aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/stor-layout.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/stor-layout.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/stor-layout.c')
-rw-r--r--gcc-4.9/gcc/stor-layout.c2853
1 files changed, 2853 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/stor-layout.c b/gcc-4.9/gcc/stor-layout.c
new file mode 100644
index 000000000..084d195cd
--- /dev/null
+++ b/gcc-4.9/gcc/stor-layout.c
@@ -0,0 +1,2853 @@
+/* C-compiler utilities for types and variables storage layout
+ Copyright (C) 1987-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "stringpool.h"
+#include "varasm.h"
+#include "print-tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "flags.h"
+#include "function.h"
+#include "expr.h"
+#include "diagnostic-core.h"
+#include "target.h"
+#include "langhooks.h"
+#include "regs.h"
+#include "params.h"
+#include "cgraph.h"
+#include "tree-inline.h"
+#include "tree-dump.h"
+#include "gimplify.h"
+
+/* Data type for the expressions representing sizes of data types.
+ It is the first integer type laid out. */
+tree sizetype_tab[(int) stk_type_kind_last];
+
+/* If nonzero, this is an upper limit on alignment of structure fields.
+ The value is measured in bits. */
+unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
+
+/* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
+ in the address spaces' address_mode, not pointer_mode. Set only by
+ internal_reference_types called only by a front end. */
+static int reference_types_internal = 0;
+
+static tree self_referential_size (tree);
+static void finalize_record_size (record_layout_info);
+static void finalize_type_size (tree);
+static void place_union_field (record_layout_info, tree);
+#if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
+static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
+ HOST_WIDE_INT, tree);
+#endif
+extern void debug_rli (record_layout_info);
+
+/* Show that REFERENCE_TYPES are internal and should use address_mode.
+ Called only by front end. */
+
+void
+internal_reference_types (void)
+{
+ reference_types_internal = 1;
+}
+
+/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
+ to serve as the actual size-expression for a type or decl. */
+
+tree
+variable_size (tree size)
+{
+ /* Obviously. */
+ if (TREE_CONSTANT (size))
+ return size;
+
+ /* If the size is self-referential, we can't make a SAVE_EXPR (see
+ save_expr for the rationale). But we can do something else. */
+ if (CONTAINS_PLACEHOLDER_P (size))
+ return self_referential_size (size);
+
+ /* If we are in the global binding level, we can't make a SAVE_EXPR
+ since it may end up being shared across functions, so it is up
+ to the front-end to deal with this case. */
+ if (lang_hooks.decls.global_bindings_p ())
+ return size;
+
+ return save_expr (size);
+}
+
+/* An array of functions used for self-referential size computation. */
+static GTY(()) vec<tree, va_gc> *size_functions;
+
+/* Similar to copy_tree_r but do not copy component references involving
+ PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
+ and substituted in substitute_in_expr. */
+
+static tree
+copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
+{
+ enum tree_code code = TREE_CODE (*tp);
+
+ /* Stop at types, decls, constants like copy_tree_r. */
+ if (TREE_CODE_CLASS (code) == tcc_type
+ || TREE_CODE_CLASS (code) == tcc_declaration
+ || TREE_CODE_CLASS (code) == tcc_constant)
+ {
+ *walk_subtrees = 0;
+ return NULL_TREE;
+ }
+
+ /* This is the pattern built in ada/make_aligning_type. */
+ else if (code == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
+ {
+ *walk_subtrees = 0;
+ return NULL_TREE;
+ }
+
+ /* Default case: the component reference. */
+ else if (code == COMPONENT_REF)
+ {
+ tree inner;
+ for (inner = TREE_OPERAND (*tp, 0);
+ REFERENCE_CLASS_P (inner);
+ inner = TREE_OPERAND (inner, 0))
+ ;
+
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
+ {
+ *walk_subtrees = 0;
+ return NULL_TREE;
+ }
+ }
+
+ /* We're not supposed to have them in self-referential size trees
+ because we wouldn't properly control when they are evaluated.
+ However, not creating superfluous SAVE_EXPRs requires accurate
+ tracking of readonly-ness all the way down to here, which we
+ cannot always guarantee in practice. So punt in this case. */
+ else if (code == SAVE_EXPR)
+ return error_mark_node;
+
+ else if (code == STATEMENT_LIST)
+ gcc_unreachable ();
+
+ return copy_tree_r (tp, walk_subtrees, data);
+}
+
+/* Given a SIZE expression that is self-referential, return an equivalent
+ expression to serve as the actual size expression for a type. */
+
+static tree
+self_referential_size (tree size)
+{
+ static unsigned HOST_WIDE_INT fnno = 0;
+ vec<tree> self_refs = vNULL;
+ tree param_type_list = NULL, param_decl_list = NULL;
+ tree t, ref, return_type, fntype, fnname, fndecl;
+ unsigned int i;
+ char buf[128];
+ vec<tree, va_gc> *args = NULL;
+
+ /* Do not factor out simple operations. */
+ t = skip_simple_constant_arithmetic (size);
+ if (TREE_CODE (t) == CALL_EXPR)
+ return size;
+
+ /* Collect the list of self-references in the expression. */
+ find_placeholder_in_expr (size, &self_refs);
+ gcc_assert (self_refs.length () > 0);
+
+ /* Obtain a private copy of the expression. */
+ t = size;
+ if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
+ return size;
+ size = t;
+
+ /* Build the parameter and argument lists in parallel; also
+ substitute the former for the latter in the expression. */
+ vec_alloc (args, self_refs.length ());
+ FOR_EACH_VEC_ELT (self_refs, i, ref)
+ {
+ tree subst, param_name, param_type, param_decl;
+
+ if (DECL_P (ref))
+ {
+ /* We shouldn't have true variables here. */
+ gcc_assert (TREE_READONLY (ref));
+ subst = ref;
+ }
+ /* This is the pattern built in ada/make_aligning_type. */
+ else if (TREE_CODE (ref) == ADDR_EXPR)
+ subst = ref;
+ /* Default case: the component reference. */
+ else
+ subst = TREE_OPERAND (ref, 1);
+
+ sprintf (buf, "p%d", i);
+ param_name = get_identifier (buf);
+ param_type = TREE_TYPE (ref);
+ param_decl
+ = build_decl (input_location, PARM_DECL, param_name, param_type);
+ if (targetm.calls.promote_prototypes (NULL_TREE)
+ && INTEGRAL_TYPE_P (param_type)
+ && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
+ DECL_ARG_TYPE (param_decl) = integer_type_node;
+ else
+ DECL_ARG_TYPE (param_decl) = param_type;
+ DECL_ARTIFICIAL (param_decl) = 1;
+ TREE_READONLY (param_decl) = 1;
+
+ size = substitute_in_expr (size, subst, param_decl);
+
+ param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
+ param_decl_list = chainon (param_decl, param_decl_list);
+ args->quick_push (ref);
+ }
+
+ self_refs.release ();
+
+ /* Append 'void' to indicate that the number of parameters is fixed. */
+ param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
+
+ /* The 3 lists have been created in reverse order. */
+ param_type_list = nreverse (param_type_list);
+ param_decl_list = nreverse (param_decl_list);
+
+ /* Build the function type. */
+ return_type = TREE_TYPE (size);
+ fntype = build_function_type (return_type, param_type_list);
+
+ /* Build the function declaration. */
+ sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
+ fnname = get_file_function_name (buf);
+ fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
+ for (t = param_decl_list; t; t = DECL_CHAIN (t))
+ DECL_CONTEXT (t) = fndecl;
+ DECL_ARGUMENTS (fndecl) = param_decl_list;
+ DECL_RESULT (fndecl)
+ = build_decl (input_location, RESULT_DECL, 0, return_type);
+ DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
+
+ /* The function has been created by the compiler and we don't
+ want to emit debug info for it. */
+ DECL_ARTIFICIAL (fndecl) = 1;
+ DECL_IGNORED_P (fndecl) = 1;
+
+ /* It is supposed to be "const" and never throw. */
+ TREE_READONLY (fndecl) = 1;
+ TREE_NOTHROW (fndecl) = 1;
+
+ /* We want it to be inlined when this is deemed profitable, as
+ well as discarded if every call has been integrated. */
+ DECL_DECLARED_INLINE_P (fndecl) = 1;
+
+ /* It is made up of a unique return statement. */
+ DECL_INITIAL (fndecl) = make_node (BLOCK);
+ BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
+ t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
+ DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
+ TREE_STATIC (fndecl) = 1;
+
+ /* Put it onto the list of size functions. */
+ vec_safe_push (size_functions, fndecl);
+
+ /* Replace the original expression with a call to the size function. */
+ return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
+}
+
+/* Take, queue and compile all the size functions. It is essential that
+ the size functions be gimplified at the very end of the compilation
+ in order to guarantee transparent handling of self-referential sizes.
