aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/lower-subreg.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/lower-subreg.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/lower-subreg.c')
-rw-r--r--gcc-4.9/gcc/lower-subreg.c1791
1 files changed, 1791 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/lower-subreg.c b/gcc-4.9/gcc/lower-subreg.c
new file mode 100644
index 000000000..a1331c005
--- /dev/null
+++ b/gcc-4.9/gcc/lower-subreg.c
@@ -0,0 +1,1791 @@
+/* Decompose multiword subregs.
+ Copyright (C) 2007-2014 Free Software Foundation, Inc.
+ Contributed by Richard Henderson <rth@redhat.com>
+ Ian Lance Taylor <iant@google.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "machmode.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "flags.h"
+#include "insn-config.h"
+#include "obstack.h"
+#include "basic-block.h"
+#include "recog.h"
+#include "bitmap.h"
+#include "dce.h"
+#include "expr.h"
+#include "except.h"
+#include "regs.h"
+#include "tree-pass.h"
+#include "df.h"
+#include "lower-subreg.h"
+
+#ifdef STACK_GROWS_DOWNWARD
+# undef STACK_GROWS_DOWNWARD
+# define STACK_GROWS_DOWNWARD 1
+#else
+# define STACK_GROWS_DOWNWARD 0
+#endif
+
+
+/* Decompose multi-word pseudo-registers into individual
+ pseudo-registers when possible and profitable. This is possible
+ when all the uses of a multi-word register are via SUBREG, or are
+ copies of the register to another location. Breaking apart the
+ register permits more CSE and permits better register allocation.
+ This is profitable if the machine does not have move instructions
+ to do this.
+
+ This pass only splits moves with modes that are wider than
+ word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
+ integer modes that are twice the width of word_mode. The latter
+ could be generalized if there was a need to do this, but the trend in
+ architectures is to not need this.
+
+ There are two useful preprocessor defines for use by maintainers:
+
+ #define LOG_COSTS 1
+
+ if you wish to see the actual cost estimates that are being used
+ for each mode wider than word mode and the cost estimates for zero
+ extension and the shifts. This can be useful when port maintainers
+ are tuning insn rtx costs.
+
+ #define FORCE_LOWERING 1
+
+ if you wish to test the pass with all the transformation forced on.
+ This can be useful for finding bugs in the transformations. */
+
+#define LOG_COSTS 0
+#define FORCE_LOWERING 0
+
+/* Bit N in this bitmap is set if regno N is used in a context in
+ which we can decompose it. */
+static bitmap decomposable_context;
+
+/* Bit N in this bitmap is set if regno N is used in a context in
+ which it can not be decomposed. */
+static bitmap non_decomposable_context;
+
+/* Bit N in this bitmap is set if regno N is used in a subreg
+ which changes the mode but not the size. This typically happens
+ when the register accessed as a floating-point value; we want to
+ avoid generating accesses to its subwords in integer modes. */
+static bitmap subreg_context;
+
+/* Bit N in the bitmap in element M of this array is set if there is a
+ copy from reg M to reg N. */
+static vec<bitmap> reg_copy_graph;
+
+struct target_lower_subreg default_target_lower_subreg;
+#if SWITCHABLE_TARGET
+struct target_lower_subreg *this_target_lower_subreg
+ = &default_target_lower_subreg;
+#endif
+
+#define twice_word_mode \
+ this_target_lower_subreg->x_twice_word_mode
+#define choices \
+ this_target_lower_subreg->x_choices
+
+/* RTXes used while computing costs. */
+struct cost_rtxes {
+ /* Source and target registers. */
+ rtx source;
+ rtx target;
+
+ /* A twice_word_mode ZERO_EXTEND of SOURCE. */
+ rtx zext;
+
+ /* A shift of SOURCE. */
+ rtx shift;
+
+ /* A SET of TARGET. */
+ rtx set;
+};
+
+/* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
+ rtxes in RTXES. SPEED_P selects between the speed and size cost. */
+
+static int
+shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
+ enum machine_mode mode, int op1)
+{
+ PUT_CODE (rtxes->shift, code);
+ PUT_MODE (rtxes->shift, mode);
+ PUT_MODE (rtxes->source, mode);
+ XEXP (rtxes->shift, 1) = GEN_INT (op1);
+ return set_src_cost (rtxes->shift, speed_p);
+}
+
+/* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
+ to true if it is profitable to split a double-word CODE shift
+ of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
+ for speed or size profitability.
+
+ Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
+ the cost of moving zero into a word-mode register. WORD_MOVE_COST
+ is the cost of moving between word registers. */
+
+static void
+compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
+ bool *splitting, enum rtx_code code,
+ int word_move_zero_cost, int word_move_cost)
+{
+ int wide_cost, narrow_cost, upper_cost, i;
+
+ for (i = 0; i < BITS_PER_WORD; i++)
+ {
+ wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
+ i + BITS_PER_WORD);
+ if (i == 0)
+ narrow_cost = word_move_cost;
+ else
+ narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);
+
+ if (code != ASHIFTRT)
+ upper_cost = word_move_zero_cost;
+ else if (i == BITS_PER_WORD - 1)
+ upper_cost = word_move_cost;
+ else
+ upper_cost = shift_cost (speed_p, rtxes, code, word_mode,
+ BITS_PER_WORD - 1);
+
+ if (LOG_COSTS)
+ fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
+ GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
+ i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost);
+
+ if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost)
+ splitting[i] = true;
+ }
+}
+
+/* Compute what we should do when optimizing for speed or size; SPEED_P
+ selects which. Use RTXES for computing costs. */
+
+static void
+compute_costs (bool speed_p, struct cost_rtxes *rtxes)
+{
+ unsigned int i;
+ int word_move_zero_cost, word_move_cost;
+
+ PUT_MODE (rtxes->target, word_mode);
+ SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
+ word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p);
+
+ SET_SRC (rtxes->set) = rtxes->source;
+ word_move_cost = set_rtx_cost (rtxes->set, speed_p);
+
+ if (LOG_COSTS)
+ fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
+ GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);
+
+ for (i = 0; i < MAX_MACHINE_MODE; i++)
+ {
+ enum machine_mode mode = (enum machine_mode) i;
+ int factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
+ if (factor > 1)
+ {
+ int mode_move_cost;
+
+ PUT_MODE (rtxes->target, mode);
+ PUT_MODE (rtxes->source, mode);
+ mode_move_cost = set_rtx_cost (rtxes->set, speed_p);
+
+ if (LOG_COSTS)
+ fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
+ GET_MODE_NAME (mode), mode_move_cost,
+ word_move_cost, factor);
+
+ if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
+ {
+ choices[speed_p].move_modes_to_split[i] = true;
+ choices[speed_p].something_to_do = true;
+ }
+ }
+ }
+
+ /* For the moves and shifts, the only case that is checked is one
+ where the mode of the target is an integer mode twice the width
+ of the word_mode.
