aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/graphite-interchange.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/graphite-interchange.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/graphite-interchange.c')
-rw-r--r--gcc-4.9/gcc/graphite-interchange.c650
1 files changed, 650 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/graphite-interchange.c b/gcc-4.9/gcc/graphite-interchange.c
new file mode 100644
index 000000000..55e3fab89
--- /dev/null
+++ b/gcc-4.9/gcc/graphite-interchange.c
@@ -0,0 +1,650 @@
+/* Interchange heuristics and transform for loop interchange on
+ polyhedral representation.
+
+ Copyright (C) 2009-2014 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <sebastian.pop@amd.com> and
+ Harsha Jagasia <harsha.jagasia@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+
+#ifdef HAVE_cloog
+#include <isl/aff.h>
+#include <isl/set.h>
+#include <isl/map.h>
+#include <isl/union_map.h>
+#include <isl/ilp.h>
+#include <cloog/cloog.h>
+#include <cloog/isl/domain.h>
+#endif
+
+#include "system.h"
+#include "coretypes.h"
+#include "tree.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimple-iterator.h"
+#include "tree-ssa-loop.h"
+#include "dumpfile.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "sese.h"
+
+#ifdef HAVE_cloog
+#include "graphite-poly.h"
+
+/* XXX isl rewrite following comment */
+/* Builds a linear expression, of dimension DIM, representing PDR's
+ memory access:
+
+ L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
+
+ For an array A[10][20] with two subscript locations s0 and s1, the
+ linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
+ corresponds to a memory stride of 20.
+
+ OFFSET is a number of dimensions to prepend before the
+ subscript dimensions: s_0, s_1, ..., s_n.
+
+ Thus, the final linear expression has the following format:
+ 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
+ where the expression itself is:
+ c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
+
+static isl_constraint *
+build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
+{
+ isl_constraint *res;
+ isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
+ unsigned offset, nsubs;
+ int i;
+ isl_int size, subsize;
+
+ res = isl_equality_alloc (ls);
+ isl_int_init (size);
+ isl_int_set_ui (size, 1);
+ isl_int_init (subsize);
+ isl_int_set_ui (subsize, 1);
+
+ nsubs = isl_set_dim (pdr->extent, isl_dim_set);
+ /* -1 for the already included L dimension. */
+ offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
+ res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
+ /* Go through all subscripts from last to first. First dimension
+ is the alias set, ignore it. */
+ for (i = nsubs - 1; i >= 1; i--)
+ {
+ isl_space *dc;
+ isl_aff *aff;
+
+ res = isl_constraint_set_coefficient (res, isl_dim_out, offset + i, size);
+
+ dc = isl_set_get_space (pdr->extent);
+ aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
+ aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
+ isl_set_max (pdr->extent, aff, &subsize);
+ isl_aff_free (aff);
+ isl_int_mul (size, size, subsize);
+ }
+
+ isl_int_clear (subsize);
+ isl_int_clear (size);
+
+ return res;
+}
+
+/* Set STRIDE to the stride of PDR in memory by advancing by one in
+ the loop at DEPTH. */
+
+static void
+pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
+{
+ poly_bb_p pbb = PDR_PBB (pdr);
+ isl_map *map;
+ isl_set *set;
+ isl_aff *aff;
+ isl_space *dc;
+ isl_constraint *lma, *c;
+ isl_int islstride;
+ graphite_dim_t time_depth;
+ unsigned offset, nt;
+ unsigned i;
+ /* XXX isl rewrite following comments. */
+ /* Builds a partial difference equations and inserts them
+ into pointset powerset polyhedron P. Polyhedron is assumed
+ to have the format: T|I|T'|I'|G|S|S'|l1|l2.
+
+ TIME_DEPTH is the time dimension w.r.t. which we are
+ differentiating.
+ OFFSET represents the number of dimensions between
+ columns t_{time_depth} and t'_{time_depth}.
+ DIM_SCTR is the number of scattering dimensions. It is
+ essentially the dimensionality of the T vector.
+
+ The following equations are inserted into the polyhedron P:
+ | t_1 = t_1'
+ | ...
+ | t_{time_depth-1} = t'_{time_depth-1}
+ | t_{time_depth} = t'_{time_depth} + 1
+ | t_{time_depth+1} = t'_{time_depth + 1}
+ | ...
+ | t_{dim_sctr} = t'_{dim_sctr}. */
+
+ /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
+ This is the core part of this alogrithm, since this
+ constraint asks for the memory access stride (difference)
+ between two consecutive points in time dimensions. */
+
+ /* Add equalities:
+ | t1 = t1'
+ | ...
