aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/recog.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/recog.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/recog.c')
-rw-r--r--gcc-4.9/gcc/recog.c4173
1 files changed, 4173 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/recog.c b/gcc-4.9/gcc/recog.c
new file mode 100644
index 000000000..f9040dcde
--- /dev/null
+++ b/gcc-4.9/gcc/recog.c
@@ -0,0 +1,4173 @@
+/* Subroutines used by or related to instruction recognition.
+ Copyright (C) 1987-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl-error.h"
+#include "tm_p.h"
+#include "insn-config.h"
+#include "insn-attr.h"
+#include "hard-reg-set.h"
+#include "recog.h"
+#include "regs.h"
+#include "addresses.h"
+#include "expr.h"
+#include "function.h"
+#include "flags.h"
+#include "basic-block.h"
+#include "reload.h"
+#include "target.h"
+#include "tree-pass.h"
+#include "df.h"
+#include "insn-codes.h"
+
+#ifndef STACK_PUSH_CODE
+#ifdef STACK_GROWS_DOWNWARD
+#define STACK_PUSH_CODE PRE_DEC
+#else
+#define STACK_PUSH_CODE PRE_INC
+#endif
+#endif
+
+#ifndef STACK_POP_CODE
+#ifdef STACK_GROWS_DOWNWARD
+#define STACK_POP_CODE POST_INC
+#else
+#define STACK_POP_CODE POST_DEC
+#endif
+#endif
+
+static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
+static void validate_replace_src_1 (rtx *, void *);
+static rtx split_insn (rtx);
+
+/* Nonzero means allow operands to be volatile.
+ This should be 0 if you are generating rtl, such as if you are calling
+ the functions in optabs.c and expmed.c (most of the time).
+ This should be 1 if all valid insns need to be recognized,
+ such as in reginfo.c and final.c and reload.c.
+
+ init_recog and init_recog_no_volatile are responsible for setting this. */
+
+int volatile_ok;
+
+struct recog_data_d recog_data;
+
+/* Contains a vector of operand_alternative structures for every operand.
+ Set up by preprocess_constraints. */
+struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
+
+/* On return from `constrain_operands', indicate which alternative
+ was satisfied. */
+
+int which_alternative;
+
+/* Nonzero after end of reload pass.
+ Set to 1 or 0 by toplev.c.
+ Controls the significance of (SUBREG (MEM)). */
+
+int reload_completed;
+
+/* Nonzero after thread_prologue_and_epilogue_insns has run. */
+int epilogue_completed;
+
+/* Initialize data used by the function `recog'.
+ This must be called once in the compilation of a function
+ before any insn recognition may be done in the function. */
+
+void
+init_recog_no_volatile (void)
+{
+ volatile_ok = 0;
+}
+
+void
+init_recog (void)
+{
+ volatile_ok = 1;
+}
+
+
+/* Return true if labels in asm operands BODY are LABEL_REFs. */
+
+static bool
+asm_labels_ok (rtx body)
+{
+ rtx asmop;
+ int i;
+
+ asmop = extract_asm_operands (body);
+ if (asmop == NULL_RTX)
+ return true;
+
+ for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
+ if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
+ return false;
+
+ return true;
+}
+
+/* Check that X is an insn-body for an `asm' with operands
+ and that the operands mentioned in it are legitimate. */
+
+int
+check_asm_operands (rtx x)
+{
+ int noperands;
+ rtx *operands;
+ const char **constraints;
+ int i;
+
+ if (!asm_labels_ok (x))
+ return 0;
+
+ /* Post-reload, be more strict with things. */
+ if (reload_completed)
+ {
+ /* ??? Doh! We've not got the wrapping insn. Cook one up. */
+ extract_insn (make_insn_raw (x));
+ constrain_operands (1);
+ return which_alternative >= 0;
+ }
+
+ noperands = asm_noperands (x);
+ if (noperands < 0)
+ return 0;
+ if (noperands == 0)
+ return 1;
+
+ operands = XALLOCAVEC (rtx, noperands);
+ constraints = XALLOCAVEC (const char *, noperands);
+
+ decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
+
+ for (i = 0; i < noperands; i++)
+ {
+ const char *c = constraints[i];
+ if (c[0] == '%')
+ c++;
+ if (! asm_operand_ok (operands[i], c, constraints))
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Static data for the next two routines. */
+
+typedef struct change_t
+{
+ rtx object;
+ int old_code;
+ rtx *loc;
+ rtx old;
+ bool unshare;
+} change_t;
+
+static change_t *changes;
+static int changes_allocated;
+
+static int num_changes = 0;
+
+/* Validate a proposed change to OBJECT. LOC is the location in the rtl
+ at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
+ the change is simply made.
+
+ Two types of objects are supported: If OBJECT is a MEM, memory_address_p
+ will be called with the address and mode as parameters. If OBJECT is
+ an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
+ the change in place.
+
+ IN_GROUP is nonzero if this is part of a group of changes that must be
+ performed as a group. In that case, the changes will be stored. The
+ function `apply_change_group' will validate and apply the changes.
+
+ If IN_GROUP is zero, this is a single change. Try to recognize the insn
+ or validate the memory reference with the change applied. If the result
+ is not valid for the machine, suppress the change and return zero.
+ Otherwise, perform the change and return 1. */
+
+static bool
+validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
+{
+ rtx old = *loc;
+
+ if (old == new_rtx || rtx_equal_p (old, new_rtx))
+ return 1;
+
+ gcc_assert (in_group != 0 || num_changes == 0);
+
+ *loc = new_rtx;
+
+ /* Save the information describing this change. */
+ if (num_changes >= changes_allocated)
+ {
+ if (changes_allocated == 0)
+ /* This value allows for repeated substitutions inside complex
+ indexed addresses, or changes in up to 5 insns. */
+ changes_allocated = MAX_RECOG_OPERANDS * 5;
+ else
+ changes_allocated *= 2;
+
+ changes = XRESIZEVEC (change_t, changes, changes_allocated);
+ }
+
+ changes[num_changes].object = object;
+ changes[num_changes].loc = loc;
+ changes[num_changes].old = old;
+ changes[num_changes].unshare = unshare;
+
+ if (object && !MEM_P (object))
+ {
+ /* Set INSN_CODE to force rerecognition of insn. Save old code in
+ case invalid. */
+ changes[num_changes].old_code = INSN_CODE (object);
+ INSN_CODE (object) = -1;
+ }
+
+ num_changes++;
+
+ /* If we are making a group of changes, return 1. Otherwise, validate the
+ change group we made. */
+
+ if (in_group)
+ return 1;
+ else
+ return apply_change_group ();
+}
+
+/* Wrapper for validate_change_1 without the UNSHARE argument defaulting
+ UNSHARE to false. */
+
+bool
+validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
+{
+ return validate_change_1 (object, loc, new_rtx, in_group, false);
+}
+
+/* Wrapper for validate_change_1 without the UNSHARE argument defaulting
+ UNSHARE to true. */
+
+bool
+validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
+{
+ return validate_change_1 (object, loc, new_rtx, in_group, true);
+}
+
+
+/* Keep X canonicalized if some changes have made it non-canonical; only
+ modifies the operands of X, not (for example) its code. Simplifications
+ are not the job of this routine.
+
+ Return true if anything was changed. */
+bool
+canonicalize_change_group (rtx insn, rtx x)
+{
+ if (COMMUTATIVE_P (x)
+ && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
+ {
+ /* Oops, the caller has made X no longer canonical.
+ Let's redo the changes in the correct order. */
+ rtx tem = XEXP (x, 0);
+ validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
+ validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
+ return true;
+ }
+ else
+ return false;
+}
+
+
+/* This subroutine of apply_change_group verifies whether the changes to INSN
+ were valid; i.e. whether INSN can still be recognized.
+
+ If IN_GROUP is true clobbers which have to be added in order to
+ match the instructions will be added to the current change group.
+ Otherwise the changes will take effect immediately. */
+
+int
+insn_invalid_p (rtx insn, bool in_group)
+{
+ rtx pat = PATTERN (insn);
+ int num_clobbers = 0;
+ /* If we are before reload and the pattern is a SET, see if we can add
+ clobbers. */
+ int icode = recog (pat, insn,
+ (GET_CODE (pat) == SET
+ && ! reload_completed
+ && ! reload_in_progress)
+ ? &num_clobbers : 0);
+ int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
+
+
+ /* If this is an asm and the operand aren't legal, then fail. Likewise if
+ this is not an asm and the insn wasn't recognized. */
+ if ((is_asm && ! check_asm_operands (PATTERN (insn)))
+ || (!is_asm && icode < 0))
+ return 1;
+
+ /* If we have to add CLOBBERs, fail if we have to add ones that reference
+ hard registers since our callers can't know if they are live or not.
+ Otherwise, add them. */
+ if (num_clobbers > 0)
+ {
+ rtx newpat;
+
+ if (added_clobbers_hard_reg_p (icode))
+ return 1;
+
+ newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
+ XVECEXP (newpat, 0, 0) = pat;
+ add_clobbers (newpat, icode);
+ if (in_group)
+ validate_change (insn, &PATTERN (insn), newpat, 1);
+ else
+ PATTERN (insn) = pat = newpat;
+ }
+
+ /* After reload, verify that all constraints are satisfied. */
+ if (reload_completed)
+ {
+ extract_insn (insn);
+
+ if (! constrain_operands (1))
+ return 1;
+ }
+
+ INSN_CODE (insn) = icode;
+ return 0;
+}
+
+/* Return number of changes made and not validated yet. */
+int
+num_changes_pending (void)
+{
+ return num_changes;
+}
+
+/* Tentatively apply the changes numbered NUM and up.
+ Return 1 if all changes are valid, zero otherwise. */
+
+int
+verify_changes (int num)
+{
+ int i;
+ rtx last_validated = NULL_RTX;
+
+ /* The changes have been applied and all INSN_CODEs have been reset to force
+ rerecognition.
+
+ The changes are valid if we aren't given an object, or if we are
+ given a MEM and it still is a valid address, or if this is in insn
+ and it is recognized. In the latter case, if reload has completed,
+ we also require that the operands meet the constraints for
+ the insn. */
+
+ for (i = num; i < num_changes; i++)
+ {
+ rtx object = changes[i].object;
+
+ /* If there is no object to test or if it is the same as the one we
+ already tested, ignore it. */
+ if (object == 0 || object == last_validated)
+ continue;
+
+ if (MEM_P (object))
+ {
+ if (! memory_address_addr_space_p (GET_MODE (object),
+ XEXP (object, 0),
+ MEM_ADDR_SPACE (object)))
+ break;
+ }
+ else if (/* changes[i].old might be zero, e.g. when putting a
+ REG_FRAME_RELATED_EXPR into a previously empty list. */
+ changes[i].old
+ && REG_P (changes[i].old)
+ && asm_noperands (PATTERN (object)) > 0
+ && REG_EXPR (changes[i].old) != NULL_TREE
+ && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
+ && DECL_REGISTER (REG_EXPR (changes[i].old)))
+ {
+ /* Don't allow changes of hard register operands to inline
+ assemblies if they have been defined as register asm ("x"). */
+ break;
+ }
+ else if (DEBUG_INSN_P (object))
+ continue;
+ else if (insn_invalid_p (object, true))
+ {
+ rtx pat = PATTERN (object);
+
+ /* Perhaps we couldn't recognize the insn because there were
+ extra CLOBBERs at the end. If so, try to re-recognize
+ without the last CLOBBER (later iterations will cause each of
+ them to be eliminated, in turn). But don't do this if we
+ have an ASM_OPERAND. */
+ if (GET_CODE (pat) == PARALLEL
+ && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
+ && asm_noperands (PATTERN (object)) < 0)
+ {
+ rtx newpat;
+
+ if (XVECLEN (pat, 0) == 2)
+ newpat = XVECEXP (pat, 0, 0);
+ else
+ {
+ int j;
+
+ newpat
+ = gen_rtx_PARALLEL (VOIDmode,
+ rtvec_alloc (XVECLEN (pat, 0) - 1));
+ for (j = 0; j < XVECLEN (newpat, 0); j++)
+ XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
+ }
+
+ /* Add a new change to this group to replace the pattern
+ with this new pattern. Then consider this change
+ as having succeeded. The change we added will
+ cause the entire call to fail if things remain invalid.
+
+ Note that this can lose if a later change than the one
+ we are processing specified &XVECEXP (PATTERN (object), 0, X)
+ but this shouldn't occur. */
+
+ validate_change (object, &PATTERN (object), newpat, 1);
+ continue;
+ }
+ else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
+ || GET_CODE (pat) == VAR_LOCATION)
+ /* If this insn is a CLOBBER or USE, it is always valid, but is
+ never recognized. */
+ continue;
+ else
+ break;
+ }
+ last_validated = object;
+ }
+
+ return (i == num_changes);
+}
+
+/* A group of changes has previously been issued with validate_change
+ and verified with verify_changes. Call df_insn_rescan for each of
+ the insn changed and clear num_changes. */
+
+void
+confirm_change_group (void)
+{
+ int i;
+ rtx last_object = NULL;
+
+ for (i = 0; i < num_changes; i++)
+ {
+ rtx object = changes[i].object;
+
+ if (changes[i].unshare)
+ *changes[i].loc = copy_rtx (*changes[i].loc);
+
+ /* Avoid unnecessary rescanning when multiple changes to same instruction
+ are made. */
+ if (object)
+ {
+ if (object != last_object && last_object && INSN_P (last_object))
+ df_insn_rescan (last_object);
+ last_object = object;
+ }
+ }
+
+ if (last_object && INSN_P (last_object))
+ df_insn_rescan (last_object);
+ num_changes = 0;
+}
+
+/* Apply a group of changes previously issued with `validate_change'.
