aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/gimple-fold.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/gimple-fold.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/gimple-fold.c')
-rw-r--r--gcc-4.9/gcc/gimple-fold.c3644
1 files changed, 3644 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/gimple-fold.c b/gcc-4.9/gcc/gimple-fold.c
new file mode 100644
index 000000000..267c1fdad
--- /dev/null
+++ b/gcc-4.9/gcc/gimple-fold.c
@@ -0,0 +1,3644 @@
+/* Statement simplification on GIMPLE.
+ Copyright (C) 2010-2014 Free Software Foundation, Inc.
+ Split out from tree-ssa-ccp.c.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "stringpool.h"
+#include "expr.h"
+#include "stmt.h"
+#include "stor-layout.h"
+#include "flags.h"
+#include "function.h"
+#include "dumpfile.h"
+#include "bitmap.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimple-ssa.h"
+#include "tree-ssanames.h"
+#include "tree-into-ssa.h"
+#include "tree-dfa.h"
+#include "tree-ssa.h"
+#include "tree-ssa-propagate.h"
+#include "target.h"
+#include "ipa-utils.h"
+#include "gimple-pretty-print.h"
+#include "tree-ssa-address.h"
+#include "langhooks.h"
+#include "gimplify-me.h"
+
+/* Return true when DECL can be referenced from current unit.
+ FROM_DECL (if non-null) specify constructor of variable DECL was taken from.
+ We can get declarations that are not possible to reference for various
+ reasons:
+
+ 1) When analyzing C++ virtual tables.
+ C++ virtual tables do have known constructors even
+ when they are keyed to other compilation unit.
+ Those tables can contain pointers to methods and vars
+ in other units. Those methods have both STATIC and EXTERNAL
+ set.
+ 2) In WHOPR mode devirtualization might lead to reference
+ to method that was partitioned elsehwere.
+ In this case we have static VAR_DECL or FUNCTION_DECL
+ that has no corresponding callgraph/varpool node
+ declaring the body.
+ 3) COMDAT functions referred by external vtables that
+ we devirtualize only during final compilation stage.
+ At this time we already decided that we will not output
+ the function body and thus we can't reference the symbol
+ directly. */
+
+static bool
+can_refer_decl_in_current_unit_p (tree decl, tree from_decl)
+{
+ varpool_node *vnode;
+ struct cgraph_node *node;
+ symtab_node *snode;
+
+ if (DECL_ABSTRACT (decl))
+ return false;
+
+ /* We are concerned only about static/external vars and functions. */
+ if ((!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
+ || (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL))
+ return true;
+
+ /* Static objects can be referred only if they was not optimized out yet. */
+ if (!TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl))
+ {
+ snode = symtab_get_node (decl);
+ if (!snode)
+ return false;
+ node = dyn_cast <cgraph_node> (snode);
+ return !node || !node->global.inlined_to;
+ }
+
+ /* We will later output the initializer, so we can refer to it.
+ So we are concerned only when DECL comes from initializer of
+ external var. */
+ if (!from_decl
+ || TREE_CODE (from_decl) != VAR_DECL
+ || !DECL_EXTERNAL (from_decl)
+ || (flag_ltrans
+ && symtab_get_node (from_decl)->in_other_partition))
+ return true;
+ /* We are folding reference from external vtable. The vtable may reffer
+ to a symbol keyed to other compilation unit. The other compilation
+ unit may be in separate DSO and the symbol may be hidden. */
+ if (DECL_VISIBILITY_SPECIFIED (decl)
+ && DECL_EXTERNAL (decl)
+ && DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT
+ && (!(snode = symtab_get_node (decl)) || !snode->in_other_partition))
+ return false;
+ /* When function is public, we always can introduce new reference.
+ Exception are the COMDAT functions where introducing a direct
+ reference imply need to include function body in the curren tunit. */
+ if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
+ return true;
+ /* We are not at ltrans stage; so don't worry about WHOPR.
+ Also when still gimplifying all referred comdat functions will be
+ produced.
+
+ As observed in PR20991 for already optimized out comdat virtual functions
+ it may be tempting to not necessarily give up because the copy will be
+ output elsewhere when corresponding vtable is output.
+ This is however not possible - ABI specify that COMDATs are output in
+ units where they are used and when the other unit was compiled with LTO
+ it is possible that vtable was kept public while the function itself
+ was privatized. */
+ if (!flag_ltrans && (!DECL_COMDAT (decl) || !cgraph_function_flags_ready))
+ return true;
+
+ /* OK we are seeing either COMDAT or static variable. In this case we must
+ check that the definition is still around so we can refer it. */
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ {
+ node = cgraph_get_node (decl);
+ /* Check that we still have function body and that we didn't took
+ the decision to eliminate offline copy of the function yet.
+ The second is important when devirtualization happens during final
+ compilation stage when making a new reference no longer makes callee
+ to be compiled. */
+ if (!node || !node->definition || node->global.inlined_to)
+ {
+ gcc_checking_assert (!TREE_ASM_WRITTEN (decl));
+ return false;
+ }
+ }
+ else if (TREE_CODE (decl) == VAR_DECL)
+ {
+ vnode = varpool_get_node (decl);
+ if (!vnode || !vnode->definition)
+ {
+ gcc_checking_assert (!TREE_ASM_WRITTEN (decl));
+ return false;
+ }
+ }
+ return true;
+}
+
+/* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into
+ acceptable form for is_gimple_min_invariant.
+ FROM_DECL (if non-NULL) specify variable whose constructor contains CVAL. */
+
+tree
+canonicalize_constructor_val (tree cval, tree from_decl)
+{
+ tree orig_cval = cval;
+ STRIP_NOPS (cval);
+ if (TREE_CODE (cval) == POINTER_PLUS_EXPR
+ && TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST)
+ {
+ tree ptr = TREE_OPERAND (cval, 0);
+ if (is_gimple_min_invariant (ptr))
+ cval = build1_loc (EXPR_LOCATION (cval),
+ ADDR_EXPR, TREE_TYPE (ptr),
+ fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)),
+ ptr,
+ fold_convert (ptr_type_node,
+ TREE_OPERAND (cval, 1))));
+ }
+ if (TREE_CODE (cval) == ADDR_EXPR)
+ {
+ tree base = NULL_TREE;
+ if (TREE_CODE (TREE_OPERAND (cval, 0)) == COMPOUND_LITERAL_EXPR)
+ {
+ base = COMPOUND_LITERAL_EXPR_DECL (TREE_OPERAND (cval, 0));
+ if (base)
+ TREE_OPERAND (cval, 0) = base;
+ }
+ else
+ base = get_base_address (TREE_OPERAND (cval, 0));
+ if (!base)
+ return NULL_TREE;
+
+ if ((TREE_CODE (base) == VAR_DECL
+ || TREE_CODE (base) == FUNCTION_DECL)
+ && !can_refer_decl_in_current_unit_p (base, from_decl))
+ return NULL_TREE;
+ if (TREE_CODE (base) == VAR_DECL)
+ TREE_ADDRESSABLE (base) = 1;
+ else if (TREE_CODE (base) == FUNCTION_DECL)
+ {
+ /* Make sure we create a cgraph node for functions we'll reference.
+ They can be non-existent if the reference comes from an entry
+ of an external vtable for example. */
+ cgraph_get_create_node (base);
+ }
+ /* Fixup types in global initializers. */
+ if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
+ cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));
+
+ if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
+ cval = fold_convert (TREE_TYPE (orig_cval), cval);
+ return cval;
+ }
+ if (TREE_OVERFLOW_P (cval))
+ return drop_tree_overflow (cval);
+ return orig_cval;
+}
+
+/* If SYM is a constant variable with known value, return the value.
+ NULL_TREE is returned otherwise. */
+
+tree
+get_symbol_constant_value (tree sym)
+{
+ tree val = ctor_for_folding (sym);
+ if (val != error_mark_node)
+ {
+ if (val)
+ {
+ val = canonicalize_constructor_val (unshare_expr (val), sym);
+ if (val && is_gimple_min_invariant (val))
+ return val;
+ else
+ return NULL_TREE;
+ }
+ /* Variables declared 'const' without an initializer
+ have zero as the initializer if they may not be
+ overridden at link or run time. */
+ if (!val
+ && (INTEGRAL_TYPE_P (TREE_TYPE (sym))
+ || SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym))))
+ return build_zero_cst (TREE_TYPE (sym));
+ }
+
+ return NULL_TREE;
+}
+
+
+
+/* Subroutine of fold_stmt. We perform several simplifications of the
+ memory reference tree EXPR and make sure to re-gimplify them properly
+ after propagation of constant addresses. IS_LHS is true if the
+ reference is supposed to be an lvalue. */
+
+static tree
+maybe_fold_reference (tree expr, bool is_lhs)
+{
+ tree *t = &expr;
+ tree result;
+
+ if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR
+ || TREE_CODE (expr) == REALPART_EXPR
+ || TREE_CODE (expr) == IMAGPART_EXPR)
+ && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
+ return fold_unary_loc (EXPR_LOCATION (expr),
+ TREE_CODE (expr),
+ TREE_TYPE (expr),
+ TREE_OPERAND (expr, 0));
+ else if (TREE_CODE (expr) == BIT_FIELD_REF
+ && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
+ return fold_ternary_loc (EXPR_LOCATION (expr),
+ TREE_CODE (expr),
+ TREE_TYPE (expr),
+ TREE_OPERAND (expr, 0),
+ TREE_OPERAND (expr, 1),
+ TREE_OPERAND (expr, 2));
+
+ while (handled_component_p (*t))
+ t = &TREE_OPERAND (*t, 0);
+
+ /* Canonicalize MEM_REFs invariant address operand. Do this first
+ to avoid feeding non-canonical MEM_REFs elsewhere. */
+ if (TREE_CODE (*t) == MEM_REF
+ && !is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)))
+ {
+ bool volatile_p = TREE_THIS_VOLATILE (*t);
+ tree tem = fold_binary (MEM_REF, TREE_TYPE (*t),
+ TREE_OPERAND (*t, 0),
+ TREE_OPERAND (*t, 1));
+ if (tem)
+ {
+ TREE_THIS_VOLATILE (tem) = volatile_p;
+ *t = tem;
+ tem = maybe_fold_reference (expr, is_lhs);
+ if (tem)
+ return tem;
+ return expr;
+ }
+ }
+
+ if (!is_lhs
+ && (result = fold_const_aggregate_ref (expr))
+ && is_gimple_min_invariant (result))
+ return result;
+
+ /* Fold back MEM_REFs to reference trees. */
+ if (TREE_CODE (*t) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
+ && integer_zerop (TREE_OPERAND (*t, 1))
+ && (TREE_THIS_VOLATILE (*t)
+ == TREE_THIS_VOLATILE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)))
+ && !TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (TREE_OPERAND (*t, 1)))
+ && (TYPE_MAIN_VARIANT (TREE_TYPE (*t))
+ == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (TREE_OPERAND (*t, 1)))))
+ /* We have to look out here to not drop a required conversion
+ from the rhs to the lhs if is_lhs, but we don't have the
+ rhs here to verify that. Thus require strict type
+ compatibility. */
+ && types_compatible_p (TREE_TYPE (*t),
+ TREE_TYPE (TREE_OPERAND
+ (TREE_OPERAND (*t, 0), 0))))
+ {
+ tree tem;
+ *t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
+ tem = maybe_fold_reference (expr, is_lhs);
+ if (tem)
+ return tem;
+ return expr;
+ }
+ else if (TREE_CODE (*t) == TARGET_MEM_REF)
+ {
+ tree tem = maybe_fold_tmr (*t);
+ if (tem)
+ {
+ *t = tem;
+ tem = maybe_fold_reference (expr, is_lhs);
+ if (tem)
+ return tem;
+ return expr;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+
+/* Attempt to fold an assignment statement pointed-to by SI. Returns a
+ replacement rhs for the statement or NULL_TREE if no simplification
+ could be made. It is assumed that the operands have been previously
+ folded. */
+
+static tree
+fold_gimple_assign (gimple_stmt_iterator *si)
+{
+ gimple stmt = gsi_stmt (*si);
+ enum tree_code subcode = gimple_assign_rhs_code (stmt);
+ location_t loc = gimple_location (stmt);
+
+ tree result = NULL_TREE;
+
+ switch (get_gimple_rhs_class (subcode))
+ {
+ case GIMPLE_SINGLE_RHS:
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+
+ if (REFERENCE_CLASS_P (rhs))
+ return maybe_fold_reference (rhs, false);
+
+ else if (TREE_CODE (rhs) == OBJ_TYPE_REF)
+ {
+ tree val = OBJ_TYPE_REF_EXPR (rhs);
+ if (is_gimple_min_invariant (val))
+ return val;
+ else if (flag_devirtualize && virtual_method_call_p (val))
+ {
+ bool final;
+ vec <cgraph_node *>targets
+ = possible_polymorphic_call_targets (val, &final);
+ if (final && targets.length () <= 1)
+ {
+ tree fndecl;
+ if (targets.length () == 1)
+ fndecl = targets[0]->decl;
+ else
+ fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
+ val = fold_convert (TREE_TYPE (val), fndecl);
+ STRIP_USELESS_TYPE_CONVERSION (val);
+ return val;
+ }
+ }
+
+ }
+ else if (TREE_CODE (rhs) == ADDR_EXPR)
+ {
+ tree ref = TREE_OPERAND (rhs, 0);
+ tree tem = maybe_fold_reference (ref, true);
+ if (tem
+ && TREE_CODE (tem) == MEM_REF
+ && integer_zerop (TREE_OPERAND (tem, 1)))
+ result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0));
+ else if (tem)
+ result = fold_convert (TREE_TYPE (rhs),
+ build_fold_addr_expr_loc (loc, tem));
+ else if (TREE_CODE (ref) == MEM_REF
+ && integer_zerop (TREE_OPERAND (ref, 1)))
+ result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0));
+ }
+
+ else if (TREE_CODE (rhs) == CONSTRUCTOR
+ && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
+ && (CONSTRUCTOR_NELTS (rhs)
+ == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
+ {
+ /* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
+ unsigned i;
+ tree val;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
+ if (TREE_CODE (val) != INTEGER_CST
+ && TREE_CODE (val) != REAL_CST
+ && TREE_CODE (val) != FIXED_CST)
+ return NULL_TREE;
+
+ return build_vector_from_ctor (TREE_TYPE (rhs),
+ CONSTRUCTOR_ELTS (rhs));
+ }
+
+ else if (DECL_P (rhs))
+ return get_symbol_constant_value (rhs);
+
+ /* If we couldn't fold the RHS, hand over to the generic
+ fold routines. */
+ if (result == NULL_TREE)
+ result = fold (rhs);
+
+ /* Strip away useless type conversions. Both the NON_LVALUE_EXPR
+ that may have been added by fold, and "useless" type
+ conversions that might now be apparent due to propagation. */
+ STRIP_USELESS_TYPE_CONVERSION (result);
+
+ if (result != rhs && valid_gimple_rhs_p (result))
+ return result;
+
+ return NULL_TREE;
+ }
+ break;
+
+ case GIMPLE_UNARY_RHS:
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+
+ result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs);
+ if (result)
+ {
+ /* If the operation was a conversion do _not_ mark a
+ resulting constant with TREE_OVERFLOW if the original
+ constant was not. These conversions have implementation
+ defined behavior and retaining the TREE_OVERFLOW flag
+ here would confuse later passes such as VRP. */
+ if (CONVERT_EXPR_CODE_P (subcode)
+ && TREE_CODE (result) == INTEGER_CST
+ && TREE_CODE (rhs) == INTEGER_CST)
+ TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs);
+
+ STRIP_USELESS_TYPE_CONVERSION (result);
+ if (valid_gimple_rhs_p (result))
+ return result;
+ }
+ }
+ break;
+
+ case GIMPLE_BINARY_RHS:
+ /* Try to canonicalize for boolean-typed X the comparisons
+ X == 0, X == 1, X != 0, and X != 1. */
+ if (gimple_assign_rhs_code (stmt) == EQ_EXPR
+ || gimple_assign_rhs_code (stmt) == NE_EXPR)
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ tree op1 = gimple_assign_rhs1 (stmt);
+ tree op2 = gimple_assign_rhs2 (stmt);
+ tree type = TREE_TYPE (op1);
+
+ /* Check whether the comparison operands are of the same boolean
+ type as the result type is.