+ Otherwise the GENERIC inliner would not be able to inline them back
+ at each of their call sites, thus creating artificial non-constant
+ size expressions which would trigger nasty problems later on. */
+
+void
+finalize_size_functions (void)
+{
+ unsigned int i;
+ tree fndecl;
+
+ for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
+ {
+ allocate_struct_function (fndecl, false);
+ set_cfun (NULL);
+ dump_function (TDI_original, fndecl);
+ gimplify_function_tree (fndecl);
+ dump_function (TDI_generic, fndecl);
+ cgraph_finalize_function (fndecl, false);
+ }
+
+ vec_free (size_functions);
+}
+
+/* Return the machine mode to use for a nonscalar of SIZE bits. The
+ mode must be in class MCLASS, and have exactly that many value bits;
+ it may have padding as well. If LIMIT is nonzero, modes of wider
+ than MAX_FIXED_MODE_SIZE will not be used. */
+
+enum machine_mode
+mode_for_size (unsigned int size, enum mode_class mclass, int limit)
+{
+ enum machine_mode mode;
+
+ if (limit && size > MAX_FIXED_MODE_SIZE)
+ return BLKmode;
+
+ /* Get the first mode which has this size, in the specified class. */
+ for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if (GET_MODE_PRECISION (mode) == size)
+ return mode;
+
+ return BLKmode;
+}
+
+/* Similar, except passed a tree node. */
+
+enum machine_mode
+mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
+{
+ unsigned HOST_WIDE_INT uhwi;
+ unsigned int ui;
+
+ if (!tree_fits_uhwi_p (size))
+ return BLKmode;
+ uhwi = tree_to_uhwi (size);
+ ui = uhwi;
+ if (uhwi != ui)
+ return BLKmode;
+ return mode_for_size (ui, mclass, limit);
+}
+
+/* Similar, but never return BLKmode; return the narrowest mode that
+ contains at least the requested number of value bits. */
+
+enum machine_mode
+smallest_mode_for_size (unsigned int size, enum mode_class mclass)
+{
+ enum machine_mode mode;
+
+ /* Get the first mode which has at least this size, in the
+ specified class. */
+ for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if (GET_MODE_PRECISION (mode) >= size)
+ return mode;
+
+ gcc_unreachable ();
+}
+
+/* Find an integer mode of the exact same size, or BLKmode on failure. */
+
+enum machine_mode
+int_mode_for_mode (enum machine_mode mode)
+{
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_INT:
+ case MODE_PARTIAL_INT:
+ break;
+
+ case MODE_COMPLEX_INT:
+ case MODE_COMPLEX_FLOAT:
+ case MODE_FLOAT:
+ case MODE_DECIMAL_FLOAT:
+ case MODE_VECTOR_INT:
+ case MODE_VECTOR_FLOAT:
+ case MODE_FRACT:
+ case MODE_ACCUM:
+ case MODE_UFRACT:
+ case MODE_UACCUM:
+ case MODE_VECTOR_FRACT:
+ case MODE_VECTOR_ACCUM:
+ case MODE_VECTOR_UFRACT:
+ case MODE_VECTOR_UACCUM:
+ mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
+ break;
+
+ case MODE_RANDOM:
+ if (mode == BLKmode)
+ break;
+
+ /* ... fall through ... */
+
+ case MODE_CC:
+ default:
+ gcc_unreachable ();
+ }
+
+ return mode;
+}
+
+/* Find a mode that is suitable for representing a vector with
+ NUNITS elements of mode INNERMODE. Returns BLKmode if there
+ is no suitable mode. */
+
+enum machine_mode
+mode_for_vector (enum machine_mode innermode, unsigned nunits)
+{
+ enum machine_mode mode;
+
+ /* First, look for a supported vector type. */
+ if (SCALAR_FLOAT_MODE_P (innermode))
+ mode = MIN_MODE_VECTOR_FLOAT;
+ else if (SCALAR_FRACT_MODE_P (innermode))
+ mode = MIN_MODE_VECTOR_FRACT;
+ else if (SCALAR_UFRACT_MODE_P (innermode))
+ mode = MIN_MODE_VECTOR_UFRACT;
+ else if (SCALAR_ACCUM_MODE_P (innermode))
+ mode = MIN_MODE_VECTOR_ACCUM;
+ else if (SCALAR_UACCUM_MODE_P (innermode))
+ mode = MIN_MODE_VECTOR_UACCUM;
+ else
+ mode = MIN_MODE_VECTOR_INT;
+
+ /* Do not check vector_mode_supported_p here. We'll do that
+ later in vector_type_mode. */
+ for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
+ if (GET_MODE_NUNITS (mode) == nunits
+ && GET_MODE_INNER (mode) == innermode)
+ break;
+
+ /* For integers, try mapping it to a same-sized scalar mode. */
+ if (mode == VOIDmode
+ && GET_MODE_CLASS (innermode) == MODE_INT)
+ mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
+ MODE_INT, 0);
+
+ if (mode == VOIDmode
+ || (GET_MODE_CLASS (mode) == MODE_INT
+ && !have_regs_of_mode[mode]))
+ return BLKmode;
+
+ return mode;
+}
+
+/* Return the alignment of MODE. This will be bounded by 1 and
+ BIGGEST_ALIGNMENT. */
+
+unsigned int
+get_mode_alignment (enum machine_mode mode)
+{
+ return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
+}
+
+/* Return the precision of the mode, or for a complex or vector mode the
+ precision of the mode of its elements. */
+
+unsigned int
+element_precision (enum machine_mode mode)
+{
+ if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
+ mode = GET_MODE_INNER (mode);
+
+ return GET_MODE_PRECISION (mode);
+}
+
+/* Return the natural mode of an array, given that it is SIZE bytes in
+ total and has elements of type ELEM_TYPE. */
+
+static enum machine_mode
+mode_for_array (tree elem_type, tree size)
+{
+ tree elem_size;
+ unsigned HOST_WIDE_INT int_size, int_elem_size;
+ bool limit_p;
+
+ /* One-element arrays get the component type's mode. */
+ elem_size = TYPE_SIZE (elem_type);
+ if (simple_cst_equal (size, elem_size))
+ return TYPE_MODE (elem_type);
+
+ limit_p = true;
+ if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
+ {
+ int_size = tree_to_uhwi (size);
+ int_elem_size = tree_to_uhwi (elem_size);
+ if (int_elem_size > 0
+ && int_size % int_elem_size == 0
+ && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
+ int_size / int_elem_size))
+ limit_p = false;
+ }
+ return mode_for_size_tree (size, MODE_INT, limit_p);
+}
+
+/* Subroutine of layout_decl: Force alignment required for the data type.
+ But if the decl itself wants greater alignment, don't override that. */
+
+static inline void
+do_type_align (tree type, tree decl)
+{
+ if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
+ {
+ DECL_ALIGN (decl) = TYPE_ALIGN (type);
+ if (TREE_CODE (decl) == FIELD_DECL)
+ DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
+ }
+}
+
+/* Set the size, mode and alignment of a ..._DECL node.
+ TYPE_DECL does need this for C++.
+ Note that LABEL_DECL and CONST_DECL nodes do not need this,
+ and FUNCTION_DECL nodes have them set up in a special (and simple) way.
+ Don't call layout_decl for them.
+
+ KNOWN_ALIGN is the amount of alignment we can assume this
+ decl has with no special effort. It is relevant only for FIELD_DECLs
+ and depends on the previous fields.
+ All that matters about KNOWN_ALIGN is which powers of 2 divide it.
+ If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
+ the record will be aligned to suit. */
+
+void
+layout_decl (tree decl, unsigned int known_align)
+{
+ tree type = TREE_TYPE (decl);
+ enum tree_code code = TREE_CODE (decl);
+ rtx rtl = NULL_RTX;
+ location_t loc = DECL_SOURCE_LOCATION (decl);
+
+ if (code == CONST_DECL)
+ return;
+
+ gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
+ || code == TYPE_DECL ||code == FIELD_DECL);
+
+ rtl = DECL_RTL_IF_SET (decl);
+
+ if (type == error_mark_node)
+ type = void_type_node;
+
+ /* Usually the size and mode come from the data type without change,
+ however, the front-end may set the explicit width of the field, so its
+ size may not be the same as the size of its type. This happens with
+ bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
+ also happens with other fields. For example, the C++ front-end creates
+ zero-sized fields corresponding to empty base classes, and depends on
+ layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
+ size in bytes from the size in bits. If we have already set the mode,
+ don't set it again since we can be called twice for FIELD_DECLs. */
+
+ DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
+ if (DECL_MODE (decl) == VOIDmode)
+ DECL_MODE (decl) = TYPE_MODE (type);
+
+ if (DECL_SIZE (decl) == 0)
+ {
+ DECL_SIZE (decl) = TYPE_SIZE (type);
+ DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
+ }
+ else if (DECL_SIZE_UNIT (decl) == 0)
+ DECL_SIZE_UNIT (decl)
+ = fold_convert_loc (loc, sizetype,
+ size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
+ bitsize_unit_node));
+
+ if (code != FIELD_DECL)
+ /* For non-fields, update the alignment from the type. */
+ do_type_align (type, decl);
+ else
+ /* For fields, it's a bit more complicated... */
+ {
+ bool old_user_align = DECL_USER_ALIGN (decl);
+ bool zero_bitfield = false;
+ bool packed_p = DECL_PACKED (decl);
+ unsigned int mfa;
+
+ if (DECL_BIT_FIELD (decl))
+ {
+ DECL_BIT_FIELD_TYPE (decl) = type;
+
+ /* A zero-length bit-field affects the alignment of the next
+ field. In essence such bit-fields are not influenced by
+ any packing due to #pragma pack or attribute packed. */
+ if (integer_zerop (DECL_SIZE (decl))
+ && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
+ {
+ zero_bitfield = true;
+ packed_p = false;
+#ifdef PCC_BITFIELD_TYPE_MATTERS
+ if (PCC_BITFIELD_TYPE_MATTERS)
+ do_type_align (type, decl);
+ else
+#endif
+ {
+#ifdef EMPTY_FIELD_BOUNDARY
+ if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
+ {
+ DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
+ DECL_USER_ALIGN (decl) = 0;
+ }
+#endif
+ }
+ }
+
+ /* See if we can use an ordinary integer mode for a bit-field.
+ Conditions are: a fixed size that is correct for another mode,
+ occupying a complete byte or bytes on proper boundary. */
+ if (TYPE_SIZE (type) != 0
+ && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
+ && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
+ {
+ enum machine_mode xmode
+ = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
+ unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
+
+ if (xmode != BLKmode
+ && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
+ && (known_align == 0 || known_align >= xalign))
+ {
+ DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
+ DECL_MODE (decl) = xmode;
+ DECL_BIT_FIELD (decl) = 0;
+ }
+ }
+
+ /* Turn off DECL_BIT_FIELD if we won't need it set. */
+ if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
+ && known_align >= TYPE_ALIGN (type)
+ && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
+ DECL_BIT_FIELD (decl) = 0;
+ }
+ else if (packed_p && DECL_USER_ALIGN (decl))
+ /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
+ round up; we'll reduce it again below. We want packing to
+ supersede USER_ALIGN inherited from the type, but defer to
+ alignment explicitly specified on the field decl. */;
+ else
+ do_type_align (type, decl);
+
+ /* If the field is packed and not explicitly aligned, give it the
+ minimum alignment. Note that do_type_align may set
+ DECL_USER_ALIGN, so we need to check old_user_align instead. */
+ if (packed_p
+ && !old_user_align)
+ DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
+
+ if (! packed_p && ! DECL_USER_ALIGN (decl))
+ {
+ /* Some targets (i.e. i386, VMS) limit struct field alignment
+ to a lower boundary than alignment of variables unless
+ it was overridden by attribute aligned. */
+#ifdef BIGGEST_FIELD_ALIGNMENT
+ DECL_ALIGN (decl)
+ = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
+#endif
+#ifdef ADJUST_FIELD_ALIGN
+ DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
+#endif
+ }
+
+ if (zero_bitfield)
+ mfa = initial_max_fld_align * BITS_PER_UNIT;
+ else
+ mfa = maximum_field_alignment;
+ /* Should this be controlled by DECL_USER_ALIGN, too? */
+ if (mfa != 0)
+ DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
+ }
+
+ /* Evaluate nonconstant size only once, either now or as soon as safe. */
+ if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
+ DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
+ if (DECL_SIZE_UNIT (decl) != 0
+ && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
+ DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
+
+ /* If requested, warn about definitions of large data objects. */
+ if (warn_larger_than
+ && (code == VAR_DECL || code == PARM_DECL)
+ && ! DECL_EXTERNAL (decl))
+ {
+ tree size = DECL_SIZE_UNIT (decl);
+
+ if (size != 0 && TREE_CODE (size) == INTEGER_CST
+ && compare_tree_int (size, larger_than_size) > 0)
+ {
+ int size_as_int = TREE_INT_CST_LOW (size);
+
+ if (compare_tree_int (size, size_as_int) == 0)
+ warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
+ else
+ warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
+ decl, larger_than_size);
+ }
+ }
+
+ /* If the RTL was already set, update its mode and mem attributes. */
+ if (rtl)
+ {
+ PUT_MODE (rtl, DECL_MODE (decl));
+ SET_DECL_RTL (decl, 0);
+ set_mem_attributes (rtl, decl, 1);
+ SET_DECL_RTL (decl, rtl);
+ }
+}
+
+/* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
+ a previous call to layout_decl and calls it again. */
+
+void
+relayout_decl (tree decl)
+{
+ DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
+ DECL_MODE (decl) = VOIDmode;
+ if (!DECL_USER_ALIGN (decl))
+ DECL_ALIGN (decl) = 0;
+ SET_DECL_RTL (decl, 0);
+
+ layout_decl (decl, 0);
+}
+
+/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
+ QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
+ is to be passed to all other layout functions for this record. It is the
+ responsibility of the caller to call `free' for the storage returned.
