aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/gimple-expr.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/gimple-expr.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/gimple-expr.c')
-rw-r--r--gcc-4.9/gcc/gimple-expr.c884
1 files changed, 884 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/gimple-expr.c b/gcc-4.9/gcc/gimple-expr.c
new file mode 100644
index 000000000..2c4da474e
--- /dev/null
+++ b/gcc-4.9/gcc/gimple-expr.c
@@ -0,0 +1,884 @@
+/* Gimple decl, type, and expression support functions.
+
+ Copyright (C) 2007-2014 Free Software Foundation, Inc.
+ Contributed by Aldy Hernandez <aldyh@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "pointer-set.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "stringpool.h"
+#include "gimplify.h"
+#include "stor-layout.h"
+#include "demangle.h"
+#include "gimple-ssa.h"
+
+/* ----- Type related ----- */
+
+/* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
+ useless type conversion, otherwise return false.
+
+ This function implicitly defines the middle-end type system. With
+ the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
+ holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
+ the following invariants shall be fulfilled:
+
+ 1) useless_type_conversion_p is transitive.
+ If a < b and b < c then a < c.
+
+ 2) useless_type_conversion_p is not symmetric.
+ From a < b does not follow a > b.
+
+ 3) Types define the available set of operations applicable to values.
+ A type conversion is useless if the operations for the target type
+ is a subset of the operations for the source type. For example
+ casts to void* are useless, casts from void* are not (void* can't
+ be dereferenced or offsetted, but copied, hence its set of operations
+ is a strict subset of that of all other data pointer types). Casts
+ to const T* are useless (can't be written to), casts from const T*
+ to T* are not. */
+
+bool
+useless_type_conversion_p (tree outer_type, tree inner_type)
+{
+ /* Do the following before stripping toplevel qualifiers. */
+ if (POINTER_TYPE_P (inner_type)
+ && POINTER_TYPE_P (outer_type))
+ {
+ /* Do not lose casts between pointers to different address spaces. */
+ if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
+ != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
+ return false;
+ }
+
+ /* From now on qualifiers on value types do not matter. */
+ inner_type = TYPE_MAIN_VARIANT (inner_type);
+ outer_type = TYPE_MAIN_VARIANT (outer_type);
+
+ if (inner_type == outer_type)
+ return true;
+
+ /* If we know the canonical types, compare them. */
+ if (TYPE_CANONICAL (inner_type)
+ && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
+ return true;
+
+ /* Changes in machine mode are never useless conversions unless we
+ deal with aggregate types in which case we defer to later checks. */
+ if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
+ && !AGGREGATE_TYPE_P (inner_type))
+ return false;
+
+ /* If both the inner and outer types are integral types, then the
+ conversion is not necessary if they have the same mode and
+ signedness and precision, and both or neither are boolean. */
+ if (INTEGRAL_TYPE_P (inner_type)
+ && INTEGRAL_TYPE_P (outer_type))
+ {
+ /* Preserve changes in signedness or precision. */
+ if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
+ || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
+ return false;
+
+ /* Preserve conversions to/from BOOLEAN_TYPE if types are not
+ of precision one. */
+ if (((TREE_CODE (inner_type) == BOOLEAN_TYPE)
+ != (TREE_CODE (outer_type) == BOOLEAN_TYPE))
+ && TYPE_PRECISION (outer_type) != 1)
+ return false;
+
+ /* We don't need to preserve changes in the types minimum or
+ maximum value in general as these do not generate code
+ unless the types precisions are different. */
+ return true;
+ }
+
+ /* Scalar floating point types with the same mode are compatible. */
+ else if (SCALAR_FLOAT_TYPE_P (inner_type)
+ && SCALAR_FLOAT_TYPE_P (outer_type))
+ return true;
+
+ /* Fixed point types with the same mode are compatible. */
+ else if (FIXED_POINT_TYPE_P (inner_type)
+ && FIXED_POINT_TYPE_P (outer_type))
+ return true;
+
+ /* We need to take special care recursing to pointed-to types. */
+ else if (POINTER_TYPE_P (inner_type)
+ && POINTER_TYPE_P (outer_type))
+ {
+ /* Do not lose casts to function pointer types. */
+ if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
+ || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
+ && !(TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE
+ || TREE_CODE (TREE_TYPE (inner_type)) == METHOD_TYPE))
