aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-loop-distribution.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/tree-loop-distribution.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/tree-loop-distribution.c')
-rw-r--r--gcc-4.9/gcc/tree-loop-distribution.c1836
1 files changed, 1836 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-loop-distribution.c b/gcc-4.9/gcc/tree-loop-distribution.c
new file mode 100644
index 000000000..9db92dbf9
--- /dev/null
+++ b/gcc-4.9/gcc/tree-loop-distribution.c
@@ -0,0 +1,1836 @@
+/* Loop distribution.
+ Copyright (C) 2006-2014 Free Software Foundation, Inc.
+ Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
+ and Sebastian Pop <sebastian.pop@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass performs loop distribution: for example, the loop
+
+ |DO I = 2, N
+ | A(I) = B(I) + C
+ | D(I) = A(I-1)*E
+ |ENDDO
+
+ is transformed to
+
+ |DOALL I = 2, N
+ | A(I) = B(I) + C
+ |ENDDO
+ |
+ |DOALL I = 2, N
+ | D(I) = A(I-1)*E
+ |ENDDO
+
+ This pass uses an RDG, Reduced Dependence Graph built on top of the
+ data dependence relations. The RDG is then topologically sorted to
+ obtain a map of information producers/consumers based on which it
+ generates the new loops. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tree.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "stor-layout.h"
+#include "gimple-ssa.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop.h"
+#include "tree-into-ssa.h"
+#include "tree-ssa.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "tree-pass.h"
+#include "gimple-pretty-print.h"
+#include "tree-vectorizer.h"
+
+
+/* A Reduced Dependence Graph (RDG) vertex representing a statement. */
+typedef struct rdg_vertex
+{
+ /* The statement represented by this vertex. */
+ gimple stmt;
+
+ /* Vector of data-references in this statement. */
+ vec<data_reference_p> datarefs;
+
+ /* True when the statement contains a write to memory. */
+ bool has_mem_write;
+
+ /* True when the statement contains a read from memory. */
+ bool has_mem_reads;
+} *rdg_vertex_p;
+
+#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
+#define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
+#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
+#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
+#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
+#define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
+#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
+#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
+
+/* Data dependence type. */
+
+enum rdg_dep_type
+{
+ /* Read After Write (RAW). */
+ flow_dd = 'f',
+
+ /* Control dependence (execute conditional on). */
+ control_dd = 'c'
+};
+
+/* Dependence information attached to an edge of the RDG. */
+
+typedef struct rdg_edge
+{
+ /* Type of the dependence. */
+ enum rdg_dep_type type;
+} *rdg_edge_p;
+
+#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
+
+/* Dump vertex I in RDG to FILE. */
+
+static void
+dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
+{
+ struct vertex *v = &(rdg->vertices[i]);
+ struct graph_edge *e;
+
+ fprintf (file, "(vertex %d: (%s%s) (in:", i,
+ RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
+ RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
+
+ if (v->pred)
+ for (e = v->pred; e; e = e->pred_next)
+ fprintf (file, " %d", e->src);
+
+ fprintf (file, ") (out:");
+
+ if (v->succ)
+ for (e = v->succ; e; e = e->succ_next)
+ fprintf (file, " %d", e->dest);
+
+ fprintf (file, ")\n");
+ print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
+ fprintf (file, ")\n");
+}
+
+/* Call dump_rdg_vertex on stderr. */
+
+DEBUG_FUNCTION void
+debug_rdg_vertex (struct graph *rdg, int i)
+{
+ dump_rdg_vertex (stderr, rdg, i);
+}
+
+/* Dump the reduced dependence graph RDG to FILE. */
+
+static void
+dump_rdg (FILE *file, struct graph *rdg)
+{
+ fprintf (file, "(rdg\n");
+ for (int i = 0; i < rdg->n_vertices; i++)
+ dump_rdg_vertex (file, rdg, i);
+ fprintf (file, ")\n");
+}
+
+/* Call dump_rdg on stderr. */
+
+DEBUG_FUNCTION void
+debug_rdg (struct graph *rdg)
+{
+ dump_rdg (stderr, rdg);
+}
+
+static void
+dot_rdg_1 (FILE *file, struct graph *rdg)
+{
+ int i;
+ pretty_printer buffer;
+ pp_needs_newline (&buffer) = false;
+ buffer.buffer->stream = file;
+
+ fprintf (file, "digraph RDG {\n");
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ struct vertex *v = &(rdg->vertices[i]);
+ struct graph_edge *e;
+
+ fprintf (file, "%d [label=\"[%d] ", i, i);
+ pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
+ pp_flush (&buffer);
+ fprintf (file, "\"]\n");
+
+ /* Highlight reads from memory. */
+ if (RDG_MEM_READS_STMT (rdg, i))
+ fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
+
+ /* Highlight stores to memory. */
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
+
+ if (v->succ)
+ for (e = v->succ; e; e = e->succ_next)
+ switch (RDGE_TYPE (e))
+ {
+ case flow_dd:
+ /* These are the most common dependences: don't print these. */
+ fprintf (file, "%d -> %d \n", i, e->dest);
+ break;
+
+ case control_dd:
+ fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ fprintf (file, "}\n\n");
+}
+
+/* Display the Reduced Dependence Graph using dotty. */
+
+DEBUG_FUNCTION void
+dot_rdg (struct graph *rdg)
+{
+ /* When debugging, you may want to enable the following code. */
+#if 1
+ FILE *file = popen ("dot -Tx11", "w");
+ if (!file)
+ return;
+ dot_rdg_1 (file, rdg);
+ fflush (file);
+ close (fileno (file));
+ pclose (file);
+#else
+ dot_rdg_1 (stderr, rdg);
+#endif
+}
+
+/* Returns the index of STMT in RDG. */
+
+static int
+rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple stmt)
+{
+ int index = gimple_uid (stmt);
+ gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