+ | t_{time_depth-1} = t'_{time_depth-1}
+ | t_{time_depth+1} = t'_{time_depth+1}
+ | ...
+ | t_{dim_sctr} = t'_{dim_sctr}
+
+ This means that all the time dimensions are equal except for
+ time_depth, where the constraint is t_{depth} = t'_{depth} + 1
+ step. More to this: we should be careful not to add equalities
+ to the 'coupled' dimensions, which happens when the one dimension
+ is stripmined dimension, and the other dimension corresponds
+ to the point loop inside stripmined dimension. */
+
+ /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
+ ??? [P] not used for PDRs?
+ pdr->extent: [a,S1..nb_subscript]
+ pbb->domain: [P1..nb_param,I1..nb_domain]
+ pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
+ [T] includes local vars (currently unused)
+
+ First we create [P,I] -> [T,a,S]. */
+
+ map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
+ isl_map_copy (pdr->accesses));
+ /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
+ map = isl_map_add_dims (map, isl_dim_out, 1);
+ /* Build a constraint for "lma[S] - L == 0", effectively calculating
+ L in terms of subscripts. */
+ lma = build_linearized_memory_access (map, pdr);
+ /* And add it to the map, so we now have:
+ [P,I] -> [T,a,S,L] : lma([S]) == L. */
+ map = isl_map_add_constraint (map, lma);
+
+ /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
+ map = isl_map_flat_product (map, isl_map_copy (map));
+
+ /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
+ force L' to be the linear address at T[time_depth] + 1. */
+ time_depth = psct_dynamic_dim (pbb, depth);
+ /* Length of [a,S] plus [L] ... */
+ offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
+ /* ... plus [T]. */
+ offset += isl_map_dim (pbb->transformed, isl_dim_out);
+
+ c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
+ c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
+ c = isl_constraint_set_coefficient_si (c, isl_dim_out,
+ offset + time_depth, -1);
+ c = isl_constraint_set_constant_si (c, 1);
+ map = isl_map_add_constraint (map, c);
+
+ /* Now we equate most of the T/T' elements (making PITaSL nearly
+ the same is (PITaSL)', except for one dimension, namely for 'depth'
+ (an index into [I]), after translating to index into [T]. Take care
+ to not produce an empty map, which indicates we wanted to equate
+ two dimensions that are already coupled via the above time_depth
+ dimension. Happens with strip mining where several scatter dimension
+ are interdependend. */
+ /* Length of [T]. */
+ nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
+ for (i = 0; i < nt; i++)
+ if (i != time_depth)
+ {
+ isl_map *temp = isl_map_equate (isl_map_copy (map),
+ isl_dim_out, i,
+ isl_dim_out, offset + i);
+ if (isl_map_is_empty (temp))
+ isl_map_free (temp);
+ else
+ {
+ isl_map_free (map);
+ map = temp;
+ }
+ }
+
+ /* Now maximize the expression L' - L. */
+ set = isl_map_range (map);
+ dc = isl_set_get_space (set);
+ aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
+ aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
+ aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
+ isl_int_init (islstride);
+ isl_set_max (set, aff, &islstride);
+ isl_int_get_gmp (islstride, stride);
+ isl_int_clear (islstride);
+ isl_aff_free (aff);
+ isl_set_free (set);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
+ pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
+ }
+}
+
+/* Sets STRIDES to the sum of all the strides of the data references
+ accessed in LOOP at DEPTH. */
+
+static void
+memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
+{
+ int i, j;
+ lst_p l;
+ poly_dr_p pdr;
+ mpz_t s, n;
+
+ mpz_init (s);
+ mpz_init (n);
+
+ FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
+ if (LST_LOOP_P (l))
+ memory_strides_in_loop_1 (l, depth, strides);
+ else
+ FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
+ {
+ pdr_stride_in_loop (s, depth, pdr);
+ mpz_set_si (n, PDR_NB_REFS (pdr));
+ mpz_mul (s, s, n);
+ mpz_add (strides, strides, s);
+ }
+
+ mpz_clear (s);
+ mpz_clear (n);
+}
+
+/* Sets STRIDES to the sum of all the strides of the data references
+ accessed in LOOP at DEPTH. */
+
+static void
+memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
+{
+ if (mpz_cmp_si (loop->memory_strides, -1) == 0)
+ {
+ mpz_set_si (strides, 0);
+ memory_strides_in_loop_1 (loop, depth, strides);
+ }
+ else
+ mpz_set (strides, loop->memory_strides);
+}
+
+/* Return true when the interchange of loops LOOP1 and LOOP2 is
+ profitable.