+ return false;
+
+ /* We do not care for const qualification of the pointed-to types
+ as const qualification has no semantic value to the middle-end. */
+
+ /* Otherwise pointers/references are equivalent. */
+ return true;
+ }
+
+ /* Recurse for complex types. */
+ else if (TREE_CODE (inner_type) == COMPLEX_TYPE
+ && TREE_CODE (outer_type) == COMPLEX_TYPE)
+ return useless_type_conversion_p (TREE_TYPE (outer_type),
+ TREE_TYPE (inner_type));
+
+ /* Recurse for vector types with the same number of subparts. */
+ else if (TREE_CODE (inner_type) == VECTOR_TYPE
+ && TREE_CODE (outer_type) == VECTOR_TYPE
+ && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
+ return useless_type_conversion_p (TREE_TYPE (outer_type),
+ TREE_TYPE (inner_type));
+
+ else if (TREE_CODE (inner_type) == ARRAY_TYPE
+ && TREE_CODE (outer_type) == ARRAY_TYPE)
+ {
+ /* Preserve string attributes. */
+ if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
+ return false;
+
+ /* Conversions from array types with unknown extent to
+ array types with known extent are not useless. */
+ if (!TYPE_DOMAIN (inner_type)
+ && TYPE_DOMAIN (outer_type))
+ return false;
+
+ /* Nor are conversions from array types with non-constant size to
+ array types with constant size or to different size. */
+ if (TYPE_SIZE (outer_type)
+ && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
+ && (!TYPE_SIZE (inner_type)
+ || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
+ || !tree_int_cst_equal (TYPE_SIZE (outer_type),
+ TYPE_SIZE (inner_type))))
+ return false;
+
+ /* Check conversions between arrays with partially known extents.
+ If the array min/max values are constant they have to match.
+ Otherwise allow conversions to unknown and variable extents.
+ In particular this declares conversions that may change the
+ mode to BLKmode as useless. */
+ if (TYPE_DOMAIN (inner_type)
+ && TYPE_DOMAIN (outer_type)
+ && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
+ {
+ tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
+ tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
+ tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
+ tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
+
+ /* After gimplification a variable min/max value carries no
+ additional information compared to a NULL value. All that
+ matters has been lowered to be part of the IL. */
+ if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
+ inner_min = NULL_TREE;
+ if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
+ outer_min = NULL_TREE;
+ if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
+ inner_max = NULL_TREE;
+ if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
+ outer_max = NULL_TREE;
+
+ /* Conversions NULL / variable <- cst are useless, but not
+ the other way around. */
+ if (outer_min
+ && (!inner_min
+ || !tree_int_cst_equal (inner_min, outer_min)))
+ return false;
+ if (outer_max
+ && (!inner_max
+ || !tree_int_cst_equal (inner_max, outer_max)))
+ return false;
+ }
+
+ /* Recurse on the element check. */
+ return useless_type_conversion_p (TREE_TYPE (outer_type),
+ TREE_TYPE (inner_type));
+ }
+
+ else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
+ || TREE_CODE (inner_type) == METHOD_TYPE)
+ && TREE_CODE (inner_type) == TREE_CODE (outer_type))
+ {
+ tree outer_parm, inner_parm;
+
+ /* If the return types are not compatible bail out. */
+ if (!useless_type_conversion_p (TREE_TYPE (outer_type),
+ TREE_TYPE (inner_type)))
+ return false;
+
+ /* Method types should belong to a compatible base class. */
+ if (TREE_CODE (inner_type) == METHOD_TYPE
+ && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
+ TYPE_METHOD_BASETYPE (inner_type)))
+ return false;
+
+ /* A conversion to an unprototyped argument list is ok. */
+ if (!prototype_p (outer_type))
+ return true;
+
+ /* If the unqualified argument types are compatible the conversion
+ is useless. */
+ if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
+ return true;
+
+ for (outer_parm = TYPE_ARG_TYPES (outer_type),
+ inner_parm = TYPE_ARG_TYPES (inner_type);
+ outer_parm && inner_parm;
+ outer_parm = TREE_CHAIN (outer_parm),
+ inner_parm = TREE_CHAIN (inner_parm))
+ if (!useless_type_conversion_p
+ (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
+ TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
+ return false;
+
+ /* If there is a mismatch in the number of arguments the functions
+ are not compatible. */
+ if (outer_parm || inner_parm)
+ return false;
+
+ /* Defer to the target if necessary. */
