nonlocal = vars_contains_nonlocal;
+ pt->vars_contains_escaped
+ = (cfun->gimple_df->escaped.anything
+ || bitmap_intersect_p (cfun->gimple_df->escaped.vars, vars));
+}
+
+/* Set the points-to solution *PT to point only to the variable VAR. */
+
+void
+pt_solution_set_var (struct pt_solution *pt, tree var)
+{
+ memset (pt, 0, sizeof (struct pt_solution));
+ pt->vars = BITMAP_GGC_ALLOC ();
+ bitmap_set_bit (pt->vars, DECL_PT_UID (var));
+ pt->vars_contains_nonlocal = is_global_var (var);
+ pt->vars_contains_escaped
+ = (cfun->gimple_df->escaped.anything
+ || bitmap_bit_p (cfun->gimple_df->escaped.vars, DECL_PT_UID (var)));
+}
+
+/* Computes the union of the points-to solutions *DEST and *SRC and
+ stores the result in *DEST. This changes the points-to bitmap
+ of *DEST and thus may not be used if that might be shared.
+ The points-to bitmap of *SRC and *DEST will not be shared after
+ this function if they were not before. */
+
+static void
+pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
+{
+ dest->anything |= src->anything;
+ if (dest->anything)
+ {
+ pt_solution_reset (dest);
+ return;
+ }
+
+ dest->nonlocal |= src->nonlocal;
+ dest->escaped |= src->escaped;
+ dest->ipa_escaped |= src->ipa_escaped;
+ dest->null |= src->null;
+ dest->vars_contains_nonlocal |= src->vars_contains_nonlocal;
+ dest->vars_contains_escaped |= src->vars_contains_escaped;
+ dest->vars_contains_escaped_heap |= src->vars_contains_escaped_heap;
+ if (!src->vars)
+ return;
+
+ if (!dest->vars)
+ dest->vars = BITMAP_GGC_ALLOC ();
+ bitmap_ior_into (dest->vars, src->vars);
+}
+
+/* Return true if the points-to solution *PT is empty. */
+
+bool
+pt_solution_empty_p (struct pt_solution *pt)
+{
+ if (pt->anything
+ || pt->nonlocal)
+ return false;
+
+ if (pt->vars
+ && !bitmap_empty_p (pt->vars))
+ return false;
+
+ /* If the solution includes ESCAPED, check if that is empty. */
+ if (pt->escaped
+ && !pt_solution_empty_p (&cfun->gimple_df->escaped))
+ return false;
+
+ /* If the solution includes ESCAPED, check if that is empty. */
+ if (pt->ipa_escaped
+ && !pt_solution_empty_p (&ipa_escaped_pt))
+ return false;
+
+ return true;
+}
+
+/* Return true if the points-to solution *PT only point to a single var, and
+ return the var uid in *UID. */
+
+bool
+pt_solution_singleton_p (struct pt_solution *pt, unsigned *uid)
+{
+ if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped
+ || pt->null || pt->vars == NULL
+ || !bitmap_single_bit_set_p (pt->vars))
+ return false;
+
+ *uid = bitmap_first_set_bit (pt->vars);
+ return true;
+}
+
+/* Return true if the points-to solution *PT includes global memory. */
+
+bool
+pt_solution_includes_global (struct pt_solution *pt)
+{
+ if (pt->anything
+ || pt->nonlocal
+ || pt->vars_contains_nonlocal
+ /* The following is a hack to make the malloc escape hack work.