+ Note that garbage collection is not permitted until we finish laying
+ out the record. */
+
+record_layout_info
+start_record_layout (tree t)
+{
+ record_layout_info rli = XNEW (struct record_layout_info_s);
+
+ rli->t = t;
+
+ /* If the type has a minimum specified alignment (via an attribute
+ declaration, for example) use it -- otherwise, start with a
+ one-byte alignment. */
+ rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
+ rli->unpacked_align = rli->record_align;
+ rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
+
+#ifdef STRUCTURE_SIZE_BOUNDARY
+ /* Packed structures don't need to have minimum size. */
+ if (! TYPE_PACKED (t))
+ {
+ unsigned tmp;
+
+ /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
+ tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
+ if (maximum_field_alignment != 0)
+ tmp = MIN (tmp, maximum_field_alignment);
+ rli->record_align = MAX (rli->record_align, tmp);
+ }
+#endif
+
+ rli->offset = size_zero_node;
+ rli->bitpos = bitsize_zero_node;
+ rli->prev_field = 0;
+ rli->pending_statics = 0;
+ rli->packed_maybe_necessary = 0;
+ rli->remaining_in_alignment = 0;
+
+ return rli;
+}
+
+/* Return the combined bit position for the byte offset OFFSET and the
+ bit position BITPOS.
+
+ These functions operate on byte and bit positions present in FIELD_DECLs
+ and assume that these expressions result in no (intermediate) overflow.
+ This assumption is necessary to fold the expressions as much as possible,
+ so as to avoid creating artificially variable-sized types in languages
+ supporting variable-sized types like Ada. */
+
+tree
+bit_from_pos (tree offset, tree bitpos)
+{
+ if (TREE_CODE (offset) == PLUS_EXPR)
+ offset = size_binop (PLUS_EXPR,
+ fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
+ fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
+ else
+ offset = fold_convert (bitsizetype, offset);
+ return size_binop (PLUS_EXPR, bitpos,
+ size_binop (MULT_EXPR, offset, bitsize_unit_node));
+}
+
+/* Return the combined truncated byte position for the byte offset OFFSET and
+ the bit position BITPOS. */
+
+tree
+byte_from_pos (tree offset, tree bitpos)
+{
+ tree bytepos;
+ if (TREE_CODE (bitpos) == MULT_EXPR
+ && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
+ bytepos = TREE_OPERAND (bitpos, 0);
+ else
+ bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
+ return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
+}
+
+/* Split the bit position POS into a byte offset *POFFSET and a bit
+ position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
+
+void
+pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
+ tree pos)
+{
+ tree toff_align = bitsize_int (off_align);
+ if (TREE_CODE (pos) == MULT_EXPR
+ && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
+ {
+ *poffset = size_binop (MULT_EXPR,
+ fold_convert (sizetype, TREE_OPERAND (pos, 0)),
+ size_int (off_align / BITS_PER_UNIT));
+ *pbitpos = bitsize_zero_node;
+ }
+ else
+ {
+ *poffset = size_binop (MULT_EXPR,
+ fold_convert (sizetype,
+ size_binop (FLOOR_DIV_EXPR, pos,
+ toff_align)),
+ size_int (off_align / BITS_PER_UNIT));
+ *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
+ }
+}
+
+/* Given a pointer to bit and byte offsets and an offset alignment,
+ normalize the offsets so they are within the alignment. */
+
+void
+normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
+{
+ /* If the bit position is now larger than it should be, adjust it
+ downwards. */
+ if (compare_tree_int (*pbitpos, off_align) >= 0)
+ {
+ tree offset, bitpos;
+ pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
+ *poffset = size_binop (PLUS_EXPR, *poffset, offset);
+ *pbitpos = bitpos;
+ }
+}
+
+/* Print debugging information about the information in RLI. */
+
+DEBUG_FUNCTION void
+debug_rli (record_layout_info rli)
+{
+ print_node_brief (stderr, "type", rli->t, 0);
+ print_node_brief (stderr, "\noffset", rli->offset, 0);
+ print_node_brief (stderr, " bitpos", rli->bitpos, 0);
+
+ fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
+ rli->record_align, rli->unpacked_align,
+ rli->offset_align);
+
+ /* The ms_struct code is the only that uses this. */
+ if (targetm.ms_bitfield_layout_p (rli->t))
+ fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
+
+ if (rli->packed_maybe_necessary)
+ fprintf (stderr, "packed may be necessary\n");
+
+ if (!vec_safe_is_empty (rli->pending_statics))
+ {
+ fprintf (stderr, "pending statics:\n");
+ debug_vec_tree (rli->pending_statics);
+ }
+}
+
+/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
+ BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
+
+void
+normalize_rli (record_layout_info rli)
+{
+ normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
+}
+
+/* Returns the size in bytes allocated so far. */
+
+tree
+rli_size_unit_so_far (record_layout_info rli)
+{
+ return byte_from_pos (rli->offset, rli->bitpos);
+}
+
+/* Returns the size in bits allocated so far. */
+
+tree
+rli_size_so_far (record_layout_info rli)
+{
+ return bit_from_pos (rli->offset, rli->bitpos);
+}
+
+/* FIELD is about to be added to RLI->T. The alignment (in bits) of
+ the next available location within the record is given by KNOWN_ALIGN.
+ Update the variable alignment fields in RLI, and return the alignment
+ to give the FIELD. */
+
+unsigned int
+update_alignment_for_field (record_layout_info rli, tree field,
+ unsigned int known_align)
+{
+ /* The alignment required for FIELD. */
+ unsigned int desired_align;
+ /* The type of this field. */
+ tree type = TREE_TYPE (field);
+ /* True if the field was explicitly aligned by the user. */
+ bool user_align;
+ bool is_bitfield;
+
+ /* Do not attempt to align an ERROR_MARK node */
+ if (TREE_CODE (type) == ERROR_MARK)
+ return 0;
+
+ /* Lay out the field so we know what alignment it needs. */
+ layout_decl (field, known_align);
+ desired_align = DECL_ALIGN (field);
+ user_align = DECL_USER_ALIGN (field);
+
+ is_bitfield = (type != error_mark_node
+ && DECL_BIT_FIELD_TYPE (field)
+ && ! integer_zerop (TYPE_SIZE (type)));
+
+ /* Record must have at least as much alignment as any field.
+ Otherwise, the alignment of the field within the record is
+ meaningless. */
+ if (targetm.ms_bitfield_layout_p (rli->t))
+ {
+ /* Here, the alignment of the underlying type of a bitfield can
+ affect the alignment of a record; even a zero-sized field
+ can do this. The alignment should be to the alignment of
+ the type, except that for zero-size bitfields this only
+ applies if there was an immediately prior, nonzero-size
+ bitfield. (That's the way it is, experimentally.) */
+ if ((!is_bitfield && !DECL_PACKED (field))
+ || ((DECL_SIZE (field) == NULL_TREE
+ || !integer_zerop (DECL_SIZE (field)))
+ ? !DECL_PACKED (field)
+ : (rli->prev_field
+ && DECL_BIT_FIELD_TYPE (rli->prev_field)
+ && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
+ {
+ unsigned int type_align = TYPE_ALIGN (type);
+ type_align = MAX (type_align, desired_align);
+ if (maximum_field_alignment != 0)
+ type_align = MIN (type_align, maximum_field_alignment);
+ rli->record_align = MAX (rli->record_align, type_align);
+ rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
+ }
+ }
+#ifdef PCC_BITFIELD_TYPE_MATTERS
+ else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
+ {
+ /* Named bit-fields cause the entire structure to have the
+ alignment implied by their type. Some targets also apply the same
+ rules to unnamed bitfields. */
+ if (DECL_NAME (field) != 0
+ || targetm.align_anon_bitfield ())
+ {
+ unsigned int type_align = TYPE_ALIGN (type);
+
+#ifdef ADJUST_FIELD_ALIGN
+ if (! TYPE_USER_ALIGN (type))
+ type_align = ADJUST_FIELD_ALIGN (field, type_align);
+#endif
+
+ /* Targets might chose to handle unnamed and hence possibly
+ zero-width bitfield. Those are not influenced by #pragmas
+ or packed attributes. */
+ if (integer_zerop (DECL_SIZE (field)))
+ {
+ if (initial_max_fld_align)
+ type_align = MIN (type_align,
+ initial_max_fld_align * BITS_PER_UNIT);
+ }
+ else if (maximum_field_alignment != 0)
+ type_align = MIN (type_align, maximum_field_alignment);
+ else if (DECL_PACKED (field))
+ type_align = MIN (type_align, BITS_PER_UNIT);
+
+ /* The alignment of the record is increased to the maximum
+ of the current alignment, the alignment indicated on the
+ field (i.e., the alignment specified by an __aligned__
+ attribute), and the alignment indicated by the type of
+ the field. */
+ rli->record_align = MAX (rli->record_align, desired_align);
+ rli->record_align = MAX (rli->record_align, type_align);
+
+ if (warn_packed)
+ rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
+ user_align |= TYPE_USER_ALIGN (type);
+ }
+ }
+#endif
+ else
+ {
+ rli->record_align = MAX (rli->record_align, desired_align);
+ rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
+ }
+
+ TYPE_USER_ALIGN (rli->t) |= user_align;
+
+ return desired_align;
+}
+
+/* Called from place_field to handle unions. */
+
+static void
+place_union_field (record_layout_info rli, tree field)
+{
+ update_alignment_for_field (rli, field, /*known_align=*/0);
+
+ DECL_FIELD_OFFSET (field) = size_zero_node;
+ DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
+ SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
+
+ /* If this is an ERROR_MARK return *after* having set the
+ field at the start of the union. This helps when parsing
+ invalid fields. */
+ if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
+ return;
+
+ /* We assume the union's size will be a multiple of a byte so we don't
+ bother with BITPOS. */
+ if (TREE_CODE (rli->t) == UNION_TYPE)
+ rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
+ else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
+ rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
+ DECL_SIZE_UNIT (field), rli->offset);
+}
+
+#if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
+/* A bitfield of SIZE with a required access alignment of ALIGN is allocated
+ at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
+ units of alignment than the underlying TYPE. */
+static int
+excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
+ HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
+{
+ /* Note that the calculation of OFFSET might overflow; we calculate it so
+ that we still get the right result as long as ALIGN is a power of two. */
+ unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
+
+ offset = offset % align;
+ return ((offset + size + align - 1) / align
+ > tree_to_uhwi (TYPE_SIZE (type)) / align);
+}
+#endif
+
+/* RLI contains information about the layout of a RECORD_TYPE. FIELD
+ is a FIELD_DECL to be added after those fields already present in
+ T. (FIELD is not actually added to the TYPE_FIELDS list here;
+ callers that desire that behavior must manually perform that step.) */
+
+void
+place_field (record_layout_info rli, tree field)
+{
+ /* The alignment required for FIELD. */
+ unsigned int desired_align;
+ /* The alignment FIELD would have if we just dropped it into the
+ record as it presently stands. */
+ unsigned int known_align;
+ unsigned int actual_align;
+ /* The type of this field. */
+ tree type = TREE_TYPE (field);
+
+ gcc_assert (TREE_CODE (field) != ERROR_MARK);
+
+ /* If FIELD is static, then treat it like a separate variable, not
+ really like a structure field. If it is a FUNCTION_DECL, it's a
+ method. In both cases, all we do is lay out the decl, and we do
+ it *after* the record is laid out. */
+ if (TREE_CODE (field) == VAR_DECL)
+ {
+ vec_safe_push (rli->pending_statics, field);
+ return;
+ }
+
+ /* Enumerators and enum types which are local to this class need not
+ be laid out. Likewise for initialized constant fields. */
+ else if (TREE_CODE (field) != FIELD_DECL)
+ return;
+
+ /* Unions are laid out very differently than records, so split
+ that code off to another function. */
+ else if (TREE_CODE (rli->t) != RECORD_TYPE)
+ {
+ place_union_field (rli, field);
+ return;
+ }
+
+ else if (TREE_CODE (type) == ERROR_MARK)
+ {
+ /* Place this field at the current allocation position, so we
+ maintain monotonicity. */
+ DECL_FIELD_OFFSET (field) = rli->offset;
+ DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
+ SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
+ return;
+ }
+
+ /* Work out the known alignment so far. Note that A & (-A) is the
+ value of the least-significant bit in A that is one. */
+ if (! integer_zerop (rli->bitpos))
+ known_align = (tree_to_uhwi (rli->bitpos)
+ & - tree_to_uhwi (rli->bitpos));
+ else if (integer_zerop (rli->offset))
+ known_align = 0;
+ else if (tree_fits_uhwi_p (rli->offset))
+ known_align = (BITS_PER_UNIT
+ * (tree_to_uhwi (rli->offset)
+ & - tree_to_uhwi (rli->offset)));
+ else
+ known_align = rli->offset_align;
+
+ desired_align = update_alignment_for_field (rli, field, known_align);
+ if (known_align == 0)
+ known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
+
+ if (warn_packed && DECL_PACKED (field))
+ {
+ if (known_align >= TYPE_ALIGN (type))
+ {
+ if (TYPE_ALIGN (type) > desired_align)
+ {
+ if (STRICT_ALIGNMENT)
+ warning (OPT_Wattributes, "packed attribute causes "
+ "inefficient alignment for %q+D", field);
+ /* Don't warn if DECL_PACKED was set by the type. */
+ else if (!TYPE_PACKED (rli->t))
+ warning (OPT_Wattributes, "packed attribute is "
+ "unnecessary for %q+D", field);
+ }
+ }
+ else
+ rli->packed_maybe_necessary = 1;
+ }
+
+ /* Does this field automatically have alignment it needs by virtue
+ of the fields that precede it and the record's own alignment? */
+ if (known_align < desired_align)
+ {
+ /* No, we need to skip space before this field.