+ if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
+ return comp_type_attributes (outer_type, inner_type) != 0;
+
+ return true;
+ }
+
+ /* For aggregates we rely on TYPE_CANONICAL exclusively and require
+ explicit conversions for types involving to be structurally
+ compared types. */
+ else if (AGGREGATE_TYPE_P (inner_type)
+ && TREE_CODE (inner_type) == TREE_CODE (outer_type))
+ return false;
+
+ return false;
+}
+
+
+/* ----- Decl related ----- */
+
+/* Set sequence SEQ to be the GIMPLE body for function FN. */
+
+void
+gimple_set_body (tree fndecl, gimple_seq seq)
+{
+ struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
+ if (fn == NULL)
+ {
+ /* If FNDECL still does not have a function structure associated
+ with it, then it does not make sense for it to receive a
+ GIMPLE body. */
+ gcc_assert (seq == NULL);
+ }
+ else
+ fn->gimple_body = seq;
+}
+
+
+/* Return the body of GIMPLE statements for function FN. After the
+ CFG pass, the function body doesn't exist anymore because it has
+ been split up into basic blocks. In this case, it returns
+ NULL. */
+
+gimple_seq
+gimple_body (tree fndecl)
+{
+ struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
+ return fn ? fn->gimple_body : NULL;
+}
+
+/* Return true when FNDECL has Gimple body either in unlowered
+ or CFG form. */
+bool
+gimple_has_body_p (tree fndecl)
+{
+ struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
+ return (gimple_body (fndecl) || (fn && fn->cfg));
+}
+
+/* Return a printable name for symbol DECL. */
+
+const char *
+gimple_decl_printable_name (tree decl, int verbosity)
+{
+ if (!DECL_NAME (decl))
+ return NULL;
+
+ if (DECL_ASSEMBLER_NAME_SET_P (decl))
+ {
+ const char *str, *mangled_str;
+ int dmgl_opts = DMGL_NO_OPTS;
+
+ if (verbosity >= 2)
+ {
+ dmgl_opts = DMGL_VERBOSE
+ | DMGL_ANSI
+ | DMGL_GNU_V3
+ | DMGL_RET_POSTFIX;
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ dmgl_opts |= DMGL_PARAMS;
+ }
+
+ mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
+ str = cplus_demangle_v3 (mangled_str, dmgl_opts);
+ return (str) ? str : mangled_str;
+ }
+
+ return IDENTIFIER_POINTER (DECL_NAME (decl));
+}
+
+
+/* Create a new VAR_DECL and copy information from VAR to it. */
+
+tree
+copy_var_decl (tree var, tree name, tree type)
+{
+ tree copy = build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, name, type);
+
+ TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
+ TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var);
+ DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (var);
+ DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
+ DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
+ DECL_CONTEXT (copy) = DECL_CONTEXT (var);
+ TREE_NO_WARNING (copy) = TREE_NO_WARNING (var);
+ TREE_USED (copy) = 1;
+ DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
+ DECL_ATTRIBUTES (copy) = DECL_ATTRIBUTES (var);
+
+ return copy;
+}
+
+/* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
+ coalescing together, false otherwise.
+
+ This must stay consistent with var_map_base_init in tree-ssa-live.c. */
+
+bool
+gimple_can_coalesce_p (tree name1, tree name2)
+{
+ /* First check the SSA_NAME's associated DECL. We only want to
+ coalesce if they have the same DECL or both have no associated DECL. */
+ tree var1 = SSA_NAME_VAR (name1);
+ tree var2 = SSA_NAME_VAR (name2);
+ var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
+ var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
+ if (var1 != var2)
+ return false;
+
+ /* Now check the types. If the types are the same, then we should
+ try to coalesce V1 and V2. */
+ tree t1 = TREE_TYPE (name1);
+ tree t2 = TREE_TYPE (name2);
+ if (t1 == t2)
+ return true;
+
+ /* If the types are not the same, check for a canonical type match. This
+ (for example) allows coalescing when the types are fundamentally the
+ same, but just have different names.
+
+ Note pointer types with different address spaces may have the same
+ canonical type. Those are rejected for coalescing by the
+ types_compatible_p check. */
+ if (TYPE_CANONICAL (t1)
+ && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)
+ && types_compatible_p (t1, t2))
+ return true;
+
+ return false;
+}
+
+/* Strip off a legitimate source ending from the input string NAME of
+ length LEN. Rather than having to know the names used by all of
+ our front ends, we strip off an ending of a period followed by
+ up to five characters. (Java uses ".class".) */
+
+static inline void
+remove_suffix (char *name, int len)
+{
+ int i;
+
+ for (i = 2; i < 8 && len > i; i++)
+ {
+ if (name[len - i] == '.')
