aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-ssa-ccp.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/tree-ssa-ccp.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/tree-ssa-ccp.c')
-rw-r--r--gcc-4.9/gcc/tree-ssa-ccp.c2751
1 files changed, 2751 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-ssa-ccp.c b/gcc-4.9/gcc/tree-ssa-ccp.c
new file mode 100644
index 000000000..eeefeaf07
--- /dev/null
+++ b/gcc-4.9/gcc/tree-ssa-ccp.c
@@ -0,0 +1,2751 @@
+/* Conditional constant propagation pass for the GNU compiler.
+ Copyright (C) 2000-2014 Free Software Foundation, Inc.
+ Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
+ Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Conditional constant propagation (CCP) is based on the SSA
+ propagation engine (tree-ssa-propagate.c). Constant assignments of
+ the form VAR = CST are propagated from the assignments into uses of
+ VAR, which in turn may generate new constants. The simulation uses
+ a four level lattice to keep track of constant values associated
+ with SSA names. Given an SSA name V_i, it may take one of the
+ following values:
+
+ UNINITIALIZED -> the initial state of the value. This value
+ is replaced with a correct initial value
+ the first time the value is used, so the
+ rest of the pass does not need to care about
+ it. Using this value simplifies initialization
+ of the pass, and prevents us from needlessly
+ scanning statements that are never reached.
+
+ UNDEFINED -> V_i is a local variable whose definition
+ has not been processed yet. Therefore we
+ don't yet know if its value is a constant
+ or not.
+
+ CONSTANT -> V_i has been found to hold a constant
+ value C.
+
+ VARYING -> V_i cannot take a constant value, or if it
+ does, it is not possible to determine it
+ at compile time.
+
+ The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
+
+ 1- In ccp_visit_stmt, we are interested in assignments whose RHS
+ evaluates into a constant and conditional jumps whose predicate
+ evaluates into a boolean true or false. When an assignment of
+ the form V_i = CONST is found, V_i's lattice value is set to
+ CONSTANT and CONST is associated with it. This causes the
+ propagation engine to add all the SSA edges coming out the
+ assignment into the worklists, so that statements that use V_i
+ can be visited.
+
+ If the statement is a conditional with a constant predicate, we
+ mark the outgoing edges as executable or not executable
+ depending on the predicate's value. This is then used when
+ visiting PHI nodes to know when a PHI argument can be ignored.
+
+
+ 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
+ same constant C, then the LHS of the PHI is set to C. This
+ evaluation is known as the "meet operation". Since one of the
+ goals of this evaluation is to optimistically return constant
+ values as often as possible, it uses two main short cuts:
+
+ - If an argument is flowing in through a non-executable edge, it
+ is ignored. This is useful in cases like this:
+
+ if (PRED)
+ a_9 = 3;
+ else
+ a_10 = 100;
+ a_11 = PHI (a_9, a_10)
+
+ If PRED is known to always evaluate to false, then we can
+ assume that a_11 will always take its value from a_10, meaning
+ that instead of consider it VARYING (a_9 and a_10 have
+ different values), we can consider it CONSTANT 100.
+
+ - If an argument has an UNDEFINED value, then it does not affect
+ the outcome of the meet operation. If a variable V_i has an
+ UNDEFINED value, it means that either its defining statement
+ hasn't been visited yet or V_i has no defining statement, in
+ which case the original symbol 'V' is being used
+ uninitialized. Since 'V' is a local variable, the compiler
+ may assume any initial value for it.
+
+
+ After propagation, every variable V_i that ends up with a lattice
+ value of CONSTANT will have the associated constant value in the
+ array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
+ final substitution and folding.
+
+ References:
+
+ Constant propagation with conditional branches,
+ Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
+
+ Building an Optimizing Compiler,
+ Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
+
+ Advanced Compiler Design and Implementation,
+ Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "flags.h"
+#include "tm_p.h"
+#include "basic-block.h"
+#include "function.h"
+#include "gimple-pretty-print.h"
+#include "hash-table.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimple-ssa.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-pass.h"
+#include "tree-ssa-propagate.h"
+#include "value-prof.h"
+#include "langhooks.h"
+#include "target.h"
+#include "diagnostic-core.h"
+#include "dbgcnt.h"
+#include "params.h"
+
+
+/* Possible lattice values. */
+typedef enum
+{
+ UNINITIALIZED,
+ UNDEFINED,
+ CONSTANT,
+ VARYING
+} ccp_lattice_t;
+
+struct prop_value_d {
+ /* Lattice value. */
+ ccp_lattice_t lattice_val;
+
+ /* Propagated value. */
+ tree value;
+
+ /* Mask that applies to the propagated value during CCP. For
+ X with a CONSTANT lattice value X & ~mask == value & ~mask. */
+ double_int mask;
+};
+
+typedef struct prop_value_d prop_value_t;
+
+/* Array of propagated constant values. After propagation,
+ CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
+ the constant is held in an SSA name representing a memory store
+ (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
+ memory reference used to store (i.e., the LHS of the assignment
+ doing the store). */
+static prop_value_t *const_val;
+static unsigned n_const_val;
+
+static void canonicalize_value (prop_value_t *);
+static bool ccp_fold_stmt (gimple_stmt_iterator *);
+
+/* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
+
+static void
+dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
+{
+ switch (val.lattice_val)
+ {
+ case UNINITIALIZED:
+ fprintf (outf, "%sUNINITIALIZED", prefix);
+ break;
+ case UNDEFINED:
+ fprintf (outf, "%sUNDEFINED", prefix);
+ break;
+ case VARYING:
+ fprintf (outf, "%sVARYING", prefix);
+ break;
+ case CONSTANT:
+ if (TREE_CODE (val.value) != INTEGER_CST
+ || val.mask.is_zero ())
+ {
+ fprintf (outf, "%sCONSTANT ", prefix);
+ print_generic_expr (outf, val.value, dump_flags);
+ }
+ else
+ {
+ double_int cval = tree_to_double_int (val.value).and_not (val.mask);
+ fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
+ prefix, cval.high, cval.low);
+ fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
+ val.mask.high, val.mask.low);
+ }
+ break;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Print lattice value VAL to stderr. */
+
+void debug_lattice_value (prop_value_t val);
+
+DEBUG_FUNCTION void
+debug_lattice_value (prop_value_t val)
+{
+ dump_lattice_value (stderr, "", val);
+ fprintf (stderr, "\n");
+}
+
+
+/* Compute a default value for variable VAR and store it in the
+ CONST_VAL array. The following rules are used to get default
+ values:
+
+ 1- Global and static variables that are declared constant are
+ considered CONSTANT.
+
+ 2- Any other value is considered UNDEFINED. This is useful when
+ considering PHI nodes. PHI arguments that are undefined do not
+ change the constant value of the PHI node, which allows for more
+ constants to be propagated.
+
+ 3- Variables defined by statements other than assignments and PHI
+ nodes are considered VARYING.
+
+ 4- Initial values of variables that are not GIMPLE registers are
+ considered VARYING. */
+
+static prop_value_t
+get_default_value (tree var)
+{
+ prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
+ gimple stmt;
+
+ stmt = SSA_NAME_DEF_STMT (var);
+
+ if (gimple_nop_p (stmt))
+ {
+ /* Variables defined by an empty statement are those used
+ before being initialized. If VAR is a local variable, we
+ can assume initially that it is UNDEFINED, otherwise we must
+ consider it VARYING. */
+ if (!virtual_operand_p (var)
+ && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
+ val.lattice_val = UNDEFINED;
+ else
+ {
+ val.lattice_val = VARYING;
+ val.mask = double_int_minus_one;
+ if (flag_tree_bit_ccp)
+ {
+ double_int nonzero_bits = get_nonzero_bits (var);
+ double_int mask
+ = double_int::mask (TYPE_PRECISION (TREE_TYPE (var)));
+ if (nonzero_bits != double_int_minus_one && nonzero_bits != mask)
+ {
+ val.lattice_val = CONSTANT;
+ val.value = build_zero_cst (TREE_TYPE (var));
+ /* CCP wants the bits above precision set. */
+ val.mask = nonzero_bits | ~mask;
+ }
+ }
+ }
+ }
+ else if (is_gimple_assign (stmt))
+ {
+ tree cst;
+ if (gimple_assign_single_p (stmt)
+ && DECL_P (gimple_assign_rhs1 (stmt))
+ && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
+ {
+ val.lattice_val = CONSTANT;
+ val.value = cst;
+ }
+ else
+ {
+ /* Any other variable defined by an assignment is considered
+ UNDEFINED. */
+ val.lattice_val = UNDEFINED;
+ }
+ }
+ else if ((is_gimple_call (stmt)
+ && gimple_call_lhs (stmt) != NULL_TREE)
+ || gimple_code (stmt) == GIMPLE_PHI)
+ {
+ /* A variable defined by a call or a PHI node is considered
+ UNDEFINED. */
+ val.lattice_val = UNDEFINED;
+ }
+ else
+ {
+ /* Otherwise, VAR will never take on a constant value. */
+ val.lattice_val = VARYING;
+ val.mask = double_int_minus_one;
+ }
+
+ return val;
+}
+
+
+/* Get the constant value associated with variable VAR. */
+
+static inline prop_value_t *
+get_value (tree var)
+{
+ prop_value_t *val;
+
+ if (const_val == NULL
+ || SSA_NAME_VERSION (var) >= n_const_val)
+ return NULL;
+
+ val = &const_val[SSA_NAME_VERSION (var)];
+ if (val->lattice_val == UNINITIALIZED)
+ *val = get_default_value (var);
+
+ canonicalize_value (val);
+
+ return val;
+}
+
+/* Return the constant tree value associated with VAR. */
+
+static inline tree
+get_constant_value (tree var)
+{
+ prop_value_t *val;
+ if (TREE_CODE (var) != SSA_NAME)
+ {
+ if (is_gimple_min_invariant (var))
+ return var;
+ return NULL_TREE;
+ }
+ val = get_value (var);
+ if (val
+ && val->lattice_val == CONSTANT
+ && (TREE_CODE (val->value) != INTEGER_CST
+ || val->mask.is_zero ()))
+ return val->value;
+ return NULL_TREE;
+}
+
+/* Sets the value associated with VAR to VARYING. */
+
+static inline void
+set_value_varying (tree var)
+{
+ prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
+
+ val->lattice_val = VARYING;
+ val->value = NULL_TREE;
+ val->mask = double_int_minus_one;
+}
+
+/* For float types, modify the value of VAL to make ccp work correctly
+ for non-standard values (-0, NaN):
+
+ If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
+ If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
+ This is to fix the following problem (see PR 29921): Suppose we have
+
+ x = 0.0 * y
+
+ and we set value of y to NaN. This causes value of x to be set to NaN.