+
+ If it is not profitable to split a double word move then do not
+ even consider the shifts or the zero extension. */
+ if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
+ {
+ int zext_cost;
+
+ /* The only case here to check to see if moving the upper part with a
+ zero is cheaper than doing the zext itself. */
+ PUT_MODE (rtxes->source, word_mode);
+ zext_cost = set_src_cost (rtxes->zext, speed_p);
+
+ if (LOG_COSTS)
+ fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
+ GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
+ zext_cost, word_move_cost, word_move_zero_cost);
+
+ if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
+ choices[speed_p].splitting_zext = true;
+
+ compute_splitting_shift (speed_p, rtxes,
+ choices[speed_p].splitting_ashift, ASHIFT,
+ word_move_zero_cost, word_move_cost);
+ compute_splitting_shift (speed_p, rtxes,
+ choices[speed_p].splitting_lshiftrt, LSHIFTRT,
+ word_move_zero_cost, word_move_cost);
+ compute_splitting_shift (speed_p, rtxes,
+ choices[speed_p].splitting_ashiftrt, ASHIFTRT,
+ word_move_zero_cost, word_move_cost);
+ }
+}
+
+/* Do one-per-target initialisation. This involves determining
+ which operations on the machine are profitable. If none are found,
+ then the pass just returns when called. */
+
+void
+init_lower_subreg (void)
+{
+ struct cost_rtxes rtxes;
+
+ memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));
+
+ twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode);
+
+ rtxes.target = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER);
+ rtxes.source = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER + 1);
+ rtxes.set = gen_rtx_SET (VOIDmode, rtxes.target, rtxes.source);
+ rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
+ rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);
+
+ if (LOG_COSTS)
+ fprintf (stderr, "\nSize costs\n==========\n\n");
+ compute_costs (false, &rtxes);
+
+ if (LOG_COSTS)
+ fprintf (stderr, "\nSpeed costs\n===========\n\n");
+ compute_costs (true, &rtxes);
+}
+
+static bool
+simple_move_operand (rtx x)
+{
+ if (GET_CODE (x) == SUBREG)
+ x = SUBREG_REG (x);
+
+ if (!OBJECT_P (x))
+ return false;
+
+ if (GET_CODE (x) == LABEL_REF
+ || GET_CODE (x) == SYMBOL_REF
+ || GET_CODE (x) == HIGH
+ || GET_CODE (x) == CONST)
+ return false;
+
+ if (MEM_P (x)
+ && (MEM_VOLATILE_P (x)
+ || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))))
+ return false;
+
+ return true;
+}
+
+/* If INSN is a single set between two objects that we want to split,
+ return the single set. SPEED_P says whether we are optimizing
+ INSN for speed or size.
+
+ INSN should have been passed to recog and extract_insn before this
+ is called. */
+
+static rtx
+simple_move (rtx insn, bool speed_p)
+{
+ rtx x;
+ rtx set;
+ enum machine_mode mode;
+
+ if (recog_data.n_operands != 2)
+ return NULL_RTX;
+
+ set = single_set (insn);
+ if (!set)
+ return NULL_RTX;
+
+ x = SET_DEST (set);
+ if (x != recog_data.operand[0] && x != recog_data.operand[1])
+ return NULL_RTX;
+ if (!simple_move_operand (x))
+ return NULL_RTX;
+
+ x = SET_SRC (set);
+ if (x != recog_data.operand[0] && x != recog_data.operand[1])
+ return NULL_RTX;
+ /* For the src we can handle ASM_OPERANDS, and it is beneficial for
+ things like x86 rdtsc which returns a DImode value. */
+ if (GET_CODE (x) != ASM_OPERANDS
+ && !simple_move_operand (x))
+ return NULL_RTX;
+
+ /* We try to decompose in integer modes, to avoid generating
+ inefficient code copying between integer and floating point
+ registers. That means that we can't decompose if this is a
+ non-integer mode for which there is no integer mode of the same
+ size. */
+ mode = GET_MODE (SET_DEST (set));
+ if (!SCALAR_INT_MODE_P (mode)
+ && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
+ == BLKmode))
+ return NULL_RTX;
+
+ /* Reject PARTIAL_INT modes. They are used for processor specific
+ purposes and it's probably best not to tamper with them. */
+ if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
+ return NULL_RTX;
+
+ if (!choices[speed_p].move_modes_to_split[(int) mode])
+ return NULL_RTX;
+
+ return set;
+}
+
+/* If SET is a copy from one multi-word pseudo-register to another,
+ record that in reg_copy_graph. Return whether it is such a
+ copy. */
+
+static bool
+find_pseudo_copy (rtx set)
+{
+ rtx dest = SET_DEST (set);
+ rtx src = SET_SRC (set);
+ unsigned int rd, rs;
+ bitmap b;
+
+ if (!REG_P (dest) || !REG_P (src))
+ return false;
+
+ rd = REGNO (dest);
+ rs = REGNO (src);
+ if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
+ return false;
+
+ b = reg_copy_graph[rs];
+ if (b == NULL)
+ {
+ b = BITMAP_ALLOC (NULL);
+ reg_copy_graph[rs] = b;
+ }
+
+ bitmap_set_bit (b, rd);
+
+ return true;
+}
+
+/* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
+ where they are copied to another register, add the register to
+ which they are copied to DECOMPOSABLE_CONTEXT. Use
+ NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
+ copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
+
+static void
+propagate_pseudo_copies (void)
+{
+ bitmap queue, propagate;
+
+ queue = BITMAP_ALLOC (NULL);
+ propagate = BITMAP_ALLOC (NULL);
+
+ bitmap_copy (queue, decomposable_context);
+ do
+ {
+ bitmap_iterator iter;
+ unsigned int i;
+
+ bitmap_clear (propagate);
+
+ EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
+ {
+ bitmap b = reg_copy_graph[i];
+ if (b)
+ bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
+ }
+
+ bitmap_and_compl (queue, propagate, decomposable_context);
+ bitmap_ior_into (decomposable_context, propagate);
+ }
+ while (!bitmap_empty_p (queue));
+
+ BITMAP_FREE (queue);
+ BITMAP_FREE (propagate);
+}
+
+/* A pointer to one of these values is passed to
+ find_decomposable_subregs via for_each_rtx. */