+ {
+ name[len - i] = '\0';
+ break;
+ }
+ }
+}
+
+/* Create a new temporary name with PREFIX. Return an identifier. */
+
+static GTY(()) unsigned int tmp_var_id_num;
+
+tree
+create_tmp_var_name (const char *prefix)
+{
+ char *tmp_name;
+
+ if (prefix)
+ {
+ char *preftmp = ASTRDUP (prefix);
+
+ remove_suffix (preftmp, strlen (preftmp));
+ clean_symbol_name (preftmp);
+
+ prefix = preftmp;
+ }
+
+ ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
+ return get_identifier (tmp_name);
+}
+
+/* Create a new temporary variable declaration of type TYPE.
+ Do NOT push it into the current binding. */
+
+tree
+create_tmp_var_raw (tree type, const char *prefix)
+{
+ tree tmp_var;
+
+ tmp_var = build_decl (input_location,
+ VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
+ type);
+
+ /* The variable was declared by the compiler. */
+ DECL_ARTIFICIAL (tmp_var) = 1;
+ /* And we don't want debug info for it. */
+ DECL_IGNORED_P (tmp_var) = 1;
+
+ /* Make the variable writable. */
+ TREE_READONLY (tmp_var) = 0;
+
+ DECL_EXTERNAL (tmp_var) = 0;
+ TREE_STATIC (tmp_var) = 0;
+ TREE_USED (tmp_var) = 1;
+
+ return tmp_var;
+}
+
+/* Create a new temporary variable declaration of type TYPE. DO push the
+ variable into the current binding. Further, assume that this is called
+ only from gimplification or optimization, at which point the creation of
+ certain types are bugs. */
+
+tree
+create_tmp_var (tree type, const char *prefix)
+{
+ tree tmp_var;
+
+ /* We don't allow types that are addressable (meaning we can't make copies),
+ or incomplete. We also used to reject every variable size objects here,
+ but now support those for which a constant upper bound can be obtained.
+ The processing for variable sizes is performed in gimple_add_tmp_var,
+ point at which it really matters and possibly reached via paths not going
+ through this function, e.g. after direct calls to create_tmp_var_raw. */
+ gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
+
+ tmp_var = create_tmp_var_raw (type, prefix);
+ gimple_add_tmp_var (tmp_var);
+ return tmp_var;
+}
+
+/* Create a new temporary variable declaration of type TYPE by calling
+ create_tmp_var and if TYPE is a vector or a complex number, mark the new
+ temporary as gimple register. */
+
+tree
+create_tmp_reg (tree type, const char *prefix)
+{
+ tree tmp;
+
+ tmp = create_tmp_var (type, prefix);
+ if (TREE_CODE (type) == COMPLEX_TYPE
+ || TREE_CODE (type) == VECTOR_TYPE)
+ DECL_GIMPLE_REG_P (tmp) = 1;
+
+ return tmp;
+}
+
+
+/* ----- Expression related ----- */
+
+/* Extract the operands and code for expression EXPR into *SUBCODE_P,
+ *OP1_P, *OP2_P and *OP3_P respectively. */
+
+void
+extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
+ tree *op2_p, tree *op3_p)
+{
+ enum gimple_rhs_class grhs_class;
+
+ *subcode_p = TREE_CODE (expr);
+ grhs_class = get_gimple_rhs_class (*subcode_p);
+
+ if (grhs_class == GIMPLE_TERNARY_RHS)
+ {
+ *op1_p = TREE_OPERAND (expr, 0);
+ *op2_p = TREE_OPERAND (expr, 1);
+ *op3_p = TREE_OPERAND (expr, 2);
+ }
+ else if (grhs_class == GIMPLE_BINARY_RHS)
+ {
+ *op1_p = TREE_OPERAND (expr, 0);
+ *op2_p = TREE_OPERAND (expr, 1);
+ *op3_p = NULL_TREE;
+ }
+ else if (grhs_class == GIMPLE_UNARY_RHS)
+ {
+ *op1_p = TREE_OPERAND (expr, 0);
+ *op2_p = NULL_TREE;
+ *op3_p = NULL_TREE;
+ }
+ else if (grhs_class == GIMPLE_SINGLE_RHS)
+ {
+ *op1_p = expr;
+ *op2_p = NULL_TREE;
+ *op3_p = NULL_TREE;
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
+
+void
+gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
+ tree *lhs_p, tree *rhs_p)
+{
+ gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
+ || TREE_CODE (cond) == TRUTH_NOT_EXPR
+ || is_gimple_min_invariant (cond)
+ || SSA_VAR_P (cond));
+
+ extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
+