+ Bump the cumulative size to multiple of field alignment. */
+
+ if (!targetm.ms_bitfield_layout_p (rli->t)
+ && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
+ warning (OPT_Wpadded, "padding struct to align %q+D", field);
+
+ /* If the alignment is still within offset_align, just align
+ the bit position. */
+ if (desired_align < rli->offset_align)
+ rli->bitpos = round_up (rli->bitpos, desired_align);
+ else
+ {
+ /* First adjust OFFSET by the partial bits, then align. */
+ rli->offset
+ = size_binop (PLUS_EXPR, rli->offset,
+ fold_convert (sizetype,
+ size_binop (CEIL_DIV_EXPR, rli->bitpos,
+ bitsize_unit_node)));
+ rli->bitpos = bitsize_zero_node;
+
+ rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
+ }
+
+ if (! TREE_CONSTANT (rli->offset))
+ rli->offset_align = desired_align;
+ if (targetm.ms_bitfield_layout_p (rli->t))
+ rli->prev_field = NULL;
+ }
+
+ /* Handle compatibility with PCC. Note that if the record has any
+ variable-sized fields, we need not worry about compatibility. */
+#ifdef PCC_BITFIELD_TYPE_MATTERS
+ if (PCC_BITFIELD_TYPE_MATTERS
+ && ! targetm.ms_bitfield_layout_p (rli->t)
+ && TREE_CODE (field) == FIELD_DECL
+ && type != error_mark_node
+ && DECL_BIT_FIELD (field)
+ && (! DECL_PACKED (field)
+ /* Enter for these packed fields only to issue a warning. */
+ || TYPE_ALIGN (type) <= BITS_PER_UNIT)
+ && maximum_field_alignment == 0
+ && ! integer_zerop (DECL_SIZE (field))
+ && tree_fits_uhwi_p (DECL_SIZE (field))
+ && tree_fits_uhwi_p (rli->offset)
+ && tree_fits_uhwi_p (TYPE_SIZE (type)))
+ {
+ unsigned int type_align = TYPE_ALIGN (type);
+ tree dsize = DECL_SIZE (field);
+ HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
+ HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
+ HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
+
+#ifdef ADJUST_FIELD_ALIGN
+ if (! TYPE_USER_ALIGN (type))
+ type_align = ADJUST_FIELD_ALIGN (field, type_align);
+#endif
+
+ /* A bit field may not span more units of alignment of its type
+ than its type itself. Advance to next boundary if necessary. */
+ if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
+ {
+ if (DECL_PACKED (field))
+ {
+ if (warn_packed_bitfield_compat == 1)
+ inform
+ (input_location,
+ "offset of packed bit-field %qD has changed in GCC 4.4",
+ field);
+ }
+ else
+ rli->bitpos = round_up (rli->bitpos, type_align);
+ }
+
+ if (! DECL_PACKED (field))
+ TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
+ }
+#endif
+
+#ifdef BITFIELD_NBYTES_LIMITED
+ if (BITFIELD_NBYTES_LIMITED
+ && ! targetm.ms_bitfield_layout_p (rli->t)
+ && TREE_CODE (field) == FIELD_DECL
+ && type != error_mark_node
+ && DECL_BIT_FIELD_TYPE (field)
+ && ! DECL_PACKED (field)
+ && ! integer_zerop (DECL_SIZE (field))
+ && tree_fits_uhwi_p (DECL_SIZE (field))
+ && tree_fits_uhwi_p (rli->offset)
+ && tree_fits_uhwi_p (TYPE_SIZE (type)))
+ {
+ unsigned int type_align = TYPE_ALIGN (type);
+ tree dsize = DECL_SIZE (field);
+ HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
+ HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
+ HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
+
+#ifdef ADJUST_FIELD_ALIGN
+ if (! TYPE_USER_ALIGN (type))
+ type_align = ADJUST_FIELD_ALIGN (field, type_align);
+#endif
+
+ if (maximum_field_alignment != 0)
+ type_align = MIN (type_align, maximum_field_alignment);
+ /* ??? This test is opposite the test in the containing if
+ statement, so this code is unreachable currently. */
+ else if (DECL_PACKED (field))
+ type_align = MIN (type_align, BITS_PER_UNIT);
+
+ /* A bit field may not span the unit of alignment of its type.
+ Advance to next boundary if necessary. */
+ if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
+ rli->bitpos = round_up (rli->bitpos, type_align);
+
+ TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
+ }
+#endif
+
+ /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
+ A subtlety:
+ When a bit field is inserted into a packed record, the whole
+ size of the underlying type is used by one or more same-size
+ adjacent bitfields. (That is, if its long:3, 32 bits is
+ used in the record, and any additional adjacent long bitfields are
+ packed into the same chunk of 32 bits. However, if the size
+ changes, a new field of that size is allocated.) In an unpacked
+ record, this is the same as using alignment, but not equivalent
+ when packing.
+
+ Note: for compatibility, we use the type size, not the type alignment
+ to determine alignment, since that matches the documentation */
+
+ if (targetm.ms_bitfield_layout_p (rli->t))
+ {
+ tree prev_saved = rli->prev_field;
+ tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
+
+ /* This is a bitfield if it exists. */
+ if (rli->prev_field)
+ {
+ /* If both are bitfields, nonzero, and the same size, this is
+ the middle of a run. Zero declared size fields are special
+ and handled as "end of run". (Note: it's nonzero declared
+ size, but equal type sizes!) (Since we know that both
+ the current and previous fields are bitfields by the
+ time we check it, DECL_SIZE must be present for both.) */
+ if (DECL_BIT_FIELD_TYPE (field)
+ && !integer_zerop (DECL_SIZE (field))
+ && !integer_zerop (DECL_SIZE (rli->prev_field))
+ && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
+ && tree_fits_uhwi_p (TYPE_SIZE (type))
+ && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
+ {
+ /* We're in the middle of a run of equal type size fields; make
+ sure we realign if we run out of bits. (Not decl size,
+ type size!) */
+ HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
+
+ if (rli->remaining_in_alignment < bitsize)
+ {
+ HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
+
+ /* out of bits; bump up to next 'word'. */
+ rli->bitpos
+ = size_binop (PLUS_EXPR, rli->bitpos,
+ bitsize_int (rli->remaining_in_alignment));
+ rli->prev_field = field;
+ if (typesize < bitsize)
+ rli->remaining_in_alignment = 0;
+ else
+ rli->remaining_in_alignment = typesize - bitsize;
+ }
+ else
+ rli->remaining_in_alignment -= bitsize;
+ }
+ else
+ {
+ /* End of a run: if leaving a run of bitfields of the same type
+ size, we have to "use up" the rest of the bits of the type
+ size.
+
+ Compute the new position as the sum of the size for the prior
+ type and where we first started working on that type.
+ Note: since the beginning of the field was aligned then
+ of course the end will be too. No round needed. */
+
+ if (!integer_zerop (DECL_SIZE (rli->prev_field)))
+ {
+ rli->bitpos
+ = size_binop (PLUS_EXPR, rli->bitpos,
+ bitsize_int (rli->remaining_in_alignment));
+ }
+ else
+ /* We "use up" size zero fields; the code below should behave
+ as if the prior field was not a bitfield. */
+ prev_saved = NULL;
+
+ /* Cause a new bitfield to be captured, either this time (if
+ currently a bitfield) or next time we see one. */
+ if (!DECL_BIT_FIELD_TYPE (field)
+ || integer_zerop (DECL_SIZE (field)))
+ rli->prev_field = NULL;
+ }
+
+ normalize_rli (rli);
+ }
+
+ /* If we're starting a new run of same type size bitfields
+ (or a run of non-bitfields), set up the "first of the run"
+ fields.
+
+ That is, if the current field is not a bitfield, or if there
+ was a prior bitfield the type sizes differ, or if there wasn't
+ a prior bitfield the size of the current field is nonzero.
