aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-ssa-loop-ivopts.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/tree-ssa-loop-ivopts.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/tree-ssa-loop-ivopts.c')
-rw-r--r--gcc-4.9/gcc/tree-ssa-loop-ivopts.c6899
1 files changed, 6899 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-ssa-loop-ivopts.c b/gcc-4.9/gcc/tree-ssa-loop-ivopts.c
new file mode 100644
index 000000000..14ba20fce
--- /dev/null
+++ b/gcc-4.9/gcc/tree-ssa-loop-ivopts.c
@@ -0,0 +1,6899 @@
+/* Induction variable optimizations.
+ Copyright (C) 2003-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass tries to find the optimal set of induction variables for the loop.
+ It optimizes just the basic linear induction variables (although adding
+ support for other types should not be too hard). It includes the
+ optimizations commonly known as strength reduction, induction variable
+ coalescing and induction variable elimination. It does it in the
+ following steps:
+
+ 1) The interesting uses of induction variables are found. This includes
+
+ -- uses of induction variables in non-linear expressions
+ -- addresses of arrays
+ -- comparisons of induction variables
+
+ 2) Candidates for the induction variables are found. This includes
+
+ -- old induction variables
+ -- the variables defined by expressions derived from the "interesting
+ uses" above
+
+ 3) The optimal (w.r. to a cost function) set of variables is chosen. The
+ cost function assigns a cost to sets of induction variables and consists
+ of three parts:
+
+ -- The use costs. Each of the interesting uses chooses the best induction
+ variable in the set and adds its cost to the sum. The cost reflects
+ the time spent on modifying the induction variables value to be usable
+ for the given purpose (adding base and offset for arrays, etc.).
+ -- The variable costs. Each of the variables has a cost assigned that
+ reflects the costs associated with incrementing the value of the
+ variable. The original variables are somewhat preferred.
+ -- The set cost. Depending on the size of the set, extra cost may be
+ added to reflect register pressure.
+
+ All the costs are defined in a machine-specific way, using the target
+ hooks and machine descriptions to determine them.
+
+ 4) The trees are transformed to use the new variables, the dead code is
+ removed.
+
+ All of this is done loop by loop. Doing it globally is theoretically
+ possible, it might give a better performance and it might enable us
+ to decide costs more precisely, but getting all the interactions right
+ would be complicated. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "tm_p.h"
+#include "basic-block.h"
+#include "gimple-pretty-print.h"
+#include "pointer-set.h"
+#include "hash-table.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "gimple-ssa.h"
+#include "cgraph.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-ssa-loop-ivopts.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop-niter.h"
+#include "tree-ssa-loop.h"
+#include "expr.h"
+#include "tree-dfa.h"
+#include "tree-ssa.h"
+#include "cfgloop.h"
+#include "tree-pass.h"
+#include "insn-config.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+#include "cfgloop.h"
+#include "params.h"
+#include "langhooks.h"
+#include "tree-affine.h"
+#include "target.h"
+#include "tree-inline.h"
+#include "tree-ssa-propagate.h"
+#include "expmed.h"
+#include "tree-ssa-address.h"
+
+/* FIXME: Expressions are expanded to RTL in this pass to determine the
+ cost of different addressing modes. This should be moved to a TBD
+ interface between the GIMPLE and RTL worlds. */
+#include "expr.h"
+#include "recog.h"
+
+/* The infinite cost. */
+#define INFTY 10000000
+
+#define AVG_LOOP_NITER(LOOP) 5
+
+/* Returns the expected number of loop iterations for LOOP.
+ The average trip count is computed from profile data if it
+ exists. */
+
+static inline HOST_WIDE_INT
+avg_loop_niter (struct loop *loop)
+{
+ HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
+ if (niter == -1)
+ return AVG_LOOP_NITER (loop);
+
+ return niter;
+}
+
+/* Representation of the induction variable. */
+struct iv
+{
+ tree base; /* Initial value of the iv. */
+ tree base_object; /* A memory object to that the induction variable points. */
+ tree step; /* Step of the iv (constant only). */
+ tree ssa_name; /* The ssa name with the value. */
+ bool biv_p; /* Is it a biv? */
+ bool have_use_for; /* Do we already have a use for it? */
+ unsigned use_id; /* The identifier in the use if it is the case. */
+};
+
+/* Per-ssa version information (induction variable descriptions, etc.). */
+struct version_info
+{
+ tree name; /* The ssa name. */
+ struct iv *iv; /* Induction variable description. */
+ bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
+ an expression that is not an induction variable. */
+ bool preserve_biv; /* For the original biv, whether to preserve it. */
+ unsigned inv_id; /* Id of an invariant. */
+};
+
+/* Types of uses. */
+enum use_type
+{
+ USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
+ USE_ADDRESS, /* Use in an address. */
+ USE_COMPARE /* Use is a compare. */
+};
+
+/* Cost of a computation. */
+typedef struct
+{
+ int cost; /* The runtime cost. */
+ unsigned complexity; /* The estimate of the complexity of the code for
+ the computation (in no concrete units --
+ complexity field should be larger for more
+ complex expressions and addressing modes). */
+} comp_cost;
+
+static const comp_cost no_cost = {0, 0};
+static const comp_cost infinite_cost = {INFTY, INFTY};
+
+/* The candidate - cost pair. */
+struct cost_pair
+{
+ struct iv_cand *cand; /* The candidate. */
+ comp_cost cost; /* The cost. */
+ bitmap depends_on; /* The list of invariants that have to be
+ preserved. */
+ tree value; /* For final value elimination, the expression for
+ the final value of the iv. For iv elimination,
+ the new bound to compare with. */
+ enum tree_code comp; /* For iv elimination, the comparison. */
+ int inv_expr_id; /* Loop invariant expression id. */
+};
+
+/* Use. */
+struct iv_use
+{
+ unsigned id; /* The id of the use. */
+ enum use_type type; /* Type of the use. */
+ struct iv *iv; /* The induction variable it is based on. */
+ gimple stmt; /* Statement in that it occurs. */
+ tree *op_p; /* The place where it occurs. */
+ bitmap related_cands; /* The set of "related" iv candidates, plus the common
+ important ones. */
+
+ unsigned n_map_members; /* Number of candidates in the cost_map list. */
+ struct cost_pair *cost_map;
+ /* The costs wrto the iv candidates. */
+
+ struct iv_cand *selected;
+ /* The selected candidate. */
+};
+
+/* The position where the iv is computed. */
+enum iv_position
+{
+ IP_NORMAL, /* At the end, just before the exit condition. */
+ IP_END, /* At the end of the latch block. */
+ IP_BEFORE_USE, /* Immediately before a specific use. */
+ IP_AFTER_USE, /* Immediately after a specific use. */
+ IP_ORIGINAL /* The original biv. */
+};
+
+/* The induction variable candidate. */
+struct iv_cand
+{
+ unsigned id; /* The number of the candidate. */
+ bool important; /* Whether this is an "important" candidate, i.e. such
+ that it should be considered by all uses. */
+ ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
+ gimple incremented_at;/* For original biv, the statement where it is
+ incremented. */
+ tree var_before; /* The variable used for it before increment. */
+ tree var_after; /* The variable used for it after increment. */
+ struct iv *iv; /* The value of the candidate. NULL for
+ "pseudocandidate" used to indicate the possibility
+ to replace the final value of an iv by direct
+ computation of the value. */
+ unsigned cost; /* Cost of the candidate. */
+ unsigned cost_step; /* Cost of the candidate's increment operation. */
+ struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
+ where it is incremented. */
+ bitmap depends_on; /* The list of invariants that are used in step of the
+ biv. */
+};
+
+/* Loop invariant expression hashtable entry. */
+struct iv_inv_expr_ent
+{
+ tree expr;
+ int id;
+ hashval_t hash;
+};
+
+/* The data used by the induction variable optimizations. */
+
+typedef struct iv_use *iv_use_p;
+
+typedef struct iv_cand *iv_cand_p;
+
+/* Hashtable helpers. */
+
+struct iv_inv_expr_hasher : typed_free_remove <iv_inv_expr_ent>
+{
+ typedef iv_inv_expr_ent value_type;
+ typedef iv_inv_expr_ent compare_type;
+ static inline hashval_t hash (const value_type *);
+ static inline bool equal (const value_type *, const compare_type *);
+};
+
+/* Hash function for loop invariant expressions. */
+
+inline hashval_t
+iv_inv_expr_hasher::hash (const value_type *expr)
+{
+ return expr->hash;
+}
+
+/* Hash table equality function for expressions. */
+
+inline bool
+iv_inv_expr_hasher::equal (const value_type *expr1, const compare_type *expr2)
+{
+ return expr1->hash == expr2->hash
+ && operand_equal_p (expr1->expr, expr2->expr, 0);
+}
+
+struct ivopts_data
+{
+ /* The currently optimized loop. */
+ struct loop *current_loop;
+
+ /* Numbers of iterations for all exits of the current loop. */
+ struct pointer_map_t *niters;
+
+ /* Number of registers used in it. */
+ unsigned regs_used;
+
+ /* The size of version_info array allocated. */
+ unsigned version_info_size;
+
+ /* The array of information for the ssa names. */
+ struct version_info *version_info;
+
+ /* The hashtable of loop invariant expressions created
+ by ivopt. */
+ hash_table <iv_inv_expr_hasher> inv_expr_tab;
+
+ /* Loop invariant expression id. */
+ int inv_expr_id;
+
+ /* The bitmap of indices in version_info whose value was changed. */
+ bitmap relevant;
+
+ /* The uses of induction variables. */
+ vec<iv_use_p> iv_uses;
+
+ /* The candidates. */
+ vec<iv_cand_p> iv_candidates;
+
+ /* A bitmap of important candidates. */
+ bitmap important_candidates;
+
+ /* The maximum invariant id. */
+ unsigned max_inv_id;
+
+ /* Whether to consider just related and important candidates when replacing a
+ use. */
+ bool consider_all_candidates;
+
+ /* Are we optimizing for speed? */
+ bool speed;
+
+ /* Whether the loop body includes any function calls. */
+ bool body_includes_call;
+
+ /* Whether the loop body can only be exited via single exit. */
+ bool loop_single_exit_p;
+};
+
+/* An assignment of iv candidates to uses. */
+
+struct iv_ca
+{
+ /* The number of uses covered by the assignment. */
+ unsigned upto;
+
+ /* Number of uses that cannot be expressed by the candidates in the set. */
+ unsigned bad_uses;
+
+ /* Candidate assigned to a use, together with the related costs. */
+ struct cost_pair **cand_for_use;
+
+ /* Number of times each candidate is used. */
+ unsigned *n_cand_uses;
+
+ /* The candidates used. */
+ bitmap cands;
+
+ /* The number of candidates in the set. */
+ unsigned n_cands;
+
+ /* Total number of registers needed. */
+ unsigned n_regs;
+
+ /* Total cost of expressing uses. */
+ comp_cost cand_use_cost;
+
+ /* Total cost of candidates. */
+ unsigned cand_cost;
+
+ /* Number of times each invariant is used. */
+ unsigned *n_invariant_uses;
+
+ /* The array holding the number of uses of each loop
+ invariant expressions created by ivopt. */
+ unsigned *used_inv_expr;
+
+ /* The number of created loop invariants. */
+ unsigned num_used_inv_expr;
+
+ /* Total cost of the assignment. */
+ comp_cost cost;
+};
+
+/* Difference of two iv candidate assignments. */
+
+struct iv_ca_delta
+{
+ /* Changed use. */
+ struct iv_use *use;
+
+ /* An old assignment (for rollback purposes). */
+ struct cost_pair *old_cp;
+
+ /* A new assignment. */
+ struct cost_pair *new_cp;
+
+ /* Next change in the list. */
+ struct iv_ca_delta *next_change;
+};
+
+/* Bound on number of candidates below that all candidates are considered. */
+
+#define CONSIDER_ALL_CANDIDATES_BOUND \
+ ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
+
+/* If there are more iv occurrences, we just give up (it is quite unlikely that
+ optimizing such a loop would help, and it would take ages). */
+
+#define MAX_CONSIDERED_USES \
+ ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
+
+/* If there are at most this number of ivs in the set, try removing unnecessary
+ ivs from the set always. */
+
+#define ALWAYS_PRUNE_CAND_SET_BOUND \
+ ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
+
+/* The list of trees for that the decl_rtl field must be reset is stored
+ here. */
+
+static vec<tree> decl_rtl_to_reset;
+
+static comp_cost force_expr_to_var_cost (tree, bool);
+
+/* Number of uses recorded in DATA. */
+
+static inline unsigned
+n_iv_uses (struct ivopts_data *data)
+{
+ return data->iv_uses.length ();
+}
+
+/* Ith use recorded in DATA. */
+
+static inline struct iv_use *
+iv_use (struct ivopts_data *data, unsigned i)
+{
+ return data->iv_uses[i];
+}
+
+/* Number of candidates recorded in DATA. */
+
+static inline unsigned
+n_iv_cands (struct ivopts_data *data)
+{
+ return data->iv_candidates.length ();
+}
+
+/* Ith candidate recorded in DATA. */
+
+static inline struct iv_cand *
+iv_cand (struct ivopts_data *data, unsigned i)
+{
+ return data->iv_candidates[i];
+}
+
+/* The single loop exit if it dominates the latch, NULL otherwise. */
+
+edge
+single_dom_exit (struct loop *loop)
+{
+ edge exit = single_exit (loop);
+
+ if (!exit)
+ return NULL;
+
+ if (!just_once_each_iteration_p (loop, exit->src))
+ return NULL;
+
+ return exit;
+}
+
+/* Dumps information about the induction variable IV to FILE. */
+
+void
+dump_iv (FILE *file, struct iv *iv)
+{
+ if (iv->ssa_name)
+ {
+ fprintf (file, "ssa name ");
+ print_generic_expr (file, iv->ssa_name, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ fprintf (file, " type ");
+ print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
+ fprintf (file, "\n");
+
+ if (iv->step)
+ {
+ fprintf (file, " base ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, " step ");
+ print_generic_expr (file, iv->step, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ else
+ {
+ fprintf (file, " invariant ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ if (iv->base_object)
+ {
+ fprintf (file, " base object ");
+ print_generic_expr (file, iv->base_object, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ if (iv->biv_p)
+ fprintf (file, " is a biv\n");
+}
+
+/* Dumps information about the USE to FILE. */
+
+void
+dump_use (FILE *file, struct iv_use *use)
+{
+ fprintf (file, "use %d\n", use->id);
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ fprintf (file, " generic\n");
+ break;
+
+ case USE_ADDRESS:
+ fprintf (file, " address\n");
+ break;
+
+ case USE_COMPARE:
+ fprintf (file, " compare\n");
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ fprintf (file, " in statement ");
+ print_gimple_stmt (file, use->stmt, 0, 0);
+ fprintf (file, "\n");
+
+ fprintf (file, " at position ");
+ if (use->op_p)
+ print_generic_expr (file, *use->op_p, TDF_SLIM);
+ fprintf (file, "\n");
+
+ dump_iv (file, use->iv);
+
+ if (use->related_cands)
+ {
+ fprintf (file, " related candidates ");
+ dump_bitmap (file, use->related_cands);
+ }
+}
+
+/* Dumps information about the uses to FILE. */
+
+void
+dump_uses (FILE *file, struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ dump_use (file, use);
+ fprintf (file, "\n");
+ }
+}
+
+/* Dumps information about induction variable candidate CAND to FILE. */
+
+void
+dump_cand (FILE *file, struct iv_cand *cand)
+{
+ struct iv *iv = cand->iv;
+
+ fprintf (file, "candidate %d%s\n",
+ cand->id, cand->important ? " (important)" : "");
+
+ if (cand->depends_on)
+ {
+ fprintf (file, " depends on ");
+ dump_bitmap (file, cand->depends_on);
+ }
+
+ if (!iv)
+ {
+ fprintf (file, " final value replacement\n");
+ return;
+ }
+
+ if (cand->var_before)
+ {
+ fprintf (file, " var_before ");
+ print_generic_expr (file, cand->var_before, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ if (cand->var_after)
+ {
+ fprintf (file, " var_after ");
+ print_generic_expr (file, cand->var_after, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ fprintf (file, " incremented before exit test\n");
+ break;
+
+ case IP_BEFORE_USE:
+ fprintf (file, " incremented before use %d\n", cand->ainc_use->id);
+ break;
+
+ case IP_AFTER_USE:
+ fprintf (file, " incremented after use %d\n", cand->ainc_use->id);
+ break;
+
+ case IP_END:
+ fprintf (file, " incremented at end\n");
+ break;
+
+ case IP_ORIGINAL:
+ fprintf (file, " original biv\n");
+ break;
+ }
+
+ dump_iv (file, iv);
+}
+
+/* Returns the info for ssa version VER. */
+
+static inline struct version_info *
+ver_info (struct ivopts_data *data, unsigned ver)
+{
+ return data->version_info + ver;
+}
+
+/* Returns the info for ssa name NAME. */
+
+static inline struct version_info *
+name_info (struct ivopts_data *data, tree name)
+{
+ return ver_info (data, SSA_NAME_VERSION (name));
+}
+
+/* Returns true if STMT is after the place where the IP_NORMAL ivs will be
+ emitted in LOOP. */
+
+static bool
+stmt_after_ip_normal_pos (struct loop *loop, gimple stmt)
+{
+ basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
+
+ gcc_assert (bb);
+
+ if (sbb == loop->latch)
+ return true;
+
+ if (sbb != bb)
+ return false;
+
+ return stmt == last_stmt (bb);
+}
+
+/* Returns true if STMT if after the place where the original induction
+ variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
+ if the positions are identical. */
+
+static bool
+stmt_after_inc_pos (struct iv_cand *cand, gimple stmt, bool true_if_equal)
+{
+ basic_block cand_bb = gimple_bb (cand->incremented_at);
+ basic_block stmt_bb = gimple_bb (stmt);
+
+ if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
+ return false;
+
+ if (stmt_bb != cand_bb)
+ return true;
+
+ if (true_if_equal
+ && gimple_uid (stmt) == gimple_uid (cand->incremented_at))
+ return true;
+ return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
+}
+
+/* Returns true if STMT if after the place where the induction variable
+ CAND is incremented in LOOP. */
+
+static bool
+stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple stmt)
+{
+ switch (cand->pos)
+ {
+ case IP_END:
+ return false;
+
+ case IP_NORMAL:
+ return stmt_after_ip_normal_pos (loop, stmt);
+
+ case IP_ORIGINAL:
+ case IP_AFTER_USE:
+ return stmt_after_inc_pos (cand, stmt, false);
+
+ case IP_BEFORE_USE:
+ return stmt_after_inc_pos (cand, stmt, true);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
+
+static bool
+abnormal_ssa_name_p (tree exp)
+{
+ if (!exp)
+ return false;
+
+ if (TREE_CODE (exp) != SSA_NAME)
+ return false;
+
+ return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
+}
+
+/* Returns false if BASE or INDEX contains a ssa name that occurs in an
+ abnormal phi node. Callback for for_each_index. */
+
+static bool
+idx_contains_abnormal_ssa_name_p (tree base, tree *index,
+ void *data ATTRIBUTE_UNUSED)
+{
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
+ return false;
+ if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
+ return false;
+ }
+
+ return !abnormal_ssa_name_p (*index);
+}
+
+/* Returns true if EXPR contains a ssa name that occurs in an
+ abnormal phi node. */
+
+bool
+contains_abnormal_ssa_name_p (tree expr)
+{
+ enum tree_code code;
+ enum tree_code_class codeclass;
+
+ if (!expr)
+ return false;
+
+ code = TREE_CODE (expr);
+ codeclass = TREE_CODE_CLASS (code);
+
+ if (code == SSA_NAME)
+ return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
+
+ if (code == INTEGER_CST
+ || is_gimple_min_invariant (expr))
+ return false;
+
+ if (code == ADDR_EXPR)
+ return !for_each_index (&TREE_OPERAND (expr, 0),
+ idx_contains_abnormal_ssa_name_p,
+ NULL);
+
+ if (code == COND_EXPR)
+ return contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0))
+ || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1))
+ || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 2));
+
+ switch (codeclass)
+ {
+ case tcc_binary:
+ case tcc_comparison:
+ if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
+ return true;
+
+ /* Fallthru. */
+ case tcc_unary:
+ if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
+ return true;
+
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return false;
+}
+
+/* Returns the structure describing number of iterations determined from
+ EXIT of DATA->current_loop, or NULL if something goes wrong. */
+
+static struct tree_niter_desc *
+niter_for_exit (struct ivopts_data *data, edge exit)
+{
+ struct tree_niter_desc *desc;
+ void **slot;
+
+ if (!data->niters)
+ {
+ data->niters = pointer_map_create ();
+ slot = NULL;
+ }
+ else
+ slot = pointer_map_contains (data->niters, exit);
+
+ if (!slot)
+ {
+ /* Try to determine number of iterations. We cannot safely work with ssa
+ names that appear in phi nodes on abnormal edges, so that we do not
+ create overlapping life ranges for them (PR 27283). */
+ desc = XNEW (struct tree_niter_desc);
+ if (!number_of_iterations_exit (data->current_loop,
+ exit, desc, true)
+ || contains_abnormal_ssa_name_p (desc->niter))
+ {
+ XDELETE (desc);
+ desc = NULL;
+ }
+ slot = pointer_map_insert (data->niters, exit);
+ *slot = desc;
+ }
+ else
+ desc = (struct tree_niter_desc *) *slot;
+
+ return desc;
+}
+
+/* Returns the structure describing number of iterations determined from
+ single dominating exit of DATA->current_loop, or NULL if something
+ goes wrong. */
+
+static struct tree_niter_desc *
+niter_for_single_dom_exit (struct ivopts_data *data)
+{
+ edge exit = single_dom_exit (data->current_loop);
+
+ if (!exit)
+ return NULL;
+
+ return niter_for_exit (data, exit);
+}
+
+/* Initializes data structures used by the iv optimization pass, stored
+ in DATA. */
+
+static void
+tree_ssa_iv_optimize_init (struct ivopts_data *data)
+{
+ data->version_info_size = 2 * num_ssa_names;
+ data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
+ data->relevant = BITMAP_ALLOC (NULL);
+ data->important_candidates = BITMAP_ALLOC (NULL);
+ data->max_inv_id = 0;
+ data->niters = NULL;
+ data->iv_uses.create (20);
+ data->iv_candidates.create (20);
+ data->inv_expr_tab.create (10);
+ data->inv_expr_id = 0;
+ decl_rtl_to_reset.create (20);
+}
+
+/* Returns a memory object to that EXPR points. In case we are able to
+ determine that it does not point to any such object, NULL is returned. */
+
+static tree
+determine_base_object (tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+ tree base, obj;
+
+ /* If this is a pointer casted to any type, we need to determine
+ the base object for the pointer; so handle conversions before
+ throwing away non-pointer expressions. */
+ if (CONVERT_EXPR_P (expr))
+ return determine_base_object (TREE_OPERAND (expr, 0));
+
+ if (!POINTER_TYPE_P (TREE_TYPE (expr)))
+ return NULL_TREE;
+
+ switch (code)
+ {
+ case INTEGER_CST:
+ return NULL_TREE;
+
+ case ADDR_EXPR:
+ obj = TREE_OPERAND (expr, 0);
+ base = get_base_address (obj);
+
+ if (!base)
+ return expr;
+
+ if (TREE_CODE (base) == MEM_REF)
+ return determine_base_object (TREE_OPERAND (base, 0));
+
+ return fold_convert (ptr_type_node,
+ build_fold_addr_expr (base));
+
+ case POINTER_PLUS_EXPR:
+ return determine_base_object (TREE_OPERAND (expr, 0));
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
+ gcc_unreachable ();
+
+ default:
+ return fold_convert (ptr_type_node, expr);
+ }
+}
+
+/* Allocates an induction variable with given initial value BASE and step STEP
+ for loop LOOP. */
+
+static struct iv *
+alloc_iv (tree base, tree step)
+{
+ tree base_object = base;
+ struct iv *iv = XCNEW (struct iv);
+ gcc_assert (step != NULL_TREE);
+
+ /* Lower all address expressions except ones with DECL_P as operand.