+ return index;
+}
+
+/* Creates dependence edges in RDG for all the uses of DEF. IDEF is
+ the index of DEF in RDG. */
+
+static void
+create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
+{
+ use_operand_p imm_use_p;
+ imm_use_iterator iterator;
+
+ FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
+ {
+ struct graph_edge *e;
+ int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
+
+ if (use < 0)
+ continue;
+
+ e = add_edge (rdg, idef, use);
+ e->data = XNEW (struct rdg_edge);
+ RDGE_TYPE (e) = flow_dd;
+ }
+}
+
+/* Creates an edge for the control dependences of BB to the vertex V. */
+
+static void
+create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
+ int v, control_dependences *cd)
+{
+ bitmap_iterator bi;
+ unsigned edge_n;
+ EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
+ 0, edge_n, bi)
+ {
+ basic_block cond_bb = cd->get_edge (edge_n)->src;
+ gimple stmt = last_stmt (cond_bb);
+ if (stmt && is_ctrl_stmt (stmt))
+ {
+ struct graph_edge *e;
+ int c = rdg_vertex_for_stmt (rdg, stmt);
+ if (c < 0)
+ continue;
+
+ e = add_edge (rdg, c, v);
+ e->data = XNEW (struct rdg_edge);
+ RDGE_TYPE (e) = control_dd;
+ }
+ }
+}
+
+/* Creates the edges of the reduced dependence graph RDG. */
+
+static void
+create_rdg_flow_edges (struct graph *rdg)
+{
+ int i;
+ def_operand_p def_p;
+ ssa_op_iter iter;
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
+ iter, SSA_OP_DEF)
+ create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
+}
+
+/* Creates the edges of the reduced dependence graph RDG. */
+
+static void
+create_rdg_cd_edges (struct graph *rdg, control_dependences *cd)
+{
+ int i;
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ gimple stmt = RDG_STMT (rdg, i);
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ {
+ edge_iterator ei;
+ edge e;
+ FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
+ create_edge_for_control_dependence (rdg, e->src, i, cd);
+ }
+ else
+ create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
+ }
+}
+
+/* Build the vertices of the reduced dependence graph RDG. Return false
+ if that failed. */
+
+static bool
+create_rdg_vertices (struct graph *rdg, vec<gimple> stmts, loop_p loop,
+ vec<data_reference_p> *datarefs)
+{
+ int i;
+ gimple stmt;
+
+ FOR_EACH_VEC_ELT (stmts, i, stmt)
+ {
+ struct vertex *v = &(rdg->vertices[i]);
+
+ /* Record statement to vertex mapping. */
+ gimple_set_uid (stmt, i);
+
+ v->data = XNEW (struct rdg_vertex);
+ RDGV_STMT (v) = stmt;
+ RDGV_DATAREFS (v).create (0);
+ RDGV_HAS_MEM_WRITE (v) = false;
+ RDGV_HAS_MEM_READS (v) = false;
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ continue;
+
+ unsigned drp = datarefs->length ();
+ if (!find_data_references_in_stmt (loop, stmt, datarefs))
+ return false;
+ for (unsigned j = drp; j < datarefs->length (); ++j)
+ {
+ data_reference_p dr = (*datarefs)[j];
+ if (DR_IS_READ (dr))
+ RDGV_HAS_MEM_READS (v) = true;
+ else
+ RDGV_HAS_MEM_WRITE (v) = true;
+ RDGV_DATAREFS (v).safe_push (dr);
+ }
+ }
+ return true;
+}
+
+/* Initialize STMTS with all the statements of LOOP. The order in
+ which we discover statements is important as
+ generate_loops_for_partition is using the same traversal for
+ identifying statements in loop copies. */
+
+static void
+stmts_from_loop (struct loop *loop, vec<gimple> *stmts)
+{
+ unsigned int i;
+ basic_block *bbs = get_loop_body_in_dom_order (loop);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+ gimple_stmt_iterator bsi;
+ gimple stmt;
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ if (!virtual_operand_p (gimple_phi_result (gsi_stmt (bsi))))
+ stmts->safe_push (gsi_stmt (bsi));
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ stmt = gsi_stmt (bsi);
+ if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
+ stmts->safe_push (stmt);
+ }
+ }
+
+ free (bbs);
+}
+
+/* Free the reduced dependence graph RDG. */
+
+static void
+free_rdg (struct graph *rdg)
+{
+ int i;
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ struct vertex *v = &(rdg->vertices[i]);
+ struct graph_edge *e;
+
+ for (e = v->succ; e; e = e->succ_next)
+ free (e->data);
+
+ if (v->data)
+ {
+ gimple_set_uid (RDGV_STMT (v), -1);
+ free_data_refs (RDGV_DATAREFS (v));
+ free (v->data);
+ }
+ }
+
+ free_graph (rdg);
+}
+
+/* Build the Reduced Dependence Graph (RDG) with one vertex per
+ statement of the loop nest LOOP_NEST, and one edge per data dependence or
+ scalar dependence. */
+
+static struct graph *
+build_rdg (vec<loop_p> loop_nest, control_dependences *cd)
+{
+ struct graph *rdg;
+ vec<data_reference_p> datarefs;
+
+ /* Create the RDG vertices from the stmts of the loop nest. */
+ auto_vec<gimple, 10> stmts;
+ stmts_from_loop (loop_nest[0], &stmts);
+ rdg = new_graph (stmts.length ());
+ datarefs.create (10);
+ if (!create_rdg_vertices (rdg, stmts, loop_nest[0], &datarefs))
+ {
+ datarefs.release ();
+ free_rdg (rdg);
+ return NULL;
+ }
+ stmts.release ();
+
+ create_rdg_flow_edges (rdg);
+ if (cd)
+ create_rdg_cd_edges (rdg, cd);
+
+ datarefs.release ();
+
+ return rdg;
+}
+
+
+
+enum partition_kind {
+ PKIND_NORMAL, PKIND_MEMSET, PKIND_MEMCPY
+};
+
+typedef struct partition_s
+{
+ bitmap stmts;
+ bitmap loops;
+ bool reduction_p;
+ enum partition_kind kind;
+ /* data-references a kind != PKIND_NORMAL partition is about. */
+ data_reference_p main_dr;
+ data_reference_p secondary_dr;
+ tree niter;
+ bool plus_one;
+} *partition_t;
+
+
+/* Allocate and initialize a partition from BITMAP. */
+
+static partition_t
+partition_alloc (bitmap stmts, bitmap loops)
+{
+ partition_t partition = XCNEW (struct partition_s);
+ partition->stmts = stmts ? stmts : BITMAP_ALLOC (NULL);
+ partition->loops = loops ? loops : BITMAP_ALLOC (NULL);
+ partition->reduction_p = false;