+
+ Note: we must be sure to test ONLY the type size if there was
+ a prior bitfield and ONLY for the current field being zero if
+ there wasn't. */
+
+ if (!DECL_BIT_FIELD_TYPE (field)
+ || (prev_saved != NULL
+ ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
+ : !integer_zerop (DECL_SIZE (field)) ))
+ {
+ /* Never smaller than a byte for compatibility. */
+ unsigned int type_align = BITS_PER_UNIT;
+
+ /* (When not a bitfield), we could be seeing a flex array (with
+ no DECL_SIZE). Since we won't be using remaining_in_alignment
+ until we see a bitfield (and come by here again) we just skip
+ calculating it. */
+ if (DECL_SIZE (field) != NULL
+ && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
+ && tree_fits_uhwi_p (DECL_SIZE (field)))
+ {
+ unsigned HOST_WIDE_INT bitsize
+ = tree_to_uhwi (DECL_SIZE (field));
+ unsigned HOST_WIDE_INT typesize
+ = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
+
+ if (typesize < bitsize)
+ rli->remaining_in_alignment = 0;
+ else
+ rli->remaining_in_alignment = typesize - bitsize;
+ }
+
+ /* Now align (conventionally) for the new type. */
+ type_align = TYPE_ALIGN (TREE_TYPE (field));
+
+ if (maximum_field_alignment != 0)
+ type_align = MIN (type_align, maximum_field_alignment);
+
+ rli->bitpos = round_up (rli->bitpos, type_align);
+
+ /* If we really aligned, don't allow subsequent bitfields
+ to undo that. */
+ rli->prev_field = NULL;
+ }
+ }
+
+ /* Offset so far becomes the position of this field after normalizing. */
+ normalize_rli (rli);
+ DECL_FIELD_OFFSET (field) = rli->offset;
+ DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
+ SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
+
+ /* If this field ended up more aligned than we thought it would be (we
+ approximate this by seeing if its position changed), lay out the field
+ again; perhaps we can use an integral mode for it now. */
+ if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
+ actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
+ & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
+ else if (integer_zerop (DECL_FIELD_OFFSET (field)))
+ actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
+ else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
+ actual_align = (BITS_PER_UNIT
+ * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
+ & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
+ else
+ actual_align = DECL_OFFSET_ALIGN (field);
+ /* ACTUAL_ALIGN is still the actual alignment *within the record* .
+ store / extract bit field operations will check the alignment of the
+ record against the mode of bit fields. */
+
+ if (known_align != actual_align)
+ layout_decl (field, actual_align);
+
+ if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
+ rli->prev_field = field;
+
+ /* Now add size of this field to the size of the record. If the size is
+ not constant, treat the field as being a multiple of bytes and just
+ adjust the offset, resetting the bit position. Otherwise, apportion the
+ size amongst the bit position and offset. First handle the case of an
+ unspecified size, which can happen when we have an invalid nested struct
+ definition, such as struct j { struct j { int i; } }. The error message
+ is printed in finish_struct. */
+ if (DECL_SIZE (field) == 0)
+ /* Do nothing. */;
+ else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
+ || TREE_OVERFLOW (DECL_SIZE (field)))
+ {
+ rli->offset
+ = size_binop (PLUS_EXPR, rli->offset,
+ fold_convert (sizetype,
+ size_binop (CEIL_DIV_EXPR, rli->bitpos,
+ bitsize_unit_node)));
+ rli->offset
+ = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
+ rli->bitpos = bitsize_zero_node;
+ rli->offset_align = MIN (rli->offset_align, desired_align);
+ }
+ else if (targetm.ms_bitfield_layout_p (rli->t))
+ {
+ rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
+
+ /* If we ended a bitfield before the full length of the type then
+ pad the struct out to the full length of the last type. */
+ if ((DECL_CHAIN (field) == NULL
+ || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
+ && DECL_BIT_FIELD_TYPE (field)
+ && !integer_zerop (DECL_SIZE (field)))
+ rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
+ bitsize_int (rli->remaining_in_alignment));
+
+ normalize_rli (rli);
+ }
+ else
+ {
+ rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
+ normalize_rli (rli);
+ }
+}
+
+/* Assuming that all the fields have been laid out, this function uses
+ RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
+ indicated by RLI. */
+
+static void
+finalize_record_size (record_layout_info rli)
+{
+ tree unpadded_size, unpadded_size_unit;
+
+ /* Now we want just byte and bit offsets, so set the offset alignment
+ to be a byte and then normalize. */
+ rli->offset_align = BITS_PER_UNIT;
+ normalize_rli (rli);
+
+ /* Determine the desired alignment. */
+#ifdef ROUND_TYPE_ALIGN
+ TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
+ rli->record_align);
+#else
+ TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
+#endif
+
+ /* Compute the size so far. Be sure to allow for extra bits in the
+ size in bytes. We have guaranteed above that it will be no more
+ than a single byte. */
+ unpadded_size = rli_size_so_far (rli);
+ unpadded_size_unit = rli_size_unit_so_far (rli);
+ if (! integer_zerop (rli->bitpos))
+ unpadded_size_unit
+ = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
+
+ /* Round the size up to be a multiple of the required alignment. */
+ TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
+ TYPE_SIZE_UNIT (rli->t)
+ = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
+
+ if (TREE_CONSTANT (unpadded_size)
+ && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
+ && input_location != BUILTINS_LOCATION)
+ warning (OPT_Wpadded, "padding struct size to alignment boundary");
+
+ if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
+ && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
+ && TREE_CONSTANT (unpadded_size))
+ {
+ tree unpacked_size;
+
+#ifdef ROUND_TYPE_ALIGN
+ rli->unpacked_align
+ = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
+#else
+ rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
+#endif
+
+ unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
+ if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
+ {
+ if (TYPE_NAME (rli->t))
+ {
+ tree name;
+
+ if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
+ name = TYPE_NAME (rli->t);
+ else
+ name = DECL_NAME (TYPE_NAME (rli->t));
+
+ if (STRICT_ALIGNMENT)
+ warning (OPT_Wpacked, "packed attribute causes inefficient "
+ "alignment for %qE", name);
+ else
+ warning (OPT_Wpacked,
+ "packed attribute is unnecessary for %qE", name);
+ }
+ else
+ {
+ if (STRICT_ALIGNMENT)
+ warning (OPT_Wpacked,
+ "packed attribute causes inefficient alignment");
+ else
+ warning (OPT_Wpacked, "packed attribute is unnecessary");
+ }
+ }
+ }
+}
+
+/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
+
+void
+compute_record_mode (tree type)
+{
+ tree field;
+ enum machine_mode mode = VOIDmode;
+
+ /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
+ However, if possible, we use a mode that fits in a register
+ instead, in order to allow for better optimization down the
+ line. */
+ SET_TYPE_MODE (type, BLKmode);
+
+ if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
+ return;
+
+ /* A record which has any BLKmode members must itself be
+ BLKmode; it can't go in a register. Unless the member is
+ BLKmode only because it isn't aligned. */
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ if (TREE_CODE (field) != FIELD_DECL)
+ continue;
+
+ if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
+ || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
+ && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
+ && !(TYPE_SIZE (TREE_TYPE (field)) != 0
+ && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
+ || ! tree_fits_uhwi_p (bit_position (field))
+ || DECL_SIZE (field) == 0
+ || ! tree_fits_uhwi_p (DECL_SIZE (field)))
+ return;
+
+ /* If this field is the whole struct, remember its mode so
+ that, say, we can put a double in a class into a DF
+ register instead of forcing it to live in the stack. */
+ if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
+ mode = DECL_MODE (field);
+
+ /* With some targets, it is sub-optimal to access an aligned
+ BLKmode structure as a scalar. */
+ if (targetm.member_type_forces_blk (field, mode))
+ return;
+ }
+
+ /* If we only have one real field; use its mode if that mode's size
+ matches the type's size. This only applies to RECORD_TYPE. This
+ does not apply to unions. */
+ if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
+ && tree_fits_uhwi_p (TYPE_SIZE (type))
+ && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
+ SET_TYPE_MODE (type, mode);
+ else
+ SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
+
+ /* If structure's known alignment is less than what the scalar
+ mode would need, and it matters, then stick with BLKmode. */
+ if (TYPE_MODE (type) != BLKmode
+ && STRICT_ALIGNMENT
+ && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
+ || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
+ {
+ /* If this is the only reason this type is BLKmode, then
+ don't force containing types to be BLKmode. */
+ TYPE_NO_FORCE_BLK (type) = 1;
+ SET_TYPE_MODE (type, BLKmode);
+ }
+}
+
+/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
+ out. */
+
+static void
+finalize_type_size (tree type)
+{
+ /* Normally, use the alignment corresponding to the mode chosen.
+ However, where strict alignment is not required, avoid
+ over-aligning structures, since most compilers do not do this
+ alignment. */
+
+ if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
+ && (STRICT_ALIGNMENT
+ || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
+ && TREE_CODE (type) != QUAL_UNION_TYPE
+ && TREE_CODE (type) != ARRAY_TYPE)))
+ {
+ unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
+
+ /* Don't override a larger alignment requirement coming from a user
+ alignment of one of the fields. */
+ if (mode_align >= TYPE_ALIGN (type))
+ {
+ TYPE_ALIGN (type) = mode_align;
+ TYPE_USER_ALIGN (type) = 0;
+ }
+ }
+
+ /* Do machine-dependent extra alignment. */
+#ifdef ROUND_TYPE_ALIGN
+ TYPE_ALIGN (type)
+ = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
+#endif
+
+ /* If we failed to find a simple way to calculate the unit size
+ of the type, find it by division. */
+ if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
+ /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
+ result will fit in sizetype. We will get more efficient code using
+ sizetype, so we force a conversion. */
+ TYPE_SIZE_UNIT (type)
+ = fold_convert (sizetype,
+ size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
+ bitsize_unit_node));
+
+ if (TYPE_SIZE (type) != 0)
+ {
+ TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
+ TYPE_SIZE_UNIT (type)
+ = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
+ }
+
+ /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
+ if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
+ TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
+ if (TYPE_SIZE_UNIT (type) != 0
+ && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
+ TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
+
+ /* Also layout any other variants of the type. */
+ if (TYPE_NEXT_VARIANT (type)
+ || type != TYPE_MAIN_VARIANT (type))
+ {
+ tree variant;
+ /* Record layout info of this variant. */
+ tree size = TYPE_SIZE (type);
+ tree size_unit = TYPE_SIZE_UNIT (type);
+ unsigned int align = TYPE_ALIGN (type);
+ unsigned int user_align = TYPE_USER_ALIGN (type);
+ enum machine_mode mode = TYPE_MODE (type);
+
+ /* Copy it into all variants. */
+ for (variant = TYPE_MAIN_VARIANT (type);
+ variant != 0;
+ variant = TYPE_NEXT_VARIANT (variant))
+ {
+ TYPE_SIZE (variant) = size;
+ TYPE_SIZE_UNIT (variant) = size_unit;
+ TYPE_ALIGN (variant) = align;
+ TYPE_USER_ALIGN (variant) = user_align;
+ SET_TYPE_MODE (variant, mode);
+ }
+ }
+}
+
+/* Return a new underlying object for a bitfield started with FIELD. */
+
+static tree
+start_bitfield_representative (tree field)
+{
+ tree repr = make_node (FIELD_DECL);
+ DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
+ /* Force the representative to begin at a BITS_PER_UNIT aligned
+ boundary - C++ may use tail-padding of a base object to
+ continue packing bits so the bitfield region does not start
+ at bit zero (see g++.dg/abi/bitfield5.C for example).