+ If all changes are valid, call confirm_change_group and return 1,
+ otherwise, call cancel_changes and return 0. */
+
+int
+apply_change_group (void)
+{
+ if (verify_changes (0))
+ {
+ confirm_change_group ();
+ return 1;
+ }
+ else
+ {
+ cancel_changes (0);
+ return 0;
+ }
+}
+
+
+/* Return the number of changes so far in the current group. */
+
+int
+num_validated_changes (void)
+{
+ return num_changes;
+}
+
+/* Retract the changes numbered NUM and up. */
+
+void
+cancel_changes (int num)
+{
+ int i;
+
+ /* Back out all the changes. Do this in the opposite order in which
+ they were made. */
+ for (i = num_changes - 1; i >= num; i--)
+ {
+ *changes[i].loc = changes[i].old;
+ if (changes[i].object && !MEM_P (changes[i].object))
+ INSN_CODE (changes[i].object) = changes[i].old_code;
+ }
+ num_changes = num;
+}
+
+/* Reduce conditional compilation elsewhere. */
+#ifndef HAVE_extv
+#define HAVE_extv 0
+#define CODE_FOR_extv CODE_FOR_nothing
+#endif
+#ifndef HAVE_extzv
+#define HAVE_extzv 0
+#define CODE_FOR_extzv CODE_FOR_nothing
+#endif
+
+/* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
+ rtx. */
+
+static void
+simplify_while_replacing (rtx *loc, rtx to, rtx object,
+ enum machine_mode op0_mode)
+{
+ rtx x = *loc;
+ enum rtx_code code = GET_CODE (x);
+ rtx new_rtx = NULL_RTX;
+
+ if (SWAPPABLE_OPERANDS_P (x)
+ && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
+ {
+ validate_unshare_change (object, loc,
+ gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
+ : swap_condition (code),
+ GET_MODE (x), XEXP (x, 1),
+ XEXP (x, 0)), 1);
+ x = *loc;
+ code = GET_CODE (x);
+ }
+
+ /* Canonicalize arithmetics with all constant operands. */
+ switch (GET_RTX_CLASS (code))
+ {
+ case RTX_UNARY:
+ if (CONSTANT_P (XEXP (x, 0)))
+ new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
+ op0_mode);
+ break;
+ case RTX_COMM_ARITH:
+ case RTX_BIN_ARITH:
+ if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
+ new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
+ XEXP (x, 1));
+ break;
+ case RTX_COMPARE:
+ case RTX_COMM_COMPARE:
+ if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
+ new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
+ XEXP (x, 0), XEXP (x, 1));
+ break;
+ default:
+ break;
+ }
+ if (new_rtx)
+ {
+ validate_change (object, loc, new_rtx, 1);
+ return;
+ }
+
+ switch (code)
+ {
+ case PLUS:
+ /* If we have a PLUS whose second operand is now a CONST_INT, use
+ simplify_gen_binary to try to simplify it.
+ ??? We may want later to remove this, once simplification is
+ separated from this function. */
+ if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
+ validate_change (object, loc,
+ simplify_gen_binary
+ (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
+ break;
+ case MINUS:
+ if (CONST_SCALAR_INT_P (XEXP (x, 1)))
+ validate_change (object, loc,
+ simplify_gen_binary
+ (PLUS, GET_MODE (x), XEXP (x, 0),
+ simplify_gen_unary (NEG,
+ GET_MODE (x), XEXP (x, 1),
+ GET_MODE (x))), 1);
+ break;
+ case ZERO_EXTEND:
+ case SIGN_EXTEND:
+ if (GET_MODE (XEXP (x, 0)) == VOIDmode)
+ {
+ new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
+ op0_mode);
+ /* If any of the above failed, substitute in something that
+ we know won't be recognized. */
+ if (!new_rtx)
+ new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
+ validate_change (object, loc, new_rtx, 1);
+ }
+ break;
+ case SUBREG:
+ /* All subregs possible to simplify should be simplified. */
+ new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
+ SUBREG_BYTE (x));
+
+ /* Subregs of VOIDmode operands are incorrect. */
+ if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
+ new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
+ if (new_rtx)
+ validate_change (object, loc, new_rtx, 1);
+ break;
+ case ZERO_EXTRACT:
+ case SIGN_EXTRACT:
+ /* If we are replacing a register with memory, try to change the memory
+ to be the mode required for memory in extract operations (this isn't
+ likely to be an insertion operation; if it was, nothing bad will
+ happen, we might just fail in some cases). */
+
+ if (MEM_P (XEXP (x, 0))
+ && CONST_INT_P (XEXP (x, 1))
+ && CONST_INT_P (XEXP (x, 2))
+ && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
+ MEM_ADDR_SPACE (XEXP (x, 0)))
+ && !MEM_VOLATILE_P (XEXP (x, 0)))
+ {
+ enum machine_mode wanted_mode = VOIDmode;
+ enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
+ int pos = INTVAL (XEXP (x, 2));
+
+ if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
+ {
+ wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
+ if (wanted_mode == VOIDmode)
+ wanted_mode = word_mode;
+ }
+ else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
+ {
+ wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
+ if (wanted_mode == VOIDmode)
+ wanted_mode = word_mode;
+ }
+
+ /* If we have a narrower mode, we can do something. */
+ if (wanted_mode != VOIDmode
+ && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
+ {
+ int offset = pos / BITS_PER_UNIT;
+ rtx newmem;
+
+ /* If the bytes and bits are counted differently, we
+ must adjust the offset. */
+ if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
+ offset =
+ (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
+ offset);
+
+ gcc_assert (GET_MODE_PRECISION (wanted_mode)
+ == GET_MODE_BITSIZE (wanted_mode));
+ pos %= GET_MODE_BITSIZE (wanted_mode);
+
+ newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
+
+ validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
+ validate_change (object, &XEXP (x, 0), newmem, 1);
+ }
+ }
+
+ break;
+
+ default:
+ break;
+ }
+}
+
+/* Replace every occurrence of FROM in X with TO. Mark each change with
+ validate_change passing OBJECT. */
+
+static void
+validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
+ bool simplify)
+{
+ int i, j;
+ const char *fmt;
+ rtx x = *loc;
+ enum rtx_code code;
+ enum machine_mode op0_mode = VOIDmode;
+ int prev_changes = num_changes;
+
+ if (!x)
+ return;
+
+ code = GET_CODE (x);
+ fmt = GET_RTX_FORMAT (code);
+ if (fmt[0] == 'e')
+ op0_mode = GET_MODE (XEXP (x, 0));
+
+ /* X matches FROM if it is the same rtx or they are both referring to the
+ same register in the same mode. Avoid calling rtx_equal_p unless the
+ operands look similar. */
+
+ if (x == from
+ || (REG_P (x) && REG_P (from)
+ && GET_MODE (x) == GET_MODE (from)
+ && REGNO (x) == REGNO (from))
+ || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
+ && rtx_equal_p (x, from)))
+ {
+ validate_unshare_change (object, loc, to, 1);
+ return;
+ }
+
+ /* Call ourself recursively to perform the replacements.
+ We must not replace inside already replaced expression, otherwise we
+ get infinite recursion for replacements like (reg X)->(subreg (reg X))
+ so we must special case shared ASM_OPERANDS. */
+
+ if (GET_CODE (x) == PARALLEL)
+ {
+ for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
+ {
+ if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
+ {
+ /* Verify that operands are really shared. */
+ gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
+ == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
+ (x, 0, j))));
+ validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
+ from, to, object, simplify);
+ }
+ else
+ validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
+ simplify);
+ }
+ }
+ else
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
+ simplify);
+ }
+
+ /* If we didn't substitute, there is nothing more to do. */
+ if (num_changes == prev_changes)
+ return;
+
+ /* ??? The regmove is no more, so is this aberration still necessary? */
+ /* Allow substituted expression to have different mode. This is used by
+ regmove to change mode of pseudo register. */
+ if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
+ op0_mode = GET_MODE (XEXP (x, 0));
+
+ /* Do changes needed to keep rtx consistent. Don't do any other
+ simplifications, as it is not our job. */
+ if (simplify)
+ simplify_while_replacing (loc, to, object, op0_mode);
+}
+
+/* Try replacing every occurrence of FROM in subexpression LOC of INSN
+ with TO. After all changes have been made, validate by seeing
+ if INSN is still valid. */
+
+int
+validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
+{
+ validate_replace_rtx_1 (loc, from, to, insn, true);
+ return apply_change_group ();
+}
+
+/* Try replacing every occurrence of FROM in INSN with TO. After all
+ changes have been made, validate by seeing if INSN is still valid. */
+
+int
+validate_replace_rtx (rtx from, rtx to, rtx insn)
+{
+ validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
+ return apply_change_group ();
+}
+
+/* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
+ is a part of INSN. After all changes have been made, validate by seeing if
+ INSN is still valid.
+ validate_replace_rtx (from, to, insn) is equivalent to
+ validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
+
+int
+validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
+{
+ validate_replace_rtx_1 (where, from, to, insn, true);
+ return apply_change_group ();
+}
+
+/* Same as above, but do not simplify rtx afterwards. */
+int
+validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
+ rtx insn)
+{
+ validate_replace_rtx_1 (where, from, to, insn, false);
+ return apply_change_group ();
+
+}
+
+/* Try replacing every occurrence of FROM in INSN with TO. This also
+ will replace in REG_EQUAL and REG_EQUIV notes. */
+
+void
+validate_replace_rtx_group (rtx from, rtx to, rtx insn)
+{
+ rtx note;
+ validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_EQUAL
+ || REG_NOTE_KIND (note) == REG_EQUIV)
+ validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
+}
+
+/* Function called by note_uses to replace used subexpressions. */
+struct validate_replace_src_data
+{
+ rtx from; /* Old RTX */
+ rtx to; /* New RTX */
+ rtx insn; /* Insn in which substitution is occurring. */
+};
+
+static void
+validate_replace_src_1 (rtx *x, void *data)
+{
+ struct validate_replace_src_data *d
+ = (struct validate_replace_src_data *) data;
+
+ validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
+}
+
+/* Try replacing every occurrence of FROM in INSN with TO, avoiding
+ SET_DESTs. */
+
+void
+validate_replace_src_group (rtx from, rtx to, rtx insn)
+{
+ struct validate_replace_src_data d;
+
+ d.from = from;
+ d.to = to;
+ d.insn = insn;
+ note_uses (&PATTERN (insn), validate_replace_src_1, &d);
+}
+
+/* Try simplify INSN.
+ Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
+ pattern and return true if something was simplified. */
+
+bool
+validate_simplify_insn (rtx insn)
+{
+ int i;
+ rtx pat = NULL;
+ rtx newpat = NULL;
+
+ pat = PATTERN (insn);
+
+ if (GET_CODE (pat) == SET)
+ {
+ newpat = simplify_rtx (SET_SRC (pat));
+ if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
+ validate_change (insn, &SET_SRC (pat), newpat, 1);
+ newpat = simplify_rtx (SET_DEST (pat));
+ if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
+ validate_change (insn, &SET_DEST (pat), newpat, 1);
+ }
+ else if (GET_CODE (pat) == PARALLEL)
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ {
+ rtx s = XVECEXP (pat, 0, i);
+
+ if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
+ {
+ newpat = simplify_rtx (SET_SRC (s));
+ if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
+ validate_change (insn, &SET_SRC (s), newpat, 1);
+ newpat = simplify_rtx (SET_DEST (s));
+ if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
+ validate_change (insn, &SET_DEST (s), newpat, 1);
+ }
+ }
+ return ((num_changes_pending () > 0) && (apply_change_group () > 0));
+}
+
+#ifdef HAVE_cc0
+/* Return 1 if the insn using CC0 set by INSN does not contain
+ any ordered tests applied to the condition codes.
+ EQ and NE tests do not count. */
+
+int
+next_insn_tests_no_inequality (rtx insn)
+{
+ rtx next = next_cc0_user (insn);
+
+ /* If there is no next insn, we have to take the conservative choice. */
+ if (next == 0)
+ return 0;
+
+ return (INSN_P (next)
+ && ! inequality_comparisons_p (PATTERN (next)));
+}
+#endif
+
+/* Return 1 if OP is a valid general operand for machine mode MODE.
+ This is either a register reference, a memory reference,
+ or a constant. In the case of a memory reference, the address
+ is checked for general validity for the target machine.
+
+ Register and memory references must have mode MODE in order to be valid,
+ but some constants have no machine mode and are valid for any mode.
+
+ If MODE is VOIDmode, OP is checked for validity for whatever mode
+ it has.
+
+ The main use of this function is as a predicate in match_operand
+ expressions in the machine description. */
+
+int
+general_operand (rtx op, enum machine_mode mode)
+{
+ enum rtx_code code = GET_CODE (op);
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (op);
+
+ /* Don't accept CONST_INT or anything similar
+ if the caller wants something floating. */
+ if (GET_MODE (op) == VOIDmode && mode != VOIDmode
+ && GET_MODE_CLASS (mode) != MODE_INT
+ && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
+ return 0;
+
+ if (CONST_INT_P (op)
+ && mode != VOIDmode
+ && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
+ return 0;
+
+ if (CONSTANT_P (op))
+ return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
+ || mode == VOIDmode)
+ && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
+ && targetm.legitimate_constant_p (mode == VOIDmode
+ ? GET_MODE (op)
+ : mode, op));
+
+ /* Except for certain constants with VOIDmode, already checked for,
+ OP's mode must match MODE if MODE specifies a mode. */
+
+ if (GET_MODE (op) != mode)
+ return 0;
+
+ if (code == SUBREG)
+ {
+ rtx sub = SUBREG_REG (op);
+
+#ifdef INSN_SCHEDULING
+ /* On machines that have insn scheduling, we want all memory
+ reference to be explicit, so outlaw paradoxical SUBREGs.