+ By doing this:
+ 1) More accurate cost can be computed for address expressions;
+ 2) Duplicate candidates won't be created for bases in different
+ forms, like &a[0] and &a. */
+ STRIP_NOPS (base_object);
+ if (TREE_CODE (base_object) == ADDR_EXPR
+ && !DECL_P (TREE_OPERAND (base_object, 0)))
+ {
+ aff_tree comb;
+ double_int size;
+ base_object = get_inner_reference_aff (TREE_OPERAND (base_object, 0),
+ &comb, &size);
+ gcc_assert (base_object != NULL_TREE);
+ base_object = build_fold_addr_expr (base_object);
+ base = fold_convert (TREE_TYPE (base), aff_combination_to_tree (&comb));
+ }
+
+ iv->base = base;
+ iv->base_object = determine_base_object (base_object);
+ iv->step = step;
+ iv->biv_p = false;
+ iv->have_use_for = false;
+ iv->use_id = 0;
+ iv->ssa_name = NULL_TREE;
+
+ return iv;
+}
+
+/* Sets STEP and BASE for induction variable IV. */
+
+static void
+set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
+{
+ struct version_info *info = name_info (data, iv);
+
+ gcc_assert (!info->iv);
+
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
+ info->iv = alloc_iv (base, step);
+ info->iv->ssa_name = iv;
+}
+
+/* Finds induction variable declaration for VAR. */
+
+static struct iv *
+get_iv (struct ivopts_data *data, tree var)
+{
+ basic_block bb;
+ tree type = TREE_TYPE (var);
+
+ if (!POINTER_TYPE_P (type)
+ && !INTEGRAL_TYPE_P (type))
+ return NULL;
+
+ if (!name_info (data, var)->iv)
+ {
+ bb = gimple_bb (SSA_NAME_DEF_STMT (var));
+
+ if (!bb
+ || !flow_bb_inside_loop_p (data->current_loop, bb))
+ set_iv (data, var, var, build_int_cst (type, 0));
+ }
+
+ return name_info (data, var)->iv;
+}
+
+/* Determines the step of a biv defined in PHI. Returns NULL if PHI does
+ not define a simple affine biv with nonzero step. */
+
+static tree
+determine_biv_step (gimple phi)
+{
+ struct loop *loop = gimple_bb (phi)->loop_father;
+ tree name = PHI_RESULT (phi);
+ affine_iv iv;
+
+ if (virtual_operand_p (name))
+ return NULL_TREE;
+
+ if (!simple_iv (loop, loop, name, &iv, true))
+ return NULL_TREE;
+
+ return integer_zerop (iv.step) ? NULL_TREE : iv.step;
+}
+
+/* Finds basic ivs. */
+
+static bool
+find_bivs (struct ivopts_data *data)
+{
+ gimple phi;
+ tree step, type, base;
+ bool found = false;
+ struct loop *loop = data->current_loop;
+ gimple_stmt_iterator psi;
+
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
+ continue;
+
+ step = determine_biv_step (phi);
+ if (!step)
+ continue;
+
+ base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
+ base = expand_simple_operations (base);
+ if (contains_abnormal_ssa_name_p (base)
+ || contains_abnormal_ssa_name_p (step))
+ continue;
+
+ type = TREE_TYPE (PHI_RESULT (phi));
+ base = fold_convert (type, base);
+ if (step)
+ {
+ if (POINTER_TYPE_P (type))
+ step = convert_to_ptrofftype (step);
+ else
+ step = fold_convert (type, step);
+ }
+
+ set_iv (data, PHI_RESULT (phi), base, step);
+ found = true;
+ }
+
+ return found;
+}
+
+/* Marks basic ivs. */
+
+static void
+mark_bivs (struct ivopts_data *data)
+{
+ gimple phi, def;
+ tree var;
+ struct iv *iv, *incr_iv;
+ struct loop *loop = data->current_loop;
+ basic_block incr_bb;
+ gimple_stmt_iterator psi;
+
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+
+ iv = get_iv (data, PHI_RESULT (phi));
+ if (!iv)
+ continue;
+
+ var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
+ def = SSA_NAME_DEF_STMT (var);
+ /* Don't mark iv peeled from other one as biv. */
+ if (def
+ && gimple_code (def) == GIMPLE_PHI
+ && gimple_bb (def) == loop->header)
+ continue;
+
+ incr_iv = get_iv (data, var);
+ if (!incr_iv)
+ continue;
+
+ /* If the increment is in the subloop, ignore it. */
+ incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
+ if (incr_bb->loop_father != data->current_loop
+ || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
+ continue;
+
+ iv->biv_p = true;
+ incr_iv->biv_p = true;
+ }
+}
+
+/* Checks whether STMT defines a linear induction variable and stores its
+ parameters to IV. */
+
+static bool
+find_givs_in_stmt_scev (struct ivopts_data *data, gimple stmt, affine_iv *iv)
+{
+ tree lhs;
+ struct loop *loop = data->current_loop;
+
+ iv->base = NULL_TREE;
+ iv->step = NULL_TREE;
+
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return false;
+
+ lhs = gimple_assign_lhs (stmt);
+ if (TREE_CODE (lhs) != SSA_NAME)
+ return false;
+
+ if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
+ return false;
+ iv->base = expand_simple_operations (iv->base);
+
+ if (contains_abnormal_ssa_name_p (iv->base)
+ || contains_abnormal_ssa_name_p (iv->step))
+ return false;
+
+ /* If STMT could throw, then do not consider STMT as defining a GIV.
+ While this will suppress optimizations, we can not safely delete this
+ GIV and associated statements, even if it appears it is not used. */
+ if (stmt_could_throw_p (stmt))
+ return false;
+
+ return true;
+}
+
+/* Finds general ivs in statement STMT. */
+
+static void
+find_givs_in_stmt (struct ivopts_data *data, gimple stmt)
+{
+ affine_iv iv;
+
+ if (!find_givs_in_stmt_scev (data, stmt, &iv))
+ return;
+
+ set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step);
+}
+
+/* Finds general ivs in basic block BB. */
+
+static void
+find_givs_in_bb (struct ivopts_data *data, basic_block bb)
+{
+ gimple_stmt_iterator bsi;
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ find_givs_in_stmt (data, gsi_stmt (bsi));
+}
+
+/* Finds general ivs. */
+
+static void
+find_givs (struct ivopts_data *data)
+{
+ struct loop *loop = data->current_loop;
+ basic_block *body = get_loop_body_in_dom_order (loop);
+ unsigned i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ find_givs_in_bb (data, body[i]);
+ free (body);
+}
+
+/* For each ssa name defined in LOOP determines whether it is an induction
+ variable and if so, its initial value and step. */
+
+static bool
+find_induction_variables (struct ivopts_data *data)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ if (!find_bivs (data))
+ return false;
+
+ find_givs (data);
+ mark_bivs (data);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ struct tree_niter_desc *niter = niter_for_single_dom_exit (data);
+
+ if (niter)
+ {
+ fprintf (dump_file, " number of iterations ");
+ print_generic_expr (dump_file, niter->niter, TDF_SLIM);
+ if (!integer_zerop (niter->may_be_zero))
+ {
+ fprintf (dump_file, "; zero if ");
+ print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
+ }
+ fprintf (dump_file, "\n\n");
+ };
+
+ fprintf (dump_file, "Induction variables:\n\n");
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ if (ver_info (data, i)->iv)
+ dump_iv (dump_file, ver_info (data, i)->iv);
+ }
+ }
+
+ return true;
+}
+
+/* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
+
+static struct iv_use *
+record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
+ gimple stmt, enum use_type use_type)
+{
+ struct iv_use *use = XCNEW (struct iv_use);
+
+ use->id = n_iv_uses (data);
+ use->type = use_type;
+ use->iv = iv;
+ use->stmt = stmt;
+ use->op_p = use_p;
+ use->related_cands = BITMAP_ALLOC (NULL);
+
+ /* To avoid showing ssa name in the dumps, if it was not reset by the
+ caller. */
+ iv->ssa_name = NULL_TREE;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_use (dump_file, use);
+
+ data->iv_uses.safe_push (use);
+
+ return use;
+}
+
+/* Checks whether OP is a loop-level invariant and if so, records it.
+ NONLINEAR_USE is true if the invariant is used in a way we do not
+ handle specially. */
+
+static void
+record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
+{
+ basic_block bb;
+ struct version_info *info;
+
+ if (TREE_CODE (op) != SSA_NAME
+ || virtual_operand_p (op))
+ return;
+
+ bb = gimple_bb (SSA_NAME_DEF_STMT (op));
+ if (bb
+ && flow_bb_inside_loop_p (data->current_loop, bb))
+ return;
+
+ info = name_info (data, op);
+ info->name = op;
+ info->has_nonlin_use |= nonlinear_use;
+ if (!info->inv_id)
+ info->inv_id = ++data->max_inv_id;
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
+}
+
+/* Checks whether the use OP is interesting and if so, records it. */
+
+static struct iv_use *
+find_interesting_uses_op (struct ivopts_data *data, tree op)
+{
+ struct iv *iv;
+ struct iv *civ;
+ gimple stmt;
+ struct iv_use *use;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ return NULL;
+
+ if (iv->have_use_for)
+ {
+ use = iv_use (data, iv->use_id);
+
+ gcc_assert (use->type == USE_NONLINEAR_EXPR);
+ return use;
+ }
+
+ if (integer_zerop (iv->step))
+ {
+ record_invariant (data, op, true);
+ return NULL;
+ }
+ iv->have_use_for = true;
+
+ civ = XNEW (struct iv);
+ *civ = *iv;
+
+ stmt = SSA_NAME_DEF_STMT (op);
+ gcc_assert (gimple_code (stmt) == GIMPLE_PHI
+ || is_gimple_assign (stmt));
+
+ use = record_use (data, NULL, civ, stmt, USE_NONLINEAR_EXPR);
+ iv->use_id = use->id;
+
+ return use;
+}
+
+/* Given a condition in statement STMT, checks whether it is a compare
+ of an induction variable and an invariant. If this is the case,
+ CONTROL_VAR is set to location of the iv, BOUND to the location of
+ the invariant, IV_VAR and IV_BOUND are set to the corresponding
+ induction variable descriptions, and true is returned. If this is not
+ the case, CONTROL_VAR and BOUND are set to the arguments of the
+ condition and false is returned. */
+
+static bool
+extract_cond_operands (struct ivopts_data *data, gimple stmt,
+ tree **control_var, tree **bound,
+ struct iv **iv_var, struct iv **iv_bound)
+{
+ /* The objects returned when COND has constant operands. */
+ static struct iv const_iv;
+ static tree zero;
+ tree *op0 = &zero, *op1 = &zero, *tmp_op;
+ struct iv *iv0 = &const_iv, *iv1 = &const_iv, *tmp_iv;
+ bool ret = false;
+
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ op0 = gimple_cond_lhs_ptr (stmt);
+ op1 = gimple_cond_rhs_ptr (stmt);
+ }
+ else
+ {
+ op0 = gimple_assign_rhs1_ptr (stmt);
+ op1 = gimple_assign_rhs2_ptr (stmt);
+ }
+
+ zero = integer_zero_node;
+ const_iv.step = integer_zero_node;
+
+ if (TREE_CODE (*op0) == SSA_NAME)
+ iv0 = get_iv (data, *op0);
+ if (TREE_CODE (*op1) == SSA_NAME)
+ iv1 = get_iv (data, *op1);
+
+ /* Exactly one of the compared values must be an iv, and the other one must
+ be an invariant. */
+ if (!iv0 || !iv1)
+ goto end;
+
+ if (integer_zerop (iv0->step))
+ {
+ /* Control variable may be on the other side. */
+ tmp_op = op0; op0 = op1; op1 = tmp_op;
+ tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
+ }
+ ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
+
+end:
+ if (control_var)
+ *control_var = op0;;
+ if (iv_var)
+ *iv_var = iv0;;
+ if (bound)
+ *bound = op1;
+ if (iv_bound)
+ *iv_bound = iv1;
+
+ return ret;
+}
+
+/* Checks whether the condition in STMT is interesting and if so,
+ records it. */
+
+static void
+find_interesting_uses_cond (struct ivopts_data *data, gimple stmt)
+{
+ tree *var_p, *bound_p;
+ struct iv *var_iv, *civ;
+
+ if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
+ {
+ find_interesting_uses_op (data, *var_p);
+ find_interesting_uses_op (data, *bound_p);
+ return;
+ }
+
+ civ = XNEW (struct iv);
+ *civ = *var_iv;
+ record_use (data, NULL, civ, stmt, USE_COMPARE);
+}
+
+/* Returns the outermost loop EXPR is obviously invariant in
+ relative to the loop LOOP, i.e. if all its operands are defined
+ outside of the returned loop. Returns NULL if EXPR is not
+ even obviously invariant in LOOP. */
+
+struct loop *
+outermost_invariant_loop_for_expr (struct loop *loop, tree expr)
+{
+ basic_block def_bb;
+ unsigned i, len;
+
+ if (is_gimple_min_invariant (expr))
+ return current_loops->tree_root;
+
+ if (TREE_CODE (expr) == SSA_NAME)
+ {
+ def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
+ if (def_bb)
+ {
+ if (flow_bb_inside_loop_p (loop, def_bb))
+ return NULL;
+ return superloop_at_depth (loop,
+ loop_depth (def_bb->loop_father) + 1);
+ }
+
+ return current_loops->tree_root;
+ }
+
+ if (!EXPR_P (expr))
+ return NULL;
+
+ unsigned maxdepth = 0;
+ len = TREE_OPERAND_LENGTH (expr);
+ for (i = 0; i < len; i++)
+ {
+ struct loop *ivloop;
+ if (!TREE_OPERAND (expr, i))
+ continue;
+
+ ivloop = outermost_invariant_loop_for_expr (loop, TREE_OPERAND (expr, i));
+ if (!ivloop)
+ return NULL;
+ maxdepth = MAX (maxdepth, loop_depth (ivloop));
+ }
+
+ return superloop_at_depth (loop, maxdepth);
+}
+
+/* Returns true if expression EXPR is obviously invariant in LOOP,
+ i.e. if all its operands are defined outside of the LOOP. LOOP
+ should not be the function body. */
+
+bool
+expr_invariant_in_loop_p (struct loop *loop, tree expr)
+{
+ basic_block def_bb;
+ unsigned i, len;
+
+ gcc_assert (loop_depth (loop) > 0);
+
+ if (is_gimple_min_invariant (expr))
+ return true;
+
+ if (TREE_CODE (expr) == SSA_NAME)
+ {
+ def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
+ if (def_bb
+ && flow_bb_inside_loop_p (loop, def_bb))
+ return false;
+
+ return true;
+ }
+
+ if (!EXPR_P (expr))
+ return false;
+
+ len = TREE_OPERAND_LENGTH (expr);
+ for (i = 0; i < len; i++)
+ if (TREE_OPERAND (expr, i)
+ && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
+ return false;
+
+ return true;
+}
+
+/* Cumulates the steps of indices into DATA and replaces their values with the
+ initial ones. Returns false when the value of the index cannot be determined.
+ Callback for for_each_index. */
+
+struct ifs_ivopts_data
+{
+ struct ivopts_data *ivopts_data;
+ gimple stmt;
+ tree step;
+};
+
+static bool
+idx_find_step (tree base, tree *idx, void *data)
+{
+ struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
+ struct iv *iv;
+ tree step, iv_base, iv_step, lbound, off;
+ struct loop *loop = dta->ivopts_data->current_loop;
+
+ /* If base is a component ref, require that the offset of the reference
+ be invariant. */
+ if (TREE_CODE (base) == COMPONENT_REF)
+ {
+ off = component_ref_field_offset (base);
+ return expr_invariant_in_loop_p (loop, off);
+ }
+
+ /* If base is array, first check whether we will be able to move the
+ reference out of the loop (in order to take its address in strength
+ reduction). In order for this to work we need both lower bound
+ and step to be loop invariants. */
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ /* Moreover, for a range, the size needs to be invariant as well. */
+ if (TREE_CODE (base) == ARRAY_RANGE_REF
+ && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
+ return false;
+
+ step = array_ref_element_size (base);
+ lbound = array_ref_low_bound (base);
+
+ if (!expr_invariant_in_loop_p (loop, step)
+ || !expr_invariant_in_loop_p (loop, lbound))
+ return false;
+ }
+
+ if (TREE_CODE (*idx) != SSA_NAME)
+ return true;
+
+ iv = get_iv (dta->ivopts_data, *idx);
+ if (!iv)
+ return false;
+
+ /* XXX We produce for a base of *D42 with iv->base being &x[0]
+ *&x[0], which is not folded and does not trigger the
+ ARRAY_REF path below. */
+ *idx = iv->base;
+
+ if (integer_zerop (iv->step))
+ return true;
+
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ step = array_ref_element_size (base);
+
+ /* We only handle addresses whose step is an integer constant. */
+ if (TREE_CODE (step) != INTEGER_CST)
+ return false;
+ }
+ else
+ /* The step for pointer arithmetics already is 1 byte. */
+ step = size_one_node;
+
+ iv_base = iv->base;
+ iv_step = iv->step;
+ if (!convert_affine_scev (dta->ivopts_data->current_loop,
+ sizetype, &iv_base, &iv_step, dta->stmt,
+ false))
+ {
+ /* The index might wrap. */
+ return false;
+ }
+
+ step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
+ dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
+
+ return true;
+}
+
+/* Records use in index IDX. Callback for for_each_index. Ivopts data
+ object is passed to it in DATA. */
+
+static bool
+idx_record_use (tree base, tree *idx,
+ void *vdata)
+{
+ struct ivopts_data *data = (struct ivopts_data *) vdata;
+ find_interesting_uses_op (data, *idx);
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ find_interesting_uses_op (data, array_ref_element_size (base));
+ find_interesting_uses_op (data, array_ref_low_bound (base));
+ }
+ return true;
+}
+
+/* If we can prove that TOP = cst * BOT for some constant cst,
+ store cst to MUL and return true. Otherwise return false.