+
+enum classify_move_insn
+{
+ /* Not a simple move from one location to another. */
+ NOT_SIMPLE_MOVE,
+ /* A simple move we want to decompose. */
+ DECOMPOSABLE_SIMPLE_MOVE,
+ /* Any other simple move. */
+ SIMPLE_MOVE
+};
+
+/* This is called via for_each_rtx. If we find a SUBREG which we
+ could use to decompose a pseudo-register, set a bit in
+ DECOMPOSABLE_CONTEXT. If we find an unadorned register which is
+ not a simple pseudo-register copy, DATA will point at the type of
+ move, and we set a bit in DECOMPOSABLE_CONTEXT or
+ NON_DECOMPOSABLE_CONTEXT as appropriate. */
+
+static int
+find_decomposable_subregs (rtx *px, void *data)
+{
+ enum classify_move_insn *pcmi = (enum classify_move_insn *) data;
+ rtx x = *px;
+
+ if (x == NULL_RTX)
+ return 0;
+
+ if (GET_CODE (x) == SUBREG)
+ {
+ rtx inner = SUBREG_REG (x);
+ unsigned int regno, outer_size, inner_size, outer_words, inner_words;
+
+ if (!REG_P (inner))
+ return 0;
+
+ regno = REGNO (inner);
+ if (HARD_REGISTER_NUM_P (regno))
+ return -1;
+
+ outer_size = GET_MODE_SIZE (GET_MODE (x));
+ inner_size = GET_MODE_SIZE (GET_MODE (inner));
+ outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ /* We only try to decompose single word subregs of multi-word
+ registers. When we find one, we return -1 to avoid iterating
+ over the inner register.
+
+ ??? This doesn't allow, e.g., DImode subregs of TImode values
+ on 32-bit targets. We would need to record the way the
+ pseudo-register was used, and only decompose if all the uses
+ were the same number and size of pieces. Hopefully this
+ doesn't happen much. */
+
+ if (outer_words == 1 && inner_words > 1)
+ {
+ bitmap_set_bit (decomposable_context, regno);
+ return -1;
+ }
+
+ /* If this is a cast from one mode to another, where the modes
+ have the same size, and they are not tieable, then mark this
+ register as non-decomposable. If we decompose it we are
+ likely to mess up whatever the backend is trying to do. */
+ if (outer_words > 1
+ && outer_size == inner_size
+ && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
+ {
+ bitmap_set_bit (non_decomposable_context, regno);
+ bitmap_set_bit (subreg_context, regno);
+ return -1;
+ }
+ }
+ else if (REG_P (x))
+ {
+ unsigned int regno;
+
+ /* We will see an outer SUBREG before we see the inner REG, so
+ when we see a plain REG here it means a direct reference to
+ the register.
+
+ If this is not a simple copy from one location to another,
+ then we can not decompose this register. If this is a simple
+ copy we want to decompose, and the mode is right,
+ then we mark the register as decomposable.
+ Otherwise we don't say anything about this register --
+ it could be decomposed, but whether that would be
+ profitable depends upon how it is used elsewhere.
+
+ We only set bits in the bitmap for multi-word
+ pseudo-registers, since those are the only ones we care about
+ and it keeps the size of the bitmaps down. */
+
+ regno = REGNO (x);
+ if (!HARD_REGISTER_NUM_P (regno)
+ && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
+ {
+ switch (*pcmi)
+ {
+ case NOT_SIMPLE_MOVE:
+ bitmap_set_bit (non_decomposable_context, regno);
+ break;
+ case DECOMPOSABLE_SIMPLE_MOVE:
+ if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
+ bitmap_set_bit (decomposable_context, regno);
+ break;
+ case SIMPLE_MOVE:
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+ }
+ else if (MEM_P (x))
+ {
+ enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
+
+ /* Any registers used in a MEM do not participate in a
+ SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion
+ here, and return -1 to block the parent's recursion. */
+ for_each_rtx (&XEXP (x, 0), find_decomposable_subregs, &cmi_mem);
+ return -1;
+ }
+
+ return 0;
+}
+
+/* Decompose REGNO into word-sized components. We smash the REG node
+ in place. This ensures that (1) something goes wrong quickly if we
+ fail to make some replacement, and (2) the debug information inside
+ the symbol table is automatically kept up to date. */
+
+static void
+decompose_register (unsigned int regno)
+{
+ rtx reg;
+ unsigned int words, i;
+ rtvec v;
+
+ reg = regno_reg_rtx[regno];
+
+ regno_reg_rtx[regno] = NULL_RTX;
+
+ words = GET_MODE_SIZE (GET_MODE (reg));
+ words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ v = rtvec_alloc (words);
+ for (i = 0; i < words; ++i)
+ RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
+
+ PUT_CODE (reg, CONCATN);
+ XVEC (reg, 0) = v;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "; Splitting reg %u ->", regno);
+ for (i = 0; i < words; ++i)
+ fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
+ fputc ('\n', dump_file);
+ }
+}
+
+/* Get a SUBREG of a CONCATN. */
+
+static rtx
+simplify_subreg_concatn (enum machine_mode outermode, rtx op,
+ unsigned int byte)
+{
+ unsigned int inner_size;
+ enum machine_mode innermode, partmode;
+ rtx part;
+ unsigned int final_offset;
+
+ gcc_assert (GET_CODE (op) == CONCATN);
+ gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
+
+ innermode = GET_MODE (op);
+ gcc_assert (byte < GET_MODE_SIZE (innermode));
+ gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode));
+
+ inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
+ part = XVECEXP (op, 0, byte / inner_size);
+ partmode = GET_MODE (part);
+
+ /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
+ regular CONST_VECTORs. They have vector or integer modes, depending
+ on the capabilities of the target. Cope with them. */
+ if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
+ partmode = GET_MODE_INNER (innermode);
+ else if (partmode == VOIDmode)
+ {
+ enum mode_class mclass = GET_MODE_CLASS (innermode);
+ partmode = mode_for_size (inner_size * BITS_PER_UNIT, mclass, 0);
+ }
+