+ partition->kind = PKIND_NORMAL;
+ return partition;
+}
+
+/* Free PARTITION. */
+
+static void
+partition_free (partition_t partition)
+{
+ BITMAP_FREE (partition->stmts);
+ BITMAP_FREE (partition->loops);
+ free (partition);
+}
+
+/* Returns true if the partition can be generated as a builtin. */
+
+static bool
+partition_builtin_p (partition_t partition)
+{
+ return partition->kind != PKIND_NORMAL;
+}
+
+/* Returns true if the partition contains a reduction. */
+
+static bool
+partition_reduction_p (partition_t partition)
+{
+ return partition->reduction_p;
+}
+
+/* Merge PARTITION into the partition DEST. */
+
+static void
+partition_merge_into (partition_t dest, partition_t partition)
+{
+ dest->kind = PKIND_NORMAL;
+ bitmap_ior_into (dest->stmts, partition->stmts);
+ if (partition_reduction_p (partition))
+ dest->reduction_p = true;
+}
+
+
+/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
+ the LOOP. */
+
+static bool
+ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ {
+ gimple use_stmt = USE_STMT (use_p);
+ if (!is_gimple_debug (use_stmt)
+ && loop != loop_containing_stmt (use_stmt))
+ return true;
+ }
+
+ return false;
+}
+
+/* Returns true when STMT defines a scalar variable used after the
+ loop LOOP. */
+
+static bool
+stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple stmt)
+{
+ def_operand_p def_p;
+ ssa_op_iter op_iter;
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
+
+ FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
+ if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
+ return true;
+
+ return false;
+}
+
+/* Return a copy of LOOP placed before LOOP. */
+
+static struct loop *
+copy_loop_before (struct loop *loop)
+{
+ struct loop *res;
+ edge preheader = loop_preheader_edge (loop);
+
+ initialize_original_copy_tables ();
+ res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
+ gcc_assert (res != NULL);
+ free_original_copy_tables ();
+ delete_update_ssa ();
+
+ return res;
+}
+
+/* Creates an empty basic block after LOOP. */
+
+static void
+create_bb_after_loop (struct loop *loop)
+{
+ edge exit = single_exit (loop);
+
+ if (!exit)
+ return;
+
+ split_edge (exit);
+}
+
+/* Generate code for PARTITION from the code in LOOP. The loop is
+ copied when COPY_P is true. All the statements not flagged in the
+ PARTITION bitmap are removed from the loop or from its copy. The
+ statements are indexed in sequence inside a basic block, and the
+ basic blocks of a loop are taken in dom order. */
+
+static void
+generate_loops_for_partition (struct loop *loop, partition_t partition,
+ bool copy_p)
+{
+ unsigned i;
+ gimple_stmt_iterator bsi;
+ basic_block *bbs;
+
+ if (copy_p)
+ {
+ loop = copy_loop_before (loop);
+ gcc_assert (loop != NULL);
+ create_preheader (loop, CP_SIMPLE_PREHEADERS);
+ create_bb_after_loop (loop);
+ }
+
+ /* Remove stmts not in the PARTITION bitmap. */
+ bbs = get_loop_body_in_dom_order (loop);
+
+ if (MAY_HAVE_DEBUG_STMTS)
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple phi = gsi_stmt (bsi);
+ if (!virtual_operand_p (gimple_phi_result (phi))
+ && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
+ reset_debug_uses (phi);
+ }
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple stmt = gsi_stmt (bsi);
+ if (gimple_code (stmt) != GIMPLE_LABEL
+ && !is_gimple_debug (stmt)
+ && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
+ reset_debug_uses (stmt);
+ }
+ }
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
+ {
+ gimple phi = gsi_stmt (bsi);
+ if (!virtual_operand_p (gimple_phi_result (phi))
+ && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
+ remove_phi_node (&bsi, true);
+ else
+ gsi_next (&bsi);
+ }
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
+ {
+ gimple stmt = gsi_stmt (bsi);
+ if (gimple_code (stmt) != GIMPLE_LABEL
+ && !is_gimple_debug (stmt)
+ && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
+ {
+ /* Choose an arbitrary path through the empty CFG part
+ that this unnecessary control stmt controls. */
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ gimple_cond_make_false (stmt);
+ update_stmt (stmt);
+ }
+ else if (gimple_code (stmt) == GIMPLE_SWITCH)
+ {
+ gimple_switch_set_index
+ (stmt, CASE_LOW (gimple_switch_label (stmt, 1)));
+ update_stmt (stmt);
+ }
+ else
+ {
+ unlink_stmt_vdef (stmt);
+ gsi_remove (&bsi, true);
+ release_defs (stmt);
+ continue;
+ }
+ }
+ gsi_next (&bsi);
+ }
+ }
+
+ free (bbs);
+}
+
+/* Build the size argument for a memory operation call. */
+
+static tree
+build_size_arg_loc (location_t loc, data_reference_p dr, tree nb_iter,
+ bool plus_one)
+{
+ tree size = fold_convert_loc (loc, sizetype, nb_iter);
+ if (plus_one)
+ size = size_binop (PLUS_EXPR, size, size_one_node);
+ size = fold_build2_loc (loc, MULT_EXPR, sizetype, size,
+ TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
+ size = fold_convert_loc (loc, size_type_node, size);
+ return size;
+}
+
+/* Build an address argument for a memory operation call. */
+
+static tree
+build_addr_arg_loc (location_t loc, data_reference_p dr, tree nb_bytes)
+{
+ tree addr_base;
+
+ addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
+ addr_base = fold_convert_loc (loc, sizetype, addr_base);
+
+ /* Test for a negative stride, iterating over every element. */
+ if (tree_int_cst_sgn (DR_STEP (dr)) == -1)
+ {
+ addr_base = size_binop_loc (loc, MINUS_EXPR, addr_base,
+ fold_convert_loc (loc, sizetype, nb_bytes));
+ addr_base = size_binop_loc (loc, PLUS_EXPR, addr_base,
+ TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
+ }
+
+ return fold_build_pointer_plus_loc (loc, DR_BASE_ADDRESS (dr), addr_base);
+}
+
+/* If VAL memory representation contains the same value in all bytes,
+ return that value, otherwise return -1.