+ The returned value is always sign-extended, regardless of the
+ signedness of TOP and BOT. */
+
+static bool
+constant_multiple_of (tree top, tree bot, double_int *mul)
+{
+ tree mby;
+ enum tree_code code;
+ double_int res, p0, p1;
+ unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
+
+ STRIP_NOPS (top);
+ STRIP_NOPS (bot);
+
+ if (operand_equal_p (top, bot, 0))
+ {
+ *mul = double_int_one;
+ return true;
+ }
+
+ code = TREE_CODE (top);
+ switch (code)
+ {
+ case MULT_EXPR:
+ mby = TREE_OPERAND (top, 1);
+ if (TREE_CODE (mby) != INTEGER_CST)
+ return false;
+
+ if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
+ return false;
+
+ *mul = (res * tree_to_double_int (mby)).sext (precision);
+ return true;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
+ || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
+ return false;
+
+ if (code == MINUS_EXPR)
+ p1 = -p1;
+ *mul = (p0 + p1).sext (precision);
+ return true;
+
+ case INTEGER_CST:
+ if (TREE_CODE (bot) != INTEGER_CST)
+ return false;
+
+ p0 = tree_to_double_int (top).sext (precision);
+ p1 = tree_to_double_int (bot).sext (precision);
+ if (p1.is_zero ())
+ return false;
+ *mul = p0.sdivmod (p1, FLOOR_DIV_EXPR, &res).sext (precision);
+ return res.is_zero ();
+
+ default:
+ return false;
+ }
+}
+
+/* Return true if memory reference REF with step STEP may be unaligned. */
+
+static bool
+may_be_unaligned_p (tree ref, tree step)
+{
+ /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
+ thus they are not misaligned. */
+ if (TREE_CODE (ref) == TARGET_MEM_REF)
+ return false;
+
+ unsigned int align = TYPE_ALIGN (TREE_TYPE (ref));
+
+ unsigned HOST_WIDE_INT bitpos;
+ unsigned int ref_align;
+ get_object_alignment_1 (ref, &ref_align, &bitpos);
+ if (ref_align < align
+ || (bitpos % align) != 0
+ || (bitpos % BITS_PER_UNIT) != 0)
+ return true;
+
+ unsigned int trailing_zeros = tree_ctz (step);
+ if (trailing_zeros < HOST_BITS_PER_INT
+ && (1U << trailing_zeros) * BITS_PER_UNIT < align)
+ return true;
+
+ return false;
+}
+
+/* Return true if EXPR may be non-addressable. */
+
+bool
+may_be_nonaddressable_p (tree expr)
+{
+ switch (TREE_CODE (expr))
+ {
+ case TARGET_MEM_REF:
+ /* TARGET_MEM_REFs are translated directly to valid MEMs on the
+ target, thus they are always addressable. */
+ return false;
+
+ case COMPONENT_REF:
+ return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
+ || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ case VIEW_CONVERT_EXPR:
+ /* This kind of view-conversions may wrap non-addressable objects
+ and make them look addressable. After some processing the
+ non-addressability may be uncovered again, causing ADDR_EXPRs
+ of inappropriate objects to be built. */
+ if (is_gimple_reg (TREE_OPERAND (expr, 0))
+ || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
+ return true;
+
+ /* ... fall through ... */
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ CASE_CONVERT:
+ return true;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Finds addresses in *OP_P inside STMT. */
+
+static void
+find_interesting_uses_address (struct ivopts_data *data, gimple stmt, tree *op_p)
+{
+ tree base = *op_p, step = size_zero_node;
+ struct iv *civ;
+ struct ifs_ivopts_data ifs_ivopts_data;
+
+ /* Do not play with volatile memory references. A bit too conservative,
+ perhaps, but safe. */
+ if (gimple_has_volatile_ops (stmt))
+ goto fail;
+
+ /* Ignore bitfields for now. Not really something terribly complicated
+ to handle. TODO. */
+ if (TREE_CODE (base) == BIT_FIELD_REF)
+ goto fail;
+
+ base = unshare_expr (base);
+
+ if (TREE_CODE (base) == TARGET_MEM_REF)
+ {
+ tree type = build_pointer_type (TREE_TYPE (base));
+ tree astep;
+
+ if (TMR_BASE (base)
+ && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_BASE (base));
+ if (!civ)
+ goto fail;
+
+ TMR_BASE (base) = civ->base;
+ step = civ->step;
+ }
+ if (TMR_INDEX2 (base)
+ && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_INDEX2 (base));
+ if (!civ)
+ goto fail;
+
+ TMR_INDEX2 (base) = civ->base;
+ step = civ->step;
+ }
+ if (TMR_INDEX (base)
+ && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_INDEX (base));
+ if (!civ)
+ goto fail;
+
+ TMR_INDEX (base) = civ->base;
+ astep = civ->step;
+
+ if (astep)
+ {
+ if (TMR_STEP (base))
+ astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
+
+ step = fold_build2 (PLUS_EXPR, type, step, astep);
+ }
+ }
+
+ if (integer_zerop (step))
+ goto fail;
+ base = tree_mem_ref_addr (type, base);
+ }
+ else
+ {
+ ifs_ivopts_data.ivopts_data = data;
+ ifs_ivopts_data.stmt = stmt;
+ ifs_ivopts_data.step = size_zero_node;
+ if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
+ || integer_zerop (ifs_ivopts_data.step))
+ goto fail;
+ step = ifs_ivopts_data.step;
+
+ /* Check that the base expression is addressable. This needs
+ to be done after substituting bases of IVs into it. */
+ if (may_be_nonaddressable_p (base))
+ goto fail;
+
+ /* Moreover, on strict alignment platforms, check that it is
+ sufficiently aligned. */
+ if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
+ goto fail;
+
+ base = build_fold_addr_expr (base);
+
+ /* Substituting bases of IVs into the base expression might
+ have caused folding opportunities. */
+ if (TREE_CODE (base) == ADDR_EXPR)
+ {
+ tree *ref = &TREE_OPERAND (base, 0);
+ while (handled_component_p (*ref))
+ ref = &TREE_OPERAND (*ref, 0);
+ if (TREE_CODE (*ref) == MEM_REF)
+ {
+ tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
+ TREE_OPERAND (*ref, 0),
+ TREE_OPERAND (*ref, 1));
+ if (tem)
+ *ref = tem;
+ }
+ }
+ }
+
+ civ = alloc_iv (base, step);
+ record_use (data, op_p, civ, stmt, USE_ADDRESS);
+ return;
+
+fail:
+ for_each_index (op_p, idx_record_use, data);
+}
+
+/* Finds and records invariants used in STMT. */
+
+static void
+find_invariants_stmt (struct ivopts_data *data, gimple stmt)
+{
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ tree op;
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use_p);
+ record_invariant (data, op, false);
+ }
+}
+
+/* Finds interesting uses of induction variables in the statement STMT. */
+
+static void
+find_interesting_uses_stmt (struct ivopts_data *data, gimple stmt)
+{
+ struct iv *iv;
+ tree op, *lhs, *rhs;
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ enum tree_code code;
+
+ find_invariants_stmt (data, stmt);
+
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ find_interesting_uses_cond (data, stmt);
+ return;
+ }
+
+ if (is_gimple_assign (stmt))
+ {
+ lhs = gimple_assign_lhs_ptr (stmt);
+ rhs = gimple_assign_rhs1_ptr (stmt);
+
+ if (TREE_CODE (*lhs) == SSA_NAME)
+ {
+ /* If the statement defines an induction variable, the uses are not
+ interesting by themselves. */
+
+ iv = get_iv (data, *lhs);
+
+ if (iv && !integer_zerop (iv->step))
+ return;
+ }
+
+ code = gimple_assign_rhs_code (stmt);
+ if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
+ && (REFERENCE_CLASS_P (*rhs)
+ || is_gimple_val (*rhs)))
+ {
+ if (REFERENCE_CLASS_P (*rhs))
+ find_interesting_uses_address (data, stmt, rhs);
+ else
+ find_interesting_uses_op (data, *rhs);
+
+ if (REFERENCE_CLASS_P (*lhs))
+ find_interesting_uses_address (data, stmt, lhs);
+ return;
+ }
+ else if (TREE_CODE_CLASS (code) == tcc_comparison)
+ {
+ find_interesting_uses_cond (data, stmt);
+ return;
+ }
+
+ /* TODO -- we should also handle address uses of type
+
+ memory = call (whatever);
+
+ and
+
+ call (memory). */
+ }
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && gimple_bb (stmt) == data->current_loop->header)
+ {
+ iv = get_iv (data, PHI_RESULT (stmt));
+
+ if (iv && !integer_zerop (iv->step))
+ return;
+ }
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use_p);
+
+ if (TREE_CODE (op) != SSA_NAME)
+ continue;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ continue;
+
+ find_interesting_uses_op (data, op);
+ }
+}
+
+/* Finds interesting uses of induction variables outside of loops
+ on loop exit edge EXIT. */
+
+static void
+find_interesting_uses_outside (struct ivopts_data *data, edge exit)
+{
+ gimple phi;
+ gimple_stmt_iterator psi;
+ tree def;
+
+ for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+ def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
+ if (!virtual_operand_p (def))
+ find_interesting_uses_op (data, def);
+ }
+}
+
+/* Finds uses of the induction variables that are interesting. */
+
+static void
+find_interesting_uses (struct ivopts_data *data)
+{
+ basic_block bb;
+ gimple_stmt_iterator bsi;
+ basic_block *body = get_loop_body (data->current_loop);
+ unsigned i;
+ struct version_info *info;
+ edge e;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Uses:\n\n");
+
+ for (i = 0; i < data->current_loop->num_nodes; i++)
+ {
+ edge_iterator ei;
+ bb = body[i];
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
+ && !flow_bb_inside_loop_p (data->current_loop, e->dest))
+ find_interesting_uses_outside (data, e);
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ find_interesting_uses_stmt (data, gsi_stmt (bsi));
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ if (!is_gimple_debug (gsi_stmt (bsi)))
+ find_interesting_uses_stmt (data, gsi_stmt (bsi));
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ bitmap_iterator bi;
+
+ fprintf (dump_file, "\n");
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ info = ver_info (data, i);
+ if (info->inv_id)
+ {
+ fprintf (dump_file, " ");
+ print_generic_expr (dump_file, info->name, TDF_SLIM);
+ fprintf (dump_file, " is invariant (%d)%s\n",
+ info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
+ }
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ free (body);
+}
+
+/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
+ is true, assume we are inside an address. If TOP_COMPREF is true, assume
+ we are at the top-level of the processed address. */
+
+static tree
+strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
+ HOST_WIDE_INT *offset)
+{
+ tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
+ enum tree_code code;
+ tree type, orig_type = TREE_TYPE (expr);
+ HOST_WIDE_INT off0, off1, st;
+ tree orig_expr = expr;
+
+ STRIP_NOPS (expr);
+
+ type = TREE_TYPE (expr);
+ code = TREE_CODE (expr);
+ *offset = 0;
+
+ switch (code)
+ {
+ case INTEGER_CST:
+ if (!cst_and_fits_in_hwi (expr)
+ || integer_zerop (expr))
+ return orig_expr;
+
+ *offset = int_cst_value (expr);
+ return build_int_cst (orig_type, 0);
+
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+
+ op0 = strip_offset_1 (op0, false, false, &off0);
+ op1 = strip_offset_1 (op1, false, false, &off1);
+
+ *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
+ if (op0 == TREE_OPERAND (expr, 0)
+ && op1 == TREE_OPERAND (expr, 1))
+ return orig_expr;
+
+ if (integer_zerop (op1))
+ expr = op0;
+ else if (integer_zerop (op0))
+ {
+ if (code == MINUS_EXPR)
+ expr = fold_build1 (NEGATE_EXPR, type, op1);
+ else
+ expr = op1;
+ }
+ else
+ expr = fold_build2 (code, type, op0, op1);
+
+ return fold_convert (orig_type, expr);
+
+ case MULT_EXPR:
+ op1 = TREE_OPERAND (expr, 1);
+ if (!cst_and_fits_in_hwi (op1))
+ return orig_expr;
+
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, false, false, &off0);
+ if (op0 == TREE_OPERAND (expr, 0))
+ return orig_expr;
+
+ *offset = off0 * int_cst_value (op1);
+ if (integer_zerop (op0))
+ expr = op0;
+ else
+ expr = fold_build2 (MULT_EXPR, type, op0, op1);
+
+ return fold_convert (orig_type, expr);
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (!inside_addr)
+ return orig_expr;
+
+ step = array_ref_element_size (expr);
+ if (!cst_and_fits_in_hwi (step))
+ break;
+
+ st = int_cst_value (step);
+ op1 = TREE_OPERAND (expr, 1);
+ op1 = strip_offset_1 (op1, false, false, &off1);
+ *offset = off1 * st;
+
+ if (top_compref
+ && integer_zerop (op1))
+ {
+ /* Strip the component reference completely. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
+ *offset += off0;
+ return op0;
+ }
+ break;
+
+ case COMPONENT_REF:
+ {
+ tree field;
+
+ if (!inside_addr)
+ return orig_expr;
+
+ tmp = component_ref_field_offset (expr);
+ field = TREE_OPERAND (expr, 1);
+ if (top_compref
+ && cst_and_fits_in_hwi (tmp)
+ && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field)))
+ {
+ HOST_WIDE_INT boffset, abs_off;
+
+ /* Strip the component reference completely. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
+ boffset = int_cst_value (DECL_FIELD_BIT_OFFSET (field));
+ abs_off = abs_hwi (boffset) / BITS_PER_UNIT;
+ if (boffset < 0)
+ abs_off = -abs_off;
+
+ *offset = off0 + int_cst_value (tmp) + abs_off;
+ return op0;
+ }
+ }
+ break;
+
+ case ADDR_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, true, true, &off0);
+ *offset += off0;
+
+ if (op0 == TREE_OPERAND (expr, 0))
+ return orig_expr;
+
+ expr = build_fold_addr_expr (op0);
+ return fold_convert (orig_type, expr);
+
+ case MEM_REF:
+ /* ??? Offset operand? */
+ inside_addr = false;
+ break;
+
+ default:
+ return orig_expr;
+ }
+
+ /* Default handling of expressions for that we want to recurse into
+ the first operand. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, false, &off0);
+ *offset += off0;
+
+ if (op0 == TREE_OPERAND (expr, 0)
+ && (!op1 || op1 == TREE_OPERAND (expr, 1)))
+ return orig_expr;
+
+ expr = copy_node (expr);
+ TREE_OPERAND (expr, 0) = op0;
+ if (op1)
+ TREE_OPERAND (expr, 1) = op1;
+
+ /* Inside address, we might strip the top level component references,
+ thus changing type of the expression. Handling of ADDR_EXPR
+ will fix that. */
+ expr = fold_convert (orig_type, expr);
+
+ return expr;
+}
+
+/* Strips constant offsets from EXPR and stores them to OFFSET. */
+
+static tree
+strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
+{
+ HOST_WIDE_INT off;
+ tree core = strip_offset_1 (expr, false, false, &off);
+ *offset = off;
+ return core;
+}
+
+/* Returns variant of TYPE that can be used as base for different uses.
+ We return unsigned type with the same precision, which avoids problems
+ with overflows. */
+
+static tree
+generic_type_for (tree type)
+{
+ if (POINTER_TYPE_P (type))
+ return unsigned_type_for (type);
+
+ if (TYPE_UNSIGNED (type))
+ return type;
+
+ return unsigned_type_for (type);
+}
+
+/* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
+ the bitmap to that we should store it. */
+
+static struct ivopts_data *fd_ivopts_data;
+static tree
+find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
+{
+ bitmap *depends_on = (bitmap *) data;
+ struct version_info *info;
+
+ if (TREE_CODE (*expr_p) != SSA_NAME)
+ return NULL_TREE;
+ info = name_info (fd_ivopts_data, *expr_p);
+
+ if (!info->inv_id || info->has_nonlin_use)
+ return NULL_TREE;
+
+ if (!*depends_on)
+ *depends_on = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (*depends_on, info->inv_id);
+
+ return NULL_TREE;
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. If both BASE and STEP are NULL, we add a pseudocandidate for the
+ replacement of the final value of the iv by a direct computation. */
+
+static struct iv_cand *
+add_candidate_1 (struct ivopts_data *data,
+ tree base, tree step, bool important, enum iv_position pos,
+ struct iv_use *use, gimple incremented_at)
+{
+ unsigned i;
+ struct iv_cand *cand = NULL;
+ tree type, orig_type;
+
+ /* For non-original variables, make sure their values are computed in a type
+ that does not invoke undefined behavior on overflows (since in general,
+ we cannot prove that these induction variables are non-wrapping). */
+ if (pos != IP_ORIGINAL)
+ {
+ orig_type = TREE_TYPE (base);
+ type = generic_type_for (orig_type);
+ if (type != orig_type)
+ {
+ base = fold_convert (type, base);
+ step = fold_convert (type, step);
+ }
+ }
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ cand = iv_cand (data, i);
+
+ if (cand->pos != pos)
+ continue;
+
+ if (cand->incremented_at != incremented_at
+ || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
+ && cand->ainc_use != use))
+ continue;
+
+ if (!cand->iv)
+ {
+ if (!base && !step)
+ break;
+
+ continue;
+ }
+
+ if (!base && !step)
+ continue;
+
+ if (operand_equal_p (base, cand->iv->base, 0)
+ && operand_equal_p (step, cand->iv->step, 0)
+ && (TYPE_PRECISION (TREE_TYPE (base))
+ == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
+ break;
+ }
+
+ if (i == n_iv_cands (data))
+ {
+ cand = XCNEW (struct iv_cand);
+ cand->id = i;
+
+ if (!base && !step)
+ cand->iv = NULL;
+ else
+ cand->iv = alloc_iv (base, step);
+
+ cand->pos = pos;
+ if (pos != IP_ORIGINAL && cand->iv)
+ {
+ cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
+ cand->var_after = cand->var_before;
+ }
+ cand->important = important;
+ cand->incremented_at = incremented_at;
+ data->iv_candidates.safe_push (cand);
+
+ if (step
+ && TREE_CODE (step) != INTEGER_CST)
+ {
+ fd_ivopts_data = data;
+ walk_tree (&step, find_depends, &cand->depends_on, NULL);
+ }
+
+ if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
+ cand->ainc_use = use;
+ else
+ cand->ainc_use = NULL;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_cand (dump_file, cand);
+ }
+
+ if (important && !cand->important)
+ {
+ cand->important = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Candidate %d is important\n", cand->id);
+ }
+
+ if (use)
+ {
+ bitmap_set_bit (use->related_cands, i);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Candidate %d is related to use %d\n",
+ cand->id, use->id);
+ }
+
+ return cand;
+}
+
+/* Returns true if incrementing the induction variable at the end of the LOOP
+ is allowed.
+
+ The purpose is to avoid splitting latch edge with a biv increment, thus
+ creating a jump, possibly confusing other optimization passes and leaving
+ less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
+ is not available (so we do not have a better alternative), or if the latch
+ edge is already nonempty. */
+
+static bool
+allow_ip_end_pos_p (struct loop *loop)
+{
+ if (!ip_normal_pos (loop))
+ return true;
+
+ if (!empty_block_p (ip_end_pos (loop)))
+ return true;
+
+ return false;
+}
+
+/* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
+ Important field is set to IMPORTANT. */
+
+static void
+add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
+ bool important, struct iv_use *use)
+{
+ basic_block use_bb = gimple_bb (use->stmt);
+ enum machine_mode mem_mode;
+ unsigned HOST_WIDE_INT cstepi;
+
+ /* If we insert the increment in any position other than the standard
+ ones, we must ensure that it is incremented once per iteration.
+ It must not be in an inner nested loop, or one side of an if
+ statement. */
+ if (use_bb->loop_father != data->current_loop
+ || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
+ || stmt_could_throw_p (use->stmt)
+ || !cst_and_fits_in_hwi (step))
+ return;
+
+ cstepi = int_cst_value (step);
+
+ mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
+ if (((USE_LOAD_PRE_INCREMENT (mem_mode)
+ || USE_STORE_PRE_INCREMENT (mem_mode))
+ && GET_MODE_SIZE (mem_mode) == cstepi)
+ || ((USE_LOAD_PRE_DECREMENT (mem_mode)
+ || USE_STORE_PRE_DECREMENT (mem_mode))
+ && GET_MODE_SIZE (mem_mode) == -cstepi))
+ {
+ enum tree_code code = MINUS_EXPR;
+ tree new_base;
+ tree new_step = step;
+
+ if (POINTER_TYPE_P (TREE_TYPE (base)))
+ {
+ new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
+ code = POINTER_PLUS_EXPR;
+ }
+ else
+ new_step = fold_convert (TREE_TYPE (base), new_step);
+ new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
+ add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
+ use->stmt);
+ }
+ if (((USE_LOAD_POST_INCREMENT (mem_mode)
+ || USE_STORE_POST_INCREMENT (mem_mode))
+ && GET_MODE_SIZE (mem_mode) == cstepi)
+ || ((USE_LOAD_POST_DECREMENT (mem_mode)
+ || USE_STORE_POST_DECREMENT (mem_mode))
+ && GET_MODE_SIZE (mem_mode) == -cstepi))
+ {
+ add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
+ use->stmt);
+ }
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. The candidate computation is scheduled on all available positions. */
+
+static void
+add_candidate (struct ivopts_data *data,
+ tree base, tree step, bool important, struct iv_use *use)
+{
+ if (ip_normal_pos (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL);
+ if (ip_end_pos (data->current_loop)
+ && allow_ip_end_pos_p (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_END, use, NULL);
+
+ if (use != NULL && use->type == USE_ADDRESS)
+ add_autoinc_candidates (data, base, step, important, use);
+}
+
+/* Adds standard iv candidates. */
+
+static void
+add_standard_iv_candidates (struct ivopts_data *data)
+{
+ add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
+
+ /* The same for a double-integer type if it is still fast enough. */
+ if (TYPE_PRECISION
+ (long_integer_type_node) > TYPE_PRECISION (integer_type_node)
+ && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
+ add_candidate (data, build_int_cst (long_integer_type_node, 0),
+ build_int_cst (long_integer_type_node, 1), true, NULL);
+
+ /* The same for a double-integer type if it is still fast enough. */
+ if (TYPE_PRECISION
+ (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
+ && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
+ add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
+ build_int_cst (long_long_integer_type_node, 1), true, NULL);
+}
+
+
+/* Adds candidates bases on the old induction variable IV. */
+
+static void
+add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
+{
+ gimple phi;
+ tree def;
+ struct iv_cand *cand;
+
+ add_candidate (data, iv->base, iv->step, true, NULL);
+
+ /* The same, but with initial value zero. */
+ if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
+ add_candidate (data, size_int (0), iv->step, true, NULL);
+ else
+ add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
+ iv->step, true, NULL);
+
+ phi = SSA_NAME_DEF_STMT (iv->ssa_name);
+ if (gimple_code (phi) == GIMPLE_PHI)
+ {
+ /* Additionally record the possibility of leaving the original iv
+ untouched. */
+ def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
+ /* Don't add candidate if it's from another PHI node because
+ it's an affine iv appearing in the form of PEELED_CHREC. */
+ phi = SSA_NAME_DEF_STMT (def);
+ if (gimple_code (phi) != GIMPLE_PHI)
+ {
+ cand = add_candidate_1 (data,
+ iv->base, iv->step, true, IP_ORIGINAL, NULL,
+ SSA_NAME_DEF_STMT (def));
+ cand->var_before = iv->ssa_name;
+ cand->var_after = def;
+ }
+ else
+ gcc_assert (gimple_bb (phi) == data->current_loop->header);
+ }
+}
+
+/* Adds candidates based on the old induction variables. */
+
+static void
+add_old_ivs_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv *iv;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ iv = ver_info (data, i)->iv;
+ if (iv && iv->biv_p && !integer_zerop (iv->step))
+ add_old_iv_candidates (data, iv);
+ }
+}
+
+/* Adds candidates based on the value of the induction variable IV and USE. */
+
+static void
+add_iv_value_candidates (struct ivopts_data *data,
+ struct iv *iv, struct iv_use *use)
+{
+ unsigned HOST_WIDE_INT offset;
+ tree base;
+ tree basetype;
+
+ add_candidate (data, iv->base, iv->step, false, use);
+
+ /* The same, but with initial value zero. Make such variable important,
+ since it is generic enough so that possibly many uses may be based
+ on it. */
+ basetype = TREE_TYPE (iv->base);
+ if (POINTER_TYPE_P (basetype))
+ basetype = sizetype;
+ add_candidate (data, build_int_cst (basetype, 0),
+ iv->step, true, use);
+
+ /* Third, try removing the constant offset. Make sure to even
+ add a candidate for &a[0] vs. (T *)&a. */
+ base = strip_offset (iv->base, &offset);
+ if (offset
+ || base != iv->base)
+ add_candidate (data, base, iv->step, false, use);
+}
+
+/* Adds candidates based on the uses. */
+
+static void
+add_derived_ivs_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ if (!use)
+ continue;
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ case USE_COMPARE:
+ case USE_ADDRESS:
+ /* Just add the ivs based on the value of the iv used here. */
+ add_iv_value_candidates (data, use->iv, use);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+}
+
+/* Record important candidates and add them to related_cands bitmaps
+ if needed. */
+
+static void
+record_important_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ if (cand->important)
+ bitmap_set_bit (data->important_candidates, i);
+ }
+
+ data->consider_all_candidates = (n_iv_cands (data)
+ <= CONSIDER_ALL_CANDIDATES_BOUND);
+
+ if (data->consider_all_candidates)
+ {
+ /* We will not need "related_cands" bitmaps in this case,
+ so release them to decrease peak memory consumption. */
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ BITMAP_FREE (use->related_cands);
+ }
+ }
+ else
+ {
+ /* Add important candidates to the related_cands bitmaps. */
+ for (i = 0; i < n_iv_uses (data); i++)
+ bitmap_ior_into (iv_use (data, i)->related_cands,
+ data->important_candidates);
+ }
+}
+
+/* Allocates the data structure mapping the (use, candidate) pairs to costs.