+ When we later determine that y is in fact VARYING, fold uses the fact
+ that HONOR_NANS is false, and we try to change the value of x to 0,
+ causing an ICE. With HONOR_NANS being false, the real appearance of
+ NaN would cause undefined behavior, though, so claiming that y (and x)
+ are UNDEFINED initially is correct.
+
+ For other constants, make sure to drop TREE_OVERFLOW. */
+
+static void
+canonicalize_value (prop_value_t *val)
+{
+ enum machine_mode mode;
+ tree type;
+ REAL_VALUE_TYPE d;
+
+ if (val->lattice_val != CONSTANT)
+ return;
+
+ if (TREE_OVERFLOW_P (val->value))
+ val->value = drop_tree_overflow (val->value);
+
+ if (TREE_CODE (val->value) != REAL_CST)
+ return;
+
+ d = TREE_REAL_CST (val->value);
+ type = TREE_TYPE (val->value);
+ mode = TYPE_MODE (type);
+
+ if (!HONOR_SIGNED_ZEROS (mode)
+ && REAL_VALUE_MINUS_ZERO (d))
+ {
+ val->value = build_real (type, dconst0);
+ return;
+ }
+
+ if (!HONOR_NANS (mode)
+ && REAL_VALUE_ISNAN (d))
+ {
+ val->lattice_val = UNDEFINED;
+ val->value = NULL;
+ return;
+ }
+}
+
+/* Return whether the lattice transition is valid. */
+
+static bool
+valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
+{
+ /* Lattice transitions must always be monotonically increasing in
+ value. */
+ if (old_val.lattice_val < new_val.lattice_val)
+ return true;
+
+ if (old_val.lattice_val != new_val.lattice_val)
+ return false;
+
+ if (!old_val.value && !new_val.value)
+ return true;
+
+ /* Now both lattice values are CONSTANT. */
+
+ /* Allow transitioning from PHI <&x, not executable> == &x
+ to PHI <&x, &y> == common alignment. */
+ if (TREE_CODE (old_val.value) != INTEGER_CST
+ && TREE_CODE (new_val.value) == INTEGER_CST)
+ return true;
+
+ /* Bit-lattices have to agree in the still valid bits. */
+ if (TREE_CODE (old_val.value) == INTEGER_CST
+ && TREE_CODE (new_val.value) == INTEGER_CST)
+ return tree_to_double_int (old_val.value).and_not (new_val.mask)
+ == tree_to_double_int (new_val.value).and_not (new_val.mask);
+
+ /* Otherwise constant values have to agree. */
+ return operand_equal_p (old_val.value, new_val.value, 0);
+}
+
+/* Set the value for variable VAR to NEW_VAL. Return true if the new
+ value is different from VAR's previous value. */
+
+static bool
+set_lattice_value (tree var, prop_value_t new_val)
+{
+ /* We can deal with old UNINITIALIZED values just fine here. */
+ prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
+
+ canonicalize_value (&new_val);
+
+ /* We have to be careful to not go up the bitwise lattice
+ represented by the mask.
+ ??? This doesn't seem to be the best place to enforce this. */
+ if (new_val.lattice_val == CONSTANT
+ && old_val->lattice_val == CONSTANT
+ && TREE_CODE (new_val.value) == INTEGER_CST
+ && TREE_CODE (old_val->value) == INTEGER_CST)
+ {
+ double_int diff;
+ diff = tree_to_double_int (new_val.value)
+ ^ tree_to_double_int (old_val->value);
+ new_val.mask = new_val.mask | old_val->mask | diff;
+ }
+
+ gcc_assert (valid_lattice_transition (*old_val, new_val));
+
+ /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
+ caller that this was a non-transition. */
+ if (old_val->lattice_val != new_val.lattice_val
+ || (new_val.lattice_val == CONSTANT
+ && TREE_CODE (new_val.value) == INTEGER_CST
+ && (TREE_CODE (old_val->value) != INTEGER_CST
+ || new_val.mask != old_val->mask)))
+ {
+ /* ??? We would like to delay creation of INTEGER_CSTs from
+ partially constants here. */
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
+ fprintf (dump_file, ". Adding SSA edges to worklist.\n");
+ }
+
+ *old_val = new_val;
+
+ gcc_assert (new_val.lattice_val != UNINITIALIZED);
+ return true;
+ }
+
+ return false;
+}
+
+static prop_value_t get_value_for_expr (tree, bool);
+static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
+static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
+ tree, double_int, double_int,
+ tree, double_int, double_int);
+
+/* Return a double_int that can be used for bitwise simplifications
+ from VAL. */
+
+static double_int
+value_to_double_int (prop_value_t val)
+{
+ if (val.value
+ && TREE_CODE (val.value) == INTEGER_CST)
+ return tree_to_double_int (val.value);
+ else
+ return double_int_zero;
+}
+
+/* Return the value for the address expression EXPR based on alignment
+ information. */
+
+static prop_value_t
+get_value_from_alignment (tree expr)
+{
+ tree type = TREE_TYPE (expr);
+ prop_value_t val;
+ unsigned HOST_WIDE_INT bitpos;
+ unsigned int align;
+
+ gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
+
+ get_pointer_alignment_1 (expr, &align, &bitpos);
+ val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
+ ? double_int::mask (TYPE_PRECISION (type))
+ : double_int_minus_one)
+ .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
+ val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
+ if (val.lattice_val == CONSTANT)
+ val.value
+ = double_int_to_tree (type,
+ double_int::from_uhwi (bitpos / BITS_PER_UNIT));
+ else
+ val.value = NULL_TREE;
+
+ return val;
+}
+
+/* Return the value for the tree operand EXPR. If FOR_BITS_P is true
+ return constant bits extracted from alignment information for
+ invariant addresses. */
+
+static prop_value_t
+get_value_for_expr (tree expr, bool for_bits_p)
+{
+ prop_value_t val;
+
+ if (TREE_CODE (expr) == SSA_NAME)
+ {
+ val = *get_value (expr);
+ if (for_bits_p
+ && val.lattice_val == CONSTANT
+ && TREE_CODE (val.value) == ADDR_EXPR)
+ val = get_value_from_alignment (val.value);
+ }
+ else if (is_gimple_min_invariant (expr)
+ && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
+ {
+ val.lattice_val = CONSTANT;
+ val.value = expr;
+ val.mask = double_int_zero;
+ canonicalize_value (&val);
+ }
+ else if (TREE_CODE (expr) == ADDR_EXPR)
+ val = get_value_from_alignment (expr);
+ else
+ {
+ val.lattice_val = VARYING;
+ val.mask = double_int_minus_one;
+ val.value = NULL_TREE;
+ }
+ return val;
+}
+
+/* Return the likely CCP lattice value for STMT.
+
+ If STMT has no operands, then return CONSTANT.
+
+ Else if undefinedness of operands of STMT cause its value to be
+ undefined, then return UNDEFINED.
+
+ Else if any operands of STMT are constants, then return CONSTANT.
+
+ Else return VARYING. */
+
+static ccp_lattice_t
+likely_value (gimple stmt)
+{
+ bool has_constant_operand, has_undefined_operand, all_undefined_operands;
+ tree use;
+ ssa_op_iter iter;
+ unsigned i;
+
+ enum gimple_code code = gimple_code (stmt);
+
+ /* This function appears to be called only for assignments, calls,
+ conditionals, and switches, due to the logic in visit_stmt. */
+ gcc_assert (code == GIMPLE_ASSIGN
+ || code == GIMPLE_CALL
+ || code == GIMPLE_COND
+ || code == GIMPLE_SWITCH);
+
+ /* If the statement has volatile operands, it won't fold to a
+ constant value. */
+ if (gimple_has_volatile_ops (stmt))
+ return VARYING;
+
+ /* Arrive here for more complex cases. */
+ has_constant_operand = false;
+ has_undefined_operand = false;
+ all_undefined_operands = true;
+ FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
+ {
+ prop_value_t *val = get_value (use);
+
+ if (val->lattice_val == UNDEFINED)
+ has_undefined_operand = true;
+ else
+ all_undefined_operands = false;
+
+ if (val->lattice_val == CONSTANT)
+ has_constant_operand = true;
+ }
+
+ /* There may be constants in regular rhs operands. For calls we
+ have to ignore lhs, fndecl and static chain, otherwise only
+ the lhs. */
+ for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
+ i < gimple_num_ops (stmt); ++i)
+ {
+ tree op = gimple_op (stmt, i);
+ if (!op || TREE_CODE (op) == SSA_NAME)
+ continue;
+ if (is_gimple_min_invariant (op))
+ has_constant_operand = true;
+ }
+
+ if (has_constant_operand)
+ all_undefined_operands = false;
+
+ if (has_undefined_operand
+ && code == GIMPLE_CALL
+ && gimple_call_internal_p (stmt))
+ switch (gimple_call_internal_fn (stmt))
+ {
+ /* These 3 builtins use the first argument just as a magic
+ way how to find out a decl uid. */
+ case IFN_GOMP_SIMD_LANE:
+ case IFN_GOMP_SIMD_VF:
+ case IFN_GOMP_SIMD_LAST_LANE:
+ has_undefined_operand = false;
+ break;
+ default:
+ break;
+ }
+
+ /* If the operation combines operands like COMPLEX_EXPR make sure to
+ not mark the result UNDEFINED if only one part of the result is
+ undefined. */
+ if (has_undefined_operand && all_undefined_operands)
+ return UNDEFINED;
+ else if (code == GIMPLE_ASSIGN && has_undefined_operand)
+ {
+ switch (gimple_assign_rhs_code (stmt))
+ {
+ /* Unary operators are handled with all_undefined_operands. */
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case POINTER_PLUS_EXPR:
+ /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
+ Not bitwise operators, one VARYING operand may specify the
+ result completely. Not logical operators for the same reason.