+
+ Example:
+
+ | int a[100][100];
+ |
+ | int
+ | foo (int N)
+ | {
+ | int j;
+ | int i;
+ |
+ | for (i = 0; i < N; i++)
+ | for (j = 0; j < N; j++)
+ | a[j][2 * i] += 1;
+ |
+ | return a[N][12];
+ | }
+
+ The data access A[j][i] is described like this:
+
+ | i j N a s0 s1 1
+ | 0 0 0 1 0 0 -5 = 0
+ | 0 -1 0 0 1 0 0 = 0
+ |-2 0 0 0 0 1 0 = 0
+ | 0 0 0 0 1 0 0 >= 0
+ | 0 0 0 0 0 1 0 >= 0
+ | 0 0 0 0 -1 0 100 >= 0
+ | 0 0 0 0 0 -1 100 >= 0
+
+ The linearized memory access L to A[100][100] is:
+
+ | i j N a s0 s1 1
+ | 0 0 0 0 100 1 0
+
+ TODO: the shown format is not valid as it does not show the fact
+ that the iteration domain "i j" is transformed using the scattering.
+
+ Next, to measure the impact of iterating once in loop "i", we build
+ a maximization problem: first, we add to DR accesses the dimensions
+ k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
+ L1 and L2 are the linearized memory access functions.
+
+ | i j N a s0 s1 k s2 s3 L1 L2 D1 1
+ | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
+ | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
+ |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
+ | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
+ | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
+ | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
+ | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
+ | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
+
+ Then, we generate the polyhedron P2 by interchanging the dimensions
+ (s0, s2), (s1, s3), (L1, L2), (k, i)
+
+ | i j N a s0 s1 k s2 s3 L1 L2 D1 1
+ | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
+ | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
+ | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
+ | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
+ | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
+ | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
+ | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
+ | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
+
+ then we add to P2 the equality k = i + 1:
+
+ |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
+
+ and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
+
+ Similarly, to determine the impact of one iteration on loop "j", we
+ interchange (k, j), we add "k = j + 1", and we compute D2 the
+ maximal value of the difference.
+
+ Finally, the profitability test is D1 < D2: if in the outer loop
+ the strides are smaller than in the inner loop, then it is
+ profitable to interchange the loops at DEPTH1 and DEPTH2. */
+
+static bool
+lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
+{
+ mpz_t d1, d2;
+ bool res;
+
+ gcc_assert (depth1 < depth2);
+
+ mpz_init (d1);
+ mpz_init (d2);
+
+ memory_strides_in_loop (nest, depth1, d1);
+ memory_strides_in_loop (nest, depth2, d2);
+
+ res = mpz_cmp (d1, d2) < 0;
+
+ mpz_clear (d1);
+ mpz_clear (d2);
+
+ return res;
+}
+
+/* Interchanges the loops at DEPTH1 and DEPTH2 of the original
+ scattering and assigns the resulting polyhedron to the transformed
+ scattering. */
+
+static void
+pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
+ poly_bb_p pbb)
+{
+ unsigned i;
+ unsigned dim1 = psct_dynamic_dim (pbb, depth1);
+ unsigned dim2 = psct_dynamic_dim (pbb, depth2);
+ isl_space *d = isl_map_get_space (pbb->transformed);
+ isl_space *d1 = isl_space_range (d);
+ unsigned n = isl_space_dim (d1, isl_dim_out);
+ isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
+ isl_map *x = isl_map_universe (d2);
+
+ x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
+ x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
+
+ for (i = 0; i < n; i++)
+ if (i != dim1 && i != dim2)
+ x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
+
+ pbb->transformed = isl_map_apply_range (pbb->transformed, x);
+}
+
+/* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
+ the statements below LST. */
+
+static void
+lst_apply_interchange (lst_p lst, int depth1, int depth2)
+{
+ if (!lst)
+ return;
+
+ if (LST_LOOP_P (lst))
+ {
+ int i;
+ lst_p l;
+
+ FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
+ lst_apply_interchange (l, depth1, depth2);
+ }
+ else
+ pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
+}
+
+/* Return true when the nest starting at LOOP1 and ending on LOOP2 is
+ perfect: i.e. there are no sequence of statements. */
+
+static bool
+lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
+{
+ if (loop1 == loop2)
+ return true;
+
+ if (!LST_LOOP_P (loop1))
+ return false;
+
+ return LST_SEQ (loop1).length () == 1
+ && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
+}
+
+/* Transform the loop nest between LOOP1 and LOOP2 into a perfect
+ nest. To continue the naming tradition, this function is called
+ after perfect_nestify. NEST is set to the perfectly nested loop
+ that is created. BEFORE/AFTER are set to the loops distributed
+ before/after the loop NEST. */
+
+static void
+lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
+ lst_p *nest, lst_p *after)
+{
+ poly_bb_p first, last;
+
+ gcc_assert (loop1 && loop2
+ && loop1 != loop2
+ && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
+
+ first = LST_PBB (lst_find_first_pbb (loop2));
+ last = LST_PBB (lst_find_last_pbb (loop2));
+
+ *before = copy_lst (loop1);
+ *nest = copy_lst (loop1);
+ *after = copy_lst (loop1);
+
+ lst_remove_all_before_including_pbb (*before, first, false);
+ lst_remove_all_before_including_pbb (*after, last, true);
+
+ lst_remove_all_before_excluding_pbb (*nest, first, true);
+ lst_remove_all_before_excluding_pbb (*nest, last, false);
+
+ if (lst_empty_p (*before))
+ {
+ free_lst (*before);
+ *before = NULL;
+ }
+ if (lst_empty_p (*after))
+ {
+ free_lst (*after);
+ *after = NULL;
+ }
+ if (lst_empty_p (*nest))
+ {
+ free_lst (*nest);
+ *nest = NULL;
+ }
+}
+
+/* Try to interchange LOOP1 with LOOP2 for all the statements of the
+ body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
+ interchange. */
+
+static bool
+lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
+{
+ int depth1 = lst_depth (loop1);
+ int depth2 = lst_depth (loop2);
+ lst_p transformed;
+
+ lst_p before = NULL, nest = NULL, after = NULL;
+
+ if (!lst_perfectly_nested_p (loop1, loop2))
+ lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
+
+ if (!lst_interchange_profitable_p (loop2, depth1, depth2))
+ return false;
+
+ lst_apply_interchange (loop2, depth1, depth2);
+
+ /* Sync the transformed LST information and the PBB scatterings
+ before using the scatterings in the data dependence analysis. */
+ if (before || nest || after)
+ {
+ transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
+ before, nest, after);
+ lst_update_scattering (transformed);
+ free_lst (transformed);
+ }
+
+ if (graphite_legal_transform (scop))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Loops at depths %d and %d will be interchanged.\n",
+ depth1, depth2);
+
+ /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
+ lst_insert_in_sequence (before, loop1, true);
+ lst_insert_in_sequence (after, loop1, false);
+
+ if (nest)
+ {
+ lst_replace (loop1, nest);
+ free_lst (loop1);
+ }
+
+ return true;
+ }
+
+ /* Undo the transform. */
+ free_lst (before);
+ free_lst (nest);
+ free_lst (after);
+ lst_apply_interchange (loop2, depth2, depth1);
+ return false;
+}
+
+/* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
+ with the loop OUTER in LST_SEQ (OUTER_FATHER). */
+
+static bool
+lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
+ lst_p inner_father)
+{
+ int inner;
+ lst_p loop1, loop2;
+
+ gcc_assert (outer_father
+ && LST_LOOP_P (outer_father)
+ && LST_LOOP_P (LST_SEQ (outer_father)[outer])
+ && inner_father
+ && LST_LOOP_P (inner_father));
+
+ loop1 = LST_SEQ (outer_father)[outer];
+
+ FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
+ if (LST_LOOP_P (loop2)
+ && (lst_try_interchange_loops (scop, loop1, loop2)
+ || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
+ return true;
+
+ return false;
+}
+
+/* Interchanges all the loops of LOOP and the loops of its body that
+ are considered profitable to interchange. Return the number of
+ interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
+ points to the next outer loop to be considered for interchange. */
+
+static int
+lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
+{
+ lst_p l;
+ int res = 0;
+ int i = 0;
+ lst_p father;
+
+ if (!loop || !LST_LOOP_P (loop))
+ return 0;
+
+ father = LST_LOOP_FATHER (loop);
+ if (father)
+ {
+ while (lst_interchange_select_inner (scop, father, outer, loop))
+ {
+ res++;
+ loop = LST_SEQ (father)[outer];
+ }
+ }
+
+ if (LST_LOOP_P (loop))
+ FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
+ if (LST_LOOP_P (l))
+ res += lst_interchange_select_outer (scop, l, i);
+
+ return res;
+}
+
+/* Interchanges all the loop depths that are considered profitable for
+ SCOP. Return the number of interchanged loops. */
+
+int
+scop_do_interchange (scop_p scop)
+{
+ int res = lst_interchange_select_outer
+ (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
+
+ lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
+
+ return res;
+}
+
+
+#endif
+