+ E.g. for 0x24242424 return 0x24, for IEEE double
+ 747708026454360457216.0 return 0x44, etc. */
+
+static int
+const_with_all_bytes_same (tree val)
+{
+ unsigned char buf[64];
+ int i, len;
+
+ if (integer_zerop (val)
+ || real_zerop (val)
+ || (TREE_CODE (val) == CONSTRUCTOR
+ && !TREE_CLOBBER_P (val)
+ && CONSTRUCTOR_NELTS (val) == 0))
+ return 0;
+
+ if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
+ return -1;
+
+ len = native_encode_expr (val, buf, sizeof (buf));
+ if (len == 0)
+ return -1;
+ for (i = 1; i < len; i++)
+ if (buf[i] != buf[0])
+ return -1;
+ return buf[0];
+}
+
+/* Generate a call to memset for PARTITION in LOOP. */
+
+static void
+generate_memset_builtin (struct loop *loop, partition_t partition)
+{
+ gimple_stmt_iterator gsi;
+ gimple stmt, fn_call;
+ tree mem, fn, nb_bytes;
+ location_t loc;
+ tree val;
+
+ stmt = DR_STMT (partition->main_dr);
+ loc = gimple_location (stmt);
+
+ /* The new statements will be placed before LOOP. */
+ gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
+
+ nb_bytes = build_size_arg_loc (loc, partition->main_dr, partition->niter,
+ partition->plus_one);
+ nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+ mem = build_addr_arg_loc (loc, partition->main_dr, nb_bytes);
+ mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+
+ /* This exactly matches the pattern recognition in classify_partition. */
+ val = gimple_assign_rhs1 (stmt);
+ /* Handle constants like 0x15151515 and similarly
+ floating point constants etc. where all bytes are the same. */
+ int bytev = const_with_all_bytes_same (val);
+ if (bytev != -1)
+ val = build_int_cst (integer_type_node, bytev);
+ else if (TREE_CODE (val) == INTEGER_CST)
+ val = fold_convert (integer_type_node, val);
+ else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
+ {
+ gimple cstmt;
+ tree tem = make_ssa_name (integer_type_node, NULL);
+ cstmt = gimple_build_assign_with_ops (NOP_EXPR, tem, val, NULL_TREE);
+ gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
+ val = tem;
+ }
+
+ fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
+ fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
+ gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "generated memset");
+ if (bytev == 0)
+ fprintf (dump_file, " zero\n");
+ else
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Generate a call to memcpy for PARTITION in LOOP. */
+
+static void
+generate_memcpy_builtin (struct loop *loop, partition_t partition)
+{
+ gimple_stmt_iterator gsi;
+ gimple stmt, fn_call;
+ tree dest, src, fn, nb_bytes;
+ location_t loc;
+ enum built_in_function kind;
+
+ stmt = DR_STMT (partition->main_dr);
+ loc = gimple_location (stmt);
+
+ /* The new statements will be placed before LOOP. */
+ gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
+
+ nb_bytes = build_size_arg_loc (loc, partition->main_dr, partition->niter,
+ partition->plus_one);
+ nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+ dest = build_addr_arg_loc (loc, partition->main_dr, nb_bytes);
+ src = build_addr_arg_loc (loc, partition->secondary_dr, nb_bytes);
+ if (ptr_derefs_may_alias_p (dest, src))
+ kind = BUILT_IN_MEMMOVE;
+ else
+ kind = BUILT_IN_MEMCPY;
+
+ dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+ src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
+ false, GSI_CONTINUE_LINKING);
+ fn = build_fold_addr_expr (builtin_decl_implicit (kind));
+ fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
+ gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (kind == BUILT_IN_MEMCPY)
+ fprintf (dump_file, "generated memcpy\n");
+ else
+ fprintf (dump_file, "generated memmove\n");
+ }
+}
+
+/* Remove and destroy the loop LOOP. */
+
+static void
+destroy_loop (struct loop *loop)
+{
+ unsigned nbbs = loop->num_nodes;
+ edge exit = single_exit (loop);
+ basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
+ basic_block *bbs;
+ unsigned i;
+
+ bbs = get_loop_body_in_dom_order (loop);
+
+ redirect_edge_pred (exit, src);
+ exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
+ exit->flags |= EDGE_FALLTHRU;
+ cancel_loop_tree (loop);
+ rescan_loop_exit (exit, false, true);
+
+ for (i = 0; i < nbbs; i++)
+ {
+ /* We have made sure to not leave any dangling uses of SSA
+ names defined in the loop. With the exception of virtuals.