+ Not COMPLEX_EXPR as one VARYING operand makes the result partly
+ not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
+ the undefined operand may be promoted. */
+ return UNDEFINED;
+
+ case ADDR_EXPR:
+ /* If any part of an address is UNDEFINED, like the index
+ of an ARRAY_EXPR, then treat the result as UNDEFINED. */
+ return UNDEFINED;
+
+ default:
+ ;
+ }
+ }
+ /* If there was an UNDEFINED operand but the result may be not UNDEFINED
+ fall back to CONSTANT. During iteration UNDEFINED may still drop
+ to CONSTANT. */
+ if (has_undefined_operand)
+ return CONSTANT;
+
+ /* We do not consider virtual operands here -- load from read-only
+ memory may have only VARYING virtual operands, but still be
+ constant. */
+ if (has_constant_operand
+ || gimple_references_memory_p (stmt))
+ return CONSTANT;
+
+ return VARYING;
+}
+
+/* Returns true if STMT cannot be constant. */
+
+static bool
+surely_varying_stmt_p (gimple stmt)
+{
+ /* If the statement has operands that we cannot handle, it cannot be
+ constant. */
+ if (gimple_has_volatile_ops (stmt))
+ return true;
+
+ /* If it is a call and does not return a value or is not a
+ builtin and not an indirect call or a call to function with
+ assume_aligned/alloc_align attribute, it is varying. */
+ if (is_gimple_call (stmt))
+ {
+ tree fndecl, fntype = gimple_call_fntype (stmt);
+ if (!gimple_call_lhs (stmt)
+ || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
+ && !DECL_BUILT_IN (fndecl)
+ && !lookup_attribute ("assume_aligned",
+ TYPE_ATTRIBUTES (fntype))
+ && !lookup_attribute ("alloc_align",
+ TYPE_ATTRIBUTES (fntype))))
+ return true;
+ }
+
+ /* Any other store operation is not interesting. */
+ else if (gimple_vdef (stmt))
+ return true;
+
+ /* Anything other than assignments and conditional jumps are not
+ interesting for CCP. */
+ if (gimple_code (stmt) != GIMPLE_ASSIGN
+ && gimple_code (stmt) != GIMPLE_COND
+ && gimple_code (stmt) != GIMPLE_SWITCH
+ && gimple_code (stmt) != GIMPLE_CALL)
+ return true;
+
+ return false;
+}
+
+/* Initialize local data structures for CCP. */
+
+static void
+ccp_initialize (void)
+{
+ basic_block bb;
+
+ n_const_val = num_ssa_names;
+ const_val = XCNEWVEC (prop_value_t, n_const_val);
+
+ /* Initialize simulation flags for PHI nodes and statements. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator i;
+
+ for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
+ {
+ gimple stmt = gsi_stmt (i);
+ bool is_varying;
+
+ /* If the statement is a control insn, then we do not
+ want to avoid simulating the statement once. Failure
+ to do so means that those edges will never get added. */
+ if (stmt_ends_bb_p (stmt))
+ is_varying = false;
+ else
+ is_varying = surely_varying_stmt_p (stmt);
+
+ if (is_varying)
+ {
+ tree def;
+ ssa_op_iter iter;
+
+ /* If the statement will not produce a constant, mark
+ all its outputs VARYING. */
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
+ set_value_varying (def);
+ }
+ prop_set_simulate_again (stmt, !is_varying);
+ }
+ }
+
+ /* Now process PHI nodes. We never clear the simulate_again flag on
+ phi nodes, since we do not know which edges are executable yet,
+ except for phi nodes for virtual operands when we do not do store ccp. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator i;
+
+ for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
+ {
+ gimple phi = gsi_stmt (i);
+
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ prop_set_simulate_again (phi, false);
+ else
+ prop_set_simulate_again (phi, true);
+ }
+ }
+}
+
+/* Debug count support. Reset the values of ssa names
+ VARYING when the total number ssa names analyzed is
+ beyond the debug count specified. */
+
+static void
+do_dbg_cnt (void)
+{
+ unsigned i;
+ for (i = 0; i < num_ssa_names; i++)
+ {
+ if (!dbg_cnt (ccp))
+ {
+ const_val[i].lattice_val = VARYING;
+ const_val[i].mask = double_int_minus_one;
+ const_val[i].value = NULL_TREE;
+ }
+ }
+}
+
+
+/* Do final substitution of propagated values, cleanup the flowgraph and
+ free allocated storage.
+
+ Return TRUE when something was optimized. */
+
+static bool
+ccp_finalize (void)
+{
+ bool something_changed;
+ unsigned i;
+
+ do_dbg_cnt ();
+
+ /* Derive alignment and misalignment information from partially
+ constant pointers in the lattice or nonzero bits from partially
+ constant integers. */
+ for (i = 1; i < num_ssa_names; ++i)
+ {
+ tree name = ssa_name (i);
+ prop_value_t *val;
+ unsigned int tem, align;
+
+ if (!name
+ || (!POINTER_TYPE_P (TREE_TYPE (name))
+ && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
+ /* Don't record nonzero bits before IPA to avoid
+ using too much memory. */
+ || first_pass_instance)))
+ continue;
+
+ val = get_value (name);
+ if (val->lattice_val != CONSTANT
+ || TREE_CODE (val->value) != INTEGER_CST)
+ continue;
+
+ if (POINTER_TYPE_P (TREE_TYPE (name)))
+ {
+ /* Trailing mask bits specify the alignment, trailing value
+ bits the misalignment. */
+ tem = val->mask.low;
+ align = (tem & -tem);
+ if (align > 1)
+ set_ptr_info_alignment (get_ptr_info (name), align,
+ (TREE_INT_CST_LOW (val->value)
+ & (align - 1)));
+ }
+ else
+ {
+ double_int nonzero_bits = val->mask;
+ nonzero_bits = nonzero_bits | tree_to_double_int (val->value);
+ nonzero_bits &= get_nonzero_bits (name);
+ set_nonzero_bits (name, nonzero_bits);
+ }
+ }
+
+ /* Perform substitutions based on the known constant values. */
+ something_changed = substitute_and_fold (get_constant_value,
+ ccp_fold_stmt, true);
+
+ free (const_val);
+ const_val = NULL;
+ return something_changed;;
+}
+
+
+/* Compute the meet operator between *VAL1 and *VAL2. Store the result
+ in VAL1.
+
+ any M UNDEFINED = any
+ any M VARYING = VARYING
+ Ci M Cj = Ci if (i == j)
+ Ci M Cj = VARYING if (i != j)
+ */
+
+static void
+ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
+{
+ if (val1->lattice_val == UNDEFINED)
+ {
+ /* UNDEFINED M any = any */
+ *val1 = *val2;
+ }
+ else if (val2->lattice_val == UNDEFINED)
+ {
+ /* any M UNDEFINED = any
+ Nothing to do. VAL1 already contains the value we want. */
+ ;
+ }
+ else if (val1->lattice_val == VARYING
+ || val2->lattice_val == VARYING)
+ {
+ /* any M VARYING = VARYING. */
+ val1->lattice_val = VARYING;
+ val1->mask = double_int_minus_one;
+ val1->value = NULL_TREE;
+ }
+ else if (val1->lattice_val == CONSTANT
+ && val2->lattice_val == CONSTANT
+ && TREE_CODE (val1->value) == INTEGER_CST
+ && TREE_CODE (val2->value) == INTEGER_CST)
+ {
+ /* Ci M Cj = Ci if (i == j)
+ Ci M Cj = VARYING if (i != j)
+
+ For INTEGER_CSTs mask unequal bits. If no equal bits remain,
+ drop to varying. */
+ val1->mask = val1->mask | val2->mask
+ | (tree_to_double_int (val1->value)
+ ^ tree_to_double_int (val2->value));
+ if (val1->mask.is_minus_one ())
+ {
+ val1->lattice_val = VARYING;
+ val1->value = NULL_TREE;
+ }
+ }
+ else if (val1->lattice_val == CONSTANT
+ && val2->lattice_val == CONSTANT
+ && simple_cst_equal (val1->value, val2->value) == 1)
+ {
+ /* Ci M Cj = Ci if (i == j)
+ Ci M Cj = VARYING if (i != j)
+
+ VAL1 already contains the value we want for equivalent values. */
+ }
+ else if (val1->lattice_val == CONSTANT
+ && val2->lattice_val == CONSTANT
+ && (TREE_CODE (val1->value) == ADDR_EXPR
+ || TREE_CODE (val2->value) == ADDR_EXPR))
+ {
+ /* When not equal addresses are involved try meeting for
+ alignment. */
+ prop_value_t tem = *val2;
+ if (TREE_CODE (val1->value) == ADDR_EXPR)
+ *val1 = get_value_for_expr (val1->value, true);
+ if (TREE_CODE (val2->value) == ADDR_EXPR)
+ tem = get_value_for_expr (val2->value, true);
+ ccp_lattice_meet (val1, &tem);
+ }
+ else
+ {
+ /* Any other combination is VARYING. */
+ val1->lattice_val = VARYING;
+ val1->mask = double_int_minus_one;
+ val1->value = NULL_TREE;
+ }
+}
+
+
+/* Loop through the PHI_NODE's parameters for BLOCK and compare their
+ lattice values to determine PHI_NODE's lattice value. The value of a
+ PHI node is determined calling ccp_lattice_meet with all the arguments
+ of the PHI node that are incoming via executable edges. */
+
+static enum ssa_prop_result
+ccp_visit_phi_node (gimple phi)
+{
+ unsigned i;
+ prop_value_t *old_val, new_val;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nVisiting PHI node: ");
+ print_gimple_stmt (dump_file, phi, 0, dump_flags);
+ }
+
+ old_val = get_value (gimple_phi_result (phi));
+ switch (old_val->lattice_val)
+ {
+ case VARYING:
+ return SSA_PROP_VARYING;
+
+ case CONSTANT:
+ new_val = *old_val;
+ break;
+
+ case UNDEFINED:
+ new_val.lattice_val = UNDEFINED;
+ new_val.value = NULL_TREE;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ /* Compute the meet operator over all the PHI arguments flowing
+ through executable edges. */
+ edge e = gimple_phi_arg_edge (phi, i);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file,
+ "\n Argument #%d (%d -> %d %sexecutable)\n",
+ i, e->src->index, e->dest->index,
+ (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
+ }
+
+ /* If the incoming edge is executable, Compute the meet operator for
+ the existing value of the PHI node and the current PHI argument. */
+ if (e->flags & EDGE_EXECUTABLE)
+ {
+ tree arg = gimple_phi_arg (phi, i)->def;
+ prop_value_t arg_val = get_value_for_expr (arg, false);
+
+ ccp_lattice_meet (&new_val, &arg_val);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\t");
+ print_generic_expr (dump_file, arg, dump_flags);
+ dump_lattice_value (dump_file, "\tValue: ", arg_val);
+ fprintf (dump_file, "\n");
+ }
+
+ if (new_val.lattice_val == VARYING)
+ break;
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
+ fprintf (dump_file, "\n\n");
+ }
+
+ /* Make the transition to the new value. */
+ if (set_lattice_value (gimple_phi_result (phi), new_val))
+ {
+ if (new_val.lattice_val == VARYING)
+ return SSA_PROP_VARYING;
+ else
+ return SSA_PROP_INTERESTING;
+ }
+ else
+ return SSA_PROP_NOT_INTERESTING;
+}
+
+/* Return the constant value for OP or OP otherwise. */
+
+static tree
+valueize_op (tree op)
+{
+ if (TREE_CODE (op) == SSA_NAME)
+ {
+ tree tem = get_constant_value (op);
+ if (tem)
+ return tem;
+ }
+ return op;
+}
+
+/* CCP specific front-end to the non-destructive constant folding
+ routines.
