aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/function.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/function.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/function.c')
-rw-r--r--gcc-4.9/gcc/function.c7263
1 files changed, 7263 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/function.c b/gcc-4.9/gcc/function.c
new file mode 100644
index 000000000..a61e4757c
--- /dev/null
+++ b/gcc-4.9/gcc/function.c
@@ -0,0 +1,7263 @@
+/* Expands front end tree to back end RTL for GCC.
+ Copyright (C) 1987-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This file handles the generation of rtl code from tree structure
+ at the level of the function as a whole.
+ It creates the rtl expressions for parameters and auto variables
+ and has full responsibility for allocating stack slots.
+
+ `expand_function_start' is called at the beginning of a function,
+ before the function body is parsed, and `expand_function_end' is
+ called after parsing the body.
+
+ Call `assign_stack_local' to allocate a stack slot for a local variable.
+ This is usually done during the RTL generation for the function body,
+ but it can also be done in the reload pass when a pseudo-register does
+ not get a hard register. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl-error.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "varasm.h"
+#include "stringpool.h"
+#include "flags.h"
+#include "except.h"
+#include "function.h"
+#include "expr.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "output.h"
+#include "hashtab.h"
+#include "tm_p.h"
+#include "langhooks.h"
+#include "target.h"
+#include "common/common-target.h"
+#include "gimple-expr.h"
+#include "gimplify.h"
+#include "tree-pass.h"
+#include "predict.h"
+#include "df.h"
+#include "params.h"
+#include "bb-reorder.h"
+
+/* So we can assign to cfun in this file. */
+#undef cfun
+
+#ifndef STACK_ALIGNMENT_NEEDED
+#define STACK_ALIGNMENT_NEEDED 1
+#endif
+
+#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
+
+/* Round a value to the lowest integer less than it that is a multiple of
+ the required alignment. Avoid using division in case the value is
+ negative. Assume the alignment is a power of two. */
+#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
+
+/* Similar, but round to the next highest integer that meets the
+ alignment. */
+#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
+
+/* Nonzero once virtual register instantiation has been done.
+ assign_stack_local uses frame_pointer_rtx when this is nonzero.
+ calls.c:emit_library_call_value_1 uses it to set up
+ post-instantiation libcalls. */
+int virtuals_instantiated;
+
+/* Assign unique numbers to labels generated for profiling, debugging, etc. */
+static GTY(()) int funcdef_no;
+
+/* These variables hold pointers to functions to create and destroy
+ target specific, per-function data structures. */
+struct machine_function * (*init_machine_status) (void);
+
+/* The currently compiled function. */
+struct function *cfun = 0;
+
+/* These hashes record the prologue and epilogue insns. */
+static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
+ htab_t prologue_insn_hash;
+static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
+ htab_t epilogue_insn_hash;
+
+
+htab_t types_used_by_vars_hash = NULL;
+vec<tree, va_gc> *types_used_by_cur_var_decl;
+
+/* Forward declarations. */
+
+static struct temp_slot *find_temp_slot_from_address (rtx);
+static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
+static void pad_below (struct args_size *, enum machine_mode, tree);
+static void reorder_blocks_1 (rtx, tree, vec<tree> *);
+static int all_blocks (tree, tree *);
+static tree *get_block_vector (tree, int *);
+extern tree debug_find_var_in_block_tree (tree, tree);
+/* We always define `record_insns' even if it's not used so that we
+ can always export `prologue_epilogue_contains'. */
+static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
+static bool contains (const_rtx, htab_t);
+static void prepare_function_start (void);
+static void do_clobber_return_reg (rtx, void *);
+static void do_use_return_reg (rtx, void *);
+
+/* Stack of nested functions. */
+/* Keep track of the cfun stack. */
+
+typedef struct function *function_p;
+
+static vec<function_p> function_context_stack;
+
+/* Save the current context for compilation of a nested function.
+ This is called from language-specific code. */
+
+void
+push_function_context (void)
+{
+ if (cfun == 0)
+ allocate_struct_function (NULL, false);
+
+ function_context_stack.safe_push (cfun);
+ set_cfun (NULL);
+}
+
+/* Restore the last saved context, at the end of a nested function.