+ If consider_all_candidates is true, we use a two-dimensional array, otherwise
+ we allocate a simple list to every use. */
+
+static void
+alloc_use_cost_map (struct ivopts_data *data)
+{
+ unsigned i, size, s;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ if (data->consider_all_candidates)
+ size = n_iv_cands (data);
+ else
+ {
+ s = bitmap_count_bits (use->related_cands);
+
+ /* Round up to the power of two, so that moduling by it is fast. */
+ size = s ? (1 << ceil_log2 (s)) : 1;
+ }
+
+ use->n_map_members = size;
+ use->cost_map = XCNEWVEC (struct cost_pair, size);
+ }
+}
+
+/* Returns description of computation cost of expression whose runtime
+ cost is RUNTIME and complexity corresponds to COMPLEXITY. */
+
+static comp_cost
+new_cost (unsigned runtime, unsigned complexity)
+{
+ comp_cost cost;
+
+ cost.cost = runtime;
+ cost.complexity = complexity;
+
+ return cost;
+}
+
+/* Adds costs COST1 and COST2. */
+
+static comp_cost
+add_costs (comp_cost cost1, comp_cost cost2)
+{
+ cost1.cost += cost2.cost;
+ cost1.complexity += cost2.complexity;
+
+ return cost1;
+}
+/* Subtracts costs COST1 and COST2. */
+
+static comp_cost
+sub_costs (comp_cost cost1, comp_cost cost2)
+{
+ cost1.cost -= cost2.cost;
+ cost1.complexity -= cost2.complexity;
+
+ return cost1;
+}
+
+/* Returns a negative number if COST1 < COST2, a positive number if
+ COST1 > COST2, and 0 if COST1 = COST2. */
+
+static int
+compare_costs (comp_cost cost1, comp_cost cost2)
+{
+ if (cost1.cost == cost2.cost)
+ return cost1.complexity - cost2.complexity;
+
+ return cost1.cost - cost2.cost;
+}
+
+/* Returns true if COST is infinite. */
+
+static bool
+infinite_cost_p (comp_cost cost)
+{
+ return cost.cost == INFTY;
+}
+
+/* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
+ on invariants DEPENDS_ON and that the value used in expressing it
+ is VALUE, and in case of iv elimination the comparison operator is COMP. */
+
+static void
+set_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ comp_cost cost, bitmap depends_on, tree value,
+ enum tree_code comp, int inv_expr_id)
+{
+ unsigned i, s;
+
+ if (infinite_cost_p (cost))
+ {
+ BITMAP_FREE (depends_on);
+ return;
+ }
+
+ if (data->consider_all_candidates)
+ {
+ use->cost_map[cand->id].cand = cand;
+ use->cost_map[cand->id].cost = cost;
+ use->cost_map[cand->id].depends_on = depends_on;
+ use->cost_map[cand->id].value = value;
+ use->cost_map[cand->id].comp = comp;
+ use->cost_map[cand->id].inv_expr_id = inv_expr_id;
+ return;
+ }
+
+ /* n_map_members is a power of two, so this computes modulo. */
+ s = cand->id & (use->n_map_members - 1);
+ for (i = s; i < use->n_map_members; i++)
+ if (!use->cost_map[i].cand)
+ goto found;
+ for (i = 0; i < s; i++)
+ if (!use->cost_map[i].cand)
+ goto found;
+
+ gcc_unreachable ();
+
+found:
+ use->cost_map[i].cand = cand;
+ use->cost_map[i].cost = cost;
+ use->cost_map[i].depends_on = depends_on;
+ use->cost_map[i].value = value;
+ use->cost_map[i].comp = comp;
+ use->cost_map[i].inv_expr_id = inv_expr_id;
+}
+
+/* Gets cost of (USE, CANDIDATE) pair. */
+
+static struct cost_pair *
+get_use_iv_cost (struct ivopts_data *data, struct iv_use *use,
+ struct iv_cand *cand)
+{
+ unsigned i, s;
+ struct cost_pair *ret;
+
+ if (!cand)
+ return NULL;
+
+ if (data->consider_all_candidates)
+ {
+ ret = use->cost_map + cand->id;
+ if (!ret->cand)
+ return NULL;
+
+ return ret;
+ }
+
+ /* n_map_members is a power of two, so this computes modulo. */
+ s = cand->id & (use->n_map_members - 1);
+ for (i = s; i < use->n_map_members; i++)
+ if (use->cost_map[i].cand == cand)
+ return use->cost_map + i;
+ else if (use->cost_map[i].cand == NULL)
+ return NULL;
+ for (i = 0; i < s; i++)
+ if (use->cost_map[i].cand == cand)
+ return use->cost_map + i;
+ else if (use->cost_map[i].cand == NULL)
+ return NULL;
+
+ return NULL;
+}
+
+/* Returns estimate on cost of computing SEQ. */
+
+static unsigned
+seq_cost (rtx seq, bool speed)
+{
+ unsigned cost = 0;
+ rtx set;
+
+ for (; seq; seq = NEXT_INSN (seq))
+ {
+ set = single_set (seq);
+ if (set)
+ cost += set_src_cost (SET_SRC (set), speed);
+ else
+ cost++;
+ }
+
+ return cost;
+}
+
+/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
+static rtx
+produce_memory_decl_rtl (tree obj, int *regno)
+{
+ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
+ enum machine_mode address_mode = targetm.addr_space.address_mode (as);
+ rtx x;
+
+ gcc_assert (obj);
+ if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
+ {
+ const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
+ x = gen_rtx_SYMBOL_REF (address_mode, name);
+ SET_SYMBOL_REF_DECL (x, obj);
+ x = gen_rtx_MEM (DECL_MODE (obj), x);
+ set_mem_addr_space (x, as);
+ targetm.encode_section_info (obj, x, true);
+ }
+ else
+ {
+ x = gen_raw_REG (address_mode, (*regno)++);
+ x = gen_rtx_MEM (DECL_MODE (obj), x);
+ set_mem_addr_space (x, as);
+ }
+
+ return x;
+}
+
+/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
+ walk_tree. DATA contains the actual fake register number. */
+
+static tree
+prepare_decl_rtl (tree *expr_p, int *ws, void *data)
+{
+ tree obj = NULL_TREE;
+ rtx x = NULL_RTX;
+ int *regno = (int *) data;
+
+ switch (TREE_CODE (*expr_p))
+ {
+ case ADDR_EXPR:
+ for (expr_p = &TREE_OPERAND (*expr_p, 0);
+ handled_component_p (*expr_p);
+ expr_p = &TREE_OPERAND (*expr_p, 0))
+ continue;
+ obj = *expr_p;
+ if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj))
+ x = produce_memory_decl_rtl (obj, regno);
+ break;
+
+ case SSA_NAME:
+ *ws = 0;
+ obj = SSA_NAME_VAR (*expr_p);
+ /* Defer handling of anonymous SSA_NAMEs to the expander. */
+ if (!obj)
+ return NULL_TREE;
+ if (!DECL_RTL_SET_P (obj))
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+ break;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ *ws = 0;
+ obj = *expr_p;
+
+ if (DECL_RTL_SET_P (obj))
+ break;
+
+ if (DECL_MODE (obj) == BLKmode)
+ x = produce_memory_decl_rtl (obj, regno);
+ else
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+
+ break;
+
+ default:
+ break;
+ }
+
+ if (x)
+ {
+ decl_rtl_to_reset.safe_push (obj);
+ SET_DECL_RTL (obj, x);
+ }
+
+ return NULL_TREE;
+}
+
+/* Determines cost of the computation of EXPR. */
+
+static unsigned
+computation_cost (tree expr, bool speed)
+{
+ rtx seq, rslt;
+ tree type = TREE_TYPE (expr);
+ unsigned cost;
+ /* Avoid using hard regs in ways which may be unsupported. */
+ int regno = LAST_VIRTUAL_REGISTER + 1;
+ struct cgraph_node *node = cgraph_get_node (current_function_decl);
+ enum node_frequency real_frequency = node->frequency;
+
+ node->frequency = NODE_FREQUENCY_NORMAL;
+ crtl->maybe_hot_insn_p = speed;
+ walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
+ start_sequence ();
+ rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
+ seq = get_insns ();
+ end_sequence ();
+ default_rtl_profile ();
+ node->frequency = real_frequency;
+
+ cost = seq_cost (seq, speed);
+ if (MEM_P (rslt))
+ cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
+ TYPE_ADDR_SPACE (type), speed);
+ else if (!REG_P (rslt))
+ cost += set_src_cost (rslt, speed);
+
+ return cost;
+}
+
+/* Returns variable containing the value of candidate CAND at statement AT. */
+
+static tree
+var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple stmt)
+{
+ if (stmt_after_increment (loop, cand, stmt))
+ return cand->var_after;
+ else
+ return cand->var_before;
+}
+
+/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
+ same precision that is at least as wide as the precision of TYPE, stores
+ BA to A and BB to B, and returns the type of BA. Otherwise, returns the
+ type of A and B. */
+
+static tree
+determine_common_wider_type (tree *a, tree *b)
+{
+ tree wider_type = NULL;
+ tree suba, subb;
+ tree atype = TREE_TYPE (*a);
+
+ if (CONVERT_EXPR_P (*a))
+ {
+ suba = TREE_OPERAND (*a, 0);
+ wider_type = TREE_TYPE (suba);
+ if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
+ return atype;
+ }
+ else
+ return atype;
+
+ if (CONVERT_EXPR_P (*b))
+ {
+ subb = TREE_OPERAND (*b, 0);
+ if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
+ return atype;
+ }
+ else
+ return atype;
+
+ *a = suba;
+ *b = subb;
+ return wider_type;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The expression is stored in a decomposed
+ form into AFF. Returns false if USE cannot be expressed using CAND. */
+
+static bool
+get_computation_aff (struct loop *loop,
+ struct iv_use *use, struct iv_cand *cand, gimple at,
+ struct aff_tree *aff)
+{
+ tree ubase = use->iv->base;
+ tree ustep = use->iv->step;
+ tree cbase = cand->iv->base;
+ tree cstep = cand->iv->step, cstep_common;
+ tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
+ tree common_type, var;
+ tree uutype;
+ aff_tree cbase_aff, var_aff;
+ double_int rat;
+
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ {
+ /* We do not have a precision to express the values of use. */
+ return false;
+ }
+
+ var = var_at_stmt (loop, cand, at);
+ uutype = unsigned_type_for (utype);
+
+ /* If the conversion is not noop, perform it. */
+ if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
+ {
+ cstep = fold_convert (uutype, cstep);
+ cbase = fold_convert (uutype, cbase);
+ var = fold_convert (uutype, var);
+ }
+
+ if (!constant_multiple_of (ustep, cstep, &rat))
+ return false;
+
+ /* In case both UBASE and CBASE are shortened to UUTYPE from some common
+ type, we achieve better folding by computing their difference in this
+ wider type, and cast the result to UUTYPE. We do not need to worry about
+ overflows, as all the arithmetics will in the end be performed in UUTYPE
+ anyway. */
+ common_type = determine_common_wider_type (&ubase, &cbase);
+
+ /* use = ubase - ratio * cbase + ratio * var. */
+ tree_to_aff_combination (ubase, common_type, aff);
+ tree_to_aff_combination (cbase, common_type, &cbase_aff);
+ tree_to_aff_combination (var, uutype, &var_aff);
+
+ /* We need to shift the value if we are after the increment. */
+ if (stmt_after_increment (loop, cand, at))
+ {
+ aff_tree cstep_aff;
+
+ if (common_type != uutype)
+ cstep_common = fold_convert (common_type, cstep);
+ else
+ cstep_common = cstep;
+
+ tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
+ aff_combination_add (&cbase_aff, &cstep_aff);
+ }
+
+ aff_combination_scale (&cbase_aff, -rat);
+ aff_combination_add (aff, &cbase_aff);
+ if (common_type != uutype)
+ aff_combination_convert (aff, uutype);
+
+ aff_combination_scale (&var_aff, rat);
+ aff_combination_add (aff, &var_aff);
+
+ return true;
+}
+
+/* Return the type of USE. */
+
+static tree
+get_use_type (struct iv_use *use)
+{
+ tree base_type = TREE_TYPE (use->iv->base);
+ tree type;
+
+ if (use->type == USE_ADDRESS)
+ {
+ /* The base_type may be a void pointer. Create a pointer type based on
+ the mem_ref instead. */
+ type = build_pointer_type (TREE_TYPE (*use->op_p));
+ gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type))
+ == TYPE_ADDR_SPACE (TREE_TYPE (base_type)));
+ }
+ else
+ type = base_type;
+
+ return type;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The computation is unshared. */
+
+static tree
+get_computation_at (struct loop *loop,
+ struct iv_use *use, struct iv_cand *cand, gimple at)
+{
+ aff_tree aff;
+ tree type = get_use_type (use);
+
+ if (!get_computation_aff (loop, use, cand, at, &aff))
+ return NULL_TREE;
+ unshare_aff_combination (&aff);
+ return fold_convert (type, aff_combination_to_tree (&aff));
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND in LOOP. The computation is unshared. */
+
+static tree
+get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
+{
+ return get_computation_at (loop, use, cand, use->stmt);
+}
+
+/* Adjust the cost COST for being in loop setup rather than loop body.
+ If we're optimizing for space, the loop setup overhead is constant;
+ if we're optimizing for speed, amortize it over the per-iteration cost. */
+static unsigned
+adjust_setup_cost (struct ivopts_data *data, unsigned cost)
+{
+ if (cost == INFTY)
+ return cost;
+ else if (optimize_loop_for_speed_p (data->current_loop))
+ return cost / avg_loop_niter (data->current_loop);
+ else
+ return cost;
+}
+
+/* Returns true if multiplying by RATIO is allowed in an address. Test the
+ validity for a memory reference accessing memory of mode MODE in
+ address space AS. */
+
+
+bool
+multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, enum machine_mode mode,
+ addr_space_t as)
+{
+#define MAX_RATIO 128
+ unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mode;
+ static vec<sbitmap> valid_mult_list;
+ sbitmap valid_mult;
+
+ if (data_index >= valid_mult_list.length ())
+ valid_mult_list.safe_grow_cleared (data_index + 1);
+
+ valid_mult = valid_mult_list[data_index];
+ if (!valid_mult)
+ {
+ enum machine_mode address_mode = targetm.addr_space.address_mode (as);
+ rtx reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
+ rtx reg2 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
+ rtx addr, scaled;
+ HOST_WIDE_INT i;
+
+ valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
+ bitmap_clear (valid_mult);
+ scaled = gen_rtx_fmt_ee (MULT, address_mode, reg1, NULL_RTX);
+ addr = gen_rtx_fmt_ee (PLUS, address_mode, scaled, reg2);
+ for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
+ {
+ XEXP (scaled, 1) = gen_int_mode (i, address_mode);
+ if (memory_address_addr_space_p (mode, addr, as)
+ || memory_address_addr_space_p (mode, scaled, as))
+ bitmap_set_bit (valid_mult, i + MAX_RATIO);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " allowed multipliers:");
+ for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
+ if (bitmap_bit_p (valid_mult, i + MAX_RATIO))
+ fprintf (dump_file, " %d", (int) i);
+ fprintf (dump_file, "\n");
+ fprintf (dump_file, "\n");
+ }
+
+ valid_mult_list[data_index] = valid_mult;
+ }
+
+ if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
+ return false;
+
+ return bitmap_bit_p (valid_mult, ratio + MAX_RATIO);
+}
+
+/* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
+ If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
+ variable is omitted. Compute the cost for a memory reference that accesses
+ a memory location of mode MEM_MODE in address space AS.
+
+ MAY_AUTOINC is set to true if the autoincrement (increasing index by
+ size of MEM_MODE / RATIO) is available. To make this determination, we
+ look at the size of the increment to be made, which is given in CSTEP.
+ CSTEP may be zero if the step is unknown.
+ STMT_AFTER_INC is true iff the statement we're looking at is after the
+ increment of the original biv.
+
+ TODO -- there must be some better way. This all is quite crude. */
+
+enum ainc_type
+{
+ AINC_PRE_INC, /* Pre increment. */
+ AINC_PRE_DEC, /* Pre decrement. */
+ AINC_POST_INC, /* Post increment. */
+ AINC_POST_DEC, /* Post decrement. */
+ AINC_NONE /* Also the number of auto increment types. */
+};
+
+typedef struct address_cost_data_s
+{
+ HOST_WIDE_INT min_offset, max_offset;
+ unsigned costs[2][2][2][2];
+ unsigned ainc_costs[AINC_NONE];
+} *address_cost_data;
+
+
+static comp_cost
+get_address_cost (bool symbol_present, bool var_present,
+ unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
+ HOST_WIDE_INT cstep, enum machine_mode mem_mode,
+ addr_space_t as, bool speed,
+ bool stmt_after_inc, bool *may_autoinc)
+{
+ enum machine_mode address_mode = targetm.addr_space.address_mode (as);
+ static vec<address_cost_data> address_cost_data_list;
+ unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mem_mode;
+ address_cost_data data;
+ static bool has_preinc[MAX_MACHINE_MODE], has_postinc[MAX_MACHINE_MODE];
+ static bool has_predec[MAX_MACHINE_MODE], has_postdec[MAX_MACHINE_MODE];
+ unsigned cost, acost, complexity;
+ enum ainc_type autoinc_type;
+ bool offset_p, ratio_p, autoinc;
+ HOST_WIDE_INT s_offset, autoinc_offset, msize;
+ unsigned HOST_WIDE_INT mask;
+ unsigned bits;
+
+ if (data_index >= address_cost_data_list.length ())
+ address_cost_data_list.safe_grow_cleared (data_index + 1);
+
+ data = address_cost_data_list[data_index];
+ if (!data)
+ {
+ HOST_WIDE_INT i;
+ HOST_WIDE_INT rat, off = 0;
+ int old_cse_not_expected, width;
+ unsigned sym_p, var_p, off_p, rat_p, add_c;
+ rtx seq, addr, base;
+ rtx reg0, reg1;
+
+ data = (address_cost_data) xcalloc (1, sizeof (*data));
+
+ reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
+
+ width = GET_MODE_BITSIZE (address_mode) - 1;
+ if (width > (HOST_BITS_PER_WIDE_INT - 1))
+ width = HOST_BITS_PER_WIDE_INT - 1;
+ addr = gen_rtx_fmt_ee (PLUS, address_mode, reg1, NULL_RTX);
+
+ for (i = width; i >= 0; i--)
+ {
+ off = -((unsigned HOST_WIDE_INT) 1 << i);
+ XEXP (addr, 1) = gen_int_mode (off, address_mode);
+ if (memory_address_addr_space_p (mem_mode, addr, as))
+ break;
+ }
+ data->min_offset = (i == -1? 0 : off);
+
+ for (i = width; i >= 0; i--)
+ {
+ off = ((unsigned HOST_WIDE_INT) 1 << i) - 1;
+ XEXP (addr, 1) = gen_int_mode (off, address_mode);
+ if (memory_address_addr_space_p (mem_mode, addr, as))
+ break;
+ }
+ if (i == -1)
+ off = 0;
+ data->max_offset = off;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "get_address_cost:\n");
+ fprintf (dump_file, " min offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
+ GET_MODE_NAME (mem_mode),
+ data->min_offset);
+ fprintf (dump_file, " max offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
+ GET_MODE_NAME (mem_mode),
+ data->max_offset);
+ }
+
+ rat = 1;
+ for (i = 2; i <= MAX_RATIO; i++)
+ if (multiplier_allowed_in_address_p (i, mem_mode, as))
+ {
+ rat = i;
+ break;
+ }
+
+ /* Compute the cost of various addressing modes. */
+ acost = 0;
+ reg0 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
+ reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
+
+ if (USE_LOAD_PRE_DECREMENT (mem_mode)
+ || USE_STORE_PRE_DECREMENT (mem_mode))
+ {
+ addr = gen_rtx_PRE_DEC (address_mode, reg0);
+ has_predec[mem_mode]
+ = memory_address_addr_space_p (mem_mode, addr, as);
+
+ if (has_predec[mem_mode])
+ data->ainc_costs[AINC_PRE_DEC]
+ = address_cost (addr, mem_mode, as, speed);
+ }
+ if (USE_LOAD_POST_DECREMENT (mem_mode)
+ || USE_STORE_POST_DECREMENT (mem_mode))
+ {
+ addr = gen_rtx_POST_DEC (address_mode, reg0);
+ has_postdec[mem_mode]
+ = memory_address_addr_space_p (mem_mode, addr, as);
+
+ if (has_postdec[mem_mode])
+ data->ainc_costs[AINC_POST_DEC]
+ = address_cost (addr, mem_mode, as, speed);
+ }
+ if (USE_LOAD_PRE_INCREMENT (mem_mode)
+ || USE_STORE_PRE_DECREMENT (mem_mode))
+ {
+ addr = gen_rtx_PRE_INC (address_mode, reg0);
+ has_preinc[mem_mode]
+ = memory_address_addr_space_p (mem_mode, addr, as);
+
+ if (has_preinc[mem_mode])
+ data->ainc_costs[AINC_PRE_INC]
+ = address_cost (addr, mem_mode, as, speed);
+ }
+ if (USE_LOAD_POST_INCREMENT (mem_mode)
+ || USE_STORE_POST_INCREMENT (mem_mode))
+ {
+ addr = gen_rtx_POST_INC (address_mode, reg0);
+ has_postinc[mem_mode]
+ = memory_address_addr_space_p (mem_mode, addr, as);
+
+ if (has_postinc[mem_mode])
+ data->ainc_costs[AINC_POST_INC]
+ = address_cost (addr, mem_mode, as, speed);
+ }
+ for (i = 0; i < 16; i++)
+ {
+ sym_p = i & 1;
+ var_p = (i >> 1) & 1;
+ off_p = (i >> 2) & 1;
+ rat_p = (i >> 3) & 1;
+
+ addr = reg0;
+ if (rat_p)
+ addr = gen_rtx_fmt_ee (MULT, address_mode, addr,
+ gen_int_mode (rat, address_mode));
+
+ if (var_p)
+ addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, reg1);
+
+ if (sym_p)
+ {
+ base = gen_rtx_SYMBOL_REF (address_mode, ggc_strdup (""));
+ /* ??? We can run into trouble with some backends by presenting
+ it with symbols which haven't been properly passed through
+ targetm.encode_section_info. By setting the local bit, we
+ enhance the probability of things working. */
+ SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
+
+ if (off_p)
+ base = gen_rtx_fmt_e (CONST, address_mode,
+ gen_rtx_fmt_ee
+ (PLUS, address_mode, base,
+ gen_int_mode (off, address_mode)));
+ }
+ else if (off_p)
+ base = gen_int_mode (off, address_mode);
+ else
+ base = NULL_RTX;
+
+ if (base)
+ addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, base);
+
+ start_sequence ();
+ /* To avoid splitting addressing modes, pretend that no cse will
+ follow. */
+ old_cse_not_expected = cse_not_expected;
+ cse_not_expected = true;
+ addr = memory_address_addr_space (mem_mode, addr, as);
+ cse_not_expected = old_cse_not_expected;
+ seq = get_insns ();
+ end_sequence ();
+
+ acost = seq_cost (seq, speed);
+ acost += address_cost (addr, mem_mode, as, speed);
+
+ if (!acost)
+ acost = 1;
+ data->costs[sym_p][var_p][off_p][rat_p] = acost;
+ }
+
+ /* On some targets, it is quite expensive to load symbol to a register,
+ which makes addresses that contain symbols look much more expensive.
+ However, the symbol will have to be loaded in any case before the
+ loop (and quite likely we have it in register already), so it does not
+ make much sense to penalize them too heavily. So make some final
+ tweaks for the SYMBOL_PRESENT modes:
+
+ If VAR_PRESENT is false, and the mode obtained by changing symbol to
+ var is cheaper, use this mode with small penalty.