+ In reality we'd need different sets for escaped-through-return
+ and escaped-to-callees and passes would need to be updated. */
+ || pt->vars_contains_escaped_heap)
+ return true;
+
+ /* 'escaped' is also a placeholder so we have to look into it. */
+ if (pt->escaped)
+ return pt_solution_includes_global (&cfun->gimple_df->escaped);
+
+ if (pt->ipa_escaped)
+ return pt_solution_includes_global (&ipa_escaped_pt);
+
+ /* ??? This predicate is not correct for the IPA-PTA solution
+ as we do not properly distinguish between unit escape points
+ and global variables. */
+ if (cfun->gimple_df->ipa_pta)
+ return true;
+
+ return false;
+}
+
+/* Return true if the points-to solution *PT includes the variable
+ declaration DECL. */
+
+static bool
+pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
+{
+ if (pt->anything)
+ return true;
+
+ if (pt->nonlocal
+ && is_global_var (decl))
+ return true;
+
+ if (pt->vars
+ && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
+ return true;
+
+ /* If the solution includes ESCAPED, check it. */
+ if (pt->escaped
+ && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
+ return true;
+
+ /* If the solution includes ESCAPED, check it. */
+ if (pt->ipa_escaped
+ && pt_solution_includes_1 (&ipa_escaped_pt, decl))
+ return true;
+
+ return false;
+}
+
+bool
+pt_solution_includes (struct pt_solution *pt, const_tree decl)
+{
+ bool res = pt_solution_includes_1 (pt, decl);
+ if (res)
+ ++pta_stats.pt_solution_includes_may_alias;
+ else
+ ++pta_stats.pt_solution_includes_no_alias;
+ return res;
+}
+
+/* Return true if both points-to solutions PT1 and PT2 have a non-empty
+ intersection. */
+
+static bool
+pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
+{
+ if (pt1->anything || pt2->anything)
+ return true;
+
+ /* If either points to unknown global memory and the other points to
+ any global memory they alias. */
+ if ((pt1->nonlocal
+ && (pt2->nonlocal
+ || pt2->vars_contains_nonlocal))
+ || (pt2->nonlocal
+ && pt1->vars_contains_nonlocal))
+ return true;
+
+ /* If either points to all escaped memory and the other points to
+ any escaped memory they alias. */
+ if ((pt1->escaped
+ && (pt2->escaped
+ || pt2->vars_contains_escaped))
+ || (pt2->escaped
+ && pt1->vars_contains_escaped))
+ return true;
+
+ /* Check the escaped solution if required.
+ ??? Do we need to check the local against the IPA escaped sets? */
+ if ((pt1->ipa_escaped || pt2->ipa_escaped)
+ && !pt_solution_empty_p (&ipa_escaped_pt))
+ {
+ /* If both point to escaped memory and that solution
+ is not empty they alias. */
+ if (pt1->ipa_escaped && pt2->ipa_escaped)
+ return true;
+
+ /* If either points to escaped memory see if the escaped solution
+ intersects with the other. */
+ if ((pt1->ipa_escaped
+ && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
+ || (pt2->ipa_escaped
+ && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
+ return true;
+ }
+
+ /* Now both pointers alias if their points-to solution intersects. */
+ return (pt1->vars
+ && pt2->vars
+ && bitmap_intersect_p (pt1->vars, pt2->vars));
+}
+
+bool
+pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
+{
+ bool res = pt_solutions_intersect_1 (pt1, pt2);
+ if (res)
+ ++pta_stats.pt_solutions_intersect_may_alias;
+ else
+ ++pta_stats.pt_solutions_intersect_no_alias;
+ return res;
+}
+
+
+/* Dump points-to information to OUTFILE. */
+
+static void
+dump_sa_points_to_info (FILE *outfile)
+{
+ unsigned int i;
+
+ fprintf (outfile, "\nPoints-to sets\n\n");
+
+ if (dump_flags & TDF_STATS)
+ {
+ fprintf (outfile, "Stats:\n");
+ fprintf (outfile, "Total vars: %d\n", stats.total_vars);
+ fprintf (outfile, "Non-pointer vars: %d\n",
+ stats.nonpointer_vars);
+ fprintf (outfile, "Statically unified vars: %d\n",
+ stats.unified_vars_static);
+ fprintf (outfile, "Dynamically unified vars: %d\n",
+ stats.unified_vars_dynamic);
+ fprintf (outfile, "Iterations: %d\n", stats.iterations);
+ fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
+ fprintf (outfile, "Number of implicit edges: %d\n",
+ stats.num_implicit_edges);
+ }
+
+ for (i = 1; i < varmap.length (); i++)
+ {
+ varinfo_t vi = get_varinfo (i);
+ if (!vi->may_have_pointers)
+ continue;
+ dump_solution_for_var (outfile, i);
+ }
+}
+
+
+/* Debug points-to information to stderr. */
+
+DEBUG_FUNCTION void
+debug_sa_points_to_info (void)
+{
+ dump_sa_points_to_info (stderr);
+}
+
+
+/* Initialize the always-existing constraint variables for NULL