+
+ Attempt to simplify the RHS of STMT knowing that one or more
+ operands are constants.
+
+ If simplification is possible, return the simplified RHS,
+ otherwise return the original RHS or NULL_TREE. */
+
+static tree
+ccp_fold (gimple stmt)
+{
+ location_t loc = gimple_location (stmt);
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ {
+ /* Handle comparison operators that can appear in GIMPLE form. */
+ tree op0 = valueize_op (gimple_cond_lhs (stmt));
+ tree op1 = valueize_op (gimple_cond_rhs (stmt));
+ enum tree_code code = gimple_cond_code (stmt);
+ return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
+ }
+
+ case GIMPLE_SWITCH:
+ {
+ /* Return the constant switch index. */
+ return valueize_op (gimple_switch_index (stmt));
+ }
+
+ case GIMPLE_ASSIGN:
+ case GIMPLE_CALL:
+ return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Apply the operation CODE in type TYPE to the value, mask pair
+ RVAL and RMASK representing a value of type RTYPE and set
+ the value, mask pair *VAL and *MASK to the result. */
+
+static void
+bit_value_unop_1 (enum tree_code code, tree type,
+ double_int *val, double_int *mask,
+ tree rtype, double_int rval, double_int rmask)
+{
+ switch (code)
+ {
+ case BIT_NOT_EXPR:
+ *mask = rmask;
+ *val = ~rval;
+ break;
+
+ case NEGATE_EXPR:
+ {
+ double_int temv, temm;
+ /* Return ~rval + 1. */
+ bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
+ bit_value_binop_1 (PLUS_EXPR, type, val, mask,
+ type, temv, temm,
+ type, double_int_one, double_int_zero);
+ break;
+ }
+
+ CASE_CONVERT:
+ {
+ bool uns;
+
+ /* First extend mask and value according to the original type. */
+ uns = TYPE_UNSIGNED (rtype);
+ *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
+ *val = rval.ext (TYPE_PRECISION (rtype), uns);
+
+ /* Then extend mask and value according to the target type. */
+ uns = TYPE_UNSIGNED (type);
+ *mask = (*mask).ext (TYPE_PRECISION (type), uns);
+ *val = (*val).ext (TYPE_PRECISION (type), uns);
+ break;
+ }
+
+ default:
+ *mask = double_int_minus_one;
+ break;
+ }
+}
+
+/* Apply the operation CODE in type TYPE to the value, mask pairs
+ R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
+ and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
+
+static void
+bit_value_binop_1 (enum tree_code code, tree type,
+ double_int *val, double_int *mask,
+ tree r1type, double_int r1val, double_int r1mask,
+ tree r2type, double_int r2val, double_int r2mask)
+{
+ bool uns = TYPE_UNSIGNED (type);
+ /* Assume we'll get a constant result. Use an initial varying value,
+ we fall back to varying in the end if necessary. */
+ *mask = double_int_minus_one;
+ switch (code)
+ {
+ case BIT_AND_EXPR:
+ /* The mask is constant where there is a known not
+ set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
+ *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
+ *val = r1val & r2val;
+ break;
+
+ case BIT_IOR_EXPR:
+ /* The mask is constant where there is a known
+ set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
+ *mask = (r1mask | r2mask)
+ .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
+ *val = r1val | r2val;
+ break;
+
+ case BIT_XOR_EXPR:
+ /* m1 | m2 */
+ *mask = r1mask | r2mask;
+ *val = r1val ^ r2val;
+ break;
+
+ case LROTATE_EXPR:
+ case RROTATE_EXPR:
+ if (r2mask.is_zero ())
+ {
+ HOST_WIDE_INT shift = r2val.low;
+ if (code == RROTATE_EXPR)
+ shift = -shift;
+ *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
+ *val = r1val.lrotate (shift, TYPE_PRECISION (type));
+ }
+ break;
+
+ case LSHIFT_EXPR:
+ case RSHIFT_EXPR:
+ /* ??? We can handle partially known shift counts if we know
+ its sign. That way we can tell that (x << (y | 8)) & 255
+ is zero. */
+ if (r2mask.is_zero ())
+ {
+ HOST_WIDE_INT shift = r2val.low;
+ if (code == RSHIFT_EXPR)
+ shift = -shift;
+ /* We need to know if we are doing a left or a right shift
+ to properly shift in zeros for left shift and unsigned
+ right shifts and the sign bit for signed right shifts.
+ For signed right shifts we shift in varying in case
+ the sign bit was varying. */
+ if (shift > 0)
+ {
+ *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
+ *val = r1val.llshift (shift, TYPE_PRECISION (type));
+ }
+ else if (shift < 0)
+ {
+ shift = -shift;
+ *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
+ *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
+ }
+ else
+ {
+ *mask = r1mask;
+ *val = r1val;
+ }
+ }
+ break;
+
+ case PLUS_EXPR:
+ case POINTER_PLUS_EXPR:
+ {
+ double_int lo, hi;
+ /* Do the addition with unknown bits set to zero, to give carry-ins of
+ zero wherever possible. */
+ lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
+ lo = lo.ext (TYPE_PRECISION (type), uns);
+ /* Do the addition with unknown bits set to one, to give carry-ins of
+ one wherever possible. */
+ hi = (r1val | r1mask) + (r2val | r2mask);
+ hi = hi.ext (TYPE_PRECISION (type), uns);
+ /* Each bit in the result is known if (a) the corresponding bits in
+ both inputs are known, and (b) the carry-in to that bit position
+ is known. We can check condition (b) by seeing if we got the same
+ result with minimised carries as with maximised carries. */
+ *mask = r1mask | r2mask | (lo ^ hi);
+ *mask = (*mask).ext (TYPE_PRECISION (type), uns);
+ /* It shouldn't matter whether we choose lo or hi here. */
+ *val = lo;
+ break;
+ }
+
+ case MINUS_EXPR:
+ {
+ double_int temv, temm;
+ bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
+ r2type, r2val, r2mask);
+ bit_value_binop_1 (PLUS_EXPR, type, val, mask,
+ r1type, r1val, r1mask,
+ r2type, temv, temm);
+ break;
+ }
+
+ case MULT_EXPR:
+ {
+ /* Just track trailing zeros in both operands and transfer
+ them to the other. */
+ int r1tz = (r1val | r1mask).trailing_zeros ();
+ int r2tz = (r2val | r2mask).trailing_zeros ();
+ if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
+ {
+ *mask = double_int_zero;
+ *val = double_int_zero;
+ }
+ else if (r1tz + r2tz > 0)
+ {
+ *mask = ~double_int::mask (r1tz + r2tz);
+ *mask = (*mask).ext (TYPE_PRECISION (type), uns);
+ *val = double_int_zero;
+ }
+ break;
+ }
+
+ case EQ_EXPR:
+ case NE_EXPR:
+ {
+ double_int m = r1mask | r2mask;
+ if (r1val.and_not (m) != r2val.and_not (m))
+ {
+ *mask = double_int_zero;
+ *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
+ }
+ else
+ {
+ /* We know the result of a comparison is always one or zero. */
+ *mask = double_int_one;
+ *val = double_int_zero;
+ }
+ break;
+ }
+
+ case GE_EXPR:
+ case GT_EXPR:
+ {
+ double_int tem = r1val;
+ r1val = r2val;
+ r2val = tem;
+ tem = r1mask;
+ r1mask = r2mask;
+ r2mask = tem;
+ code = swap_tree_comparison (code);
+ }
+ /* Fallthru. */
+ case LT_EXPR:
+ case LE_EXPR:
+ {
+ int minmax, maxmin;
+ /* If the most significant bits are not known we know nothing. */
+ if (r1mask.is_negative () || r2mask.is_negative ())
+ break;
+
+ /* For comparisons the signedness is in the comparison operands. */