+ Check that second operand is an integer-constant with value
+ one or zero. */
+ if (TREE_CODE (op2) == INTEGER_CST
+ && (integer_zerop (op2) || integer_onep (op2))
+ && useless_type_conversion_p (TREE_TYPE (lhs), type))
+ {
+ enum tree_code cmp_code = gimple_assign_rhs_code (stmt);
+ bool is_logical_not = false;
+
+ /* X == 0 and X != 1 is a logical-not.of X
+ X == 1 and X != 0 is X */
+ if ((cmp_code == EQ_EXPR && integer_zerop (op2))
+ || (cmp_code == NE_EXPR && integer_onep (op2)))
+ is_logical_not = true;
+
+ if (is_logical_not == false)
+ result = op1;
+ /* Only for one-bit precision typed X the transformation
+ !X -> ~X is valied. */
+ else if (TYPE_PRECISION (type) == 1)
+ result = build1_loc (gimple_location (stmt), BIT_NOT_EXPR,
+ type, op1);
+ /* Otherwise we use !X -> X ^ 1. */
+ else
+ result = build2_loc (gimple_location (stmt), BIT_XOR_EXPR,
+ type, op1, build_int_cst (type, 1));
+
+ }
+ }
+
+ if (!result)
+ result = fold_binary_loc (loc, subcode,
+ TREE_TYPE (gimple_assign_lhs (stmt)),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt));
+
+ if (result)
+ {
+ STRIP_USELESS_TYPE_CONVERSION (result);
+ if (valid_gimple_rhs_p (result))
+ return result;
+ }
+ break;
+
+ case GIMPLE_TERNARY_RHS:
+ /* Try to fold a conditional expression. */
+ if (gimple_assign_rhs_code (stmt) == COND_EXPR)
+ {
+ tree op0 = gimple_assign_rhs1 (stmt);
+ tree tem;
+ bool set = false;
+ location_t cond_loc = gimple_location (stmt);
+
+ if (COMPARISON_CLASS_P (op0))
+ {
+ fold_defer_overflow_warnings ();
+ tem = fold_binary_loc (cond_loc,
+ TREE_CODE (op0), TREE_TYPE (op0),
+ TREE_OPERAND (op0, 0),
+ TREE_OPERAND (op0, 1));
+ /* This is actually a conditional expression, not a GIMPLE
+ conditional statement, however, the valid_gimple_rhs_p
+ test still applies. */
+ set = (tem && is_gimple_condexpr (tem)
+ && valid_gimple_rhs_p (tem));
+ fold_undefer_overflow_warnings (set, stmt, 0);
+ }
+ else if (is_gimple_min_invariant (op0))
+ {
+ tem = op0;
+ set = true;
+ }
+ else
+ return NULL_TREE;
+
+ if (set)
+ result = fold_build3_loc (cond_loc, COND_EXPR,
+ TREE_TYPE (gimple_assign_lhs (stmt)), tem,
+ gimple_assign_rhs2 (stmt),
+ gimple_assign_rhs3 (stmt));
+ }
+
+ if (!result)
+ result = fold_ternary_loc (loc, subcode,
+ TREE_TYPE (gimple_assign_lhs (stmt)),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt),
+ gimple_assign_rhs3 (stmt));
+
+ if (result)
+ {
+ STRIP_USELESS_TYPE_CONVERSION (result);
+ if (valid_gimple_rhs_p (result))
+ return result;
+ }
+ break;
+
+ case GIMPLE_INVALID_RHS:
+ gcc_unreachable ();
+ }
+
+ return NULL_TREE;
+}
+
+/* Attempt to fold a conditional statement. Return true if any changes were
+ made. We only attempt to fold the condition expression, and do not perform
+ any transformation that would require alteration of the cfg. It is
+ assumed that the operands have been previously folded. */
+
+static bool
+fold_gimple_cond (gimple stmt)
+{
+ tree result = fold_binary_loc (gimple_location (stmt),
+ gimple_cond_code (stmt),
+ boolean_type_node,
+ gimple_cond_lhs (stmt),
+ gimple_cond_rhs (stmt));
+
+ if (result)
+ {
+ STRIP_USELESS_TYPE_CONVERSION (result);
+ if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result))
+ {
+ gimple_cond_set_condition_from_tree (stmt, result);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Convert EXPR into a GIMPLE value suitable for substitution on the
+ RHS of an assignment. Insert the necessary statements before
+ iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
+ is replaced. If the call is expected to produces a result, then it
+ is replaced by an assignment of the new RHS to the result variable.
+ If the result is to be ignored, then the call is replaced by a
+ GIMPLE_NOP. A proper VDEF chain is retained by making the first
+ VUSE and the last VDEF of the whole sequence be the same as the replaced
+ statement and using new SSA names for stores in between. */
+
+void
+gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
+{
+ tree lhs;
+ gimple stmt, new_stmt;
+ gimple_stmt_iterator i;
+ gimple_seq stmts = NULL;
+ gimple laststore;
+ tree reaching_vuse;
+
+ stmt = gsi_stmt (*si_p);
+
+ gcc_assert (is_gimple_call (stmt));
+
+ push_gimplify_context (gimple_in_ssa_p (cfun));
+
+ lhs = gimple_call_lhs (stmt);
+ if (lhs == NULL_TREE)
+ {
+ gimplify_and_add (expr, &stmts);
+ /* We can end up with folding a memcpy of an empty class assignment
+ which gets optimized away by C++ gimplification. */
+ if (gimple_seq_empty_p (stmts))
+ {
+ pop_gimplify_context (NULL);
+ if (gimple_in_ssa_p (cfun))
+ {
+ unlink_stmt_vdef (stmt);
+ release_defs (stmt);
+ }
+ gsi_replace (si_p, gimple_build_nop (), true);
+ return;
+ }
+ }
+ else
+ {
+ tree tmp = get_initialized_tmp_var (expr, &stmts, NULL);
+ new_stmt = gimple_build_assign (lhs, tmp);
+ i = gsi_last (stmts);
+ gsi_insert_after_without_update (&i, new_stmt,
+ GSI_CONTINUE_LINKING);
+ }
+
+ pop_gimplify_context (NULL);
+
+ if (gimple_has_location (stmt))
+ annotate_all_with_location (stmts, gimple_location (stmt));
+
+ /* First iterate over the replacement statements backward, assigning
+ virtual operands to their defining statements. */
+ laststore = NULL;
+ for (i = gsi_last (stmts); !gsi_end_p (i); gsi_prev (&i))
+ {
+ new_stmt = gsi_stmt (i);
+ if ((gimple_assign_single_p (new_stmt)
+ && !is_gimple_reg (gimple_assign_lhs (new_stmt)))
+ || (is_gimple_call (new_stmt)
+ && (gimple_call_flags (new_stmt)
+ & (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0))
+ {
+ tree vdef;
+ if (!laststore)
+ vdef = gimple_vdef (stmt);
+ else
+ vdef = make_ssa_name (gimple_vop (cfun), new_stmt);
+ gimple_set_vdef (new_stmt, vdef);
+ if (vdef && TREE_CODE (vdef) == SSA_NAME)
+ SSA_NAME_DEF_STMT (vdef) = new_stmt;
+ laststore = new_stmt;
+ }
+ }
+
+ /* Second iterate over the statements forward, assigning virtual
+ operands to their uses. */
+ reaching_vuse = gimple_vuse (stmt);
+ for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
+ {
+ new_stmt = gsi_stmt (i);
+ /* If the new statement possibly has a VUSE, update it with exact SSA
+ name we know will reach this one. */
+ if (gimple_has_mem_ops (new_stmt))
+ gimple_set_vuse (new_stmt, reaching_vuse);
+ gimple_set_modified (new_stmt, true);
+ if (gimple_vdef (new_stmt))
+ reaching_vuse = gimple_vdef (new_stmt);
+ }
+
+ /* If the new sequence does not do a store release the virtual
+ definition of the original statement. */
+ if (reaching_vuse
+ && reaching_vuse == gimple_vuse (stmt))
+ {
+ tree vdef = gimple_vdef (stmt);
+ if (vdef
+ && TREE_CODE (vdef) == SSA_NAME)
+ {
+ unlink_stmt_vdef (stmt);
+ release_ssa_name (vdef);
+ }
+ }
+
+ /* Finally replace the original statement with the sequence. */
+ gsi_replace_with_seq (si_p, stmts, false);
+}
+
+/* Return the string length, maximum string length or maximum value of
+ ARG in LENGTH.
+ If ARG is an SSA name variable, follow its use-def chains. If LENGTH
+ is not NULL and, for TYPE == 0, its value is not equal to the length
+ we determine or if we are unable to determine the length or value,
+ return false. VISITED is a bitmap of visited variables.
+ TYPE is 0 if string length should be returned, 1 for maximum string
+ length and 2 for maximum value ARG can have. */
+
+static bool
+get_maxval_strlen (tree arg, tree *length, bitmap visited, int type)
+{
+ tree var, val;
+ gimple def_stmt;
+
+ if (TREE_CODE (arg) != SSA_NAME)
+ {
+ /* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
+ if (TREE_CODE (arg) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF
+ && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1)))
+ {
+ tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
+ if (TREE_CODE (aop0) == INDIRECT_REF
+ && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
+ return get_maxval_strlen (TREE_OPERAND (aop0, 0),
+ length, visited, type);
+ }
+
+ if (type == 2)
+ {
+ val = arg;
+ if (TREE_CODE (val) != INTEGER_CST
+ || tree_int_cst_sgn (val) < 0)
+ return false;
+ }
+ else
+ val = c_strlen (arg, 1);
+ if (!val)
+ return false;
+
+ if (*length)
+ {
+ if (type > 0)
+ {
+ if (TREE_CODE (*length) != INTEGER_CST
+ || TREE_CODE (val) != INTEGER_CST)
+ return false;
+
+ if (tree_int_cst_lt (*length, val))
+ *length = val;
+ return true;
+ }
+ else if (simple_cst_equal (val, *length) != 1)
+ return false;
+ }
+
+ *length = val;
+ return true;
+ }
+
+ /* If ARG is registered for SSA update we cannot look at its defining
+ statement. */
+ if (name_registered_for_update_p (arg))
+ return false;
+
+ /* If we were already here, break the infinite cycle. */
+ if (!bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
+ return true;
+
+ var = arg;
+ def_stmt = SSA_NAME_DEF_STMT (var);
+
+ switch (gimple_code (def_stmt))
+ {
+ case GIMPLE_ASSIGN:
+ /* The RHS of the statement defining VAR must either have a
+ constant length or come from another SSA_NAME with a constant
+ length. */
+ if (gimple_assign_single_p (def_stmt)
+ || gimple_assign_unary_nop_p (def_stmt))
+ {
+ tree rhs = gimple_assign_rhs1 (def_stmt);
+ return get_maxval_strlen (rhs, length, visited, type);
+ }
+ else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR)
+ {
+ tree op2 = gimple_assign_rhs2 (def_stmt);
+ tree op3 = gimple_assign_rhs3 (def_stmt);
+ return get_maxval_strlen (op2, length, visited, type)
+ && get_maxval_strlen (op3, length, visited, type);
+ }
+ return false;
+
+ case GIMPLE_PHI:
+ {
+ /* All the arguments of the PHI node must have the same constant
+ length. */
+ unsigned i;
+
+ for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
+ {
+ tree arg = gimple_phi_arg (def_stmt, i)->def;
+
+ /* If this PHI has itself as an argument, we cannot
+ determine the string length of this argument. However,
+ if we can find a constant string length for the other
+ PHI args then we can still be sure that this is a
+ constant string length. So be optimistic and just
+ continue with the next argument. */
+ if (arg == gimple_phi_result (def_stmt))
+ continue;
+
+ if (!get_maxval_strlen (arg, length, visited, type))
+ return false;
+ }
+ }
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+
+/* Fold builtin call in statement STMT. Returns a simplified tree.
+ We may return a non-constant expression, including another call
+ to a different function and with different arguments, e.g.,
+ substituting memcpy for strcpy when the string length is known.