+ ANYTHING, READONLY, and INTEGER */
+
+static void
+init_base_vars (void)
+{
+ struct constraint_expr lhs, rhs;
+ varinfo_t var_anything;
+ varinfo_t var_nothing;
+ varinfo_t var_readonly;
+ varinfo_t var_escaped;
+ varinfo_t var_nonlocal;
+ varinfo_t var_storedanything;
+ varinfo_t var_integer;
+
+ /* Variable ID zero is reserved and should be NULL. */
+ varmap.safe_push (NULL);
+
+ /* Create the NULL variable, used to represent that a variable points
+ to NULL. */
+ var_nothing = new_var_info (NULL_TREE, "NULL");
+ gcc_assert (var_nothing->id == nothing_id);
+ var_nothing->is_artificial_var = 1;
+ var_nothing->offset = 0;
+ var_nothing->size = ~0;
+ var_nothing->fullsize = ~0;
+ var_nothing->is_special_var = 1;
+ var_nothing->may_have_pointers = 0;
+ var_nothing->is_global_var = 0;
+
+ /* Create the ANYTHING variable, used to represent that a variable
+ points to some unknown piece of memory. */
+ var_anything = new_var_info (NULL_TREE, "ANYTHING");
+ gcc_assert (var_anything->id == anything_id);
+ var_anything->is_artificial_var = 1;
+ var_anything->size = ~0;
+ var_anything->offset = 0;
+ var_anything->fullsize = ~0;
+ var_anything->is_special_var = 1;
+
+ /* Anything points to anything. This makes deref constraints just
+ work in the presence of linked list and other p = *p type loops,
+ by saying that *ANYTHING = ANYTHING. */
+ lhs.type = SCALAR;
+ lhs.var = anything_id;
+ lhs.offset = 0;
+ rhs.type = ADDRESSOF;
+ rhs.var = anything_id;
+ rhs.offset = 0;
+
+ /* This specifically does not use process_constraint because
+ process_constraint ignores all anything = anything constraints, since all
+ but this one are redundant. */
+ constraints.safe_push (new_constraint (lhs, rhs));
+
+ /* Create the READONLY variable, used to represent that a variable
+ points to readonly memory. */
+ var_readonly = new_var_info (NULL_TREE, "READONLY");
+ gcc_assert (var_readonly->id == readonly_id);
+ var_readonly->is_artificial_var = 1;
+ var_readonly->offset = 0;
+ var_readonly->size = ~0;
+ var_readonly->fullsize = ~0;
+ var_readonly->is_special_var = 1;
+
+ /* readonly memory points to anything, in order to make deref
+ easier. In reality, it points to anything the particular
+ readonly variable can point to, but we don't track this
+ separately. */
+ lhs.type = SCALAR;
+ lhs.var = readonly_id;
+ lhs.offset = 0;
+ rhs.type = ADDRESSOF;
+ rhs.var = readonly_id; /* FIXME */
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+
+ /* Create the ESCAPED variable, used to represent the set of escaped
+ memory. */
+ var_escaped = new_var_info (NULL_TREE, "ESCAPED");
+ gcc_assert (var_escaped->id == escaped_id);
+ var_escaped->is_artificial_var = 1;
+ var_escaped->offset = 0;
+ var_escaped->size = ~0;
+ var_escaped->fullsize = ~0;
+ var_escaped->is_special_var = 0;
+
+ /* Create the NONLOCAL variable, used to represent the set of nonlocal
+ memory. */
+ var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
+ gcc_assert (var_nonlocal->id == nonlocal_id);
+ var_nonlocal->is_artificial_var = 1;
+ var_nonlocal->offset = 0;
+ var_nonlocal->size = ~0;
+ var_nonlocal->fullsize = ~0;
+ var_nonlocal->is_special_var = 1;
+
+ /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
+ lhs.type = SCALAR;
+ lhs.var = escaped_id;
+ lhs.offset = 0;
+ rhs.type = DEREF;
+ rhs.var = escaped_id;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+
+ /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
+ whole variable escapes. */
+ lhs.type = SCALAR;
+ lhs.var = escaped_id;
+ lhs.offset = 0;
+ rhs.type = SCALAR;
+ rhs.var = escaped_id;
+ rhs.offset = UNKNOWN_OFFSET;
+ process_constraint (new_constraint (lhs, rhs));
+
+ /* *ESCAPED = NONLOCAL. This is true because we have to assume
+ everything pointed to by escaped points to what global memory can
+ point to. */
+ lhs.type = DEREF;
+ lhs.var = escaped_id;
+ lhs.offset = 0;
+ rhs.type = SCALAR;
+ rhs.var = nonlocal_id;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+
+ /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
+ global memory may point to global memory and escaped memory. */
+ lhs.type = SCALAR;
+ lhs.var = nonlocal_id;
+ lhs.offset = 0;
+ rhs.type = ADDRESSOF;
+ rhs.var = nonlocal_id;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+ rhs.type = ADDRESSOF;
+ rhs.var = escaped_id;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+
+ /* Create the STOREDANYTHING variable, used to represent the set of
+ variables stored to *ANYTHING. */