+ Make sure we replace all uses of virtual defs that will remain
+ outside of the loop with the bare symbol as delete_basic_block
+ will release them. */
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ mark_virtual_phi_result_for_renaming (phi);
+ }
+ for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ tree vdef = gimple_vdef (stmt);
+ if (vdef && TREE_CODE (vdef) == SSA_NAME)
+ mark_virtual_operand_for_renaming (vdef);
+ }
+ delete_basic_block (bbs[i]);
+ }
+ free (bbs);
+
+ set_immediate_dominator (CDI_DOMINATORS, dest,
+ recompute_dominator (CDI_DOMINATORS, dest));
+}
+
+/* Generates code for PARTITION. */
+
+static void
+generate_code_for_partition (struct loop *loop,
+ partition_t partition, bool copy_p)
+{
+ switch (partition->kind)
+ {
+ case PKIND_NORMAL:
+ /* Reductions all have to be in the last partition. */
+ gcc_assert (!partition_reduction_p (partition)
+ || !copy_p);
+ generate_loops_for_partition (loop, partition, copy_p);
+ return;
+
+ case PKIND_MEMSET:
+ generate_memset_builtin (loop, partition);
+ break;
+
+ case PKIND_MEMCPY:
+ generate_memcpy_builtin (loop, partition);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Common tail for partitions we turn into a call. If this was the last
+ partition for which we generate code, we have to destroy the loop. */
+ if (!copy_p)
+ destroy_loop (loop);
+}
+
+
+/* Returns a partition with all the statements needed for computing
+ the vertex V of the RDG, also including the loop exit conditions. */
+
+static partition_t
+build_rdg_partition_for_vertex (struct graph *rdg, int v)
+{
+ partition_t partition = partition_alloc (NULL, NULL);
+ auto_vec<int, 3> nodes;
+ unsigned i;
+ int x;
+
+ graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
+
+ FOR_EACH_VEC_ELT (nodes, i, x)
+ {
+ bitmap_set_bit (partition->stmts, x);
+ bitmap_set_bit (partition->loops,
+ loop_containing_stmt (RDG_STMT (rdg, x))->num);
+ }
+
+ return partition;
+}
+
+/* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
+ For the moment we detect only the memset zero pattern. */
+
+static void
+classify_partition (loop_p loop, struct graph *rdg, partition_t partition)
+{
+ bitmap_iterator bi;
+ unsigned i;
+ tree nb_iter;
+ data_reference_p single_load, single_store;
+ bool volatiles_p = false;
+ bool plus_one = false;
+
+ partition->kind = PKIND_NORMAL;
+ partition->main_dr = NULL;
+ partition->secondary_dr = NULL;
+ partition->niter = NULL_TREE;
+ partition->plus_one = false;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
+ {
+ gimple stmt = RDG_STMT (rdg, i);
+
+ if (gimple_has_volatile_ops (stmt))
+ volatiles_p = true;
+
+ /* If the stmt has uses outside of the loop mark it as reduction. */
+ if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
+ {
+ partition->reduction_p = true;
+ return;
+ }
+ }
+
+ /* Perform general partition disqualification for builtins. */
+ if (volatiles_p
+ || !flag_tree_loop_distribute_patterns)
+ return;
+
+ /* Detect memset and memcpy. */
+ single_load = NULL;
+ single_store = NULL;
+ EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
+ {
+ gimple stmt = RDG_STMT (rdg, i);
+ data_reference_p dr;
+ unsigned j;
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ continue;
+
+ /* Any scalar stmts are ok. */
+ if (!gimple_vuse (stmt))
+ continue;
+
+ /* Otherwise just regular loads/stores. */
+ if (!gimple_assign_single_p (stmt))
+ return;
+
+ /* But exactly one store and/or load. */
+ for (j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
+ {
+ if (DR_IS_READ (dr))
+ {
+ if (single_load != NULL)
+ return;
+ single_load = dr;
+ }
+ else
+ {
+ if (single_store != NULL)
+ return;
+ single_store = dr;
+ }
+ }
+ }
+
+ if (!single_store)
+ return;
+
+ nb_iter = number_of_latch_executions (loop);
+ if (!nb_iter || nb_iter == chrec_dont_know)
+ return;
+ if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
+ gimple_bb (DR_STMT (single_store))))
+ plus_one = true;
+
+ if (single_store && !single_load)
+ {
+ gimple stmt = DR_STMT (single_store);
+ tree rhs = gimple_assign_rhs1 (stmt);
+ if (const_with_all_bytes_same (rhs) == -1
+ && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
+ || (TYPE_MODE (TREE_TYPE (rhs))
+ != TYPE_MODE (unsigned_char_type_node))))
+ return;
+ if (TREE_CODE (rhs) == SSA_NAME
+ && !SSA_NAME_IS_DEFAULT_DEF (rhs)
+ && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
+ return;
+ if (!adjacent_dr_p (single_store)
+ || !dominated_by_p (CDI_DOMINATORS,
+ loop->latch, gimple_bb (stmt)))
+ return;
+ partition->kind = PKIND_MEMSET;
+ partition->main_dr = single_store;
+ partition->niter = nb_iter;
+ partition->plus_one = plus_one;
+ }
+ else if (single_store && single_load)
+ {
+ gimple store = DR_STMT (single_store);
+ gimple load = DR_STMT (single_load);
+ /* Direct aggregate copy or via an SSA name temporary. */
+ if (load != store
+ && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
+ return;
+ if (!adjacent_dr_p (single_store)
+ || !adjacent_dr_p (single_load)
+ || !operand_equal_p (DR_STEP (single_store),
+ DR_STEP (single_load), 0)
+ || !dominated_by_p (CDI_DOMINATORS,
+ loop->latch, gimple_bb (store)))
+ return;
+ /* Now check that if there is a dependence this dependence is
+ of a suitable form for memmove. */
+ vec<loop_p> loops = vNULL;
+ ddr_p ddr;
+ loops.safe_push (loop);
+ ddr = initialize_data_dependence_relation (single_load, single_store,
+ loops);
+ compute_affine_dependence (ddr, loop);
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ {
+ free_dependence_relation (ddr);
+ loops.release ();
+ return;
+ }
+ if (DDR_ARE_DEPENDENT (ddr) != chrec_known)
+ {
+ if (DDR_NUM_DIST_VECTS (ddr) == 0)
+ {
+ free_dependence_relation (ddr);
+ loops.release ();
+ return;
+ }
+ lambda_vector dist_v;
+ FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+ {
+ int dist = dist_v[index_in_loop_nest (loop->num,
+ DDR_LOOP_NEST (ddr))];
+ if (dist > 0 && !DDR_REVERSED_P (ddr))
+ {
+ free_dependence_relation (ddr);
+ loops.release ();
+ return;
+ }
+ }
+ }
+ free_dependence_relation (ddr);
+ loops.release ();
+ partition->kind = PKIND_MEMCPY;
+ partition->main_dr = single_store;
+ partition->secondary_dr = single_load;
+ partition->niter = nb_iter;
+ partition->plus_one = plus_one;
+ }
+}
+
+/* For a data reference REF, return the declaration of its base
+ address or NULL_TREE if the base is not determined. */