+ However, we must allow them after reload so that they can
+ get cleaned up by cleanup_subreg_operands. */
+ if (!reload_completed && MEM_P (sub)
+ && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
+ return 0;
+#endif
+ /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
+ may result in incorrect reference. We should simplify all valid
+ subregs of MEM anyway. But allow this after reload because we
+ might be called from cleanup_subreg_operands.
+
+ ??? This is a kludge. */
+ if (!reload_completed && SUBREG_BYTE (op) != 0
+ && MEM_P (sub))
+ return 0;
+
+ /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
+ create such rtl, and we must reject it. */
+ if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
+ /* LRA can use subreg to store a floating point value in an
+ integer mode. Although the floating point and the
+ integer modes need the same number of hard registers, the
+ size of floating point mode can be less than the integer
+ mode. */
+ && ! lra_in_progress
+ && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
+ return 0;
+
+ op = sub;
+ code = GET_CODE (op);
+ }
+
+ if (code == REG)
+ return (REGNO (op) >= FIRST_PSEUDO_REGISTER
+ || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
+
+ if (code == MEM)
+ {
+ rtx y = XEXP (op, 0);
+
+ if (! volatile_ok && MEM_VOLATILE_P (op))
+ return 0;
+
+ /* Use the mem's mode, since it will be reloaded thus. LRA can
+ generate move insn with invalid addresses which is made valid
+ and efficiently calculated by LRA through further numerous
+ transformations. */
+ if (lra_in_progress
+ || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Return 1 if OP is a valid memory address for a memory reference
+ of mode MODE.
+
+ The main use of this function is as a predicate in match_operand
+ expressions in the machine description. */
+
+int
+address_operand (rtx op, enum machine_mode mode)
+{
+ return memory_address_p (mode, op);
+}
+
+/* Return 1 if OP is a register reference of mode MODE.
+ If MODE is VOIDmode, accept a register in any mode.
+
+ The main use of this function is as a predicate in match_operand
+ expressions in the machine description. */
+
+int
+register_operand (rtx op, enum machine_mode mode)
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return 0;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ rtx sub = SUBREG_REG (op);
+
+ /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
+ because it is guaranteed to be reloaded into one.
+ Just make sure the MEM is valid in itself.
+ (Ideally, (SUBREG (MEM)...) should not exist after reload,
+ but currently it does result from (SUBREG (REG)...) where the
+ reg went on the stack.) */
+ if (! reload_completed && MEM_P (sub))
+ return general_operand (op, mode);
+
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ if (REG_P (sub)
+ && REGNO (sub) < FIRST_PSEUDO_REGISTER
+ && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
+ && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
+ && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
+ /* LRA can generate some invalid SUBREGS just for matched
+ operand reload presentation. LRA needs to treat them as
+ valid. */
+ && ! LRA_SUBREG_P (op))
+ return 0;
+#endif
+
+ /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
+ create such rtl, and we must reject it. */
+ if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
+ /* LRA can use subreg to store a floating point value in an
+ integer mode. Although the floating point and the
+ integer modes need the same number of hard registers, the
+ size of floating point mode can be less than the integer
+ mode. */
+ && ! lra_in_progress
+ && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
+ return 0;
+
+ op = sub;
+ }
+
+ return (REG_P (op)
+ && (REGNO (op) >= FIRST_PSEUDO_REGISTER
+ || in_hard_reg_set_p (operand_reg_set,
+ GET_MODE (op), REGNO (op))));
+}
+
+/* Return 1 for a register in Pmode; ignore the tested mode. */
+
+int
+pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+ return register_operand (op, Pmode);
+}
+
+/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
+ or a hard register. */
+
+int
+scratch_operand (rtx op, enum machine_mode mode)
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return 0;
+
+ return (GET_CODE (op) == SCRATCH
+ || (REG_P (op)
+ && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
+}
+
+/* Return 1 if OP is a valid immediate operand for mode MODE.
+
+ The main use of this function is as a predicate in match_operand
+ expressions in the machine description. */
+
+int
+immediate_operand (rtx op, enum machine_mode mode)
+{
+ /* Don't accept CONST_INT or anything similar
+ if the caller wants something floating. */
+ if (GET_MODE (op) == VOIDmode && mode != VOIDmode
+ && GET_MODE_CLASS (mode) != MODE_INT
+ && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
+ return 0;
+
+ if (CONST_INT_P (op)
+ && mode != VOIDmode
+ && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
+ return 0;
+
+ return (CONSTANT_P (op)
+ && (GET_MODE (op) == mode || mode == VOIDmode
+ || GET_MODE (op) == VOIDmode)
+ && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
+ && targetm.legitimate_constant_p (mode == VOIDmode
+ ? GET_MODE (op)
+ : mode, op));
+}
+
+/* Returns 1 if OP is an operand that is a CONST_INT. */
+
+int
+const_int_operand (rtx op, enum machine_mode mode)
+{
+ if (!CONST_INT_P (op))
+ return 0;
+
+ if (mode != VOIDmode
+ && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
+ return 0;
+
+ return 1;
+}
+
+/* Returns 1 if OP is an operand that is a constant integer or constant
+ floating-point number. */
+
+int
+const_double_operand (rtx op, enum machine_mode mode)
+{
+ /* Don't accept CONST_INT or anything similar
+ if the caller wants something floating. */
+ if (GET_MODE (op) == VOIDmode && mode != VOIDmode
+ && GET_MODE_CLASS (mode) != MODE_INT
+ && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
+ return 0;
+
+ return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
+ && (mode == VOIDmode || GET_MODE (op) == mode
+ || GET_MODE (op) == VOIDmode));
+}
+
+/* Return 1 if OP is a general operand that is not an immediate operand. */
+
+int
+nonimmediate_operand (rtx op, enum machine_mode mode)
+{
+ return (general_operand (op, mode) && ! CONSTANT_P (op));
+}
+
+/* Return 1 if OP is a register reference or immediate value of mode MODE. */
+
+int
+nonmemory_operand (rtx op, enum machine_mode mode)
+{
+ if (CONSTANT_P (op))
+ return immediate_operand (op, mode);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return 0;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
+ because it is guaranteed to be reloaded into one.
+ Just make sure the MEM is valid in itself.
+ (Ideally, (SUBREG (MEM)...) should not exist after reload,
+ but currently it does result from (SUBREG (REG)...) where the
+ reg went on the stack.) */
+ if (! reload_completed && MEM_P (SUBREG_REG (op)))
+ return general_operand (op, mode);
+ op = SUBREG_REG (op);
+ }
+
+ return (REG_P (op)
+ && (REGNO (op) >= FIRST_PSEUDO_REGISTER
+ || in_hard_reg_set_p (operand_reg_set,
+ GET_MODE (op), REGNO (op))));
+}
+
+/* Return 1 if OP is a valid operand that stands for pushing a
+ value of mode MODE onto the stack.
+
+ The main use of this function is as a predicate in match_operand
+ expressions in the machine description. */
+
+int
+push_operand (rtx op, enum machine_mode mode)
+{
+ unsigned int rounded_size = GET_MODE_SIZE (mode);
+
+#ifdef PUSH_ROUNDING
+ rounded_size = PUSH_ROUNDING (rounded_size);
+#endif
+
+ if (!MEM_P (op))
+ return 0;
+
+ if (mode != VOIDmode && GET_MODE (op) != mode)
+ return 0;
+
+ op = XEXP (op, 0);
+
+ if (rounded_size == GET_MODE_SIZE (mode))
+ {
+ if (GET_CODE (op) != STACK_PUSH_CODE)
+ return 0;
+ }
+ else
+ {
+ if (GET_CODE (op) != PRE_MODIFY
+ || GET_CODE (XEXP (op, 1)) != PLUS
+ || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
+ || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
+#ifdef STACK_GROWS_DOWNWARD
+ || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
+#else
+ || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
+#endif
+ )
+ return 0;
+ }
+
+ return XEXP (op, 0) == stack_pointer_rtx;
+}
+
+/* Return 1 if OP is a valid operand that stands for popping a
+ value of mode MODE off the stack.
+
+ The main use of this function is as a predicate in match_operand
+ expressions in the machine description. */
+
+int
+pop_operand (rtx op, enum machine_mode mode)
+{
+ if (!MEM_P (op))
+ return 0;
+
+ if (mode != VOIDmode && GET_MODE (op) != mode)
+ return 0;
+
+ op = XEXP (op, 0);
+
+ if (GET_CODE (op) != STACK_POP_CODE)
+ return 0;
+
+ return XEXP (op, 0) == stack_pointer_rtx;
+}
+
+/* Return 1 if ADDR is a valid memory address
+ for mode MODE in address space AS. */
+
+int
+memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
+ rtx addr, addr_space_t as)
+{
+#ifdef GO_IF_LEGITIMATE_ADDRESS
+ gcc_assert (ADDR_SPACE_GENERIC_P (as));
+ GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
+ return 0;
+
+ win:
+ return 1;
+#else
+ return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
+#endif
+}
+
+/* Return 1 if OP is a valid memory reference with mode MODE,
+ including a valid address.
+
+ The main use of this function is as a predicate in match_operand
+ expressions in the machine description. */
+
+int
+memory_operand (rtx op, enum machine_mode mode)
+{
+ rtx inner;
+
+ if (! reload_completed)
+ /* Note that no SUBREG is a memory operand before end of reload pass,
+ because (SUBREG (MEM...)) forces reloading into a register. */
+ return MEM_P (op) && general_operand (op, mode);
+
+ if (mode != VOIDmode && GET_MODE (op) != mode)
+ return 0;
+
+ inner = op;
+ if (GET_CODE (inner) == SUBREG)
+ inner = SUBREG_REG (inner);
+
+ return (MEM_P (inner) && general_operand (op, mode));
+}
+
+/* Return 1 if OP is a valid indirect memory reference with mode MODE;
+ that is, a memory reference whose address is a general_operand. */
+
+int
+indirect_operand (rtx op, enum machine_mode mode)
+{
+ /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
+ if (! reload_completed
+ && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
+ {
+ int offset = SUBREG_BYTE (op);
+ rtx inner = SUBREG_REG (op);
+
+ if (mode != VOIDmode && GET_MODE (op) != mode)
+ return 0;
+
+ /* The only way that we can have a general_operand as the resulting
+ address is if OFFSET is zero and the address already is an operand
+ or if the address is (plus Y (const_int -OFFSET)) and Y is an
+ operand. */
+
+ return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
+ || (GET_CODE (XEXP (inner, 0)) == PLUS
+ && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
+ && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
+ && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
+ }
+
+ return (MEM_P (op)
+ && memory_operand (op, mode)
+ && general_operand (XEXP (op, 0), Pmode));
+}
+
+/* Return 1 if this is an ordered comparison operator (not including
+ ORDERED and UNORDERED). */
+
+int
+ordered_comparison_operator (rtx op, enum machine_mode mode)
+{
+ if (mode != VOIDmode && GET_MODE (op) != mode)
+ return false;
+ switch (GET_CODE (op))
+ {
+ case EQ:
+ case NE:
+ case LT:
+ case LTU:
+ case LE:
+ case LEU:
+ case GT:
+ case GTU:
+ case GE:
+ case GEU:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if this is a comparison operator. This allows the use of
+ MATCH_OPERATOR to recognize all the branch insns. */
+
+int
+comparison_operator (rtx op, enum machine_mode mode)
+{
+ return ((mode == VOIDmode || GET_MODE (op) == mode)
+ && COMPARISON_P (op));
+}
+
+/* If BODY is an insn body that uses ASM_OPERANDS, return it. */
+
+rtx
+extract_asm_operands (rtx body)
+{
+ rtx tmp;
+ switch (GET_CODE (body))
+ {
+ case ASM_OPERANDS:
+ return body;
+
+ case SET:
+ /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
+ tmp = SET_SRC (body);
+ if (GET_CODE (tmp) == ASM_OPERANDS)
+ return tmp;
+ break;
+
+ case PARALLEL:
+ tmp = XVECEXP (body, 0, 0);
+ if (GET_CODE (tmp) == ASM_OPERANDS)
+ return tmp;
+ if (GET_CODE (tmp) == SET)
+ {
+ tmp = SET_SRC (tmp);
+ if (GET_CODE (tmp) == ASM_OPERANDS)
+ return tmp;
+ }
+ break;
+
+ default:
+ break;
+ }
+ return NULL;
+}
+
+/* If BODY is an insn body that uses ASM_OPERANDS,
+ return the number of operands (both input and output) in the insn.
+ Otherwise return -1. */
+
+int
+asm_noperands (const_rtx body)
+{
+ rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
+ int n_sets = 0;
+
+ if (asm_op == NULL)
+ return -1;
+
+ if (GET_CODE (body) == SET)
+ n_sets = 1;
+ else if (GET_CODE (body) == PARALLEL)
+ {
+ int i;
+ if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
+ {
+ /* Multiple output operands, or 1 output plus some clobbers:
+ body is
+ [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
+ /* Count backwards through CLOBBERs to determine number of SETs. */
+ for (i = XVECLEN (body, 0); i > 0; i--)
+ {
+ if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
+ break;
+ if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
+ return -1;
+ }
+
+ /* N_SETS is now number of output operands. */
+ n_sets = i;
+
+ /* Verify that all the SETs we have
+ came from a single original asm_operands insn
+ (so that invalid combinations are blocked). */
+ for (i = 0; i < n_sets; i++)
+ {
+ rtx elt = XVECEXP (body, 0, i);
+ if (GET_CODE (elt) != SET)
+ return -1;
+ if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
+ return -1;
+ /* If these ASM_OPERANDS rtx's came from different original insns
+ then they aren't allowed together. */
+ if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
+ != ASM_OPERANDS_INPUT_VEC (asm_op))
+ return -1;
+ }
+ }
+ else
+ {
+ /* 0 outputs, but some clobbers:
+ body is [(asm_operands ...) (clobber (reg ...))...]. */
+ /* Make sure all the other parallel things really are clobbers. */
+ for (i = XVECLEN (body, 0) - 1; i > 0; i--)
+ if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
+ return -1;
+ }
+ }
+
+ return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
+ + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
+}
+
+/* Assuming BODY is an insn body that uses ASM_OPERANDS,
+ copy its operands (both input and output) into the vector OPERANDS,
+ the locations of the operands within the insn into the vector OPERAND_LOCS,
+ and the constraints for the operands into CONSTRAINTS.