+ Note that some builtins expand into inline code that may not
+ be valid in GIMPLE. Callers must take care. */
+
+tree
+gimple_fold_builtin (gimple stmt)
+{
+ tree result, val[3];
+ tree callee, a;
+ int arg_idx, type;
+ bitmap visited;
+ bool ignore;
+ int nargs;
+ location_t loc = gimple_location (stmt);
+
+ ignore = (gimple_call_lhs (stmt) == NULL);
+
+ /* First try the generic builtin folder. If that succeeds, return the
+ result directly. */
+ result = fold_call_stmt (stmt, ignore);
+ if (result)
+ {
+ if (ignore)
+ STRIP_NOPS (result);
+ else
+ result = fold_convert (gimple_call_return_type (stmt), result);
+ return result;
+ }
+
+ /* Ignore MD builtins. */
+ callee = gimple_call_fndecl (stmt);
+ if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD)
+ return NULL_TREE;
+
+ /* Give up for always_inline inline builtins until they are
+ inlined. */
+ if (avoid_folding_inline_builtin (callee))
+ return NULL_TREE;
+
+ /* If the builtin could not be folded, and it has no argument list,
+ we're done. */
+ nargs = gimple_call_num_args (stmt);
+ if (nargs == 0)
+ return NULL_TREE;
+
+ /* Limit the work only for builtins we know how to simplify. */
+ switch (DECL_FUNCTION_CODE (callee))
+ {
+ case BUILT_IN_STRLEN:
+ case BUILT_IN_FPUTS:
+ case BUILT_IN_FPUTS_UNLOCKED:
+ arg_idx = 0;
+ type = 0;
+ break;
+ case BUILT_IN_STRCPY:
+ case BUILT_IN_STRNCPY:
+ case BUILT_IN_STRCAT:
+ arg_idx = 1;
+ type = 0;
+ break;
+ case BUILT_IN_MEMCPY_CHK:
+ case BUILT_IN_MEMPCPY_CHK:
+ case BUILT_IN_MEMMOVE_CHK:
+ case BUILT_IN_MEMSET_CHK:
+ case BUILT_IN_STRNCPY_CHK:
+ case BUILT_IN_STPNCPY_CHK:
+ arg_idx = 2;
+ type = 2;
+ break;
+ case BUILT_IN_STRCPY_CHK:
+ case BUILT_IN_STPCPY_CHK:
+ arg_idx = 1;
+ type = 1;
+ break;
+ case BUILT_IN_SNPRINTF_CHK:
+ case BUILT_IN_VSNPRINTF_CHK:
+ arg_idx = 1;
+ type = 2;
+ break;
+ default:
+ return NULL_TREE;
+ }
+
+ if (arg_idx >= nargs)
+ return NULL_TREE;
+
+ /* Try to use the dataflow information gathered by the CCP process. */
+ visited = BITMAP_ALLOC (NULL);
+ bitmap_clear (visited);
+
+ memset (val, 0, sizeof (val));
+ a = gimple_call_arg (stmt, arg_idx);
+ if (!get_maxval_strlen (a, &val[arg_idx], visited, type))
+ val[arg_idx] = NULL_TREE;
+
+ BITMAP_FREE (visited);
+
+ result = NULL_TREE;
+ switch (DECL_FUNCTION_CODE (callee))
+ {
+ case BUILT_IN_STRLEN:
+ if (val[0] && nargs == 1)
+ {
+ tree new_val =
+ fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]);
+
+ /* If the result is not a valid gimple value, or not a cast
+ of a valid gimple value, then we cannot use the result. */
+ if (is_gimple_val (new_val)
+ || (CONVERT_EXPR_P (new_val)
+ && is_gimple_val (TREE_OPERAND (new_val, 0))))
+ return new_val;
+ }
+ break;
+
+ case BUILT_IN_STRCPY:
+ if (val[1] && is_gimple_val (val[1]) && nargs == 2)
+ result = fold_builtin_strcpy (loc, callee,
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ val[1]);
+ break;
+
+ case BUILT_IN_STRNCPY:
+ if (val[1] && is_gimple_val (val[1]) && nargs == 3)
+ result = fold_builtin_strncpy (loc, callee,
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2),
+ val[1]);
+ break;
+
+ case BUILT_IN_STRCAT:
+ if (val[1] && is_gimple_val (val[1]) && nargs == 2)
+ result = fold_builtin_strcat (loc, gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ val[1]);
+ break;
+
+ case BUILT_IN_FPUTS:
+ if (nargs == 2)
+ result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ ignore, false, val[0]);
+ break;
+
+ case BUILT_IN_FPUTS_UNLOCKED:
+ if (nargs == 2)
+ result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ ignore, true, val[0]);
+ break;
+
+ case BUILT_IN_MEMCPY_CHK:
+ case BUILT_IN_MEMPCPY_CHK:
+ case BUILT_IN_MEMMOVE_CHK:
+ case BUILT_IN_MEMSET_CHK:
+ if (val[2] && is_gimple_val (val[2]) && nargs == 4)
+ result = fold_builtin_memory_chk (loc, callee,
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2),
+ gimple_call_arg (stmt, 3),
+ val[2], ignore,
+ DECL_FUNCTION_CODE (callee));
+ break;
+
+ case BUILT_IN_STRCPY_CHK:
+ case BUILT_IN_STPCPY_CHK:
+ if (val[1] && is_gimple_val (val[1]) && nargs == 3)
+ result = fold_builtin_stxcpy_chk (loc, callee,
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2),
+ val[1], ignore,
+ DECL_FUNCTION_CODE (callee));
+ break;
+
+ case BUILT_IN_STRNCPY_CHK:
+ case BUILT_IN_STPNCPY_CHK:
+ if (val[2] && is_gimple_val (val[2]) && nargs == 4)
+ result = fold_builtin_stxncpy_chk (loc, gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2),
+ gimple_call_arg (stmt, 3),
+ val[2], ignore,
+ DECL_FUNCTION_CODE (callee));
+ break;
+
+ case BUILT_IN_SNPRINTF_CHK:
+ case BUILT_IN_VSNPRINTF_CHK:
+ if (val[1] && is_gimple_val (val[1]))
+ result = gimple_fold_builtin_snprintf_chk (stmt, val[1],
+ DECL_FUNCTION_CODE (callee));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (result && ignore)
+ result = fold_ignored_result (result);
+ return result;
+}
+
+
+/* Attempt to fold a call statement referenced by the statement iterator GSI.
+ The statement may be replaced by another statement, e.g., if the call
+ simplifies to a constant value. Return true if any changes were made.
+ It is assumed that the operands have been previously folded. */
+
+static bool
+gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
+{
+ gimple stmt = gsi_stmt (*gsi);
+ tree callee;
+ bool changed = false;
+ unsigned i;
+
+ /* Fold *& in call arguments. */
+ for (i = 0; i < gimple_call_num_args (stmt); ++i)
+ if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
+ {
+ tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
+ if (tmp)
+ {
+ gimple_call_set_arg (stmt, i, tmp);
+ changed = true;
+ }
+ }
+
+ /* Check for virtual calls that became direct calls. */
+ callee = gimple_call_fn (stmt);
+ if (callee && TREE_CODE (callee) == OBJ_TYPE_REF)
+ {
+ if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE)
+ {
+ if (dump_file && virtual_method_call_p (callee)
+ && !possible_polymorphic_call_target_p
+ (callee, cgraph_get_node (gimple_call_addr_fndecl
+ (OBJ_TYPE_REF_EXPR (callee)))))
+ {
+ fprintf (dump_file,
+ "Type inheritance inconsistent devirtualization of ");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ fprintf (dump_file, " to ");
+ print_generic_expr (dump_file, callee, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee));
+ changed = true;
+ }
+ else if (flag_devirtualize && !inplace && virtual_method_call_p (callee))
+ {
+ bool final;
+ vec <cgraph_node *>targets
+ = possible_polymorphic_call_targets (callee, &final);
+ if (final && targets.length () <= 1)
+ {
+ tree lhs = gimple_call_lhs (stmt);
+ if (targets.length () == 1)
+ {
+ gimple_call_set_fndecl (stmt, targets[0]->decl);
+ changed = true;
+ /* If the call becomes noreturn, remove the lhs. */
+ if (lhs && (gimple_call_flags (stmt) & ECF_NORETURN))
+ {
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ tree var = create_tmp_var (TREE_TYPE (lhs), NULL);
+ tree def = get_or_create_ssa_default_def (cfun, var);
+ gimple new_stmt = gimple_build_assign (lhs, def);
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+ }
+ gimple_call_set_lhs (stmt, NULL_TREE);
+ }
+ }
+ else
+ {
+ tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
+ gimple new_stmt = gimple_build_call (fndecl, 0);
+ gimple_set_location (new_stmt, gimple_location (stmt));
+ if (lhs && TREE_CODE (lhs) == SSA_NAME)
+ {
+ tree var = create_tmp_var (TREE_TYPE (lhs), NULL);
+ tree def = get_or_create_ssa_default_def (cfun, var);
+
+ /* To satisfy condition for
+ cgraph_update_edges_for_call_stmt_node,
+ we need to preserve GIMPLE_CALL statement
+ at position of GSI iterator. */
+ update_call_from_tree (gsi, def);
+ gsi_insert_before (gsi, new_stmt, GSI_NEW_STMT);
+ }
+ else
+ gsi_replace (gsi, new_stmt, true);
+ return true;
+ }
+ }
+ }
+ }
+
+ if (inplace)
+ return changed;
+
+ /* Check for builtins that CCP can handle using information not
+ available in the generic fold routines. */
+ if (gimple_call_builtin_p (stmt))
+ {
+ tree result = gimple_fold_builtin (stmt);
+ if (result)
+ {
+ if (!update_call_from_tree (gsi, result))
+ gimplify_and_update_call_from_tree (gsi, result);
+ changed = true;
+ }
+ else if (gimple_call_builtin_p (stmt, BUILT_IN_MD))
+ changed |= targetm.gimple_fold_builtin (gsi);
+ }
+ else if (gimple_call_internal_p (stmt)
+ && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)
+ {
+ tree result = fold_builtin_expect (gimple_location (stmt),
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2));
+ if (result)
+ {
+ if (!update_call_from_tree (gsi, result))
+ gimplify_and_update_call_from_tree (gsi, result);
+ changed = true;
+ }
+ }
+
+ return changed;
+}
+
+/* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
+ distinguishes both cases. */
+
+static bool
+fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace)
+{
+ bool changed = false;
+ gimple stmt = gsi_stmt (*gsi);
+ unsigned i;
+
+ /* Fold the main computation performed by the statement. */
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ {
+ unsigned old_num_ops = gimple_num_ops (stmt);
+ enum tree_code subcode = gimple_assign_rhs_code (stmt);
+ tree lhs = gimple_assign_lhs (stmt);
+ tree new_rhs;
+ /* First canonicalize operand order. This avoids building new
+ trees if this is the only thing fold would later do. */
+ if ((commutative_tree_code (subcode)
+ || commutative_ternary_tree_code (subcode))
+ && tree_swap_operands_p (gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt), false))
+ {
+ tree tem = gimple_assign_rhs1 (stmt);
+ gimple_assign_set_rhs1 (stmt, gimple_assign_rhs2 (stmt));
+ gimple_assign_set_rhs2 (stmt, tem);
+ changed = true;
+ }
+ new_rhs = fold_gimple_assign (gsi);
+ if (new_rhs
+ && !useless_type_conversion_p (TREE_TYPE (lhs),
+ TREE_TYPE (new_rhs)))
+ new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
+ if (new_rhs
+ && (!inplace
+ || get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
+ {
+ gimple_assign_set_rhs_from_tree (gsi, new_rhs);
+ changed = true;
+ }
+ break;
+ }
+
+ case GIMPLE_COND:
+ changed |= fold_gimple_cond (stmt);
+ break;
+
+ case GIMPLE_CALL:
+ changed |= gimple_fold_call (gsi, inplace);
+ break;
+
+ case GIMPLE_ASM:
+ /* Fold *& in asm operands. */
+ {
+ size_t noutputs;
+ const char **oconstraints;
+ const char *constraint;
+ bool allows_mem, allows_reg;
+
+ noutputs = gimple_asm_noutputs (stmt);
+ oconstraints = XALLOCAVEC (const char *, noutputs);
+
+ for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
+ {
+ tree link = gimple_asm_output_op (stmt, i);
+ tree op = TREE_VALUE (link);
+ oconstraints[i]
+ = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
+ if (REFERENCE_CLASS_P (op)
+ && (op = maybe_fold_reference (op, true)) != NULL_TREE)
+ {
+ TREE_VALUE (link) = op;
+ changed = true;
+ }
+ }
+ for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
+ {
+ tree link = gimple_asm_input_op (stmt, i);
+ tree op = TREE_VALUE (link);
+ constraint
+ = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
+ parse_input_constraint (&constraint, 0, 0, noutputs, 0,
+ oconstraints, &allows_mem, &allows_reg);
+ if (REFERENCE_CLASS_P (op)
+ && (op = maybe_fold_reference (op, !allows_reg && allows_mem))
+ != NULL_TREE)
+ {
+ TREE_VALUE (link) = op;
+ changed = true;
+ }
+ }
+ }
+ break;
+
+ case GIMPLE_DEBUG:
+ if (gimple_debug_bind_p (stmt))
+ {
+ tree val = gimple_debug_bind_get_value (stmt);
+ if (val
+ && REFERENCE_CLASS_P (val))
+ {
+ tree tem = maybe_fold_reference (val, false);
+ if (tem)
+ {
+ gimple_debug_bind_set_value (stmt, tem);
+ changed = true;
+ }
+ }
+ else if (val
+ && TREE_CODE (val) == ADDR_EXPR)
+ {
+ tree ref = TREE_OPERAND (val, 0);
+ tree tem = maybe_fold_reference (ref, false);
+ if (tem)
+ {
+ tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val));
+ gimple_debug_bind_set_value (stmt, tem);
+ changed = true;
+ }
+ }
+ }
+ break;
+
+ default:;
+ }
+
+ stmt = gsi_stmt (*gsi);
+
+ /* Fold *& on the lhs. */
+ if (gimple_has_lhs (stmt))
+ {
+ tree lhs = gimple_get_lhs (stmt);
+ if (lhs && REFERENCE_CLASS_P (lhs))
+ {
+ tree new_lhs = maybe_fold_reference (lhs, true);
+ if (new_lhs)
+ {
+ gimple_set_lhs (stmt, new_lhs);
+ changed = true;
+ }
+ }
+ }
+
+ return changed;
+}
+
+/* Fold the statement pointed to by GSI. In some cases, this function may
+ replace the whole statement with a new one. Returns true iff folding
+ makes any changes.