+ If VAR_PRESENT is true, try whether the mode with
+ SYMBOL_PRESENT = false is cheaper even with cost of addition, and
+ if this is the case, use it. */
+ add_c = add_cost (speed, address_mode);
+ for (i = 0; i < 8; i++)
+ {
+ var_p = i & 1;
+ off_p = (i >> 1) & 1;
+ rat_p = (i >> 2) & 1;
+
+ acost = data->costs[0][1][off_p][rat_p] + 1;
+ if (var_p)
+ acost += add_c;
+
+ if (acost < data->costs[1][var_p][off_p][rat_p])
+ data->costs[1][var_p][off_p][rat_p] = acost;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Address costs:\n");
+
+ for (i = 0; i < 16; i++)
+ {
+ sym_p = i & 1;
+ var_p = (i >> 1) & 1;
+ off_p = (i >> 2) & 1;
+ rat_p = (i >> 3) & 1;
+
+ fprintf (dump_file, " ");
+ if (sym_p)
+ fprintf (dump_file, "sym + ");
+ if (var_p)
+ fprintf (dump_file, "var + ");
+ if (off_p)
+ fprintf (dump_file, "cst + ");
+ if (rat_p)
+ fprintf (dump_file, "rat * ");
+
+ acost = data->costs[sym_p][var_p][off_p][rat_p];
+ fprintf (dump_file, "index costs %d\n", acost);
+ }
+ if (has_predec[mem_mode] || has_postdec[mem_mode]
+ || has_preinc[mem_mode] || has_postinc[mem_mode])
+ fprintf (dump_file, " May include autoinc/dec\n");
+ fprintf (dump_file, "\n");
+ }
+
+ address_cost_data_list[data_index] = data;
+ }
+
+ bits = GET_MODE_BITSIZE (address_mode);
+ mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
+ offset &= mask;
+ if ((offset >> (bits - 1) & 1))
+ offset |= ~mask;
+ s_offset = offset;
+
+ autoinc = false;
+ autoinc_type = AINC_NONE;
+ msize = GET_MODE_SIZE (mem_mode);
+ autoinc_offset = offset;
+ if (stmt_after_inc)
+ autoinc_offset += ratio * cstep;
+ if (symbol_present || var_present || ratio != 1)
+ autoinc = false;
+ else
+ {
+ if (has_postinc[mem_mode] && autoinc_offset == 0
+ && msize == cstep)
+ autoinc_type = AINC_POST_INC;
+ else if (has_postdec[mem_mode] && autoinc_offset == 0
+ && msize == -cstep)
+ autoinc_type = AINC_POST_DEC;
+ else if (has_preinc[mem_mode] && autoinc_offset == msize
+ && msize == cstep)
+ autoinc_type = AINC_PRE_INC;
+ else if (has_predec[mem_mode] && autoinc_offset == -msize
+ && msize == -cstep)
+ autoinc_type = AINC_PRE_DEC;
+
+ if (autoinc_type != AINC_NONE)
+ autoinc = true;
+ }
+
+ cost = 0;
+ offset_p = (s_offset != 0
+ && data->min_offset <= s_offset
+ && s_offset <= data->max_offset);
+ ratio_p = (ratio != 1
+ && multiplier_allowed_in_address_p (ratio, mem_mode, as));
+
+ if (ratio != 1 && !ratio_p)
+ cost += mult_by_coeff_cost (ratio, address_mode, speed);
+
+ if (s_offset && !offset_p && !symbol_present)
+ cost += add_cost (speed, address_mode);
+
+ if (may_autoinc)
+ *may_autoinc = autoinc;
+ if (autoinc)
+ acost = data->ainc_costs[autoinc_type];
+ else
+ acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
+ complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
+ return new_cost (cost + acost, complexity);
+}
+
+ /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
+ the EXPR operand holding the shift. COST0 and COST1 are the costs for
+ calculating the operands of EXPR. Returns true if successful, and returns
+ the cost in COST. */
+
+static bool
+get_shiftadd_cost (tree expr, enum machine_mode mode, comp_cost cost0,
+ comp_cost cost1, tree mult, bool speed, comp_cost *cost)
+{
+ comp_cost res;
+ tree op1 = TREE_OPERAND (expr, 1);
+ tree cst = TREE_OPERAND (mult, 1);
+ tree multop = TREE_OPERAND (mult, 0);
+ int m = exact_log2 (int_cst_value (cst));
+ int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
+ int sa_cost;
+ bool equal_p = false;
+
+ if (!(m >= 0 && m < maxm))
+ return false;
+
+ if (operand_equal_p (op1, mult, 0))
+ equal_p = true;
+
+ sa_cost = (TREE_CODE (expr) != MINUS_EXPR
+ ? shiftadd_cost (speed, mode, m)
+ : (equal_p
+ ? shiftsub1_cost (speed, mode, m)
+ : shiftsub0_cost (speed, mode, m)));
+ res = new_cost (sa_cost, 0);
+ res = add_costs (res, equal_p ? cost0 : cost1);
+
+ STRIP_NOPS (multop);
+ if (!is_gimple_val (multop))
+ res = add_costs (res, force_expr_to_var_cost (multop, speed));
+
+ *cost = res;
+ return true;
+}
+
+/* Estimates cost of forcing expression EXPR into a variable. */
+
+static comp_cost
+force_expr_to_var_cost (tree expr, bool speed)
+{
+ static bool costs_initialized = false;
+ static unsigned integer_cost [2];
+ static unsigned symbol_cost [2];
+ static unsigned address_cost [2];
+ tree op0, op1;
+ comp_cost cost0, cost1, cost;
+ enum machine_mode mode;
+
+ if (!costs_initialized)
+ {
+ tree type = build_pointer_type (integer_type_node);
+ tree var, addr;
+ rtx x;
+ int i;
+
+ var = create_tmp_var_raw (integer_type_node, "test_var");
+ TREE_STATIC (var) = 1;
+ x = produce_memory_decl_rtl (var, NULL);
+ SET_DECL_RTL (var, x);
+
+ addr = build1 (ADDR_EXPR, type, var);
+
+
+ for (i = 0; i < 2; i++)
+ {
+ integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
+ 2000), i);
+
+ symbol_cost[i] = computation_cost (addr, i) + 1;
+
+ address_cost[i]
+ = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
+ fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
+ fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
+ fprintf (dump_file, " address %d\n", (int) address_cost[i]);
+ fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ costs_initialized = true;
+ }
+
+ STRIP_NOPS (expr);
+
+ if (SSA_VAR_P (expr))
+ return no_cost;
+
+ if (is_gimple_min_invariant (expr))
+ {
+ if (TREE_CODE (expr) == INTEGER_CST)
+ return new_cost (integer_cost [speed], 0);
+
+ if (TREE_CODE (expr) == ADDR_EXPR)
+ {
+ tree obj = TREE_OPERAND (expr, 0);
+
+ if (TREE_CODE (obj) == VAR_DECL
+ || TREE_CODE (obj) == PARM_DECL
+ || TREE_CODE (obj) == RESULT_DECL)
+ return new_cost (symbol_cost [speed], 0);
+ }
+
+ return new_cost (address_cost [speed], 0);
+ }
+
+ switch (TREE_CODE (expr))
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+ STRIP_NOPS (op0);
+ STRIP_NOPS (op1);
+ break;
+
+ CASE_CONVERT:
+ case NEGATE_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ STRIP_NOPS (op0);
+ op1 = NULL_TREE;
+ break;
+
+ default:
+ /* Just an arbitrary value, FIXME. */
+ return new_cost (target_spill_cost[speed], 0);
+ }
+
+ if (op0 == NULL_TREE
+ || TREE_CODE (op0) == SSA_NAME || CONSTANT_CLASS_P (op0))
+ cost0 = no_cost;
+ else
+ cost0 = force_expr_to_var_cost (op0, speed);
+
+ if (op1 == NULL_TREE
+ || TREE_CODE (op1) == SSA_NAME || CONSTANT_CLASS_P (op1))
+ cost1 = no_cost;
+ else
+ cost1 = force_expr_to_var_cost (op1, speed);
+
+ mode = TYPE_MODE (TREE_TYPE (expr));
+ switch (TREE_CODE (expr))
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case NEGATE_EXPR:
+ cost = new_cost (add_cost (speed, mode), 0);
+ if (TREE_CODE (expr) != NEGATE_EXPR)
+ {
+ tree mult = NULL_TREE;
+ comp_cost sa_cost;
+ if (TREE_CODE (op1) == MULT_EXPR)
+ mult = op1;
+ else if (TREE_CODE (op0) == MULT_EXPR)
+ mult = op0;
+
+ if (mult != NULL_TREE
+ && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
+ && get_shiftadd_cost (expr, mode, cost0, cost1, mult,
+ speed, &sa_cost))
+ return sa_cost;
+ }
+ break;
+
+ CASE_CONVERT:
+ {
+ tree inner_mode, outer_mode;
+ outer_mode = TREE_TYPE (expr);
+ inner_mode = TREE_TYPE (op0);
+ cost = new_cost (convert_cost (TYPE_MODE (outer_mode),
+ TYPE_MODE (inner_mode), speed), 0);
+ }
+ break;
+
+ case MULT_EXPR:
+ if (cst_and_fits_in_hwi (op0))
+ cost = new_cost (mult_by_coeff_cost (int_cst_value (op0),
+ mode, speed), 0);
+ else if (cst_and_fits_in_hwi (op1))
+ cost = new_cost (mult_by_coeff_cost (int_cst_value (op1),
+ mode, speed), 0);
+ else
+ return new_cost (target_spill_cost [speed], 0);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ cost = add_costs (cost, cost0);
+ cost = add_costs (cost, cost1);
+
+ /* Bound the cost by target_spill_cost. The parts of complicated
+ computations often are either loop invariant or at least can
+ be shared between several iv uses, so letting this grow without
+ limits would not give reasonable results. */
+ if (cost.cost > (int) target_spill_cost [speed])
+ cost.cost = target_spill_cost [speed];
+
+ return cost;
+}
+
+/* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
+ invariants the computation depends on. */
+
+static comp_cost
+force_var_cost (struct ivopts_data *data,
+ tree expr, bitmap *depends_on)
+{
+ if (depends_on)
+ {
+ fd_ivopts_data = data;
+ walk_tree (&expr, find_depends, depends_on, NULL);
+ }
+
+ return force_expr_to_var_cost (expr, data->speed);
+}
+
+/* Estimates cost of expressing address ADDR as var + symbol + offset. The
+ value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
+ to false if the corresponding part is missing. DEPENDS_ON is a set of the
+ invariants the computation depends on. */
+
+static comp_cost
+split_address_cost (struct ivopts_data *data,
+ tree addr, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ tree core;
+ HOST_WIDE_INT bitsize;
+ HOST_WIDE_INT bitpos;
+ tree toffset;
+ enum machine_mode mode;
+ int unsignedp, volatilep;
+
+ core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
+ &unsignedp, &volatilep, false);
+
+ if (toffset != 0
+ || bitpos % BITS_PER_UNIT != 0
+ || TREE_CODE (core) != VAR_DECL)
+ {
+ *symbol_present = false;
+ *var_present = true;
+ fd_ivopts_data = data;
+ walk_tree (&addr, find_depends, depends_on, NULL);
+ return new_cost (target_spill_cost[data->speed], 0);
+ }
+
+ *offset += bitpos / BITS_PER_UNIT;
+ if (TREE_STATIC (core)
+ || DECL_EXTERNAL (core))
+ {
+ *symbol_present = true;
+ *var_present = false;
+ return no_cost;
+ }
+
+ *symbol_present = false;
+ *var_present = true;
+ return no_cost;
+}
+
+/* Estimates cost of expressing difference of addresses E1 - E2 as
+ var + symbol + offset. The value of offset is added to OFFSET,
+ SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
+ part is missing. DEPENDS_ON is a set of the invariants the computation
+ depends on. */
+
+static comp_cost
+ptr_difference_cost (struct ivopts_data *data,
+ tree e1, tree e2, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ HOST_WIDE_INT diff = 0;
+ aff_tree aff_e1, aff_e2;
+ tree type;
+
+ gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
+
+ if (ptr_difference_const (e1, e2, &diff))
+ {
+ *offset += diff;
+ *symbol_present = false;
+ *var_present = false;
+ return no_cost;
+ }
+
+ if (integer_zerop (e2))
+ return split_address_cost (data, TREE_OPERAND (e1, 0),
+ symbol_present, var_present, offset, depends_on);
+
+ *symbol_present = false;
+ *var_present = true;
+
+ type = signed_type_for (TREE_TYPE (e1));
+ tree_to_aff_combination (e1, type, &aff_e1);
+ tree_to_aff_combination (e2, type, &aff_e2);
+ aff_combination_scale (&aff_e2, double_int_minus_one);
+ aff_combination_add (&aff_e1, &aff_e2);
+
+ return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
+}
+
+/* Estimates cost of expressing difference E1 - E2 as
+ var + symbol + offset. The value of offset is added to OFFSET,
+ SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
+ part is missing. DEPENDS_ON is a set of the invariants the computation
+ depends on. */
+
+static comp_cost
+difference_cost (struct ivopts_data *data,
+ tree e1, tree e2, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
+ unsigned HOST_WIDE_INT off1, off2;
+ aff_tree aff_e1, aff_e2;
+ tree type;
+
+ e1 = strip_offset (e1, &off1);
+ e2 = strip_offset (e2, &off2);
+ *offset += off1 - off2;
+
+ STRIP_NOPS (e1);
+ STRIP_NOPS (e2);
+
+ if (TREE_CODE (e1) == ADDR_EXPR)
+ return ptr_difference_cost (data, e1, e2, symbol_present, var_present,
+ offset, depends_on);
+ *symbol_present = false;
+
+ if (operand_equal_p (e1, e2, 0))
+ {
+ *var_present = false;
+ return no_cost;
+ }
+
+ *var_present = true;
+
+ if (integer_zerop (e2))
+ return force_var_cost (data, e1, depends_on);
+
+ if (integer_zerop (e1))
+ {
+ comp_cost cost = force_var_cost (data, e2, depends_on);
+ cost.cost += mult_by_coeff_cost (-1, mode, data->speed);
+ return cost;
+ }
+
+ type = signed_type_for (TREE_TYPE (e1));
+ tree_to_aff_combination (e1, type, &aff_e1);
+ tree_to_aff_combination (e2, type, &aff_e2);
+ aff_combination_scale (&aff_e2, double_int_minus_one);
+ aff_combination_add (&aff_e1, &aff_e2);
+
+ return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
+}
+
+/* Returns true if AFF1 and AFF2 are identical. */
+
+static bool
+compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
+{
+ unsigned i;
+
+ if (aff1->n != aff2->n)
+ return false;
+
+ for (i = 0; i < aff1->n; i++)
+ {
+ if (aff1->elts[i].coef != aff2->elts[i].coef)
+ return false;
+
+ if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
+ return false;
+ }
+ return true;
+}
+
+/* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
+
+static int
+get_expr_id (struct ivopts_data *data, tree expr)
+{
+ struct iv_inv_expr_ent ent;
+ struct iv_inv_expr_ent **slot;
+
+ ent.expr = expr;
+ ent.hash = iterative_hash_expr (expr, 0);
+ slot = data->inv_expr_tab.find_slot (&ent, INSERT);
+ if (*slot)
+ return (*slot)->id;
+
+ *slot = XNEW (struct iv_inv_expr_ent);
+ (*slot)->expr = expr;
+ (*slot)->hash = ent.hash;
+ (*slot)->id = data->inv_expr_id++;
+ return (*slot)->id;
+}
+
+/* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
+ requires a new compiler generated temporary. Returns -1 otherwise.
+ ADDRESS_P is a flag indicating if the expression is for address
+ computation. */
+
+static int
+get_loop_invariant_expr_id (struct ivopts_data *data, tree ubase,
+ tree cbase, HOST_WIDE_INT ratio,
+ bool address_p)
+{
+ aff_tree ubase_aff, cbase_aff;
+ tree expr, ub, cb;
+
+ STRIP_NOPS (ubase);
+ STRIP_NOPS (cbase);
+ ub = ubase;
+ cb = cbase;
+
+ if ((TREE_CODE (ubase) == INTEGER_CST)
+ && (TREE_CODE (cbase) == INTEGER_CST))
+ return -1;
+
+ /* Strips the constant part. */
+ if (TREE_CODE (ubase) == PLUS_EXPR
+ || TREE_CODE (ubase) == MINUS_EXPR
+ || TREE_CODE (ubase) == POINTER_PLUS_EXPR)
+ {
+ if (TREE_CODE (TREE_OPERAND (ubase, 1)) == INTEGER_CST)
+ ubase = TREE_OPERAND (ubase, 0);
+ }
+
+ /* Strips the constant part. */
+ if (TREE_CODE (cbase) == PLUS_EXPR
+ || TREE_CODE (cbase) == MINUS_EXPR
+ || TREE_CODE (cbase) == POINTER_PLUS_EXPR)
+ {
+ if (TREE_CODE (TREE_OPERAND (cbase, 1)) == INTEGER_CST)
+ cbase = TREE_OPERAND (cbase, 0);
+ }
+
+ if (address_p)
+ {
+ if (((TREE_CODE (ubase) == SSA_NAME)
+ || (TREE_CODE (ubase) == ADDR_EXPR
+ && is_gimple_min_invariant (ubase)))
+ && (TREE_CODE (cbase) == INTEGER_CST))
+ return -1;
+
+ if (((TREE_CODE (cbase) == SSA_NAME)
+ || (TREE_CODE (cbase) == ADDR_EXPR
+ && is_gimple_min_invariant (cbase)))
+ && (TREE_CODE (ubase) == INTEGER_CST))
+ return -1;
+ }
+
+ if (ratio == 1)
+ {
+ if (operand_equal_p (ubase, cbase, 0))
+ return -1;
+
+ if (TREE_CODE (ubase) == ADDR_EXPR
+ && TREE_CODE (cbase) == ADDR_EXPR)
+ {
+ tree usym, csym;
+
+ usym = TREE_OPERAND (ubase, 0);
+ csym = TREE_OPERAND (cbase, 0);
+ if (TREE_CODE (usym) == ARRAY_REF)
+ {
+ tree ind = TREE_OPERAND (usym, 1);
+ if (TREE_CODE (ind) == INTEGER_CST
+ && tree_fits_shwi_p (ind)
+ && tree_to_shwi (ind) == 0)
+ usym = TREE_OPERAND (usym, 0);
+ }
+ if (TREE_CODE (csym) == ARRAY_REF)
+ {
+ tree ind = TREE_OPERAND (csym, 1);
+ if (TREE_CODE (ind) == INTEGER_CST
+ && tree_fits_shwi_p (ind)
+ && tree_to_shwi (ind) == 0)
+ csym = TREE_OPERAND (csym, 0);
+ }
+ if (operand_equal_p (usym, csym, 0))
+ return -1;
+ }
+ /* Now do more complex comparison */
+ tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
+ tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
+ if (compare_aff_trees (&ubase_aff, &cbase_aff))
+ return -1;
+ }
+
+ tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
+ tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
+
+ aff_combination_scale (&cbase_aff, double_int::from_shwi (-1 * ratio));
+ aff_combination_add (&ubase_aff, &cbase_aff);
+ expr = aff_combination_to_tree (&ubase_aff);
+ return get_expr_id (data, expr);
+}
+
+
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in
+ DEPENDS_ON. AT is the statement at that the value is computed.
+ If CAN_AUTOINC is nonnull, use it to record whether autoinc
+ addressing is likely. */
+
+static comp_cost
+get_computation_cost_at (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ bool address_p, bitmap *depends_on, gimple at,
+ bool *can_autoinc,
+ int *inv_expr_id)
+{
+ tree ubase = use->iv->base, ustep = use->iv->step;
+ tree cbase, cstep;
+ tree utype = TREE_TYPE (ubase), ctype;
+ unsigned HOST_WIDE_INT cstepi, offset = 0;
+ HOST_WIDE_INT ratio, aratio;
+ bool var_present, symbol_present, stmt_is_after_inc;
+ comp_cost cost;
+ double_int rat;
+ bool speed = optimize_bb_for_speed_p (gimple_bb (at));
+ enum machine_mode mem_mode = (address_p
+ ? TYPE_MODE (TREE_TYPE (*use->op_p))
+ : VOIDmode);
+
+ *depends_on = NULL;
+
+ /* Only consider real candidates. */
+ if (!cand->iv)
+ return infinite_cost;
+
+ cbase = cand->iv->base;
+ cstep = cand->iv->step;
+ ctype = TREE_TYPE (cbase);
+
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ {
+ /* We do not have a precision to express the values of use. */
+ return infinite_cost;
+ }
+
+ if (address_p
+ || (use->iv->base_object
+ && cand->iv->base_object
+ && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
+ && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
+ {
+ /* Do not try to express address of an object with computation based
+ on address of a different object. This may cause problems in rtl
+ level alias analysis (that does not expect this to be happening,
+ as this is illegal in C), and would be unlikely to be useful
+ anyway. */
+ if (use->iv->base_object
+ && cand->iv->base_object
+ && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
+ return infinite_cost;
+ }
+
+ if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
+ {
+ /* TODO -- add direct handling of this case. */
+ goto fallback;
+ }
+
+ /* CSTEPI is removed from the offset in case statement is after the
+ increment. If the step is not constant, we use zero instead.
+ This is a bit imprecise (there is the extra addition), but
+ redundancy elimination is likely to transform the code so that
+ it uses value of the variable before increment anyway,
+ so it is not that much unrealistic. */
+ if (cst_and_fits_in_hwi (cstep))
+ cstepi = int_cst_value (cstep);
+ else
+ cstepi = 0;
+
+ if (!constant_multiple_of (ustep, cstep, &rat))
+ return infinite_cost;
+
+ if (rat.fits_shwi ())
+ ratio = rat.to_shwi ();
+ else
+ return infinite_cost;
+
+ STRIP_NOPS (cbase);
+ ctype = TREE_TYPE (cbase);
+
+ stmt_is_after_inc = stmt_after_increment (data->current_loop, cand, at);
+
+ /* use = ubase + ratio * (var - cbase). If either cbase is a constant
+ or ratio == 1, it is better to handle this like
+
+ ubase - ratio * cbase + ratio * var
+
+ (also holds in the case ratio == -1, TODO. */
+
+ if (cst_and_fits_in_hwi (cbase))
+ {
+ offset = - ratio * int_cst_value (cbase);
+ cost = difference_cost (data,
+ ubase, build_int_cst (utype, 0),
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ cost.cost /= avg_loop_niter (data->current_loop);
+ }
+ else if (ratio == 1)
+ {
+ tree real_cbase = cbase;
+
+ /* Check to see if any adjustment is needed. */
+ if (cstepi == 0 && stmt_is_after_inc)
+ {
+ aff_tree real_cbase_aff;
+ aff_tree cstep_aff;
+
+ tree_to_aff_combination (cbase, TREE_TYPE (real_cbase),
+ &real_cbase_aff);
+ tree_to_aff_combination (cstep, TREE_TYPE (cstep), &cstep_aff);
+
+ aff_combination_add (&real_cbase_aff, &cstep_aff);
+ real_cbase = aff_combination_to_tree (&real_cbase_aff);
+ }
+
+ cost = difference_cost (data,
+ ubase, real_cbase,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ cost.cost /= avg_loop_niter (data->current_loop);
+ }
+ else if (address_p
+ && !POINTER_TYPE_P (ctype)
+ && multiplier_allowed_in_address_p
+ (ratio, mem_mode,
+ TYPE_ADDR_SPACE (TREE_TYPE (utype))))
+ {
+ cbase
+ = fold_build2 (MULT_EXPR, ctype, cbase, build_int_cst (ctype, ratio));
+ cost = difference_cost (data,
+ ubase, cbase,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ cost.cost /= avg_loop_niter (data->current_loop);
+ }
+ else
+ {
+ cost = force_var_cost (data, cbase, depends_on);
+ cost = add_costs (cost,
+ difference_cost (data,
+ ubase, build_int_cst (utype, 0),
+ &symbol_present, &var_present,
+ &offset, depends_on));
+ cost.cost /= avg_loop_niter (data->current_loop);
+ cost.cost += add_cost (data->speed, TYPE_MODE (ctype));
+ }
+
+ if (inv_expr_id)
+ {
+ *inv_expr_id =
+ get_loop_invariant_expr_id (data, ubase, cbase, ratio, address_p);
+ /* Clear depends on. */
+ if (*inv_expr_id != -1 && depends_on && *depends_on)
+ bitmap_clear (*depends_on);
+ }
+
+ /* If we are after the increment, the value of the candidate is higher by
+ one iteration. */
+ if (stmt_is_after_inc)
+ offset -= ratio * cstepi;
+
+ /* Now the computation is in shape symbol + var1 + const + ratio * var2.