+ Unallocated bits may happen for other reasons as well,
+ for example Ada which allows explicit bit-granular structure layout. */
+ DECL_FIELD_BIT_OFFSET (repr)
+ = size_binop (BIT_AND_EXPR,
+ DECL_FIELD_BIT_OFFSET (field),
+ bitsize_int (~(BITS_PER_UNIT - 1)));
+ SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
+ DECL_SIZE (repr) = DECL_SIZE (field);
+ DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
+ DECL_PACKED (repr) = DECL_PACKED (field);
+ DECL_CONTEXT (repr) = DECL_CONTEXT (field);
+ return repr;
+}
+
+/* Finish up a bitfield group that was started by creating the underlying
+ object REPR with the last field in the bitfield group FIELD. */
+
+static void
+finish_bitfield_representative (tree repr, tree field)
+{
+ unsigned HOST_WIDE_INT bitsize, maxbitsize;
+ enum machine_mode mode;
+ tree nextf, size;
+
+ size = size_diffop (DECL_FIELD_OFFSET (field),
+ DECL_FIELD_OFFSET (repr));
+ gcc_assert (tree_fits_uhwi_p (size));
+ bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
+ + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
+ - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
+ + tree_to_uhwi (DECL_SIZE (field)));
+
+ /* Round up bitsize to multiples of BITS_PER_UNIT. */
+ bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
+
+ /* Now nothing tells us how to pad out bitsize ... */
+ nextf = DECL_CHAIN (field);
+ while (nextf && TREE_CODE (nextf) != FIELD_DECL)
+ nextf = DECL_CHAIN (nextf);
+ if (nextf)
+ {
+ tree maxsize;
+ /* If there was an error, the field may be not laid out
+ correctly. Don't bother to do anything. */
+ if (TREE_TYPE (nextf) == error_mark_node)
+ return;
+ maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
+ DECL_FIELD_OFFSET (repr));
+ if (tree_fits_uhwi_p (maxsize))
+ {
+ maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
+ + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
+ - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
+ /* If the group ends within a bitfield nextf does not need to be
+ aligned to BITS_PER_UNIT. Thus round up. */
+ maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
+ }
+ else
+ maxbitsize = bitsize;
+ }
+ else
+ {
+ /* ??? If you consider that tail-padding of this struct might be
+ re-used when deriving from it we cannot really do the following
+ and thus need to set maxsize to bitsize? Also we cannot
+ generally rely on maxsize to fold to an integer constant, so
+ use bitsize as fallback for this case. */
+ tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
+ DECL_FIELD_OFFSET (repr));
+ if (tree_fits_uhwi_p (maxsize))
+ maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
+ - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
+ else
+ maxbitsize = bitsize;
+ }
+
+ /* Only if we don't artificially break up the representative in
+ the middle of a large bitfield with different possibly
+ overlapping representatives. And all representatives start
+ at byte offset. */
+ gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
+
+ /* Find the smallest nice mode to use. */
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if (GET_MODE_BITSIZE (mode) >= bitsize)
+ break;
+ if (mode != VOIDmode
+ && (GET_MODE_BITSIZE (mode) > maxbitsize
+ || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
+ mode = VOIDmode;
+
+ if (mode == VOIDmode)
+ {
+ /* We really want a BLKmode representative only as a last resort,
+ considering the member b in
+ struct { int a : 7; int b : 17; int c; } __attribute__((packed));
+ Otherwise we simply want to split the representative up
+ allowing for overlaps within the bitfield region as required for
+ struct { int a : 7; int b : 7;
+ int c : 10; int d; } __attribute__((packed));
+ [0, 15] HImode for a and b, [8, 23] HImode for c. */
+ DECL_SIZE (repr) = bitsize_int (bitsize);
+ DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
+ DECL_MODE (repr) = BLKmode;
+ TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
+ bitsize / BITS_PER_UNIT);
+ }
+ else
+ {
+ unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
+ DECL_SIZE (repr) = bitsize_int (modesize);
+ DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
+ DECL_MODE (repr) = mode;
+ TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
+ }
+
+ /* Remember whether the bitfield group is at the end of the
+ structure or not. */
+ DECL_CHAIN (repr) = nextf;
+}
+
+/* Compute and set FIELD_DECLs for the underlying objects we should
+ use for bitfield access for the structure laid out with RLI. */
+
+static void
+finish_bitfield_layout (record_layout_info rli)
+{
+ tree field, prev;
+ tree repr = NULL_TREE;
+
+ /* Unions would be special, for the ease of type-punning optimizations
+ we could use the underlying type as hint for the representative
+ if the bitfield would fit and the representative would not exceed
+ the union in size. */
+ if (TREE_CODE (rli->t) != RECORD_TYPE)
+ return;
+
+ for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
+ field; field = DECL_CHAIN (field))
+ {
+ if (TREE_CODE (field) != FIELD_DECL)
+ continue;
+
+ /* In the C++ memory model, consecutive bit fields in a structure are
+ considered one memory location and updating a memory location
+ may not store into adjacent memory locations. */
+ if (!repr
+ && DECL_BIT_FIELD_TYPE (field))
+ {
+ /* Start new representative. */
+ repr = start_bitfield_representative (field);
+ }
+ else if (repr
+ && ! DECL_BIT_FIELD_TYPE (field))
+ {
+ /* Finish off new representative. */
+ finish_bitfield_representative (repr, prev);
+ repr = NULL_TREE;
+ }
+ else if (DECL_BIT_FIELD_TYPE (field))
+ {
+ gcc_assert (repr != NULL_TREE);
+
+ /* Zero-size bitfields finish off a representative and
+ do not have a representative themselves. This is
+ required by the C++ memory model. */
+ if (integer_zerop (DECL_SIZE (field)))
+ {
+ finish_bitfield_representative (repr, prev);
+ repr = NULL_TREE;
+ }
+
+ /* We assume that either DECL_FIELD_OFFSET of the representative
+ and each bitfield member is a constant or they are equal.
+ This is because we need to be able to compute the bit-offset
+ of each field relative to the representative in get_bit_range
+ during RTL expansion.
+ If these constraints are not met, simply force a new
+ representative to be generated. That will at most
+ generate worse code but still maintain correctness with
+ respect to the C++ memory model. */
+ else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
+ && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
+ || operand_equal_p (DECL_FIELD_OFFSET (repr),
+ DECL_FIELD_OFFSET (field), 0)))
+ {
+ finish_bitfield_representative (repr, prev);
+ repr = start_bitfield_representative (field);
+ }
+ }
+ else
+ continue;
+
+ if (repr)
+ DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
+
+ prev = field;
+ }
+
+ if (repr)
+ finish_bitfield_representative (repr, prev);
+}
+
+/* Do all of the work required to layout the type indicated by RLI,
+ once the fields have been laid out. This function will call `free'
+ for RLI, unless FREE_P is false. Passing a value other than false
+ for FREE_P is bad practice; this option only exists to support the
+ G++ 3.2 ABI. */
+
+void
+finish_record_layout (record_layout_info rli, int free_p)
+{
+ tree variant;
+
+ /* Compute the final size. */
+ finalize_record_size (rli);
+
+ /* Compute the TYPE_MODE for the record. */
+ compute_record_mode (rli->t);
+
+ /* Perform any last tweaks to the TYPE_SIZE, etc. */
+ finalize_type_size (rli->t);
+
+ /* Compute bitfield representatives. */
+ finish_bitfield_layout (rli);
+
+ /* Propagate TYPE_PACKED to variants. With C++ templates,
+ handle_packed_attribute is too early to do this. */
+ for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
+ variant = TYPE_NEXT_VARIANT (variant))
+ TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
+
+ /* Lay out any static members. This is done now because their type
+ may use the record's type. */
+ while (!vec_safe_is_empty (rli->pending_statics))
+ layout_decl (rli->pending_statics->pop (), 0);
+
+ /* Clean up. */
+ if (free_p)
+ {
+ vec_free (rli->pending_statics);
+ free (rli);
+ }
+}
+
+
+/* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
+ NAME, its fields are chained in reverse on FIELDS.
+
+ If ALIGN_TYPE is non-null, it is given the same alignment as
+ ALIGN_TYPE. */
+
+void
+finish_builtin_struct (tree type, const char *name, tree fields,
+ tree align_type)
+{
+ tree tail, next;
+
+ for (tail = NULL_TREE; fields; tail = fields, fields = next)
+ {
+ DECL_FIELD_CONTEXT (fields) = type;
+ next = DECL_CHAIN (fields);
+ DECL_CHAIN (fields) = tail;
+ }
+ TYPE_FIELDS (type) = tail;
+
+ if (align_type)
+ {
+ TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
+ TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
+ }
+
+ layout_type (type);
+#if 0 /* not yet, should get fixed properly later */
+ TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
+#else
+ TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
+ TYPE_DECL, get_identifier (name), type);
+#endif
+ TYPE_STUB_DECL (type) = TYPE_NAME (type);
+ layout_decl (TYPE_NAME (type), 0);
+}
+
+/* Calculate the mode, size, and alignment for TYPE.
+ For an array type, calculate the element separation as well.
+ Record TYPE on the chain of permanent or temporary types
+ so that dbxout will find out about it.
+
+ TYPE_SIZE of a type is nonzero if the type has been laid out already.
+ layout_type does nothing on such a type.
+
+ If the type is incomplete, its TYPE_SIZE remains zero. */
+
+void
+layout_type (tree type)
+{
+ gcc_assert (type);
+
+ if (type == error_mark_node)
+ return;
+
+ /* Do nothing if type has been laid out before. */
+ if (TYPE_SIZE (type))
+ return;
+
+ switch (TREE_CODE (type))
+ {
+ case LANG_TYPE:
+ /* This kind of type is the responsibility
+ of the language-specific code. */
+ gcc_unreachable ();
+
+ case BOOLEAN_TYPE:
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ SET_TYPE_MODE (type,
+ smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
+ TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
+ TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
+ break;
+
+ case REAL_TYPE:
+ SET_TYPE_MODE (type,
+ mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
+ TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
+ TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
+ break;
+
+ case FIXED_POINT_TYPE:
+ /* TYPE_MODE (type) has been set already. */
+ TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
+ TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
+ break;
+
+ case COMPLEX_TYPE:
+ TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
+ SET_TYPE_MODE (type,
+ mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
+ (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
+ ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
+ 0));
+ TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
+ TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
+ break;
+
+ case VECTOR_TYPE:
+ {
+ int nunits = TYPE_VECTOR_SUBPARTS (type);
+ tree innertype = TREE_TYPE (type);
+
+ gcc_assert (!(nunits & (nunits - 1)));
+
+ /* Find an appropriate mode for the vector type. */
+ if (TYPE_MODE (type) == VOIDmode)
+ SET_TYPE_MODE (type,
+ mode_for_vector (TYPE_MODE (innertype), nunits));
+
+ TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
+ TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
+ TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
+ TYPE_SIZE_UNIT (innertype),
+ size_int (nunits));
+ TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
+ bitsize_int (nunits));
+
+ /* For vector types, we do not default to the mode's alignment.
+ Instead, query a target hook, defaulting to natural alignment.