+ This function is called from language-specific code. */
+
+void
+pop_function_context (void)
+{
+ struct function *p = function_context_stack.pop ();
+ set_cfun (p);
+ current_function_decl = p->decl;
+
+ /* Reset variables that have known state during rtx generation. */
+ virtuals_instantiated = 0;
+ generating_concat_p = 1;
+}
+
+/* Clear out all parts of the state in F that can safely be discarded
+ after the function has been parsed, but not compiled, to let
+ garbage collection reclaim the memory. */
+
+void
+free_after_parsing (struct function *f)
+{
+ f->language = 0;
+}
+
+/* Clear out all parts of the state in F that can safely be discarded
+ after the function has been compiled, to let garbage collection
+ reclaim the memory. */
+
+void
+free_after_compilation (struct function *f)
+{
+ prologue_insn_hash = NULL;
+ epilogue_insn_hash = NULL;
+
+ free (crtl->emit.regno_pointer_align);
+
+ memset (crtl, 0, sizeof (struct rtl_data));
+ f->eh = NULL;
+ f->machine = NULL;
+ f->cfg = NULL;
+
+ regno_reg_rtx = NULL;
+}
+
+/* Return size needed for stack frame based on slots so far allocated.
+ This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
+ the caller may have to do that. */
+
+HOST_WIDE_INT
+get_frame_size (void)
+{
+ if (FRAME_GROWS_DOWNWARD)
+ return -frame_offset;
+ else
+ return frame_offset;
+}
+
+/* Issue an error message and return TRUE if frame OFFSET overflows in
+ the signed target pointer arithmetics for function FUNC. Otherwise
+ return FALSE. */
+
+bool
+frame_offset_overflow (HOST_WIDE_INT offset, tree func)
+{
+ unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
+
+ if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
+ /* Leave room for the fixed part of the frame. */
+ - 64 * UNITS_PER_WORD)
+ {
+ error_at (DECL_SOURCE_LOCATION (func),
+ "total size of local objects too large");
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+/* Return stack slot alignment in bits for TYPE and MODE. */
+
+static unsigned int
+get_stack_local_alignment (tree type, enum machine_mode mode)
+{
+ unsigned int alignment;
+
+ if (mode == BLKmode)
+ alignment = BIGGEST_ALIGNMENT;
+ else
+ alignment = GET_MODE_ALIGNMENT (mode);
+
+ /* Allow the frond-end to (possibly) increase the alignment of this
+ stack slot. */
+ if (! type)
+ type = lang_hooks.types.type_for_mode (mode, 0);
+
+ return STACK_SLOT_ALIGNMENT (type, mode, alignment);
+}
+
+/* Determine whether it is possible to fit a stack slot of size SIZE and
+ alignment ALIGNMENT into an area in the stack frame that starts at
+ frame offset START and has a length of LENGTH. If so, store the frame
+ offset to be used for the stack slot in *POFFSET and return true;
+ return false otherwise. This function will extend the frame size when
+ given a start/length pair that lies at the end of the frame. */
+
+static bool
+try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
+ HOST_WIDE_INT size, unsigned int alignment,
+ HOST_WIDE_INT *poffset)
+{
+ HOST_WIDE_INT this_frame_offset;
+ int frame_off, frame_alignment, frame_phase;
+
+ /* Calculate how many bytes the start of local variables is off from
+ stack alignment. */
+ frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
+ frame_off = STARTING_FRAME_OFFSET % frame_alignment;
+ frame_phase = frame_off ? frame_alignment - frame_off : 0;
+
+ /* Round the frame offset to the specified alignment. */
+
+ /* We must be careful here, since FRAME_OFFSET might be negative and
+ division with a negative dividend isn't as well defined as we might
+ like. So we instead assume that ALIGNMENT is a power of two and
+ use logical operations which are unambiguous. */
+ if (FRAME_GROWS_DOWNWARD)
+ this_frame_offset
+ = (FLOOR_ROUND (start + length - size - frame_phase,
+ (unsigned HOST_WIDE_INT) alignment)
+ + frame_phase);
+ else
+ this_frame_offset
+ = (CEIL_ROUND (start - frame_phase,
+ (unsigned HOST_WIDE_INT) alignment)
+ + frame_phase);
+
+ /* See if it fits. If this space is at the edge of the frame,
+ consider extending the frame to make it fit. Our caller relies on
+ this when allocating a new slot. */
+ if (frame_offset == start && this_frame_offset < frame_offset)
+ frame_offset = this_frame_offset;
+ else if (this_frame_offset < start)
+ return false;
+ else if (start + length == frame_offset
+ && this_frame_offset + size > start + length)
+ frame_offset = this_frame_offset + size;
+ else if (this_frame_offset + size > start + length)
+ return false;
+
+ *poffset = this_frame_offset;
+ return true;
+}
+
+/* Create a new frame_space structure describing free space in the stack
+ frame beginning at START and ending at END, and chain it into the
+ function's frame_space_list. */
+
+static void
+add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
+{
+ struct frame_space *space = ggc_alloc_frame_space ();
+ space->next = crtl->frame_space_list;
+ crtl->frame_space_list = space;
+ space->start = start;
+ space->length = end - start;
+}
+
+/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
+ with machine mode MODE.