+ Write the modes of the operands into MODES.
+ Return the assembler-template.
+
+ If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
+ we don't store that info. */
+
+const char *
+decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
+ const char **constraints, enum machine_mode *modes,
+ location_t *loc)
+{
+ int nbase = 0, n, i;
+ rtx asmop;
+
+ switch (GET_CODE (body))
+ {
+ case ASM_OPERANDS:
+ /* Zero output asm: BODY is (asm_operands ...). */
+ asmop = body;
+ break;
+
+ case SET:
+ /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
+ asmop = SET_SRC (body);
+
+ /* The output is in the SET.
+ Its constraint is in the ASM_OPERANDS itself. */
+ if (operands)
+ operands[0] = SET_DEST (body);
+ if (operand_locs)
+ operand_locs[0] = &SET_DEST (body);
+ if (constraints)
+ constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
+ if (modes)
+ modes[0] = GET_MODE (SET_DEST (body));
+ nbase = 1;
+ break;
+
+ case PARALLEL:
+ {
+ int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
+
+ asmop = XVECEXP (body, 0, 0);
+ if (GET_CODE (asmop) == SET)
+ {
+ asmop = SET_SRC (asmop);
+
+ /* At least one output, plus some CLOBBERs. The outputs are in
+ the SETs. Their constraints are in the ASM_OPERANDS itself. */
+ for (i = 0; i < nparallel; i++)
+ {
+ if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
+ break; /* Past last SET */
+ if (operands)
+ operands[i] = SET_DEST (XVECEXP (body, 0, i));
+ if (operand_locs)
+ operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
+ if (constraints)
+ constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
+ if (modes)
+ modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
+ }
+ nbase = i;
+ }
+ break;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+
+ n = ASM_OPERANDS_INPUT_LENGTH (asmop);
+ for (i = 0; i < n; i++)
+ {
+ if (operand_locs)
+ operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
+ if (operands)
+ operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
+ if (constraints)
+ constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
+ if (modes)
+ modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
+ }
+ nbase += n;
+
+ n = ASM_OPERANDS_LABEL_LENGTH (asmop);
+ for (i = 0; i < n; i++)
+ {
+ if (operand_locs)
+ operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
+ if (operands)
+ operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
+ if (constraints)
+ constraints[nbase + i] = "";
+ if (modes)
+ modes[nbase + i] = Pmode;
+ }
+
+ if (loc)
+ *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
+
+ return ASM_OPERANDS_TEMPLATE (asmop);
+}
+
+/* Parse inline assembly string STRING and determine which operands are
+ referenced by % markers. For the first NOPERANDS operands, set USED[I]
+ to true if operand I is referenced.
+
+ This is intended to distinguish barrier-like asms such as:
+
+ asm ("" : "=m" (...));
+
+ from real references such as:
+
+ asm ("sw\t$0, %0" : "=m" (...)); */
+
+void
+get_referenced_operands (const char *string, bool *used,
+ unsigned int noperands)
+{
+ memset (used, 0, sizeof (bool) * noperands);
+ const char *p = string;
+ while (*p)
+ switch (*p)
+ {
+ case '%':
+ p += 1;
+ /* A letter followed by a digit indicates an operand number. */
+ if (ISALPHA (p[0]) && ISDIGIT (p[1]))
+ p += 1;
+ if (ISDIGIT (*p))
+ {
+ char *endptr;
+ unsigned long opnum = strtoul (p, &endptr, 10);
+ if (endptr != p && opnum < noperands)
+ used[opnum] = true;
+ p = endptr;
+ }
+ else
+ p += 1;
+ break;
+
+ default:
+ p++;
+ break;
+ }
+}
+
+/* Check if an asm_operand matches its constraints.
+ Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
+
+int
+asm_operand_ok (rtx op, const char *constraint, const char **constraints)
+{
+ int result = 0;
+#ifdef AUTO_INC_DEC
+ bool incdec_ok = false;
+#endif
+
+ /* Use constrain_operands after reload. */
+ gcc_assert (!reload_completed);
+
+ /* Empty constraint string is the same as "X,...,X", i.e. X for as
+ many alternatives as required to match the other operands. */
+ if (*constraint == '\0')
+ result = 1;
+
+ while (*constraint)
+ {
+ char c = *constraint;
+ int len;
+ switch (c)
+ {
+ case ',':
+ constraint++;
+ continue;
+ case '=':
+ case '+':
+ case '*':
+ case '%':
+ case '!':
+ case '#':
+ case '&':
+ case '?':
+ break;
+
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ /* If caller provided constraints pointer, look up
+ the matching constraint. Otherwise, our caller should have
+ given us the proper matching constraint, but we can't
+ actually fail the check if they didn't. Indicate that
+ results are inconclusive. */
+ if (constraints)
+ {
+ char *end;
+ unsigned long match;
+
+ match = strtoul (constraint, &end, 10);
+ if (!result)
+ result = asm_operand_ok (op, constraints[match], NULL);
+ constraint = (const char *) end;
+ }
+ else
+ {
+ do
+ constraint++;
+ while (ISDIGIT (*constraint));
+ if (! result)
+ result = -1;
+ }
+ continue;
+
+ case 'p':
+ if (address_operand (op, VOIDmode))
+ result = 1;
+ break;
+
+ case TARGET_MEM_CONSTRAINT:
+ case 'V': /* non-offsettable */
+ if (memory_operand (op, VOIDmode))
+ result = 1;
+ break;
+
+ case 'o': /* offsettable */
+ if (offsettable_nonstrict_memref_p (op))
+ result = 1;
+ break;
+
+ case '<':
+ /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
+ excepting those that expand_call created. Further, on some
+ machines which do not have generalized auto inc/dec, an inc/dec
+ is not a memory_operand.
+
+ Match any memory and hope things are resolved after reload. */
+
+ if (MEM_P (op)
+ && (1
+ || GET_CODE (XEXP (op, 0)) == PRE_DEC
+ || GET_CODE (XEXP (op, 0)) == POST_DEC))
+ result = 1;
+#ifdef AUTO_INC_DEC
+ incdec_ok = true;
+#endif
+ break;
+
+ case '>':
+ if (MEM_P (op)
+ && (1
+ || GET_CODE (XEXP (op, 0)) == PRE_INC
+ || GET_CODE (XEXP (op, 0)) == POST_INC))
+ result = 1;
+#ifdef AUTO_INC_DEC
+ incdec_ok = true;
+#endif
+ break;
+
+ case 'E':
+ case 'F':
+ if (CONST_DOUBLE_AS_FLOAT_P (op)
+ || (GET_CODE (op) == CONST_VECTOR
+ && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
+ result = 1;
+ break;
+
+ case 'G':
+ if (CONST_DOUBLE_AS_FLOAT_P (op)
+ && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
+ result = 1;
+ break;
+ case 'H':
+ if (CONST_DOUBLE_AS_FLOAT_P (op)
+ && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
+ result = 1;
+ break;
+
+ case 's':
+ if (CONST_SCALAR_INT_P (op))
+ break;
+ /* Fall through. */
+
+ case 'i':
+ if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
+ result = 1;
+ break;
+
+ case 'n':
+ if (CONST_SCALAR_INT_P (op))
+ result = 1;
+ break;
+
+ case 'I':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
+ result = 1;
+ break;
+ case 'J':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
+ result = 1;
+ break;
+ case 'K':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
+ result = 1;
+ break;
+ case 'L':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
+ result = 1;
+ break;
+ case 'M':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
+ result = 1;
+ break;
+ case 'N':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
+ result = 1;
+ break;
+ case 'O':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
+ result = 1;
+ break;
+ case 'P':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
+ result = 1;
+ break;
+
+ case 'X':
+ result = 1;
+ break;
+
+ case 'g':
+ if (general_operand (op, VOIDmode))
+ result = 1;
+ break;
+
+ default:
+ /* For all other letters, we first check for a register class,
+ otherwise it is an EXTRA_CONSTRAINT. */
+ if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
+ {
+ case 'r':
+ if (GET_MODE (op) == BLKmode)
+ break;
+ if (register_operand (op, VOIDmode))
+ result = 1;
+ }
+#ifdef EXTRA_CONSTRAINT_STR
+ else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
+ /* Every memory operand can be reloaded to fit. */
+ result = result || memory_operand (op, VOIDmode);
+ else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
+ /* Every address operand can be reloaded to fit. */
+ result = result || address_operand (op, VOIDmode);
+ else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
+ result = 1;
+#endif
+ break;
+ }
+ len = CONSTRAINT_LEN (c, constraint);
+ do
+ constraint++;
+ while (--len && *constraint);
+ if (len)
+ return 0;
+ }
+
+#ifdef AUTO_INC_DEC
+ /* For operands without < or > constraints reject side-effects. */
+ if (!incdec_ok && result && MEM_P (op))
+ switch (GET_CODE (XEXP (op, 0)))
+ {
+ case PRE_INC:
+ case POST_INC:
+ case PRE_DEC:
+ case POST_DEC:
+ case PRE_MODIFY:
+ case POST_MODIFY:
+ return 0;
+ default:
+ break;
+ }
+#endif
+
+ return result;
+}
+
+/* Given an rtx *P, if it is a sum containing an integer constant term,
+ return the location (type rtx *) of the pointer to that constant term.
+ Otherwise, return a null pointer. */
+
+rtx *
+find_constant_term_loc (rtx *p)
+{
+ rtx *tem;
+ enum rtx_code code = GET_CODE (*p);
+
+ /* If *P IS such a constant term, P is its location. */
+
+ if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
+ || code == CONST)
+ return p;
+
+ /* Otherwise, if not a sum, it has no constant term. */
+
+ if (GET_CODE (*p) != PLUS)
+ return 0;
+
+ /* If one of the summands is constant, return its location. */
+
+ if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
+ && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
+ return p;
+
+ /* Otherwise, check each summand for containing a constant term. */
+
+ if (XEXP (*p, 0) != 0)
+ {
+ tem = find_constant_term_loc (&XEXP (*p, 0));
+ if (tem != 0)
+ return tem;
+ }
+
+ if (XEXP (*p, 1) != 0)
+ {
+ tem = find_constant_term_loc (&XEXP (*p, 1));
+ if (tem != 0)
+ return tem;
+ }
+
+ return 0;
+}
+
+/* Return 1 if OP is a memory reference
+ whose address contains no side effects
+ and remains valid after the addition
+ of a positive integer less than the
+ size of the object being referenced.
+
+ We assume that the original address is valid and do not check it.
+
+ This uses strict_memory_address_p as a subroutine, so
+ don't use it before reload. */
+
+int
+offsettable_memref_p (rtx op)
+{
+ return ((MEM_P (op))
+ && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
+ MEM_ADDR_SPACE (op)));
+}
+
+/* Similar, but don't require a strictly valid mem ref:
+ consider pseudo-regs valid as index or base regs. */
+
+int
+offsettable_nonstrict_memref_p (rtx op)
+{
+ return ((MEM_P (op))
+ && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
+ MEM_ADDR_SPACE (op)));
+}
+
+/* Return 1 if Y is a memory address which contains no side effects
+ and would remain valid for address space AS after the addition of
+ a positive integer less than the size of that mode.
+
+ We assume that the original address is valid and do not check it.
+ We do check that it is valid for narrower modes.
+
+ If STRICTP is nonzero, we require a strictly valid address,
+ for the sake of use in reload.c. */
+
+int
+offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
+ addr_space_t as)
+{
+ enum rtx_code ycode = GET_CODE (y);
+ rtx z;
+ rtx y1 = y;
+ rtx *y2;
+ int (*addressp) (enum machine_mode, rtx, addr_space_t) =
+ (strictp ? strict_memory_address_addr_space_p
+ : memory_address_addr_space_p);
+ unsigned int mode_sz = GET_MODE_SIZE (mode);
+
+ if (CONSTANT_ADDRESS_P (y))
+ return 1;
+
+ /* Adjusting an offsettable address involves changing to a narrower mode.
+ Make sure that's OK. */
+
+ if (mode_dependent_address_p (y, as))
+ return 0;
+
+ enum machine_mode address_mode = GET_MODE (y);
+ if (address_mode == VOIDmode)
+ address_mode = targetm.addr_space.address_mode (as);
+#ifdef POINTERS_EXTEND_UNSIGNED
+ enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
+#endif
+
+ /* ??? How much offset does an offsettable BLKmode reference need?
+ Clearly that depends on the situation in which it's being used.