+ The statement pointed to by GSI should be in valid gimple form but may
+ be in unfolded state as resulting from for example constant propagation
+ which can produce *&x = 0. */
+
+bool
+fold_stmt (gimple_stmt_iterator *gsi)
+{
+ return fold_stmt_1 (gsi, false);
+}
+
+/* Perform the minimal folding on statement *GSI. Only operations like
+ *&x created by constant propagation are handled. The statement cannot
+ be replaced with a new one. Return true if the statement was
+ changed, false otherwise.
+ The statement *GSI should be in valid gimple form but may
+ be in unfolded state as resulting from for example constant propagation
+ which can produce *&x = 0. */
+
+bool
+fold_stmt_inplace (gimple_stmt_iterator *gsi)
+{
+ gimple stmt = gsi_stmt (*gsi);
+ bool changed = fold_stmt_1 (gsi, true);
+ gcc_assert (gsi_stmt (*gsi) == stmt);
+ return changed;
+}
+
+/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
+ if EXPR is null or we don't know how.
+ If non-null, the result always has boolean type. */
+
+static tree
+canonicalize_bool (tree expr, bool invert)
+{
+ if (!expr)
+ return NULL_TREE;
+ else if (invert)
+ {
+ if (integer_nonzerop (expr))
+ return boolean_false_node;
+ else if (integer_zerop (expr))
+ return boolean_true_node;
+ else if (TREE_CODE (expr) == SSA_NAME)
+ return fold_build2 (EQ_EXPR, boolean_type_node, expr,
+ build_int_cst (TREE_TYPE (expr), 0));
+ else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
+ return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
+ boolean_type_node,
+ TREE_OPERAND (expr, 0),
+ TREE_OPERAND (expr, 1));
+ else
+ return NULL_TREE;
+ }
+ else
+ {
+ if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
+ return expr;
+ if (integer_nonzerop (expr))
+ return boolean_true_node;
+ else if (integer_zerop (expr))
+ return boolean_false_node;
+ else if (TREE_CODE (expr) == SSA_NAME)
+ return fold_build2 (NE_EXPR, boolean_type_node, expr,
+ build_int_cst (TREE_TYPE (expr), 0));
+ else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
+ return fold_build2 (TREE_CODE (expr),
+ boolean_type_node,
+ TREE_OPERAND (expr, 0),
+ TREE_OPERAND (expr, 1));
+ else
+ return NULL_TREE;
+ }
+}
+
+/* Check to see if a boolean expression EXPR is logically equivalent to the
+ comparison (OP1 CODE OP2). Check for various identities involving
+ SSA_NAMEs. */
+
+static bool
+same_bool_comparison_p (const_tree expr, enum tree_code code,
+ const_tree op1, const_tree op2)
+{
+ gimple s;
+
+ /* The obvious case. */
+ if (TREE_CODE (expr) == code
+ && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
+ && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
+ return true;
+
+ /* Check for comparing (name, name != 0) and the case where expr
+ is an SSA_NAME with a definition matching the comparison. */
+ if (TREE_CODE (expr) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
+ {
+ if (operand_equal_p (expr, op1, 0))
+ return ((code == NE_EXPR && integer_zerop (op2))
+ || (code == EQ_EXPR && integer_nonzerop (op2)));
+ s = SSA_NAME_DEF_STMT (expr);
+ if (is_gimple_assign (s)
+ && gimple_assign_rhs_code (s) == code
+ && operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
+ && operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
+ return true;
+ }
+
+ /* If op1 is of the form (name != 0) or (name == 0), and the definition
+ of name is a comparison, recurse. */
+ if (TREE_CODE (op1) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
+ {
+ s = SSA_NAME_DEF_STMT (op1);
+ if (is_gimple_assign (s)
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
+ {
+ enum tree_code c = gimple_assign_rhs_code (s);
+ if ((c == NE_EXPR && integer_zerop (op2))
+ || (c == EQ_EXPR && integer_nonzerop (op2)))
+ return same_bool_comparison_p (expr, c,
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s));
+ if ((c == EQ_EXPR && integer_zerop (op2))
+ || (c == NE_EXPR && integer_nonzerop (op2)))
+ return same_bool_comparison_p (expr,
+ invert_tree_comparison (c, false),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s));
+ }
+ }
+ return false;
+}
+
+/* Check to see if two boolean expressions OP1 and OP2 are logically
+ equivalent. */
+
+static bool
+same_bool_result_p (const_tree op1, const_tree op2)
+{
+ /* Simple cases first. */
+ if (operand_equal_p (op1, op2, 0))
+ return true;
+
+ /* Check the cases where at least one of the operands is a comparison.
+ These are a bit smarter than operand_equal_p in that they apply some
+ identifies on SSA_NAMEs. */
+ if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison
+ && same_bool_comparison_p (op1, TREE_CODE (op2),
+ TREE_OPERAND (op2, 0),
+ TREE_OPERAND (op2, 1)))
+ return true;
+ if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison
+ && same_bool_comparison_p (op2, TREE_CODE (op1),
+ TREE_OPERAND (op1, 0),
+ TREE_OPERAND (op1, 1)))
+ return true;
+
+ /* Default case. */
+ return false;
+}
+
+/* Forward declarations for some mutually recursive functions. */
+
+static tree
+and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+and_var_with_comparison (tree var, bool invert,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+and_var_with_comparison_1 (gimple stmt,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+or_var_with_comparison (tree var, bool invert,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+or_var_with_comparison_1 (gimple stmt,
+ enum tree_code code2, tree op2a, tree op2b);
+
+/* Helper function for and_comparisons_1: try to simplify the AND of the
+ ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
+ If INVERT is true, invert the value of the VAR before doing the AND.
+ Return NULL_EXPR if we can't simplify this to a single expression. */
+
+static tree
+and_var_with_comparison (tree var, bool invert,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree t;
+ gimple stmt = SSA_NAME_DEF_STMT (var);
+
+ /* We can only deal with variables whose definitions are assignments. */
+ if (!is_gimple_assign (stmt))
+ return NULL_TREE;
+
+ /* If we have an inverted comparison, apply DeMorgan's law and rewrite
+ !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
+ Then we only have to consider the simpler non-inverted cases. */
+ if (invert)
+ t = or_var_with_comparison_1 (stmt,
+ invert_tree_comparison (code2, false),
+ op2a, op2b);
+ else
+ t = and_var_with_comparison_1 (stmt, code2, op2a, op2b);
+ return canonicalize_bool (t, invert);
+}
+
+/* Try to simplify the AND of the ssa variable defined by the assignment
+ STMT with the comparison specified by (OP2A CODE2 OP2B).
+ Return NULL_EXPR if we can't simplify this to a single expression. */
+
+static tree
+and_var_with_comparison_1 (gimple stmt,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree var = gimple_assign_lhs (stmt);
+ tree true_test_var = NULL_TREE;
+ tree false_test_var = NULL_TREE;
+ enum tree_code innercode = gimple_assign_rhs_code (stmt);
+
+ /* Check for identities like (var AND (var == 0)) => false. */
+ if (TREE_CODE (op2a) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
+ {
+ if ((code2 == NE_EXPR && integer_zerop (op2b))
+ || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
+ {
+ true_test_var = op2a;
+ if (var == true_test_var)
+ return var;
+ }
+ else if ((code2 == EQ_EXPR && integer_zerop (op2b))
+ || (code2 == NE_EXPR && integer_nonzerop (op2b)))
+ {
+ false_test_var = op2a;
+ if (var == false_test_var)
+ return boolean_false_node;
+ }
+ }
+
+ /* If the definition is a comparison, recurse on it. */
+ if (TREE_CODE_CLASS (innercode) == tcc_comparison)
+ {
+ tree t = and_comparisons_1 (innercode,
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt),
+ code2,
+ op2a,
+ op2b);
+ if (t)
+ return t;
+ }
+
+ /* If the definition is an AND or OR expression, we may be able to
+ simplify by reassociating. */
+ if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
+ && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
+ {
+ tree inner1 = gimple_assign_rhs1 (stmt);
+ tree inner2 = gimple_assign_rhs2 (stmt);
+ gimple s;
+ tree t;
+ tree partial = NULL_TREE;
+ bool is_and = (innercode == BIT_AND_EXPR);
+
+ /* Check for boolean identities that don't require recursive examination
+ of inner1/inner2:
+ inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
+ inner1 AND (inner1 OR inner2) => inner1
+ !inner1 AND (inner1 AND inner2) => false
+ !inner1 AND (inner1 OR inner2) => !inner1 AND inner2
+ Likewise for similar cases involving inner2. */
+ if (inner1 == true_test_var)
+ return (is_and ? var : inner1);
+ else if (inner2 == true_test_var)
+ return (is_and ? var : inner2);
+ else if (inner1 == false_test_var)
+ return (is_and
+ ? boolean_false_node
+ : and_var_with_comparison (inner2, false, code2, op2a, op2b));
+ else if (inner2 == false_test_var)
+ return (is_and
+ ? boolean_false_node
+ : and_var_with_comparison (inner1, false, code2, op2a, op2b));
+
+ /* Next, redistribute/reassociate the AND across the inner tests.
+ Compute the first partial result, (inner1 AND (op2a code op2b)) */
+ if (TREE_CODE (inner1) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
+ && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s),
+ code2, op2a, op2b)))
+ {
+ /* Handle the AND case, where we are reassociating:
+ (inner1 AND inner2) AND (op2a code2 op2b)
+ => (t AND inner2)
+ If the partial result t is a constant, we win. Otherwise
+ continue on to try reassociating with the other inner test. */
+ if (is_and)
+ {
+ if (integer_onep (t))
+ return inner2;
+ else if (integer_zerop (t))
+ return boolean_false_node;
+ }
+
+ /* Handle the OR case, where we are redistributing:
+ (inner1 OR inner2) AND (op2a code2 op2b)
+ => (t OR (inner2 AND (op2a code2 op2b))) */
+ else if (integer_onep (t))
+ return boolean_true_node;
+
+ /* Save partial result for later. */
+ partial = t;
+ }
+
+ /* Compute the second partial result, (inner2 AND (op2a code op2b)) */
+ if (TREE_CODE (inner2) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
+ && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s),
+ code2, op2a, op2b)))
+ {
+ /* Handle the AND case, where we are reassociating:
+ (inner1 AND inner2) AND (op2a code2 op2b)
+ => (inner1 AND t) */
+ if (is_and)
+ {
+ if (integer_onep (t))
+ return inner1;
+ else if (integer_zerop (t))
+ return boolean_false_node;
+ /* If both are the same, we can apply the identity
+ (x AND x) == x. */
+ else if (partial && same_bool_result_p (t, partial))
+ return t;
+ }
+
+ /* Handle the OR case. where we are redistributing:
+ (inner1 OR inner2) AND (op2a code2 op2b)
+ => (t OR (inner1 AND (op2a code2 op2b)))
+ => (t OR partial) */
+ else
+ {
+ if (integer_onep (t))
+ return boolean_true_node;
+ else if (partial)
+ {
+ /* We already got a simplification for the other
+ operand to the redistributed OR expression. The
+ interesting case is when at least one is false.
+ Or, if both are the same, we can apply the identity
+ (x OR x) == x. */
+ if (integer_zerop (partial))
+ return t;
+ else if (integer_zerop (t))
+ return partial;
+ else if (same_bool_result_p (t, partial))
+ return t;
+ }
+ }
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Try to simplify the AND of two comparisons defined by
+ (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
+ If this can be done without constructing an intermediate value,
+ return the resulting tree; otherwise NULL_TREE is returned.
+ This function is deliberately asymmetric as it recurses on SSA_DEFs
+ in the first comparison but not the second. */
+
+static tree
+and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree truth_type = truth_type_for (TREE_TYPE (op1a));
+
+ /* First check for ((x CODE1 y) AND (x CODE2 y)). */
+ if (operand_equal_p (op1a, op2a, 0)
+ && operand_equal_p (op1b, op2b, 0))
+ {
+ /* Result will be either NULL_TREE, or a combined comparison. */
+ tree t = combine_comparisons (UNKNOWN_LOCATION,
+ TRUTH_ANDIF_EXPR, code1, code2,
+ truth_type, op1a, op1b);
+ if (t)
+ return t;
+ }
+
+ /* Likewise the swapped case of the above. */
+ if (operand_equal_p (op1a, op2b, 0)
+ && operand_equal_p (op1b, op2a, 0))
+ {
+ /* Result will be either NULL_TREE, or a combined comparison. */
+ tree t = combine_comparisons (UNKNOWN_LOCATION,
+ TRUTH_ANDIF_EXPR, code1,
+ swap_tree_comparison (code2),
+ truth_type, op1a, op1b);
+ if (t)
+ return t;
+ }
+
+ /* If both comparisons are of the same value against constants, we might
+ be able to merge them. */
+ if (operand_equal_p (op1a, op2a, 0)
+ && TREE_CODE (op1b) == INTEGER_CST
+ && TREE_CODE (op2b) == INTEGER_CST)
+ {
+ int cmp = tree_int_cst_compare (op1b, op2b);
+
+ /* If we have (op1a == op1b), we should either be able to
+ return that or FALSE, depending on whether the constant op1b
+ also satisfies the other comparison against op2b. */
+ if (code1 == EQ_EXPR)
+ {
+ bool done = true;
+ bool val;
+ switch (code2)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp < 0); break;
+ case GT_EXPR: val = (cmp > 0); break;
+ case LE_EXPR: val = (cmp <= 0); break;
+ case GE_EXPR: val = (cmp >= 0); break;
+ default: done = false;
+ }
+ if (done)
+ {
+ if (val)
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ else
+ return boolean_false_node;
+ }
+ }
+ /* Likewise if the second comparison is an == comparison. */
+ else if (code2 == EQ_EXPR)
+ {
+ bool done = true;
+ bool val;
+ switch (code1)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp > 0); break;
+ case GT_EXPR: val = (cmp < 0); break;
+ case LE_EXPR: val = (cmp >= 0); break;
+ case GE_EXPR: val = (cmp <= 0); break;
+ default: done = false;
+ }
+ if (done)
+ {
+ if (val)
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ else
+ return boolean_false_node;
+ }
+ }
+
+ /* Same business with inequality tests. */
+ else if (code1 == NE_EXPR)
+ {
+ bool val;
+ switch (code2)
+ {
+ case EQ_EXPR: val = (cmp != 0); break;
+ case NE_EXPR: val = (cmp == 0); break;
+ case LT_EXPR: val = (cmp >= 0); break;
+ case GT_EXPR: val = (cmp <= 0); break;
+ case LE_EXPR: val = (cmp > 0); break;
+ case GE_EXPR: val = (cmp < 0); break;
+ default:
+ val = false;
+ }
+ if (val)
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+ else if (code2 == NE_EXPR)
+ {
+ bool val;
+ switch (code1)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp <= 0); break;
+ case GT_EXPR: val = (cmp >= 0); break;
+ case LE_EXPR: val = (cmp < 0); break;
+ case GE_EXPR: val = (cmp > 0); break;
+ default:
+ val = false;
+ }
+ if (val)
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+
+ /* Chose the more restrictive of two < or <= comparisons. */
+ else if ((code1 == LT_EXPR || code1 == LE_EXPR)
+ && (code2 == LT_EXPR || code2 == LE_EXPR))
+ {
+ if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ else
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+
+ /* Likewise chose the more restrictive of two > or >= comparisons. */
+ else if ((code1 == GT_EXPR || code1 == GE_EXPR)
+ && (code2 == GT_EXPR || code2 == GE_EXPR))
+ {
+ if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ else
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+
+ /* Check for singleton ranges. */
+ else if (cmp == 0
+ && ((code1 == LE_EXPR && code2 == GE_EXPR)
+ || (code1 == GE_EXPR && code2 == LE_EXPR)))
+ return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b);
+
+ /* Check for disjoint ranges. */
+ else if (cmp <= 0
+ && (code1 == LT_EXPR || code1 == LE_EXPR)
+ && (code2 == GT_EXPR || code2 == GE_EXPR))
+ return boolean_false_node;
+ else if (cmp >= 0
+ && (code1 == GT_EXPR || code1 == GE_EXPR)
+ && (code2 == LT_EXPR || code2 == LE_EXPR))
+ return boolean_false_node;
+ }
+
+ /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
+ NAME's definition is a truth value. See if there are any simplifications
+ that can be done against the NAME's definition. */
+ if (TREE_CODE (op1a) == SSA_NAME
+ && (code1 == NE_EXPR || code1 == EQ_EXPR)
+ && (integer_zerop (op1b) || integer_onep (op1b)))
+ {
+ bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
+ || (code1 == NE_EXPR && integer_onep (op1b)));
+ gimple stmt = SSA_NAME_DEF_STMT (op1a);
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ /* Try to simplify by copy-propagating the definition. */
+ return and_var_with_comparison (op1a, invert, code2, op2a, op2b);
+
+ case GIMPLE_PHI:
+ /* If every argument to the PHI produces the same result when
+ ANDed with the second comparison, we win.