+
+ ALIGN controls the amount of alignment for the address of the slot:
+ 0 means according to MODE,
+ -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
+ -2 means use BITS_PER_UNIT,
+ positive specifies alignment boundary in bits.
+
+ KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
+ alignment and ASLK_RECORD_PAD bit set if we should remember
+ extra space we allocated for alignment purposes. When we are
+ called from assign_stack_temp_for_type, it is not set so we don't
+ track the same stack slot in two independent lists.
+
+ We do not round to stack_boundary here. */
+
+rtx
+assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
+ int align, int kind)
+{
+ rtx x, addr;
+ int bigend_correction = 0;
+ HOST_WIDE_INT slot_offset = 0, old_frame_offset;
+ unsigned int alignment, alignment_in_bits;
+
+ if (align == 0)
+ {
+ alignment = get_stack_local_alignment (NULL, mode);
+ alignment /= BITS_PER_UNIT;
+ }
+ else if (align == -1)
+ {
+ alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ size = CEIL_ROUND (size, alignment);
+ }
+ else if (align == -2)
+ alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
+ else
+ alignment = align / BITS_PER_UNIT;
+
+ alignment_in_bits = alignment * BITS_PER_UNIT;
+
+ /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
+ if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
+ {
+ alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
+ alignment = alignment_in_bits / BITS_PER_UNIT;
+ }
+
+ if (SUPPORTS_STACK_ALIGNMENT)
+ {
+ if (crtl->stack_alignment_estimated < alignment_in_bits)
+ {
+ if (!crtl->stack_realign_processed)
+ crtl->stack_alignment_estimated = alignment_in_bits;
+ else
+ {
+ /* If stack is realigned and stack alignment value
+ hasn't been finalized, it is OK not to increase
+ stack_alignment_estimated. The bigger alignment
+ requirement is recorded in stack_alignment_needed
+ below. */
+ gcc_assert (!crtl->stack_realign_finalized);
+ if (!crtl->stack_realign_needed)
+ {
+ /* It is OK to reduce the alignment as long as the
+ requested size is 0 or the estimated stack
+ alignment >= mode alignment. */
+ gcc_assert ((kind & ASLK_REDUCE_ALIGN)
+ || size == 0
+ || (crtl->stack_alignment_estimated
+ >= GET_MODE_ALIGNMENT (mode)));
+ alignment_in_bits = crtl->stack_alignment_estimated;
+ alignment = alignment_in_bits / BITS_PER_UNIT;
+ }
+ }
+ }
+ }
+
+ if (crtl->stack_alignment_needed < alignment_in_bits)
+ crtl->stack_alignment_needed = alignment_in_bits;
+ if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
+ crtl->max_used_stack_slot_alignment = alignment_in_bits;
+
+ if (mode != BLKmode || size != 0)
+ {
+ if (kind & ASLK_RECORD_PAD)
+ {
+ struct frame_space **psp;
+
+ for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
+ {
+ struct frame_space *space = *psp;
+ if (!try_fit_stack_local (space->start, space->length, size,
+ alignment, &slot_offset))
+ continue;
+ *psp = space->next;
+ if (slot_offset > space->start)
+ add_frame_space (space->start, slot_offset);
+ if (slot_offset + size < space->start + space->length)
+ add_frame_space (slot_offset + size,
+ space->start + space->length);
+ goto found_space;
+ }
+ }
+ }
+ else if (!STACK_ALIGNMENT_NEEDED)
+ {
+ slot_offset = frame_offset;