+ However, the current situation in which we test 0xffffffff is
+ less than ideal. Caveat user. */
+ if (mode_sz == 0)
+ mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+
+ /* If the expression contains a constant term,
+ see if it remains valid when max possible offset is added. */
+
+ if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
+ {
+ int good;
+
+ y1 = *y2;
+ *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
+ /* Use QImode because an odd displacement may be automatically invalid
+ for any wider mode. But it should be valid for a single byte. */
+ good = (*addressp) (QImode, y, as);
+
+ /* In any case, restore old contents of memory. */
+ *y2 = y1;
+ return good;
+ }
+
+ if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
+ return 0;
+
+ /* The offset added here is chosen as the maximum offset that
+ any instruction could need to add when operating on something
+ of the specified mode. We assume that if Y and Y+c are
+ valid addresses then so is Y+d for all 0<d<c. adjust_address will
+ go inside a LO_SUM here, so we do so as well. */
+ if (GET_CODE (y) == LO_SUM
+ && mode != BLKmode
+ && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
+ z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
+ plus_constant (address_mode, XEXP (y, 1),
+ mode_sz - 1));
+#ifdef POINTERS_EXTEND_UNSIGNED
+ /* Likewise for a ZERO_EXTEND from pointer_mode. */
+ else if (POINTERS_EXTEND_UNSIGNED > 0
+ && GET_CODE (y) == ZERO_EXTEND
+ && GET_MODE (XEXP (y, 0)) == pointer_mode)
+ z = gen_rtx_ZERO_EXTEND (address_mode,
+ plus_constant (pointer_mode, XEXP (y, 0),
+ mode_sz - 1));
+#endif
+ else
+ z = plus_constant (address_mode, y, mode_sz - 1);
+
+ /* Use QImode because an odd displacement may be automatically invalid
+ for any wider mode. But it should be valid for a single byte. */
+ return (*addressp) (QImode, z, as);
+}
+
+/* Return 1 if ADDR is an address-expression whose effect depends
+ on the mode of the memory reference it is used in.
+
+ ADDRSPACE is the address space associated with the address.
+
+ Autoincrement addressing is a typical example of mode-dependence
+ because the amount of the increment depends on the mode. */
+
+bool
+mode_dependent_address_p (rtx addr, addr_space_t addrspace)
+{
+ /* Auto-increment addressing with anything other than post_modify
+ or pre_modify always introduces a mode dependency. Catch such
+ cases now instead of deferring to the target. */
+ if (GET_CODE (addr) == PRE_INC
+ || GET_CODE (addr) == POST_INC
+ || GET_CODE (addr) == PRE_DEC
+ || GET_CODE (addr) == POST_DEC)
+ return true;
+
+ return targetm.mode_dependent_address_p (addr, addrspace);
+}
+
+/* Like extract_insn, but save insn extracted and don't extract again, when
+ called again for the same insn expecting that recog_data still contain the
+ valid information. This is used primary by gen_attr infrastructure that
+ often does extract insn again and again. */
+void
+extract_insn_cached (rtx insn)
+{
+ if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
+ return;
+ extract_insn (insn);
+ recog_data.insn = insn;
+}
+
+/* Do cached extract_insn, constrain_operands and complain about failures.
+ Used by insn_attrtab. */
+void
+extract_constrain_insn_cached (rtx insn)
+{
+ extract_insn_cached (insn);
+ if (which_alternative == -1
+ && !constrain_operands (reload_completed))
+ fatal_insn_not_found (insn);
+}
+
+/* Do cached constrain_operands and complain about failures. */
+int
+constrain_operands_cached (int strict)
+{
+ if (which_alternative == -1)
+ return constrain_operands (strict);
+ else
+ return 1;
+}
+
+/* Analyze INSN and fill in recog_data. */
+
+void
+extract_insn (rtx insn)
+{
+ int i;
+ int icode;
+ int noperands;
+ rtx body = PATTERN (insn);
+
+ recog_data.n_operands = 0;
+ recog_data.n_alternatives = 0;
+ recog_data.n_dups = 0;
+ recog_data.is_asm = false;
+
+ switch (GET_CODE (body))
+ {
+ case USE:
+ case CLOBBER:
+ case ASM_INPUT:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case VAR_LOCATION:
+ return;
+
+ case SET:
+ if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
+ goto asm_insn;
+ else
+ goto normal_insn;
+ case PARALLEL:
+ if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
+ || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
+ goto asm_insn;
+ else
+ goto normal_insn;
+ case ASM_OPERANDS:
+ asm_insn:
+ recog_data.n_operands = noperands = asm_noperands (body);
+ if (noperands >= 0)
+ {
+ /* This insn is an `asm' with operands. */
+
+ /* expand_asm_operands makes sure there aren't too many operands. */
+ gcc_assert (noperands <= MAX_RECOG_OPERANDS);
+
+ /* Now get the operand values and constraints out of the insn. */
+ decode_asm_operands (body, recog_data.operand,
+ recog_data.operand_loc,
+ recog_data.constraints,
+ recog_data.operand_mode, NULL);
+ memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
+ if (noperands > 0)
+ {
+ const char *p = recog_data.constraints[0];
+ recog_data.n_alternatives = 1;
+ while (*p)
+ recog_data.n_alternatives += (*p++ == ',');
+ }
+ recog_data.is_asm = true;
+ break;
+ }
+ fatal_insn_not_found (insn);
+
+ default:
+ normal_insn:
+ /* Ordinary insn: recognize it, get the operands via insn_extract
+ and get the constraints. */
+
+ icode = recog_memoized (insn);
+ if (icode < 0)
+ fatal_insn_not_found (insn);
+
+ recog_data.n_operands = noperands = insn_data[icode].n_operands;
+ recog_data.n_alternatives = insn_data[icode].n_alternatives;
+ recog_data.n_dups = insn_data[icode].n_dups;
+
+ insn_extract (insn);
+
+ for (i = 0; i < noperands; i++)
+ {
+ recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
+ recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
+ recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
+ /* VOIDmode match_operands gets mode from their real operand. */
+ if (recog_data.operand_mode[i] == VOIDmode)
+ recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
+ }
+ }
+ for (i = 0; i < noperands; i++)
+ recog_data.operand_type[i]
+ = (recog_data.constraints[i][0] == '=' ? OP_OUT
+ : recog_data.constraints[i][0] == '+' ? OP_INOUT
+ : OP_IN);
+
+ gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
+
+ if (INSN_CODE (insn) < 0)
+ for (i = 0; i < recog_data.n_alternatives; i++)
+ recog_data.alternative_enabled_p[i] = true;
+ else
+ {
+ recog_data.insn = insn;
+ for (i = 0; i < recog_data.n_alternatives; i++)
+ {
+ which_alternative = i;
+ recog_data.alternative_enabled_p[i]
+ = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
+ }
+ }
+
+ recog_data.insn = NULL;
+ which_alternative = -1;
+}
+
+/* After calling extract_insn, you can use this function to extract some
+ information from the constraint strings into a more usable form.
+ The collected data is stored in recog_op_alt. */
+void
+preprocess_constraints (void)
+{
+ int i;
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ memset (recog_op_alt[i], 0, (recog_data.n_alternatives
+ * sizeof (struct operand_alternative)));
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ {
+ int j;
+ struct operand_alternative *op_alt;
+ const char *p = recog_data.constraints[i];
+
+ op_alt = recog_op_alt[i];
+
+ for (j = 0; j < recog_data.n_alternatives; j++)
+ {
+ op_alt[j].cl = NO_REGS;
+ op_alt[j].constraint = p;
+ op_alt[j].matches = -1;
+ op_alt[j].matched = -1;
+
+ if (!recog_data.alternative_enabled_p[j])
+ {
+ p = skip_alternative (p);
+ continue;
+ }
+
+ if (*p == '\0' || *p == ',')
+ {
+ op_alt[j].anything_ok = 1;
+ continue;
+ }
+
+ for (;;)
+ {
+ char c = *p;
+ if (c == '#')
+ do
+ c = *++p;
+ while (c != ',' && c != '\0');
+ if (c == ',' || c == '\0')
+ {
+ p++;
+ break;
+ }
+
+ switch (c)
+ {
+ case '=': case '+': case '*': case '%':
+ case 'E': case 'F': case 'G': case 'H':
+ case 's': case 'i': case 'n':
+ case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'O': case 'P':
+ /* These don't say anything we care about. */
+ break;
+
+ case '?':
+ op_alt[j].reject += 6;
+ break;
+ case '!':
+ op_alt[j].reject += 600;
+ break;
+ case '&':
+ op_alt[j].earlyclobber = 1;
+ break;
+
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ char *end;
+ op_alt[j].matches = strtoul (p, &end, 10);
+ recog_op_alt[op_alt[j].matches][j].matched = i;
+ p = end;
+ }
+ continue;
+
+ case TARGET_MEM_CONSTRAINT:
+ op_alt[j].memory_ok = 1;
+ break;
+ case '<':
+ op_alt[j].decmem_ok = 1;
+ break;
+ case '>':
+ op_alt[j].incmem_ok = 1;
+ break;
+ case 'V':
+ op_alt[j].nonoffmem_ok = 1;
+ break;
+ case 'o':
+ op_alt[j].offmem_ok = 1;
+ break;
+ case 'X':
+ op_alt[j].anything_ok = 1;
+ break;
+
+ case 'p':
+ op_alt[j].is_address = 1;
+ op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
+ [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
+ ADDRESS, SCRATCH)];
+ break;
+
+ case 'g':
+ case 'r':
+ op_alt[j].cl =
+ reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
+ break;
+
+ default:
+ if (EXTRA_MEMORY_CONSTRAINT (c, p))
+ {
+ op_alt[j].memory_ok = 1;
+ break;
+ }
+ if (EXTRA_ADDRESS_CONSTRAINT (c, p))
+ {
+ op_alt[j].is_address = 1;
+ op_alt[j].cl
+ = (reg_class_subunion
+ [(int) op_alt[j].cl]
+ [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
+ ADDRESS, SCRATCH)]);
+ break;
+ }
+
+ op_alt[j].cl
+ = (reg_class_subunion
+ [(int) op_alt[j].cl]
+ [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
+ break;
+ }
+ p += CONSTRAINT_LEN (c, p);
+ }
+ }
+ }
+}
+
+/* Check the operands of an insn against the insn's operand constraints
+ and return 1 if they are valid.
+ The information about the insn's operands, constraints, operand modes
+ etc. is obtained from the global variables set up by extract_insn.
+
+ WHICH_ALTERNATIVE is set to a number which indicates which
+ alternative of constraints was matched: 0 for the first alternative,
+ 1 for the next, etc.
+
+ In addition, when two operands are required to match
+ and it happens that the output operand is (reg) while the
+ input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
+ make the output operand look like the input.
+ This is because the output operand is the one the template will print.
+
+ This is used in final, just before printing the assembler code and by
+ the routines that determine an insn's attribute.
+
+ If STRICT is a positive nonzero value, it means that we have been
+ called after reload has been completed. In that case, we must
+ do all checks strictly. If it is zero, it means that we have been called
+ before reload has completed. In that case, we first try to see if we can
+ find an alternative that matches strictly. If not, we try again, this
+ time assuming that reload will fix up the insn. This provides a "best
+ guess" for the alternative and is used to compute attributes of insns prior
+ to reload. A negative value of STRICT is used for this internal call. */
+
+struct funny_match
+{
+ int this_op, other;
+};
+
+int
+constrain_operands (int strict)
+{
+ const char *constraints[MAX_RECOG_OPERANDS];
+ int matching_operands[MAX_RECOG_OPERANDS];
+ int earlyclobber[MAX_RECOG_OPERANDS];
+ int c;
+
+ struct funny_match funny_match[MAX_RECOG_OPERANDS];
+ int funny_match_index;
+
+ which_alternative = 0;
+ if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
+ return 1;
+
+ for (c = 0; c < recog_data.n_operands; c++)
+ {
+ constraints[c] = recog_data.constraints[c];
+ matching_operands[c] = -1;
+ }
+
+ do
+ {
+ int seen_earlyclobber_at = -1;
+ int opno;
+ int lose = 0;
+ funny_match_index = 0;
+
+ if (!recog_data.alternative_enabled_p[which_alternative])
+ {
+ int i;
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ constraints[i] = skip_alternative (constraints[i]);
+
+ which_alternative++;
+ continue;
+ }
+
+ for (opno = 0; opno < recog_data.n_operands; opno++)
+ {
+ rtx op = recog_data.operand[opno];
+ enum machine_mode mode = GET_MODE (op);
+ const char *p = constraints[opno];
+ int offset = 0;
+ int win = 0;
+ int val;
+ int len;
+
+ earlyclobber[opno] = 0;
+
+ /* A unary operator may be accepted by the predicate, but it
+ is irrelevant for matching constraints. */
+ if (UNARY_P (op))
+ op = XEXP (op, 0);
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (REG_P (SUBREG_REG (op))
+ && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+ GET_MODE (SUBREG_REG (op)),
+ SUBREG_BYTE (op),
+ GET_MODE (op));
+ op = SUBREG_REG (op);
+ }
+
+ /* An empty constraint or empty alternative
+ allows anything which matched the pattern. */
+ if (*p == 0 || *p == ',')
+ win = 1;
+
+ do
+ switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
+ {
+ case '\0':
+ len = 0;
+ break;
+ case ',':
+ c = '\0';
+ break;
+
+ case '?': case '!': case '*': case '%':
+ case '=': case '+':
+ break;
+
+ case '#':
+ /* Ignore rest of this alternative as far as
+ constraint checking is concerned. */
+ do
+ p++;
+ while (*p && *p != ',');
+ len = 0;
+ break;
+
+ case '&':
+ earlyclobber[opno] = 1;
+ if (seen_earlyclobber_at < 0)
+ seen_earlyclobber_at = opno;
+ break;
+
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ /* This operand must be the same as a previous one.
+ This kind of constraint is used for instructions such
+ as add when they take only two operands.
+
+ Note that the lower-numbered operand is passed first.