+ Do not do this unless the type is bool since we need a bool
+ result here anyway. */
+ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
+ {
+ tree result = NULL_TREE;
+ unsigned i;
+ for (i = 0; i < gimple_phi_num_args (stmt); i++)
+ {
+ tree arg = gimple_phi_arg_def (stmt, i);
+
+ /* If this PHI has itself as an argument, ignore it.
+ If all the other args produce the same result,
+ we're still OK. */
+ if (arg == gimple_phi_result (stmt))
+ continue;
+ else if (TREE_CODE (arg) == INTEGER_CST)
+ {
+ if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
+ {
+ if (!result)
+ result = boolean_false_node;
+ else if (!integer_zerop (result))
+ return NULL_TREE;
+ }
+ else if (!result)
+ result = fold_build2 (code2, boolean_type_node,
+ op2a, op2b);
+ else if (!same_bool_comparison_p (result,
+ code2, op2a, op2b))
+ return NULL_TREE;
+ }
+ else if (TREE_CODE (arg) == SSA_NAME
+ && !SSA_NAME_IS_DEFAULT_DEF (arg))
+ {
+ tree temp;
+ gimple def_stmt = SSA_NAME_DEF_STMT (arg);
+ /* In simple cases we can look through PHI nodes,
+ but we have to be careful with loops.
+ See PR49073. */
+ if (! dom_info_available_p (CDI_DOMINATORS)
+ || gimple_bb (def_stmt) == gimple_bb (stmt)
+ || dominated_by_p (CDI_DOMINATORS,
+ gimple_bb (def_stmt),
+ gimple_bb (stmt)))
+ return NULL_TREE;
+ temp = and_var_with_comparison (arg, invert, code2,
+ op2a, op2b);
+ if (!temp)
+ return NULL_TREE;
+ else if (!result)
+ result = temp;
+ else if (!same_bool_result_p (result, temp))
+ return NULL_TREE;
+ }
+ else
+ return NULL_TREE;
+ }
+ return result;
+ }
+
+ default:
+ break;
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Try to simplify the AND of two comparisons, specified by
+ (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
+ If this can be simplified to a single expression (without requiring
+ introducing more SSA variables to hold intermediate values),
+ return the resulting tree. Otherwise return NULL_TREE.
+ If the result expression is non-null, it has boolean type. */
+
+tree
+maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
+ if (t)
+ return t;
+ else
+ return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
+}
+
+/* Helper function for or_comparisons_1: try to simplify the OR of the
+ ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
+ If INVERT is true, invert the value of VAR before doing the OR.
+ Return NULL_EXPR if we can't simplify this to a single expression. */
+
+static tree
+or_var_with_comparison (tree var, bool invert,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree t;
+ gimple stmt = SSA_NAME_DEF_STMT (var);
+
+ /* We can only deal with variables whose definitions are assignments. */
+ if (!is_gimple_assign (stmt))
+ return NULL_TREE;
+
+ /* If we have an inverted comparison, apply DeMorgan's law and rewrite
+ !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
+ Then we only have to consider the simpler non-inverted cases. */
+ if (invert)
+ t = and_var_with_comparison_1 (stmt,
+ invert_tree_comparison (code2, false),
+ op2a, op2b);
+ else
+ t = or_var_with_comparison_1 (stmt, code2, op2a, op2b);
+ return canonicalize_bool (t, invert);
+}
+
+/* Try to simplify the OR of the ssa variable defined by the assignment
+ STMT with the comparison specified by (OP2A CODE2 OP2B).
+ Return NULL_EXPR if we can't simplify this to a single expression. */
+
+static tree
+or_var_with_comparison_1 (gimple stmt,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree var = gimple_assign_lhs (stmt);
+ tree true_test_var = NULL_TREE;
+ tree false_test_var = NULL_TREE;
+ enum tree_code innercode = gimple_assign_rhs_code (stmt);
+
+ /* Check for identities like (var OR (var != 0)) => true . */
+ if (TREE_CODE (op2a) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
+ {
+ if ((code2 == NE_EXPR && integer_zerop (op2b))
+ || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
+ {
+ true_test_var = op2a;
+ if (var == true_test_var)
+ return var;
+ }
+ else if ((code2 == EQ_EXPR && integer_zerop (op2b))
+ || (code2 == NE_EXPR && integer_nonzerop (op2b)))
+ {
+ false_test_var = op2a;
+ if (var == false_test_var)
+ return boolean_true_node;
+ }
+ }
+
+ /* If the definition is a comparison, recurse on it. */
+ if (TREE_CODE_CLASS (innercode) == tcc_comparison)
+ {
+ tree t = or_comparisons_1 (innercode,
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt),
+ code2,
+ op2a,
+ op2b);
+ if (t)
+ return t;
+ }
+
+ /* If the definition is an AND or OR expression, we may be able to
+ simplify by reassociating. */
+ if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
+ && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
+ {
+ tree inner1 = gimple_assign_rhs1 (stmt);
+ tree inner2 = gimple_assign_rhs2 (stmt);
+ gimple s;
+ tree t;
+ tree partial = NULL_TREE;
+ bool is_or = (innercode == BIT_IOR_EXPR);
+
+ /* Check for boolean identities that don't require recursive examination
+ of inner1/inner2:
+ inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
+ inner1 OR (inner1 AND inner2) => inner1
+ !inner1 OR (inner1 OR inner2) => true
+ !inner1 OR (inner1 AND inner2) => !inner1 OR inner2
+ */
+ if (inner1 == true_test_var)
+ return (is_or ? var : inner1);
+ else if (inner2 == true_test_var)
+ return (is_or ? var : inner2);
+ else if (inner1 == false_test_var)
+ return (is_or
+ ? boolean_true_node
+ : or_var_with_comparison (inner2, false, code2, op2a, op2b));
+ else if (inner2 == false_test_var)
+ return (is_or
+ ? boolean_true_node
+ : or_var_with_comparison (inner1, false, code2, op2a, op2b));
+
+ /* Next, redistribute/reassociate the OR across the inner tests.
+ Compute the first partial result, (inner1 OR (op2a code op2b)) */
+ if (TREE_CODE (inner1) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
+ && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s),
+ code2, op2a, op2b)))
+ {
+ /* Handle the OR case, where we are reassociating:
+ (inner1 OR inner2) OR (op2a code2 op2b)
+ => (t OR inner2)
+ If the partial result t is a constant, we win. Otherwise
+ continue on to try reassociating with the other inner test. */
+ if (is_or)
+ {
+ if (integer_onep (t))
+ return boolean_true_node;
+ else if (integer_zerop (t))
+ return inner2;
+ }
+
+ /* Handle the AND case, where we are redistributing:
+ (inner1 AND inner2) OR (op2a code2 op2b)
+ => (t AND (inner2 OR (op2a code op2b))) */
+ else if (integer_zerop (t))
+ return boolean_false_node;
+
+ /* Save partial result for later. */
+ partial = t;
+ }
+
+ /* Compute the second partial result, (inner2 OR (op2a code op2b)) */
+ if (TREE_CODE (inner2) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
+ && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s),
+ code2, op2a, op2b)))
+ {
+ /* Handle the OR case, where we are reassociating:
+ (inner1 OR inner2) OR (op2a code2 op2b)
+ => (inner1 OR t)
+ => (t OR partial) */
+ if (is_or)
+ {
+ if (integer_zerop (t))
+ return inner1;
+ else if (integer_onep (t))
+ return boolean_true_node;
+ /* If both are the same, we can apply the identity
+ (x OR x) == x. */
+ else if (partial && same_bool_result_p (t, partial))
+ return t;
+ }
+
+ /* Handle the AND case, where we are redistributing:
+ (inner1 AND inner2) OR (op2a code2 op2b)
+ => (t AND (inner1 OR (op2a code2 op2b)))
+ => (t AND partial) */
+ else
+ {
+ if (integer_zerop (t))
+ return boolean_false_node;
+ else if (partial)
+ {
+ /* We already got a simplification for the other
+ operand to the redistributed AND expression. The
+ interesting case is when at least one is true.
+ Or, if both are the same, we can apply the identity
+ (x AND x) == x. */
+ if (integer_onep (partial))
+ return t;
+ else if (integer_onep (t))
+ return partial;
+ else if (same_bool_result_p (t, partial))
+ return t;
+ }
+ }
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Try to simplify the OR of two comparisons defined by
+ (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
+ If this can be done without constructing an intermediate value,
+ return the resulting tree; otherwise NULL_TREE is returned.
+ This function is deliberately asymmetric as it recurses on SSA_DEFs
+ in the first comparison but not the second. */
+
+static tree
+or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree truth_type = truth_type_for (TREE_TYPE (op1a));
+
+ /* First check for ((x CODE1 y) OR (x CODE2 y)). */
+ if (operand_equal_p (op1a, op2a, 0)
+ && operand_equal_p (op1b, op2b, 0))
+ {
+ /* Result will be either NULL_TREE, or a combined comparison. */
+ tree t = combine_comparisons (UNKNOWN_LOCATION,
+ TRUTH_ORIF_EXPR, code1, code2,
+ truth_type, op1a, op1b);
+ if (t)
+ return t;
+ }
+
+ /* Likewise the swapped case of the above. */
+ if (operand_equal_p (op1a, op2b, 0)
+ && operand_equal_p (op1b, op2a, 0))
+ {
+ /* Result will be either NULL_TREE, or a combined comparison. */
+ tree t = combine_comparisons (UNKNOWN_LOCATION,
+ TRUTH_ORIF_EXPR, code1,
+ swap_tree_comparison (code2),
+ truth_type, op1a, op1b);
+ if (t)
+ return t;
+ }
+
+ /* If both comparisons are of the same value against constants, we might
+ be able to merge them. */
+ if (operand_equal_p (op1a, op2a, 0)
+ && TREE_CODE (op1b) == INTEGER_CST
+ && TREE_CODE (op2b) == INTEGER_CST)
+ {
+ int cmp = tree_int_cst_compare (op1b, op2b);
+
+ /* If we have (op1a != op1b), we should either be able to
+ return that or TRUE, depending on whether the constant op1b
+ also satisfies the other comparison against op2b. */
+ if (code1 == NE_EXPR)
+ {
+ bool done = true;
+ bool val;
+ switch (code2)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp < 0); break;
+ case GT_EXPR: val = (cmp > 0); break;
+ case LE_EXPR: val = (cmp <= 0); break;
+ case GE_EXPR: val = (cmp >= 0); break;
+ default: done = false;
+ }
+ if (done)
+ {
+ if (val)
+ return boolean_true_node;
+ else
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+ }
+ /* Likewise if the second comparison is a != comparison. */
+ else if (code2 == NE_EXPR)
+ {
+ bool done = true;
+ bool val;
+ switch (code1)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp > 0); break;
+ case GT_EXPR: val = (cmp < 0); break;
+ case LE_EXPR: val = (cmp >= 0); break;
+ case GE_EXPR: val = (cmp <= 0); break;
+ default: done = false;
+ }
+ if (done)
+ {
+ if (val)
+ return boolean_true_node;
+ else
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+ }
+
+ /* See if an equality test is redundant with the other comparison. */
+ else if (code1 == EQ_EXPR)
+ {
+ bool val;
+ switch (code2)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp < 0); break;
+ case GT_EXPR: val = (cmp > 0); break;
+ case LE_EXPR: val = (cmp <= 0); break;
+ case GE_EXPR: val = (cmp >= 0); break;
+ default:
+ val = false;
+ }
+ if (val)
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+ else if (code2 == EQ_EXPR)
+ {
+ bool val;
+ switch (code1)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp > 0); break;
+ case GT_EXPR: val = (cmp < 0); break;
+ case LE_EXPR: val = (cmp >= 0); break;
+ case GE_EXPR: val = (cmp <= 0); break;
+ default:
+ val = false;
+ }
+ if (val)
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+
+ /* Chose the less restrictive of two < or <= comparisons. */
+ else if ((code1 == LT_EXPR || code1 == LE_EXPR)
+ && (code2 == LT_EXPR || code2 == LE_EXPR))
+ {
+ if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ else
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+
+ /* Likewise chose the less restrictive of two > or >= comparisons. */
+ else if ((code1 == GT_EXPR || code1 == GE_EXPR)
+ && (code2 == GT_EXPR || code2 == GE_EXPR))
+ {
+ if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ else
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+
+ /* Check for singleton ranges. */
+ else if (cmp == 0
+ && ((code1 == LT_EXPR && code2 == GT_EXPR)
+ || (code1 == GT_EXPR && code2 == LT_EXPR)))
+ return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b);
+
+ /* Check for less/greater pairs that don't restrict the range at all. */
+ else if (cmp >= 0
+ && (code1 == LT_EXPR || code1 == LE_EXPR)
+ && (code2 == GT_EXPR || code2 == GE_EXPR))
+ return boolean_true_node;
+ else if (cmp <= 0
+ && (code1 == GT_EXPR || code1 == GE_EXPR)
+ && (code2 == LT_EXPR || code2 == LE_EXPR))
+ return boolean_true_node;
+ }
+
+ /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
+ NAME's definition is a truth value. See if there are any simplifications
+ that can be done against the NAME's definition. */
+ if (TREE_CODE (op1a) == SSA_NAME
+ && (code1 == NE_EXPR || code1 == EQ_EXPR)
+ && (integer_zerop (op1b) || integer_onep (op1b)))
+ {
+ bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
+ || (code1 == NE_EXPR && integer_onep (op1b)));
+ gimple stmt = SSA_NAME_DEF_STMT (op1a);
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ /* Try to simplify by copy-propagating the definition. */
+ return or_var_with_comparison (op1a, invert, code2, op2a, op2b);
+
+ case GIMPLE_PHI:
+ /* If every argument to the PHI produces the same result when
+ ORed with the second comparison, we win.