+ uns = TYPE_UNSIGNED (r1type);
+
+ /* If we know the most significant bits we know the values
+ value ranges by means of treating varying bits as zero
+ or one. Do a cross comparison of the max/min pairs. */
+ maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
+ minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
+ if (maxmin < 0) /* r1 is less than r2. */
+ {
+ *mask = double_int_zero;
+ *val = double_int_one;
+ }
+ else if (minmax > 0) /* r1 is not less or equal to r2. */
+ {
+ *mask = double_int_zero;
+ *val = double_int_zero;
+ }
+ else if (maxmin == minmax) /* r1 and r2 are equal. */
+ {
+ /* This probably should never happen as we'd have
+ folded the thing during fully constant value folding. */
+ *mask = double_int_zero;
+ *val = (code == LE_EXPR ? double_int_one : double_int_zero);
+ }
+ else
+ {
+ /* We know the result of a comparison is always one or zero. */
+ *mask = double_int_one;
+ *val = double_int_zero;
+ }
+ break;
+ }
+
+ default:;
+ }
+}
+
+/* Return the propagation value when applying the operation CODE to
+ the value RHS yielding type TYPE. */
+
+static prop_value_t
+bit_value_unop (enum tree_code code, tree type, tree rhs)
+{
+ prop_value_t rval = get_value_for_expr (rhs, true);
+ double_int value, mask;
+ prop_value_t val;
+
+ if (rval.lattice_val == UNDEFINED)
+ return rval;
+
+ gcc_assert ((rval.lattice_val == CONSTANT
+ && TREE_CODE (rval.value) == INTEGER_CST)
+ || rval.mask.is_minus_one ());
+ bit_value_unop_1 (code, type, &value, &mask,
+ TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
+ if (!mask.is_minus_one ())
+ {
+ val.lattice_val = CONSTANT;
+ val.mask = mask;
+ /* ??? Delay building trees here. */
+ val.value = double_int_to_tree (type, value);
+ }
+ else
+ {
+ val.lattice_val = VARYING;
+ val.value = NULL_TREE;
+ val.mask = double_int_minus_one;
+ }
+ return val;
+}
+
+/* Return the propagation value when applying the operation CODE to
+ the values RHS1 and RHS2 yielding type TYPE. */
+
+static prop_value_t
+bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
+{
+ prop_value_t r1val = get_value_for_expr (rhs1, true);
+ prop_value_t r2val = get_value_for_expr (rhs2, true);
+ double_int value, mask;
+ prop_value_t val;
+
+ if (r1val.lattice_val == UNDEFINED
+ || r2val.lattice_val == UNDEFINED)
+ {
+ val.lattice_val = VARYING;
+ val.value = NULL_TREE;
+ val.mask = double_int_minus_one;
+ return val;
+ }
+
+ gcc_assert ((r1val.lattice_val == CONSTANT
+ && TREE_CODE (r1val.value) == INTEGER_CST)
+ || r1val.mask.is_minus_one ());
+ gcc_assert ((r2val.lattice_val == CONSTANT
+ && TREE_CODE (r2val.value) == INTEGER_CST)
+ || r2val.mask.is_minus_one ());
+ bit_value_binop_1 (code, type, &value, &mask,
+ TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
+ TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
+ if (!mask.is_minus_one ())
+ {
+ val.lattice_val = CONSTANT;
+ val.mask = mask;
+ /* ??? Delay building trees here. */
+ val.value = double_int_to_tree (type, value);
+ }
+ else
+ {
+ val.lattice_val = VARYING;
+ val.value = NULL_TREE;
+ val.mask = double_int_minus_one;
+ }
+ return val;
+}
+
+/* Return the propagation value for __builtin_assume_aligned
+ and functions with assume_aligned or alloc_aligned attribute.
+ For __builtin_assume_aligned, ATTR is NULL_TREE,
+ for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
+ is false, for alloc_aligned attribute ATTR is non-NULL and
+ ALLOC_ALIGNED is true. */
+
+static prop_value_t
+bit_value_assume_aligned (gimple stmt, tree attr, prop_value_t ptrval,
+ bool alloc_aligned)
+{
+ tree align, misalign = NULL_TREE, type;
+ unsigned HOST_WIDE_INT aligni, misaligni = 0;
+ prop_value_t alignval;
+ double_int value, mask;
+ prop_value_t val;
+
+ if (attr == NULL_TREE)
+ {
+ tree ptr = gimple_call_arg (stmt, 0);
+ type = TREE_TYPE (ptr);
+ ptrval = get_value_for_expr (ptr, true);
+ }
+ else
+ {
+ tree lhs = gimple_call_lhs (stmt);
+ type = TREE_TYPE (lhs);
+ }
+
+ if (ptrval.lattice_val == UNDEFINED)
+ return ptrval;
+ gcc_assert ((ptrval.lattice_val == CONSTANT
+ && TREE_CODE (ptrval.value) == INTEGER_CST)
+ || ptrval.mask.is_minus_one ());
+ if (attr == NULL_TREE)
+ {
+ /* Get aligni and misaligni from __builtin_assume_aligned. */
+ align = gimple_call_arg (stmt, 1);
+ if (!tree_fits_uhwi_p (align))
+ return ptrval;
+ aligni = tree_to_uhwi (align);
+ if (gimple_call_num_args (stmt) > 2)
+ {
+ misalign = gimple_call_arg (stmt, 2);
+ if (!tree_fits_uhwi_p (misalign))
+ return ptrval;
+ misaligni = tree_to_uhwi (misalign);
+ }
+ }
+ else
+ {
+ /* Get aligni and misaligni from assume_aligned or
+ alloc_align attributes. */
+ if (TREE_VALUE (attr) == NULL_TREE)
+ return ptrval;
+ attr = TREE_VALUE (attr);
+ align = TREE_VALUE (attr);
+ if (!tree_fits_uhwi_p (align))
+ return ptrval;
+ aligni = tree_to_uhwi (align);
+ if (alloc_aligned)
+ {
+ if (aligni == 0 || aligni > gimple_call_num_args (stmt))
+ return ptrval;
+ align = gimple_call_arg (stmt, aligni - 1);
+ if (!tree_fits_uhwi_p (align))
+ return ptrval;
+ aligni = tree_to_uhwi (align);
+ }
+ else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
+ {
+ misalign = TREE_VALUE (TREE_CHAIN (attr));
+ if (!tree_fits_uhwi_p (misalign))
+ return ptrval;
+ misaligni = tree_to_uhwi (misalign);
+ }
+ }
+ if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
+ return ptrval;
+
+ align = build_int_cst_type (type, -aligni);
+ alignval = get_value_for_expr (align, true);
+ bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
+ type, value_to_double_int (ptrval), ptrval.mask,
+ type, value_to_double_int (alignval), alignval.mask);
+ if (!mask.is_minus_one ())
+ {
+ val.lattice_val = CONSTANT;
+ val.mask = mask;
+ gcc_assert ((mask.low & (aligni - 1)) == 0);
+ gcc_assert ((value.low & (aligni - 1)) == 0);
+ value.low |= misaligni;
+ /* ??? Delay building trees here. */
+ val.value = double_int_to_tree (type, value);
+ }
+ else
+ {
+ val.lattice_val = VARYING;
+ val.value = NULL_TREE;
+ val.mask = double_int_minus_one;
+ }
+ return val;
+}
+
+/* Evaluate statement STMT.
+ Valid only for assignments, calls, conditionals, and switches. */
+
+static prop_value_t
+evaluate_stmt (gimple stmt)
+{
+ prop_value_t val;
+ tree simplified = NULL_TREE;
+ ccp_lattice_t likelyvalue = likely_value (stmt);
+ bool is_constant = false;
+ unsigned int align;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "which is likely ");
+ switch (likelyvalue)
+ {
+ case CONSTANT:
+ fprintf (dump_file, "CONSTANT");
+ break;
+ case UNDEFINED:
+ fprintf (dump_file, "UNDEFINED");
+ break;
+ case VARYING:
+ fprintf (dump_file, "VARYING");
+ break;
+ default:;
+ }
+ fprintf (dump_file, "\n");
+ }
+
+ /* If the statement is likely to have a CONSTANT result, then try
+ to fold the statement to determine the constant value. */
+ /* FIXME. This is the only place that we call ccp_fold.