+
+ If we are not testing strictly, assume that this
+ constraint will be satisfied. */
+
+ char *end;
+ int match;
+
+ match = strtoul (p, &end, 10);
+ p = end;
+
+ if (strict < 0)
+ val = 1;
+ else
+ {
+ rtx op1 = recog_data.operand[match];
+ rtx op2 = recog_data.operand[opno];
+
+ /* A unary operator may be accepted by the predicate,
+ but it is irrelevant for matching constraints. */
+ if (UNARY_P (op1))
+ op1 = XEXP (op1, 0);
+ if (UNARY_P (op2))
+ op2 = XEXP (op2, 0);
+
+ val = operands_match_p (op1, op2);
+ }
+
+ matching_operands[opno] = match;
+ matching_operands[match] = opno;
+
+ if (val != 0)
+ win = 1;
+
+ /* If output is *x and input is *--x, arrange later
+ to change the output to *--x as well, since the
+ output op is the one that will be printed. */
+ if (val == 2 && strict > 0)
+ {
+ funny_match[funny_match_index].this_op = opno;
+ funny_match[funny_match_index++].other = match;
+ }
+ }
+ len = 0;
+ break;
+
+ case 'p':
+ /* p is used for address_operands. When we are called by
+ gen_reload, no one will have checked that the address is
+ strictly valid, i.e., that all pseudos requiring hard regs
+ have gotten them. */
+ if (strict <= 0
+ || (strict_memory_address_p (recog_data.operand_mode[opno],
+ op)))
+ win = 1;
+ break;
+
+ /* No need to check general_operand again;
+ it was done in insn-recog.c. Well, except that reload
+ doesn't check the validity of its replacements, but
+ that should only matter when there's a bug. */
+ case 'g':
+ /* Anything goes unless it is a REG and really has a hard reg
+ but the hard reg is not in the class GENERAL_REGS. */
+ if (REG_P (op))
+ {
+ if (strict < 0
+ || GENERAL_REGS == ALL_REGS
+ || (reload_in_progress
+ && REGNO (op) >= FIRST_PSEUDO_REGISTER)
+ || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
+ win = 1;
+ }
+ else if (strict < 0 || general_operand (op, mode))
+ win = 1;
+ break;
+
+ case 'X':
+ /* This is used for a MATCH_SCRATCH in the cases when
+ we don't actually need anything. So anything goes
+ any time. */
+ win = 1;
+ break;
+
+ case TARGET_MEM_CONSTRAINT:
+ /* Memory operands must be valid, to the extent
+ required by STRICT. */
+ if (MEM_P (op))
+ {
+ if (strict > 0
+ && !strict_memory_address_addr_space_p
+ (GET_MODE (op), XEXP (op, 0),
+ MEM_ADDR_SPACE (op)))
+ break;
+ if (strict == 0
+ && !memory_address_addr_space_p
+ (GET_MODE (op), XEXP (op, 0),
+ MEM_ADDR_SPACE (op)))
+ break;
+ win = 1;
+ }
+ /* Before reload, accept what reload can turn into mem. */
+ else if (strict < 0 && CONSTANT_P (op))
+ win = 1;
+ /* During reload, accept a pseudo */
+ else if (reload_in_progress && REG_P (op)
+ && REGNO (op) >= FIRST_PSEUDO_REGISTER)
+ win = 1;
+ break;
+
+ case '<':
+ if (MEM_P (op)
+ && (GET_CODE (XEXP (op, 0)) == PRE_DEC
+ || GET_CODE (XEXP (op, 0)) == POST_DEC))
+ win = 1;
+ break;
+
+ case '>':
+ if (MEM_P (op)
+ && (GET_CODE (XEXP (op, 0)) == PRE_INC
+ || GET_CODE (XEXP (op, 0)) == POST_INC))
+ win = 1;
+ break;
+
+ case 'E':
+ case 'F':
+ if (CONST_DOUBLE_AS_FLOAT_P (op)
+ || (GET_CODE (op) == CONST_VECTOR
+ && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
+ win = 1;
+ break;
+
+ case 'G':
+ case 'H':
+ if (CONST_DOUBLE_AS_FLOAT_P (op)
+ && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
+ win = 1;
+ break;
+
+ case 's':
+ if (CONST_SCALAR_INT_P (op))
+ break;
+ case 'i':
+ if (CONSTANT_P (op))
+ win = 1;
+ break;
+
+ case 'n':
+ if (CONST_SCALAR_INT_P (op))
+ win = 1;
+ break;
+
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ if (CONST_INT_P (op)
+ && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
+ win = 1;
+ break;
+
+ case 'V':
+ if (MEM_P (op)
+ && ((strict > 0 && ! offsettable_memref_p (op))
+ || (strict < 0
+ && !(CONSTANT_P (op) || MEM_P (op)))
+ || (reload_in_progress
+ && !(REG_P (op)
+ && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
+ win = 1;
+ break;
+
+ case 'o':
+ if ((strict > 0 && offsettable_memref_p (op))
+ || (strict == 0 && offsettable_nonstrict_memref_p (op))
+ /* Before reload, accept what reload can handle. */
+ || (strict < 0
+ && (CONSTANT_P (op) || MEM_P (op)))
+ /* During reload, accept a pseudo */
+ || (reload_in_progress && REG_P (op)
+ && REGNO (op) >= FIRST_PSEUDO_REGISTER))
+ win = 1;
+ break;
+
+ default:
+ {
+ enum reg_class cl;
+
+ cl = (c == 'r'
+ ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
+ if (cl != NO_REGS)
+ {
+ if (strict < 0
+ || (strict == 0
+ && REG_P (op)
+ && REGNO (op) >= FIRST_PSEUDO_REGISTER)
+ || (strict == 0 && GET_CODE (op) == SCRATCH)
+ || (REG_P (op)
+ && reg_fits_class_p (op, cl, offset, mode)))
+ win = 1;
+ }
+#ifdef EXTRA_CONSTRAINT_STR
+ else if (EXTRA_CONSTRAINT_STR (op, c, p))
+ win = 1;
+
+ else if (EXTRA_MEMORY_CONSTRAINT (c, p)
+ /* Every memory operand can be reloaded to fit. */
+ && ((strict < 0 && MEM_P (op))
+ /* Before reload, accept what reload can turn
+ into mem. */
+ || (strict < 0 && CONSTANT_P (op))
+ /* During reload, accept a pseudo */
+ || (reload_in_progress && REG_P (op)
+ && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
+ win = 1;
+ else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
+ /* Every address operand can be reloaded to fit. */
+ && strict < 0)
+ win = 1;
+ /* Cater to architectures like IA-64 that define extra memory
+ constraints without using define_memory_constraint. */
+ else if (reload_in_progress
+ && REG_P (op)
+ && REGNO (op) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (op)] < 0
+ && reg_equiv_mem (REGNO (op)) != 0
+ && EXTRA_CONSTRAINT_STR
+ (reg_equiv_mem (REGNO (op)), c, p))
+ win = 1;
+#endif
+ break;
+ }
+ }
+ while (p += len, c);
+
+ constraints[opno] = p;
+ /* If this operand did not win somehow,
+ this alternative loses. */
+ if (! win)
+ lose = 1;
+ }
+ /* This alternative won; the operands are ok.
+ Change whichever operands this alternative says to change. */
+ if (! lose)
+ {
+ int opno, eopno;
+
+ /* See if any earlyclobber operand conflicts with some other
+ operand. */
+
+ if (strict > 0 && seen_earlyclobber_at >= 0)
+ for (eopno = seen_earlyclobber_at;
+ eopno < recog_data.n_operands;
+ eopno++)
+ /* Ignore earlyclobber operands now in memory,
+ because we would often report failure when we have
+ two memory operands, one of which was formerly a REG. */
+ if (earlyclobber[eopno]
+ && REG_P (recog_data.operand[eopno]))
+ for (opno = 0; opno < recog_data.n_operands; opno++)
+ if ((MEM_P (recog_data.operand[opno])
+ || recog_data.operand_type[opno] != OP_OUT)
+ && opno != eopno
+ /* Ignore things like match_operator operands. */
+ && *recog_data.constraints[opno] != 0
+ && ! (matching_operands[opno] == eopno
+ && operands_match_p (recog_data.operand[opno],
+ recog_data.operand[eopno]))
+ && ! safe_from_earlyclobber (recog_data.operand[opno],
+ recog_data.operand[eopno]))
+ lose = 1;
+
+ if (! lose)
+ {
+ while (--funny_match_index >= 0)
+ {
+ recog_data.operand[funny_match[funny_match_index].other]
+ = recog_data.operand[funny_match[funny_match_index].this_op];
+ }
+
+#ifdef AUTO_INC_DEC
+ /* For operands without < or > constraints reject side-effects. */
+ if (recog_data.is_asm)
+ {
+ for (opno = 0; opno < recog_data.n_operands; opno++)
+ if (MEM_P (recog_data.operand[opno]))
+ switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
+ {
+ case PRE_INC:
+ case POST_INC:
+ case PRE_DEC:
+ case POST_DEC:
+ case PRE_MODIFY:
+ case POST_MODIFY:
+ if (strchr (recog_data.constraints[opno], '<') == NULL
+ && strchr (recog_data.constraints[opno], '>')
+ == NULL)
+ return 0;
+ break;
+ default:
+ break;
+ }
+ }
+#endif
+ return 1;
+ }
+ }
+
+ which_alternative++;
+ }
+ while (which_alternative < recog_data.n_alternatives);
+
+ which_alternative = -1;
+ /* If we are about to reject this, but we are not to test strictly,
+ try a very loose test. Only return failure if it fails also. */
+ if (strict == 0)
+ return constrain_operands (-1);
+ else
+ return 0;
+}
+
+/* Return true iff OPERAND (assumed to be a REG rtx)
+ is a hard reg in class CLASS when its regno is offset by OFFSET
+ and changed to mode MODE.
+ If REG occupies multiple hard regs, all of them must be in CLASS. */
+
+bool
+reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
+ enum machine_mode mode)
+{
+ unsigned int regno = REGNO (operand);
+
+ if (cl == NO_REGS)
+ return false;
+
+ /* Regno must not be a pseudo register. Offset may be negative. */
+ return (HARD_REGISTER_NUM_P (regno)
+ && HARD_REGISTER_NUM_P (regno + offset)
+ && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
+ regno + offset));
+}
+
+/* Split single instruction. Helper function for split_all_insns and
+ split_all_insns_noflow. Return last insn in the sequence if successful,
+ or NULL if unsuccessful. */
+
+static rtx
+split_insn (rtx insn)
+{
+ /* Split insns here to get max fine-grain parallelism. */
+ rtx first = PREV_INSN (insn);
+ rtx last = try_split (PATTERN (insn), insn, 1);
+ rtx insn_set, last_set, note;
+
+ if (last == insn)
+ return NULL_RTX;
+
+ /* If the original instruction was a single set that was known to be
+ equivalent to a constant, see if we can say the same about the last
+ instruction in the split sequence. The two instructions must set
+ the same destination. */
+ insn_set = single_set (insn);
+ if (insn_set)
+ {
+ last_set = single_set (last);
+ if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
+ {
+ note = find_reg_equal_equiv_note (insn);
+ if (note && CONSTANT_P (XEXP (note, 0)))
+ set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
+ else if (CONSTANT_P (SET_SRC (insn_set)))
+ set_unique_reg_note (last, REG_EQUAL,
+ copy_rtx (SET_SRC (insn_set)));
+ }
+ }
+
+ /* try_split returns the NOTE that INSN became. */
+ SET_INSN_DELETED (insn);
+
+ /* ??? Coddle to md files that generate subregs in post-reload
+ splitters instead of computing the proper hard register. */
+ if (reload_completed && first != last)
+ {
+ first = NEXT_INSN (first);
+ for (;;)
+ {
+ if (INSN_P (first))
+ cleanup_subreg_operands (first);
+ if (first == last)
+ break;
+ first = NEXT_INSN (first);
+ }
+ }
+
+ return last;
+}
+
+/* Split all insns in the function. If UPD_LIFE, update life info after. */
+
+void
+split_all_insns (void)
+{
+ sbitmap blocks;
+ bool changed;
+ basic_block bb;
+
+ blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
+ bitmap_clear (blocks);
+ changed = false;
+
+ FOR_EACH_BB_REVERSE_FN (bb, cfun)
+ {
+ rtx insn, next;
+ bool finish = false;
+
+ rtl_profile_for_bb (bb);
+ for (insn = BB_HEAD (bb); !finish ; insn = next)
+ {
+ /* Can't use `next_real_insn' because that might go across
+ CODE_LABELS and short-out basic blocks. */
+ next = NEXT_INSN (insn);
+ finish = (insn == BB_END (bb));
+ if (INSN_P (insn))
+ {
+ rtx set = single_set (insn);
+
+ /* Don't split no-op move insns. These should silently
+ disappear later in final. Splitting such insns would
+ break the code that handles LIBCALL blocks. */
+ if (set && set_noop_p (set))
+ {
+ /* Nops get in the way while scheduling, so delete them
+ now if register allocation has already been done. It
+ is too risky to try to do this before register
+ allocation, and there are unlikely to be very many
+ nops then anyways. */
+ if (reload_completed)
+ delete_insn_and_edges (insn);
+ }
+ else
+ {
+ if (split_insn (insn))
+ {
+ bitmap_set_bit (blocks, bb->index);
+ changed = true;
+ }
+ }
+ }
+ }
+ }
+
+ default_rtl_profile ();
+ if (changed)
+ find_many_sub_basic_blocks (blocks);
+
+#ifdef ENABLE_CHECKING
+ verify_flow_info ();
+#endif
+
+ sbitmap_free (blocks);
+}
+
+/* Same as split_all_insns, but do not expect CFG to be available.
