aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/graphite-sese-to-poly.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/graphite-sese-to-poly.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/graphite-sese-to-poly.c')
-rw-r--r--gcc-4.9/gcc/graphite-sese-to-poly.c3179
1 files changed, 3179 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/graphite-sese-to-poly.c b/gcc-4.9/gcc/graphite-sese-to-poly.c
new file mode 100644
index 000000000..d4a1bb2df
--- /dev/null
+++ b/gcc-4.9/gcc/graphite-sese-to-poly.c
@@ -0,0 +1,3179 @@
+/* Conversion of SESE regions to Polyhedra.
+ Copyright (C) 2009-2014 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <sebastian.pop@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+
+#ifdef HAVE_cloog
+#include <isl/set.h>
+#include <isl/map.h>
+#include <isl/union_map.h>
+#include <isl/constraint.h>
+#include <isl/aff.h>
+#include <cloog/cloog.h>
+#include <cloog/cloog.h>
+#include <cloog/isl/domain.h>
+#endif
+
+#include "system.h"
+#include "coretypes.h"
+#include "tree.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimple-iterator.h"
+#include "gimplify.h"
+#include "gimplify-me.h"
+#include "gimple-ssa.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop-niter.h"
+#include "tree-ssa-loop.h"
+#include "tree-into-ssa.h"
+#include "tree-pass.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "domwalk.h"
+#include "sese.h"
+#include "tree-ssa-propagate.h"
+
+#ifdef HAVE_cloog
+#include "expr.h"
+#include "graphite-poly.h"
+#include "graphite-sese-to-poly.h"
+
+
+/* Assigns to RES the value of the INTEGER_CST T. */
+
+static inline void
+tree_int_to_gmp (tree t, mpz_t res)
+{
+ double_int di = tree_to_double_int (t);
+ mpz_set_double_int (res, di, TYPE_UNSIGNED (TREE_TYPE (t)));
+}
+
+/* Returns the index of the PHI argument defined in the outermost
+ loop. */
+
+static size_t
+phi_arg_in_outermost_loop (gimple phi)
+{
+ loop_p loop = gimple_bb (phi)->loop_father;
+ size_t i, res = 0;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
+ {
+ loop = gimple_phi_arg_edge (phi, i)->src->loop_father;
+ res = i;
+ }
+
+ return res;
+}
+
+/* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
+ PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
+
+static void
+remove_simple_copy_phi (gimple_stmt_iterator *psi)
+{
+ gimple phi = gsi_stmt (*psi);
+ tree res = gimple_phi_result (phi);
+ size_t entry = phi_arg_in_outermost_loop (phi);
+ tree init = gimple_phi_arg_def (phi, entry);
+ gimple stmt = gimple_build_assign (res, init);
+ edge e = gimple_phi_arg_edge (phi, entry);
+
+ remove_phi_node (psi, false);
+ gsi_insert_on_edge_immediate (e, stmt);
+}
+
+/* Removes an invariant phi node at position PSI by inserting on the
+ loop ENTRY edge the assignment RES = INIT. */
+
+static void
+remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
+{
+ gimple phi = gsi_stmt (*psi);
+ loop_p loop = loop_containing_stmt (phi);
+ tree res = gimple_phi_result (phi);
+ tree scev = scalar_evolution_in_region (region, loop, res);
+ size_t entry = phi_arg_in_outermost_loop (phi);
+ edge e = gimple_phi_arg_edge (phi, entry);
+ tree var;
+ gimple stmt;
+ gimple_seq stmts = NULL;
+
+ if (tree_contains_chrecs (scev, NULL))
+ scev = gimple_phi_arg_def (phi, entry);
+
+ var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
+ stmt = gimple_build_assign (res, var);
+ remove_phi_node (psi, false);
+
+ gimple_seq_add_stmt (&stmts, stmt);
+ gsi_insert_seq_on_edge (e, stmts);
+ gsi_commit_edge_inserts ();
+ SSA_NAME_DEF_STMT (res) = stmt;
+}
+
+/* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
+
+static inline bool
+simple_copy_phi_p (gimple phi)
+{
+ tree res;
+
+ if (gimple_phi_num_args (phi) != 2)
+ return false;
+
+ res = gimple_phi_result (phi);
+ return (res == gimple_phi_arg_def (phi, 0)
+ || res == gimple_phi_arg_def (phi, 1));
+}
+
+/* Returns true when the phi node at position PSI is a reduction phi
+ node in REGION. Otherwise moves the pointer PSI to the next phi to
+ be considered. */
+
+static bool
+reduction_phi_p (sese region, gimple_stmt_iterator *psi)
+{
+ loop_p loop;
+ gimple phi = gsi_stmt (*psi);
+ tree res = gimple_phi_result (phi);
+
+ loop = loop_containing_stmt (phi);
+
+ if (simple_copy_phi_p (phi))
+ {
+ /* PRE introduces phi nodes like these, for an example,
+ see id-5.f in the fortran graphite testsuite:
+
+ # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
+ */
+ remove_simple_copy_phi (psi);
+ return false;
+ }
+
+ if (scev_analyzable_p (res, region))
+ {
+ tree scev = scalar_evolution_in_region (region, loop, res);
+
+ if (evolution_function_is_invariant_p (scev, loop->num))
+ remove_invariant_phi (region, psi);
+ else
+ gsi_next (psi);
+
+ return false;
+ }
+
+ /* All the other cases are considered reductions. */
+ return true;
+}
+
+/* Store the GRAPHITE representation of BB. */
+
+static gimple_bb_p
+new_gimple_bb (basic_block bb, vec<data_reference_p> drs)
+{
+ struct gimple_bb *gbb;
+
+ gbb = XNEW (struct gimple_bb);
+ bb->aux = gbb;
+ GBB_BB (gbb) = bb;
+ GBB_DATA_REFS (gbb) = drs;
+ GBB_CONDITIONS (gbb).create (0);
+ GBB_CONDITION_CASES (gbb).create (0);
+
+ return gbb;
+}
+
+static void
+free_data_refs_aux (vec<data_reference_p> datarefs)
+{
+ unsigned int i;
+ struct data_reference *dr;
+
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ if (dr->aux)
+ {
+ base_alias_pair *bap = (base_alias_pair *)(dr->aux);
+
+ free (bap->alias_set);
+
+ free (bap);
+ dr->aux = NULL;
+ }
+}
+/* Frees GBB. */
+
+static void
+free_gimple_bb (struct gimple_bb *gbb)
+{
+ free_data_refs_aux (GBB_DATA_REFS (gbb));
+ free_data_refs (GBB_DATA_REFS (gbb));
+
+ GBB_CONDITIONS (gbb).release ();
+ GBB_CONDITION_CASES (gbb).release ();
+ GBB_BB (gbb)->aux = 0;
+ XDELETE (gbb);
+}
+
+/* Deletes all gimple bbs in SCOP. */
+
+static void
+remove_gbbs_in_scop (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+
+ FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
+ free_gimple_bb (PBB_BLACK_BOX (pbb));
+}
+
+/* Deletes all scops in SCOPS. */
+
+void
+free_scops (vec<scop_p> scops)
+{
+ int i;
+ scop_p scop;
+
+ FOR_EACH_VEC_ELT (scops, i, scop)
+ {
+ remove_gbbs_in_scop (scop);
+ free_sese (SCOP_REGION (scop));
+ free_scop (scop);
+ }
+
+ scops.release ();
+}
+
+/* Same as outermost_loop_in_sese, returns the outermost loop
+ containing BB in REGION, but makes sure that the returned loop
+ belongs to the REGION, and so this returns the first loop in the
+ REGION when the loop containing BB does not belong to REGION. */
+
+static loop_p
+outermost_loop_in_sese_1 (sese region, basic_block bb)
+{
+ loop_p nest = outermost_loop_in_sese (region, bb);
+
+ if (loop_in_sese_p (nest, region))
+ return nest;
+
+ /* When the basic block BB does not belong to a loop in the region,
+ return the first loop in the region. */
+ nest = nest->inner;
+ while (nest)
+ if (loop_in_sese_p (nest, region))
+ break;
+ else
+ nest = nest->next;
+
+ gcc_assert (nest);
+ return nest;
+}
+
+/* Generates a polyhedral black box only if the bb contains interesting
+ information. */
+
+static gimple_bb_p
+try_generate_gimple_bb (scop_p scop, basic_block bb)
+{
+ vec<data_reference_p> drs;
+ drs.create (5);
+ sese region = SCOP_REGION (scop);
+ loop_p nest = outermost_loop_in_sese_1 (region, bb);
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ loop_p loop;
+
+ if (is_gimple_debug (stmt))
+ continue;
+
+ loop = loop_containing_stmt (stmt);
+ if (!loop_in_sese_p (loop, region))
+ loop = nest;
+
+ graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
+ }
+
+ return new_gimple_bb (bb, drs);
+}
+
+/* Returns true if all predecessors of BB, that are not dominated by BB, are
+ marked in MAP. The predecessors dominated by BB are loop latches and will
+ be handled after BB. */
+
+static bool
+all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (!bitmap_bit_p (map, e->src->index)
+ && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
+ return false;
+
+ return true;
+}
+
+/* Compare the depth of two basic_block's P1 and P2. */
+
+static int
+compare_bb_depths (const void *p1, const void *p2)
+{
+ const_basic_block const bb1 = *(const_basic_block const*)p1;
+ const_basic_block const bb2 = *(const_basic_block const*)p2;
+ int d1 = loop_depth (bb1->loop_father);
+ int d2 = loop_depth (bb2->loop_father);
+
+ if (d1 < d2)
+ return 1;
+
+ if (d1 > d2)
+ return -1;
+
+ return 0;
+}
+
+/* Sort the basic blocks from DOM such that the first are the ones at
+ a deepest loop level. */
+
+static void
+graphite_sort_dominated_info (vec<basic_block> dom)
+{
+ dom.qsort (compare_bb_depths);
+}
+
+/* Recursive helper function for build_scops_bbs. */
+
+static void
+build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb)
+{
+ sese region = SCOP_REGION (scop);
+ vec<basic_block> dom;
+ poly_bb_p pbb;
+
+ if (bitmap_bit_p (visited, bb->index)
+ || !bb_in_sese_p (bb, region))
+ return;
+
+ pbb = new_poly_bb (scop, try_generate_gimple_bb (scop, bb));
+ SCOP_BBS (scop).safe_push (pbb);
+ bitmap_set_bit (visited, bb->index);
+
+ dom = get_dominated_by (CDI_DOMINATORS, bb);
+
+ if (!dom.exists ())
+ return;
+
+ graphite_sort_dominated_info (dom);
+
+ while (!dom.is_empty ())
+ {
+ int i;
+ basic_block dom_bb;
+
+ FOR_EACH_VEC_ELT (dom, i, dom_bb)
+ if (all_non_dominated_preds_marked_p (dom_bb, visited))
+ {
+ build_scop_bbs_1 (scop, visited, dom_bb);
+ dom.unordered_remove (i);
+ break;
+ }
+ }
+
+ dom.release ();
+}
+
+/* Gather the basic blocks belonging to the SCOP. */
+
+static void
+build_scop_bbs (scop_p scop)
+{
+ sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
+ sese region = SCOP_REGION (scop);
+
+ bitmap_clear (visited);
+ build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region));
+ sbitmap_free (visited);
+}
+
+/* Return an ISL identifier for the polyhedral basic block PBB. */
+
+static isl_id *
+isl_id_for_pbb (scop_p s, poly_bb_p pbb)
+{
+ char name[50];
+ snprintf (name, sizeof (name), "S_%d", pbb_index (pbb));
+ return isl_id_alloc (s->ctx, name, pbb);
+}
+
+/* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
+ We generate SCATTERING_DIMENSIONS scattering dimensions.