+ final_offset = byte % inner_size;
+ if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
+ return NULL_RTX;
+
+ return simplify_gen_subreg (outermode, part, partmode, final_offset);
+}
+
+/* Wrapper around simplify_gen_subreg which handles CONCATN. */
+
+static rtx
+simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op,
+ enum machine_mode innermode, unsigned int byte)
+{
+ rtx ret;
+
+ /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
+ If OP is a SUBREG of a CONCATN, then it must be a simple mode
+ change with the same size and offset 0, or it must extract a
+ part. We shouldn't see anything else here. */
+ if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
+ {
+ rtx op2;
+
+ if ((GET_MODE_SIZE (GET_MODE (op))
+ == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
+ && SUBREG_BYTE (op) == 0)
+ return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
+ GET_MODE (SUBREG_REG (op)), byte);
+
+ op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
+ SUBREG_BYTE (op));
+ if (op2 == NULL_RTX)
+ {
+ /* We don't handle paradoxical subregs here. */
+ gcc_assert (GET_MODE_SIZE (outermode)
+ <= GET_MODE_SIZE (GET_MODE (op)));
+ gcc_assert (GET_MODE_SIZE (GET_MODE (op))
+ <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
+ op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
+ byte + SUBREG_BYTE (op));
+ gcc_assert (op2 != NULL_RTX);
+ return op2;
+ }
+
+ op = op2;
+ gcc_assert (op != NULL_RTX);
+ gcc_assert (innermode == GET_MODE (op));
+ }
+
+ if (GET_CODE (op) == CONCATN)
+ return simplify_subreg_concatn (outermode, op, byte);
+
+ ret = simplify_gen_subreg (outermode, op, innermode, byte);
+
+ /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
+ resolve_simple_move will ask for the high part of the paradoxical
+ subreg, which does not have a value. Just return a zero. */
+ if (ret == NULL_RTX
+ && GET_CODE (op) == SUBREG
+ && SUBREG_BYTE (op) == 0
+ && (GET_MODE_SIZE (innermode)
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
+ return CONST0_RTX (outermode);
+
+ gcc_assert (ret != NULL_RTX);
+ return ret;
+}
+
+/* Return whether we should resolve X into the registers into which it
+ was decomposed. */
+
+static bool
+resolve_reg_p (rtx x)
+{
+ return GET_CODE (x) == CONCATN;
+}
+
+/* Return whether X is a SUBREG of a register which we need to
+ resolve. */
+
+static bool
+resolve_subreg_p (rtx x)
+{
+ if (GET_CODE (x) != SUBREG)
+ return false;
+ return resolve_reg_p (SUBREG_REG (x));
+}
+
+/* This is called via for_each_rtx. Look for SUBREGs which need to be
+ decomposed. */
+
+static int
+resolve_subreg_use (rtx *px, void *data)
+{
+ rtx insn = (rtx) data;
+ rtx x = *px;
+
+ if (x == NULL_RTX)
+ return 0;
+
+ if (resolve_subreg_p (x))
+ {
+ x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
+ SUBREG_BYTE (x));
+
+ /* It is possible for a note to contain a reference which we can
+ decompose. In this case, return 1 to the caller to indicate
+ that the note must be removed. */
+ if (!x)
+ {
+ gcc_assert (!insn);
+ return 1;
+ }
+
+ validate_change (insn, px, x, 1);
+ return -1;
+ }
+
+ if (resolve_reg_p (x))
+ {
+ /* Return 1 to the caller to indicate that we found a direct
+ reference to a register which is being decomposed. This can
+ happen inside notes, multiword shift or zero-extend
+ instructions. */
+ return 1;
+ }
+
+ return 0;
+}
+
+/* This is called via for_each_rtx. Look for SUBREGs which can be
+ decomposed and decomposed REGs that need copying. */
+
+static int
+adjust_decomposed_uses (rtx *px, void *data ATTRIBUTE_UNUSED)
+{
+ rtx x = *px;
+
+ if (x == NULL_RTX)
+ return 0;
+
+ if (resolve_subreg_p (x))
+ {
+ x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
+ SUBREG_BYTE (x));
+
+ if (x)
+ *px = x;
+ else
+ x = copy_rtx (*px);
+ }
+
+ if (resolve_reg_p (x))
+ *px = copy_rtx (x);
+
+ return 0;
+}
+
+/* Resolve any decomposed registers which appear in register notes on
+ INSN. */
+
+static void
+resolve_reg_notes (rtx insn)
+{
+ rtx *pnote, note;
+
+ note = find_reg_equal_equiv_note (insn);
+ if (note)
+ {
+ int old_count = num_validated_changes ();
+ if (for_each_rtx (&XEXP (note, 0), resolve_subreg_use, NULL))
+ remove_note (insn, note);
+ else
+ if (old_count != num_validated_changes ())
+ df_notes_rescan (insn);
+ }
+
+ pnote = &REG_NOTES (insn);
+ while (*pnote != NULL_RTX)
+ {
+ bool del = false;
+
+ note = *pnote;
+ switch (REG_NOTE_KIND (note))
+ {
+ case REG_DEAD:
+ case REG_UNUSED:
+ if (resolve_reg_p (XEXP (note, 0)))
+ del = true;
+ break;
+
+ default:
+ break;
+ }
+
+ if (del)
+ *pnote = XEXP (note, 1);
+ else
+ pnote = &XEXP (note, 1);
+ }
+}
+
+/* Return whether X can be decomposed into subwords. */
+
+static bool
+can_decompose_p (rtx x)
+{
+ if (REG_P (x))
+ {
+ unsigned int regno = REGNO (x);
+
+ if (HARD_REGISTER_NUM_P (regno))
+ {
+ unsigned int byte, num_bytes;
+
+ num_bytes = GET_MODE_SIZE (GET_MODE (x));
+ for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
+ if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
+ return false;
+ return true;
+ }
+ else
+ return !bitmap_bit_p (subreg_context, regno);
+ }
+
+ return true;
+}
+
+/* Decompose the registers used in a simple move SET within INSN. If
+ we don't change anything, return INSN, otherwise return the start
+ of the sequence of moves. */
+
+static rtx
+resolve_simple_move (rtx set, rtx insn)
+{
+ rtx src, dest, real_dest, insns;
+ enum machine_mode orig_mode, dest_mode;
+ unsigned int words;
+ bool pushing;
+
+ src = SET_SRC (set);
+ dest = SET_DEST (set);
+ orig_mode = GET_MODE (dest);
+
+ words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ gcc_assert (words > 1);
+
+ start_sequence ();
+
+ /* We have to handle copying from a SUBREG of a decomposed reg where