+ Used by machine dependent reorg passes. */
+
+unsigned int
+split_all_insns_noflow (void)
+{
+ rtx next, insn;
+
+ for (insn = get_insns (); insn; insn = next)
+ {
+ next = NEXT_INSN (insn);
+ if (INSN_P (insn))
+ {
+ /* Don't split no-op move insns. These should silently
+ disappear later in final. Splitting such insns would
+ break the code that handles LIBCALL blocks. */
+ rtx set = single_set (insn);
+ if (set && set_noop_p (set))
+ {
+ /* Nops get in the way while scheduling, so delete them
+ now if register allocation has already been done. It
+ is too risky to try to do this before register
+ allocation, and there are unlikely to be very many
+ nops then anyways.
+
+ ??? Should we use delete_insn when the CFG isn't valid? */
+ if (reload_completed)
+ delete_insn_and_edges (insn);
+ }
+ else
+ split_insn (insn);
+ }
+ }
+ return 0;
+}
+
+#ifdef HAVE_peephole2
+struct peep2_insn_data
+{
+ rtx insn;
+ regset live_before;
+};
+
+static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
+static int peep2_current;
+
+static bool peep2_do_rebuild_jump_labels;
+static bool peep2_do_cleanup_cfg;
+
+/* The number of instructions available to match a peep2. */
+int peep2_current_count;
+
+/* A non-insn marker indicating the last insn of the block.
+ The live_before regset for this element is correct, indicating
+ DF_LIVE_OUT for the block. */
+#define PEEP2_EOB pc_rtx
+
+/* Wrap N to fit into the peep2_insn_data buffer. */
+
+static int
+peep2_buf_position (int n)
+{
+ if (n >= MAX_INSNS_PER_PEEP2 + 1)
+ n -= MAX_INSNS_PER_PEEP2 + 1;
+ return n;
+}
+
+/* Return the Nth non-note insn after `current', or return NULL_RTX if it
+ does not exist. Used by the recognizer to find the next insn to match
+ in a multi-insn pattern. */
+
+rtx
+peep2_next_insn (int n)
+{
+ gcc_assert (n <= peep2_current_count);
+
+ n = peep2_buf_position (peep2_current + n);
+
+ return peep2_insn_data[n].insn;
+}
+
+/* Return true if REGNO is dead before the Nth non-note insn
+ after `current'. */
+
+int
+peep2_regno_dead_p (int ofs, int regno)
+{
+ gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
+
+ ofs = peep2_buf_position (peep2_current + ofs);
+
+ gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
+
+ return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
+}
+
+/* Similarly for a REG. */
+
+int
+peep2_reg_dead_p (int ofs, rtx reg)
+{
+ int regno, n;
+
+ gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
+
+ ofs = peep2_buf_position (peep2_current + ofs);
+
+ gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
+
+ regno = REGNO (reg);
+ n = hard_regno_nregs[regno][GET_MODE (reg)];
+ while (--n >= 0)
+ if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
+ return 0;
+ return 1;
+}
+
+/* Regno offset to be used in the register search. */
+static int search_ofs;
+
+/* Try to find a hard register of mode MODE, matching the register class in
+ CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
+ remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
+ in which case the only condition is that the register must be available
+ before CURRENT_INSN.
+ Registers that already have bits set in REG_SET will not be considered.
+
+ If an appropriate register is available, it will be returned and the
+ corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
+ returned. */
+
+rtx
+peep2_find_free_register (int from, int to, const char *class_str,
+ enum machine_mode mode, HARD_REG_SET *reg_set)
+{
+ enum reg_class cl;
+ HARD_REG_SET live;
+ df_ref *def_rec;
+ int i;
+
+ gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
+ gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
+
+ from = peep2_buf_position (peep2_current + from);
+ to = peep2_buf_position (peep2_current + to);
+
+ gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
+ REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
+
+ while (from != to)
+ {
+ gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
+
+ /* Don't use registers set or clobbered by the insn. */
+ for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
+ *def_rec; def_rec++)
+ SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
+
+ from = peep2_buf_position (from + 1);
+ }
+
+ cl = (class_str[0] == 'r' ? GENERAL_REGS
+ : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ int raw_regno, regno, success, j;
+
+ /* Distribute the free registers as much as possible. */
+ raw_regno = search_ofs + i;
+ if (raw_regno >= FIRST_PSEUDO_REGISTER)
+ raw_regno -= FIRST_PSEUDO_REGISTER;
+#ifdef REG_ALLOC_ORDER
+ regno = reg_alloc_order[raw_regno];
+#else
+ regno = raw_regno;
+#endif
+
+ /* Can it support the mode we need? */
+ if (! HARD_REGNO_MODE_OK (regno, mode))
+ continue;
+
+ success = 1;
+ for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
+ {
+ /* Don't allocate fixed registers. */
+ if (fixed_regs[regno + j])
+ {
+ success = 0;
+ break;
+ }
+ /* Don't allocate global registers. */
+ if (global_regs[regno + j])
+ {
+ success = 0;
+ break;
+ }
+ /* Make sure the register is of the right class. */
+ if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
+ {
+ success = 0;
+ break;
+ }
+ /* And that we don't create an extra save/restore. */
+ if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
+ {
+ success = 0;
+ break;
+ }
+
+ if (! targetm.hard_regno_scratch_ok (regno + j))
+ {
+ success = 0;
+ break;
+ }
+
+ /* And we don't clobber traceback for noreturn functions. */
+ if ((regno + j == FRAME_POINTER_REGNUM
+ || regno + j == HARD_FRAME_POINTER_REGNUM)
+ && (! reload_completed || frame_pointer_needed))
+ {
+ success = 0;
+ break;
+ }
+
+ if (TEST_HARD_REG_BIT (*reg_set, regno + j)
+ || TEST_HARD_REG_BIT (live, regno + j))
+ {
+ success = 0;
+ break;
+ }
+ }
+
+ if (success)
+ {
+ add_to_hard_reg_set (reg_set, mode, regno);
+
+ /* Start the next search with the next register. */
+ if (++raw_regno >= FIRST_PSEUDO_REGISTER)
+ raw_regno = 0;
+ search_ofs = raw_regno;
+
+ return gen_rtx_REG (mode, regno);
+ }
+ }
+
+ search_ofs = 0;
+ return NULL_RTX;
+}
+
+/* Forget all currently tracked instructions, only remember current
+ LIVE regset. */
+
+static void
+peep2_reinit_state (regset live)
+{
+ int i;
+
+ /* Indicate that all slots except the last holds invalid data. */
+ for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
+ peep2_insn_data[i].insn = NULL_RTX;
+ peep2_current_count = 0;
+
+ /* Indicate that the last slot contains live_after data. */
+ peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
+ peep2_current = MAX_INSNS_PER_PEEP2;
+
+ COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
+}
+
+/* While scanning basic block BB, we found a match of length MATCH_LEN,
+ starting at INSN. Perform the replacement, removing the old insns and
+ replacing them with ATTEMPT. Returns the last insn emitted, or NULL
+ if the replacement is rejected. */
+
+static rtx
+peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
+{
+ int i;
+ rtx last, eh_note, as_note, before_try, x;
+ rtx old_insn, new_insn;
+ bool was_call = false;
+
+ /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
+ match more than one insn, or to be split into more than one insn. */
+ old_insn = peep2_insn_data[peep2_current].insn;
+ if (RTX_FRAME_RELATED_P (old_insn))
+ {
+ bool any_note = false;
+ rtx note;
+
+ if (match_len != 0)
+ return NULL;
+
+ /* Look for one "active" insn. I.e. ignore any "clobber" insns that
+ may be in the stream for the purpose of register allocation. */
+ if (active_insn_p (attempt))
+ new_insn = attempt;
+ else
+ new_insn = next_active_insn (attempt);
+ if (next_active_insn (new_insn))
+ return NULL;
+
+ /* We have a 1-1 replacement. Copy over any frame-related info. */
+ RTX_FRAME_RELATED_P (new_insn) = 1;
+
+ /* Allow the backend to fill in a note during the split. */
+ for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
+ switch (REG_NOTE_KIND (note))
+ {
+ case REG_FRAME_RELATED_EXPR:
+ case REG_CFA_DEF_CFA:
+ case REG_CFA_ADJUST_CFA:
+ case REG_CFA_OFFSET:
+ case REG_CFA_REGISTER:
+ case REG_CFA_EXPRESSION:
+ case REG_CFA_RESTORE:
+ case REG_CFA_SET_VDRAP:
+ any_note = true;
+ break;
+ default:
+ break;
+ }
+
+ /* If the backend didn't supply a note, copy one over. */
+ if (!any_note)
+ for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
+ switch (REG_NOTE_KIND (note))
+ {
+ case REG_FRAME_RELATED_EXPR:
+ case REG_CFA_DEF_CFA:
+ case REG_CFA_ADJUST_CFA:
+ case REG_CFA_OFFSET:
+ case REG_CFA_REGISTER:
+ case REG_CFA_EXPRESSION:
+ case REG_CFA_RESTORE:
+ case REG_CFA_SET_VDRAP:
+ add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
+ any_note = true;
+ break;
+ default:
+ break;
+ }
+
+ /* If there still isn't a note, make sure the unwind info sees the
+ same expression as before the split. */
+ if (!any_note)
+ {
+ rtx old_set, new_set;
+
+ /* The old insn had better have been simple, or annotated. */
+ old_set = single_set (old_insn);
+ gcc_assert (old_set != NULL);
+
+ new_set = single_set (new_insn);
+ if (!new_set || !rtx_equal_p (new_set, old_set))
+ add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
+ }
+
+ /* Copy prologue/epilogue status. This is required in order to keep
+ proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
+ maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
+ }
+
+ /* If we are splitting a CALL_INSN, look for the CALL_INSN
+ in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
+ cfg-related call notes. */
+ for (i = 0; i <= match_len; ++i)
+ {
+ int j;
+ rtx note;
+
+ j = peep2_buf_position (peep2_current + i);
+ old_insn = peep2_insn_data[j].insn;
+ if (!CALL_P (old_insn))
+ continue;
+ was_call = true;
+
+ new_insn = attempt;
+ while (new_insn != NULL_RTX)
+ {
+ if (CALL_P (new_insn))
+ break;
+ new_insn = NEXT_INSN (new_insn);
+ }
+
+ gcc_assert (new_insn != NULL_RTX);
+
+ CALL_INSN_FUNCTION_USAGE (new_insn)
+ = CALL_INSN_FUNCTION_USAGE (old_insn);
+
+ for (note = REG_NOTES (old_insn);
+ note;
+ note = XEXP (note, 1))
+ switch (REG_NOTE_KIND (note))
+ {
+ case REG_NORETURN:
+ case REG_SETJMP:
+ case REG_TM:
+ add_reg_note (new_insn, REG_NOTE_KIND (note),
+ XEXP (note, 0));
+ break;
+ default:
+ /* Discard all other reg notes. */
+ break;
+ }
+
+ /* Croak if there is another call in the sequence. */
+ while (++i <= match_len)
+ {
+ j = peep2_buf_position (peep2_current + i);
+ old_insn = peep2_insn_data[j].insn;
+ gcc_assert (!CALL_P (old_insn));
+ }
+ break;
+ }
+
+ /* If we matched any instruction that had a REG_ARGS_SIZE, then
+ move those notes over to the new sequence. */
+ as_note = NULL;
+ for (i = match_len; i >= 0; --i)
+ {
+ int j = peep2_buf_position (peep2_current + i);
+ old_insn = peep2_insn_data[j].insn;
+
+ as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
+ if (as_note)
+ break;
+ }
+
+ i = peep2_buf_position (peep2_current + match_len);
+ eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
+
+ /* Replace the old sequence with the new. */
+ last = emit_insn_after_setloc (attempt,
+ peep2_insn_data[i].insn,
+ INSN_LOCATION (peep2_insn_data[i].insn));
+ before_try = PREV_INSN (insn);
+ delete_insn_chain (insn, peep2_insn_data[i].insn, false);
+
+ /* Re-insert the EH_REGION notes. */
+ if (eh_note || (was_call && nonlocal_goto_handler_labels))
+ {
+ edge eh_edge;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (eh_edge, ei, bb->succs)
+ if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
+ break;
+
+ if (eh_note)
+ copy_reg_eh_region_note_backward (eh_note, last, before_try);
+
+ if (eh_edge)
+ for (x = last; x != before_try; x = PREV_INSN (x))
+ if (x != BB_END (bb)
+ && (can_throw_internal (x)
+ || can_nonlocal_goto (x)))
+ {
+ edge nfte, nehe;
+ int flags;
+
+ nfte = split_block (bb, x);
+ flags = (eh_edge->flags
+ & (EDGE_EH | EDGE_ABNORMAL));
+ if (CALL_P (x))
+ flags |= EDGE_ABNORMAL_CALL;
+ nehe = make_edge (nfte->src, eh_edge->dest,
+ flags);
+
+ nehe->probability = eh_edge->probability;
+ nfte->probability
+ = REG_BR_PROB_BASE - nehe->probability;
+
+ peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
+ bb = nfte->src;
+ eh_edge = nehe;
+ }
+
+ /* Converting possibly trapping insn to non-trapping is
+ possible. Zap dummy outgoing edges. */
+ peep2_do_cleanup_cfg |= purge_dead_edges (bb);
+ }
+
+ /* Re-insert the ARGS_SIZE notes. */
+ if (as_note)
+ fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
+
+ /* If we generated a jump instruction, it won't have
+ JUMP_LABEL set. Recompute after we're done. */
+ for (x = last; x != before_try; x = PREV_INSN (x))
+ if (JUMP_P (x))
+ {
+ peep2_do_rebuild_jump_labels = true;
+ break;
+ }
+
+ return last;
+}
+
+/* After performing a replacement in basic block BB, fix up the life
+ information in our buffer. LAST is the last of the insns that we
+ emitted as a replacement. PREV is the insn before the start of
+ the replacement. MATCH_LEN is the number of instructions that were
+ matched, and which now need to be replaced in the buffer. */