+ goto found_space;
+ }
+
+ old_frame_offset = frame_offset;
+
+ if (FRAME_GROWS_DOWNWARD)
+ {
+ frame_offset -= size;
+ try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
+
+ if (kind & ASLK_RECORD_PAD)
+ {
+ if (slot_offset > frame_offset)
+ add_frame_space (frame_offset, slot_offset);
+ if (slot_offset + size < old_frame_offset)
+ add_frame_space (slot_offset + size, old_frame_offset);
+ }
+ }
+ else
+ {
+ frame_offset += size;
+ try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
+
+ if (kind & ASLK_RECORD_PAD)
+ {
+ if (slot_offset > old_frame_offset)
+ add_frame_space (old_frame_offset, slot_offset);
+ if (slot_offset + size < frame_offset)
+ add_frame_space (slot_offset + size, frame_offset);
+ }
+ }
+
+ found_space:
+ /* On a big-endian machine, if we are allocating more space than we will use,
+ use the least significant bytes of those that are allocated. */
+ if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
+ bigend_correction = size - GET_MODE_SIZE (mode);
+
+ /* If we have already instantiated virtual registers, return the actual
+ address relative to the frame pointer. */
+ if (virtuals_instantiated)
+ addr = plus_constant (Pmode, frame_pointer_rtx,
+ trunc_int_for_mode
+ (slot_offset + bigend_correction
+ + STARTING_FRAME_OFFSET, Pmode));
+ else
+ addr = plus_constant (Pmode, virtual_stack_vars_rtx,
+ trunc_int_for_mode
+ (slot_offset + bigend_correction,
+ Pmode));
+
+ x = gen_rtx_MEM (mode, addr);
+ set_mem_align (x, alignment_in_bits);
+ MEM_NOTRAP_P (x) = 1;
+
+ stack_slot_list
+ = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
+
+ if (frame_offset_overflow (frame_offset, current_function_decl))
+ frame_offset = 0;
+
+ return x;
+}
+
+/* Wrap up assign_stack_local_1 with last parameter as false. */
+
+rtx
+assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
+{
+ return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
+}
+
+/* In order to evaluate some expressions, such as function calls returning
+ structures in memory, we need to temporarily allocate stack locations.
+ We record each allocated temporary in the following structure.
+
+ Associated with each temporary slot is a nesting level. When we pop up
+ one level, all temporaries associated with the previous level are freed.
+ Normally, all temporaries are freed after the execution of the statement
+ in which they were created. However, if we are inside a ({...}) grouping,
+ the result may be in a temporary and hence must be preserved. If the
+ result could be in a temporary, we preserve it if we can determine which
+ one it is in. If we cannot determine which temporary may contain the
+ result, all temporaries are preserved. A temporary is preserved by
+ pretending it was allocated at the previous nesting level. */
+
+struct GTY(()) temp_slot {
+ /* Points to next temporary slot. */
+ struct temp_slot *next;
+ /* Points to previous temporary slot. */
+ struct temp_slot *prev;
+ /* The rtx to used to reference the slot. */
+ rtx slot;
+ /* The size, in units, of the slot. */
+ HOST_WIDE_INT size;
+ /* The type of the object in the slot, or zero if it doesn't correspond
+ to a type. We use this to determine whether a slot can be reused.