+ var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
+ gcc_assert (var_storedanything->id == storedanything_id);
+ var_storedanything->is_artificial_var = 1;
+ var_storedanything->offset = 0;
+ var_storedanything->size = ~0;
+ var_storedanything->fullsize = ~0;
+ var_storedanything->is_special_var = 0;
+
+ /* Create the INTEGER variable, used to represent that a variable points
+ to what an INTEGER "points to". */
+ var_integer = new_var_info (NULL_TREE, "INTEGER");
+ gcc_assert (var_integer->id == integer_id);
+ var_integer->is_artificial_var = 1;
+ var_integer->size = ~0;
+ var_integer->fullsize = ~0;
+ var_integer->offset = 0;
+ var_integer->is_special_var = 1;
+
+ /* INTEGER = ANYTHING, because we don't know where a dereference of
+ a random integer will point to. */
+ lhs.type = SCALAR;
+ lhs.var = integer_id;
+ lhs.offset = 0;
+ rhs.type = ADDRESSOF;
+ rhs.var = anything_id;
+ rhs.offset = 0;
+ process_constraint (new_constraint (lhs, rhs));
+}
+
+/* Initialize things necessary to perform PTA */
+
+static void
+init_alias_vars (void)
+{
+ use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
+
+ bitmap_obstack_initialize (&pta_obstack);
+ bitmap_obstack_initialize (&oldpta_obstack);
+ bitmap_obstack_initialize (&predbitmap_obstack);
+
+ constraint_pool = create_alloc_pool ("Constraint pool",
+ sizeof (struct constraint), 30);
+ variable_info_pool = create_alloc_pool ("Variable info pool",
+ sizeof (struct variable_info), 30);
+ constraints.create (8);
+ varmap.create (8);
+ vi_for_tree = pointer_map_create ();
+ call_stmt_vars = pointer_map_create ();
+
+ memset (&stats, 0, sizeof (stats));
+ shared_bitmap_table.create (511);
+ init_base_vars ();
+
+ gcc_obstack_init (&fake_var_decl_obstack);
+
+ final_solutions = pointer_map_create ();
+ gcc_obstack_init (&final_solutions_obstack);
+}
+
+/* Remove the REF and ADDRESS edges from GRAPH, as well as all the
+ predecessor edges. */
+
+static void
+remove_preds_and_fake_succs (constraint_graph_t graph)
+{
+ unsigned int i;
+
+ /* Clear the implicit ref and address nodes from the successor
+ lists. */
+ for (i = 1; i < FIRST_REF_NODE; i++)
+ {
+ if (graph->succs[i])
+ bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
+ FIRST_REF_NODE * 2);
+ }
+
+ /* Free the successor list for the non-ref nodes. */
+ for (i = FIRST_REF_NODE + 1; i < graph->size; i++)
+ {
+ if (graph->succs[i])
+ BITMAP_FREE (graph->succs[i]);
+ }
+
+ /* Now reallocate the size of the successor list as, and blow away
+ the predecessor bitmaps. */
+ graph->size = varmap.length ();
+ graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
+
+ free (graph->implicit_preds);
+ graph->implicit_preds = NULL;
+ free (graph->preds);
+ graph->preds = NULL;
+ bitmap_obstack_release (&predbitmap_obstack);
+}
+
+/* Solve the constraint set. */
+
+static void
+solve_constraints (void)
+{
+ struct scc_info *si;
+
+ if (dump_file)
+ fprintf (dump_file,
+ "\nCollapsing static cycles and doing variable "
+ "substitution\n");
+
+ init_graph (varmap.length () * 2);
+
+ if (dump_file)
+ fprintf (dump_file, "Building predecessor graph\n");
+ build_pred_graph ();
+
+ if (dump_file)
+ fprintf (dump_file, "Detecting pointer and location "
+ "equivalences\n");
+ si = perform_var_substitution (graph);
+
+ if (dump_file)
+ fprintf (dump_file, "Rewriting constraints and unifying "
+ "variables\n");
+ rewrite_constraints (graph, si);
+
+ build_succ_graph ();
+
+ free_var_substitution_info (si);
+
+ /* Attach complex constraints to graph nodes. */
+ move_complex_constraints (graph);
+
+ if (dump_file)
+ fprintf (dump_file, "Uniting pointer but not location equivalent "
+ "variables\n");
+ unite_pointer_equivalences (graph);
+
+ if (dump_file)
+ fprintf (dump_file, "Finding indirect cycles\n");
+ find_indirect_cycles (graph);
+
+ /* Implicit nodes and predecessors are no longer necessary at this
+ point. */
+ remove_preds_and_fake_succs (graph);
+
+ if (dump_file && (dump_flags & TDF_GRAPH))
+ {
+ fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
+ "in dot format:\n");
+ dump_constraint_graph (dump_file);
+ fprintf (dump_file, "\n\n");
+ }
+
+ if (dump_file)
+ fprintf (dump_file, "Solving graph\n");
+
+ solve_graph (graph);
+
+ if (dump_file && (dump_flags & TDF_GRAPH))
+ {
+ fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
+ "in dot format:\n");
+ dump_constraint_graph (dump_file);
+ fprintf (dump_file, "\n\n");
+ }
+
+ if (dump_file)
+ dump_sa_points_to_info (dump_file);
+}
+