+
+static tree
+ref_base_address (data_reference_p dr)
+{
+ tree base_address = DR_BASE_ADDRESS (dr);
+ if (base_address
+ && TREE_CODE (base_address) == ADDR_EXPR)
+ return TREE_OPERAND (base_address, 0);
+
+ return base_address;
+}
+
+/* Returns true when PARTITION1 and PARTITION2 have similar memory
+ accesses in RDG. */
+
+static bool
+similar_memory_accesses (struct graph *rdg, partition_t partition1,
+ partition_t partition2)
+{
+ unsigned i, j, k, l;
+ bitmap_iterator bi, bj;
+ data_reference_p ref1, ref2;
+
+ /* First check whether in the intersection of the two partitions are
+ any loads or stores. Common loads are the situation that happens
+ most often. */
+ EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
+ if (RDG_MEM_WRITE_STMT (rdg, i)
+ || RDG_MEM_READS_STMT (rdg, i))
+ return true;
+
+ /* Then check all data-references against each other. */
+ EXECUTE_IF_SET_IN_BITMAP (partition1->stmts, 0, i, bi)
+ if (RDG_MEM_WRITE_STMT (rdg, i)
+ || RDG_MEM_READS_STMT (rdg, i))
+ EXECUTE_IF_SET_IN_BITMAP (partition2->stmts, 0, j, bj)
+ if (RDG_MEM_WRITE_STMT (rdg, j)
+ || RDG_MEM_READS_STMT (rdg, j))
+ {
+ FOR_EACH_VEC_ELT (RDG_DATAREFS (rdg, i), k, ref1)
+ {
+ tree base1 = ref_base_address (ref1);
+ if (base1)
+ FOR_EACH_VEC_ELT (RDG_DATAREFS (rdg, j), l, ref2)
+ if (base1 == ref_base_address (ref2))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Aggregate several components into a useful partition that is
+ registered in the PARTITIONS vector. Partitions will be
+ distributed in different loops. */
+
+static void
+rdg_build_partitions (struct graph *rdg,
+ vec<gimple> starting_stmts,
+ vec<partition_t> *partitions)
+{
+ bitmap processed = BITMAP_ALLOC (NULL);
+ int i;
+ gimple stmt;
+
+ FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
+ {
+ int v = rdg_vertex_for_stmt (rdg, stmt);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "ldist asked to generate code for vertex %d\n", v);
+
+ /* If the vertex is already contained in another partition so
+ is the partition rooted at it. */
+ if (bitmap_bit_p (processed, v))
+ continue;
+
+ partition_t partition = build_rdg_partition_for_vertex (rdg, v);
+ bitmap_ior_into (processed, partition->stmts);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "ldist useful partition:\n");
+ dump_bitmap (dump_file, partition->stmts);
+ }
+
+ partitions->safe_push (partition);
+ }
+
+ /* All vertices should have been assigned to at least one partition now,
+ other than vertices belonging to dead code. */
+
+ BITMAP_FREE (processed);
+}
+
+/* Dump to FILE the PARTITIONS. */
+
+static void
+dump_rdg_partitions (FILE *file, vec<partition_t> partitions)
+{
+ int i;
+ partition_t partition;
+
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ debug_bitmap_file (file, partition->stmts);
+}
+
+/* Debug PARTITIONS. */
+extern void debug_rdg_partitions (vec<partition_t> );
+
+DEBUG_FUNCTION void
+debug_rdg_partitions (vec<partition_t> partitions)
+{
+ dump_rdg_partitions (stderr, partitions);
+}
+
+/* Returns the number of read and write operations in the RDG. */
+
+static int
+number_of_rw_in_rdg (struct graph *rdg)
+{
+ int i, res = 0;
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ ++res;
+
+ if (RDG_MEM_READS_STMT (rdg, i))
+ ++res;
+ }
+
+ return res;
+}
+
+/* Returns the number of read and write operations in a PARTITION of
+ the RDG. */
+
+static int
+number_of_rw_in_partition (struct graph *rdg, partition_t partition)
+{
+ int res = 0;
+ unsigned i;
+ bitmap_iterator ii;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
+ {
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ ++res;
+
+ if (RDG_MEM_READS_STMT (rdg, i))
+ ++res;
+ }
+
+ return res;
+}
+
+/* Returns true when one of the PARTITIONS contains all the read or
+ write operations of RDG. */
+
+static bool
+partition_contains_all_rw (struct graph *rdg,
+ vec<partition_t> partitions)
+{
+ int i;
+ partition_t partition;
+ int nrw = number_of_rw_in_rdg (rdg);
+
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ if (nrw == number_of_rw_in_partition (rdg, partition))
+ return true;
+
+ return false;
+}
+
+/* Compute partition dependence created by the data references in DRS1
+ and DRS2 and modify and return DIR according to that. */
+
+static int
+pg_add_dependence_edges (struct graph *rdg, vec<loop_p> loops, int dir,
+ vec<data_reference_p> drs1,
+ vec<data_reference_p> drs2)
+{
+ data_reference_p dr1, dr2;
+
+ /* dependence direction - 0 is no dependence, -1 is back,
+ 1 is forth, 2 is both (we can stop then, merging will occur). */
+ for (int ii = 0; drs1.iterate (ii, &dr1); ++ii)
+ for (int jj = 0; drs2.iterate (jj, &dr2); ++jj)
+ {
+ int this_dir = 1;
+ ddr_p ddr;
+ /* Re-shuffle data-refs to be in dominator order. */
+ if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
+ > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
+ {
+ data_reference_p tem = dr1;
+ dr1 = dr2;
+ dr2 = tem;
+ this_dir = -this_dir;
+ }
+ ddr = initialize_data_dependence_relation (dr1, dr2, loops);
+ compute_affine_dependence (ddr, loops[0]);
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ this_dir = 2;
+ else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
+ {
+ if (DDR_REVERSED_P (ddr))
+ {
+ data_reference_p tem = dr1;
+ dr1 = dr2;
+ dr2 = tem;
+ this_dir = -this_dir;
+ }
+ /* Known dependences can still be unordered througout the
+ iteration space, see gcc.dg/tree-ssa/ldist-16.c. */
+ if (DDR_NUM_DIST_VECTS (ddr) != 1)
+ this_dir = 2;
+ /* If the overlap is exact preserve stmt order. */
+ else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
+ ;
+ else
+ {
+ /* Else as the distance vector is lexicographic positive
+ swap the dependence direction. */
+ this_dir = -this_dir;
+ }
+ }
+ else
+ this_dir = 0;
+ free_dependence_relation (ddr);
+ if (dir == 0)
+ dir = this_dir;
+ else if (dir != this_dir)
+ return 2;
+ }
+ return dir;
+}
+
+/* Compare postorder number of the partition graph vertices V1 and V2. */
+
+static int
+pgcmp (const void *v1_, const void *v2_)
+{
+ const vertex *v1 = (const vertex *)v1_;
+ const vertex *v2 = (const vertex *)v2_;
+ return v2->post - v1->post;
+}
+
+/* Distributes the code from LOOP in such a way that producer
+ statements are placed before consumer statements. Tries to separate
+ only the statements from STMTS into separate loops.