+ It can be reused if objects of the type of the new slot will always
+ conflict with objects of the type of the old slot. */
+ tree type;
+ /* The alignment (in bits) of the slot. */
+ unsigned int align;
+ /* Nonzero if this temporary is currently in use. */
+ char in_use;
+ /* Nesting level at which this slot is being used. */
+ int level;
+ /* The offset of the slot from the frame_pointer, including extra space
+ for alignment. This info is for combine_temp_slots. */
+ HOST_WIDE_INT base_offset;
+ /* The size of the slot, including extra space for alignment. This
+ info is for combine_temp_slots. */
+ HOST_WIDE_INT full_size;
+};
+
+/* A table of addresses that represent a stack slot. The table is a mapping
+ from address RTXen to a temp slot. */
+static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
+static size_t n_temp_slots_in_use;
+
+/* Entry for the above hash table. */
+struct GTY(()) temp_slot_address_entry {
+ hashval_t hash;
+ rtx address;
+ struct temp_slot *temp_slot;
+};
+
+/* Removes temporary slot TEMP from LIST. */
+
+static void
+cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
+{
+ if (temp->next)
+ temp->next->prev = temp->prev;
+ if (temp->prev)
+ temp->prev->next = temp->next;
+ else
+ *list = temp->next;
+
+ temp->prev = temp->next = NULL;
+}
+
+/* Inserts temporary slot TEMP to LIST. */
+
+static void
+insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
+{
+ temp->next = *list;
+ if (*list)
+ (*list)->prev = temp;
+ temp->prev = NULL;
+ *list = temp;
+}
+
+/* Returns the list of used temp slots at LEVEL. */
+
+static struct temp_slot **
+temp_slots_at_level (int level)
+{
+ if (level >= (int) vec_safe_length (used_temp_slots))
+ vec_safe_grow_cleared (used_temp_slots, level + 1);
+
+ return &(*used_temp_slots)[level];
+}
+
+/* Returns the maximal temporary slot level. */
+
+static int
+max_slot_level (void)
+{
+ if (!used_temp_slots)
+ return -1;
+
+ return used_temp_slots->length () - 1;
+}
+
+/* Moves temporary slot TEMP to LEVEL. */
+
+static void
+move_slot_to_level (struct temp_slot *temp, int level)
+{
+ cut_slot_from_list (temp, temp_slots_at_level (temp->level));
+ insert_slot_to_list (temp, temp_slots_at_level (level));
+ temp->level = level;
+}
+
+/* Make temporary slot TEMP available. */
+
+static void
+make_slot_available (struct temp_slot *temp)
+{
+ cut_slot_from_list (temp, temp_slots_at_level (temp->level));
+ insert_slot_to_list (temp, &avail_temp_slots);
+ temp->in_use = 0;
+ temp->level = -1;
+ n_temp_slots_in_use--;
+}
+
+/* Compute the hash value for an address -> temp slot mapping.
+ The value is cached on the mapping entry. */
+static hashval_t
+temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
+{
+ int do_not_record = 0;
+ return hash_rtx (t->address, GET_MODE (t->address),
+ &do_not_record, NULL, false);
+}
+
+/* Return the hash value for an address -> temp slot mapping. */
+static hashval_t
+temp_slot_address_hash (const void *p)
+{
+ const struct temp_slot_address_entry *t;
+ t = (const struct temp_slot_address_entry *) p;
+ return t->hash;
+}
+
+/* Compare two address -> temp slot mapping entries. */
+static int
+temp_slot_address_eq (const void *p1, const void *p2)
+{
+ const struct temp_slot_address_entry *t1, *t2;
+ t1 = (const struct temp_slot_address_entry *) p1;
+ t2 = (const struct temp_slot_address_entry *) p2;
+ return exp_equiv_p (t1->address, t2->address, 0, true);
+}
+
+/* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
+static void
+insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
+{
+ void **slot;
+ struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
+ t->address = address;
+ t->temp_slot = temp_slot;
+ t->hash = temp_slot_address_compute_hash (t);
+ slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
+ *slot = t;
+}
+
+/* Remove an address -> temp slot mapping entry if the temp slot is
+ not in use anymore. Callback for remove_unused_temp_slot_addresses. */
+static int
+remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ const struct temp_slot_address_entry *t;
+ t = (const struct temp_slot_address_entry *) *slot;
+ if (! t->temp_slot->in_use)
+ htab_clear_slot (temp_slot_address_table, slot);
+ return 1;
+}
+
+/* Remove all mappings of addresses to unused temp slots. */
+static void
+remove_unused_temp_slot_addresses (void)
+{