+ the SUBREG is larger than word size. Rather than assume that we
+ can take a word_mode SUBREG of the destination, we copy to a new
+ register and then copy that to the destination. */
+
+ real_dest = NULL_RTX;
+
+ if (GET_CODE (src) == SUBREG
+ && resolve_reg_p (SUBREG_REG (src))
+ && (SUBREG_BYTE (src) != 0
+ || (GET_MODE_SIZE (orig_mode)
+ != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
+ {
+ real_dest = dest;
+ dest = gen_reg_rtx (orig_mode);
+ if (REG_P (real_dest))
+ REG_ATTRS (dest) = REG_ATTRS (real_dest);
+ }
+
+ /* Similarly if we are copying to a SUBREG of a decomposed reg where
+ the SUBREG is larger than word size. */
+
+ if (GET_CODE (dest) == SUBREG
+ && resolve_reg_p (SUBREG_REG (dest))
+ && (SUBREG_BYTE (dest) != 0
+ || (GET_MODE_SIZE (orig_mode)
+ != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
+ {
+ rtx reg, minsn, smove;
+
+ reg = gen_reg_rtx (orig_mode);
+ minsn = emit_move_insn (reg, src);
+ smove = single_set (minsn);
+ gcc_assert (smove != NULL_RTX);
+ resolve_simple_move (smove, minsn);
+ src = reg;
+ }
+
+ /* If we didn't have any big SUBREGS of decomposed registers, and
+ neither side of the move is a register we are decomposing, then
+ we don't have to do anything here. */
+
+ if (src == SET_SRC (set)
+ && dest == SET_DEST (set)
+ && !resolve_reg_p (src)
+ && !resolve_subreg_p (src)
+ && !resolve_reg_p (dest)
+ && !resolve_subreg_p (dest))
+ {
+ end_sequence ();
+ return insn;
+ }
+
+ /* It's possible for the code to use a subreg of a decomposed
+ register while forming an address. We need to handle that before
+ passing the address to emit_move_insn. We pass NULL_RTX as the
+ insn parameter to resolve_subreg_use because we can not validate
+ the insn yet. */
+ if (MEM_P (src) || MEM_P (dest))
+ {
+ int acg;
+
+ if (MEM_P (src))
+ for_each_rtx (&XEXP (src, 0), resolve_subreg_use, NULL_RTX);
+ if (MEM_P (dest))
+ for_each_rtx (&XEXP (dest, 0), resolve_subreg_use, NULL_RTX);
+ acg = apply_change_group ();
+ gcc_assert (acg);
+ }
+
+ /* If SRC is a register which we can't decompose, or has side
+ effects, we need to move via a temporary register. */
+
+ if (!can_decompose_p (src)
+ || side_effects_p (src)
+ || GET_CODE (src) == ASM_OPERANDS)
+ {
+ rtx reg;
+
+ reg = gen_reg_rtx (orig_mode);
+
+#ifdef AUTO_INC_DEC
+ {
+ rtx move = emit_move_insn (reg, src);
+ if (MEM_P (src))
+ {
+ rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
+ if (note)
+ add_reg_note (move, REG_INC, XEXP (note, 0));
+ }
+ }
+#else
+ emit_move_insn (reg, src);
+#endif
+ src = reg;
+ }
+
+ /* If DEST is a register which we can't decompose, or has side
+ effects, we need to first move to a temporary register. We
+ handle the common case of pushing an operand directly. We also
+ go through a temporary register if it holds a floating point
+ value. This gives us better code on systems which can't move
+ data easily between integer and floating point registers. */
+
+ dest_mode = orig_mode;
+ pushing = push_operand (dest, dest_mode);
+ if (!can_decompose_p (dest)
+ || (side_effects_p (dest) && !pushing)
+ || (!SCALAR_INT_MODE_P (dest_mode)
+ && !resolve_reg_p (dest)
+ && !resolve_subreg_p (dest)))
+ {
+ if (real_dest == NULL_RTX)
+ real_dest = dest;
+ if (!SCALAR_INT_MODE_P (dest_mode))
+ {
+ dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
+ MODE_INT, 0);
+ gcc_assert (dest_mode != BLKmode);
+ }
+ dest = gen_reg_rtx (dest_mode);
+ if (REG_P (real_dest))
+ REG_ATTRS (dest) = REG_ATTRS (real_dest);
+ }
+
+ if (pushing)
+ {
+ unsigned int i, j, jinc;
+
+ gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
+ gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
+ gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
+
+ if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
+ {
+ j = 0;
+ jinc = 1;
+ }
+ else
+ {
+ j = words - 1;
+ jinc = -1;
+ }
+
+ for (i = 0; i < words; ++i, j += jinc)
+ {
+ rtx temp;
+
+ temp = copy_rtx (XEXP (dest, 0));
+ temp = adjust_automodify_address_nv (dest, word_mode, temp,
+ j * UNITS_PER_WORD);
+ emit_move_insn (temp,
+ simplify_gen_subreg_concatn (word_mode, src,
+ orig_mode,
+ j * UNITS_PER_WORD));
+ }
+ }
+ else
+ {
+ unsigned int i;
+
+ if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
+ emit_clobber (dest);
+
+ for (i = 0; i < words; ++i)
+ emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
+ dest_mode,
+ i * UNITS_PER_WORD),
+ simplify_gen_subreg_concatn (word_mode, src,
+ orig_mode,
+ i * UNITS_PER_WORD));
+ }
+
+ if (real_dest != NULL_RTX)
+ {
+ rtx mdest, minsn, smove;
+
+ if (dest_mode == orig_mode)
+ mdest = dest;
+ else
+ mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
+ minsn = emit_move_insn (real_dest, mdest);
+
+#ifdef AUTO_INC_DEC
+ if (MEM_P (real_dest)
+ && !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest)))
+ {
+ rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
+ if (note)
+ add_reg_note (minsn, REG_INC, XEXP (note, 0));
+ }
+#endif
+
+ smove = single_set (minsn);
+ gcc_assert (smove != NULL_RTX);
+
+ resolve_simple_move (smove, minsn);
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+
+ copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
+
+ emit_insn_before (insns, insn);
+
+ /* If we get here via self-recursion, then INSN is not yet in the insns
+ chain and delete_insn will fail. We only want to remove INSN from the
+ current sequence. See PR56738. */
+ if (in_sequence_p ())
+ remove_insn (insn);
+ else
+ delete_insn (insn);
+
+ return insns;
+}
+
+/* Change a CLOBBER of a decomposed register into a CLOBBER of the
+ component registers. Return whether we changed something. */
+
+static bool
+resolve_clobber (rtx pat, rtx insn)
+{
+ rtx reg;
+ enum machine_mode orig_mode;
+ unsigned int words, i;
+ int ret;
+
+ reg = XEXP (pat, 0);