+/* Create points-to sets for the current function. See the comments
+ at the start of the file for an algorithmic overview. */
+
+static void
+compute_points_to_sets (void)
+{
+ basic_block bb;
+ unsigned i;
+ varinfo_t vi;
+
+ timevar_push (TV_TREE_PTA);
+
+ init_alias_vars ();
+
+ intra_create_variable_infos ();
+
+ /* Now walk all statements and build the constraint set. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+
+ if (! virtual_operand_p (gimple_phi_result (phi)))
+ find_func_aliases (phi);
+ }
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+
+ find_func_aliases (stmt);
+ }
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
+ dump_constraints (dump_file, 0);
+ }
+
+ /* From the constraints compute the points-to sets. */
+ solve_constraints ();
+
+ /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
+ cfun->gimple_df->escaped = find_what_var_points_to (get_varinfo (escaped_id));
+
+ /* Make sure the ESCAPED solution (which is used as placeholder in
+ other solutions) does not reference itself. This simplifies
+ points-to solution queries. */
+ cfun->gimple_df->escaped.escaped = 0;
+
+ /* Compute the points-to sets for pointer SSA_NAMEs. */
+ for (i = 0; i < num_ssa_names; ++i)
+ {
+ tree ptr = ssa_name (i);
+ if (ptr
+ && POINTER_TYPE_P (TREE_TYPE (ptr)))
+ find_what_p_points_to (ptr);
+ }
+
+ /* Compute the call-used/clobbered sets. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ struct pt_solution *pt;
+ if (!is_gimple_call (stmt))
+ continue;
+
+ pt = gimple_call_use_set (stmt);
+ if (gimple_call_flags (stmt) & ECF_CONST)
+ memset (pt, 0, sizeof (struct pt_solution));
+ else if ((vi = lookup_call_use_vi (stmt)) != NULL)
+ {
+ *pt = find_what_var_points_to (vi);
+ /* Escaped (and thus nonlocal) variables are always
+ implicitly used by calls. */
+ /* ??? ESCAPED can be empty even though NONLOCAL
+ always escaped. */
+ pt->nonlocal = 1;
+ pt->escaped = 1;
+ }
+ else
+ {
+ /* If there is nothing special about this call then
+ we have made everything that is used also escape. */
+ *pt = cfun->gimple_df->escaped;
+ pt->nonlocal = 1;
+ }
+
+ pt = gimple_call_clobber_set (stmt);
+ if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
+ memset (pt, 0, sizeof (struct pt_solution));
+ else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
+ {
+ *pt = find_what_var_points_to (vi);
+ /* Escaped (and thus nonlocal) variables are always
+ implicitly clobbered by calls. */
+ /* ??? ESCAPED can be empty even though NONLOCAL
+ always escaped. */
+ pt->nonlocal = 1;
+ pt->escaped = 1;
+ }
+ else
+ {
+ /* If there is nothing special about this call then
+ we have made everything that is used also escape. */
+ *pt = cfun->gimple_df->escaped;
+ pt->nonlocal = 1;
+ }
+ }
+ }
+
+ timevar_pop (TV_TREE_PTA);
+}
+
+
+/* Delete created points-to sets. */
+
+static void
+delete_points_to_sets (void)
+{
+ unsigned int i;
+
+ shared_bitmap_table.dispose ();
+ if (dump_file && (dump_flags & TDF_STATS))
+ fprintf (dump_file, "Points to sets created:%d\n",
+ stats.points_to_sets_created);
+
+ pointer_map_destroy (vi_for_tree);
+ pointer_map_destroy (call_stmt_vars);
+ bitmap_obstack_release (&pta_obstack);
+ constraints.release ();
+
+ for (i = 0; i < graph->size; i++)
+ graph->complex[i].release ();
+ free (graph->complex);
+
+ free (graph->rep);
+ free (graph->succs);
+ free (graph->pe);
+ free (graph->pe_rep);
+ free (graph->indirect_cycles);
+ free (graph);
+
+ varmap.release ();
+ free_alloc_pool (variable_info_pool);
+ free_alloc_pool (constraint_pool);
+
+ obstack_free (&fake_var_decl_obstack, NULL);
+
+ pointer_map_destroy (final_solutions);
+ obstack_free (&final_solutions_obstack, NULL);
+}
+
+
+/* Compute points-to information for every SSA_NAME pointer in the
+ current function and compute the transitive closure of escaped
+ variables to re-initialize the call-clobber states of local variables. */
+
+unsigned int
+compute_may_aliases (void)
+{
+ if (cfun->gimple_df->ipa_pta)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nNot re-computing points-to information "
+ "because IPA points-to information is available.\n\n");
+
+ /* But still dump what we have remaining it. */
+ dump_alias_info (dump_file);
+ }
+
+ return 0;
+ }
+
+ /* For each pointer P_i, determine the sets of variables that P_i may
+ point-to. Compute the reachability set of escaped and call-used
+ variables. */
+ compute_points_to_sets ();
+
+ /* Debugging dumps. */
+ if (dump_file)
+ dump_alias_info (dump_file);