+
+ CLooG 0.15.0 and previous versions require, that all
+ scattering functions of one CloogProgram have the same number of
+ scattering dimensions, therefore we allow to specify it. This
+ should be removed in future versions of CLooG.
+
+ The scattering polyhedron consists of these dimensions: scattering,
+ loop_iterators, parameters.
+
+ Example:
+
+ | scattering_dimensions = 5
+ | used_scattering_dimensions = 3
+ | nb_iterators = 1
+ | scop_nb_params = 2
+ |
+ | Schedule:
+ | i
+ | 4 5
+ |
+ | Scattering polyhedron:
+ |
+ | scattering: {s1, s2, s3, s4, s5}
+ | loop_iterators: {i}
+ | parameters: {p1, p2}
+ |
+ | s1 s2 s3 s4 s5 i p1 p2 1
+ | 1 0 0 0 0 0 0 0 -4 = 0
+ | 0 1 0 0 0 -1 0 0 0 = 0
+ | 0 0 1 0 0 0 0 0 -5 = 0 */
+
+static void
+build_pbb_scattering_polyhedrons (isl_aff *static_sched,
+ poly_bb_p pbb, int scattering_dimensions)
+{
+ int i;
+ int nb_iterators = pbb_dim_iter_domain (pbb);
+ int used_scattering_dimensions = nb_iterators * 2 + 1;
+ isl_int val;
+ isl_space *dc, *dm;
+
+ gcc_assert (scattering_dimensions >= used_scattering_dimensions);
+
+ isl_int_init (val);
+
+ dc = isl_set_get_space (pbb->domain);
+ dm = isl_space_add_dims (isl_space_from_domain (dc),
+ isl_dim_out, scattering_dimensions);
+ pbb->schedule = isl_map_universe (dm);
+
+ for (i = 0; i < scattering_dimensions; i++)
+ {
+ /* Textual order inside this loop. */
+ if ((i % 2) == 0)
+ {
+ isl_constraint *c = isl_equality_alloc
+ (isl_local_space_from_space (isl_map_get_space (pbb->schedule)));
+
+ if (0 != isl_aff_get_coefficient (static_sched, isl_dim_in,
+ i / 2, &val))
+ gcc_unreachable ();
+
+ isl_int_neg (val, val);
+ c = isl_constraint_set_constant (c, val);
+ c = isl_constraint_set_coefficient_si (c, isl_dim_out, i, 1);
+ pbb->schedule = isl_map_add_constraint (pbb->schedule, c);
+ }
+
+ /* Iterations of this loop. */
+ else /* if ((i % 2) == 1) */
+ {
+ int loop = (i - 1) / 2;
+ pbb->schedule = isl_map_equate (pbb->schedule, isl_dim_in, loop,
+ isl_dim_out, i);
+ }
+ }
+
+ isl_int_clear (val);
+
+ pbb->transformed = isl_map_copy (pbb->schedule);
+}
+
+/* Build for BB the static schedule.
+
+ The static schedule is a Dewey numbering of the abstract syntax
+ tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
+
+ The following example informally defines the static schedule:
+
+ A
+ for (i: ...)
+ {
+ for (j: ...)
+ {
+ B
+ C
+ }
+
+ for (k: ...)
+ {
+ D
+ E
+ }
+ }
+ F
+
+ Static schedules for A to F:
+
+ DEPTH
+ 0 1 2
+ A 0
+ B 1 0 0
+ C 1 0 1
+ D 1 1 0
+ E 1 1 1
+ F 2
+*/
+
+static void
+build_scop_scattering (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+ gimple_bb_p previous_gbb = NULL;
+ isl_space *dc = isl_set_get_space (scop->context);
+ isl_aff *static_sched;
+
+ dc = isl_space_add_dims (dc, isl_dim_set, number_of_loops (cfun));
+ static_sched = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
+
+ /* We have to start schedules at 0 on the first component and
+ because we cannot compare_prefix_loops against a previous loop,
+ prefix will be equal to zero, and that index will be
+ incremented before copying. */
+ static_sched = isl_aff_add_coefficient_si (static_sched, isl_dim_in, 0, -1);
+
+ FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
+ {
+ gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
+ int prefix;
+ int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
+
+ if (previous_gbb)
+ prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
+ else
+ prefix = 0;
+
+ previous_gbb = gbb;
+
+ static_sched = isl_aff_add_coefficient_si (static_sched, isl_dim_in,
+ prefix, 1);
+ build_pbb_scattering_polyhedrons (static_sched, pbb, nb_scat_dims);
+ }
+
+ isl_aff_free (static_sched);
+}
+
+static isl_pw_aff *extract_affine (scop_p, tree, __isl_take isl_space *space);
+
+/* Extract an affine expression from the chain of recurrence E. */
+
+static isl_pw_aff *
+extract_affine_chrec (scop_p s, tree e, __isl_take isl_space *space)
+{
+ isl_pw_aff *lhs = extract_affine (s, CHREC_LEFT (e), isl_space_copy (space));
+ isl_pw_aff *rhs = extract_affine (s, CHREC_RIGHT (e), isl_space_copy (space));
+ isl_local_space *ls = isl_local_space_from_space (space);
+ unsigned pos = sese_loop_depth ((sese) s->region, get_chrec_loop (e)) - 1;
+ isl_aff *loop = isl_aff_set_coefficient_si
+ (isl_aff_zero_on_domain (ls), isl_dim_in, pos, 1);
+ isl_pw_aff *l = isl_pw_aff_from_aff (loop);
+
+ /* Before multiplying, make sure that the result is affine. */
+ gcc_assert (isl_pw_aff_is_cst (rhs)
+ || isl_pw_aff_is_cst (l));
+
+ return isl_pw_aff_add (lhs, isl_pw_aff_mul (rhs, l));
+}
+
+/* Extract an affine expression from the mult_expr E. */
+
+static isl_pw_aff *
+extract_affine_mul (scop_p s, tree e, __isl_take isl_space *space)
+{
+ isl_pw_aff *lhs = extract_affine (s, TREE_OPERAND (e, 0),
+ isl_space_copy (space));
+ isl_pw_aff *rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
+
+ if (!isl_pw_aff_is_cst (lhs)
+ && !isl_pw_aff_is_cst (rhs))
+ {
+ isl_pw_aff_free (lhs);
+ isl_pw_aff_free (rhs);
+ return NULL;
+ }
+
+ return isl_pw_aff_mul (lhs, rhs);
+}
+
+/* Return an ISL identifier from the name of the ssa_name E. */
+
+static isl_id *
+isl_id_for_ssa_name (scop_p s, tree e)
+{
+ const char *name = get_name (e);
+ isl_id *id;
+
+ if (name)
+ id = isl_id_alloc (s->ctx, name, e);
+ else
+ {
+ char name1[50];
+ snprintf (name1, sizeof (name1), "P_%d", SSA_NAME_VERSION (e));
+ id = isl_id_alloc (s->ctx, name1, e);
+ }
+
+ return id;
+}
+
+/* Return an ISL identifier for the data reference DR. */
+
+static isl_id *
+isl_id_for_dr (scop_p s, data_reference_p dr ATTRIBUTE_UNUSED)
+{
+ /* Data references all get the same isl_id. They need to be comparable
+ and are distinguished through the first dimension, which contains the
+ alias set number. */
+ return isl_id_alloc (s->ctx, "", 0);
+}
+
+/* Extract an affine expression from the ssa_name E. */
+
+static isl_pw_aff *
+extract_affine_name (scop_p s, tree e, __isl_take isl_space *space)
+{
+ isl_aff *aff;
+ isl_set *dom;
+ isl_id *id;
+ int dimension;
+
+ id = isl_id_for_ssa_name (s, e);
+ dimension = isl_space_find_dim_by_id (space, isl_dim_param, id);
+ isl_id_free (id);
+ dom = isl_set_universe (isl_space_copy (space));
+ aff = isl_aff_zero_on_domain (isl_local_space_from_space (space));
+ aff = isl_aff_add_coefficient_si (aff, isl_dim_param, dimension, 1);
+ return isl_pw_aff_alloc (dom, aff);
+}
+
+/* Extract an affine expression from the gmp constant G. */
+
+static isl_pw_aff *
+extract_affine_gmp (mpz_t g, __isl_take isl_space *space)
+{
+ isl_local_space *ls = isl_local_space_from_space (isl_space_copy (space));
+ isl_aff *aff = isl_aff_zero_on_domain (ls);
+ isl_set *dom = isl_set_universe (space);
+ isl_int v;
+
+ isl_int_init (v);
+ isl_int_set_gmp (v, g);
+ aff = isl_aff_add_constant (aff, v);
+ isl_int_clear (v);
+
+ return isl_pw_aff_alloc (dom, aff);
+}
+
+/* Extract an affine expression from the integer_cst E. */
+
+static isl_pw_aff *
+extract_affine_int (tree e, __isl_take isl_space *space)
+{
+ isl_pw_aff *res;
+ mpz_t g;
+
+ mpz_init (g);
+ tree_int_to_gmp (e, g);
+ res = extract_affine_gmp (g, space);
+ mpz_clear (g);
+
+ return res;
+}
+
+/* Compute pwaff mod 2^width. */
+
+static isl_pw_aff *
+wrap (isl_pw_aff *pwaff, unsigned width)
+{
+ isl_int mod;
+
+ isl_int_init (mod);
+ isl_int_set_si (mod, 1);
+ isl_int_mul_2exp (mod, mod, width);
+
+ pwaff = isl_pw_aff_mod (pwaff, mod);
+
+ isl_int_clear (mod);
+
+ return pwaff;
+}
+
+/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
+ Otherwise returns -1. */
+
+static inline int
+parameter_index_in_region_1 (tree name, sese region)
+{
+ int i;
+ tree p;
+
+ gcc_assert (TREE_CODE (name) == SSA_NAME);
+
+ FOR_EACH_VEC_ELT (SESE_PARAMS (region), i, p)
+ if (p == name)
+ return i;
+
+ return -1;
+}
+
+/* When the parameter NAME is in REGION, returns its index in
+ SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
+ and returns the index of NAME. */
+
+static int
+parameter_index_in_region (tree name, sese region)
+{
+ int i;
+
+ gcc_assert (TREE_CODE (name) == SSA_NAME);
+
+ i = parameter_index_in_region_1 (name, region);
+ if (i != -1)
+ return i;
+
+ gcc_assert (SESE_ADD_PARAMS (region));
+
+ i = SESE_PARAMS (region).length ();
+ SESE_PARAMS (region).safe_push (name);
+ return i;
+}
+
+/* Extract an affine expression from the tree E in the scop S. */
+
+static isl_pw_aff *
+extract_affine (scop_p s, tree e, __isl_take isl_space *space)
+{
+ isl_pw_aff *lhs, *rhs, *res;
+ tree type;
+
+ if (e == chrec_dont_know) {
+ isl_space_free (space);
+ return NULL;
+ }
+
+ switch (TREE_CODE (e))
+ {
+ case POLYNOMIAL_CHREC:
+ res = extract_affine_chrec (s, e, space);
+ break;
+
+ case MULT_EXPR:
+ res = extract_affine_mul (s, e, space);
+ break;
+
+ case PLUS_EXPR:
+ case POINTER_PLUS_EXPR:
+ lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
+ rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
+ res = isl_pw_aff_add (lhs, rhs);
+ break;
+
+ case MINUS_EXPR:
+ lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
+ rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
+ res = isl_pw_aff_sub (lhs, rhs);
+ break;
+
+ case NEGATE_EXPR:
+ case BIT_NOT_EXPR:
+ lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
+ rhs = extract_affine (s, integer_minus_one_node, space);
+ res = isl_pw_aff_mul (lhs, rhs);
+ break;
+
+ case SSA_NAME:
+ gcc_assert (-1 != parameter_index_in_region_1 (e, SCOP_REGION (s)));
+ res = extract_affine_name (s, e, space);
+ break;
+
+ case INTEGER_CST:
+ res = extract_affine_int (e, space);
+ /* No need to wrap a single integer. */
+ return res;
+
+ CASE_CONVERT:
+ case NON_LVALUE_EXPR:
+ res = extract_affine (s, TREE_OPERAND (e, 0), space);
+ break;
+
+ default:
+ gcc_unreachable ();
+ break;
+ }
+
+ type = TREE_TYPE (e);
+ if (TYPE_UNSIGNED (type))