+
+static void
+peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
+{
+ int i = peep2_buf_position (peep2_current + match_len + 1);
+ rtx x;
+ regset_head live;
+
+ INIT_REG_SET (&live);
+ COPY_REG_SET (&live, peep2_insn_data[i].live_before);
+
+ gcc_assert (peep2_current_count >= match_len + 1);
+ peep2_current_count -= match_len + 1;
+
+ x = last;
+ do
+ {
+ if (INSN_P (x))
+ {
+ df_insn_rescan (x);
+ if (peep2_current_count < MAX_INSNS_PER_PEEP2)
+ {
+ peep2_current_count++;
+ if (--i < 0)
+ i = MAX_INSNS_PER_PEEP2;
+ peep2_insn_data[i].insn = x;
+ df_simulate_one_insn_backwards (bb, x, &live);
+ COPY_REG_SET (peep2_insn_data[i].live_before, &live);
+ }
+ }
+ x = PREV_INSN (x);
+ }
+ while (x != prev);
+ CLEAR_REG_SET (&live);
+
+ peep2_current = i;
+}
+
+/* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
+ Return true if we added it, false otherwise. The caller will try to match
+ peepholes against the buffer if we return false; otherwise it will try to
+ add more instructions to the buffer. */
+
+static bool
+peep2_fill_buffer (basic_block bb, rtx insn, regset live)
+{
+ int pos;
+
+ /* Once we have filled the maximum number of insns the buffer can hold,
+ allow the caller to match the insns against peepholes. We wait until
+ the buffer is full in case the target has similar peepholes of different
+ length; we always want to match the longest if possible. */
+ if (peep2_current_count == MAX_INSNS_PER_PEEP2)
+ return false;
+
+ /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
+ any other pattern, lest it change the semantics of the frame info. */
+ if (RTX_FRAME_RELATED_P (insn))
+ {
+ /* Let the buffer drain first. */
+ if (peep2_current_count > 0)
+ return false;
+ /* Now the insn will be the only thing in the buffer. */
+ }
+
+ pos = peep2_buf_position (peep2_current + peep2_current_count);
+ peep2_insn_data[pos].insn = insn;
+ COPY_REG_SET (peep2_insn_data[pos].live_before, live);
+ peep2_current_count++;
+
+ df_simulate_one_insn_forwards (bb, insn, live);
+ return true;
+}
+
+/* Perform the peephole2 optimization pass. */
+
+static void
+peephole2_optimize (void)
+{
+ rtx insn;
+ bitmap live;
+ int i;
+ basic_block bb;
+
+ peep2_do_cleanup_cfg = false;
+ peep2_do_rebuild_jump_labels = false;
+
+ df_set_flags (DF_LR_RUN_DCE);
+ df_note_add_problem ();
+ df_analyze ();
+
+ /* Initialize the regsets we're going to use. */
+ for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
+ peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
+ search_ofs = 0;
+ live = BITMAP_ALLOC (&reg_obstack);
+
+ FOR_EACH_BB_REVERSE_FN (bb, cfun)
+ {
+ bool past_end = false;
+ int pos;
+
+ rtl_profile_for_bb (bb);
+
+ /* Start up propagation. */
+ bitmap_copy (live, DF_LR_IN (bb));
+ df_simulate_initialize_forwards (bb, live);
+ peep2_reinit_state (live);
+
+ insn = BB_HEAD (bb);
+ for (;;)
+ {
+ rtx attempt, head;
+ int match_len;
+
+ if (!past_end && !NONDEBUG_INSN_P (insn))
+ {
+ next_insn:
+ insn = NEXT_INSN (insn);
+ if (insn == NEXT_INSN (BB_END (bb)))
+ past_end = true;
+ continue;
+ }
+ if (!past_end && peep2_fill_buffer (bb, insn, live))
+ goto next_insn;
+
+ /* If we did not fill an empty buffer, it signals the end of the
+ block. */
+ if (peep2_current_count == 0)
+ break;
+
+ /* The buffer filled to the current maximum, so try to match. */
+
+ pos = peep2_buf_position (peep2_current + peep2_current_count);
+ peep2_insn_data[pos].insn = PEEP2_EOB;
+ COPY_REG_SET (peep2_insn_data[pos].live_before, live);
+
+ /* Match the peephole. */
+ head = peep2_insn_data[peep2_current].insn;
+ attempt = peephole2_insns (PATTERN (head), head, &match_len);
+ if (attempt != NULL)
+ {
+ rtx last = peep2_attempt (bb, head, match_len, attempt);
+ if (last)
+ {
+ peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
+ continue;
+ }
+ }
+
+ /* No match: advance the buffer by one insn. */
+ peep2_current = peep2_buf_position (peep2_current + 1);
+ peep2_current_count--;
+ }
+ }
+
+ default_rtl_profile ();
+ for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
+ BITMAP_FREE (peep2_insn_data[i].live_before);
+ BITMAP_FREE (live);
+ if (peep2_do_rebuild_jump_labels)
+ rebuild_jump_labels (get_insns ());
+}
+#endif /* HAVE_peephole2 */
+
+/* Common predicates for use with define_bypass. */
+
+/* True if the dependency between OUT_INSN and IN_INSN is on the store
+ data not the address operand(s) of the store. IN_INSN and OUT_INSN
+ must be either a single_set or a PARALLEL with SETs inside. */
+
+int
+store_data_bypass_p (rtx out_insn, rtx in_insn)
+{
+ rtx out_set, in_set;
+ rtx out_pat, in_pat;
+ rtx out_exp, in_exp;
+ int i, j;
+
+ in_set = single_set (in_insn);
+ if (in_set)
+ {
+ if (!MEM_P (SET_DEST (in_set)))
+ return false;
+
+ out_set = single_set (out_insn);
+ if (out_set)
+ {
+ if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
+ return false;
+ }
+ else
+ {
+ out_pat = PATTERN (out_insn);
+
+ if (GET_CODE (out_pat) != PARALLEL)
+ return false;
+
+ for (i = 0; i < XVECLEN (out_pat, 0); i++)
+ {
+ out_exp = XVECEXP (out_pat, 0, i);
+
+ if (GET_CODE (out_exp) == CLOBBER)
+ continue;
+
+ gcc_assert (GET_CODE (out_exp) == SET);
+
+ if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
+ return false;
+ }
+ }
+ }
+ else
+ {
+ in_pat = PATTERN (in_insn);
+ gcc_assert (GET_CODE (in_pat) == PARALLEL);
+
+ for (i = 0; i < XVECLEN (in_pat, 0); i++)
+ {
+ in_exp = XVECEXP (in_pat, 0, i);
+
+ if (GET_CODE (in_exp) == CLOBBER)
+ continue;
+
+ gcc_assert (GET_CODE (in_exp) == SET);
+
+ if (!MEM_P (SET_DEST (in_exp)))
+ return false;
+
+ out_set = single_set (out_insn);
+ if (out_set)
+ {
+ if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
+ return false;
+ }
+ else
+ {
+ out_pat = PATTERN (out_insn);
+ gcc_assert (GET_CODE (out_pat) == PARALLEL);
+
+ for (j = 0; j < XVECLEN (out_pat, 0); j++)
+ {
+ out_exp = XVECEXP (out_pat, 0, j);
+
+ if (GET_CODE (out_exp) == CLOBBER)
+ continue;
+
+ gcc_assert (GET_CODE (out_exp) == SET);
+
+ if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
+ condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
+ or multiple set; IN_INSN should be single_set for truth, but for convenience
+ of insn categorization may be any JUMP or CALL insn. */
+
+int
+if_test_bypass_p (rtx out_insn, rtx in_insn)
+{
+ rtx out_set, in_set;
+
+ in_set = single_set (in_insn);
+ if (! in_set)
+ {
+ gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
+ return false;
+ }
+
+ if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
+ return false;
+ in_set = SET_SRC (in_set);
+
+ out_set = single_set (out_insn);
+ if (out_set)
+ {
+ if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
+ || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
+ return false;
+ }
+ else
+ {
+ rtx out_pat;
+ int i;
+
+ out_pat = PATTERN (out_insn);
+ gcc_assert (GET_CODE (out_pat) == PARALLEL);
+
+ for (i = 0; i < XVECLEN (out_pat, 0); i++)
+ {
+ rtx exp = XVECEXP (out_pat, 0, i);
+
+ if (GET_CODE (exp) == CLOBBER)
+ continue;
+
+ gcc_assert (GET_CODE (exp) == SET);
+
+ if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
+ || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool
+gate_handle_peephole2 (void)
+{
+ return (optimize > 0 && flag_peephole2);
+}
+
+static unsigned int
+rest_of_handle_peephole2 (void)
+{
+#ifdef HAVE_peephole2
+ peephole2_optimize ();
+#endif
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_peephole2 =
+{
+ RTL_PASS, /* type */
+ "peephole2", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_PEEPHOLE2, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
+};
+
+class pass_peephole2 : public rtl_opt_pass
+{
+public:
+ pass_peephole2 (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_peephole2, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ /* The epiphany backend creates a second instance of this pass, so we need
+ a clone method. */
+ opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
+ bool gate () { return gate_handle_peephole2 (); }
+ unsigned int execute () { return rest_of_handle_peephole2 (); }
+
+}; // class pass_peephole2
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_peephole2 (gcc::context *ctxt)
+{
+ return new pass_peephole2 (ctxt);
+}
+
+static unsigned int
+rest_of_handle_split_all_insns (void)
+{
+ split_all_insns ();
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_split_all_insns =
+{
+ RTL_PASS, /* type */
+ "split1", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_split_all_insns : public rtl_opt_pass
+{
+public:
+ pass_split_all_insns (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_split_all_insns, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ /* The epiphany backend creates a second instance of this pass, so
+ we need a clone method. */
+ opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
+ unsigned int execute () { return rest_of_handle_split_all_insns (); }
+
+}; // class pass_split_all_insns
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_split_all_insns (gcc::context *ctxt)
+{
+ return new pass_split_all_insns (ctxt);
+}
+
+static unsigned int
+rest_of_handle_split_after_reload (void)
+{
+ /* If optimizing, then go ahead and split insns now. */
+#ifndef STACK_REGS
+ if (optimize > 0)
+#endif
+ split_all_insns ();
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_split_after_reload =
+{
+ RTL_PASS, /* type */
+ "split2", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_split_after_reload : public rtl_opt_pass
+{
+public:
+ pass_split_after_reload (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_split_after_reload, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () { return rest_of_handle_split_after_reload (); }
+
+}; // class pass_split_after_reload
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_split_after_reload (gcc::context *ctxt)
+{
+ return new pass_split_after_reload (ctxt);
+}
+
+static bool
+gate_handle_split_before_regstack (void)
+{
+#if HAVE_ATTR_length && defined (STACK_REGS)
+ /* If flow2 creates new instructions which need splitting
+ and scheduling after reload is not done, they might not be
+ split until final which doesn't allow splitting
+ if HAVE_ATTR_length. */
+# ifdef INSN_SCHEDULING
+ return (optimize && !flag_schedule_insns_after_reload);
+# else
+ return (optimize);
+# endif
+#else
+ return 0;
+#endif
+}
+
+static unsigned int
+rest_of_handle_split_before_regstack (void)
+{
+ split_all_insns ();
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_split_before_regstack =
+{
+ RTL_PASS, /* type */
+ "split3", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_split_before_regstack : public rtl_opt_pass
+{
+public:
+ pass_split_before_regstack (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_handle_split_before_regstack (); }
+ unsigned int execute () {
+ return rest_of_handle_split_before_regstack ();
+ }
+
+}; // class pass_split_before_regstack
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_split_before_regstack (gcc::context *ctxt)
+{
+ return new pass_split_before_regstack (ctxt);
+}
+
+static bool
+gate_handle_split_before_sched2 (void)
+{
+#ifdef INSN_SCHEDULING
+ return optimize > 0 && flag_schedule_insns_after_reload;
+#else
+ return 0;
+#endif
+}
+
+static unsigned int
+rest_of_handle_split_before_sched2 (void)
+{
+#ifdef INSN_SCHEDULING
+ split_all_insns ();
+#endif
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_split_before_sched2 =
+{
+ RTL_PASS, /* type */
+ "split4", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_verify_flow, /* todo_flags_finish */
+};
+
+class pass_split_before_sched2 : public rtl_opt_pass
+{
+public:
+ pass_split_before_sched2 (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_handle_split_before_sched2 (); }
+ unsigned int execute () { return rest_of_handle_split_before_sched2 (); }
+
+}; // class pass_split_before_sched2
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_split_before_sched2 (gcc::context *ctxt)
+{
+ return new pass_split_before_sched2 (ctxt);
+}
+
+/* The placement of the splitting that we do for shorten_branches
+ depends on whether regstack is used by the target or not. */
+static bool
+gate_do_final_split (void)
+{
+#if HAVE_ATTR_length && !defined (STACK_REGS)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+namespace {
+
+const pass_data pass_data_split_for_shorten_branches =
+{
+ RTL_PASS, /* type */
+ "split5", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_verify_rtl_sharing, /* todo_flags_finish */
+};
+
+class pass_split_for_shorten_branches : public rtl_opt_pass
+{
+public:
+ pass_split_for_shorten_branches (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_do_final_split (); }
+ unsigned int execute () { return split_all_insns_noflow (); }
+
+}; // class pass_split_for_shorten_branches
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_split_for_shorten_branches (gcc::context *ctxt)
+{
+ return new pass_split_for_shorten_branches (ctxt);
+}