+
+ /* Deallocate memory used by aliasing data structures and the internal
+ points-to solution. */
+ delete_points_to_sets ();
+
+ gcc_assert (!need_ssa_update_p (cfun));
+
+ return 0;
+}
+
+static bool
+gate_tree_pta (void)
+{
+ return flag_tree_pta;
+}
+
+/* A dummy pass to cause points-to information to be computed via
+ TODO_rebuild_alias. */
+
+namespace {
+
+const pass_data pass_data_build_alias =
+{
+ GIMPLE_PASS, /* type */
+ "alias", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ false, /* has_execute */
+ TV_NONE, /* tv_id */
+ ( PROP_cfg | PROP_ssa ), /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_rebuild_alias, /* todo_flags_finish */
+};
+
+class pass_build_alias : public gimple_opt_pass
+{
+public:
+ pass_build_alias (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_build_alias, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_tree_pta (); }
+
+}; // class pass_build_alias
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_build_alias (gcc::context *ctxt)
+{
+ return new pass_build_alias (ctxt);
+}
+
+/* A dummy pass to cause points-to information to be computed via
+ TODO_rebuild_alias. */
+
+namespace {
+
+const pass_data pass_data_build_ealias =
+{
+ GIMPLE_PASS, /* type */
+ "ealias", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ false, /* has_execute */
+ TV_NONE, /* tv_id */
+ ( PROP_cfg | PROP_ssa ), /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_rebuild_alias, /* todo_flags_finish */
+};
+
+class pass_build_ealias : public gimple_opt_pass
+{
+public:
+ pass_build_ealias (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_build_ealias, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_tree_pta (); }
+
+}; // class pass_build_ealias
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_build_ealias (gcc::context *ctxt)
+{
+ return new pass_build_ealias (ctxt);
+}
+
+
+/* Return true if we should execute IPA PTA. */
+static bool
+gate_ipa_pta (void)
+{
+ return (optimize
+ && flag_ipa_pta
+ /* Don't bother doing anything if the program has errors. */
+ && !seen_error ());
+}
+
+/* IPA PTA solutions for ESCAPED. */
+struct pt_solution ipa_escaped_pt
+ = { true, false, false, false, false, false, false, false, NULL };
+
+/* Associate node with varinfo DATA. Worker for
+ cgraph_for_node_and_aliases. */
+static bool
+associate_varinfo_to_alias (struct cgraph_node *node, void *data)
+{
+ if ((node->alias || node->thunk.thunk_p)
+ && node->analyzed)
+ insert_vi_for_tree (node->decl, (varinfo_t)data);
+ return false;
+}
+
+/* Execute the driver for IPA PTA. */
+static unsigned int
+ipa_pta_execute (void)
+{
+ struct cgraph_node *node;
+ varpool_node *var;
+ int from;
+
+ in_ipa_mode = 1;
+
+ init_alias_vars ();
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ dump_symtab (dump_file);
+ fprintf (dump_file, "\n");
+ }
+
+ /* Build the constraints. */
+ FOR_EACH_DEFINED_FUNCTION (node)
+ {
+ varinfo_t vi;
+ /* Nodes without a body are not interesting. Especially do not
+ visit clones at this point for now - we get duplicate decls
+ there for inline clones at least. */
+ if (!cgraph_function_with_gimple_body_p (node) || node->clone_of)
+ continue;
+ cgraph_get_body (node);
+
+ gcc_assert (!node->clone_of);
+
+ vi = create_function_info_for (node->decl,
+ alias_get_name (node->decl));
+ cgraph_for_node_and_aliases (node, associate_varinfo_to_alias, vi, true);
+ }
+
+ /* Create constraints for global variables and their initializers. */
+ FOR_EACH_VARIABLE (var)
+ {
+ if (var->alias && var->analyzed)
+ continue;
+
+ get_vi_for_tree (var->decl);
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file,
+ "Generating constraints for global initializers\n\n");
+ dump_constraints (dump_file, 0);
+ fprintf (dump_file, "\n");
+ }
+ from = constraints.length ();
+
+ FOR_EACH_DEFINED_FUNCTION (node)
+ {
+ struct function *func;
+ basic_block bb;
+
+ /* Nodes without a body are not interesting. */
+ if (!cgraph_function_with_gimple_body_p (node) || node->clone_of)
+ continue;
+
+ if (dump_file)
+ {
+ fprintf (dump_file,
+ "Generating constraints for %s", node->name ());
+ if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
+ fprintf (dump_file, " (%s)",
+ IDENTIFIER_POINTER
+ (DECL_ASSEMBLER_NAME (node->decl)));
+ fprintf (dump_file, "\n");
+ }
+
+ func = DECL_STRUCT_FUNCTION (node->decl);
+ push_cfun (func);
+
+ /* For externally visible or attribute used annotated functions use
+ local constraints for their arguments.