+ (symbol/var1/const parts may be omitted). If we are looking for an
+ address, find the cost of addressing this. */
+ if (address_p)
+ return add_costs (cost,
+ get_address_cost (symbol_present, var_present,
+ offset, ratio, cstepi,
+ mem_mode,
+ TYPE_ADDR_SPACE (TREE_TYPE (utype)),
+ speed, stmt_is_after_inc,
+ can_autoinc));
+
+ /* Otherwise estimate the costs for computing the expression. */
+ if (!symbol_present && !var_present && !offset)
+ {
+ if (ratio != 1)
+ cost.cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
+ return cost;
+ }
+
+ /* Symbol + offset should be compile-time computable so consider that they
+ are added once to the variable, if present. */
+ if (var_present && (symbol_present || offset))
+ cost.cost += adjust_setup_cost (data,
+ add_cost (speed, TYPE_MODE (ctype)));
+
+ /* Having offset does not affect runtime cost in case it is added to
+ symbol, but it increases complexity. */
+ if (offset)
+ cost.complexity++;
+
+ cost.cost += add_cost (speed, TYPE_MODE (ctype));
+
+ aratio = ratio > 0 ? ratio : -ratio;
+ if (aratio != 1)
+ cost.cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
+ return cost;
+
+fallback:
+ if (can_autoinc)
+ *can_autoinc = false;
+
+ {
+ /* Just get the expression, expand it and measure the cost. */
+ tree comp = get_computation_at (data->current_loop, use, cand, at);
+
+ if (!comp)
+ return infinite_cost;
+
+ if (address_p)
+ comp = build_simple_mem_ref (comp);
+
+ return new_cost (computation_cost (comp, speed), 0);
+ }
+}
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in
+ DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
+ autoinc addressing is likely. */
+
+static comp_cost
+get_computation_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ bool address_p, bitmap *depends_on,
+ bool *can_autoinc, int *inv_expr_id)
+{
+ return get_computation_cost_at (data,
+ use, cand, address_p, depends_on, use->stmt,
+ can_autoinc, inv_expr_id);
+}
+
+/* Determines cost of basing replacement of USE on CAND in a generic
+ expression. */
+
+static bool
+determine_use_iv_cost_generic (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ comp_cost cost;
+ int inv_expr_id = -1;
+
+ /* The simple case first -- if we need to express value of the preserved
+ original biv, the cost is 0. This also prevents us from counting the
+ cost of increment twice -- once at this use and once in the cost of
+ the candidate. */
+ if (cand->pos == IP_ORIGINAL
+ && cand->incremented_at == use->stmt)
+ {
+ set_use_iv_cost (data, use, cand, no_cost, NULL, NULL_TREE,
+ ERROR_MARK, -1);
+ return true;
+ }
+
+ cost = get_computation_cost (data, use, cand, false, &depends_on,
+ NULL, &inv_expr_id);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
+ inv_expr_id);
+
+ return !infinite_cost_p (cost);
+}
+
+/* Determines cost of basing replacement of USE on CAND in an address. */
+
+static bool
+determine_use_iv_cost_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ bool can_autoinc;
+ int inv_expr_id = -1;
+ comp_cost cost = get_computation_cost (data, use, cand, true, &depends_on,
+ &can_autoinc, &inv_expr_id);
+
+ if (cand->ainc_use == use)
+ {
+ if (can_autoinc)
+ cost.cost -= cand->cost_step;
+ /* If we generated the candidate solely for exploiting autoincrement
+ opportunities, and it turns out it can't be used, set the cost to
+ infinity to make sure we ignore it. */
+ else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
+ cost = infinite_cost;
+ }
+ set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
+ inv_expr_id);
+
+ return !infinite_cost_p (cost);
+}
+
+/* Computes value of candidate CAND at position AT in iteration NITER, and
+ stores it to VAL. */
+
+static void
+cand_value_at (struct loop *loop, struct iv_cand *cand, gimple at, tree niter,
+ aff_tree *val)
+{
+ aff_tree step, delta, nit;
+ struct iv *iv = cand->iv;
+ tree type = TREE_TYPE (iv->base);
+ tree steptype = type;
+ if (POINTER_TYPE_P (type))
+ steptype = sizetype;
+
+ tree_to_aff_combination (iv->step, steptype, &step);
+ tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
+ aff_combination_convert (&nit, steptype);
+ aff_combination_mult (&nit, &step, &delta);
+ if (stmt_after_increment (loop, cand, at))
+ aff_combination_add (&delta, &step);
+
+ tree_to_aff_combination (iv->base, type, val);
+ aff_combination_add (val, &delta);
+}
+
+/* Returns period of induction variable iv. */
+
+static tree
+iv_period (struct iv *iv)
+{
+ tree step = iv->step, period, type;
+ tree pow2div;
+
+ gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
+
+ type = unsigned_type_for (TREE_TYPE (step));
+ /* Period of the iv is lcm (step, type_range)/step -1,
+ i.e., N*type_range/step - 1. Since type range is power
+ of two, N == (step >> num_of_ending_zeros_binary (step),
+ so the final result is
+
+ (type_range >> num_of_ending_zeros_binary (step)) - 1
+
+ */
+ pow2div = num_ending_zeros (step);
+
+ period = build_low_bits_mask (type,
+ (TYPE_PRECISION (type)
+ - tree_to_uhwi (pow2div)));
+
+ return period;
+}
+
+/* Returns the comparison operator used when eliminating the iv USE. */
+
+static enum tree_code
+iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
+{
+ struct loop *loop = data->current_loop;
+ basic_block ex_bb;
+ edge exit;
+
+ ex_bb = gimple_bb (use->stmt);
+ exit = EDGE_SUCC (ex_bb, 0);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ exit = EDGE_SUCC (ex_bb, 1);
+
+ return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
+}
+
+static tree
+strip_wrap_conserving_type_conversions (tree exp)
+{
+ while (tree_ssa_useless_type_conversion (exp)
+ && (nowrap_type_p (TREE_TYPE (exp))
+ == nowrap_type_p (TREE_TYPE (TREE_OPERAND (exp, 0)))))
+ exp = TREE_OPERAND (exp, 0);
+ return exp;
+}
+
+/* Walk the SSA form and check whether E == WHAT. Fairly simplistic, we
+ check for an exact match. */
+
+static bool
+expr_equal_p (tree e, tree what)
+{
+ gimple stmt;
+ enum tree_code code;
+
+ e = strip_wrap_conserving_type_conversions (e);
+ what = strip_wrap_conserving_type_conversions (what);
+
+ code = TREE_CODE (what);
+ if (TREE_TYPE (e) != TREE_TYPE (what))
+ return false;
+
+ if (operand_equal_p (e, what, 0))
+ return true;
+
+ if (TREE_CODE (e) != SSA_NAME)
+ return false;
+
+ stmt = SSA_NAME_DEF_STMT (e);
+ if (gimple_code (stmt) != GIMPLE_ASSIGN
+ || gimple_assign_rhs_code (stmt) != code)
+ return false;
+
+ switch (get_gimple_rhs_class (code))
+ {
+ case GIMPLE_BINARY_RHS:
+ if (!expr_equal_p (gimple_assign_rhs2 (stmt), TREE_OPERAND (what, 1)))
+ return false;
+ /* Fallthru. */
+
+ case GIMPLE_UNARY_RHS:
+ case GIMPLE_SINGLE_RHS:
+ return expr_equal_p (gimple_assign_rhs1 (stmt), TREE_OPERAND (what, 0));
+ default:
+ return false;
+ }
+}
+
+/* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
+ we only detect the situation that BASE = SOMETHING + OFFSET, where the
+ calculation is performed in non-wrapping type.
+
+ TODO: More generally, we could test for the situation that
+ BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
+ This would require knowing the sign of OFFSET.
+
+ Also, we only look for the first addition in the computation of BASE.
+ More complex analysis would be better, but introducing it just for
+ this optimization seems like an overkill. */
+
+static bool
+difference_cannot_overflow_p (tree base, tree offset)
+{
+ enum tree_code code;
+ tree e1, e2;
+
+ if (!nowrap_type_p (TREE_TYPE (base)))
+ return false;
+
+ base = expand_simple_operations (base);
+
+ if (TREE_CODE (base) == SSA_NAME)
+ {
+ gimple stmt = SSA_NAME_DEF_STMT (base);
+
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
+ return false;
+
+ e1 = gimple_assign_rhs1 (stmt);
+ e2 = gimple_assign_rhs2 (stmt);
+ }
+ else
+ {
+ code = TREE_CODE (base);
+ if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
+ return false;
+ e1 = TREE_OPERAND (base, 0);
+ e2 = TREE_OPERAND (base, 1);
+ }
+
+ /* TODO: deeper inspection may be necessary to prove the equality. */
+ switch (code)
+ {
+ case PLUS_EXPR:
+ return expr_equal_p (e1, offset) || expr_equal_p (e2, offset);
+ case POINTER_PLUS_EXPR:
+ return expr_equal_p (e2, offset);
+
+ default:
+ return false;
+ }
+}
+
+/* Tries to replace loop exit by one formulated in terms of a LT_EXPR
+ comparison with CAND. NITER describes the number of iterations of
+ the loops. If successful, the comparison in COMP_P is altered accordingly.
+
+ We aim to handle the following situation:
+
+ sometype *base, *p;
+ int a, b, i;
+
+ i = a;
+ p = p_0 = base + a;
+
+ do
+ {
+ bla (*p);
+ p++;
+ i++;
+ }
+ while (i < b);
+
+ Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
+ We aim to optimize this to
+
+ p = p_0 = base + a;
+ do
+ {
+ bla (*p);
+ p++;
+ }
+ while (p < p_0 - a + b);
+
+ This preserves the correctness, since the pointer arithmetics does not
+ overflow. More precisely:
+
+ 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
+ overflow in computing it or the values of p.
+ 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
+ overflow. To prove this, we use the fact that p_0 = base + a. */
+
+static bool
+iv_elimination_compare_lt (struct ivopts_data *data,
+ struct iv_cand *cand, enum tree_code *comp_p,
+ struct tree_niter_desc *niter)
+{
+ tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
+ struct aff_tree nit, tmpa, tmpb;
+ enum tree_code comp;
+ HOST_WIDE_INT step;
+
+ /* We need to know that the candidate induction variable does not overflow.
+ While more complex analysis may be used to prove this, for now just
+ check that the variable appears in the original program and that it
+ is computed in a type that guarantees no overflows. */
+ cand_type = TREE_TYPE (cand->iv->base);
+ if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
+ return false;
+
+ /* Make sure that the loop iterates till the loop bound is hit, as otherwise
+ the calculation of the BOUND could overflow, making the comparison
+ invalid. */
+ if (!data->loop_single_exit_p)
+ return false;
+
+ /* We need to be able to decide whether candidate is increasing or decreasing
+ in order to choose the right comparison operator. */
+ if (!cst_and_fits_in_hwi (cand->iv->step))
+ return false;
+ step = int_cst_value (cand->iv->step);
+
+ /* Check that the number of iterations matches the expected pattern:
+ a + 1 > b ? 0 : b - a - 1. */
+ mbz = niter->may_be_zero;
+ if (TREE_CODE (mbz) == GT_EXPR)
+ {
+ /* Handle a + 1 > b. */
+ tree op0 = TREE_OPERAND (mbz, 0);
+ if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
+ {
+ a = TREE_OPERAND (op0, 0);
+ b = TREE_OPERAND (mbz, 1);
+ }
+ else
+ return false;
+ }
+ else if (TREE_CODE (mbz) == LT_EXPR)
+ {
+ tree op1 = TREE_OPERAND (mbz, 1);
+
+ /* Handle b < a + 1. */
+ if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
+ {
+ a = TREE_OPERAND (op1, 0);
+ b = TREE_OPERAND (mbz, 0);
+ }
+ else
+ return false;
+ }
+ else
+ return false;
+
+ /* Expected number of iterations is B - A - 1. Check that it matches
+ the actual number, i.e., that B - A - NITER = 1. */
+ tree_to_aff_combination (niter->niter, nit_type, &nit);
+ tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
+ tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
+ aff_combination_scale (&nit, double_int_minus_one);
+ aff_combination_scale (&tmpa, double_int_minus_one);
+ aff_combination_add (&tmpb, &tmpa);
+ aff_combination_add (&tmpb, &nit);
+ if (tmpb.n != 0 || tmpb.offset != double_int_one)
+ return false;
+
+ /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
+ overflow. */
+ offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
+ cand->iv->step,
+ fold_convert (TREE_TYPE (cand->iv->step), a));
+ if (!difference_cannot_overflow_p (cand->iv->base, offset))
+ return false;
+
+ /* Determine the new comparison operator. */
+ comp = step < 0 ? GT_EXPR : LT_EXPR;
+ if (*comp_p == NE_EXPR)
+ *comp_p = comp;
+ else if (*comp_p == EQ_EXPR)
+ *comp_p = invert_tree_comparison (comp, false);
+ else
+ gcc_unreachable ();
+
+ return true;
+}
+
+/* Check whether it is possible to express the condition in USE by comparison
+ of candidate CAND. If so, store the value compared with to BOUND, and the
+ comparison operator to COMP. */
+
+static bool
+may_eliminate_iv (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand, tree *bound,
+ enum tree_code *comp)
+{
+ basic_block ex_bb;
+ edge exit;
+ tree period;
+ struct loop *loop = data->current_loop;
+ aff_tree bnd;
+ struct tree_niter_desc *desc = NULL;
+
+ if (TREE_CODE (cand->iv->step) != INTEGER_CST)
+ return false;
+
+ /* For now works only for exits that dominate the loop latch.
+ TODO: extend to other conditions inside loop body. */
+ ex_bb = gimple_bb (use->stmt);
+ if (use->stmt != last_stmt (ex_bb)
+ || gimple_code (use->stmt) != GIMPLE_COND
+ || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
+ return false;
+
+ exit = EDGE_SUCC (ex_bb, 0);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ exit = EDGE_SUCC (ex_bb, 1);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ return false;
+
+ desc = niter_for_exit (data, exit);
+ if (!desc)
+ return false;
+
+ /* Determine whether we can use the variable to test the exit condition.
+ This is the case iff the period of the induction variable is greater
+ than the number of iterations for which the exit condition is true. */
+ period = iv_period (cand->iv);
+
+ /* If the number of iterations is constant, compare against it directly. */
+ if (TREE_CODE (desc->niter) == INTEGER_CST)
+ {
+ /* See cand_value_at. */
+ if (stmt_after_increment (loop, cand, use->stmt))
+ {
+ if (!tree_int_cst_lt (desc->niter, period))
+ return false;
+ }
+ else
+ {
+ if (tree_int_cst_lt (period, desc->niter))
+ return false;
+ }
+ }
+
+ /* If not, and if this is the only possible exit of the loop, see whether
+ we can get a conservative estimate on the number of iterations of the
+ entire loop and compare against that instead. */
+ else
+ {
+ double_int period_value, max_niter;
+
+ max_niter = desc->max;
+ if (stmt_after_increment (loop, cand, use->stmt))
+ max_niter += double_int_one;
+ period_value = tree_to_double_int (period);
+ if (max_niter.ugt (period_value))
+ {
+ /* See if we can take advantage of inferred loop bound information. */
+ if (data->loop_single_exit_p)
+ {
+ if (!max_loop_iterations (loop, &max_niter))
+ return false;
+ /* The loop bound is already adjusted by adding 1. */
+ if (max_niter.ugt (period_value))
+ return false;
+ }
+ else
+ return false;
+ }
+ }
+
+ cand_value_at (loop, cand, use->stmt, desc->niter, &bnd);
+
+ *bound = aff_combination_to_tree (&bnd);
+ *comp = iv_elimination_compare (data, use);
+
+ /* It is unlikely that computing the number of iterations using division
+ would be more profitable than keeping the original induction variable. */
+ if (expression_expensive_p (*bound))
+ return false;
+
+ /* Sometimes, it is possible to handle the situation that the number of
+ iterations may be zero unless additional assumtions by using <
+ instead of != in the exit condition.
+
+ TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
+ base the exit condition on it. However, that is often too
+ expensive. */
+ if (!integer_zerop (desc->may_be_zero))
+ return iv_elimination_compare_lt (data, cand, comp, desc);
+
+ return true;
+}
+
+ /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
+ be copied, if is is used in the loop body and DATA->body_includes_call. */
+
+static int
+parm_decl_cost (struct ivopts_data *data, tree bound)
+{
+ tree sbound = bound;
+ STRIP_NOPS (sbound);
+
+ if (TREE_CODE (sbound) == SSA_NAME
+ && SSA_NAME_IS_DEFAULT_DEF (sbound)
+ && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
+ && data->body_includes_call)
+ return COSTS_N_INSNS (1);
+
+ return 0;
+}
+
+/* Determines cost of basing replacement of USE on CAND in a condition. */
+
+static bool
+determine_use_iv_cost_condition (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree bound = NULL_TREE;
+ struct iv *cmp_iv;
+ bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
+ comp_cost elim_cost, express_cost, cost, bound_cost;
+ bool ok;
+ int elim_inv_expr_id = -1, express_inv_expr_id = -1, inv_expr_id;
+ tree *control_var, *bound_cst;
+ enum tree_code comp = ERROR_MARK;
+
+ /* Only consider real candidates. */
+ if (!cand->iv)
+ {
+ set_use_iv_cost (data, use, cand, infinite_cost, NULL, NULL_TREE,
+ ERROR_MARK, -1);
+ return false;
+ }
+
+ /* Try iv elimination. */
+ if (may_eliminate_iv (data, use, cand, &bound, &comp))
+ {
+ elim_cost = force_var_cost (data, bound, &depends_on_elim);
+ if (elim_cost.cost == 0)
+ elim_cost.cost = parm_decl_cost (data, bound);
+ else if (TREE_CODE (bound) == INTEGER_CST)
+ elim_cost.cost = 0;
+ /* If we replace a loop condition 'i < n' with 'p < base + n',
+ depends_on_elim will have 'base' and 'n' set, which implies
+ that both 'base' and 'n' will be live during the loop. More likely,
+ 'base + n' will be loop invariant, resulting in only one live value
+ during the loop. So in that case we clear depends_on_elim and set
+ elim_inv_expr_id instead. */
+ if (depends_on_elim && bitmap_count_bits (depends_on_elim) > 1)
+ {
+ elim_inv_expr_id = get_expr_id (data, bound);
+ bitmap_clear (depends_on_elim);
+ }
+ /* The bound is a loop invariant, so it will be only computed
+ once. */
+ elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
+ }
+ else
+ elim_cost = infinite_cost;
+
+ /* Try expressing the original giv. If it is compared with an invariant,
+ note that we cannot get rid of it. */
+ ok = extract_cond_operands (data, use->stmt, &control_var, &bound_cst,
+ NULL, &cmp_iv);
+ gcc_assert (ok);
+
+ /* When the condition is a comparison of the candidate IV against
+ zero, prefer this IV.
+
+ TODO: The constant that we're subtracting from the cost should
+ be target-dependent. This information should be added to the
+ target costs for each backend. */
+ if (!infinite_cost_p (elim_cost) /* Do not try to decrease infinite! */
+ && integer_zerop (*bound_cst)
+ && (operand_equal_p (*control_var, cand->var_after, 0)
+ || operand_equal_p (*control_var, cand->var_before, 0)))
+ elim_cost.cost -= 1;
+
+ express_cost = get_computation_cost (data, use, cand, false,
+ &depends_on_express, NULL,
+ &express_inv_expr_id);
+ fd_ivopts_data = data;
+ walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
+
+ /* Count the cost of the original bound as well. */
+ bound_cost = force_var_cost (data, *bound_cst, NULL);
+ if (bound_cost.cost == 0)
+ bound_cost.cost = parm_decl_cost (data, *bound_cst);
+ else if (TREE_CODE (*bound_cst) == INTEGER_CST)
+ bound_cost.cost = 0;
+ express_cost.cost += bound_cost.cost;
+
+ /* Choose the better approach, preferring the eliminated IV. */
+ if (compare_costs (elim_cost, express_cost) <= 0)
+ {
+ cost = elim_cost;
+ depends_on = depends_on_elim;
+ depends_on_elim = NULL;
+ inv_expr_id = elim_inv_expr_id;
+ }
+ else
+ {
+ cost = express_cost;
+ depends_on = depends_on_express;
+ depends_on_express = NULL;
+ bound = NULL_TREE;
+ comp = ERROR_MARK;
+ inv_expr_id = express_inv_expr_id;
+ }
+
+ set_use_iv_cost (data, use, cand, cost, depends_on, bound, comp, inv_expr_id);
+
+ if (depends_on_elim)
+ BITMAP_FREE (depends_on_elim);
+ if (depends_on_express)
+ BITMAP_FREE (depends_on_express);
+
+ return !infinite_cost_p (cost);
+}
+
+/* Determines cost of basing replacement of USE on CAND. Returns false
+ if USE cannot be based on CAND. */
+
+static bool
+determine_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ return determine_use_iv_cost_generic (data, use, cand);
+
+ case USE_ADDRESS:
+ return determine_use_iv_cost_address (data, use, cand);
+
+ case USE_COMPARE:
+ return determine_use_iv_cost_condition (data, use, cand);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if get_computation_cost indicates that autoincrement is
+ a possibility for the pair of USE and CAND, false otherwise. */
+
+static bool
+autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
+ struct iv_cand *cand)
+{
+ bitmap depends_on;
+ bool can_autoinc;
+ comp_cost cost;
+
+ if (use->type != USE_ADDRESS)
+ return false;
+
+ cost = get_computation_cost (data, use, cand, true, &depends_on,
+ &can_autoinc, NULL);
+
+ BITMAP_FREE (depends_on);
+
+ return !infinite_cost_p (cost) && can_autoinc;
+}
+
+/* Examine IP_ORIGINAL candidates to see if they are incremented next to a
+ use that allows autoincrement, and set their AINC_USE if possible. */
+
+static void
+set_autoinc_for_original_candidates (struct ivopts_data *data)
+{
+ unsigned i, j;
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+ struct iv_use *closest_before = NULL;
+ struct iv_use *closest_after = NULL;
+ if (cand->pos != IP_ORIGINAL)
+ continue;
+
+ for (j = 0; j < n_iv_uses (data); j++)
+ {
+ struct iv_use *use = iv_use (data, j);
+ unsigned uid = gimple_uid (use->stmt);
+
+ if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at))
+ continue;
+
+ if (uid < gimple_uid (cand->incremented_at)
+ && (closest_before == NULL
+ || uid > gimple_uid (closest_before->stmt)))
+ closest_before = use;
+
+ if (uid > gimple_uid (cand->incremented_at)
+ && (closest_after == NULL
+ || uid < gimple_uid (closest_after->stmt)))
+ closest_after = use;
+ }
+
+ if (closest_before != NULL
+ && autoinc_possible_for_pair (data, closest_before, cand))
+ cand->ainc_use = closest_before;
+ else if (closest_after != NULL
+ && autoinc_possible_for_pair (data, closest_after, cand))
+ cand->ainc_use = closest_after;
+ }
+}
+
+/* Finds the candidates for the induction variables. */
+
+static void
+find_iv_candidates (struct ivopts_data *data)
+{
+ /* Add commonly used ivs. */
+ add_standard_iv_candidates (data);
+
+ /* Add old induction variables. */
+ add_old_ivs_candidates (data);
+
+ /* Add induction variables derived from uses. */
+ add_derived_ivs_candidates (data);
+
+ set_autoinc_for_original_candidates (data);
+
+ /* Record the important candidates. */
+ record_important_candidates (data);
+}
+
+/* Determines costs of basing the use of the iv on an iv candidate. */
+
+static void
+determine_use_iv_costs (struct ivopts_data *data)
+{
+ unsigned i, j;
+ struct iv_use *use;
+ struct iv_cand *cand;
+ bitmap to_clear = BITMAP_ALLOC (NULL);
+
+ alloc_use_cost_map (data);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ if (data->consider_all_candidates)
+ {
+ for (j = 0; j < n_iv_cands (data); j++)
+ {
+ cand = iv_cand (data, j);
+ determine_use_iv_cost (data, use, cand);
+ }
+ }
+ else
+ {
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
+ {
+ cand = iv_cand (data, j);
+ if (!determine_use_iv_cost (data, use, cand))
+ bitmap_set_bit (to_clear, j);
+ }
+
+ /* Remove the candidates for that the cost is infinite from
+ the list of related candidates. */
+ bitmap_and_compl_into (use->related_cands, to_clear);
+ bitmap_clear (to_clear);
+ }
+ }
+
+ BITMAP_FREE (to_clear);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Use-candidate costs:\n");
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ fprintf (dump_file, "Use %d:\n", i);
+ fprintf (dump_file, " cand\tcost\tcompl.\tdepends on\n");
+ for (j = 0; j < use->n_map_members; j++)
+ {
+ if (!use->cost_map[j].cand
+ || infinite_cost_p (use->cost_map[j].cost))
+ continue;
+
+ fprintf (dump_file, " %d\t%d\t%d\t",
+ use->cost_map[j].cand->id,
+ use->cost_map[j].cost.cost,
+ use->cost_map[j].cost.complexity);
+ if (use->cost_map[j].depends_on)
+ bitmap_print (dump_file,
+ use->cost_map[j].depends_on, "","");
+ if (use->cost_map[j].inv_expr_id != -1)
+ fprintf (dump_file, " inv_expr:%d", use->cost_map[j].inv_expr_id);
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Determines cost of the candidate CAND. */
+
+static void
+determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
+{
+ comp_cost cost_base;
+ unsigned cost, cost_step;
+ tree base;
+
+ if (!cand->iv)
+ {
+ cand->cost = 0;
+ return;
+ }
+
+ /* There are two costs associated with the candidate -- its increment
+ and its initialization. The second is almost negligible for any loop
+ that rolls enough, so we take it just very little into account. */
+
+ base = cand->iv->base;
+ cost_base = force_var_cost (data, base, NULL);
+ /* It will be exceptional that the iv register happens to be initialized with
+ the proper value at no cost. In general, there will at least be a regcopy
+ or a const set. */
+ if (cost_base.cost == 0)
+ cost_base.cost = COSTS_N_INSNS (1);
+ cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
+
+ cost = cost_step + adjust_setup_cost (data, cost_base.cost);
+
+ /* Prefer the original ivs unless we may gain something by replacing it.