+ /* Use quicker clearing if there aren't any active temp slots. */
+ if (n_temp_slots_in_use)
+ htab_traverse (temp_slot_address_table,
+ remove_unused_temp_slot_addresses_1,
+ NULL);
+ else
+ htab_empty (temp_slot_address_table);
+}
+
+/* Find the temp slot corresponding to the object at address X. */
+
+static struct temp_slot *
+find_temp_slot_from_address (rtx x)
+{
+ struct temp_slot *p;
+ struct temp_slot_address_entry tmp, *t;
+
+ /* First try the easy way:
+ See if X exists in the address -> temp slot mapping. */
+ tmp.address = x;
+ tmp.temp_slot = NULL;
+ tmp.hash = temp_slot_address_compute_hash (&tmp);
+ t = (struct temp_slot_address_entry *)
+ htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
+ if (t)
+ return t->temp_slot;
+
+ /* If we have a sum involving a register, see if it points to a temp
+ slot. */
+ if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
+ && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
+ return p;
+ else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
+ && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
+ return p;
+
+ /* Last resort: Address is a virtual stack var address. */
+ if (GET_CODE (x) == PLUS
+ && XEXP (x, 0) == virtual_stack_vars_rtx
+ && CONST_INT_P (XEXP (x, 1)))
+ {
+ int i;
+ for (i = max_slot_level (); i >= 0; i--)
+ for (p = *temp_slots_at_level (i); p; p = p->next)
+ {
+ if (INTVAL (XEXP (x, 1)) >= p->base_offset
+ && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
+ return p;
+ }
+ }
+
+ return NULL;
+}
+
+/* Allocate a temporary stack slot and record it for possible later
+ reuse.
+
+ MODE is the machine mode to be given to the returned rtx.
+
+ SIZE is the size in units of the space required. We do no rounding here
+ since assign_stack_local will do any required rounding.
+
+ TYPE is the type that will be used for the stack slot. */
+
+rtx
+assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
+ tree type)
+{
+ unsigned int align;
+ struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
+ rtx slot;
+
+ /* If SIZE is -1 it means that somebody tried to allocate a temporary
+ of a variable size. */
+ gcc_assert (size != -1);
+
+ align = get_stack_local_alignment (type, mode);
+
+ /* Try to find an available, already-allocated temporary of the proper
+ mode which meets the size and alignment requirements. Choose the
+ smallest one with the closest alignment.
+
+ If assign_stack_temp is called outside of the tree->rtl expansion,
+ we cannot reuse the stack slots (that may still refer to
+ VIRTUAL_STACK_VARS_REGNUM). */
+ if (!virtuals_instantiated)
+ {
+ for (p = avail_temp_slots; p; p = p->next)
+ {
+ if (p->align >= align && p->size >= size
+ && GET_MODE (p->slot) == mode
+ && objects_must_conflict_p (p->type, type)
+ && (best_p == 0 || best_p->size > p->size
+ || (best_p->size == p->size && best_p->align > p->align)))
+ {
+ if (p->align == align && p->size == size)
+ {
+ selected = p;
+ cut_slot_from_list (selected, &avail_temp_slots);
+ best_p = 0;
+ break;
+ }
+ best_p = p;
+ }
+ }
+ }
+
+ /* Make our best, if any, the one to use. */
+ if (best_p)
+ {
+ selected = best_p;
+ cut_slot_from_list (selected, &avail_temp_slots);
+
+ /* If there are enough aligned bytes left over, make them into a new
+ temp_slot so that the extra bytes don't get wasted. Do this only
+ for BLKmode slots, so that we can be sure of the alignment. */
+ if (GET_MODE (best_p->slot) == BLKmode)
+ {
+ int alignment = best_p->align / BITS_PER_UNIT;
+ HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
+
+ if (best_p->size - rounded_size >= alignment)
+ {
+ p = ggc_alloc_temp_slot ();
+ p->in_use = 0;
+ p->size = best_p->size - rounded_size;
+ p->base_offset = best_p->base_offset + rounded_size;
+ p->full_size = best_p->full_size - rounded_size;
+ p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
+ p->align = best_p->align;
+ p->type = best_p->type;
+ insert_slot_to_list (p, &avail_temp_slots);
+
+ stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
+ stack_slot_list);
+
+ best_p->size = rounded_size;
+ best_p->full_size = rounded_size;
+ }
+ }
+ }
+
+ /* If we still didn't find one, make a new temporary. */
+ if (selected == 0)
+ {
+ HOST_WIDE_INT frame_offset_old = frame_offset;
+
+ p = ggc_alloc_temp_slot ();
+
+ /* We are passing an explicit alignment request to assign_stack_local.