+ Returns the number of distributed loops. */
+
+static int
+distribute_loop (struct loop *loop, vec<gimple> stmts,
+ control_dependences *cd, int *nb_calls)
+{
+ struct graph *rdg;
+ partition_t partition;
+ bool any_builtin;
+ int i, nbp;
+ graph *pg = NULL;
+ int num_sccs = 1;
+
+ *nb_calls = 0;
+ auto_vec<loop_p, 3> loop_nest;
+ if (!find_loop_nest (loop, &loop_nest))
+ return 0;
+
+ rdg = build_rdg (loop_nest, cd);
+ if (!rdg)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Loop %d not distributed: failed to build the RDG.\n",
+ loop->num);
+
+ return 0;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_rdg (dump_file, rdg);
+
+ auto_vec<partition_t, 3> partitions;
+ rdg_build_partitions (rdg, stmts, &partitions);
+
+ any_builtin = false;
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ {
+ classify_partition (loop, rdg, partition);
+ any_builtin |= partition_builtin_p (partition);
+ }
+
+ /* If we are only distributing patterns but did not detect any,
+ simply bail out. */
+ if (!flag_tree_loop_distribution
+ && !any_builtin)
+ {
+ nbp = 0;
+ goto ldist_done;
+ }
+
+ /* If we are only distributing patterns fuse all partitions that
+ were not classified as builtins. This also avoids chopping
+ a loop into pieces, separated by builtin calls. That is, we
+ only want no or a single loop body remaining. */
+ partition_t into;
+ if (!flag_tree_loop_distribution)
+ {
+ for (i = 0; partitions.iterate (i, &into); ++i)
+ if (!partition_builtin_p (into))
+ break;
+ for (++i; partitions.iterate (i, &partition); ++i)
+ if (!partition_builtin_p (partition))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "fusing non-builtin partitions\n");
+ dump_bitmap (dump_file, into->stmts);
+ dump_bitmap (dump_file, partition->stmts);
+ }
+ partition_merge_into (into, partition);
+ partitions.unordered_remove (i);
+ partition_free (partition);
+ i--;
+ }
+ }
+
+ /* Due to limitations in the transform phase we have to fuse all
+ reduction partitions into the last partition so the existing
+ loop will contain all loop-closed PHI nodes. */
+ for (i = 0; partitions.iterate (i, &into); ++i)
+ if (partition_reduction_p (into))
+ break;
+ for (i = i + 1; partitions.iterate (i, &partition); ++i)
+ if (partition_reduction_p (partition))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "fusing partitions\n");
+ dump_bitmap (dump_file, into->stmts);
+ dump_bitmap (dump_file, partition->stmts);
+ fprintf (dump_file, "because they have reductions\n");
+ }
+ partition_merge_into (into, partition);
+ partitions.unordered_remove (i);
+ partition_free (partition);
+ i--;
+ }
+
+ /* Apply our simple cost model - fuse partitions with similar
+ memory accesses. */
+ for (i = 0; partitions.iterate (i, &into); ++i)
+ {
+ if (partition_builtin_p (into))
+ continue;
+ for (int j = i + 1;
+ partitions.iterate (j, &partition); ++j)
+ {
+ if (!partition_builtin_p (partition)
+ && similar_memory_accesses (rdg, into, partition))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "fusing partitions\n");
+ dump_bitmap (dump_file, into->stmts);
+ dump_bitmap (dump_file, partition->stmts);
+ fprintf (dump_file, "because they have similar "
+ "memory accesses\n");
+ }
+ partition_merge_into (into, partition);
+ partitions.unordered_remove (j);
+ partition_free (partition);
+ j--;
+ }
+ }
+ }
+
+ /* Build the partition dependency graph. */
+ if (partitions.length () > 1)
+ {
+ pg = new_graph (partitions.length ());
+ struct pgdata {
+ partition_t partition;
+ vec<data_reference_p> writes;
+ vec<data_reference_p> reads;
+ };
+#define PGDATA(i) ((pgdata *)(pg->vertices[i].data))
+ for (i = 0; partitions.iterate (i, &partition); ++i)
+ {
+ vertex *v = &pg->vertices[i];
+ pgdata *data = new pgdata;
+ data_reference_p dr;
+ /* FIXME - leaks. */
+ v->data = data;
+ bitmap_iterator bi;
+ unsigned j;
+ data->partition = partition;
+ data->reads = vNULL;
+ data->writes = vNULL;
+ EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, j, bi)
+ for (int k = 0; RDG_DATAREFS (rdg, j).iterate (k, &dr); ++k)
+ if (DR_IS_READ (dr))
+ data->reads.safe_push (dr);
+ else
+ data->writes.safe_push (dr);
+ }
+ partition_t partition1, partition2;
+ for (i = 0; partitions.iterate (i, &partition1); ++i)
+ for (int j = i + 1; partitions.iterate (j, &partition2); ++j)
+ {
+ /* dependence direction - 0 is no dependence, -1 is back,
+ 1 is forth, 2 is both (we can stop then, merging will occur). */
+ int dir = 0;
+ dir = pg_add_dependence_edges (rdg, loop_nest, dir,
+ PGDATA(i)->writes,
+ PGDATA(j)->reads);
+ if (dir != 2)
+ dir = pg_add_dependence_edges (rdg, loop_nest, dir,
+ PGDATA(i)->reads,
+ PGDATA(j)->writes);
+ if (dir != 2)
+ dir = pg_add_dependence_edges (rdg, loop_nest, dir,
+ PGDATA(i)->writes,
+ PGDATA(j)->writes);
+ if (dir == 1 || dir == 2)
+ add_edge (pg, i, j);
+ if (dir == -1 || dir == 2)
+ add_edge (pg, j, i);
+ }
+
+ /* Add edges to the reduction partition (if any) to force it last. */
+ unsigned j;
+ for (j = 0; partitions.iterate (j, &partition); ++j)
+ if (partition_reduction_p (partition))
+ break;
+ if (j < partitions.length ())
+ {
+ for (unsigned i = 0; partitions.iterate (i, &partition); ++i)
+ if (i != j)
+ add_edge (pg, i, j);
+ }
+
+ /* Compute partitions we cannot separate and fuse them. */
+ num_sccs = graphds_scc (pg, NULL);
+ for (i = 0; i < num_sccs; ++i)
+ {
+ partition_t first;
+ int j;