+ The reason is to make debugging simpler; so this is not relevant for
+ artificial ivs created by other optimization passes. */
+ if (cand->pos != IP_ORIGINAL
+ || !SSA_NAME_VAR (cand->var_before)
+ || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
+ cost++;
+
+ /* Prefer not to insert statements into latch unless there are some
+ already (so that we do not create unnecessary jumps). */
+ if (cand->pos == IP_END
+ && empty_block_p (ip_end_pos (data->current_loop)))
+ cost++;
+
+ cand->cost = cost;
+ cand->cost_step = cost_step;
+}
+
+/* Determines costs of computation of the candidates. */
+
+static void
+determine_iv_costs (struct ivopts_data *data)
+{
+ unsigned i;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Candidate costs:\n");
+ fprintf (dump_file, " cand\tcost\n");
+ }
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ determine_iv_cost (data, cand);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " %d\t%d\n", i, cand->cost);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n");
+}
+
+/* Calculates cost for having SIZE induction variables. */
+
+static unsigned
+ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
+{
+ /* We add size to the cost, so that we prefer eliminating ivs
+ if possible. */
+ return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed,
+ data->body_includes_call);
+}
+
+/* For each size of the induction variable set determine the penalty. */
+
+static void
+determine_set_costs (struct ivopts_data *data)
+{
+ unsigned j, n;
+ gimple phi;
+ gimple_stmt_iterator psi;
+ tree op;
+ struct loop *loop = data->current_loop;
+ bitmap_iterator bi;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Global costs:\n");
+ fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
+ fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
+ fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
+ fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
+ }
+
+ n = 0;
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+ op = PHI_RESULT (phi);
+
+ if (virtual_operand_p (op))
+ continue;
+
+ if (get_iv (data, op))
+ continue;
+
+ n++;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
+ {
+ struct version_info *info = ver_info (data, j);
+
+ if (info->inv_id && info->has_nonlin_use)
+ n++;
+ }
+
+ data->regs_used = n;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " regs_used %d\n", n);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " cost for size:\n");
+ fprintf (dump_file, " ivs\tcost\n");
+ for (j = 0; j <= 2 * target_avail_regs; j++)
+ fprintf (dump_file, " %d\t%d\n", j,
+ ivopts_global_cost_for_size (data, j));
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Returns true if A is a cheaper cost pair than B. */
+
+static bool
+cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
+{
+ int cmp;
+
+ if (!a)
+ return false;
+
+ if (!b)
+ return true;
+
+ cmp = compare_costs (a->cost, b->cost);
+ if (cmp < 0)
+ return true;
+
+ if (cmp > 0)
+ return false;
+
+ /* In case the costs are the same, prefer the cheaper candidate. */
+ if (a->cand->cost < b->cand->cost)
+ return true;
+
+ return false;
+}
+
+
+/* Returns candidate by that USE is expressed in IVS. */
+
+static struct cost_pair *
+iv_ca_cand_for_use (struct iv_ca *ivs, struct iv_use *use)
+{
+ return ivs->cand_for_use[use->id];
+}
+
+/* Computes the cost field of IVS structure. */
+
+static void
+iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
+{
+ comp_cost cost = ivs->cand_use_cost;
+
+ cost.cost += ivs->cand_cost;
+
+ cost.cost += ivopts_global_cost_for_size (data,
+ ivs->n_regs + ivs->num_used_inv_expr);
+
+ ivs->cost = cost;
+}
+
+/* Remove invariants in set INVS to set IVS. */
+
+static void
+iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
+{
+ bitmap_iterator bi;
+ unsigned iid;
+
+ if (!invs)
+ return;
+
+ EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
+ {
+ ivs->n_invariant_uses[iid]--;
+ if (ivs->n_invariant_uses[iid] == 0)
+ ivs->n_regs--;
+ }
+}
+
+/* Set USE not to be expressed by any candidate in IVS. */
+
+static void
+iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use)
+{
+ unsigned uid = use->id, cid;
+ struct cost_pair *cp;
+
+ cp = ivs->cand_for_use[uid];
+ if (!cp)
+ return;
+ cid = cp->cand->id;
+
+ ivs->bad_uses++;
+ ivs->cand_for_use[uid] = NULL;
+ ivs->n_cand_uses[cid]--;
+
+ if (ivs->n_cand_uses[cid] == 0)
+ {
+ bitmap_clear_bit (ivs->cands, cid);
+ /* Do not count the pseudocandidates. */
+ if (cp->cand->iv)
+ ivs->n_regs--;
+ ivs->n_cands--;
+ ivs->cand_cost -= cp->cand->cost;
+
+ iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
+ }
+
+ ivs->cand_use_cost = sub_costs (ivs->cand_use_cost, cp->cost);
+
+ iv_ca_set_remove_invariants (ivs, cp->depends_on);
+
+ if (cp->inv_expr_id != -1)
+ {
+ ivs->used_inv_expr[cp->inv_expr_id]--;
+ if (ivs->used_inv_expr[cp->inv_expr_id] == 0)
+ ivs->num_used_inv_expr--;
+ }
+ iv_ca_recount_cost (data, ivs);
+}
+
+/* Add invariants in set INVS to set IVS. */
+
+static void
+iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
+{
+ bitmap_iterator bi;
+ unsigned iid;
+
+ if (!invs)
+ return;
+
+ EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
+ {
+ ivs->n_invariant_uses[iid]++;
+ if (ivs->n_invariant_uses[iid] == 1)
+ ivs->n_regs++;
+ }
+}
+
+/* Set cost pair for USE in set IVS to CP. */
+
+static void
+iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use, struct cost_pair *cp)
+{
+ unsigned uid = use->id, cid;
+
+ if (ivs->cand_for_use[uid] == cp)
+ return;
+
+ if (ivs->cand_for_use[uid])
+ iv_ca_set_no_cp (data, ivs, use);
+
+ if (cp)
+ {
+ cid = cp->cand->id;
+
+ ivs->bad_uses--;
+ ivs->cand_for_use[uid] = cp;
+ ivs->n_cand_uses[cid]++;
+ if (ivs->n_cand_uses[cid] == 1)
+ {
+ bitmap_set_bit (ivs->cands, cid);
+ /* Do not count the pseudocandidates. */
+ if (cp->cand->iv)
+ ivs->n_regs++;
+ ivs->n_cands++;
+ ivs->cand_cost += cp->cand->cost;
+
+ iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
+ }
+
+ ivs->cand_use_cost = add_costs (ivs->cand_use_cost, cp->cost);
+ iv_ca_set_add_invariants (ivs, cp->depends_on);
+
+ if (cp->inv_expr_id != -1)
+ {
+ ivs->used_inv_expr[cp->inv_expr_id]++;
+ if (ivs->used_inv_expr[cp->inv_expr_id] == 1)
+ ivs->num_used_inv_expr++;
+ }
+ iv_ca_recount_cost (data, ivs);
+ }
+}
+
+/* Extend set IVS by expressing USE by some of the candidates in it
+ if possible. All important candidates will be considered
+ if IMPORTANT_CANDIDATES is true. */
+
+static void
+iv_ca_add_use (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use, bool important_candidates)
+{
+ struct cost_pair *best_cp = NULL, *cp;
+ bitmap_iterator bi;
+ bitmap cands;
+ unsigned i;
+
+ gcc_assert (ivs->upto >= use->id);
+
+ if (ivs->upto == use->id)
+ {
+ ivs->upto++;
+ ivs->bad_uses++;
+ }
+
+ cands = (important_candidates ? data->important_candidates : ivs->cands);
+ EXECUTE_IF_SET_IN_BITMAP (cands, 0, i, bi)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ cp = get_use_iv_cost (data, use, cand);
+
+ if (cheaper_cost_pair (cp, best_cp))
+ best_cp = cp;
+ }
+
+ iv_ca_set_cp (data, ivs, use, best_cp);
+}
+
+/* Get cost for assignment IVS. */
+
+static comp_cost
+iv_ca_cost (struct iv_ca *ivs)
+{
+ /* This was a conditional expression but it triggered a bug in
+ Sun C 5.5. */
+ if (ivs->bad_uses)
+ return infinite_cost;
+ else
+ return ivs->cost;
+}
+
+/* Returns true if all dependences of CP are among invariants in IVS. */
+
+static bool
+iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ if (!cp->depends_on)
+ return true;
+
+ EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
+ {
+ if (ivs->n_invariant_uses[i] == 0)
+ return false;
+ }
+
+ return true;
+}
+
+/* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
+ it before NEXT_CHANGE. */
+
+static struct iv_ca_delta *
+iv_ca_delta_add (struct iv_use *use, struct cost_pair *old_cp,
+ struct cost_pair *new_cp, struct iv_ca_delta *next_change)
+{
+ struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
+
+ change->use = use;
+ change->old_cp = old_cp;
+ change->new_cp = new_cp;
+ change->next_change = next_change;
+
+ return change;
+}
+
+/* Joins two lists of changes L1 and L2. Destructive -- old lists
+ are rewritten. */
+
+static struct iv_ca_delta *
+iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
+{
+ struct iv_ca_delta *last;
+
+ if (!l2)
+ return l1;
+
+ if (!l1)
+ return l2;
+
+ for (last = l1; last->next_change; last = last->next_change)
+ continue;
+ last->next_change = l2;
+
+ return l1;
+}
+
+/* Reverse the list of changes DELTA, forming the inverse to it. */
+
+static struct iv_ca_delta *
+iv_ca_delta_reverse (struct iv_ca_delta *delta)
+{
+ struct iv_ca_delta *act, *next, *prev = NULL;
+ struct cost_pair *tmp;
+
+ for (act = delta; act; act = next)
+ {
+ next = act->next_change;
+ act->next_change = prev;
+ prev = act;
+
+ tmp = act->old_cp;
+ act->old_cp = act->new_cp;
+ act->new_cp = tmp;
+ }
+
+ return prev;
+}
+
+/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
+ reverted instead. */
+
+static void
+iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_ca_delta *delta, bool forward)
+{
+ struct cost_pair *from, *to;
+ struct iv_ca_delta *act;
+
+ if (!forward)
+ delta = iv_ca_delta_reverse (delta);
+
+ for (act = delta; act; act = act->next_change)
+ {
+ from = act->old_cp;
+ to = act->new_cp;
+ gcc_assert (iv_ca_cand_for_use (ivs, act->use) == from);
+ iv_ca_set_cp (data, ivs, act->use, to);
+ }
+
+ if (!forward)
+ iv_ca_delta_reverse (delta);
+}
+
+/* Returns true if CAND is used in IVS. */
+
+static bool
+iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
+{
+ return ivs->n_cand_uses[cand->id] > 0;
+}
+
+/* Returns number of induction variable candidates in the set IVS. */
+
+static unsigned
+iv_ca_n_cands (struct iv_ca *ivs)
+{
+ return ivs->n_cands;
+}
+
+/* Free the list of changes DELTA. */
+
+static void
+iv_ca_delta_free (struct iv_ca_delta **delta)
+{
+ struct iv_ca_delta *act, *next;
+
+ for (act = *delta; act; act = next)
+ {
+ next = act->next_change;
+ free (act);
+ }
+
+ *delta = NULL;
+}
+
+/* Allocates new iv candidates assignment. */
+
+static struct iv_ca *
+iv_ca_new (struct ivopts_data *data)
+{
+ struct iv_ca *nw = XNEW (struct iv_ca);
+
+ nw->upto = 0;
+ nw->bad_uses = 0;
+ nw->cand_for_use = XCNEWVEC (struct cost_pair *, n_iv_uses (data));
+ nw->n_cand_uses = XCNEWVEC (unsigned, n_iv_cands (data));
+ nw->cands = BITMAP_ALLOC (NULL);
+ nw->n_cands = 0;
+ nw->n_regs = 0;
+ nw->cand_use_cost = no_cost;
+ nw->cand_cost = 0;
+ nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
+ nw->cost = no_cost;
+ nw->used_inv_expr = XCNEWVEC (unsigned, data->inv_expr_id + 1);
+ nw->num_used_inv_expr = 0;
+
+ return nw;
+}
+
+/* Free memory occupied by the set IVS. */
+
+static void
+iv_ca_free (struct iv_ca **ivs)
+{
+ free ((*ivs)->cand_for_use);
+ free ((*ivs)->n_cand_uses);
+ BITMAP_FREE ((*ivs)->cands);
+ free ((*ivs)->n_invariant_uses);
+ free ((*ivs)->used_inv_expr);
+ free (*ivs);
+ *ivs = NULL;
+}
+
+/* Dumps IVS to FILE. */
+
+static void
+iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
+{
+ const char *pref = " invariants ";
+ unsigned i;
+ comp_cost cost = iv_ca_cost (ivs);
+
+ fprintf (file, " cost: %d (complexity %d)\n", cost.cost, cost.complexity);
+ fprintf (file, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
+ ivs->cand_cost, ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
+ bitmap_print (file, ivs->cands, " candidates: ","\n");
+
+ for (i = 0; i < ivs->upto; i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+ struct cost_pair *cp = iv_ca_cand_for_use (ivs, use);
+ if (cp)
+ fprintf (file, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
+ use->id, cp->cand->id, cp->cost.cost, cp->cost.complexity);
+ else
+ fprintf (file, " use:%d --> ??\n", use->id);
+ }
+
+ for (i = 1; i <= data->max_inv_id; i++)
+ if (ivs->n_invariant_uses[i])
+ {
+ fprintf (file, "%s%d", pref, i);
+ pref = ", ";
+ }
+ fprintf (file, "\n\n");
+}
+
+/* Try changing candidate in IVS to CAND for each use. Return cost of the
+ new set, and store differences in DELTA. Number of induction variables
+ in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
+ the function will try to find a solution with mimimal iv candidates. */
+
+static comp_cost
+iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *cand, struct iv_ca_delta **delta,
+ unsigned *n_ivs, bool min_ncand)
+{
+ unsigned i;
+ comp_cost cost;
+ struct iv_use *use;
+ struct cost_pair *old_cp, *new_cp;
+
+ *delta = NULL;
+ for (i = 0; i < ivs->upto; i++)
+ {
+ use = iv_use (data, i);
+ old_cp = iv_ca_cand_for_use (ivs, use);
+
+ if (old_cp
+ && old_cp->cand == cand)
+ continue;
+
+ new_cp = get_use_iv_cost (data, use, cand);
+ if (!new_cp)
+ continue;
+
+ if (!min_ncand && !iv_ca_has_deps (ivs, new_cp))
+ continue;
+
+ if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
+ continue;
+
+ *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
+ }
+
+ iv_ca_delta_commit (data, ivs, *delta, true);
+ cost = iv_ca_cost (ivs);
+ if (n_ivs)
+ *n_ivs = iv_ca_n_cands (ivs);
+ iv_ca_delta_commit (data, ivs, *delta, false);
+
+ return cost;
+}
+
+/* Try narrowing set IVS by removing CAND. Return the cost of
+ the new set and store the differences in DELTA. START is
+ the candidate with which we start narrowing. */
+
+static comp_cost
+iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *cand, struct iv_cand *start,
+ struct iv_ca_delta **delta)
+{
+ unsigned i, ci;
+ struct iv_use *use;
+ struct cost_pair *old_cp, *new_cp, *cp;
+ bitmap_iterator bi;
+ struct iv_cand *cnd;
+ comp_cost cost, best_cost, acost;
+
+ *delta = NULL;
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ old_cp = iv_ca_cand_for_use (ivs, use);
+ if (old_cp->cand != cand)
+ continue;
+
+ best_cost = iv_ca_cost (ivs);
+ /* Start narrowing with START. */
+ new_cp = get_use_iv_cost (data, use, start);
+
+ if (data->consider_all_candidates)
+ {
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
+ {
+ if (ci == cand->id || (start && ci == start->id))
+ continue;
+
+ cnd = iv_cand (data, ci);
+
+ cp = get_use_iv_cost (data, use, cnd);
+ if (!cp)
+ continue;
+
+ iv_ca_set_cp (data, ivs, use, cp);
+ acost = iv_ca_cost (ivs);
+
+ if (compare_costs (acost, best_cost) < 0)
+ {
+ best_cost = acost;
+ new_cp = cp;
+ }
+ }
+ }
+ else
+ {
+ EXECUTE_IF_AND_IN_BITMAP (use->related_cands, ivs->cands, 0, ci, bi)
+ {
+ if (ci == cand->id || (start && ci == start->id))
+ continue;
+
+ cnd = iv_cand (data, ci);
+
+ cp = get_use_iv_cost (data, use, cnd);
+ if (!cp)
+ continue;
+
+ iv_ca_set_cp (data, ivs, use, cp);
+ acost = iv_ca_cost (ivs);
+
+ if (compare_costs (acost, best_cost) < 0)
+ {
+ best_cost = acost;
+ new_cp = cp;
+ }
+ }
+ }
+ /* Restore to old cp for use. */
+ iv_ca_set_cp (data, ivs, use, old_cp);
+
+ if (!new_cp)
+ {
+ iv_ca_delta_free (delta);
+ return infinite_cost;
+ }
+
+ *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
+ }
+
+ iv_ca_delta_commit (data, ivs, *delta, true);
+ cost = iv_ca_cost (ivs);
+ iv_ca_delta_commit (data, ivs, *delta, false);
+
+ return cost;
+}
+
+/* Try optimizing the set of candidates IVS by removing candidates different
+ from to EXCEPT_CAND from it. Return cost of the new set, and store
+ differences in DELTA. */
+
+static comp_cost
+iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *except_cand, struct iv_ca_delta **delta)
+{
+ bitmap_iterator bi;
+ struct iv_ca_delta *act_delta, *best_delta;
+ unsigned i;
+ comp_cost best_cost, acost;
+ struct iv_cand *cand;
+
+ best_delta = NULL;
+ best_cost = iv_ca_cost (ivs);
+
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+
+ if (cand == except_cand)
+ continue;
+
+ acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta);
+
+ if (compare_costs (acost, best_cost) < 0)
+ {
+ best_cost = acost;
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (!best_delta)
+ {
+ *delta = NULL;
+ return best_cost;
+ }
+
+ /* Recurse to possibly remove other unnecessary ivs. */
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ best_cost = iv_ca_prune (data, ivs, except_cand, delta);
+ iv_ca_delta_commit (data, ivs, best_delta, false);
+ *delta = iv_ca_delta_join (best_delta, *delta);
+ return best_cost;
+}
+
+/* Tries to extend the sets IVS in the best possible way in order
+ to express the USE. If ORIGINALP is true, prefer candidates from
+ the original set of IVs, otherwise favor important candidates not
+ based on any memory object. */
+
+static bool
+try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use, bool originalp)
+{
+ comp_cost best_cost, act_cost;
+ unsigned i;
+ bitmap_iterator bi;
+ struct iv_cand *cand;
+ struct iv_ca_delta *best_delta = NULL, *act_delta;
+ struct cost_pair *cp;
+
+ iv_ca_add_use (data, ivs, use, false);
+ best_cost = iv_ca_cost (ivs);
+
+ cp = iv_ca_cand_for_use (ivs, use);
+ if (!cp)
+ {
+ ivs->upto--;
+ ivs->bad_uses--;
+ iv_ca_add_use (data, ivs, use, true);
+ best_cost = iv_ca_cost (ivs);
+ cp = iv_ca_cand_for_use (ivs, use);
+ }
+ if (cp)
+ {
+ best_delta = iv_ca_delta_add (use, NULL, cp, NULL);
+ iv_ca_set_no_cp (data, ivs, use);
+ }
+
+ /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
+ first try important candidates not based on any memory object. Only if
+ this fails, try the specific ones. Rationale -- in loops with many
+ variables the best choice often is to use just one generic biv. If we
+ added here many ivs specific to the uses, the optimization algorithm later
+ would be likely to get stuck in a local minimum, thus causing us to create
+ too many ivs. The approach from few ivs to more seems more likely to be
+ successful -- starting from few ivs, replacing an expensive use by a
+ specific iv should always be a win. */
+ EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+
+ if (originalp && cand->pos !=IP_ORIGINAL)
+ continue;
+
+ if (!originalp && cand->iv->base_object != NULL_TREE)
+ continue;
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ cp = get_use_iv_cost (data, use, cand);
+ if (!cp)
+ continue;
+
+ iv_ca_set_cp (data, ivs, use, cp);
+ act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
+ true);
+ iv_ca_set_no_cp (data, ivs, use);
+ act_delta = iv_ca_delta_add (use, NULL, cp, act_delta);
+
+ if (compare_costs (act_cost, best_cost) < 0)
+ {
+ best_cost = act_cost;
+
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (infinite_cost_p (best_cost))
+ {
+ for (i = 0; i < use->n_map_members; i++)
+ {
+ cp = use->cost_map + i;
+ cand = cp->cand;
+ if (!cand)
+ continue;
+
+ /* Already tried this. */
+ if (cand->important)
+ {
+ if (originalp && cand->pos == IP_ORIGINAL)
+ continue;
+ if (!originalp && cand->iv->base_object == NULL_TREE)
+ continue;
+ }
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ act_delta = NULL;
+ iv_ca_set_cp (data, ivs, use, cp);
+ act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
+ iv_ca_set_no_cp (data, ivs, use);
+ act_delta = iv_ca_delta_add (use, iv_ca_cand_for_use (ivs, use),
+ cp, act_delta);
+
+ if (compare_costs (act_cost, best_cost) < 0)
+ {
+ best_cost = act_cost;
+
+ if (best_delta)
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+ }
+
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ iv_ca_delta_free (&best_delta);
+
+ return !infinite_cost_p (best_cost);
+}
+
+/* Finds an initial assignment of candidates to uses. */
+
+static struct iv_ca *
+get_initial_solution (struct ivopts_data *data, bool originalp)
+{
+ struct iv_ca *ivs = iv_ca_new (data);
+ unsigned i;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ if (!try_add_cand_for (data, ivs, iv_use (data, i), originalp))
+ {
+ iv_ca_free (&ivs);
+ return NULL;
+ }
+
+ return ivs;
+}
+
+/* Tries to improve set of induction variables IVS. */
+
+static bool
+try_improve_iv_set (struct ivopts_data *data, struct iv_ca *ivs)
+{
+ unsigned i, n_ivs;
+ comp_cost acost, best_cost = iv_ca_cost (ivs);
+ struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
+ struct iv_cand *cand;
+
+ /* Try extending the set of induction variables by one. */
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ cand = iv_cand (data, i);
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
+ if (!act_delta)
+ continue;
+
+ /* If we successfully added the candidate and the set is small enough,
+ try optimizing it by removing other candidates. */
+ if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
+ {
+ iv_ca_delta_commit (data, ivs, act_delta, true);
+ acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
+ iv_ca_delta_commit (data, ivs, act_delta, false);
+ act_delta = iv_ca_delta_join (act_delta, tmp_delta);
+ }
+
+ if (compare_costs (acost, best_cost) < 0)
+ {
+ best_cost = acost;
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (!best_delta)
+ {
+ /* Try removing the candidates from the set instead. */
+ best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
+
+ /* Nothing more we can do. */
+ if (!best_delta)
+ return false;
+ }
+
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ gcc_assert (compare_costs (best_cost, iv_ca_cost (ivs)) == 0);
+ iv_ca_delta_free (&best_delta);
+ return true;
+}
+
+/* Attempts to find the optimal set of induction variables. We do simple
+ greedy heuristic -- we try to replace at most one candidate in the selected
+ solution and remove the unused ivs while this improves the cost. */
+
+static struct iv_ca *
+find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
+{
+ struct iv_ca *set;
+
+ /* Get the initial solution. */
+ set = get_initial_solution (data, originalp);
+ if (!set)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
+ return NULL;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Initial set of candidates:\n");
+ iv_ca_dump (data, dump_file, set);
+ }
+
+ while (try_improve_iv_set (data, set))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Improved to:\n");
+ iv_ca_dump (data, dump_file, set);
+ }
+ }
+
+ return set;
+}
+
+static struct iv_ca *
+find_optimal_iv_set (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_ca *set, *origset;
+ struct iv_use *use;
+ comp_cost cost, origcost;
+
+ /* Determine the cost based on a strategy that starts with original IVs,
+ and try again using a strategy that prefers candidates not based
+ on any IVs. */
+ origset = find_optimal_iv_set_1 (data, true);
+ set = find_optimal_iv_set_1 (data, false);
+
+ if (!origset && !set)
+ return NULL;
+
+ origcost = origset ? iv_ca_cost (origset) : infinite_cost;
+ cost = set ? iv_ca_cost (set) : infinite_cost;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
+ origcost.cost, origcost.complexity);
+ fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
+ cost.cost, cost.complexity);
+ }
+
+ /* Choose the one with the best cost. */
+ if (compare_costs (origcost, cost) <= 0)
+ {
+ if (set)
+ iv_ca_free (&set);
+ set = origset;
+ }
+ else if (origset)
+ iv_ca_free (&origset);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ use->selected = iv_ca_cand_for_use (set, use)->cand;
+ }
+
+ return set;
+}
+
+/* Creates a new induction variable corresponding to CAND. */
+
+static void
+create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
+{
+ gimple_stmt_iterator incr_pos;
+ tree base;
+ bool after = false;
+
+ if (!cand->iv)
+ return;
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
+ break;
+
+ case IP_END:
+ incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
+ after = true;
+ break;
+
+ case IP_AFTER_USE:
+ after = true;
+ /* fall through */
+ case IP_BEFORE_USE:
+ incr_pos = gsi_for_stmt (cand->incremented_at);
+ break;
+
+ case IP_ORIGINAL:
+ /* Mark that the iv is preserved. */
+ name_info (data, cand->var_before)->preserve_biv = true;
+ name_info (data, cand->var_after)->preserve_biv = true;
+
+ /* Rewrite the increment so that it uses var_before directly. */
+ find_interesting_uses_op (data, cand->var_after)->selected = cand;
+ return;
+ }
+
+ gimple_add_tmp_var (cand->var_before);
+
+ base = unshare_expr (cand->iv->base);
+
+ create_iv (base, unshare_expr (cand->iv->step),
+ cand->var_before, data->current_loop,
+ &incr_pos, after, &cand->var_before, &cand->var_after);
+}
+
+/* Creates new induction variables described in SET. */
+
+static void
+create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+ create_new_iv (data, cand);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nSelected IV set: \n");
+ EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+ dump_cand (dump_file, cand);
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Rewrites USE (definition of iv used in a nonlinear expression)
+ using candidate CAND. */
+
+static void
+rewrite_use_nonlinear_expr (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp;
+ tree op, tgt;
+ gimple ass;
+ gimple_stmt_iterator bsi;
+
+ /* An important special case -- if we are asked to express value of
+ the original iv by itself, just exit; there is no need to
+ introduce a new computation (that might also need casting the
+ variable to unsigned and back). */
+ if (cand->pos == IP_ORIGINAL
+ && cand->incremented_at == use->stmt)
+ {
+ enum tree_code stmt_code;
+
+ gcc_assert (is_gimple_assign (use->stmt));
+ gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
+
+ /* Check whether we may leave the computation unchanged.