+ if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
+ return false;
+
+ orig_mode = GET_MODE (reg);
+ words = GET_MODE_SIZE (orig_mode);
+ words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ ret = validate_change (NULL_RTX, &XEXP (pat, 0),
+ simplify_gen_subreg_concatn (word_mode, reg,
+ orig_mode, 0),
+ 0);
+ df_insn_rescan (insn);
+ gcc_assert (ret != 0);
+
+ for (i = words - 1; i > 0; --i)
+ {
+ rtx x;
+
+ x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
+ i * UNITS_PER_WORD);
+ x = gen_rtx_CLOBBER (VOIDmode, x);
+ emit_insn_after (x, insn);
+ }
+
+ resolve_reg_notes (insn);
+
+ return true;
+}
+
+/* A USE of a decomposed register is no longer meaningful. Return
+ whether we changed something. */
+
+static bool
+resolve_use (rtx pat, rtx insn)
+{
+ if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
+ {
+ delete_insn (insn);
+ return true;
+ }
+
+ resolve_reg_notes (insn);
+
+ return false;
+}
+
+/* A VAR_LOCATION can be simplified. */
+
+static void
+resolve_debug (rtx insn)
+{
+ for_each_rtx (&PATTERN (insn), adjust_decomposed_uses, NULL_RTX);
+
+ df_insn_rescan (insn);
+
+ resolve_reg_notes (insn);
+}
+
+/* Check if INSN is a decomposable multiword-shift or zero-extend and
+ set the decomposable_context bitmap accordingly. SPEED_P is true
+ if we are optimizing INSN for speed rather than size. Return true
+ if INSN is decomposable. */
+
+static bool
+find_decomposable_shift_zext (rtx insn, bool speed_p)
+{
+ rtx set;
+ rtx op;
+ rtx op_operand;
+
+ set = single_set (insn);
+ if (!set)
+ return false;
+
+ op = SET_SRC (set);
+ if (GET_CODE (op) != ASHIFT
+ && GET_CODE (op) != LSHIFTRT
+ && GET_CODE (op) != ASHIFTRT
+ && GET_CODE (op) != ZERO_EXTEND)
+ return false;
+
+ op_operand = XEXP (op, 0);
+ if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
+ || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
+ || HARD_REGISTER_NUM_P (REGNO (op_operand))
+ || GET_MODE (op) != twice_word_mode)
+ return false;
+
+ if (GET_CODE (op) == ZERO_EXTEND)
+ {
+ if (GET_MODE (op_operand) != word_mode
+ || !choices[speed_p].splitting_zext)
+ return false;
+ }
+ else /* left or right shift */
+ {
+ bool *splitting = (GET_CODE (op) == ASHIFT
+ ? choices[speed_p].splitting_ashift
+ : GET_CODE (op) == ASHIFTRT
+ ? choices[speed_p].splitting_ashiftrt
+ : choices[speed_p].splitting_lshiftrt);
+ if (!CONST_INT_P (XEXP (op, 1))
+ || !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
+ 2 * BITS_PER_WORD - 1)
+ || !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
+ return false;
+
+ bitmap_set_bit (decomposable_context, REGNO (op_operand));
+ }
+
+ bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
+
+ return true;
+}
+
+/* Decompose a more than word wide shift (in INSN) of a multiword
+ pseudo or a multiword zero-extend of a wordmode pseudo into a move
+ and 'set to zero' insn. Return a pointer to the new insn when a
+ replacement was done. */
+
+static rtx
+resolve_shift_zext (rtx insn)
+{
+ rtx set;
+ rtx op;
+ rtx op_operand;
+ rtx insns;
+ rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX;
+ int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
+
+ set = single_set (insn);
+ if (!set)
+ return NULL_RTX;
+
+ op = SET_SRC (set);
+ if (GET_CODE (op) != ASHIFT
+ && GET_CODE (op) != LSHIFTRT
+ && GET_CODE (op) != ASHIFTRT
+ && GET_CODE (op) != ZERO_EXTEND)
+ return NULL_RTX;
+
+ op_operand = XEXP (op, 0);
+
+ /* We can tear this operation apart only if the regs were already
+ torn apart. */
+ if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
+ return NULL_RTX;
+
+ /* src_reg_num is the number of the word mode register which we
+ are operating on. For a left shift and a zero_extend on little
+ endian machines this is register 0. */
+ src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT)
+ ? 1 : 0;
+
+ if (WORDS_BIG_ENDIAN
+ && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
+ src_reg_num = 1 - src_reg_num;
+
+ if (GET_CODE (op) == ZERO_EXTEND)
+ dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
+ else
+ dest_reg_num = 1 - src_reg_num;
+
+ offset1 = UNITS_PER_WORD * dest_reg_num;
+ offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
+ src_offset = UNITS_PER_WORD * src_reg_num;
+
+ start_sequence ();
+
+ dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
+ GET_MODE (SET_DEST (set)),
+ offset1);
+ dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
+ GET_MODE (SET_DEST (set)),
+ offset2);
+ src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
+ GET_MODE (op_operand),
+ src_offset);
+ if (GET_CODE (op) == ASHIFTRT
+ && INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1)
+ upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg),
+ BITS_PER_WORD - 1, NULL_RTX, 0);
+
+ if (GET_CODE (op) != ZERO_EXTEND)
+ {
+ int shift_count = INTVAL (XEXP (op, 1));
+ if (shift_count > BITS_PER_WORD)
+ src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
+ LSHIFT_EXPR : RSHIFT_EXPR,
+ word_mode, src_reg,
+ shift_count - BITS_PER_WORD,
+ dest_reg, GET_CODE (op) != ASHIFTRT);
+ }
+
+ if (dest_reg != src_reg)
+ emit_move_insn (dest_reg, src_reg);
+ if (GET_CODE (op) != ASHIFTRT)
+ emit_move_insn (dest_upper, CONST0_RTX (word_mode));
+ else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1)
+ emit_move_insn (dest_upper, copy_rtx (src_reg));
+ else
+ emit_move_insn (dest_upper, upper_src);
+ insns = get_insns ();
+
+ end_sequence ();
+
+ emit_insn_before (insns, insn);
+
+ if (dump_file)
+ {
+ rtx in;
+ fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
+ for (in = insns; in != insn; in = NEXT_INSN (in))
+ fprintf (dump_file, "%d ", INSN_UID (in));
+ fprintf (dump_file, "\n");
+ }
+
+ delete_insn (insn);
+ return insns;
+}
+
+/* Print to dump_file a description of what we're doing with shift code CODE.
+ SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
+
+static void
+dump_shift_choices (enum rtx_code code, bool *splitting)
+{
+ int i;
+ const char *sep;
+
+ fprintf (dump_file,
+ " Splitting mode %s for %s lowering with shift amounts = ",
+ GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
+ sep = "";
+ for (i = 0; i < BITS_PER_WORD; i++)
+ if (splitting[i])
+ {
+ fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
+ sep = ",";
+ }
+ fprintf (dump_file, "\n");
+}
+
+/* Print to dump_file a description of what we're doing when optimizing
+ for speed or size; SPEED_P says which. DESCRIPTION is a description
+ of the SPEED_P choice. */
+
+static void
+dump_choices (bool speed_p, const char *description)
+{
+ unsigned int i;
+
+ fprintf (dump_file, "Choices when optimizing for %s:\n", description);
+
+ for (i = 0; i < MAX_MACHINE_MODE; i++)
+ if (GET_MODE_SIZE (i) > UNITS_PER_WORD)
+ fprintf (dump_file, " %s mode %s for copy lowering.\n",
+ choices[speed_p].move_modes_to_split[i]
+ ? "Splitting"
+ : "Skipping",
+ GET_MODE_NAME ((enum machine_mode) i));
+
+ fprintf (dump_file, " %s mode %s for zero_extend lowering.\n",
+ choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
+ GET_MODE_NAME (twice_word_mode));
+
+ dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
+ dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt);
+ dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt);
+ fprintf (dump_file, "\n");
+}
+
+/* Look for registers which are always accessed via word-sized SUBREGs
+ or -if DECOMPOSE_COPIES is true- via copies. Decompose these
+ registers into several word-sized pseudo-registers. */
+
+static void
+decompose_multiword_subregs (bool decompose_copies)
+{
+ unsigned int max;
+ basic_block bb;
+ bool speed_p;
+
+ if (dump_file)
+ {
+ dump_choices (false, "size");
+ dump_choices (true, "speed");
+ }
+
+ /* Check if this target even has any modes to consider lowering. */
+ if (!choices[false].something_to_do && !choices[true].something_to_do)
+ {
+ if (dump_file)
+ fprintf (dump_file, "Nothing to do!\n");
+ return;
+ }
+
+ max = max_reg_num ();
+
+ /* First see if there are any multi-word pseudo-registers. If there
+ aren't, there is nothing we can do. This should speed up this
+ pass in the normal case, since it should be faster than scanning
+ all the insns. */
+ {
+ unsigned int i;
+ bool useful_modes_seen = false;
+
+ for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
+ if (regno_reg_rtx[i] != NULL)
+ {
+ enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
+ if (choices[false].move_modes_to_split[(int) mode]
+ || choices[true].move_modes_to_split[(int) mode])
+ {
+ useful_modes_seen = true;
+ break;
+ }
+ }
+
+ if (!useful_modes_seen)
+ {
+ if (dump_file)
+ fprintf (dump_file, "Nothing to lower in this function.\n");
+ return;
+ }
+ }
+
+ if (df)
+ {
+ df_set_flags (DF_DEFER_INSN_RESCAN);
+ run_word_dce ();
+ }
+
+ /* FIXME: It may be possible to change this code to look for each
+ multi-word pseudo-register and to find each insn which sets or
+ uses that register. That should be faster than scanning all the
+ insns. */
+
+ decomposable_context = BITMAP_ALLOC (NULL);
+ non_decomposable_context = BITMAP_ALLOC (NULL);
+ subreg_context = BITMAP_ALLOC (NULL);
+
+ reg_copy_graph.create (max);
+ reg_copy_graph.safe_grow_cleared (max);
+ memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max);
+
+ speed_p = optimize_function_for_speed_p (cfun);
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ rtx insn;
+
+ FOR_BB_INSNS (bb, insn)
+ {
+ rtx set;
+ enum classify_move_insn cmi;
+ int i, n;
+
+ if (!INSN_P (insn)
+ || GET_CODE (PATTERN (insn)) == CLOBBER
+ || GET_CODE (PATTERN (insn)) == USE)
+ continue;
+
+ recog_memoized (insn);
+
+ if (find_decomposable_shift_zext (insn, speed_p))
+ continue;
+
+ extract_insn (insn);
+
+ set = simple_move (insn, speed_p);
+
+ if (!set)
+ cmi = NOT_SIMPLE_MOVE;
+ else
+ {
+ /* We mark pseudo-to-pseudo copies as decomposable during the
+ second pass only. The first pass is so early that there is
+ good chance such moves will be optimized away completely by
+ subsequent optimizations anyway.
+
+ However, we call find_pseudo_copy even during the first pass
+ so as to properly set up the reg_copy_graph. */
+ if (find_pseudo_copy (set))
+ cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE;
+ else
+ cmi = SIMPLE_MOVE;
+ }
+
+ n = recog_data.n_operands;
+ for (i = 0; i < n; ++i)
+ {
+ for_each_rtx (&recog_data.operand[i],
+ find_decomposable_subregs,
+ &cmi);
+
+ /* We handle ASM_OPERANDS as a special case to support
+ things like x86 rdtsc which returns a DImode value.