+ Do not do this unless the type is bool since we need a bool
+ result here anyway. */
+ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
+ {
+ tree result = NULL_TREE;
+ unsigned i;
+ for (i = 0; i < gimple_phi_num_args (stmt); i++)
+ {
+ tree arg = gimple_phi_arg_def (stmt, i);
+
+ /* If this PHI has itself as an argument, ignore it.
+ If all the other args produce the same result,
+ we're still OK. */
+ if (arg == gimple_phi_result (stmt))
+ continue;
+ else if (TREE_CODE (arg) == INTEGER_CST)
+ {
+ if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
+ {
+ if (!result)
+ result = boolean_true_node;
+ else if (!integer_onep (result))
+ return NULL_TREE;
+ }
+ else if (!result)
+ result = fold_build2 (code2, boolean_type_node,
+ op2a, op2b);
+ else if (!same_bool_comparison_p (result,
+ code2, op2a, op2b))
+ return NULL_TREE;
+ }
+ else if (TREE_CODE (arg) == SSA_NAME
+ && !SSA_NAME_IS_DEFAULT_DEF (arg))
+ {
+ tree temp;
+ gimple def_stmt = SSA_NAME_DEF_STMT (arg);
+ /* In simple cases we can look through PHI nodes,
+ but we have to be careful with loops.
+ See PR49073. */
+ if (! dom_info_available_p (CDI_DOMINATORS)
+ || gimple_bb (def_stmt) == gimple_bb (stmt)
+ || dominated_by_p (CDI_DOMINATORS,
+ gimple_bb (def_stmt),
+ gimple_bb (stmt)))
+ return NULL_TREE;
+ temp = or_var_with_comparison (arg, invert, code2,
+ op2a, op2b);
+ if (!temp)
+ return NULL_TREE;
+ else if (!result)
+ result = temp;
+ else if (!same_bool_result_p (result, temp))
+ return NULL_TREE;
+ }
+ else
+ return NULL_TREE;
+ }
+ return result;
+ }
+
+ default:
+ break;
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Try to simplify the OR of two comparisons, specified by
+ (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
+ If this can be simplified to a single expression (without requiring
+ introducing more SSA variables to hold intermediate values),
+ return the resulting tree. Otherwise return NULL_TREE.
+ If the result expression is non-null, it has boolean type. */
+
+tree
+maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
+ if (t)
+ return t;
+ else
+ return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
+}
+
+
+/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
+
+ Either NULL_TREE, a simplified but non-constant or a constant
+ is returned.
+
+ ??? This should go into a gimple-fold-inline.h file to be eventually
+ privatized with the single valueize function used in the various TUs
+ to avoid the indirect function call overhead. */
+
+tree
+gimple_fold_stmt_to_constant_1 (gimple stmt, tree (*valueize) (tree))
+{
+ location_t loc = gimple_location (stmt);
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ {
+ enum tree_code subcode = gimple_assign_rhs_code (stmt);
+
+ switch (get_gimple_rhs_class (subcode))
+ {
+ case GIMPLE_SINGLE_RHS:
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+ enum tree_code_class kind = TREE_CODE_CLASS (subcode);
+
+ if (TREE_CODE (rhs) == SSA_NAME)
+ {
+ /* If the RHS is an SSA_NAME, return its known constant value,
+ if any. */
+ return (*valueize) (rhs);
+ }
+ /* Handle propagating invariant addresses into address
+ operations. */
+ else if (TREE_CODE (rhs) == ADDR_EXPR
+ && !is_gimple_min_invariant (rhs))
+ {
+ HOST_WIDE_INT offset = 0;
+ tree base;
+ base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0),
+ &offset,
+ valueize);
+ if (base
+ && (CONSTANT_CLASS_P (base)
+ || decl_address_invariant_p (base)))
+ return build_invariant_address (TREE_TYPE (rhs),
+ base, offset);
+ }
+ else if (TREE_CODE (rhs) == CONSTRUCTOR
+ && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
+ && (CONSTRUCTOR_NELTS (rhs)
+ == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
+ {
+ unsigned i;
+ tree val, *vec;
+
+ vec = XALLOCAVEC (tree,
+ TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)));
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
+ {
+ val = (*valueize) (val);
+ if (TREE_CODE (val) == INTEGER_CST
+ || TREE_CODE (val) == REAL_CST
+ || TREE_CODE (val) == FIXED_CST)
+ vec[i] = val;
+ else
+ return NULL_TREE;
+ }
+
+ return build_vector (TREE_TYPE (rhs), vec);
+ }
+ if (subcode == OBJ_TYPE_REF)
+ {
+ tree val = (*valueize) (OBJ_TYPE_REF_EXPR (rhs));
+ /* If callee is constant, we can fold away the wrapper. */
+ if (is_gimple_min_invariant (val))
+ return val;
+ }
+
+ if (kind == tcc_reference)
+ {
+ if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
+ || TREE_CODE (rhs) == REALPART_EXPR
+ || TREE_CODE (rhs) == IMAGPART_EXPR)
+ && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
+ {
+ tree val = (*valueize) (TREE_OPERAND (rhs, 0));
+ return fold_unary_loc (EXPR_LOCATION (rhs),
+ TREE_CODE (rhs),
+ TREE_TYPE (rhs), val);
+ }
+ else if (TREE_CODE (rhs) == BIT_FIELD_REF
+ && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
+ {
+ tree val = (*valueize) (TREE_OPERAND (rhs, 0));
+ return fold_ternary_loc (EXPR_LOCATION (rhs),
+ TREE_CODE (rhs),
+ TREE_TYPE (rhs), val,
+ TREE_OPERAND (rhs, 1),
+ TREE_OPERAND (rhs, 2));
+ }
+ else if (TREE_CODE (rhs) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
+ {
+ tree val = (*valueize) (TREE_OPERAND (rhs, 0));
+ if (TREE_CODE (val) == ADDR_EXPR
+ && is_gimple_min_invariant (val))
+ {
+ tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
+ unshare_expr (val),
+ TREE_OPERAND (rhs, 1));
+ if (tem)
+ rhs = tem;
+ }
+ }
+ return fold_const_aggregate_ref_1 (rhs, valueize);
+ }
+ else if (kind == tcc_declaration)
+ return get_symbol_constant_value (rhs);
+ return rhs;
+ }
+
+ case GIMPLE_UNARY_RHS:
+ {
+ /* Handle unary operators that can appear in GIMPLE form.
+ Note that we know the single operand must be a constant,
+ so this should almost always return a simplified RHS. */
+ tree lhs = gimple_assign_lhs (stmt);
+ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
+
+ /* Conversions are useless for CCP purposes if they are
+ value-preserving. Thus the restrictions that
+ useless_type_conversion_p places for restrict qualification
+ of pointer types should not apply here.
+ Substitution later will only substitute to allowed places. */
+ if (CONVERT_EXPR_CODE_P (subcode)
+ && POINTER_TYPE_P (TREE_TYPE (lhs))
+ && POINTER_TYPE_P (TREE_TYPE (op0))
+ && TYPE_ADDR_SPACE (TREE_TYPE (lhs))
+ == TYPE_ADDR_SPACE (TREE_TYPE (op0))
+ && TYPE_MODE (TREE_TYPE (lhs))
+ == TYPE_MODE (TREE_TYPE (op0)))
+ return op0;
+
+ return
+ fold_unary_ignore_overflow_loc (loc, subcode,
+ gimple_expr_type (stmt), op0);
+ }
+
+ case GIMPLE_BINARY_RHS:
+ {
+ /* Handle binary operators that can appear in GIMPLE form. */
+ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
+ tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
+
+ /* Translate &x + CST into an invariant form suitable for
+ further propagation. */
+ if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
+ && TREE_CODE (op0) == ADDR_EXPR
+ && TREE_CODE (op1) == INTEGER_CST)
+ {
+ tree off = fold_convert (ptr_type_node, op1);
+ return build_fold_addr_expr_loc
+ (loc,
+ fold_build2 (MEM_REF,
+ TREE_TYPE (TREE_TYPE (op0)),
+ unshare_expr (op0), off));
+ }
+
+ return fold_binary_loc (loc, subcode,
+ gimple_expr_type (stmt), op0, op1);
+ }
+
+ case GIMPLE_TERNARY_RHS:
+ {
+ /* Handle ternary operators that can appear in GIMPLE form. */
+ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
+ tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
+ tree op2 = (*valueize) (gimple_assign_rhs3 (stmt));
+
+ /* Fold embedded expressions in ternary codes. */
+ if ((subcode == COND_EXPR
+ || subcode == VEC_COND_EXPR)
+ && COMPARISON_CLASS_P (op0))
+ {
+ tree op00 = (*valueize) (TREE_OPERAND (op0, 0));
+ tree op01 = (*valueize) (TREE_OPERAND (op0, 1));
+ tree tem = fold_binary_loc (loc, TREE_CODE (op0),
+ TREE_TYPE (op0), op00, op01);
+ if (tem)
+ op0 = tem;
+ }
+
+ return fold_ternary_loc (loc, subcode,
+ gimple_expr_type (stmt), op0, op1, op2);
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ case GIMPLE_CALL:
+ {
+ tree fn;
+
+ if (gimple_call_internal_p (stmt))
+ {
+ enum tree_code subcode = ERROR_MARK;
+ switch (gimple_call_internal_fn (stmt))
+ {
+ case IFN_UBSAN_CHECK_ADD:
+ subcode = PLUS_EXPR;
+ break;
+ case IFN_UBSAN_CHECK_SUB:
+ subcode = MINUS_EXPR;
+ break;
+ case IFN_UBSAN_CHECK_MUL:
+ subcode = MULT_EXPR;
+ break;
+ default:
+ return NULL_TREE;
+ }
+ tree op0 = (*valueize) (gimple_call_arg (stmt, 0));
+ tree op1 = (*valueize) (gimple_call_arg (stmt, 1));
+
+ if (TREE_CODE (op0) != INTEGER_CST
+ || TREE_CODE (op1) != INTEGER_CST)
+ return NULL_TREE;
+ tree res = fold_binary_loc (loc, subcode,
+ TREE_TYPE (gimple_call_arg (stmt, 0)),
+ op0, op1);
+ if (res
+ && TREE_CODE (res) == INTEGER_CST
+ && !TREE_OVERFLOW (res))
+ return res;
+ return NULL_TREE;
+ }
+
+ fn = (*valueize) (gimple_call_fn (stmt));
+ if (TREE_CODE (fn) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
+ && DECL_BUILT_IN (TREE_OPERAND (fn, 0))
+ && gimple_builtin_call_types_compatible_p (stmt,
+ TREE_OPERAND (fn, 0)))
+ {
+ tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
+ tree call, retval;
+ unsigned i;
+ for (i = 0; i < gimple_call_num_args (stmt); ++i)
+ args[i] = (*valueize) (gimple_call_arg (stmt, i));
+ call = build_call_array_loc (loc,
+ gimple_call_return_type (stmt),
+ fn, gimple_call_num_args (stmt), args);
+ retval = fold_call_expr (EXPR_LOCATION (call), call, false);
+ if (retval)
+ {
+ /* fold_call_expr wraps the result inside a NOP_EXPR. */
+ STRIP_NOPS (retval);
+ retval = fold_convert (gimple_call_return_type (stmt), retval);
+ }
+ return retval;
+ }
+ return NULL_TREE;
+ }
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
+ Returns NULL_TREE if folding to a constant is not possible, otherwise
+ returns a constant according to is_gimple_min_invariant. */
+
+tree
+gimple_fold_stmt_to_constant (gimple stmt, tree (*valueize) (tree))
+{
+ tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize);
+ if (res && is_gimple_min_invariant (res))
+ return res;
+ return NULL_TREE;
+}
+
+
+/* The following set of functions are supposed to fold references using
+ their constant initializers. */
+
+static tree fold_ctor_reference (tree type, tree ctor,
+ unsigned HOST_WIDE_INT offset,
+ unsigned HOST_WIDE_INT size, tree);
+
+/* See if we can find constructor defining value of BASE.
+ When we know the consructor with constant offset (such as
+ base is array[40] and we do know constructor of array), then
+ BIT_OFFSET is adjusted accordingly.