+ Since likely_value never returns CONSTANT for calls, we will
+ not attempt to fold them, including builtins that may profit. */
+ if (likelyvalue == CONSTANT)
+ {
+ fold_defer_overflow_warnings ();
+ simplified = ccp_fold (stmt);
+ is_constant = simplified && is_gimple_min_invariant (simplified);
+ fold_undefer_overflow_warnings (is_constant, stmt, 0);
+ if (is_constant)
+ {
+ /* The statement produced a constant value. */
+ val.lattice_val = CONSTANT;
+ val.value = simplified;
+ val.mask = double_int_zero;
+ }
+ }
+ /* If the statement is likely to have a VARYING result, then do not
+ bother folding the statement. */
+ else if (likelyvalue == VARYING)
+ {
+ enum gimple_code code = gimple_code (stmt);
+ if (code == GIMPLE_ASSIGN)
+ {
+ enum tree_code subcode = gimple_assign_rhs_code (stmt);
+
+ /* Other cases cannot satisfy is_gimple_min_invariant
+ without folding. */
+ if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
+ simplified = gimple_assign_rhs1 (stmt);
+ }
+ else if (code == GIMPLE_SWITCH)
+ simplified = gimple_switch_index (stmt);
+ else
+ /* These cannot satisfy is_gimple_min_invariant without folding. */
+ gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
+ is_constant = simplified && is_gimple_min_invariant (simplified);
+ if (is_constant)
+ {
+ /* The statement produced a constant value. */
+ val.lattice_val = CONSTANT;
+ val.value = simplified;
+ val.mask = double_int_zero;
+ }
+ }
+
+ /* Resort to simplification for bitwise tracking. */
+ if (flag_tree_bit_ccp
+ && (likelyvalue == CONSTANT || is_gimple_call (stmt))
+ && !is_constant)
+ {
+ enum gimple_code code = gimple_code (stmt);
+ val.lattice_val = VARYING;
+ val.value = NULL_TREE;
+ val.mask = double_int_minus_one;
+ if (code == GIMPLE_ASSIGN)
+ {
+ enum tree_code subcode = gimple_assign_rhs_code (stmt);
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ switch (get_gimple_rhs_class (subcode))
+ {
+ case GIMPLE_SINGLE_RHS:
+ if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
+ || POINTER_TYPE_P (TREE_TYPE (rhs1)))
+ val = get_value_for_expr (rhs1, true);
+ break;
+
+ case GIMPLE_UNARY_RHS:
+ if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
+ || POINTER_TYPE_P (TREE_TYPE (rhs1)))
+ && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
+ || POINTER_TYPE_P (gimple_expr_type (stmt))))
+ val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
+ break;
+
+ case GIMPLE_BINARY_RHS:
+ if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
+ || POINTER_TYPE_P (TREE_TYPE (rhs1)))
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ tree rhs2 = gimple_assign_rhs2 (stmt);
+ val = bit_value_binop (subcode,
+ TREE_TYPE (lhs), rhs1, rhs2);
+ }
+ break;
+
+ default:;
+ }
+ }
+ else if (code == GIMPLE_COND)
+ {
+ enum tree_code code = gimple_cond_code (stmt);
+ tree rhs1 = gimple_cond_lhs (stmt);
+ tree rhs2 = gimple_cond_rhs (stmt);
+ if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
+ || POINTER_TYPE_P (TREE_TYPE (rhs1)))
+ val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
+ }
+ else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
+ {
+ tree fndecl = gimple_call_fndecl (stmt);
+ switch (DECL_FUNCTION_CODE (fndecl))
+ {
+ case BUILT_IN_MALLOC:
+ case BUILT_IN_REALLOC:
+ case BUILT_IN_CALLOC:
+ case BUILT_IN_STRDUP:
+ case BUILT_IN_STRNDUP:
+ val.lattice_val = CONSTANT;
+ val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
+ val.mask = double_int::from_shwi
+ (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
+ / BITS_PER_UNIT - 1));
+ break;
+
+ case BUILT_IN_ALLOCA:
+ case BUILT_IN_ALLOCA_WITH_ALIGN:
+ align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
+ ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
+ : BIGGEST_ALIGNMENT);
+ val.lattice_val = CONSTANT;
+ val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
+ val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
+ / BITS_PER_UNIT - 1));
+ break;
+
+ /* These builtins return their first argument, unmodified. */
+ case BUILT_IN_MEMCPY:
+ case BUILT_IN_MEMMOVE:
+ case BUILT_IN_MEMSET:
+ case BUILT_IN_STRCPY:
+ case BUILT_IN_STRNCPY:
+ case BUILT_IN_MEMCPY_CHK:
+ case BUILT_IN_MEMMOVE_CHK:
+ case BUILT_IN_MEMSET_CHK:
+ case BUILT_IN_STRCPY_CHK:
+ case BUILT_IN_STRNCPY_CHK:
+ val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
+ break;
+
+ case BUILT_IN_ASSUME_ALIGNED:
+ val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
+ break;
+
+ default:;
+ }
+ }
+ if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
+ {
+ tree fntype = gimple_call_fntype (stmt);
+ if (fntype)
+ {
+ tree attrs = lookup_attribute ("assume_aligned",
+ TYPE_ATTRIBUTES (fntype));
+ if (attrs)
+ val = bit_value_assume_aligned (stmt, attrs, val, false);
+ attrs = lookup_attribute ("alloc_align",
+ TYPE_ATTRIBUTES (fntype));
+ if (attrs)
+ val = bit_value_assume_aligned (stmt, attrs, val, true);
+ }
+ }
+ is_constant = (val.lattice_val == CONSTANT);
+ }
+
+ if (flag_tree_bit_ccp
+ && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
+ || (!is_constant && likelyvalue != UNDEFINED))
+ && gimple_get_lhs (stmt)
+ && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
+ {
+ tree lhs = gimple_get_lhs (stmt);
+ double_int nonzero_bits = get_nonzero_bits (lhs);
+ double_int mask = double_int::mask (TYPE_PRECISION (TREE_TYPE (lhs)));
+ if (nonzero_bits != double_int_minus_one && nonzero_bits != mask)
+ {
+ if (!is_constant)
+ {
+ val.lattice_val = CONSTANT;
+ val.value = build_zero_cst (TREE_TYPE (lhs));
+ /* CCP wants the bits above precision set. */
+ val.mask = nonzero_bits | ~mask;
+ is_constant = true;
+ }
+ else
+ {
+ double_int valv = tree_to_double_int (val.value);
+ if (!(valv & ~nonzero_bits & mask).is_zero ())
+ val.value = double_int_to_tree (TREE_TYPE (lhs),
+ valv & nonzero_bits);
+ if (nonzero_bits.is_zero ())
+ val.mask = double_int_zero;
+ else
+ val.mask = val.mask & (nonzero_bits | ~mask);
+ }
+ }
+ }
+
+ if (!is_constant)
+ {
+ /* The statement produced a nonconstant value. If the statement
+ had UNDEFINED operands, then the result of the statement
+ should be UNDEFINED. Otherwise, the statement is VARYING. */
+ if (likelyvalue == UNDEFINED)
+ {
+ val.lattice_val = likelyvalue;
+ val.mask = double_int_zero;
+ }
+ else
+ {
+ val.lattice_val = VARYING;
+ val.mask = double_int_minus_one;
+ }
+
+ val.value = NULL_TREE;
+ }
+
+ return val;
+}
+
+typedef hash_table <pointer_hash <gimple_statement_base> > gimple_htab;
+
+/* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
+ each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
+
+static void
+insert_clobber_before_stack_restore (tree saved_val, tree var,
+ gimple_htab *visited)
+{
+ gimple stmt, clobber_stmt;
+ tree clobber;
+ imm_use_iterator iter;
+ gimple_stmt_iterator i;
+ gimple *slot;
+
+ FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
+ if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
+ {
+ clobber = build_constructor (TREE_TYPE (var),
+ NULL);
+ TREE_THIS_VOLATILE (clobber) = 1;
+ clobber_stmt = gimple_build_assign (var, clobber);
+
+ i = gsi_for_stmt (stmt);
+ gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
+ }
+ else if (gimple_code (stmt) == GIMPLE_PHI)
+ {
+ if (!visited->is_created ())
+ visited->create (10);
+
+ slot = visited->find_slot (stmt, INSERT);
+ if (*slot != NULL)
+ continue;
+
+ *slot = stmt;
+ insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
+ visited);
+ }
+ else if (gimple_assign_ssa_name_copy_p (stmt))
+ insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
+ visited);
+ else
+ gcc_assert (is_gimple_debug (stmt));
+}
+
+/* Advance the iterator to the previous non-debug gimple statement in the same
+ or dominating basic block. */
+
+static inline void
+gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
+{
+ basic_block dom;
+
+ gsi_prev_nondebug (i);
+ while (gsi_end_p (*i))
+ {
+ dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
+ if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ return;
+
+ *i = gsi_last_bb (dom);
+ }
+}
+
+/* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
+ a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
+
+ It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
+ previous pass (such as DOM) duplicated it along multiple paths to a BB. In
+ that case the function gives up without inserting the clobbers. */
+
+static void
+insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
+{
+ gimple stmt;
+ tree saved_val;
+ gimple_htab visited;
+
+ for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
+ {
+ stmt = gsi_stmt (i);
+
+ if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
+ continue;
+
+ saved_val = gimple_call_lhs (stmt);
+ if (saved_val == NULL_TREE)
+ continue;
+
+ insert_clobber_before_stack_restore (saved_val, var, &visited);
+ break;
+ }
+
+ if (visited.is_created ())
+ visited.dispose ();
+}
+
+/* Detects a __builtin_alloca_with_align with constant size argument. Declares
+ fixed-size array and returns the address, if found, otherwise returns
+ NULL_TREE. */
+
+static tree
+fold_builtin_alloca_with_align (gimple stmt)
+{
+ unsigned HOST_WIDE_INT size, threshold, n_elem;
+ tree lhs, arg, block, var, elem_type, array_type;
+
+ /* Get lhs. */
+ lhs = gimple_call_lhs (stmt);
+ if (lhs == NULL_TREE)
+ return NULL_TREE;
+
+ /* Detect constant argument. */
+ arg = get_constant_value (gimple_call_arg (stmt, 0));
+ if (arg == NULL_TREE
+ || TREE_CODE (arg) != INTEGER_CST
+ || !tree_fits_uhwi_p (arg))
+ return NULL_TREE;
+
+ size = tree_to_uhwi (arg);
+
+ /* Heuristic: don't fold large allocas. */
+ threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
+ /* In case the alloca is located at function entry, it has the same lifetime
+ as a declared array, so we allow a larger size. */
+ block = gimple_block (stmt);
+ if (!(cfun->after_inlining
+ && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
+ threshold /= 10;
+ if (size > threshold)
+ return NULL_TREE;
+
+ /* Declare array. */
+ elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
+ n_elem = size * 8 / BITS_PER_UNIT;
+ array_type = build_array_type_nelts (elem_type, n_elem);
+ var = create_tmp_var (array_type, NULL);
+ DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
+ {
+ struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
+ if (pi != NULL && !pi->pt.anything)
+ {
+ bool singleton_p;
+ unsigned uid;
+ singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
+ gcc_assert (singleton_p);
+ SET_DECL_PT_UID (var, uid);
+ }
+ }
+
+ /* Fold alloca to the address of the array. */
+ return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
+}
+
+/* Fold the stmt at *GSI with CCP specific information that propagating
+ and regular folding does not catch. */
+
+static bool