+ for (j = 0; partitions.iterate (j, &first); ++j)
+ if (pg->vertices[j].component == i)
+ break;
+ for (j = j + 1; partitions.iterate (j, &partition); ++j)
+ if (pg->vertices[j].component == i)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "fusing partitions\n");
+ dump_bitmap (dump_file, first->stmts);
+ dump_bitmap (dump_file, partition->stmts);
+ fprintf (dump_file, "because they are in the same "
+ "dependence SCC\n");
+ }
+ partition_merge_into (first, partition);
+ partitions[j] = NULL;
+ partition_free (partition);
+ PGDATA (j)->partition = NULL;
+ }
+ }
+
+ /* Now order the remaining nodes in postorder. */
+ qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
+ partitions.truncate (0);
+ for (i = 0; i < pg->n_vertices; ++i)
+ {
+ pgdata *data = PGDATA (i);
+ if (data->partition)
+ partitions.safe_push (data->partition);
+ data->reads.release ();
+ data->writes.release ();
+ delete data;
+ }
+ gcc_assert (partitions.length () == (unsigned)num_sccs);
+ free_graph (pg);
+ }
+
+ nbp = partitions.length ();
+ if (nbp == 0
+ || (nbp == 1 && !partition_builtin_p (partitions[0]))
+ || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
+ {
+ nbp = 0;
+ goto ldist_done;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_rdg_partitions (dump_file, partitions);
+
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ {
+ if (partition_builtin_p (partition))
+ (*nb_calls)++;
+ generate_code_for_partition (loop, partition, i < nbp - 1);
+ }
+
+ ldist_done:
+
+ FOR_EACH_VEC_ELT (partitions, i, partition)
+ partition_free (partition);
+
+ free_rdg (rdg);
+ return nbp - *nb_calls;
+}
+
+/* Distribute all loops in the current function. */
+
+static unsigned int
+tree_loop_distribution (void)
+{
+ struct loop *loop;
+ bool changed = false;
+ basic_block bb;
+ control_dependences *cd = NULL;
+
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ gimple_set_uid (gsi_stmt (gsi), -1);
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ gimple_set_uid (gsi_stmt (gsi), -1);
+ }
+
+ /* We can at the moment only distribute non-nested loops, thus restrict
+ walking to innermost loops. */
+ FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
+ {
+ auto_vec<gimple> work_list;
+ basic_block *bbs;
+ int num = loop->num;
+ unsigned int i;
+
+ /* If the loop doesn't have a single exit we will fail anyway,
+ so do that early. */
+ if (!single_exit (loop))
+ continue;
+
+ /* Only optimize hot loops. */
+ if (!optimize_loop_for_speed_p (loop))
+ continue;
+
+ /* Initialize the worklist with stmts we seed the partitions with. */
+ bbs = get_loop_body_in_dom_order (loop);
+ for (i = 0; i < loop->num_nodes; ++i)
+ {
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ continue;
+ /* Distribute stmts which have defs that are used outside of
+ the loop. */
+ if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
+ continue;
+ work_list.safe_push (phi);
+ }
+ for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+
+ /* If there is a stmt with side-effects bail out - we
+ cannot and should not distribute this loop. */
+ if (gimple_has_side_effects (stmt))
+ {
+ work_list.truncate (0);
+ goto out;
+ }
+
+ /* Distribute stmts which have defs that are used outside of
+ the loop. */
+ if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
+ ;
+ /* Otherwise only distribute stores for now. */
+ else if (!gimple_vdef (stmt))
+ continue;
+
+ work_list.safe_push (stmt);
+ }
+ }
+out:
+ free (bbs);
+
+ int nb_generated_loops = 0;
+ int nb_generated_calls = 0;
+ location_t loc = find_loop_location (loop);
+ if (work_list.length () > 0)
+ {
+ if (!cd)
+ {
+ calculate_dominance_info (CDI_DOMINATORS);
+ calculate_dominance_info (CDI_POST_DOMINATORS);
+ cd = new control_dependences (create_edge_list ());
+ free_dominance_info (CDI_POST_DOMINATORS);
+ }
+ nb_generated_loops = distribute_loop (loop, work_list, cd,
+ &nb_generated_calls);
+ }
+
+ if (nb_generated_loops + nb_generated_calls > 0)
+ {
+ changed = true;
+ dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
+ loc, "Loop %d distributed: split to %d loops "
+ "and %d library calls.\n",
+ num, nb_generated_loops, nb_generated_calls);
+ }
+ else if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Loop %d is the same.\n", num);
+ }
+
+ if (cd)
+ delete cd;
+
+ if (changed)
+ {
+ mark_virtual_operands_for_renaming (cfun);
+ rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
+ }
+
+#ifdef ENABLE_CHECKING
+ verify_loop_structure ();
+#endif
+
+ return 0;
+}
+
+static bool
+gate_tree_loop_distribution (void)
+{
+ return flag_tree_loop_distribution
+ || flag_tree_loop_distribute_patterns;
+}
+
+namespace {
+
+const pass_data pass_data_loop_distribution =
+{
+ GIMPLE_PASS, /* type */
+ "ldist", /* name */
+ OPTGROUP_LOOP, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
+ ( PROP_cfg | PROP_ssa ), /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_verify_ssa, /* todo_flags_finish */
+};
+
+class pass_loop_distribution : public gimple_opt_pass
+{
+public:
+ pass_loop_distribution (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_loop_distribution, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_tree_loop_distribution (); }
+ unsigned int execute () { return tree_loop_distribution (); }
+
+}; // class pass_loop_distribution
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_loop_distribution (gcc::context *ctxt)
+{
+ return new pass_loop_distribution (ctxt);
+}