+ res = wrap (res, TYPE_PRECISION (type));
+
+ return res;
+}
+
+/* In the context of sese S, scan the expression E and translate it to
+ a linear expression C. When parsing a symbolic multiplication, K
+ represents the constant multiplier of an expression containing
+ parameters. */
+
+static void
+scan_tree_for_params (sese s, tree e)
+{
+ if (e == chrec_dont_know)
+ return;
+
+ switch (TREE_CODE (e))
+ {
+ case POLYNOMIAL_CHREC:
+ scan_tree_for_params (s, CHREC_LEFT (e));
+ break;
+
+ case MULT_EXPR:
+ if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
+ scan_tree_for_params (s, TREE_OPERAND (e, 0));
+ else
+ scan_tree_for_params (s, TREE_OPERAND (e, 1));
+ break;
+
+ case PLUS_EXPR:
+ case POINTER_PLUS_EXPR:
+ case MINUS_EXPR:
+ scan_tree_for_params (s, TREE_OPERAND (e, 0));
+ scan_tree_for_params (s, TREE_OPERAND (e, 1));
+ break;
+
+ case NEGATE_EXPR:
+ case BIT_NOT_EXPR:
+ CASE_CONVERT:
+ case NON_LVALUE_EXPR:
+ scan_tree_for_params (s, TREE_OPERAND (e, 0));
+ break;
+
+ case SSA_NAME:
+ parameter_index_in_region (e, s);
+ break;
+
+ case INTEGER_CST:
+ case ADDR_EXPR:
+ break;
+
+ default:
+ gcc_unreachable ();
+ break;
+ }
+}
+
+/* Find parameters with respect to REGION in BB. We are looking in memory
+ access functions, conditions and loop bounds. */
+
+static void
+find_params_in_bb (sese region, gimple_bb_p gbb)
+{
+ int i;
+ unsigned j;
+ data_reference_p dr;
+ gimple stmt;
+ loop_p loop = GBB_BB (gbb)->loop_father;
+
+ /* Find parameters in the access functions of data references. */
+ FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
+ for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
+ scan_tree_for_params (region, DR_ACCESS_FN (dr, j));
+
+ /* Find parameters in conditional statements. */
+ FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
+ {
+ tree lhs = scalar_evolution_in_region (region, loop,
+ gimple_cond_lhs (stmt));
+ tree rhs = scalar_evolution_in_region (region, loop,
+ gimple_cond_rhs (stmt));
+
+ scan_tree_for_params (region, lhs);
+ scan_tree_for_params (region, rhs);
+ }
+}
+
+/* Record the parameters used in the SCOP. A variable is a parameter
+ in a scop if it does not vary during the execution of that scop. */
+
+static void
+find_scop_parameters (scop_p scop)
+{
+ poly_bb_p pbb;
+ unsigned i;
+ sese region = SCOP_REGION (scop);
+ struct loop *loop;
+ int nbp;
+
+ /* Find the parameters used in the loop bounds. */
+ FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), i, loop)
+ {
+ tree nb_iters = number_of_latch_executions (loop);
+
+ if (!chrec_contains_symbols (nb_iters))
+ continue;
+
+ nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
+ scan_tree_for_params (region, nb_iters);
+ }
+
+ /* Find the parameters used in data accesses. */
+ FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
+ find_params_in_bb (region, PBB_BLACK_BOX (pbb));
+
+ nbp = sese_nb_params (region);
+ scop_set_nb_params (scop, nbp);
+ SESE_ADD_PARAMS (region) = false;
+
+ {
+ tree e;
+ isl_space *space = isl_space_set_alloc (scop->ctx, nbp, 0);
+
+ FOR_EACH_VEC_ELT (SESE_PARAMS (region), i, e)
+ space = isl_space_set_dim_id (space, isl_dim_param, i,
+ isl_id_for_ssa_name (scop, e));
+
+ scop->context = isl_set_universe (space);
+ }
+}
+
+/* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
+ the constraints for the surrounding loops. */
+
+static void
+build_loop_iteration_domains (scop_p scop, struct loop *loop,
+ int nb,
+ isl_set *outer, isl_set **doms)
+{
+ tree nb_iters = number_of_latch_executions (loop);
+ sese region = SCOP_REGION (scop);
+
+ isl_set *inner = isl_set_copy (outer);
+ isl_space *space;
+ isl_constraint *c;
+ int pos = isl_set_dim (outer, isl_dim_set);
+ isl_int v;
+ mpz_t g;
+
+ mpz_init (g);
+ isl_int_init (v);
+
+ inner = isl_set_add_dims (inner, isl_dim_set, 1);
+ space = isl_set_get_space (inner);
+
+ /* 0 <= loop_i */
+ c = isl_inequality_alloc
+ (isl_local_space_from_space (isl_space_copy (space)));
+ c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, 1);
+ inner = isl_set_add_constraint (inner, c);
+
+ /* loop_i <= cst_nb_iters */
+ if (TREE_CODE (nb_iters) == INTEGER_CST)
+ {
+ c = isl_inequality_alloc
+ (isl_local_space_from_space (isl_space_copy (space)));
+ c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, -1);
+ tree_int_to_gmp (nb_iters, g);
+ isl_int_set_gmp (v, g);
+ c = isl_constraint_set_constant (c, v);
+ inner = isl_set_add_constraint (inner, c);
+ }
+
+ /* loop_i <= expr_nb_iters */
+ else if (!chrec_contains_undetermined (nb_iters))
+ {
+ double_int nit;
+ isl_pw_aff *aff;
+ isl_set *valid;
+ isl_local_space *ls;
+ isl_aff *al;
+ isl_set *le;
+
+ nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
+
+ aff = extract_affine (scop, nb_iters, isl_set_get_space (inner));
+ valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (aff));
+ valid = isl_set_project_out (valid, isl_dim_set, 0,
+ isl_set_dim (valid, isl_dim_set));
+ scop->context = isl_set_intersect (scop->context, valid);
+
+ ls = isl_local_space_from_space (isl_space_copy (space));
+ al = isl_aff_set_coefficient_si (isl_aff_zero_on_domain (ls),
+ isl_dim_in, pos, 1);
+ le = isl_pw_aff_le_set (isl_pw_aff_from_aff (al),
+ isl_pw_aff_copy (aff));
+ inner = isl_set_intersect (inner, le);
+
+ if (max_stmt_executions (loop, &nit))
+ {
+ /* Insert in the context the constraints from the
+ estimation of the number of iterations NIT and the
+ symbolic number of iterations (involving parameter
+ names) NB_ITERS. First, build the affine expression
+ "NIT - NB_ITERS" and then say that it is positive,
+ i.e., NIT approximates NB_ITERS: "NIT >= NB_ITERS". */
+ isl_pw_aff *approx;
+ mpz_t g;
+ isl_set *x;
+ isl_constraint *c;
+
+ mpz_init (g);
+ mpz_set_double_int (g, nit, false);
+ mpz_sub_ui (g, g, 1);
+ approx = extract_affine_gmp (g, isl_set_get_space (inner));
+ x = isl_pw_aff_ge_set (approx, aff);
+ x = isl_set_project_out (x, isl_dim_set, 0,
+ isl_set_dim (x, isl_dim_set));
+ scop->context = isl_set_intersect (scop->context, x);
+
+ c = isl_inequality_alloc
+ (isl_local_space_from_space (isl_space_copy (space)));
+ c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, -1);
+ isl_int_set_gmp (v, g);
+ mpz_clear (g);
+ c = isl_constraint_set_constant (c, v);
+ inner = isl_set_add_constraint (inner, c);
+ }
+ else
+ isl_pw_aff_free (aff);
+ }
+ else
+ gcc_unreachable ();
+
+ if (loop->inner && loop_in_sese_p (loop->inner, region))
+ build_loop_iteration_domains (scop, loop->inner, nb + 1,
+ isl_set_copy (inner), doms);
+
+ if (nb != 0
+ && loop->next
+ && loop_in_sese_p (loop->next, region))
+ build_loop_iteration_domains (scop, loop->next, nb,
+ isl_set_copy (outer), doms);
+
+ doms[loop->num] = inner;
+
+ isl_set_free (outer);
+ isl_space_free (space);
+ isl_int_clear (v);
+ mpz_clear (g);
+}
+
+/* Returns a linear expression for tree T evaluated in PBB. */
+
+static isl_pw_aff *
+create_pw_aff_from_tree (poly_bb_p pbb, tree t)
+{
+ scop_p scop = PBB_SCOP (pbb);
+
+ t = scalar_evolution_in_region (SCOP_REGION (scop), pbb_loop (pbb), t);
+ gcc_assert (!automatically_generated_chrec_p (t));
+
+ return extract_affine (scop, t, isl_set_get_space (pbb->domain));
+}
+
+/* Add conditional statement STMT to pbb. CODE is used as the comparison
+ operator. This allows us to invert the condition or to handle
+ inequalities. */
+
+static void
+add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
+{
+ isl_pw_aff *lhs = create_pw_aff_from_tree (pbb, gimple_cond_lhs (stmt));
+ isl_pw_aff *rhs = create_pw_aff_from_tree (pbb, gimple_cond_rhs (stmt));
+ isl_set *cond;
+
+ switch (code)
+ {
+ case LT_EXPR:
+ cond = isl_pw_aff_lt_set (lhs, rhs);
+ break;
+
+ case GT_EXPR:
+ cond = isl_pw_aff_gt_set (lhs, rhs);
+ break;
+
+ case LE_EXPR:
+ cond = isl_pw_aff_le_set (lhs, rhs);
+ break;
+
+ case GE_EXPR:
+ cond = isl_pw_aff_ge_set (lhs, rhs);
+ break;
+
+ case EQ_EXPR:
+ cond = isl_pw_aff_eq_set (lhs, rhs);
+ break;
+
+ case NE_EXPR:
+ cond = isl_pw_aff_ne_set (lhs, rhs);
+ break;
+
+ default:
+ isl_pw_aff_free (lhs);
+ isl_pw_aff_free (rhs);
+ return;
+ }
+
+ cond = isl_set_coalesce (cond);
+ cond = isl_set_set_tuple_id (cond, isl_set_get_tuple_id (pbb->domain));
+ pbb->domain = isl_set_intersect (pbb->domain, cond);
+}
+
+/* Add conditions to the domain of PBB. */
+
+static void
+add_conditions_to_domain (poly_bb_p pbb)
+{
+ unsigned int i;
+ gimple stmt;
+ gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
+
+ if (GBB_CONDITIONS (gbb).is_empty ())
+ return;
+
+ FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ {
+ enum tree_code code = gimple_cond_code (stmt);
+
+ /* The conditions for ELSE-branches are inverted. */
+ if (!GBB_CONDITION_CASES (gbb)[i])
+ code = invert_tree_comparison (code, false);
+
+ add_condition_to_pbb (pbb, stmt, code);
+ break;
+ }
+
+ case GIMPLE_SWITCH:
+ /* Switch statements are not supported right now - fall through. */
+
+ default:
+ gcc_unreachable ();
+ break;
+ }
+}
+
+/* Traverses all the GBBs of the SCOP and add their constraints to the
+ iteration domains. */
+
+static void
+add_conditions_to_constraints (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+
+ FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
+ add_conditions_to_domain (pbb);
+}
+
+/* Returns a COND_EXPR statement when BB has a single predecessor, the
+ edge between BB and its predecessor is not a loop exit edge, and
+ the last statement of the single predecessor is a COND_EXPR. */
+
+static gimple
+single_pred_cond_non_loop_exit (basic_block bb)
+{
+ if (single_pred_p (bb))
+ {
+ edge e = single_pred_edge (bb);
+ basic_block pred = e->src;
+ gimple stmt;
+
+ if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
+ return NULL;
+
+ stmt = last_stmt (pred);
+
+ if (stmt && gimple_code (stmt) == GIMPLE_COND)
+ return stmt;
+ }
+
+ return NULL;
+}
+
+class sese_dom_walker : public dom_walker