+ccp_fold_stmt (gimple_stmt_iterator *gsi)
+{
+ gimple stmt = gsi_stmt (*gsi);
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ {
+ prop_value_t val;
+ /* Statement evaluation will handle type mismatches in constants
+ more gracefully than the final propagation. This allows us to
+ fold more conditionals here. */
+ val = evaluate_stmt (stmt);
+ if (val.lattice_val != CONSTANT
+ || !val.mask.is_zero ())
+ return false;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Folding predicate ");
+ print_gimple_expr (dump_file, stmt, 0, 0);
+ fprintf (dump_file, " to ");
+ print_generic_expr (dump_file, val.value, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ if (integer_zerop (val.value))
+ gimple_cond_make_false (stmt);
+ else
+ gimple_cond_make_true (stmt);
+
+ return true;
+ }
+
+ case GIMPLE_CALL:
+ {
+ tree lhs = gimple_call_lhs (stmt);
+ int flags = gimple_call_flags (stmt);
+ tree val;
+ tree argt;
+ bool changed = false;
+ unsigned i;
+
+ /* If the call was folded into a constant make sure it goes
+ away even if we cannot propagate into all uses because of
+ type issues. */
+ if (lhs
+ && TREE_CODE (lhs) == SSA_NAME
+ && (val = get_constant_value (lhs))
+ /* Don't optimize away calls that have side-effects. */
+ && (flags & (ECF_CONST|ECF_PURE)) != 0
+ && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
+ {
+ tree new_rhs = unshare_expr (val);
+ bool res;
+ if (!useless_type_conversion_p (TREE_TYPE (lhs),
+ TREE_TYPE (new_rhs)))
+ new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
+ res = update_call_from_tree (gsi, new_rhs);
+ gcc_assert (res);
+ return true;
+ }
+
+ /* Internal calls provide no argument types, so the extra laxity
+ for normal calls does not apply. */
+ if (gimple_call_internal_p (stmt))
+ return false;
+
+ /* The heuristic of fold_builtin_alloca_with_align differs before and
+ after inlining, so we don't require the arg to be changed into a
+ constant for folding, but just to be constant. */
+ if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
+ {
+ tree new_rhs = fold_builtin_alloca_with_align (stmt);
+ if (new_rhs)
+ {
+ bool res = update_call_from_tree (gsi, new_rhs);
+ tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
+ gcc_assert (res);
+ insert_clobbers_for_var (*gsi, var);
+ return true;
+ }
+ }
+
+ /* Propagate into the call arguments. Compared to replace_uses_in
+ this can use the argument slot types for type verification
+ instead of the current argument type. We also can safely
+ drop qualifiers here as we are dealing with constants anyway. */
+ argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
+ for (i = 0; i < gimple_call_num_args (stmt) && argt;
+ ++i, argt = TREE_CHAIN (argt))
+ {
+ tree arg = gimple_call_arg (stmt, i);
+ if (TREE_CODE (arg) == SSA_NAME
+ && (val = get_constant_value (arg))
+ && useless_type_conversion_p
+ (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
+ TYPE_MAIN_VARIANT (TREE_TYPE (val))))
+ {
+ gimple_call_set_arg (stmt, i, unshare_expr (val));
+ changed = true;
+ }
+ }
+
+ return changed;
+ }
+
+ case GIMPLE_ASSIGN:
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ tree val;
+
+ /* If we have a load that turned out to be constant replace it
+ as we cannot propagate into all uses in all cases. */
+ if (gimple_assign_single_p (stmt)
+ && TREE_CODE (lhs) == SSA_NAME
+ && (val = get_constant_value (lhs)))
+ {
+ tree rhs = unshare_expr (val);
+ if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
+ rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
+ gimple_assign_set_rhs_from_tree (gsi, rhs);
+ return true;
+ }
+
+ return false;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/* Visit the assignment statement STMT. Set the value of its LHS to the
+ value computed by the RHS and store LHS in *OUTPUT_P. If STMT
+ creates virtual definitions, set the value of each new name to that
+ of the RHS (if we can derive a constant out of the RHS).
+ Value-returning call statements also perform an assignment, and
+ are handled here. */
+
+static enum ssa_prop_result
+visit_assignment (gimple stmt, tree *output_p)
+{
+ prop_value_t val;
+ enum ssa_prop_result retval;
+
+ tree lhs = gimple_get_lhs (stmt);
+
+ gcc_assert (gimple_code (stmt) != GIMPLE_CALL
+ || gimple_call_lhs (stmt) != NULL_TREE);
+
+ if (gimple_assign_single_p (stmt)
+ && gimple_assign_rhs_code (stmt) == SSA_NAME)
+ /* For a simple copy operation, we copy the lattice values. */
+ val = *get_value (gimple_assign_rhs1 (stmt));
+ else
+ /* Evaluate the statement, which could be
+ either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
+ val = evaluate_stmt (stmt);
+
+ retval = SSA_PROP_NOT_INTERESTING;
+
+ /* Set the lattice value of the statement's output. */
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ /* If STMT is an assignment to an SSA_NAME, we only have one
+ value to set. */
+ if (set_lattice_value (lhs, val))
+ {
+ *output_p = lhs;
+ if (val.lattice_val == VARYING)
+ retval = SSA_PROP_VARYING;
+ else
+ retval = SSA_PROP_INTERESTING;
+ }
+ }
+
+ return retval;
+}
+
+
+/* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
+ if it can determine which edge will be taken. Otherwise, return
+ SSA_PROP_VARYING. */
+
+static enum ssa_prop_result
+visit_cond_stmt (gimple stmt, edge *taken_edge_p)
+{
+ prop_value_t val;
+ basic_block block;
+
+ block = gimple_bb (stmt);
+ val = evaluate_stmt (stmt);
+ if (val.lattice_val != CONSTANT
+ || !val.mask.is_zero ())
+ return SSA_PROP_VARYING;
+
+ /* Find which edge out of the conditional block will be taken and add it
+ to the worklist. If no single edge can be determined statically,
+ return SSA_PROP_VARYING to feed all the outgoing edges to the
+ propagation engine. */
+ *taken_edge_p = find_taken_edge (block, val.value);
+ if (*taken_edge_p)
+ return SSA_PROP_INTERESTING;
+ else
+ return SSA_PROP_VARYING;
+}
+
+
+/* Evaluate statement STMT. If the statement produces an output value and
+ its evaluation changes the lattice value of its output, return
+ SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
+ output value.
+
+ If STMT is a conditional branch and we can determine its truth
+ value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
+ value, return SSA_PROP_VARYING. */
+
+static enum ssa_prop_result
+ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
+{
+ tree def;
+ ssa_op_iter iter;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nVisiting statement:\n");
+ print_gimple_stmt (dump_file, stmt, 0, dump_flags);
+ }
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ /* If the statement is an assignment that produces a single
+ output value, evaluate its RHS to see if the lattice value of
+ its output has changed. */
+ return visit_assignment (stmt, output_p);
+
+ case GIMPLE_CALL:
+ /* A value-returning call also performs an assignment. */
+ if (gimple_call_lhs (stmt) != NULL_TREE)
+ return visit_assignment (stmt, output_p);
+ break;
+
+ case GIMPLE_COND:
+ case GIMPLE_SWITCH:
+ /* If STMT is a conditional branch, see if we can determine
+ which branch will be taken. */
+ /* FIXME. It appears that we should be able to optimize
+ computed GOTOs here as well. */
+ return visit_cond_stmt (stmt, taken_edge_p);
+
+ default:
+ break;
+ }
+
+ /* Any other kind of statement is not interesting for constant
+ propagation and, therefore, not worth simulating. */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
+
+ /* Definitions made by statements other than assignments to
+ SSA_NAMEs represent unknown modifications to their outputs.
+ Mark them VARYING. */
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
+ {
+ prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
+ set_lattice_value (def, v);
+ }
+
+ return SSA_PROP_VARYING;
+}
+
+
+/* Main entry point for SSA Conditional Constant Propagation. */
+
+static unsigned int
+do_ssa_ccp (void)
+{
+ unsigned int todo = 0;
+ calculate_dominance_info (CDI_DOMINATORS);
+ ccp_initialize ();
+ ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
+ if (ccp_finalize ())
+ todo = (TODO_cleanup_cfg | TODO_update_ssa);
+ free_dominance_info (CDI_DOMINATORS);
+ return todo;
+}
+
+
+static bool
+gate_ccp (void)
+{
+ return flag_tree_ccp != 0;
+}
+
+
+namespace {
+
+const pass_data pass_data_ccp =
+{
+ GIMPLE_PASS, /* type */
+ "ccp", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_TREE_CCP, /* tv_id */
+ ( PROP_cfg | PROP_ssa ), /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ ( TODO_verify_ssa | TODO_update_address_taken
+ | TODO_verify_stmts ), /* todo_flags_finish */
+};
+
+class pass_ccp : public gimple_opt_pass
+{
+public:
+ pass_ccp (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_ccp, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ opt_pass * clone () { return new pass_ccp (m_ctxt); }
+ bool gate () { return gate_ccp (); }
+ unsigned int execute () { return do_ssa_ccp (); }
+
+}; // class pass_ccp
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_ccp (gcc::context *ctxt)
+{
+ return new pass_ccp (ctxt);
+}
+
+
+
+/* Try to optimize out __builtin_stack_restore. Optimize it out
+ if there is another __builtin_stack_restore in the same basic
+ block and no calls or ASM_EXPRs are in between, or if this block's
+ only outgoing edge is to EXIT_BLOCK and there are no calls or
+ ASM_EXPRs after this __builtin_stack_restore. */
+
+static tree
+optimize_stack_restore (gimple_stmt_iterator i)
+{
+ tree callee;
+ gimple stmt;
+
+ basic_block bb = gsi_bb (i);
+ gimple call = gsi_stmt (i);
+
+ if (gimple_code (call) != GIMPLE_CALL
+ || gimple_call_num_args (call) != 1
+ || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
+ || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
+ return NULL_TREE;
+
+ for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
+ {
+ stmt = gsi_stmt (i);
+ if (gimple_code (stmt) == GIMPLE_ASM)
+ return NULL_TREE;
+ if (gimple_code (stmt) != GIMPLE_CALL)
+ continue;
+
+ callee = gimple_call_fndecl (stmt);
+ if (!callee
+ || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
+ /* All regular builtins are ok, just obviously not alloca. */
+ || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
+ || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
+ return NULL_TREE;
+
+ if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
+ goto second_stack_restore;
+ }
+
+ if (!gsi_end_p (i))
+ return NULL_TREE;
+
+ /* Allow one successor of the exit block, or zero successors. */
+ switch (EDGE_COUNT (bb->succs))
+ {
+ case 0:
+ break;
+ case 1:
+ if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
+ return NULL_TREE;
+ break;
+ default:
+ return NULL_TREE;
+ }
+ second_stack_restore:
+
+ /* If there's exactly one use, then zap the call to __builtin_stack_save.