+ For local functions we see all callers and thus do not need initial
+ constraints for parameters. */
+ if (node->used_from_other_partition
+ || node->externally_visible
+ || node->force_output)
+ {
+ intra_create_variable_infos ();
+
+ /* We also need to make function return values escape. Nothing
+ escapes by returning from main though. */
+ if (!MAIN_NAME_P (DECL_NAME (node->decl)))
+ {
+ varinfo_t fi, rvi;
+ fi = lookup_vi_for_tree (node->decl);
+ rvi = first_vi_for_offset (fi, fi_result);
+ if (rvi && rvi->offset == fi_result)
+ {
+ struct constraint_expr includes;
+ struct constraint_expr var;
+ includes.var = escaped_id;
+ includes.offset = 0;
+ includes.type = SCALAR;
+ var.var = rvi->id;
+ var.offset = 0;
+ var.type = SCALAR;
+ process_constraint (new_constraint (includes, var));
+ }
+ }
+ }
+
+ /* Build constriants for the function body. */
+ FOR_EACH_BB_FN (bb, func)
+ {
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+
+ if (! virtual_operand_p (gimple_phi_result (phi)))
+ find_func_aliases (phi);
+ }
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+
+ find_func_aliases (stmt);
+ find_func_clobbers (stmt);
+ }
+ }
+
+ pop_cfun ();
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n");
+ dump_constraints (dump_file, from);
+ fprintf (dump_file, "\n");
+ }
+ from = constraints.length ();
+ }
+
+ /* From the constraints compute the points-to sets. */
+ solve_constraints ();
+
+ /* Compute the global points-to sets for ESCAPED.
+ ??? Note that the computed escape set is not correct
+ for the whole unit as we fail to consider graph edges to
+ externally visible functions. */
+ ipa_escaped_pt = find_what_var_points_to (get_varinfo (escaped_id));
+
+ /* Make sure the ESCAPED solution (which is used as placeholder in
+ other solutions) does not reference itself. This simplifies
+ points-to solution queries. */
+ ipa_escaped_pt.ipa_escaped = 0;
+
+ /* Assign the points-to sets to the SSA names in the unit. */
+ FOR_EACH_DEFINED_FUNCTION (node)
+ {
+ tree ptr;
+ struct function *fn;
+ unsigned i;
+ varinfo_t fi;
+ basic_block bb;
+ struct pt_solution uses, clobbers;
+ struct cgraph_edge *e;
+
+ /* Nodes without a body are not interesting. */
+ if (!cgraph_function_with_gimple_body_p (node) || node->clone_of)
+ continue;
+
+ fn = DECL_STRUCT_FUNCTION (node->decl);
+
+ /* Compute the points-to sets for pointer SSA_NAMEs. */
+ FOR_EACH_VEC_ELT (*fn->gimple_df->ssa_names, i, ptr)
+ {
+ if (ptr
+ && POINTER_TYPE_P (TREE_TYPE (ptr)))
+ find_what_p_points_to (ptr);
+ }
+
+ /* Compute the call-use and call-clobber sets for all direct calls. */
+ fi = lookup_vi_for_tree (node->decl);
+ gcc_assert (fi->is_fn_info);
+ clobbers
+ = find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers));
+ uses = find_what_var_points_to (first_vi_for_offset (fi, fi_uses));
+ for (e = node->callers; e; e = e->next_caller)
+ {
+ if (!e->call_stmt)
+ continue;
+
+ *gimple_call_clobber_set (e->call_stmt) = clobbers;
+ *gimple_call_use_set (e->call_stmt) = uses;
+ }
+
+ /* Compute the call-use and call-clobber sets for indirect calls
+ and calls to external functions. */
+ FOR_EACH_BB_FN (bb, fn)
+ {
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ struct pt_solution *pt;
+ varinfo_t vi;
+ tree decl;
+
+ if (!is_gimple_call (stmt))
+ continue;
+
+ /* Handle direct calls to external functions. */
+ decl = gimple_call_fndecl (stmt);
+ if (decl
+ && (!(fi = lookup_vi_for_tree (decl))