+ This is the case only if it does not rely on other
+ computations in the loop -- otherwise, the computation
+ we rely upon may be removed in remove_unused_ivs,
+ thus leading to ICE. */
+ stmt_code = gimple_assign_rhs_code (use->stmt);
+ if (stmt_code == PLUS_EXPR
+ || stmt_code == MINUS_EXPR
+ || stmt_code == POINTER_PLUS_EXPR)
+ {
+ if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
+ op = gimple_assign_rhs2 (use->stmt);
+ else if (gimple_assign_rhs2 (use->stmt) == cand->var_before)
+ op = gimple_assign_rhs1 (use->stmt);
+ else
+ op = NULL_TREE;
+ }
+ else
+ op = NULL_TREE;
+
+ if (op && expr_invariant_in_loop_p (data->current_loop, op))
+ return;
+ }
+
+ comp = get_computation (data->current_loop, use, cand);
+ gcc_assert (comp != NULL_TREE);
+
+ switch (gimple_code (use->stmt))
+ {
+ case GIMPLE_PHI:
+ tgt = PHI_RESULT (use->stmt);
+
+ /* If we should keep the biv, do not replace it. */
+ if (name_info (data, tgt)->preserve_biv)
+ return;
+
+ bsi = gsi_after_labels (gimple_bb (use->stmt));
+ break;
+
+ case GIMPLE_ASSIGN:
+ tgt = gimple_assign_lhs (use->stmt);
+ bsi = gsi_for_stmt (use->stmt);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (!valid_gimple_rhs_p (comp)
+ || (gimple_code (use->stmt) != GIMPLE_PHI
+ /* We can't allow re-allocating the stmt as it might be pointed
+ to still. */
+ && (get_gimple_rhs_num_ops (TREE_CODE (comp))
+ >= gimple_num_ops (gsi_stmt (bsi)))))
+ {
+ comp = force_gimple_operand_gsi (&bsi, comp, true, NULL_TREE,
+ true, GSI_SAME_STMT);
+ if (POINTER_TYPE_P (TREE_TYPE (tgt)))
+ {
+ duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
+ /* As this isn't a plain copy we have to reset alignment
+ information. */
+ if (SSA_NAME_PTR_INFO (comp))
+ mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
+ }
+ }
+
+ if (gimple_code (use->stmt) == GIMPLE_PHI)
+ {
+ ass = gimple_build_assign (tgt, comp);
+ gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
+
+ bsi = gsi_for_stmt (use->stmt);
+ remove_phi_node (&bsi, false);
+ }
+ else
+ {
+ gimple_assign_set_rhs_from_tree (&bsi, comp);
+ use->stmt = gsi_stmt (bsi);
+ }
+}
+
+/* Performs a peephole optimization to reorder the iv update statement with
+ a mem ref to enable instruction combining in later phases. The mem ref uses
+ the iv value before the update, so the reordering transformation requires
+ adjustment of the offset. CAND is the selected IV_CAND.
+
+ Example:
+
+ t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
+ iv2 = iv1 + 1;
+
+ if (t < val) (1)
+ goto L;
+ goto Head;
+
+
+ directly propagating t over to (1) will introduce overlapping live range
+ thus increase register pressure. This peephole transform it into:
+
+
+ iv2 = iv1 + 1;
+ t = MEM_REF (base, iv2, 8, 8);
+ if (t < val)
+ goto L;
+ goto Head;
+*/
+
+static void
+adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
+{
+ tree var_after;
+ gimple iv_update, stmt;
+ basic_block bb;
+ gimple_stmt_iterator gsi, gsi_iv;
+
+ if (cand->pos != IP_NORMAL)
+ return;
+
+ var_after = cand->var_after;
+ iv_update = SSA_NAME_DEF_STMT (var_after);
+
+ bb = gimple_bb (iv_update);
+ gsi = gsi_last_nondebug_bb (bb);
+ stmt = gsi_stmt (gsi);
+
+ /* Only handle conditional statement for now. */
+ if (gimple_code (stmt) != GIMPLE_COND)
+ return;
+
+ gsi_prev_nondebug (&gsi);
+ stmt = gsi_stmt (gsi);
+ if (stmt != iv_update)
+ return;
+
+ gsi_prev_nondebug (&gsi);
+ if (gsi_end_p (gsi))
+ return;
+
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return;
+
+ if (stmt != use->stmt)
+ return;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Reordering \n");
+ print_gimple_stmt (dump_file, iv_update, 0, 0);
+ print_gimple_stmt (dump_file, use->stmt, 0, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ gsi = gsi_for_stmt (use->stmt);
+ gsi_iv = gsi_for_stmt (iv_update);
+ gsi_move_before (&gsi_iv, &gsi);
+
+ cand->pos = IP_BEFORE_USE;
+ cand->incremented_at = use->stmt;
+}
+
+/* Rewrites USE (address that is an iv) using candidate CAND. */
+
+static void
+rewrite_use_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ aff_tree aff;
+ gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
+ tree base_hint = NULL_TREE;
+ tree ref, iv;
+ bool ok;
+
+ adjust_iv_update_pos (cand, use);
+ ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
+ gcc_assert (ok);
+ unshare_aff_combination (&aff);
+
+ /* To avoid undefined overflow problems, all IV candidates use unsigned
+ integer types. The drawback is that this makes it impossible for
+ create_mem_ref to distinguish an IV that is based on a memory object
+ from one that represents simply an offset.
+
+ To work around this problem, we pass a hint to create_mem_ref that
+ indicates which variable (if any) in aff is an IV based on a memory
+ object. Note that we only consider the candidate. If this is not
+ based on an object, the base of the reference is in some subexpression
+ of the use -- but these will use pointer types, so they are recognized
+ by the create_mem_ref heuristics anyway. */
+ if (cand->iv->base_object)
+ base_hint = var_at_stmt (data->current_loop, cand, use->stmt);
+
+ iv = var_at_stmt (data->current_loop, cand, use->stmt);
+ ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff,
+ reference_alias_ptr_type (*use->op_p),
+ iv, base_hint, data->speed);
+ copy_ref_info (ref, *use->op_p);
+ *use->op_p = ref;
+}
+
+/* Rewrites USE (the condition such that one of the arguments is an iv) using
+ candidate CAND. */
+
+static void
+rewrite_use_compare (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp, *var_p, op, bound;
+ gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
+ enum tree_code compare;
+ struct cost_pair *cp = get_use_iv_cost (data, use, cand);
+ bool ok;
+
+ bound = cp->value;
+ if (bound)
+ {
+ tree var = var_at_stmt (data->current_loop, cand, use->stmt);
+ tree var_type = TREE_TYPE (var);
+ gimple_seq stmts;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Replacing exit test: ");
+ print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
+ }
+ compare = cp->comp;
+ bound = unshare_expr (fold_convert (var_type, bound));
+ op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
+ if (stmts)
+ gsi_insert_seq_on_edge_immediate (
+ loop_preheader_edge (data->current_loop),
+ stmts);
+
+ gimple_cond_set_lhs (use->stmt, var);
+ gimple_cond_set_code (use->stmt, compare);
+ gimple_cond_set_rhs (use->stmt, op);
+ return;
+ }
+
+ /* The induction variable elimination failed; just express the original
+ giv. */
+ comp = get_computation (data->current_loop, use, cand);
+ gcc_assert (comp != NULL_TREE);
+
+ ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
+ gcc_assert (ok);
+
+ *var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
+ true, GSI_SAME_STMT);
+}
+
+/* Rewrites USE using candidate CAND. */
+
+static void
+rewrite_use (struct ivopts_data *data, struct iv_use *use, struct iv_cand *cand)
+{
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ rewrite_use_nonlinear_expr (data, use, cand);
+ break;
+
+ case USE_ADDRESS:
+ rewrite_use_address (data, use, cand);
+ break;
+
+ case USE_COMPARE:
+ rewrite_use_compare (data, use, cand);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ update_stmt (use->stmt);
+}
+
+/* Rewrite the uses using the selected induction variables. */
+
+static void
+rewrite_uses (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ cand = use->selected;
+ gcc_assert (cand);
+
+ rewrite_use (data, use, cand);
+ }
+}
+
+/* Removes the ivs that are not used after rewriting. */
+
+static void
+remove_unused_ivs (struct ivopts_data *data)
+{
+ unsigned j;
+ bitmap_iterator bi;
+ bitmap toremove = BITMAP_ALLOC (NULL);
+
+ /* Figure out an order in which to release SSA DEFs so that we don't
+ release something that we'd have to propagate into a debug stmt
+ afterwards. */
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
+ {
+ struct version_info *info;
+
+ info = ver_info (data, j);
+ if (info->iv
+ && !integer_zerop (info->iv->step)
+ && !info->inv_id
+ && !info->iv->have_use_for
+ && !info->preserve_biv)
+ {
+ bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
+
+ tree def = info->iv->ssa_name;
+
+ if (MAY_HAVE_DEBUG_STMTS && SSA_NAME_DEF_STMT (def))
+ {
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ gimple stmt;
+ int count = 0;
+
+ FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
+ {
+ if (!gimple_debug_bind_p (stmt))
+ continue;
+
+ /* We just want to determine whether to do nothing
+ (count == 0), to substitute the computed
+ expression into a single use of the SSA DEF by
+ itself (count == 1), or to use a debug temp
+ because the SSA DEF is used multiple times or as
+ part of a larger expression (count > 1). */
+ count++;
+ if (gimple_debug_bind_get_value (stmt) != def)
+ count++;
+
+ if (count > 1)
+ BREAK_FROM_IMM_USE_STMT (imm_iter);
+ }
+
+ if (!count)
+ continue;
+
+ struct iv_use dummy_use;
+ struct iv_cand *best_cand = NULL, *cand;
+ unsigned i, best_pref = 0, cand_pref;
+
+ memset (&dummy_use, 0, sizeof (dummy_use));
+ dummy_use.iv = info->iv;
+ for (i = 0; i < n_iv_uses (data) && i < 64; i++)
+ {
+ cand = iv_use (data, i)->selected;
+ if (cand == best_cand)
+ continue;
+ cand_pref = operand_equal_p (cand->iv->step,
+ info->iv->step, 0)
+ ? 4 : 0;
+ cand_pref
+ += TYPE_MODE (TREE_TYPE (cand->iv->base))
+ == TYPE_MODE (TREE_TYPE (info->iv->base))
+ ? 2 : 0;
+ cand_pref
+ += TREE_CODE (cand->iv->base) == INTEGER_CST
+ ? 1 : 0;
+ if (best_cand == NULL || best_pref < cand_pref)
+ {
+ best_cand = cand;
+ best_pref = cand_pref;
+ }
+ }
+
+ if (!best_cand)
+ continue;
+
+ tree comp = get_computation_at (data->current_loop,
+ &dummy_use, best_cand,
+ SSA_NAME_DEF_STMT (def));
+ if (!comp)
+ continue;
+
+ if (count > 1)
+ {
+ tree vexpr = make_node (DEBUG_EXPR_DECL);
+ DECL_ARTIFICIAL (vexpr) = 1;
+ TREE_TYPE (vexpr) = TREE_TYPE (comp);
+ if (SSA_NAME_VAR (def))
+ DECL_MODE (vexpr) = DECL_MODE (SSA_NAME_VAR (def));
+ else
+ DECL_MODE (vexpr) = TYPE_MODE (TREE_TYPE (vexpr));
+ gimple def_temp = gimple_build_debug_bind (vexpr, comp, NULL);
+ gimple_stmt_iterator gsi;
+
+ if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI)
+ gsi = gsi_after_labels (gimple_bb
+ (SSA_NAME_DEF_STMT (def)));
+ else
+ gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def));
+
+ gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
+ comp = vexpr;
+ }
+
+ FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
+ {
+ if (!gimple_debug_bind_p (stmt))
+ continue;
+
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ SET_USE (use_p, comp);
+
+ update_stmt (stmt);
+ }
+ }
+ }
+ }
+
+ release_defs_bitset (toremove);
+
+ BITMAP_FREE (toremove);
+}
+
+/* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
+ for pointer_map_traverse. */
+
+static bool
+free_tree_niter_desc (const void *key ATTRIBUTE_UNUSED, void **value,
+ void *data ATTRIBUTE_UNUSED)
+{
+ struct tree_niter_desc *const niter = (struct tree_niter_desc *) *value;
+
+ free (niter);
+ return true;
+}
+
+/* Frees data allocated by the optimization of a single loop. */
+
+static void
+free_loop_data (struct ivopts_data *data)
+{
+ unsigned i, j;
+ bitmap_iterator bi;
+ tree obj;
+
+ if (data->niters)
+ {
+ pointer_map_traverse (data->niters, free_tree_niter_desc, NULL);
+ pointer_map_destroy (data->niters);
+ data->niters = NULL;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ struct version_info *info;
+
+ info = ver_info (data, i);
+ free (info->iv);
+ info->iv = NULL;
+ info->has_nonlin_use = false;
+ info->preserve_biv = false;
+ info->inv_id = 0;
+ }
+ bitmap_clear (data->relevant);
+ bitmap_clear (data->important_candidates);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ free (use->iv);
+ BITMAP_FREE (use->related_cands);
+ for (j = 0; j < use->n_map_members; j++)
+ if (use->cost_map[j].depends_on)
+ BITMAP_FREE (use->cost_map[j].depends_on);
+ free (use->cost_map);
+ free (use);
+ }
+ data->iv_uses.truncate (0);
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ free (cand->iv);
+ if (cand->depends_on)
+ BITMAP_FREE (cand->depends_on);
+ free (cand);
+ }
+ data->iv_candidates.truncate (0);
+
+ if (data->version_info_size < num_ssa_names)
+ {
+ data->version_info_size = 2 * num_ssa_names;
+ free (data->version_info);
+ data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
+ }
+
+ data->max_inv_id = 0;
+
+ FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj)
+ SET_DECL_RTL (obj, NULL_RTX);
+
+ decl_rtl_to_reset.truncate (0);
+
+ data->inv_expr_tab.empty ();
+ data->inv_expr_id = 0;
+}
+
+/* Finalizes data structures used by the iv optimization pass. LOOPS is the
+ loop tree. */
+
+static void
+tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
+{
+ free_loop_data (data);
+ free (data->version_info);
+ BITMAP_FREE (data->relevant);
+ BITMAP_FREE (data->important_candidates);
+
+ decl_rtl_to_reset.release ();
+ data->iv_uses.release ();
+ data->iv_candidates.release ();
+ data->inv_expr_tab.dispose ();
+}
+
+/* Returns true if the loop body BODY includes any function calls. */
+
+static bool
+loop_body_includes_call (basic_block *body, unsigned num_nodes)
+{
+ gimple_stmt_iterator gsi;
+ unsigned i;
+
+ for (i = 0; i < num_nodes; i++)
+ for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ if (is_gimple_call (stmt)
+ && !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
+ return true;
+ }
+ return false;
+}
+
+/* Optimizes the LOOP. Returns true if anything changed. */
+
+static bool
+tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
+{
+ bool changed = false;
+ struct iv_ca *iv_ca;
+ edge exit = single_dom_exit (loop);
+ basic_block *body;
+
+ gcc_assert (!data->niters);
+ data->current_loop = loop;
+ data->speed = optimize_loop_for_speed_p (loop);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Processing loop %d\n", loop->num);
+
+ if (exit)
+ {
+ fprintf (dump_file, " single exit %d -> %d, exit condition ",
+ exit->src->index, exit->dest->index);
+ print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ body = get_loop_body (loop);
+ data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
+ renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
+ free (body);
+
+ data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
+
+ /* For each ssa name determines whether it behaves as an induction variable
+ in some loop. */
+ if (!find_induction_variables (data))
+ goto finish;
+
+ /* Finds interesting uses (item 1). */
+ find_interesting_uses (data);
+ if (n_iv_uses (data) > MAX_CONSIDERED_USES)
+ goto finish;
+
+ /* Finds candidates for the induction variables (item 2). */
+ find_iv_candidates (data);
+
+ /* Calculates the costs (item 3, part 1). */
+ determine_iv_costs (data);
+ determine_use_iv_costs (data);
+ determine_set_costs (data);
+
+ /* Find the optimal set of induction variables (item 3, part 2). */
+ iv_ca = find_optimal_iv_set (data);
+ if (!iv_ca)
+ goto finish;
+ changed = true;
+
+ /* Create the new induction variables (item 4, part 1). */
+ create_new_ivs (data, iv_ca);
+ iv_ca_free (&iv_ca);
+
+ /* Rewrite the uses (item 4, part 2). */
+ rewrite_uses (data);
+
+ /* Remove the ivs that are unused after rewriting. */
+ remove_unused_ivs (data);
+
+ /* We have changed the structure of induction variables; it might happen
+ that definitions in the scev database refer to some of them that were
+ eliminated. */
+ scev_reset ();
+
+finish:
+ free_loop_data (data);
+
+ return changed;
+}
+
+/* Main entry point. Optimizes induction variables in loops. */
+
+void
+tree_ssa_iv_optimize (void)
+{
+ struct loop *loop;
+ struct ivopts_data data;
+
+ tree_ssa_iv_optimize_init (&data);
+
+ /* Optimize the loops starting with the innermost ones. */
+ FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ flow_loop_dump (loop, dump_file, NULL, 1);
+
+ tree_ssa_iv_optimize_loop (&data, loop);
+ }
+
+ tree_ssa_iv_optimize_finalize (&data);
+}