+{
+public:
+ sese_dom_walker (cdi_direction, sese);
+
+ virtual void before_dom_children (basic_block);
+ virtual void after_dom_children (basic_block);
+
+private:
+ auto_vec<gimple, 3> m_conditions, m_cases;
+ sese m_region;
+};
+
+sese_dom_walker::sese_dom_walker (cdi_direction direction, sese region)
+ : dom_walker (direction), m_region (region)
+{
+}
+
+/* Call-back for dom_walk executed before visiting the dominated
+ blocks. */
+
+void
+sese_dom_walker::before_dom_children (basic_block bb)
+{
+ gimple_bb_p gbb;
+ gimple stmt;
+
+ if (!bb_in_sese_p (bb, m_region))
+ return;
+
+ stmt = single_pred_cond_non_loop_exit (bb);
+
+ if (stmt)
+ {
+ edge e = single_pred_edge (bb);
+
+ m_conditions.safe_push (stmt);
+
+ if (e->flags & EDGE_TRUE_VALUE)
+ m_cases.safe_push (stmt);
+ else
+ m_cases.safe_push (NULL);
+ }
+
+ gbb = gbb_from_bb (bb);
+
+ if (gbb)
+ {
+ GBB_CONDITIONS (gbb) = m_conditions.copy ();
+ GBB_CONDITION_CASES (gbb) = m_cases.copy ();
+ }
+}
+
+/* Call-back for dom_walk executed after visiting the dominated
+ blocks. */
+
+void
+sese_dom_walker::after_dom_children (basic_block bb)
+{
+ if (!bb_in_sese_p (bb, m_region))
+ return;
+
+ if (single_pred_cond_non_loop_exit (bb))
+ {
+ m_conditions.pop ();
+ m_cases.pop ();
+ }
+}
+
+/* Add constraints on the possible values of parameter P from the type
+ of P. */
+
+static void
+add_param_constraints (scop_p scop, graphite_dim_t p)
+{
+ tree parameter = SESE_PARAMS (SCOP_REGION (scop))[p];
+ tree type = TREE_TYPE (parameter);
+ tree lb = NULL_TREE;
+ tree ub = NULL_TREE;
+
+ if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
+ lb = lower_bound_in_type (type, type);
+ else
+ lb = TYPE_MIN_VALUE (type);
+
+ if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
+ ub = upper_bound_in_type (type, type);
+ else
+ ub = TYPE_MAX_VALUE (type);
+
+ if (lb)
+ {
+ isl_space *space = isl_set_get_space (scop->context);
+ isl_constraint *c;
+ mpz_t g;
+ isl_int v;
+
+ c = isl_inequality_alloc (isl_local_space_from_space (space));
+ mpz_init (g);
+ isl_int_init (v);
+ tree_int_to_gmp (lb, g);
+ isl_int_set_gmp (v, g);
+ isl_int_neg (v, v);
+ mpz_clear (g);
+ c = isl_constraint_set_constant (c, v);
+ isl_int_clear (v);
+ c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, 1);
+
+ scop->context = isl_set_add_constraint (scop->context, c);
+ }
+
+ if (ub)
+ {
+ isl_space *space = isl_set_get_space (scop->context);
+ isl_constraint *c;
+ mpz_t g;
+ isl_int v;
+
+ c = isl_inequality_alloc (isl_local_space_from_space (space));
+
+ mpz_init (g);
+ isl_int_init (v);
+ tree_int_to_gmp (ub, g);
+ isl_int_set_gmp (v, g);
+ mpz_clear (g);
+ c = isl_constraint_set_constant (c, v);
+ isl_int_clear (v);
+ c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, -1);
+
+ scop->context = isl_set_add_constraint (scop->context, c);
+ }
+}
+
+/* Build the context of the SCOP. The context usually contains extra
+ constraints that are added to the iteration domains that constrain
+ some parameters. */
+
+static void
+build_scop_context (scop_p scop)
+{
+ graphite_dim_t p, n = scop_nb_params (scop);
+
+ for (p = 0; p < n; p++)
+ add_param_constraints (scop, p);
+}
+
+/* Build the iteration domains: the loops belonging to the current
+ SCOP, and that vary for the execution of the current basic block.
+ Returns false if there is no loop in SCOP. */
+
+static void
+build_scop_iteration_domain (scop_p scop)
+{
+ struct loop *loop;
+ sese region = SCOP_REGION (scop);
+ int i;
+ poly_bb_p pbb;
+ int nb_loops = number_of_loops (cfun);
+ isl_set **doms = XCNEWVEC (isl_set *, nb_loops);
+
+ FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), i, loop)
+ if (!loop_in_sese_p (loop_outer (loop), region))
+ build_loop_iteration_domains (scop, loop, 0,
+ isl_set_copy (scop->context), doms);
+
+ FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
+ {
+ loop = pbb_loop (pbb);
+
+ if (doms[loop->num])
+ pbb->domain = isl_set_copy (doms[loop->num]);
+ else
+ pbb->domain = isl_set_copy (scop->context);
+
+ pbb->domain = isl_set_set_tuple_id (pbb->domain,
+ isl_id_for_pbb (scop, pbb));
+ }
+
+ for (i = 0; i < nb_loops; i++)
+ if (doms[i])
+ isl_set_free (doms[i]);
+
+ free (doms);
+}
+
+/* Add a constrain to the ACCESSES polyhedron for the alias set of
+ data reference DR. ACCESSP_NB_DIMS is the dimension of the
+ ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
+ domain. */
+
+static isl_map *
+pdr_add_alias_set (isl_map *acc, data_reference_p dr)
+{
+ isl_constraint *c;
+ int alias_set_num = 0;
+ base_alias_pair *bap = (base_alias_pair *)(dr->aux);
+
+ if (bap && bap->alias_set)
+ alias_set_num = *(bap->alias_set);
+
+ c = isl_equality_alloc
+ (isl_local_space_from_space (isl_map_get_space (acc)));
+ c = isl_constraint_set_constant_si (c, -alias_set_num);
+ c = isl_constraint_set_coefficient_si (c, isl_dim_out, 0, 1);
+
+ return isl_map_add_constraint (acc, c);
+}
+
+/* Assign the affine expression INDEX to the output dimension POS of
+ MAP and return the result. */
+
+static isl_map *
+set_index (isl_map *map, int pos, isl_pw_aff *index)
+{
+ isl_map *index_map;
+ int len = isl_map_dim (map, isl_dim_out);
+ isl_id *id;
+
+ index_map = isl_map_from_pw_aff (index);
+ index_map = isl_map_insert_dims (index_map, isl_dim_out, 0, pos);
+ index_map = isl_map_add_dims (index_map, isl_dim_out, len - pos - 1);
+
+ id = isl_map_get_tuple_id (map, isl_dim_out);
+ index_map = isl_map_set_tuple_id (index_map, isl_dim_out, id);
+ id = isl_map_get_tuple_id (map, isl_dim_in);
+ index_map = isl_map_set_tuple_id (index_map, isl_dim_in, id);
+
+ return isl_map_intersect (map, index_map);
+}
+
+/* Add to ACCESSES polyhedron equalities defining the access functions
+ to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
+ polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
+ PBB is the poly_bb_p that contains the data reference DR. */
+
+static isl_map *
+pdr_add_memory_accesses (isl_map *acc, data_reference_p dr, poly_bb_p pbb)
+{
+ int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
+ scop_p scop = PBB_SCOP (pbb);
+
+ for (i = 0; i < nb_subscripts; i++)
+ {
+ isl_pw_aff *aff;
+ tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
+
+ aff = extract_affine (scop, afn,
+ isl_space_domain (isl_map_get_space (acc)));
+ acc = set_index (acc, i + 1, aff);
+ }
+
+ return acc;
+}
+
+/* Add constrains representing the size of the accessed data to the
+ ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
+ ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
+ domain. */
+
+static isl_set *
+pdr_add_data_dimensions (isl_set *extent, scop_p scop, data_reference_p dr)
+{
+ tree ref = DR_REF (dr);
+ int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
+
+ for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
+ {
+ tree low, high;
+
+ if (TREE_CODE (ref) != ARRAY_REF)
+ break;
+
+ low = array_ref_low_bound (ref);
+ high = array_ref_up_bound (ref);
+
+ /* XXX The PPL code dealt separately with
+ subscript - low >= 0 and high - subscript >= 0 in case one of
+ the two bounds isn't known. Do the same here? */
+
+ if (tree_fits_shwi_p (low)
+ && high
+ && tree_fits_shwi_p (high)
+ /* 1-element arrays at end of structures may extend over
+ their declared size. */
+ && !(array_at_struct_end_p (ref)
+ && operand_equal_p (low, high, 0)))
+ {
+ isl_id *id;
+ isl_aff *aff;
+ isl_set *univ, *lbs, *ubs;
+ isl_pw_aff *index;
+ isl_space *space;
+ isl_set *valid;
+ isl_pw_aff *lb = extract_affine_int (low, isl_set_get_space (extent));
+ isl_pw_aff *ub = extract_affine_int (high, isl_set_get_space (extent));
+
+ /* high >= 0 */
+ valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (ub));
+ valid = isl_set_project_out (valid, isl_dim_set, 0,
+ isl_set_dim (valid, isl_dim_set));
+ scop->context = isl_set_intersect (scop->context, valid);
+
+ space = isl_set_get_space (extent);
+ aff = isl_aff_zero_on_domain (isl_local_space_from_space (space));
+ aff = isl_aff_add_coefficient_si (aff, isl_dim_in, i + 1, 1);
+ univ = isl_set_universe (isl_space_domain (isl_aff_get_space (aff)));
+ index = isl_pw_aff_alloc (univ, aff);
+
+ id = isl_set_get_tuple_id (extent);
+ lb = isl_pw_aff_set_tuple_id (lb, isl_dim_in, isl_id_copy (id));
+ ub = isl_pw_aff_set_tuple_id (ub, isl_dim_in, id);
+
+ /* low <= sub_i <= high */
+ lbs = isl_pw_aff_ge_set (isl_pw_aff_copy (index), lb);
+ ubs = isl_pw_aff_le_set (index, ub);
+ extent = isl_set_intersect (extent, lbs);
+ extent = isl_set_intersect (extent, ubs);
+ }
+ }
+
+ return extent;
+}
+
+/* Build data accesses for DR in PBB. */
+
+static void
+build_poly_dr (data_reference_p dr, poly_bb_p pbb)
+{
+ int dr_base_object_set;
+ isl_map *acc;
+ isl_set *extent;
+ scop_p scop = PBB_SCOP (pbb);
+
+ {
+ isl_space *dc = isl_set_get_space (pbb->domain);
+ int nb_out = 1 + DR_NUM_DIMENSIONS (dr);
+ isl_space *space = isl_space_add_dims (isl_space_from_domain (dc),
+ isl_dim_out, nb_out);
+
+ acc = isl_map_universe (space);
+ acc = isl_map_set_tuple_id (acc, isl_dim_out, isl_id_for_dr (scop, dr));
+ }
+
+ acc = pdr_add_alias_set (acc, dr);
+ acc = pdr_add_memory_accesses (acc, dr, pbb);
+
+ {
+ isl_id *id = isl_id_for_dr (scop, dr);
+ int nb = 1 + DR_NUM_DIMENSIONS (dr);
+ isl_space *space = isl_space_set_alloc (scop->ctx, 0, nb);
+ int alias_set_num = 0;
+ base_alias_pair *bap = (base_alias_pair *)(dr->aux);
+
+ if (bap && bap->alias_set)
+ alias_set_num = *(bap->alias_set);
+
+ space = isl_space_set_tuple_id (space, isl_dim_set, id);
+ extent = isl_set_nat_universe (space);
+ extent = isl_set_fix_si (extent, isl_dim_set, 0, alias_set_num);
+ extent = pdr_add_data_dimensions (extent, scop, dr);
+ }
+
+ gcc_assert (dr->aux);
+ dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
+
+ new_poly_dr (pbb, dr_base_object_set,
+ DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