+
+ As a special case, return error_mark_node when constructor
+ is not explicitly available, but it is known to be zero
+ such as 'static const int a;'. */
+static tree
+get_base_constructor (tree base, HOST_WIDE_INT *bit_offset,
+ tree (*valueize)(tree))
+{
+ HOST_WIDE_INT bit_offset2, size, max_size;
+ if (TREE_CODE (base) == MEM_REF)
+ {
+ if (!integer_zerop (TREE_OPERAND (base, 1)))
+ {
+ if (!tree_fits_shwi_p (TREE_OPERAND (base, 1)))
+ return NULL_TREE;
+ *bit_offset += (mem_ref_offset (base).low
+ * BITS_PER_UNIT);
+ }
+
+ if (valueize
+ && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
+ base = valueize (TREE_OPERAND (base, 0));
+ if (!base || TREE_CODE (base) != ADDR_EXPR)
+ return NULL_TREE;
+ base = TREE_OPERAND (base, 0);
+ }
+
+ /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
+ DECL_INITIAL. If BASE is a nested reference into another
+ ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
+ the inner reference. */
+ switch (TREE_CODE (base))
+ {
+ case VAR_DECL:
+ case CONST_DECL:
+ {
+ tree init = ctor_for_folding (base);
+
+ /* Our semantic is exact opposite of ctor_for_folding;
+ NULL means unknown, while error_mark_node is 0. */
+ if (init == error_mark_node)
+ return NULL_TREE;
+ if (!init)
+ return error_mark_node;
+ return init;
+ }
+
+ case ARRAY_REF:
+ case COMPONENT_REF:
+ base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
+ if (max_size == -1 || size != max_size)
+ return NULL_TREE;
+ *bit_offset += bit_offset2;
+ return get_base_constructor (base, bit_offset, valueize);
+
+ case STRING_CST:
+ case CONSTRUCTOR:
+ return base;
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+/* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE
+ to the memory at bit OFFSET.
+
+ We do only simple job of folding byte accesses. */
+
+static tree
+fold_string_cst_ctor_reference (tree type, tree ctor,
+ unsigned HOST_WIDE_INT offset,
+ unsigned HOST_WIDE_INT size)
+{
+ if (INTEGRAL_TYPE_P (type)
+ && (TYPE_MODE (type)
+ == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
+ && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
+ == MODE_INT)
+ && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
+ && size == BITS_PER_UNIT
+ && !(offset % BITS_PER_UNIT))
+ {
+ offset /= BITS_PER_UNIT;
+ if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
+ return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
+ [offset]));
+ /* Folding
+ const char a[20]="hello";
+ return a[10];
+
+ might lead to offset greater than string length. In this case we
+ know value is either initialized to 0 or out of bounds. Return 0
+ in both cases. */
+ return build_zero_cst (type);
+ }
+ return NULL_TREE;
+}
+
+/* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
+ SIZE to the memory at bit OFFSET. */
+
+static tree
+fold_array_ctor_reference (tree type, tree ctor,
+ unsigned HOST_WIDE_INT offset,
+ unsigned HOST_WIDE_INT size,
+ tree from_decl)
+{
+ unsigned HOST_WIDE_INT cnt;
+ tree cfield, cval;
+ double_int low_bound, elt_size;
+ double_int index, max_index;
+ double_int access_index;
+ tree domain_type = NULL_TREE, index_type = NULL_TREE;
+ HOST_WIDE_INT inner_offset;
+
+ /* Compute low bound and elt size. */
+ if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
+ domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
+ if (domain_type && TYPE_MIN_VALUE (domain_type))
+ {
+ /* Static constructors for variably sized objects makes no sense. */
+ gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
+ index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
+ low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type));
+ }
+ else
+ low_bound = double_int_zero;
+ /* Static constructors for variably sized objects makes no sense. */
+ gcc_assert (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
+ == INTEGER_CST);
+ elt_size =
+ tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
+
+
+ /* We can handle only constantly sized accesses that are known to not
+ be larger than size of array element. */
+ if (!TYPE_SIZE_UNIT (type)
+ || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
+ || elt_size.slt (tree_to_double_int (TYPE_SIZE_UNIT (type)))
+ || elt_size.is_zero ())
+ return NULL_TREE;
+
+ /* Compute the array index we look for. */
+ access_index = double_int::from_uhwi (offset / BITS_PER_UNIT)
+ .udiv (elt_size, TRUNC_DIV_EXPR);
+ access_index += low_bound;
+ if (index_type)
+ access_index = access_index.ext (TYPE_PRECISION (index_type),
+ TYPE_UNSIGNED (index_type));
+
+ /* And offset within the access. */
+ inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT);
+
+ /* See if the array field is large enough to span whole access. We do not
+ care to fold accesses spanning multiple array indexes. */
+ if (inner_offset + size > elt_size.to_uhwi () * BITS_PER_UNIT)
+ return NULL_TREE;
+
+ index = low_bound - double_int_one;
+ if (index_type)
+ index = index.ext (TYPE_PRECISION (index_type), TYPE_UNSIGNED (index_type));
+
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
+ {
+ /* Array constructor might explicitely set index, or specify range
+ or leave index NULL meaning that it is next index after previous
+ one. */
+ if (cfield)
+ {
+ if (TREE_CODE (cfield) == INTEGER_CST)
+ max_index = index = tree_to_double_int (cfield);
+ else
+ {
+ gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
+ index = tree_to_double_int (TREE_OPERAND (cfield, 0));
+ max_index = tree_to_double_int (TREE_OPERAND (cfield, 1));
+ }
+ }
+ else
+ {
+ index += double_int_one;
+ if (index_type)
+ index = index.ext (TYPE_PRECISION (index_type),
+ TYPE_UNSIGNED (index_type));
+ max_index = index;
+ }
+
+ /* Do we have match? */
+ if (access_index.cmp (index, 1) >= 0
+ && access_index.cmp (max_index, 1) <= 0)
+ return fold_ctor_reference (type, cval, inner_offset, size,
+ from_decl);
+ }
+ /* When memory is not explicitely mentioned in constructor,
+ it is 0 (or out of range). */
+ return build_zero_cst (type);
+}
+
+/* CTOR is CONSTRUCTOR of an aggregate or vector.
+ Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
+
+static tree
+fold_nonarray_ctor_reference (tree type, tree ctor,
+ unsigned HOST_WIDE_INT offset,
+ unsigned HOST_WIDE_INT size,
+ tree from_decl)
+{
+ unsigned HOST_WIDE_INT cnt;
+ tree cfield, cval;
+
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
+ cval)
+ {
+ tree byte_offset = DECL_FIELD_OFFSET (cfield);
+ tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
+ tree field_size = DECL_SIZE (cfield);
+ double_int bitoffset;
+ double_int byte_offset_cst = tree_to_double_int (byte_offset);
+ double_int bits_per_unit_cst = double_int::from_uhwi (BITS_PER_UNIT);
+ double_int bitoffset_end, access_end;
+
+ /* Variable sized objects in static constructors makes no sense,
+ but field_size can be NULL for flexible array members. */
+ gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
+ && TREE_CODE (byte_offset) == INTEGER_CST
+ && (field_size != NULL_TREE
+ ? TREE_CODE (field_size) == INTEGER_CST
+ : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
+
+ /* Compute bit offset of the field. */
+ bitoffset = tree_to_double_int (field_offset)
+ + byte_offset_cst * bits_per_unit_cst;
+ /* Compute bit offset where the field ends. */
+ if (field_size != NULL_TREE)
+ bitoffset_end = bitoffset + tree_to_double_int (field_size);
+ else
+ bitoffset_end = double_int_zero;
+
+ access_end = double_int::from_uhwi (offset)
+ + double_int::from_uhwi (size);
+
+ /* Is there any overlap between [OFFSET, OFFSET+SIZE) and
+ [BITOFFSET, BITOFFSET_END)? */
+ if (access_end.cmp (bitoffset, 0) > 0
+ && (field_size == NULL_TREE
+ || double_int::from_uhwi (offset).slt (bitoffset_end)))
+ {
+ double_int inner_offset = double_int::from_uhwi (offset) - bitoffset;
+ /* We do have overlap. Now see if field is large enough to
+ cover the access. Give up for accesses spanning multiple
+ fields. */
+ if (access_end.cmp (bitoffset_end, 0) > 0)
+ return NULL_TREE;
+ if (double_int::from_uhwi (offset).slt (bitoffset))
+ return NULL_TREE;
+ return fold_ctor_reference (type, cval,
+ inner_offset.to_uhwi (), size,
+ from_decl);
+ }
+ }
+ /* When memory is not explicitely mentioned in constructor, it is 0. */
+ return build_zero_cst (type);
+}
+
+/* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
+ to the memory at bit OFFSET. */
+
+static tree
+fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
+ unsigned HOST_WIDE_INT size, tree from_decl)
+{
+ tree ret;
+
+ /* We found the field with exact match. */
+ if (useless_type_conversion_p (type, TREE_TYPE (ctor))
+ && !offset)
+ return canonicalize_constructor_val (unshare_expr (ctor), from_decl);
+
+ /* We are at the end of walk, see if we can view convert the
+ result. */
+ if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
+ /* VIEW_CONVERT_EXPR is defined only for matching sizes. */
+ && operand_equal_p (TYPE_SIZE (type),
+ TYPE_SIZE (TREE_TYPE (ctor)), 0))
+ {
+ ret = canonicalize_constructor_val (unshare_expr (ctor), from_decl);
+ ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
+ if (ret)
+ STRIP_NOPS (ret);
+ return ret;
+ }
+ if (TREE_CODE (ctor) == STRING_CST)
+ return fold_string_cst_ctor_reference (type, ctor, offset, size);
+ if (TREE_CODE (ctor) == CONSTRUCTOR)
+ {
+
+ if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE)
+ return fold_array_ctor_reference (type, ctor, offset, size,
+ from_decl);
+ else
+ return fold_nonarray_ctor_reference (type, ctor, offset, size,
+ from_decl);
+ }
+
+ return NULL_TREE;
+}
+
+/* Return the tree representing the element referenced by T if T is an
+ ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA
+ names using VALUEIZE. Return NULL_TREE otherwise. */
+
+tree
+fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
+{
+ tree ctor, idx, base;
+ HOST_WIDE_INT offset, size, max_size;
+ tree tem;
+
+ if (TREE_THIS_VOLATILE (t))
+ return NULL_TREE;
+
+ if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
+ return get_symbol_constant_value (t);
+
+ tem = fold_read_from_constant_string (t);
+ if (tem)
+ return tem;
+
+ switch (TREE_CODE (t))
+ {
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ /* Constant indexes are handled well by get_base_constructor.
+ Only special case variable offsets.
+ FIXME: This code can't handle nested references with variable indexes
+ (they will be handled only by iteration of ccp). Perhaps we can bring
+ get_ref_base_and_extent here and make it use a valueize callback. */
+ if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
+ && valueize
+ && (idx = (*valueize) (TREE_OPERAND (t, 1)))
+ && TREE_CODE (idx) == INTEGER_CST)
+ {
+ tree low_bound, unit_size;
+ double_int doffset;
+
+ /* If the resulting bit-offset is constant, track it. */
+ if ((low_bound = array_ref_low_bound (t),
+ TREE_CODE (low_bound) == INTEGER_CST)
+ && (unit_size = array_ref_element_size (t),
+ tree_fits_uhwi_p (unit_size))
+ && (doffset = (TREE_INT_CST (idx) - TREE_INT_CST (low_bound))
+ .sext (TYPE_PRECISION (TREE_TYPE (idx))),
+ doffset.fits_shwi ()))
+ {
+ offset = doffset.to_shwi ();
+ offset *= tree_to_uhwi (unit_size);
+ offset *= BITS_PER_UNIT;
+
+ base = TREE_OPERAND (t, 0);
+ ctor = get_base_constructor (base, &offset, valueize);
+ /* Empty constructor. Always fold to 0. */
+ if (ctor == error_mark_node)
+ return build_zero_cst (TREE_TYPE (t));
+ /* Out of bound array access. Value is undefined,
+ but don't fold. */
+ if (offset < 0)
+ return NULL_TREE;
+ /* We can not determine ctor. */
+ if (!ctor)
+ return NULL_TREE;
+ return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
+ tree_to_uhwi (unit_size)
+ * BITS_PER_UNIT,
+ base);
+ }
+ }
+ /* Fallthru. */
+
+ case COMPONENT_REF:
+ case BIT_FIELD_REF:
+ case TARGET_MEM_REF:
+ case MEM_REF:
+ base = get_ref_base_and_extent (t, &offset, &size, &max_size);
+ ctor = get_base_constructor (base, &offset, valueize);
+
+ /* Empty constructor. Always fold to 0. */
+ if (ctor == error_mark_node)
+ return build_zero_cst (TREE_TYPE (t));
+ /* We do not know precise address. */
+ if (max_size == -1 || max_size != size)
+ return NULL_TREE;
+ /* We can not determine ctor. */
+ if (!ctor)
+ return NULL_TREE;
+
+ /* Out of bound array access. Value is undefined, but don't fold. */
+ if (offset < 0)
+ return NULL_TREE;
+
+ return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size,
+ base);
+
+ case REALPART_EXPR:
+ case IMAGPART_EXPR:
+ {
+ tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize);
+ if (c && TREE_CODE (c) == COMPLEX_CST)
+ return fold_build1_loc (EXPR_LOCATION (t),
+ TREE_CODE (t), TREE_TYPE (t), c);
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return NULL_TREE;
+}
+
+tree
+fold_const_aggregate_ref (tree t)
+{
+ return fold_const_aggregate_ref_1 (t, NULL);
+}
+
+/* Lookup virtual method with index TOKEN in a virtual table V
+ at OFFSET.
+ Set CAN_REFER if non-NULL to false if method
+ is not referable or if the virtual table is ill-formed (such as rewriten
+ by non-C++ produced symbol). Otherwise just return NULL in that calse. */
+
+tree
+gimple_get_virt_method_for_vtable (HOST_WIDE_INT token,
+ tree v,
+ unsigned HOST_WIDE_INT offset,
+ bool *can_refer)
+{
+ tree vtable = v, init, fn;
+ unsigned HOST_WIDE_INT size;
+ unsigned HOST_WIDE_INT elt_size, access_index;
+ tree domain_type;
+
+ if (can_refer)
+ *can_refer = true;
+
+ /* First of all double check we have virtual table. */
+ if (TREE_CODE (v) != VAR_DECL
+ || !DECL_VIRTUAL_P (v))
+ {
+ gcc_assert (in_lto_p);
+ /* Pass down that we lost track of the target. */
+ if (can_refer)
+ *can_refer = false;
+ return NULL_TREE;
+ }
+
+ init = ctor_for_folding (v);
+
+ /* The virtual tables should always be born with constructors
+ and we always should assume that they are avaialble for
+ folding. At the moment we do not stream them in all cases,
+ but it should never happen that ctor seem unreachable. */
+ gcc_assert (init);
+ if (init == error_mark_node)
+ {
+ gcc_assert (in_lto_p);
+ /* Pass down that we lost track of the target. */
+ if (can_refer)
+ *can_refer = false;
+ return NULL_TREE;
+ }
+ gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE);
+ size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v))));
+ offset *= BITS_PER_UNIT;
+ offset += token * size;
+
+ /* Lookup the value in the constructor that is assumed to be array.