+ This prevents ABI changes depending on whether or not native
+ vector modes are supported. */
+ TYPE_ALIGN (type) = targetm.vector_alignment (type);
+
+ /* However, if the underlying mode requires a bigger alignment than
+ what the target hook provides, we cannot use the mode. For now,
+ simply reject that case. */
+ gcc_assert (TYPE_ALIGN (type)
+ >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
+ break;
+ }
+
+ case VOID_TYPE:
+ /* This is an incomplete type and so doesn't have a size. */
+ TYPE_ALIGN (type) = 1;
+ TYPE_USER_ALIGN (type) = 0;
+ SET_TYPE_MODE (type, VOIDmode);
+ break;
+
+ case OFFSET_TYPE:
+ TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
+ TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
+ /* A pointer might be MODE_PARTIAL_INT,
+ but ptrdiff_t must be integral. */
+ SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
+ TYPE_PRECISION (type) = POINTER_SIZE;
+ break;
+
+ case FUNCTION_TYPE:
+ case METHOD_TYPE:
+ /* It's hard to see what the mode and size of a function ought to
+ be, but we do know the alignment is FUNCTION_BOUNDARY, so
+ make it consistent with that. */
+ SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
+ TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
+ TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
+ break;
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ {
+ enum machine_mode mode = TYPE_MODE (type);
+ if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
+ {
+ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
+ mode = targetm.addr_space.address_mode (as);
+ }
+
+ TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
+ TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
+ TYPE_UNSIGNED (type) = 1;
+ TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
+ }
+ break;
+
+ case ARRAY_TYPE:
+ {
+ tree index = TYPE_DOMAIN (type);
+ tree element = TREE_TYPE (type);
+
+ build_pointer_type (element);
+
+ /* We need to know both bounds in order to compute the size. */
+ if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
+ && TYPE_SIZE (element))
+ {
+ tree ub = TYPE_MAX_VALUE (index);
+ tree lb = TYPE_MIN_VALUE (index);
+ tree element_size = TYPE_SIZE (element);
+ tree length;
+
+ /* Make sure that an array of zero-sized element is zero-sized
+ regardless of its extent. */
+ if (integer_zerop (element_size))
+ length = size_zero_node;
+
+ /* The computation should happen in the original signedness so
+ that (possible) negative values are handled appropriately
+ when determining overflow. */
+ else
+ {
+ /* ??? When it is obvious that the range is signed
+ represent it using ssizetype. */
+ if (TREE_CODE (lb) == INTEGER_CST
+ && TREE_CODE (ub) == INTEGER_CST
+ && TYPE_UNSIGNED (TREE_TYPE (lb))
+ && tree_int_cst_lt (ub, lb))
+ {
+ unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
+ lb = double_int_to_tree
+ (ssizetype,
+ tree_to_double_int (lb).sext (prec));
+ ub = double_int_to_tree
+ (ssizetype,
+ tree_to_double_int (ub).sext (prec));
+ }
+ length
+ = fold_convert (sizetype,
+ size_binop (PLUS_EXPR,
+ build_int_cst (TREE_TYPE (lb), 1),
+ size_binop (MINUS_EXPR, ub, lb)));
+ }
+
+ /* ??? We have no way to distinguish a null-sized array from an
+ array spanning the whole sizetype range, so we arbitrarily
+ decide that [0, -1] is the only valid representation. */
+ if (integer_zerop (length)
+ && TREE_OVERFLOW (length)
+ && integer_zerop (lb))
+ length = size_zero_node;
+
+ TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
+ fold_convert (bitsizetype,
+ length));
+
+ /* If we know the size of the element, calculate the total size
+ directly, rather than do some division thing below. This
+ optimization helps Fortran assumed-size arrays (where the
+ size of the array is determined at runtime) substantially. */
+ if (TYPE_SIZE_UNIT (element))
+ TYPE_SIZE_UNIT (type)
+ = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
+ }
+
+ /* Now round the alignment and size,
+ using machine-dependent criteria if any. */
+
+#ifdef ROUND_TYPE_ALIGN
+ TYPE_ALIGN (type)
+ = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
+#else
+ TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
+#endif
+ TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
+ SET_TYPE_MODE (type, BLKmode);
+ if (TYPE_SIZE (type) != 0
+ && ! targetm.member_type_forces_blk (type, VOIDmode)
+ /* BLKmode elements force BLKmode aggregate;
+ else extract/store fields may lose. */
+ && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
+ || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
+ {
+ SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
+ TYPE_SIZE (type)));
+ if (TYPE_MODE (type) != BLKmode
+ && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
+ && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
+ {
+ TYPE_NO_FORCE_BLK (type) = 1;
+ SET_TYPE_MODE (type, BLKmode);
+ }
+ }
+ /* When the element size is constant, check that it is at least as
+ large as the element alignment. */
+ if (TYPE_SIZE_UNIT (element)
+ && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
+ /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
+ TYPE_ALIGN_UNIT. */
+ && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
+ && !integer_zerop (TYPE_SIZE_UNIT (element))
+ && compare_tree_int (TYPE_SIZE_UNIT (element),
+ TYPE_ALIGN_UNIT (element)) < 0)
+ error ("alignment of array elements is greater than element size");
+ break;
+ }
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree field;
+ record_layout_info rli;
+
+ /* Initialize the layout information. */
+ rli = start_record_layout (type);
+
+ /* If this is a QUAL_UNION_TYPE, we want to process the fields
+ in the reverse order in building the COND_EXPR that denotes
+ its size. We reverse them again later. */
+ if (TREE_CODE (type) == QUAL_UNION_TYPE)
+ TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
+
+ /* Place all the fields. */
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ place_field (rli, field);
+
+ if (TREE_CODE (type) == QUAL_UNION_TYPE)
+ TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
+
+ /* Finish laying out the record. */
+ finish_record_layout (rli, /*free_p=*/true);
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
+ records and unions, finish_record_layout already called this
+ function. */
+ if (TREE_CODE (type) != RECORD_TYPE
+ && TREE_CODE (type) != UNION_TYPE
+ && TREE_CODE (type) != QUAL_UNION_TYPE)
+ finalize_type_size (type);
+
+ /* We should never see alias sets on incomplete aggregates. And we
+ should not call layout_type on not incomplete aggregates. */
+ if (AGGREGATE_TYPE_P (type))
+ gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
+}
+
+/* Vector types need to re-check the target flags each time we report
+ the machine mode. We need to do this because attribute target can
+ change the result of vector_mode_supported_p and have_regs_of_mode
+ on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
+ change on a per-function basis. */
+/* ??? Possibly a better solution is to run through all the types
+ referenced by a function and re-compute the TYPE_MODE once, rather
+ than make the TYPE_MODE macro call a function. */
+
+enum machine_mode
+vector_type_mode (const_tree t)
+{
+ enum machine_mode mode;
+
+ gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
+
+ mode = t->type_common.mode;
+ if (VECTOR_MODE_P (mode)
+ && (!targetm.vector_mode_supported_p (mode)
+ || !have_regs_of_mode[mode]))
+ {
+ enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
+
+ /* For integers, try mapping it to a same-sized scalar mode. */
+ if (GET_MODE_CLASS (innermode) == MODE_INT)
+ {
+ mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
+ * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
+
+ if (mode != VOIDmode && have_regs_of_mode[mode])
+ return mode;
+ }
+
+ return BLKmode;
+ }
+
+ return mode;
+}
+
+/* Create and return a type for signed integers of PRECISION bits. */
+
+tree
+make_signed_type (int precision)
+{
+ tree type = make_node (INTEGER_TYPE);
+
+ TYPE_PRECISION (type) = precision;
+
+ fixup_signed_type (type);
+ return type;
+}
+
+/* Create and return a type for unsigned integers of PRECISION bits. */
+
+tree
+make_unsigned_type (int precision)
+{
+ tree type = make_node (INTEGER_TYPE);
+
+ TYPE_PRECISION (type) = precision;
+
+ fixup_unsigned_type (type);
+ return type;
+}
+
+/* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
+ and SATP. */
+
+tree
+make_fract_type (int precision, int unsignedp, int satp)
+{
+ tree type = make_node (FIXED_POINT_TYPE);
+
+ TYPE_PRECISION (type) = precision;
+
+ if (satp)
+ TYPE_SATURATING (type) = 1;
+
+ /* Lay out the type: set its alignment, size, etc. */
+ if (unsignedp)
+ {
+ TYPE_UNSIGNED (type) = 1;
+ SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
+ }
+ else
+ SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
+ layout_type (type);
+
+ return type;
+}
+
+/* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
+ and SATP. */
+
+tree
+make_accum_type (int precision, int unsignedp, int satp)
+{
+ tree type = make_node (FIXED_POINT_TYPE);
+
+ TYPE_PRECISION (type) = precision;
+
+ if (satp)
+ TYPE_SATURATING (type) = 1;
+
+ /* Lay out the type: set its alignment, size, etc. */
+ if (unsignedp)
+ {
+ TYPE_UNSIGNED (type) = 1;
+ SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
+ }
+ else
+ SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
+ layout_type (type);
+
+ return type;
+}
+
+/* Initialize sizetypes so layout_type can use them. */
+
+void
+initialize_sizetypes (void)
+{
+ int precision, bprecision;
+
+ /* Get sizetypes precision from the SIZE_TYPE target macro. */
+ if (strcmp (SIZETYPE, "unsigned int") == 0)
+ precision = INT_TYPE_SIZE;
+ else if (strcmp (SIZETYPE, "long unsigned int") == 0)
+ precision = LONG_TYPE_SIZE;
+ else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
+ precision = LONG_LONG_TYPE_SIZE;
+ else if (strcmp (SIZETYPE, "short unsigned int") == 0)
+ precision = SHORT_TYPE_SIZE;
+ else
+ gcc_unreachable ();
+
+ bprecision
+ = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
+ bprecision
+ = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
+ if (bprecision > HOST_BITS_PER_DOUBLE_INT)
+ bprecision = HOST_BITS_PER_DOUBLE_INT;
+
+ /* Create stubs for sizetype and bitsizetype so we can create constants. */
+ sizetype = make_node (INTEGER_TYPE);
+ TYPE_NAME (sizetype) = get_identifier ("sizetype");
+ TYPE_PRECISION (sizetype) = precision;
+ TYPE_UNSIGNED (sizetype) = 1;
+ bitsizetype = make_node (INTEGER_TYPE);
+ TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
+ TYPE_PRECISION (bitsizetype) = bprecision;
+ TYPE_UNSIGNED (bitsizetype) = 1;
+
+ /* Now layout both types manually. */
+ SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
+ TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
+ TYPE_SIZE (sizetype) = bitsize_int (precision);
+ TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
+ set_min_and_max_values_for_integral_type (sizetype, precision,
+ /*is_unsigned=*/true);
+
+ SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
+ TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
+ TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
+ TYPE_SIZE_UNIT (bitsizetype)
+ = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
+ set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
+ /*is_unsigned=*/true);
+
+ /* Create the signed variants of *sizetype. */
+ ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
+ TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
+ sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
+ TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
+}
+
+/* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
+ or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
+ for TYPE, based on the PRECISION and whether or not the TYPE
+ IS_UNSIGNED. PRECISION need not correspond to a width supported
+ natively by the hardware; for example, on a machine with 8-bit,
+ 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
+ 61. */
+
+void
+set_min_and_max_values_for_integral_type (tree type,
+ int precision,
+ bool is_unsigned)
+{
+ tree min_value;
+ tree max_value;
+
+ /* For bitfields with zero width we end up creating integer types
+ with zero precision. Don't assign any minimum/maximum values
+ to those types, they don't have any valid value. */
+ if (precision < 1)
+ return;
+
+ if (is_unsigned)
+ {
+ min_value = build_int_cst (type, 0);
+ max_value
+ = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
+ ? -1
+ : (HOST_WIDE_INT_1U << precision) - 1,
+ precision - HOST_BITS_PER_WIDE_INT > 0
+ ? ((unsigned HOST_WIDE_INT) ~0
+ >> (HOST_BITS_PER_WIDE_INT
+ - (precision - HOST_BITS_PER_WIDE_INT)))
+ : 0);
+ }
+ else
+ {
+ min_value
+ = build_int_cst_wide (type,
+ (precision - HOST_BITS_PER_WIDE_INT > 0
+ ? 0
+ : HOST_WIDE_INT_M1U << (precision - 1)),
+ (((HOST_WIDE_INT) (-1)
+ << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
+ ? precision - HOST_BITS_PER_WIDE_INT - 1
+ : 0))));
+ max_value
+ = build_int_cst_wide (type,
+ (precision - HOST_BITS_PER_WIDE_INT > 0
+ ? -1
+ : (HOST_WIDE_INT)
+ (((unsigned HOST_WIDE_INT) 1
+ << (precision - 1)) - 1)),
+ (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
+ ? (HOST_WIDE_INT)
+ ((((unsigned HOST_WIDE_INT) 1
+ << (precision - HOST_BITS_PER_WIDE_INT
+ - 1))) - 1)
+ : 0));
+ }
+
+ TYPE_MIN_VALUE (type) = min_value;
+ TYPE_MAX_VALUE (type) = max_value;
+}
+
+/* Set the extreme values of TYPE based on its precision in bits,
+ then lay it out. Used when make_signed_type won't do
+ because the tree code is not INTEGER_TYPE.