+ dr, DR_NUM_DIMENSIONS (dr), acc, extent);
+}
+
+/* Write to FILE the alias graph of data references in DIMACS format. */
+
+static inline bool
+write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
+ vec<data_reference_p> drs)
+{
+ int num_vertex = drs.length ();
+ int edge_num = 0;
+ data_reference_p dr1, dr2;
+ int i, j;
+
+ if (num_vertex == 0)
+ return true;
+
+ FOR_EACH_VEC_ELT (drs, i, dr1)
+ for (j = i + 1; drs.iterate (j, &dr2); j++)
+ if (dr_may_alias_p (dr1, dr2, true))
+ edge_num++;
+
+ fprintf (file, "$\n");
+
+ if (comment)
+ fprintf (file, "c %s\n", comment);
+
+ fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
+
+ FOR_EACH_VEC_ELT (drs, i, dr1)
+ for (j = i + 1; drs.iterate (j, &dr2); j++)
+ if (dr_may_alias_p (dr1, dr2, true))
+ fprintf (file, "e %d %d\n", i + 1, j + 1);
+
+ return true;
+}
+
+/* Write to FILE the alias graph of data references in DOT format. */
+
+static inline bool
+write_alias_graph_to_ascii_dot (FILE *file, char *comment,
+ vec<data_reference_p> drs)
+{
+ int num_vertex = drs.length ();
+ data_reference_p dr1, dr2;
+ int i, j;
+
+ if (num_vertex == 0)
+ return true;
+
+ fprintf (file, "$\n");
+
+ if (comment)
+ fprintf (file, "c %s\n", comment);
+
+ /* First print all the vertices. */
+ FOR_EACH_VEC_ELT (drs, i, dr1)
+ fprintf (file, "n%d;\n", i);
+
+ FOR_EACH_VEC_ELT (drs, i, dr1)
+ for (j = i + 1; drs.iterate (j, &dr2); j++)
+ if (dr_may_alias_p (dr1, dr2, true))
+ fprintf (file, "n%d n%d\n", i, j);
+
+ return true;
+}
+
+/* Write to FILE the alias graph of data references in ECC format. */
+
+static inline bool
+write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
+ vec<data_reference_p> drs)
+{
+ int num_vertex = drs.length ();
+ data_reference_p dr1, dr2;
+ int i, j;
+
+ if (num_vertex == 0)
+ return true;
+
+ fprintf (file, "$\n");
+
+ if (comment)
+ fprintf (file, "c %s\n", comment);
+
+ FOR_EACH_VEC_ELT (drs, i, dr1)
+ for (j = i + 1; drs.iterate (j, &dr2); j++)
+ if (dr_may_alias_p (dr1, dr2, true))
+ fprintf (file, "%d %d\n", i, j);
+
+ return true;
+}
+
+/* Check if DR1 and DR2 are in the same object set. */
+
+static bool
+dr_same_base_object_p (const struct data_reference *dr1,
+ const struct data_reference *dr2)
+{
+ return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
+}
+
+/* Uses DFS component number as representative of alias-sets. Also tests for
+ optimality by verifying if every connected component is a clique. Returns
+ true (1) if the above test is true, and false (0) otherwise. */
+
+static int
+build_alias_set_optimal_p (vec<data_reference_p> drs)
+{
+ int num_vertices = drs.length ();
+ struct graph *g = new_graph (num_vertices);
+ data_reference_p dr1, dr2;
+ int i, j;
+ int num_connected_components;
+ int v_indx1, v_indx2, num_vertices_in_component;
+ int *all_vertices;
+ int *vertices;
+ struct graph_edge *e;
+ int this_component_is_clique;
+ int all_components_are_cliques = 1;
+
+ FOR_EACH_VEC_ELT (drs, i, dr1)
+ for (j = i+1; drs.iterate (j, &dr2); j++)
+ if (dr_may_alias_p (dr1, dr2, true))
+ {
+ add_edge (g, i, j);
+ add_edge (g, j, i);
+ }
+
+ all_vertices = XNEWVEC (int, num_vertices);
+ vertices = XNEWVEC (int, num_vertices);
+ for (i = 0; i < num_vertices; i++)
+ all_vertices[i] = i;
+
+ num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
+ NULL, true, NULL);
+ for (i = 0; i < g->n_vertices; i++)
+ {
+ data_reference_p dr = drs[i];
+ base_alias_pair *bap;
+
+ gcc_assert (dr->aux);
+ bap = (base_alias_pair *)(dr->aux);
+
+ bap->alias_set = XNEW (int);
+ *(bap->alias_set) = g->vertices[i].component + 1;
+ }
+
+ /* Verify if the DFS numbering results in optimal solution. */
+ for (i = 0; i < num_connected_components; i++)
+ {
+ num_vertices_in_component = 0;
+ /* Get all vertices whose DFS component number is the same as i. */
+ for (j = 0; j < num_vertices; j++)
+ if (g->vertices[j].component == i)
+ vertices[num_vertices_in_component++] = j;
+
+ /* Now test if the vertices in 'vertices' form a clique, by testing
+ for edges among each pair. */
+ this_component_is_clique = 1;
+ for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
+ {
+ for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
+ {
+ /* Check if the two vertices are connected by iterating
+ through all the edges which have one of these are source. */
+ e = g->vertices[vertices[v_indx2]].pred;
+ while (e)
+ {
+ if (e->src == vertices[v_indx1])
+ break;
+ e = e->pred_next;
+ }
+ if (!e)
+ {
+ this_component_is_clique = 0;
+ break;
+ }
+ }
+ if (!this_component_is_clique)
+ all_components_are_cliques = 0;
+ }
+ }
+
+ free (all_vertices);
+ free (vertices);
+ free_graph (g);
+ return all_components_are_cliques;
+}
+
+/* Group each data reference in DRS with its base object set num. */
+
+static void
+build_base_obj_set_for_drs (vec<data_reference_p> drs)
+{
+ int num_vertex = drs.length ();
+ struct graph *g = new_graph (num_vertex);
+ data_reference_p dr1, dr2;
+ int i, j;
+ int *queue;
+
+ FOR_EACH_VEC_ELT (drs, i, dr1)
+ for (j = i + 1; drs.iterate (j, &dr2); j++)
+ if (dr_same_base_object_p (dr1, dr2))
+ {
+ add_edge (g, i, j);
+ add_edge (g, j, i);
+ }
+
+ queue = XNEWVEC (int, num_vertex);
+ for (i = 0; i < num_vertex; i++)
+ queue[i] = i;
+
+ graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
+
+ for (i = 0; i < g->n_vertices; i++)
+ {
+ data_reference_p dr = drs[i];
+ base_alias_pair *bap;
+
+ gcc_assert (dr->aux);
+ bap = (base_alias_pair *)(dr->aux);
+
+ bap->base_obj_set = g->vertices[i].component + 1;
+ }
+
+ free (queue);
+ free_graph (g);
+}
+
+/* Build the data references for PBB. */
+
+static void
+build_pbb_drs (poly_bb_p pbb)
+{
+ int j;
+ data_reference_p dr;
+ vec<data_reference_p> gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
+
+ FOR_EACH_VEC_ELT (gbb_drs, j, dr)
+ build_poly_dr (dr, pbb);
+}
+
+/* Dump to file the alias graphs for the data references in DRS. */
+
+static void
+dump_alias_graphs (vec<data_reference_p> drs)
+{
+ char comment[100];
+ FILE *file_dimacs, *file_ecc, *file_dot;
+
+ file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
+ if (file_dimacs)
+ {
+ snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
+ current_function_name ());
+ write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
+ fclose (file_dimacs);
+ }
+
+ file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
+ if (file_ecc)
+ {
+ snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
+ current_function_name ());
+ write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
+ fclose (file_ecc);
+ }
+
+ file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
+ if (file_dot)
+ {
+ snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
+ current_function_name ());
+ write_alias_graph_to_ascii_dot (file_dot, comment, drs);
+ fclose (file_dot);
+ }
+}
+
+/* Build data references in SCOP. */
+
+static void
+build_scop_drs (scop_p scop)
+{
+ int i, j;
+ poly_bb_p pbb;
+ data_reference_p dr;
+ auto_vec<data_reference_p, 3> drs;
+
+ /* Remove all the PBBs that do not have data references: these basic
+ blocks are not handled in the polyhedral representation. */
+ for (i = 0; SCOP_BBS (scop).iterate (i, &pbb); i++)
+ if (GBB_DATA_REFS (PBB_BLACK_BOX (pbb)).is_empty ())
+ {
+ free_gimple_bb (PBB_BLACK_BOX (pbb));
+ free_poly_bb (pbb);
+ SCOP_BBS (scop).ordered_remove (i);
+ i--;
+ }
+
+ FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
+ for (j = 0; GBB_DATA_REFS (PBB_BLACK_BOX (pbb)).iterate (j, &dr); j++)
+ drs.safe_push (dr);
+
+ FOR_EACH_VEC_ELT (drs, i, dr)
+ dr->aux = XNEW (base_alias_pair);
+
+ if (!build_alias_set_optimal_p (drs))
+ {
+ /* TODO: Add support when building alias set is not optimal. */
+ ;
+ }
+
+ build_base_obj_set_for_drs (drs);
+
+ /* When debugging, enable the following code. This cannot be used
+ in production compilers. */
+ if (0)
+ dump_alias_graphs (drs);
+
+ drs.release ();
+
+ FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
+ build_pbb_drs (pbb);
+}
+
+/* Return a gsi at the position of the phi node STMT. */
+
+static gimple_stmt_iterator
+gsi_for_phi_node (gimple stmt)
+{
+ gimple_stmt_iterator psi;
+ basic_block bb = gimple_bb (stmt);
+
+ for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
+ if (stmt == gsi_stmt (psi))
+ return psi;
+
+ gcc_unreachable ();
+ return psi;
+}
+
+/* Analyze all the data references of STMTS and add them to the
+ GBB_DATA_REFS vector of BB. */
+
+static void
+analyze_drs_in_stmts (scop_p scop, basic_block bb, vec<gimple> stmts)
+{
+ loop_p nest;
+ gimple_bb_p gbb;
+ gimple stmt;
+ int i;
+ sese region = SCOP_REGION (scop);
+
+ if (!bb_in_sese_p (bb, region))
+ return;
+
+ nest = outermost_loop_in_sese_1 (region, bb);
+ gbb = gbb_from_bb (bb);
+
+ FOR_EACH_VEC_ELT (stmts, i, stmt)
+ {
+ loop_p loop;
+
+ if (is_gimple_debug (stmt))
+ continue;
+
+ loop = loop_containing_stmt (stmt);
+ if (!loop_in_sese_p (loop, region))
+ loop = nest;
+
+ graphite_find_data_references_in_stmt (nest, loop, stmt,
+ &GBB_DATA_REFS (gbb));
+ }
+}
+
+/* Insert STMT at the end of the STMTS sequence and then insert the
+ statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
+ on STMTS. */
+
+static void
+insert_stmts (scop_p scop, gimple stmt, gimple_seq stmts,
+ gimple_stmt_iterator insert_gsi)
+{
+ gimple_stmt_iterator gsi;
+ auto_vec<gimple, 3> x;
+
+ gimple_seq_add_stmt (&stmts, stmt);
+ for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
+ x.safe_push (gsi_stmt (gsi));
+
+ gsi_insert_seq_before (&insert_gsi, stmts, GSI_SAME_STMT);
+ analyze_drs_in_stmts (scop, gsi_bb (insert_gsi), x);
+}
+
+/* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
+
+static void
+insert_out_of_ssa_copy (scop_p scop, tree res, tree expr, gimple after_stmt)
+{
+ gimple_seq stmts;
+ gimple_stmt_iterator gsi;
+ tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