+ /* Canonicalize conditionals of the form 'if (!VAL)'. */
+ if (*code_p == TRUTH_NOT_EXPR)
+ {
+ *code_p = EQ_EXPR;
+ gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
+ *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
+ }
+ /* Canonicalize conditionals of the form 'if (VAL)' */
+ else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
+ {
+ *code_p = NE_EXPR;
+ gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
+ *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
+ }
+}
+
+/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
+
+bool
+is_gimple_lvalue (tree t)
+{
+ return (is_gimple_addressable (t)
+ || TREE_CODE (t) == WITH_SIZE_EXPR
+ /* These are complex lvalues, but don't have addresses, so they
+ go here. */
+ || TREE_CODE (t) == BIT_FIELD_REF);
+}
+
+/* Return true if T is a GIMPLE condition. */
+
+bool
+is_gimple_condexpr (tree t)
+{
+ return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
+ && !tree_could_throw_p (t)
+ && is_gimple_val (TREE_OPERAND (t, 0))
+ && is_gimple_val (TREE_OPERAND (t, 1))));
+}
+
+/* Return true if T is a gimple address. */
+
+bool
+is_gimple_address (const_tree t)
+{
+ tree op;
+
+ if (TREE_CODE (t) != ADDR_EXPR)
+ return false;
+
+ op = TREE_OPERAND (t, 0);
+ while (handled_component_p (op))
+ {
+ if ((TREE_CODE (op) == ARRAY_REF
+ || TREE_CODE (op) == ARRAY_RANGE_REF)
+ && !is_gimple_val (TREE_OPERAND (op, 1)))
+ return false;
+
+ op = TREE_OPERAND (op, 0);
+ }
+
+ if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
+ return true;
+
+ switch (TREE_CODE (op))
+ {
+ case PARM_DECL:
+ case RESULT_DECL:
+ case LABEL_DECL:
+ case FUNCTION_DECL:
+ case VAR_DECL:
+ case CONST_DECL:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Return true if T is a gimple invariant address. */
+
+bool
+is_gimple_invariant_address (const_tree t)
+{
+ const_tree op;
+
+ if (TREE_CODE (t) != ADDR_EXPR)
+ return false;
+
+ op = strip_invariant_refs (TREE_OPERAND (t, 0));
+ if (!op)
+ return false;
+
+ if (TREE_CODE (op) == MEM_REF)
+ {
+ const_tree op0 = TREE_OPERAND (op, 0);
+ return (TREE_CODE (op0) == ADDR_EXPR
+ && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
+ || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
+ }
+
+ return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
+}
+
+/* Return true if T is a gimple invariant address at IPA level
+ (so addresses of variables on stack are not allowed). */
+
+bool
+is_gimple_ip_invariant_address (const_tree t)
+{
+ const_tree op;
+
+ if (TREE_CODE (t) != ADDR_EXPR)
+ return false;
+
+ op = strip_invariant_refs (TREE_OPERAND (t, 0));
+ if (!op)
+ return false;
+
+ if (TREE_CODE (op) == MEM_REF)
+ {
+ const_tree op0 = TREE_OPERAND (op, 0);
+ return (TREE_CODE (op0) == ADDR_EXPR
+ && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
+ || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
+ }
+
+ return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
+}
+
+/* Return true if T is a GIMPLE minimal invariant. It's a restricted
+ form of function invariant. */
+
+bool
+is_gimple_min_invariant (const_tree t)
+{
+ if (TREE_CODE (t) == ADDR_EXPR)
+ return is_gimple_invariant_address (t);
+
+ return is_gimple_constant (t);
+}
+
+/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
+ form of gimple minimal invariant. */
+
+bool
+is_gimple_ip_invariant (const_tree t)
+{
+ if (TREE_CODE (t) == ADDR_EXPR)
+ return is_gimple_ip_invariant_address (t);
+
+ return is_gimple_constant (t);
+}
+
+/* Return true if T is a non-aggregate register variable. */
+
+bool
+is_gimple_reg (tree t)
+{
+ if (virtual_operand_p (t))
+ return false;
+
+ if (TREE_CODE (t) == SSA_NAME)
+ return true;
+
+ if (!is_gimple_variable (t))
+ return false;
+
+ if (!is_gimple_reg_type (TREE_TYPE (t)))
+ return false;
+