+ If there are multiple uses, then the last one should remove the call.
+ In any case, whether the call to __builtin_stack_save can be removed
+ or not is irrelevant to removing the call to __builtin_stack_restore. */
+ if (has_single_use (gimple_call_arg (call, 0)))
+ {
+ gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
+ if (is_gimple_call (stack_save))
+ {
+ callee = gimple_call_fndecl (stack_save);
+ if (callee
+ && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
+ && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
+ {
+ gimple_stmt_iterator stack_save_gsi;
+ tree rhs;
+
+ stack_save_gsi = gsi_for_stmt (stack_save);
+ rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
+ update_call_from_tree (&stack_save_gsi, rhs);
+ }
+ }
+ }
+
+ /* No effect, so the statement will be deleted. */
+ return integer_zero_node;
+}
+
+/* If va_list type is a simple pointer and nothing special is needed,
+ optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
+ __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
+ pointer assignment. */
+
+static tree
+optimize_stdarg_builtin (gimple call)
+{
+ tree callee, lhs, rhs, cfun_va_list;
+ bool va_list_simple_ptr;
+ location_t loc = gimple_location (call);
+
+ if (gimple_code (call) != GIMPLE_CALL)
+ return NULL_TREE;
+
+ callee = gimple_call_fndecl (call);
+
+ cfun_va_list = targetm.fn_abi_va_list (callee);
+ va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
+ && (TREE_TYPE (cfun_va_list) == void_type_node
+ || TREE_TYPE (cfun_va_list) == char_type_node);
+
+ switch (DECL_FUNCTION_CODE (callee))
+ {
+ case BUILT_IN_VA_START:
+ if (!va_list_simple_ptr
+ || targetm.expand_builtin_va_start != NULL
+ || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
+ return NULL_TREE;
+
+ if (gimple_call_num_args (call) != 2)
+ return NULL_TREE;
+
+ lhs = gimple_call_arg (call, 0);
+ if (!POINTER_TYPE_P (TREE_TYPE (lhs))
+ || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
+ != TYPE_MAIN_VARIANT (cfun_va_list))
+ return NULL_TREE;
+
+ lhs = build_fold_indirect_ref_loc (loc, lhs);
+ rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
+ 1, integer_zero_node);
+ rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
+ return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
+
+ case BUILT_IN_VA_COPY:
+ if (!va_list_simple_ptr)
+ return NULL_TREE;
+
+ if (gimple_call_num_args (call) != 2)
+ return NULL_TREE;
+
+ lhs = gimple_call_arg (call, 0);
+ if (!POINTER_TYPE_P (TREE_TYPE (lhs))
+ || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
+ != TYPE_MAIN_VARIANT (cfun_va_list))
+ return NULL_TREE;
+
+ lhs = build_fold_indirect_ref_loc (loc, lhs);
+ rhs = gimple_call_arg (call, 1);
+ if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
+ != TYPE_MAIN_VARIANT (cfun_va_list))
+ return NULL_TREE;
+
+ rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
+ return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
+
+ case BUILT_IN_VA_END:
+ /* No effect, so the statement will be deleted. */
+ return integer_zero_node;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Attemp to make the block of __builtin_unreachable I unreachable by changing
+ the incoming jumps. Return true if at least one jump was changed. */
+
+static bool
+optimize_unreachable (gimple_stmt_iterator i)
+{
+ basic_block bb = gsi_bb (i);
+ gimple_stmt_iterator gsi;
+ gimple stmt;
+ edge_iterator ei;
+ edge e;
+ bool ret;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ stmt = gsi_stmt (gsi);
+
+ if (is_gimple_debug (stmt))
+ continue;
+
+ if (gimple_code (stmt) == GIMPLE_LABEL)
+ {
+ /* Verify we do not need to preserve the label. */
+ if (FORCED_LABEL (gimple_label_label (stmt)))
+ return false;
+
+ continue;
+ }
+
+ /* Only handle the case that __builtin_unreachable is the first statement
+ in the block. We rely on DCE to remove stmts without side-effects
+ before __builtin_unreachable. */
+ if (gsi_stmt (gsi) != gsi_stmt (i))
+ return false;
+ }
+
+ ret = false;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ gsi = gsi_last_bb (e->src);
+ if (gsi_end_p (gsi))
+ continue;
+
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ if (e->flags & EDGE_TRUE_VALUE)
+ gimple_cond_make_false (stmt);
+ else if (e->flags & EDGE_FALSE_VALUE)
+ gimple_cond_make_true (stmt);
+ else
+ gcc_unreachable ();
+ update_stmt (stmt);
+ }
+ else
+ {
+ /* Todo: handle other cases, f.i. switch statement. */
+ continue;
+ }
+
+ ret = true;
+ }
+
+ return ret;
+}
+
+/* A simple pass that attempts to fold all builtin functions. This pass
+ is run after we've propagated as many constants as we can. */
+
+static unsigned int
+execute_fold_all_builtins (void)
+{
+ bool cfg_changed = false;
+ basic_block bb;
+ unsigned int todoflags = 0;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator i;
+ for (i = gsi_start_bb (bb); !gsi_end_p (i); )
+ {
+ gimple stmt, old_stmt;
+ tree callee, result;
+ enum built_in_function fcode;
+
+ stmt = gsi_stmt (i);
+
+ if (gimple_code (stmt) != GIMPLE_CALL)
+ {
+ /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
+ after the last GIMPLE DSE they aren't needed and might
+ unnecessarily keep the SSA_NAMEs live. */
+ if (gimple_clobber_p (stmt))
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ if (TREE_CODE (lhs) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
+ {
+ unlink_stmt_vdef (stmt);
+ gsi_remove (&i, true);
+ release_defs (stmt);
+ continue;
+ }
+ }
+ gsi_next (&i);
+ continue;
+ }
+ callee = gimple_call_fndecl (stmt);
+ if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
+ {
+ gsi_next (&i);
+ continue;
+ }
+ fcode = DECL_FUNCTION_CODE (callee);
+
+ result = gimple_fold_builtin (stmt);
+
+ if (result)
+ gimple_remove_stmt_histograms (cfun, stmt);
+
+ if (!result)
+ switch (DECL_FUNCTION_CODE (callee))
+ {
+ case BUILT_IN_CONSTANT_P:
+ /* Resolve __builtin_constant_p. If it hasn't been
+ folded to integer_one_node by now, it's fairly
+ certain that the value simply isn't constant. */
+ result = integer_zero_node;
+ break;
+
+ case BUILT_IN_ASSUME_ALIGNED:
+ /* Remove __builtin_assume_aligned. */
+ result = gimple_call_arg (stmt, 0);
+ break;
+
+ case BUILT_IN_STACK_RESTORE:
+ result = optimize_stack_restore (i);
+ if (result)
+ break;
+ gsi_next (&i);
+ continue;
+
+ case BUILT_IN_UNREACHABLE:
+ if (optimize_unreachable (i))
+ cfg_changed = true;
+ break;
+
+ case BUILT_IN_VA_START:
+ case BUILT_IN_VA_END:
+ case BUILT_IN_VA_COPY:
+ /* These shouldn't be folded before pass_stdarg. */
+ result = optimize_stdarg_builtin (stmt);
+ if (result)
+ break;
+ /* FALLTHRU */
+
+ default:
+ gsi_next (&i);
+ continue;
+ }
+
+ if (result == NULL_TREE)
+ break;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Simplified\n ");
+ print_gimple_stmt (dump_file, stmt, 0, dump_flags);
+ }
+
+ old_stmt = stmt;
+ if (!update_call_from_tree (&i, result))
+ {
+ gimplify_and_update_call_from_tree (&i, result);
+ todoflags |= TODO_update_address_taken;
+ }
+
+ stmt = gsi_stmt (i);
+ update_stmt (stmt);
+
+ if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
+ && gimple_purge_dead_eh_edges (bb))
+ cfg_changed = true;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "to\n ");
+ print_gimple_stmt (dump_file, stmt, 0, dump_flags);
+ fprintf (dump_file, "\n");
+ }
+
+ /* Retry the same statement if it changed into another
+ builtin, there might be new opportunities now. */
+ if (gimple_code (stmt) != GIMPLE_CALL)
+ {
+ gsi_next (&i);
+ continue;
+ }
+ callee = gimple_call_fndecl (stmt);
+ if (!callee
+ || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
+ || DECL_FUNCTION_CODE (callee) == fcode)
+ gsi_next (&i);
+ }
+ }
+
+ /* Delete unreachable blocks. */
+ if (cfg_changed)
+ todoflags |= TODO_cleanup_cfg;
+
+ return todoflags;
+}
+
+
+namespace {
+
+const pass_data pass_data_fold_builtins =
+{
+ GIMPLE_PASS, /* type */
+ "fab", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ ( PROP_cfg | PROP_ssa ), /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ ( TODO_verify_ssa | TODO_update_ssa ), /* todo_flags_finish */
+};
+
+class pass_fold_builtins : public gimple_opt_pass
+{
+public:
+ pass_fold_builtins (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_fold_builtins, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
+ unsigned int execute () { return execute_fold_all_builtins (); }
+
+}; // class pass_fold_builtins
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_fold_builtins (gcc::context *ctxt)
+{
+ return new pass_fold_builtins (ctxt);
+}