+ E.g. for Pascal, when the -fsigned-char option is given. */
+
+void
+fixup_signed_type (tree type)
+{
+ int precision = TYPE_PRECISION (type);
+
+ /* We can not represent properly constants greater then
+ HOST_BITS_PER_DOUBLE_INT, still we need the types
+ as they are used by i386 vector extensions and friends. */
+ if (precision > HOST_BITS_PER_DOUBLE_INT)
+ precision = HOST_BITS_PER_DOUBLE_INT;
+
+ set_min_and_max_values_for_integral_type (type, precision,
+ /*is_unsigned=*/false);
+
+ /* Lay out the type: set its alignment, size, etc. */
+ layout_type (type);
+}
+
+/* Set the extreme values of TYPE based on its precision in bits,
+ then lay it out. This is used both in `make_unsigned_type'
+ and for enumeral types. */
+
+void
+fixup_unsigned_type (tree type)
+{
+ int precision = TYPE_PRECISION (type);
+
+ /* We can not represent properly constants greater then
+ HOST_BITS_PER_DOUBLE_INT, still we need the types
+ as they are used by i386 vector extensions and friends. */
+ if (precision > HOST_BITS_PER_DOUBLE_INT)
+ precision = HOST_BITS_PER_DOUBLE_INT;
+
+ TYPE_UNSIGNED (type) = 1;
+
+ set_min_and_max_values_for_integral_type (type, precision,
+ /*is_unsigned=*/true);
+
+ /* Lay out the type: set its alignment, size, etc. */
+ layout_type (type);
+}
+
+/* Construct an iterator for a bitfield that spans BITSIZE bits,
+ starting at BITPOS.
+
+ BITREGION_START is the bit position of the first bit in this
+ sequence of bit fields. BITREGION_END is the last bit in this
+ sequence. If these two fields are non-zero, we should restrict the
+ memory access to that range. Otherwise, we are allowed to touch
+ any adjacent non bit-fields.
+
+ ALIGN is the alignment of the underlying object in bits.
+ VOLATILEP says whether the bitfield is volatile. */
+
+bit_field_mode_iterator
+::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
+ HOST_WIDE_INT bitregion_start,
+ HOST_WIDE_INT bitregion_end,
+ unsigned int align, bool volatilep)
+: m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
+ m_bitpos (bitpos), m_bitregion_start (bitregion_start),
+ m_bitregion_end (bitregion_end), m_align (align),
+ m_volatilep (volatilep), m_count (0)
+{
+ if (!m_bitregion_end)
+ {
+ /* We can assume that any aligned chunk of ALIGN bits that overlaps
+ the bitfield is mapped and won't trap, provided that ALIGN isn't
+ too large. The cap is the biggest required alignment for data,
+ or at least the word size. And force one such chunk at least. */
+ unsigned HOST_WIDE_INT units
+ = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
+ if (bitsize <= 0)
+ bitsize = 1;
+ m_bitregion_end = bitpos + bitsize + units - 1;
+ m_bitregion_end -= m_bitregion_end % units + 1;
+ }
+}
+
+/* Calls to this function return successively larger modes that can be used
+ to represent the bitfield. Return true if another bitfield mode is
+ available, storing it in *OUT_MODE if so. */
+
+bool
+bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
+{
+ for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
+ {
+ unsigned int unit = GET_MODE_BITSIZE (m_mode);
+
+ /* Skip modes that don't have full precision. */
+ if (unit != GET_MODE_PRECISION (m_mode))
+ continue;
+
+ /* Stop if the mode is too wide to handle efficiently. */
+ if (unit > MAX_FIXED_MODE_SIZE)
+ break;
+
+ /* Don't deliver more than one multiword mode; the smallest one
+ should be used. */
+ if (m_count > 0 && unit > BITS_PER_WORD)
+ break;
+
+ /* Skip modes that are too small. */
+ unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
+ unsigned HOST_WIDE_INT subend = substart + m_bitsize;
+ if (subend > unit)
+ continue;
+
+ /* Stop if the mode goes outside the bitregion. */
+ HOST_WIDE_INT start = m_bitpos - substart;
+ if (m_bitregion_start && start < m_bitregion_start)
+ break;
+ HOST_WIDE_INT end = start + unit;
+ if (end > m_bitregion_end + 1)
+ break;
+
+ /* Stop if the mode requires too much alignment. */
+ if (GET_MODE_ALIGNMENT (m_mode) > m_align
+ && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
+ break;
+
+ *out_mode = m_mode;
+ m_mode = GET_MODE_WIDER_MODE (m_mode);
+ m_count++;
+ return true;
+ }
+ return false;
+}
+
+/* Return true if smaller modes are generally preferred for this kind
+ of bitfield. */
+
+bool
+bit_field_mode_iterator::prefer_smaller_modes ()
+{
+ return (m_volatilep
+ ? targetm.narrow_volatile_bitfield ()
+ : !SLOW_BYTE_ACCESS);
+}
+
+/* Find the best machine mode to use when referencing a bit field of length
+ BITSIZE bits starting at BITPOS.
+
+ BITREGION_START is the bit position of the first bit in this
+ sequence of bit fields. BITREGION_END is the last bit in this
+ sequence. If these two fields are non-zero, we should restrict the
+ memory access to that range. Otherwise, we are allowed to touch
+ any adjacent non bit-fields.
+
+ The underlying object is known to be aligned to a boundary of ALIGN bits.
+ If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
+ larger than LARGEST_MODE (usually SImode).
+
+ If no mode meets all these conditions, we return VOIDmode.
+
+ If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
+ smallest mode meeting these conditions.
+
+ If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
+ largest mode (but a mode no wider than UNITS_PER_WORD) that meets
+ all the conditions.
+
+ If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
+ decide which of the above modes should be used. */
+
+enum machine_mode
+get_best_mode (int bitsize, int bitpos,
+ unsigned HOST_WIDE_INT bitregion_start,
+ unsigned HOST_WIDE_INT bitregion_end,
+ unsigned int align,
+ enum machine_mode largest_mode, bool volatilep)
+{
+ bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
+ bitregion_end, align, volatilep);
+ enum machine_mode widest_mode = VOIDmode;
+ enum machine_mode mode;
+ while (iter.next_mode (&mode)
+ /* ??? For historical reasons, reject modes that would normally
+ receive greater alignment, even if unaligned accesses are
+ acceptable. This has both advantages and disadvantages.
+ Removing this check means that something like:
+
+ struct s { unsigned int x; unsigned int y; };
+ int f (struct s *s) { return s->x == 0 && s->y == 0; }
+
+ can be implemented using a single load and compare on
+ 64-bit machines that have no alignment restrictions.
+ For example, on powerpc64-linux-gnu, we would generate:
+
+ ld 3,0(3)
+ cntlzd 3,3
+ srdi 3,3,6
+ blr
+
+ rather than:
+
+ lwz 9,0(3)
+ cmpwi 7,9,0
+ bne 7,.L3
+ lwz 3,4(3)
+ cntlzw 3,3
+ srwi 3,3,5
+ extsw 3,3
+ blr
+ .p2align 4,,15
+ .L3:
+ li 3,0
+ blr
+
+ However, accessing more than one field can make life harder
+ for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
+ has a series of unsigned short copies followed by a series of
+ unsigned short comparisons. With this check, both the copies
+ and comparisons remain 16-bit accesses and FRE is able
+ to eliminate the latter. Without the check, the comparisons
+ can be done using 2 64-bit operations, which FRE isn't able
+ to handle in the same way.
+
+ Either way, it would probably be worth disabling this check
+ during expand. One particular example where removing the
+ check would help is the get_best_mode call in store_bit_field.
+ If we are given a memory bitregion of 128 bits that is aligned
+ to a 64-bit boundary, and the bitfield we want to modify is
+ in the second half of the bitregion, this check causes
+ store_bitfield to turn the memory into a 64-bit reference
+ to the _first_ half of the region. We later use
+ adjust_bitfield_address to get a reference to the correct half,
+ but doing so looks to adjust_bitfield_address as though we are
+ moving past the end of the original object, so it drops the
+ associated MEM_EXPR and MEM_OFFSET. Removing the check
+ causes store_bit_field to keep a 128-bit memory reference,
+ so that the final bitfield reference still has a MEM_EXPR
+ and MEM_OFFSET. */
+ && GET_MODE_ALIGNMENT (mode) <= align
+ && (largest_mode == VOIDmode
+ || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
+ {
+ widest_mode = mode;
+ if (iter.prefer_smaller_modes ())
+ break;
+ }
+ return widest_mode;
+}
+
+/* Gets minimal and maximal values for MODE (signed or unsigned depending on
+ SIGN). The returned constants are made to be usable in TARGET_MODE. */
+
+void
+get_mode_bounds (enum machine_mode mode, int sign,
+ enum machine_mode target_mode,
+ rtx *mmin, rtx *mmax)
+{
+ unsigned size = GET_MODE_PRECISION (mode);
+ unsigned HOST_WIDE_INT min_val, max_val;
+
+ gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
+
+ /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
+ if (mode == BImode)
+ {
+ if (STORE_FLAG_VALUE < 0)
+ {
+ min_val = STORE_FLAG_VALUE;
+ max_val = 0;
+ }
+ else
+ {
+ min_val = 0;
+ max_val = STORE_FLAG_VALUE;
+ }
+ }
+ else if (sign)
+ {
+ min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
+ max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
+ }
+ else
+ {
+ min_val = 0;
+ max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
+ }
+
+ *mmin = gen_int_mode (min_val, target_mode);
+ *mmax = gen_int_mode (max_val, target_mode);
+}
+
+#include "gt-stor-layout.h"