+ gimple stmt = gimple_build_assign (unshare_expr (res), var);
+ auto_vec<gimple, 3> x;
+
+ gimple_seq_add_stmt (&stmts, stmt);
+ for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
+ x.safe_push (gsi_stmt (gsi));
+
+ if (gimple_code (after_stmt) == GIMPLE_PHI)
+ {
+ gsi = gsi_after_labels (gimple_bb (after_stmt));
+ gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
+ }
+ else
+ {
+ gsi = gsi_for_stmt (after_stmt);
+ gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
+ }
+
+ analyze_drs_in_stmts (scop, gimple_bb (after_stmt), x);
+}
+
+/* Creates a poly_bb_p for basic_block BB from the existing PBB. */
+
+static void
+new_pbb_from_pbb (scop_p scop, poly_bb_p pbb, basic_block bb)
+{
+ vec<data_reference_p> drs;
+ drs.create (3);
+ gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
+ gimple_bb_p gbb1 = new_gimple_bb (bb, drs);
+ poly_bb_p pbb1 = new_poly_bb (scop, gbb1);
+ int index, n = SCOP_BBS (scop).length ();
+
+ /* The INDEX of PBB in SCOP_BBS. */
+ for (index = 0; index < n; index++)
+ if (SCOP_BBS (scop)[index] == pbb)
+ break;
+
+ pbb1->domain = isl_set_copy (pbb->domain);
+
+ GBB_PBB (gbb1) = pbb1;
+ GBB_CONDITIONS (gbb1) = GBB_CONDITIONS (gbb).copy ();
+ GBB_CONDITION_CASES (gbb1) = GBB_CONDITION_CASES (gbb).copy ();
+ SCOP_BBS (scop).safe_insert (index + 1, pbb1);
+}
+
+/* Insert on edge E the assignment "RES := EXPR". */
+
+static void
+insert_out_of_ssa_copy_on_edge (scop_p scop, edge e, tree res, tree expr)
+{
+ gimple_stmt_iterator gsi;
+ gimple_seq stmts = NULL;
+ tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
+ gimple stmt = gimple_build_assign (unshare_expr (res), var);
+ basic_block bb;
+ auto_vec<gimple, 3> x;
+
+ gimple_seq_add_stmt (&stmts, stmt);
+ for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
+ x.safe_push (gsi_stmt (gsi));
+
+ gsi_insert_seq_on_edge (e, stmts);
+ gsi_commit_edge_inserts ();
+ bb = gimple_bb (stmt);
+
+ if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
+ return;
+
+ if (!gbb_from_bb (bb))
+ new_pbb_from_pbb (scop, pbb_from_bb (e->src), bb);
+
+ analyze_drs_in_stmts (scop, bb, x);
+}
+
+/* Creates a zero dimension array of the same type as VAR. */
+
+static tree
+create_zero_dim_array (tree var, const char *base_name)
+{
+ tree index_type = build_index_type (integer_zero_node);
+ tree elt_type = TREE_TYPE (var);
+ tree array_type = build_array_type (elt_type, index_type);
+ tree base = create_tmp_var (array_type, base_name);
+
+ return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
+ NULL_TREE);
+}
+
+/* Returns true when PHI is a loop close phi node. */
+
+static bool
+scalar_close_phi_node_p (gimple phi)
+{
+ if (gimple_code (phi) != GIMPLE_PHI
+ || virtual_operand_p (gimple_phi_result (phi)))
+ return false;
+
+ /* Note that loop close phi nodes should have a single argument
+ because we translated the representation into a canonical form
+ before Graphite: see canonicalize_loop_closed_ssa_form. */
+ return (gimple_phi_num_args (phi) == 1);
+}
+
+/* For a definition DEF in REGION, propagates the expression EXPR in
+ all the uses of DEF outside REGION. */
+
+static void
+propagate_expr_outside_region (tree def, tree expr, sese region)
+{
+ imm_use_iterator imm_iter;
+ gimple use_stmt;
+ gimple_seq stmts;
+ bool replaced_once = false;
+
+ gcc_assert (TREE_CODE (def) == SSA_NAME);
+
+ expr = force_gimple_operand (unshare_expr (expr), &stmts, true,
+ NULL_TREE);
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
+ if (!is_gimple_debug (use_stmt)
+ && !bb_in_sese_p (gimple_bb (use_stmt), region))
+ {
+ ssa_op_iter iter;
+ use_operand_p use_p;
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, use_stmt, iter, SSA_OP_ALL_USES)
+ if (operand_equal_p (def, USE_FROM_PTR (use_p), 0)
+ && (replaced_once = true))
+ replace_exp (use_p, expr);
+
+ update_stmt (use_stmt);
+ }
+
+ if (replaced_once)
+ {
+ gsi_insert_seq_on_edge (SESE_ENTRY (region), stmts);
+ gsi_commit_edge_inserts ();
+ }
+}
+
+/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
+ dimension array for it. */
+
+static void
+rewrite_close_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
+{
+ sese region = SCOP_REGION (scop);
+ gimple phi = gsi_stmt (*psi);
+ tree res = gimple_phi_result (phi);
+ basic_block bb = gimple_bb (phi);
+ gimple_stmt_iterator gsi = gsi_after_labels (bb);
+ tree arg = gimple_phi_arg_def (phi, 0);
+ gimple stmt;
+
+ /* Note that loop close phi nodes should have a single argument
+ because we translated the representation into a canonical form
+ before Graphite: see canonicalize_loop_closed_ssa_form. */
+ gcc_assert (gimple_phi_num_args (phi) == 1);
+
+ /* The phi node can be a non close phi node, when its argument is
+ invariant, or a default definition. */
+ if (is_gimple_min_invariant (arg)
+ || SSA_NAME_IS_DEFAULT_DEF (arg))
+ {
+ propagate_expr_outside_region (res, arg, region);
+ gsi_next (psi);
+ return;
+ }
+
+ else if (gimple_bb (SSA_NAME_DEF_STMT (arg))->loop_father == bb->loop_father)
+ {
+ propagate_expr_outside_region (res, arg, region);
+ stmt = gimple_build_assign (res, arg);
+ remove_phi_node (psi, false);
+ gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+ return;
+ }
+
+ /* If res is scev analyzable and is not a scalar value, it is safe
+ to ignore the close phi node: it will be code generated in the
+ out of Graphite pass. */
+ else if (scev_analyzable_p (res, region))
+ {
+ loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (res));
+ tree scev;
+
+ if (!loop_in_sese_p (loop, region))
+ {
+ loop = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
+ scev = scalar_evolution_in_region (region, loop, arg);
+ scev = compute_overall_effect_of_inner_loop (loop, scev);
+ }
+ else
+ scev = scalar_evolution_in_region (region, loop, res);
+
+ if (tree_does_not_contain_chrecs (scev))
+ propagate_expr_outside_region (res, scev, region);
+
+ gsi_next (psi);
+ return;
+ }
+ else
+ {
+ tree zero_dim_array = create_zero_dim_array (res, "Close_Phi");
+
+ stmt = gimple_build_assign (res, unshare_expr (zero_dim_array));
+
+ if (TREE_CODE (arg) == SSA_NAME)
+ insert_out_of_ssa_copy (scop, zero_dim_array, arg,
+ SSA_NAME_DEF_STMT (arg));
+ else
+ insert_out_of_ssa_copy_on_edge (scop, single_pred_edge (bb),
+ zero_dim_array, arg);
+ }
+
+ remove_phi_node (psi, false);
+ SSA_NAME_DEF_STMT (res) = stmt;
+
+ insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
+}
+
+/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
+ dimension array for it. */
+
+static void
+rewrite_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
+{
+ size_t i;
+ gimple phi = gsi_stmt (*psi);
+ basic_block bb = gimple_bb (phi);
+ tree res = gimple_phi_result (phi);
+ tree zero_dim_array = create_zero_dim_array (res, "phi_out_of_ssa");
+ gimple stmt;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree arg = gimple_phi_arg_def (phi, i);
+ edge e = gimple_phi_arg_edge (phi, i);
+
+ /* Avoid the insertion of code in the loop latch to please the
+ pattern matching of the vectorizer. */
+ if (TREE_CODE (arg) == SSA_NAME
+ && e->src == bb->loop_father->latch)
+ insert_out_of_ssa_copy (scop, zero_dim_array, arg,
+ SSA_NAME_DEF_STMT (arg));
+ else
+ insert_out_of_ssa_copy_on_edge (scop, e, zero_dim_array, arg);
+ }
+
+ stmt = gimple_build_assign (res, unshare_expr (zero_dim_array));
+ remove_phi_node (psi, false);
+ insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
+}
+
+/* Rewrite the degenerate phi node at position PSI from the degenerate
+ form "x = phi (y, y, ..., y)" to "x = y". */
+
+static void
+rewrite_degenerate_phi (gimple_stmt_iterator *psi)
+{
+ tree rhs;
+ gimple stmt;
+ gimple_stmt_iterator gsi;
+ gimple phi = gsi_stmt (*psi);
+ tree res = gimple_phi_result (phi);
+ basic_block bb;
+
+ bb = gimple_bb (phi);
+ rhs = degenerate_phi_result (phi);
+ gcc_assert (rhs);
+
+ stmt = gimple_build_assign (res, rhs);
+ remove_phi_node (psi, false);
+
+ gsi = gsi_after_labels (bb);
+ gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+}
+
+/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
+
+static void
+rewrite_reductions_out_of_ssa (scop_p scop)
+{
+ basic_block bb;
+ gimple_stmt_iterator psi;
+ sese region = SCOP_REGION (scop);
+
+ FOR_EACH_BB_FN (bb, cfun)
+ if (bb_in_sese_p (bb, region))
+ for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
+ {
+ gimple phi = gsi_stmt (psi);
+
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ {
+ gsi_next (&psi);
+ continue;
+ }
+
+ if (gimple_phi_num_args (phi) > 1
+ && degenerate_phi_result (phi))
+ rewrite_degenerate_phi (&psi);
+
+ else if (scalar_close_phi_node_p (phi))
+ rewrite_close_phi_out_of_ssa (scop, &psi);
+
+ else if (reduction_phi_p (region, &psi))
+ rewrite_phi_out_of_ssa (scop, &psi);
+ }
+
+ update_ssa (TODO_update_ssa);
+#ifdef ENABLE_CHECKING
+ verify_loop_closed_ssa (true);
+#endif
+}
+
+/* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
+ read from ZERO_DIM_ARRAY. */
+
+static void
+rewrite_cross_bb_scalar_dependence (scop_p scop, tree zero_dim_array,
+ tree def, gimple use_stmt)
+{
+ gimple name_stmt;
+ tree name;
+ ssa_op_iter iter;
+ use_operand_p use_p;
+
+ gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
+
+ name = copy_ssa_name (def, NULL);
+ name_stmt = gimple_build_assign (name, zero_dim_array);
+
+ gimple_assign_set_lhs (name_stmt, name);
+ insert_stmts (scop, name_stmt, NULL, gsi_for_stmt (use_stmt));
+
+ FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
+ if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
+ replace_exp (use_p, name);
+
+ update_stmt (use_stmt);
+}
+
+/* For every definition DEF in the SCOP that is used outside the scop,
+ insert a closing-scop definition in the basic block just after this
+ SCOP. */
+
+static void
+handle_scalar_deps_crossing_scop_limits (scop_p scop, tree def, gimple stmt)
+{