+ || !fi->is_fn_info))
+ {
+ pt = gimple_call_use_set (stmt);
+ if (gimple_call_flags (stmt) & ECF_CONST)
+ memset (pt, 0, sizeof (struct pt_solution));
+ else if ((vi = lookup_call_use_vi (stmt)) != NULL)
+ {
+ *pt = find_what_var_points_to (vi);
+ /* Escaped (and thus nonlocal) variables are always
+ implicitly used by calls. */
+ /* ??? ESCAPED can be empty even though NONLOCAL
+ always escaped. */
+ pt->nonlocal = 1;
+ pt->ipa_escaped = 1;
+ }
+ else
+ {
+ /* If there is nothing special about this call then
+ we have made everything that is used also escape. */
+ *pt = ipa_escaped_pt;
+ pt->nonlocal = 1;
+ }
+
+ pt = gimple_call_clobber_set (stmt);
+ if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
+ memset (pt, 0, sizeof (struct pt_solution));
+ else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
+ {
+ *pt = find_what_var_points_to (vi);
+ /* Escaped (and thus nonlocal) variables are always
+ implicitly clobbered by calls. */
+ /* ??? ESCAPED can be empty even though NONLOCAL
+ always escaped. */
+ pt->nonlocal = 1;
+ pt->ipa_escaped = 1;
+ }
+ else
+ {
+ /* If there is nothing special about this call then
+ we have made everything that is used also escape. */
+ *pt = ipa_escaped_pt;
+ pt->nonlocal = 1;
+ }
+ }
+
+ /* Handle indirect calls. */
+ if (!decl
+ && (fi = get_fi_for_callee (stmt)))
+ {
+ /* We need to accumulate all clobbers/uses of all possible
+ callees. */
+ fi = get_varinfo (find (fi->id));
+ /* If we cannot constrain the set of functions we'll end up
+ calling we end up using/clobbering everything. */
+ if (bitmap_bit_p (fi->solution, anything_id)
+ || bitmap_bit_p (fi->solution, nonlocal_id)
+ || bitmap_bit_p (fi->solution, escaped_id))
+ {
+ pt_solution_reset (gimple_call_clobber_set (stmt));
+ pt_solution_reset (gimple_call_use_set (stmt));
+ }
+ else
+ {
+ bitmap_iterator bi;
+ unsigned i;
+ struct pt_solution *uses, *clobbers;
+
+ uses = gimple_call_use_set (stmt);
+ clobbers = gimple_call_clobber_set (stmt);
+ memset (uses, 0, sizeof (struct pt_solution));
+ memset (clobbers, 0, sizeof (struct pt_solution));
+ EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
+ {
+ struct pt_solution sol;
+
+ vi = get_varinfo (i);
+ if (!vi->is_fn_info)
+ {
+ /* ??? We could be more precise here? */
+ uses->nonlocal = 1;
+ uses->ipa_escaped = 1;
+ clobbers->nonlocal = 1;
+ clobbers->ipa_escaped = 1;
+ continue;
+ }
+
+ if (!uses->anything)
+ {
+ sol = find_what_var_points_to
+ (first_vi_for_offset (vi, fi_uses));
+ pt_solution_ior_into (uses, &sol);
+ }
+ if (!clobbers->anything)
+ {
+ sol = find_what_var_points_to
+ (first_vi_for_offset (vi, fi_clobbers));
+ pt_solution_ior_into (clobbers, &sol);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ fn->gimple_df->ipa_pta = true;
+ }
+
+ delete_points_to_sets ();
+
+ in_ipa_mode = 0;
+
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_ipa_pta =
+{
+ SIMPLE_IPA_PASS, /* type */
+ "pta", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_IPA_PTA, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_ipa_pta : public simple_ipa_opt_pass
+{
+public:
+ pass_ipa_pta (gcc::context *ctxt)
+ : simple_ipa_opt_pass (pass_data_ipa_pta, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_ipa_pta (); }
+ unsigned int execute () { return ipa_pta_execute (); }
+
+}; // class pass_ipa_pta
+
+} // anon namespace
+
+simple_ipa_opt_pass *
+make_pass_ipa_pta (gcc::context *ctxt)
+{
+ return new pass_ipa_pta (ctxt);
+}