+ This is equivalent to
+ fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), init,
+ offset, size, NULL);
+ but in a constant time. We expect that frontend produced a simple
+ array without indexed initializers. */
+
+ gcc_checking_assert (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE);
+ domain_type = TYPE_DOMAIN (TREE_TYPE (init));
+ gcc_checking_assert (integer_zerop (TYPE_MIN_VALUE (domain_type)));
+ elt_size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (init))));
+
+ access_index = offset / BITS_PER_UNIT / elt_size;
+ gcc_checking_assert (offset % (elt_size * BITS_PER_UNIT) == 0);
+
+ /* This code makes an assumption that there are no
+ indexed fileds produced by C++ FE, so we can directly index the array. */
+ if (access_index < CONSTRUCTOR_NELTS (init))
+ {
+ fn = CONSTRUCTOR_ELT (init, access_index)->value;
+ gcc_checking_assert (!CONSTRUCTOR_ELT (init, access_index)->index);
+ STRIP_NOPS (fn);
+ }
+ else
+ fn = NULL;
+
+ /* For type inconsistent program we may end up looking up virtual method
+ in virtual table that does not contain TOKEN entries. We may overrun
+ the virtual table and pick up a constant or RTTI info pointer.
+ In any case the call is undefined. */
+ if (!fn
+ || (TREE_CODE (fn) != ADDR_EXPR && TREE_CODE (fn) != FDESC_EXPR)
+ || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
+ fn = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
+ else
+ {
+ fn = TREE_OPERAND (fn, 0);
+
+ /* When cgraph node is missing and function is not public, we cannot
+ devirtualize. This can happen in WHOPR when the actual method
+ ends up in other partition, because we found devirtualization
+ possibility too late. */
+ if (!can_refer_decl_in_current_unit_p (fn, vtable))
+ {
+ if (can_refer)
+ {
+ *can_refer = false;
+ return fn;
+ }
+ return NULL_TREE;
+ }
+ }
+
+ /* Make sure we create a cgraph node for functions we'll reference.
+ They can be non-existent if the reference comes from an entry
+ of an external vtable for example. */
+ cgraph_get_create_node (fn);
+
+ return fn;
+}
+
+/* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
+ is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
+ KNOWN_BINFO carries the binfo describing the true type of
+ OBJ_TYPE_REF_OBJECT(REF).
+ Set CAN_REFER if non-NULL to false if method
+ is not referable or if the virtual table is ill-formed (such as rewriten
+ by non-C++ produced symbol). Otherwise just return NULL in that calse. */
+
+tree
+gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo,
+ bool *can_refer)
+{
+ unsigned HOST_WIDE_INT offset;
+ tree v;
+
+ v = BINFO_VTABLE (known_binfo);
+ /* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */
+ if (!v)
+ return NULL_TREE;
+
+ if (!vtable_pointer_value_to_vtable (v, &v, &offset))
+ {
+ if (can_refer)
+ *can_refer = false;
+ return NULL_TREE;
+ }
+ return gimple_get_virt_method_for_vtable (token, v, offset, can_refer);
+}
+
+/* Return true iff VAL is a gimple expression that is known to be
+ non-negative. Restricted to floating-point inputs. */
+
+bool
+gimple_val_nonnegative_real_p (tree val)
+{
+ gimple def_stmt;
+
+ gcc_assert (val && SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)));
+
+ /* Use existing logic for non-gimple trees. */
+ if (tree_expr_nonnegative_p (val))
+ return true;
+
+ if (TREE_CODE (val) != SSA_NAME)
+ return false;
+
+ /* Currently we look only at the immediately defining statement
+ to make this determination, since recursion on defining
+ statements of operands can lead to quadratic behavior in the
+ worst case. This is expected to catch almost all occurrences
+ in practice. It would be possible to implement limited-depth
+ recursion if important cases are lost. Alternatively, passes
+ that need this information (such as the pow/powi lowering code
+ in the cse_sincos pass) could be revised to provide it through
+ dataflow propagation. */
+
+ def_stmt = SSA_NAME_DEF_STMT (val);
+
+ if (is_gimple_assign (def_stmt))
+ {
+ tree op0, op1;
+
+ /* See fold-const.c:tree_expr_nonnegative_p for additional
+ cases that could be handled with recursion. */
+
+ switch (gimple_assign_rhs_code (def_stmt))
+ {
+ case ABS_EXPR:
+ /* Always true for floating-point operands. */
+ return true;
+
+ case MULT_EXPR:
+ /* True if the two operands are identical (since we are
+ restricted to floating-point inputs). */
+ op0 = gimple_assign_rhs1 (def_stmt);
+ op1 = gimple_assign_rhs2 (def_stmt);
+
+ if (op0 == op1
+ || operand_equal_p (op0, op1, 0))
+ return true;
+
+ default:
+ return false;
+ }
+ }
+ else if (is_gimple_call (def_stmt))
+ {
+ tree fndecl = gimple_call_fndecl (def_stmt);
+ if (fndecl
+ && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
+ {
+ tree arg1;
+
+ switch (DECL_FUNCTION_CODE (fndecl))
+ {
+ CASE_FLT_FN (BUILT_IN_ACOS):
+ CASE_FLT_FN (BUILT_IN_ACOSH):
+ CASE_FLT_FN (BUILT_IN_CABS):
+ CASE_FLT_FN (BUILT_IN_COSH):
+ CASE_FLT_FN (BUILT_IN_ERFC):
+ CASE_FLT_FN (BUILT_IN_EXP):
+ CASE_FLT_FN (BUILT_IN_EXP10):
+ CASE_FLT_FN (BUILT_IN_EXP2):
+ CASE_FLT_FN (BUILT_IN_FABS):
+ CASE_FLT_FN (BUILT_IN_FDIM):
+ CASE_FLT_FN (BUILT_IN_HYPOT):
+ CASE_FLT_FN (BUILT_IN_POW10):
+ return true;
+
+ CASE_FLT_FN (BUILT_IN_SQRT):
+ /* sqrt(-0.0) is -0.0, and sqrt is not defined over other
+ nonnegative inputs. */
+ if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (val))))
+ return true;
+
+ break;
+
+ CASE_FLT_FN (BUILT_IN_POWI):
+ /* True if the second argument is an even integer. */
+ arg1 = gimple_call_arg (def_stmt, 1);
+
+ if (TREE_CODE (arg1) == INTEGER_CST
+ && (TREE_INT_CST_LOW (arg1) & 1) == 0)
+ return true;
+
+ break;
+
+ CASE_FLT_FN (BUILT_IN_POW):
+ /* True if the second argument is an even integer-valued
+ real. */
+ arg1 = gimple_call_arg (def_stmt, 1);
+
+ if (TREE_CODE (arg1) == REAL_CST)
+ {
+ REAL_VALUE_TYPE c;
+ HOST_WIDE_INT n;
+
+ c = TREE_REAL_CST (arg1);
+ n = real_to_integer (&c);
+
+ if ((n & 1) == 0)
+ {
+ REAL_VALUE_TYPE cint;
+ real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
+ if (real_identical (&c, &cint))
+ return true;
+ }
+ }
+
+ break;
+
+ default:
+ return false;
+ }
+ }
+ }
+
+ return false;
+}
+
+/* Given a pointer value OP0, return a simplified version of an
+ indirection through OP0, or NULL_TREE if no simplification is
+ possible. Note that the resulting type may be different from
+ the type pointed to in the sense that it is still compatible
+ from the langhooks point of view. */
+
+tree
+gimple_fold_indirect_ref (tree t)
+{
+ tree ptype = TREE_TYPE (t), type = TREE_TYPE (ptype);
+ tree sub = t;
+ tree subtype;
+
+ STRIP_NOPS (sub);
+ subtype = TREE_TYPE (sub);
+ if (!POINTER_TYPE_P (subtype))
+ return NULL_TREE;
+
+ if (TREE_CODE (sub) == ADDR_EXPR)
+ {
+ tree op = TREE_OPERAND (sub, 0);
+ tree optype = TREE_TYPE (op);
+ /* *&p => p */
+ if (useless_type_conversion_p (type, optype))
+ return op;
+
+ /* *(foo *)&fooarray => fooarray[0] */
+ if (TREE_CODE (optype) == ARRAY_TYPE
+ && TREE_CODE (TYPE_SIZE (TREE_TYPE (optype))) == INTEGER_CST
+ && useless_type_conversion_p (type, TREE_TYPE (optype)))
+ {
+ tree type_domain = TYPE_DOMAIN (optype);
+ tree min_val = size_zero_node;
+ if (type_domain && TYPE_MIN_VALUE (type_domain))
+ min_val = TYPE_MIN_VALUE (type_domain);
+ if (TREE_CODE (min_val) == INTEGER_CST)
+ return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
+ }
+ /* *(foo *)&complexfoo => __real__ complexfoo */
+ else if (TREE_CODE (optype) == COMPLEX_TYPE
+ && useless_type_conversion_p (type, TREE_TYPE (optype)))
+ return fold_build1 (REALPART_EXPR, type, op);
+ /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
+ else if (TREE_CODE (optype) == VECTOR_TYPE
+ && useless_type_conversion_p (type, TREE_TYPE (optype)))
+ {
+ tree part_width = TYPE_SIZE (type);
+ tree index = bitsize_int (0);
+ return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
+ }
+ }
+
+ /* *(p + CST) -> ... */
+ if (TREE_CODE (sub) == POINTER_PLUS_EXPR
+ && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
+ {
+ tree addr = TREE_OPERAND (sub, 0);
+ tree off = TREE_OPERAND (sub, 1);
+ tree addrtype;
+
+ STRIP_NOPS (addr);
+ addrtype = TREE_TYPE (addr);
+
+ /* ((foo*)&vectorfoo)[1] -> BIT_FIELD_REF<vectorfoo,...> */
+ if (TREE_CODE (addr) == ADDR_EXPR
+ && TREE_CODE (TREE_TYPE (addrtype)) == VECTOR_TYPE
+ && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype)))
+ && tree_fits_uhwi_p (off))
+ {
+ unsigned HOST_WIDE_INT offset = tree_to_uhwi (off);
+ tree part_width = TYPE_SIZE (type);
+ unsigned HOST_WIDE_INT part_widthi
+ = tree_to_shwi (part_width) / BITS_PER_UNIT;
+ unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
+ tree index = bitsize_int (indexi);
+ if (offset / part_widthi
+ < TYPE_VECTOR_SUBPARTS (TREE_TYPE (addrtype)))
+ return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (addr, 0),
+ part_width, index);
+ }
+
+ /* ((foo*)&complexfoo)[1] -> __imag__ complexfoo */
+ if (TREE_CODE (addr) == ADDR_EXPR
+ && TREE_CODE (TREE_TYPE (addrtype)) == COMPLEX_TYPE
+ && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype))))
+ {
+ tree size = TYPE_SIZE_UNIT (type);
+ if (tree_int_cst_equal (size, off))
+ return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (addr, 0));
+ }
+
+ /* *(p + CST) -> MEM_REF <p, CST>. */
+ if (TREE_CODE (addr) != ADDR_EXPR
+ || DECL_P (TREE_OPERAND (addr, 0)))
+ return fold_build2 (MEM_REF, type,
+ addr,
+ build_int_cst_wide (ptype,
+ TREE_INT_CST_LOW (off),
+ TREE_INT_CST_HIGH (off)));
+ }
+
+ /* *(foo *)fooarrptr => (*fooarrptr)[0] */
+ if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
+ && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (subtype)))) == INTEGER_CST
+ && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (subtype))))
+ {
+ tree type_domain;
+ tree min_val = size_zero_node;
+ tree osub = sub;
+ sub = gimple_fold_indirect_ref (sub);
+ if (! sub)
+ sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub);
+ type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
+ if (type_domain && TYPE_MIN_VALUE (type_domain))
+ min_val = TYPE_MIN_VALUE (type_domain);
+ if (TREE_CODE (min_val) == INTEGER_CST)
+ return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
+ }
+
+ return NULL_TREE;
+}
+
+/* Return true if CODE is an operation that when operating on signed
+ integer types involves undefined behavior on overflow and the
+ operation can be expressed with unsigned arithmetic. */
+
+bool
+arith_code_with_undefined_signed_overflow (tree_code code)
+{
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ case NEGATE_EXPR:
+ case POINTER_PLUS_EXPR:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Rewrite STMT, an assignment with a signed integer or pointer arithmetic
+ operation that can be transformed to unsigned arithmetic by converting
+ its operand, carrying out the operation in the corresponding unsigned
+ type and converting the result back to the original type.
+
+ Returns a sequence of statements that replace STMT and also contain
+ a modified form of STMT itself. */
+
+gimple_seq
+rewrite_to_defined_overflow (gimple stmt)
+{
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "rewriting stmt with undefined signed "
+ "overflow ");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ }
+
+ tree lhs = gimple_assign_lhs (stmt);
+ tree type = unsigned_type_for (TREE_TYPE (lhs));
+ gimple_seq stmts = NULL;
+ for (unsigned i = 1; i < gimple_num_ops (stmt); ++i)
+ {
+ gimple_seq stmts2 = NULL;
+ gimple_set_op (stmt, i,
+ force_gimple_operand (fold_convert (type,
+ gimple_op (stmt, i)),
+ &stmts2, true, NULL_TREE));
+ gimple_seq_add_seq (&stmts, stmts2);
+ }
+ gimple_assign_set_lhs (stmt, make_ssa_name (type, stmt));
+ if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
+ gimple_assign_set_rhs_code (stmt, PLUS_EXPR);
+ gimple_seq_add_stmt (&stmts, stmt);
+ gimple cvt = gimple_build_assign_with_ops
+ (NOP_EXPR, lhs, gimple_assign_lhs (stmt), NULL_TREE);
+ gimple_seq_add_stmt (&stmts, cvt);
+
+ return stmts;
+}