+ tree var = create_tmp_reg (TREE_TYPE (def), NULL);
+ tree new_name = make_ssa_name (var, stmt);
+ bool needs_copy = false;
+ use_operand_p use_p;
+ imm_use_iterator imm_iter;
+ gimple use_stmt;
+ sese region = SCOP_REGION (scop);
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
+ {
+ if (!bb_in_sese_p (gimple_bb (use_stmt), region))
+ {
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ {
+ SET_USE (use_p, new_name);
+ }
+ update_stmt (use_stmt);
+ needs_copy = true;
+ }
+ }
+
+ /* Insert in the empty BB just after the scop a use of DEF such
+ that the rewrite of cross_bb_scalar_dependences won't insert
+ arrays everywhere else. */
+ if (needs_copy)
+ {
+ gimple assign = gimple_build_assign (new_name, def);
+ gimple_stmt_iterator psi = gsi_after_labels (SESE_EXIT (region)->dest);
+
+ update_stmt (assign);
+ gsi_insert_before (&psi, assign, GSI_SAME_STMT);
+ }
+}
+
+/* Rewrite the scalar dependences crossing the boundary of the BB
+ containing STMT with an array. Return true when something has been
+ changed. */
+
+static bool
+rewrite_cross_bb_scalar_deps (scop_p scop, gimple_stmt_iterator *gsi)
+{
+ sese region = SCOP_REGION (scop);
+ gimple stmt = gsi_stmt (*gsi);
+ imm_use_iterator imm_iter;
+ tree def;
+ basic_block def_bb;
+ tree zero_dim_array = NULL_TREE;
+ gimple use_stmt;
+ bool res = false;
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ def = gimple_assign_lhs (stmt);
+ break;
+
+ case GIMPLE_CALL:
+ def = gimple_call_lhs (stmt);
+ break;
+
+ default:
+ return false;
+ }
+
+ if (!def
+ || !is_gimple_reg (def))
+ return false;
+
+ if (scev_analyzable_p (def, region))
+ {
+ loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
+ tree scev = scalar_evolution_in_region (region, loop, def);
+
+ if (tree_contains_chrecs (scev, NULL))
+ return false;
+
+ propagate_expr_outside_region (def, scev, region);
+ return true;
+ }
+
+ def_bb = gimple_bb (stmt);
+
+ handle_scalar_deps_crossing_scop_limits (scop, def, stmt);
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
+ if (gimple_code (use_stmt) == GIMPLE_PHI
+ && (res = true))
+ {
+ gimple_stmt_iterator psi = gsi_for_stmt (use_stmt);
+
+ if (scalar_close_phi_node_p (gsi_stmt (psi)))
+ rewrite_close_phi_out_of_ssa (scop, &psi);
+ else
+ rewrite_phi_out_of_ssa (scop, &psi);
+ }
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
+ if (gimple_code (use_stmt) != GIMPLE_PHI
+ && def_bb != gimple_bb (use_stmt)
+ && !is_gimple_debug (use_stmt)
+ && (res = true))
+ {
+ if (!zero_dim_array)
+ {
+ zero_dim_array = create_zero_dim_array
+ (def, "Cross_BB_scalar_dependence");
+ insert_out_of_ssa_copy (scop, zero_dim_array, def,
+ SSA_NAME_DEF_STMT (def));
+ gsi_next (gsi);
+ }
+
+ rewrite_cross_bb_scalar_dependence (scop, zero_dim_array,
+ def, use_stmt);
+ }
+
+ return res;
+}
+
+/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
+
+static void
+rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop)
+{
+ basic_block bb;
+ gimple_stmt_iterator psi;
+ sese region = SCOP_REGION (scop);
+ bool changed = false;
+
+ /* Create an extra empty BB after the scop. */
+ split_edge (SESE_EXIT (region));
+
+ FOR_EACH_BB_FN (bb, cfun)
+ if (bb_in_sese_p (bb, region))
+ for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
+ changed |= rewrite_cross_bb_scalar_deps (scop, &psi);
+
+ if (changed)
+ {
+ scev_reset_htab ();
+ update_ssa (TODO_update_ssa);
+#ifdef ENABLE_CHECKING
+ verify_loop_closed_ssa (true);
+#endif
+ }
+}
+
+/* Returns the number of pbbs that are in loops contained in SCOP. */
+
+static int
+nb_pbbs_in_loops (scop_p scop)
+{
+ int i;
+ poly_bb_p pbb;
+ int res = 0;
+
+ FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
+ if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
+ res++;
+
+ return res;
+}
+
+/* Return the number of data references in BB that write in
+ memory. */
+
+static int
+nb_data_writes_in_bb (basic_block bb)
+{
+ int res = 0;
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ if (gimple_vdef (gsi_stmt (gsi)))
+ res++;
+
+ return res;
+}
+
+/* Splits at STMT the basic block BB represented as PBB in the
+ polyhedral form. */
+
+static edge
+split_pbb (scop_p scop, poly_bb_p pbb, basic_block bb, gimple stmt)
+{
+ edge e1 = split_block (bb, stmt);
+ new_pbb_from_pbb (scop, pbb, e1->dest);
+ return e1;
+}
+
+/* Splits STMT out of its current BB. This is done for reduction
+ statements for which we want to ignore data dependences. */
+
+static basic_block
+split_reduction_stmt (scop_p scop, gimple stmt)
+{
+ basic_block bb = gimple_bb (stmt);
+ poly_bb_p pbb = pbb_from_bb (bb);
+ gimple_bb_p gbb = gbb_from_bb (bb);
+ edge e1;
+ int i;
+ data_reference_p dr;
+
+ /* Do not split basic blocks with no writes to memory: the reduction
+ will be the only write to memory. */
+ if (nb_data_writes_in_bb (bb) == 0
+ /* Or if we have already marked BB as a reduction. */
+ || PBB_IS_REDUCTION (pbb_from_bb (bb)))
+ return bb;
+
+ e1 = split_pbb (scop, pbb, bb, stmt);
+
+ /* Split once more only when the reduction stmt is not the only one
+ left in the original BB. */
+ if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
+ {
+ gimple_stmt_iterator gsi = gsi_last_bb (bb);
+ gsi_prev (&gsi);
+ e1 = split_pbb (scop, pbb, bb, gsi_stmt (gsi));
+ }
+
+ /* A part of the data references will end in a different basic block
+ after the split: move the DRs from the original GBB to the newly
+ created GBB1. */
+ FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
+ {
+ basic_block bb1 = gimple_bb (DR_STMT (dr));
+
+ if (bb1 != bb)
+ {
+ gimple_bb_p gbb1 = gbb_from_bb (bb1);
+ GBB_DATA_REFS (gbb1).safe_push (dr);
+ GBB_DATA_REFS (gbb).ordered_remove (i);
+ i--;
+ }
+ }
+
+ return e1->dest;
+}
+
+/* Return true when stmt is a reduction operation. */
+
+static inline bool
+is_reduction_operation_p (gimple stmt)
+{
+ enum tree_code code;
+
+ gcc_assert (is_gimple_assign (stmt));
+ code = gimple_assign_rhs_code (stmt);
+
+ return flag_associative_math
+ && commutative_tree_code (code)
+ && associative_tree_code (code);
+}
+
+/* Returns true when PHI contains an argument ARG. */
+
+static bool
+phi_contains_arg (gimple phi, tree arg)
+{
+ size_t i;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
+ return true;
+
+ return false;
+}
+
+/* Return a loop phi node that corresponds to a reduction containing LHS. */
+
+static gimple
+follow_ssa_with_commutative_ops (tree arg, tree lhs)
+{
+ gimple stmt;
+
+ if (TREE_CODE (arg) != SSA_NAME)
+ return NULL;
+
+ stmt = SSA_NAME_DEF_STMT (arg);
+
+ if (gimple_code (stmt) == GIMPLE_NOP
+ || gimple_code (stmt) == GIMPLE_CALL)
+ return NULL;
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ {
+ if (phi_contains_arg (stmt, lhs))
+ return stmt;
+ return NULL;
+ }
+
+ if (!is_gimple_assign (stmt))
+ return NULL;
+
+ if (gimple_num_ops (stmt) == 2)
+ return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
+
+ if (is_reduction_operation_p (stmt))
+ {
+ gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
+
+ return res ? res :
+ follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
+ }
+
+ return NULL;
+}
+
+/* Detect commutative and associative scalar reductions starting at
+ the STMT. Return the phi node of the reduction cycle, or NULL. */
+
+static gimple
+detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
+ vec<gimple> *in,
+ vec<gimple> *out)
+{
+ gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
+
+ if (!phi)
+ return NULL;
+
+ in->safe_push (stmt);
+ out->safe_push (stmt);
+ return phi;
+}
+
+/* Detect commutative and associative scalar reductions starting at
+ STMT. Return the phi node of the reduction cycle, or NULL. */
+
+static gimple
+detect_commutative_reduction_assign (gimple stmt, vec<gimple> *in,
+ vec<gimple> *out)
+{
+ tree lhs = gimple_assign_lhs (stmt);
+
+ if (gimple_num_ops (stmt) == 2)
+ return detect_commutative_reduction_arg (lhs, stmt,
+ gimple_assign_rhs1 (stmt),
+ in, out);
+
+ if (is_reduction_operation_p (stmt))
+ {
+ gimple res = detect_commutative_reduction_arg (lhs, stmt,
+ gimple_assign_rhs1 (stmt),
+ in, out);
+ return res ? res
+ : detect_commutative_reduction_arg (lhs, stmt,
+ gimple_assign_rhs2 (stmt),
+ in, out);
+ }
+
+ return NULL;
+}
+
+/* Return a loop phi node that corresponds to a reduction containing LHS. */
+
+static gimple
+follow_inital_value_to_phi (tree arg, tree lhs)
+{
+ gimple stmt;
+
+ if (!arg || TREE_CODE (arg) != SSA_NAME)
+ return NULL;
+
+ stmt = SSA_NAME_DEF_STMT (arg);
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && phi_contains_arg (stmt, lhs))
+ return stmt;
+
+ return NULL;
+}
+
+
+/* Return the argument of the loop PHI that is the initial value coming
+ from outside the loop. */
+
+static edge
+edge_initial_value_for_loop_phi (gimple phi)
+{
+ size_t i;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ edge e = gimple_phi_arg_edge (phi, i);
+
+ if (loop_depth (e->src->loop_father)
+ < loop_depth (e->dest->loop_father))
+ return e;
+ }
+
+ return NULL;
+}
+
+/* Return the argument of the loop PHI that is the initial value coming
+ from outside the loop. */
+
+static tree
+initial_value_for_loop_phi (gimple phi)
+{
+ size_t i;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ edge e = gimple_phi_arg_edge (phi, i);
+
+ if (loop_depth (e->src->loop_father)
+ < loop_depth (e->dest->loop_father))
+ return gimple_phi_arg_def (phi, i);
+ }
+
+ return NULL_TREE;
+}
+
+/* Returns true when DEF is used outside the reduction cycle of
+ LOOP_PHI. */
+
+static bool
+used_outside_reduction (tree def, gimple loop_phi)
+{
+ use_operand_p use_p;
+ imm_use_iterator imm_iter;
+ loop_p loop = loop_containing_stmt (loop_phi);
+
+ /* In LOOP, DEF should be used only in LOOP_PHI. */
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ {
+ gimple stmt = USE_STMT (use_p);
+
+ if (stmt != loop_phi
+ && !is_gimple_debug (stmt)
+ && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
+ return true;
+ }
+
+ return false;
+}
+
+/* Detect commutative and associative scalar reductions belonging to
+ the SCOP starting at the loop closed phi node STMT. Return the phi
+ node of the reduction cycle, or NULL. */
+
+static gimple
+detect_commutative_reduction (scop_p scop, gimple stmt, vec<gimple> *in,
+ vec<gimple> *out)
+{
+ if (scalar_close_phi_node_p (stmt))
+ {
+ gimple def, loop_phi, phi, close_phi = stmt;
+ tree init, lhs, arg = gimple_phi_arg_def (close_phi, 0);
+
+ if (TREE_CODE (arg) != SSA_NAME)
+ return NULL;
+
+ /* Note that loop close phi nodes should have a single argument
+ because we translated the representation into a canonical form
+ before Graphite: see canonicalize_loop_closed_ssa_form. */
+ gcc_assert (gimple_phi_num_args (close_phi) == 1);
+
+ def = SSA_NAME_DEF_STMT (arg);
+ if (!stmt_in_sese_p (def, SCOP_REGION (scop))
+ || !(loop_phi = detect_commutative_reduction (scop, def, in, out)))
+ return NULL;
+
+ lhs = gimple_phi_result (close_phi);
+ init = initial_value_for_loop_phi (loop_phi);
+ phi = follow_inital_value_to_phi (init, lhs);
+
+ if (phi && (used_outside_reduction (lhs, phi)
+ || !has_single_use (gimple_phi_result (phi))))
+ return NULL;
+
+ in->safe_push (loop_phi);
+ out->safe_push (close_phi);
+ return phi;
+ }
+
+ if (gimple_code (stmt) == GIMPLE_ASSIGN)
+ return detect_commutative_reduction_assign (stmt, in, out);
+
+ return NULL;
+}
+
+/* Translate the scalar reduction statement STMT to an array RED
+ knowing that its recursive phi node is LOOP_PHI. */
+
+static void
+translate_scalar_reduction_to_array_for_stmt (scop_p scop, tree red,
+ gimple stmt, gimple loop_phi)
+{
+ tree res = gimple_phi_result (loop_phi);
+ gimple assign = gimple_build_assign (res, unshare_expr (red));
+ gimple_stmt_iterator gsi;
+
+ insert_stmts (scop, assign, NULL, gsi_after_labels (gimple_bb (loop_phi)));
+
+ assign = gimple_build_assign (unshare_expr (red), gimple_assign_lhs (stmt));
+ gsi = gsi_for_stmt (stmt);
+ gsi_next (&gsi);
+ insert_stmts (scop, assign, NULL, gsi);
+}
+
+/* Removes the PHI node and resets all the debug stmts that are using
+ the PHI_RESULT. */
+
+static void
+remove_phi (gimple phi)
+{
+ imm_use_iterator imm_iter;
+ tree def;
+ use_operand_p use_p;
+ gimple_stmt_iterator gsi;
+ auto_vec<gimple, 3> update;
+ unsigned int i;
+ gimple stmt;
+
+ def = PHI_RESULT (phi);
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ {
+ stmt = USE_STMT (use_p);
+
+ if (is_gimple_debug (stmt))
+ {
+ gimple_debug_bind_reset_value (stmt);
+ update.safe_push (stmt);
+ }
+ }
+
+ FOR_EACH_VEC_ELT (update, i, stmt)
+ update_stmt (stmt);
+
+ gsi = gsi_for_phi_node (phi);
+ remove_phi_node (&gsi, false);
+}
+
+/* Helper function for for_each_index. For each INDEX of the data
+ reference REF, returns true when its indices are valid in the loop
+ nest LOOP passed in as DATA. */
+
+static bool
+dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED, tree *index, void *data)
+{
+ loop_p loop;
+ basic_block header, def_bb;
+ gimple stmt;
+
+ if (TREE_CODE (*index) != SSA_NAME)
+ return true;
+
+ loop = *((loop_p *) data);
+ header = loop->header;
+ stmt = SSA_NAME_DEF_STMT (*index);
+
+ if (!stmt)
+ return true;
+
+ def_bb = gimple_bb (stmt);
+
+ if (!def_bb)
+ return true;
+
+ return dominated_by_p (CDI_DOMINATORS, header, def_bb);
+}
+
+/* When the result of a CLOSE_PHI is written to a memory location,
+ return a pointer to that memory reference, otherwise return
+ NULL_TREE. */
+
+static tree
+close_phi_written_to_memory (gimple close_phi)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ gimple stmt;
+ tree res, def = gimple_phi_result (close_phi);
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ if ((stmt = USE_STMT (use_p))
+ && gimple_code (stmt) == GIMPLE_ASSIGN
+ && (res = gimple_assign_lhs (stmt)))
+ {
+ switch (TREE_CODE (res))
+ {
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ return res;
+
+ case ARRAY_REF:
+ case MEM_REF:
+ {
+ tree arg = gimple_phi_arg_def (close_phi, 0);
+ loop_p nest = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
+
+ /* FIXME: this restriction is for id-{24,25}.f and
+ could be handled by duplicating the computation of
+ array indices before the loop of the close_phi. */
+ if (for_each_index (&res, dr_indices_valid_in_loop, &nest))
+ return res;
+ }
+ /* Fallthru. */
+
+ default:
+ continue;
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Rewrite out of SSA the reduction described by the loop phi nodes
+ IN, and the close phi nodes OUT. IN and OUT are structured by loop
+ levels like this:
+
+ IN: stmt, loop_n, ..., loop_0
+ OUT: stmt, close_n, ..., close_0
+
+ the first element is the reduction statement, and the next elements
+ are the loop and close phi nodes of each of the outer loops. */
+
+static void
+translate_scalar_reduction_to_array (scop_p scop,
+ vec<gimple> in,
+ vec<gimple> out)
+{
+ gimple loop_phi;
+ unsigned int i = out.length () - 1;
+ tree red = close_phi_written_to_memory (out[i]);
+
+ FOR_EACH_VEC_ELT (in, i, loop_phi)
+ {
+ gimple close_phi = out[i];
+
+ if (i == 0)
+ {
+ gimple stmt = loop_phi;
+ basic_block bb = split_reduction_stmt (scop, stmt);
+ poly_bb_p pbb = pbb_from_bb (bb);
+ PBB_IS_REDUCTION (pbb) = true;
+ gcc_assert (close_phi == loop_phi);
+
+ if (!red)
+ red = create_zero_dim_array
+ (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
+
+ translate_scalar_reduction_to_array_for_stmt (scop, red, stmt, in[1]);
+ continue;
+ }
+
+ if (i == in.length () - 1)
+ {
+ insert_out_of_ssa_copy (scop, gimple_phi_result (close_phi),
+ unshare_expr (red), close_phi);
+ insert_out_of_ssa_copy_on_edge
+ (scop, edge_initial_value_for_loop_phi (loop_phi),
+ unshare_expr (red), initial_value_for_loop_phi (loop_phi));
+ }
+
+ remove_phi (loop_phi);
+ remove_phi (close_phi);
+ }
+}
+
+/* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
+ true when something has been changed. */
+
+static bool
+rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop,
+ gimple close_phi)
+{
+ bool res;
+ auto_vec<gimple, 10> in;
+ auto_vec<gimple, 10> out;
+
+ detect_commutative_reduction (scop, close_phi, &in, &out);
+ res = in.length () > 1;
+ if (res)
+ translate_scalar_reduction_to_array (scop, in, out);
+
+ return res;
+}
+
+/* Rewrites all the commutative reductions from LOOP out of SSA.
+ Returns true when something has been changed. */
+
+static bool
+rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop,
+ loop_p loop)
+{
+ gimple_stmt_iterator gsi;
+ edge exit = single_exit (loop);
+ tree res;
+ bool changed = false;
+
+ if (!exit)
+ return false;
+
+ for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
+ if ((res = gimple_phi_result (gsi_stmt (gsi)))
+ && !virtual_operand_p (res)
+ && !scev_analyzable_p (res, SCOP_REGION (scop)))
+ changed |= rewrite_commutative_reductions_out_of_ssa_close_phi
+ (scop, gsi_stmt (gsi));
+
+ return changed;
+}
+
+/* Rewrites all the commutative reductions from SCOP out of SSA. */
+
+static void
+rewrite_commutative_reductions_out_of_ssa (scop_p scop)
+{
+ loop_p loop;
+ bool changed = false;
+ sese region = SCOP_REGION (scop);
+
+ FOR_EACH_LOOP (loop, 0)
+ if (loop_in_sese_p (loop, region))
+ changed |= rewrite_commutative_reductions_out_of_ssa_loop (scop, loop);
+
+ if (changed)
+ {
+ scev_reset_htab ();
+ gsi_commit_edge_inserts ();
+ update_ssa (TODO_update_ssa);
+#ifdef ENABLE_CHECKING
+ verify_loop_closed_ssa (true);
+#endif
+ }
+}
+
+/* Can all ivs be represented by a signed integer?
+ As CLooG might generate negative values in its expressions, signed loop ivs
+ are required in the backend. */
+
+static bool
+scop_ivs_can_be_represented (scop_p scop)
+{
+ loop_p loop;
+ gimple_stmt_iterator psi;
+ bool result = true;
+
+ FOR_EACH_LOOP (loop, 0)
+ {
+ if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
+ continue;
+
+ for (psi = gsi_start_phis (loop->header);
+ !gsi_end_p (psi); gsi_next (&psi))
+ {
+ gimple phi = gsi_stmt (psi);
+ tree res = PHI_RESULT (phi);
+ tree type = TREE_TYPE (res);
+
+ if (TYPE_UNSIGNED (type)
+ && TYPE_PRECISION (type) >= TYPE_PRECISION (long_long_integer_type_node))
+ {
+ result = false;
+ break;
+ }
+ }
+ if (!result)
+ break;
+ }
+
+ return result;
+}
+
+/* Builds the polyhedral representation for a SESE region. */
+
+void
+build_poly_scop (scop_p scop)
+{
+ sese region = SCOP_REGION (scop);
+ graphite_dim_t max_dim;
+
+ build_scop_bbs (scop);
+
+ /* FIXME: This restriction is needed to avoid a problem in CLooG.
+ Once CLooG is fixed, remove this guard. Anyways, it makes no
+ sense to optimize a scop containing only PBBs that do not belong
+ to any loops. */
+ if (nb_pbbs_in_loops (scop) == 0)
+ return;
+
+ if (!scop_ivs_can_be_represented (scop))
+ return;
+
+ if (flag_associative_math)
+ rewrite_commutative_reductions_out_of_ssa (scop);
+
+ build_sese_loop_nests (region);
+ /* Record all conditions in REGION. */
+ sese_dom_walker (CDI_DOMINATORS, region).walk (cfun->cfg->x_entry_block_ptr);
+ find_scop_parameters (scop);
+
+ max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
+ if (scop_nb_params (scop) > max_dim)
+ return;
+
+ build_scop_iteration_domain (scop);
+ build_scop_context (scop);
+ add_conditions_to_constraints (scop);
+
+ /* Rewrite out of SSA only after having translated the
+ representation to the polyhedral representation to avoid scev
+ analysis failures. That means that these functions will insert
+ new data references that they create in the right place. */
+ rewrite_reductions_out_of_ssa (scop);
+ rewrite_cross_bb_scalar_deps_out_of_ssa (scop);
+
+ build_scop_drs (scop);
+ scop_to_lst (scop);
+ build_scop_scattering (scop);
+
+ /* This SCoP has been translated to the polyhedral
+ representation. */
+ POLY_SCOP_P (scop) = true;
+}
+#endif