+ We can decompose the output, which will certainly be
+ operand 0, but not the inputs. */
+
+ if (cmi == SIMPLE_MOVE
+ && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
+ {
+ gcc_assert (i == 0);
+ cmi = NOT_SIMPLE_MOVE;
+ }
+ }
+ }
+ }
+
+ bitmap_and_compl_into (decomposable_context, non_decomposable_context);
+ if (!bitmap_empty_p (decomposable_context))
+ {
+ sbitmap sub_blocks;
+ unsigned int i;
+ sbitmap_iterator sbi;
+ bitmap_iterator iter;
+ unsigned int regno;
+
+ propagate_pseudo_copies ();
+
+ sub_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
+ bitmap_clear (sub_blocks);
+
+ EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
+ decompose_register (regno);
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ rtx insn;
+
+ FOR_BB_INSNS (bb, insn)
+ {
+ rtx pat;
+
+ if (!INSN_P (insn))
+ continue;
+
+ pat = PATTERN (insn);
+ if (GET_CODE (pat) == CLOBBER)
+ resolve_clobber (pat, insn);
+ else if (GET_CODE (pat) == USE)
+ resolve_use (pat, insn);
+ else if (DEBUG_INSN_P (insn))
+ resolve_debug (insn);
+ else
+ {
+ rtx set;
+ int i;
+
+ recog_memoized (insn);
+ extract_insn (insn);
+
+ set = simple_move (insn, speed_p);
+ if (set)
+ {
+ rtx orig_insn = insn;
+ bool cfi = control_flow_insn_p (insn);
+
+ /* We can end up splitting loads to multi-word pseudos
+ into separate loads to machine word size pseudos.
+ When this happens, we first had one load that can
+ throw, and after resolve_simple_move we'll have a
+ bunch of loads (at least two). All those loads may
+ trap if we can have non-call exceptions, so they
+ all will end the current basic block. We split the
+ block after the outer loop over all insns, but we
+ make sure here that we will be able to split the
+ basic block and still produce the correct control
+ flow graph for it. */
+ gcc_assert (!cfi
+ || (cfun->can_throw_non_call_exceptions
+ && can_throw_internal (insn)));
+
+ insn = resolve_simple_move (set, insn);
+ if (insn != orig_insn)
+ {
+ recog_memoized (insn);
+ extract_insn (insn);
+
+ if (cfi)
+ bitmap_set_bit (sub_blocks, bb->index);
+ }
+ }
+ else
+ {
+ rtx decomposed_shift;
+
+ decomposed_shift = resolve_shift_zext (insn);
+ if (decomposed_shift != NULL_RTX)
+ {
+ insn = decomposed_shift;
+ recog_memoized (insn);
+ extract_insn (insn);
+ }
+ }
+
+ for (i = recog_data.n_operands - 1; i >= 0; --i)
+ for_each_rtx (recog_data.operand_loc[i],
+ resolve_subreg_use,
+ insn);
+
+ resolve_reg_notes (insn);
+
+ if (num_validated_changes () > 0)
+ {
+ for (i = recog_data.n_dups - 1; i >= 0; --i)
+ {
+ rtx *pl = recog_data.dup_loc[i];
+ int dup_num = recog_data.dup_num[i];
+ rtx *px = recog_data.operand_loc[dup_num];
+
+ validate_unshare_change (insn, pl, *px, 1);
+ }
+
+ i = apply_change_group ();
+ gcc_assert (i);
+ }
+ }
+ }
+ }
+
+ /* If we had insns to split that caused control flow insns in the middle
+ of a basic block, split those blocks now. Note that we only handle
+ the case where splitting a load has caused multiple possibly trapping
+ loads to appear. */
+ EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi)
+ {
+ rtx insn, end;
+ edge fallthru;
+
+ bb = BASIC_BLOCK_FOR_FN (cfun, i);
+ insn = BB_HEAD (bb);
+ end = BB_END (bb);
+
+ while (insn != end)
+ {
+ if (control_flow_insn_p (insn))
+ {
+ /* Split the block after insn. There will be a fallthru
+ edge, which is OK so we keep it. We have to create the
+ exception edges ourselves. */
+ fallthru = split_block (bb, insn);
+ rtl_make_eh_edge (NULL, bb, BB_END (bb));
+ bb = fallthru->dest;
+ insn = BB_HEAD (bb);
+ }
+ else
+ insn = NEXT_INSN (insn);
+ }
+ }
+
+ sbitmap_free (sub_blocks);
+ }
+
+ {
+ unsigned int i;
+ bitmap b;
+
+ FOR_EACH_VEC_ELT (reg_copy_graph, i, b)
+ if (b)
+ BITMAP_FREE (b);
+ }
+
+ reg_copy_graph.release ();
+
+ BITMAP_FREE (decomposable_context);
+ BITMAP_FREE (non_decomposable_context);
+ BITMAP_FREE (subreg_context);
+}
+
+/* Gate function for lower subreg pass. */
+
+static bool
+gate_handle_lower_subreg (void)
+{
+ return flag_split_wide_types != 0;
+}
+
+/* Implement first lower subreg pass. */
+
+static unsigned int
+rest_of_handle_lower_subreg (void)
+{
+ decompose_multiword_subregs (false);
+ return 0;
+}
+
+/* Implement second lower subreg pass. */
+
+static unsigned int
+rest_of_handle_lower_subreg2 (void)
+{
+ decompose_multiword_subregs (true);
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_lower_subreg =
+{
+ RTL_PASS, /* type */
+ "subreg1", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_LOWER_SUBREG, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_verify_flow, /* todo_flags_finish */
+};
+
+class pass_lower_subreg : public rtl_opt_pass
+{
+public:
+ pass_lower_subreg (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_lower_subreg, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_handle_lower_subreg (); }
+ unsigned int execute () { return rest_of_handle_lower_subreg (); }
+
+}; // class pass_lower_subreg
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_lower_subreg (gcc::context *ctxt)
+{
+ return new pass_lower_subreg (ctxt);
+}
+
+namespace {
+
+const pass_data pass_data_lower_subreg2 =
+{
+ RTL_PASS, /* type */
+ "subreg2", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_LOWER_SUBREG, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ ( TODO_df_finish | TODO_verify_rtl_sharing
+ | TODO_verify_flow ), /* todo_flags_finish */
+};
+
+class pass_lower_subreg2 : public rtl_opt_pass
+{
+public:
+ pass_lower_subreg2 (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_lower_subreg2, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_handle_lower_subreg (); }
+ unsigned int execute () { return rest_of_handle_lower_subreg2 (); }
+
+}; // class pass_lower_subreg2
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_lower_subreg2 (gcc::context *ctxt)
+{
+ return new pass_lower_subreg2 (ctxt);
+}