+ /* A volatile decl is not acceptable because we can't reuse it as
+ needed. We need to copy it into a temp first. */
+ if (TREE_THIS_VOLATILE (t))
+ return false;
+
+ /* We define "registers" as things that can be renamed as needed,
+ which with our infrastructure does not apply to memory. */
+ if (needs_to_live_in_memory (t))
+ return false;
+
+ /* Hard register variables are an interesting case. For those that
+ are call-clobbered, we don't know where all the calls are, since
+ we don't (want to) take into account which operations will turn
+ into libcalls at the rtl level. For those that are call-saved,
+ we don't currently model the fact that calls may in fact change
+ global hard registers, nor do we examine ASM_CLOBBERS at the tree
+ level, and so miss variable changes that might imply. All around,
+ it seems safest to not do too much optimization with these at the
+ tree level at all. We'll have to rely on the rtl optimizers to
+ clean this up, as there we've got all the appropriate bits exposed. */
+ if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
+ return false;
+
+ /* Complex and vector values must have been put into SSA-like form.
+ That is, no assignments to the individual components. */
+ if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
+ || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
+ return DECL_GIMPLE_REG_P (t);
+
+ return true;
+}
+
+
+/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
+
+bool
+is_gimple_val (tree t)
+{
+ /* Make loads from volatiles and memory vars explicit. */
+ if (is_gimple_variable (t)
+ && is_gimple_reg_type (TREE_TYPE (t))
+ && !is_gimple_reg (t))
+ return false;
+
+ return (is_gimple_variable (t) || is_gimple_min_invariant (t));
+}
+
+/* Similarly, but accept hard registers as inputs to asm statements. */
+
+bool
+is_gimple_asm_val (tree t)
+{
+ if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
+ return true;
+
+ return is_gimple_val (t);
+}
+
+/* Return true if T is a GIMPLE minimal lvalue. */
+
+bool
+is_gimple_min_lval (tree t)
+{
+ if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
+ return false;
+ return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
+}
+
+/* Return true if T is a valid function operand of a CALL_EXPR. */
+
+bool
+is_gimple_call_addr (tree t)
+{
+ return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
+}
+
+/* Return true if T is a valid address operand of a MEM_REF. */
+
+bool
+is_gimple_mem_ref_addr (tree t)
+{
+ return (is_gimple_reg (t)
+ || TREE_CODE (t) == INTEGER_CST
+ || (TREE_CODE (t) == ADDR_EXPR
+ && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
+ || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
+}
+
+/* Mark X addressable. Unlike the langhook we expect X to be in gimple
+ form and we don't do any syntax checking. */
+
+void
+mark_addressable (tree x)
+{
+ while (handled_component_p (x))
+ x = TREE_OPERAND (x, 0);
+ if (TREE_CODE (x) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR)
+ x = TREE_OPERAND (TREE_OPERAND (x, 0), 0);
+ if (TREE_CODE (x) != VAR_DECL
+ && TREE_CODE (x) != PARM_DECL
+ && TREE_CODE (x) != RESULT_DECL)
+ return;
+ TREE_ADDRESSABLE (x) = 1;
+
+ /* Also mark the artificial SSA_NAME that points to the partition of X. */
+ if (TREE_CODE (x) == VAR_DECL
+ && !DECL_EXTERNAL (x)
+ && !TREE_STATIC (x)
+ && cfun->gimple_df != NULL
+ && cfun->gimple_df->decls_to_pointers != NULL)
+ {
+ void *namep
+ = pointer_map_contains (cfun->gimple_df->decls_to_pointers, x);
+ if (namep)
+ TREE_ADDRESSABLE (*(tree *)namep) = 1;
+ }
+}
+
+/* Returns true iff T is a valid RHS for an assignment to a renamed
+ user -- or front-end generated artificial -- variable. */
+
+bool
+is_gimple_reg_rhs (tree t)
+{
+ return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
+}
+
+#include "gt-gimple-expr.h"