+ One side effect of that is assign_stack_local will not round SIZE
+ to ensure the frame offset remains suitably aligned.
+
+ So for requests which depended on the rounding of SIZE, we go ahead
+ and round it now. We also make sure ALIGNMENT is at least
+ BIGGEST_ALIGNMENT. */
+ gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
+ p->slot = assign_stack_local_1 (mode,
+ (mode == BLKmode
+ ? CEIL_ROUND (size,
+ (int) align
+ / BITS_PER_UNIT)
+ : size),
+ align, 0);
+
+ p->align = align;
+
+ /* The following slot size computation is necessary because we don't
+ know the actual size of the temporary slot until assign_stack_local
+ has performed all the frame alignment and size rounding for the
+ requested temporary. Note that extra space added for alignment
+ can be either above or below this stack slot depending on which
+ way the frame grows. We include the extra space if and only if it
+ is above this slot. */
+ if (FRAME_GROWS_DOWNWARD)
+ p->size = frame_offset_old - frame_offset;
+ else
+ p->size = size;
+
+ /* Now define the fields used by combine_temp_slots. */
+ if (FRAME_GROWS_DOWNWARD)
+ {
+ p->base_offset = frame_offset;
+ p->full_size = frame_offset_old - frame_offset;
+ }
+ else
+ {
+ p->base_offset = frame_offset_old;
+ p->full_size = frame_offset - frame_offset_old;
+ }
+
+ selected = p;
+ }
+
+ p = selected;
+ p->in_use = 1;
+ p->type = type;
+ p->level = temp_slot_level;
+ n_temp_slots_in_use++;
+
+ pp = temp_slots_at_level (p->level);
+ insert_slot_to_list (p, pp);
+ insert_temp_slot_address (XEXP (p->slot, 0), p);
+
+ /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
+ slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
+ stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
+
+ /* If we know the alias set for the memory that will be used, use
+ it. If there's no TYPE, then we don't know anything about the
+ alias set for the memory. */
+ set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
+ set_mem_align (slot, align);
+
+ /* If a type is specified, set the relevant flags. */
+ if (type != 0)
+ MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
+ MEM_NOTRAP_P (slot) = 1;
+
+ return slot;
+}
+
+/* Allocate a temporary stack slot and record it for possible later
+ reuse. First two arguments are same as in preceding function. */
+
+rtx
+assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
+{
+ return assign_stack_temp_for_type (mode, size, NULL_TREE);
+}
+
+/* Assign a temporary.
+ If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
+ and so that should be used in error messages. In either case, we
+ allocate of the given type.
+ MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
+ it is 0 if a register is OK.
+ DONT_PROMOTE is 1 if we should not promote values in register
+ to wider modes. */
+
+rtx
+assign_temp (tree type_or_decl, int memory_required,
+ int dont_promote ATTRIBUTE_UNUSED)
+{
+ tree type, decl;
+ enum machine_mode mode;
+#ifdef PROMOTE_MODE
+ int unsignedp;
+#endif
+
+ if (DECL_P (type_or_decl))
+ decl = type_or_decl, type = TREE_TYPE (decl);
+ else
+ decl = NULL, type = type_or_decl;
+
+ mode = TYPE_MODE (type);
+#ifdef PROMOTE_MODE
+ unsignedp = TYPE_UNSIGNED (type);
+#endif
+
+ if (mode == BLKmode || memory_required)
+ {
+ HOST_WIDE_INT size = int_size_in_bytes (type);
+ rtx tmp;
+
+ /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
+ problems with allocating the stack space. */
+ if (size == 0)
+ size = 1;
+
+ /* Unfortunately, we don't yet know how to allocate variable-sized
+ temporaries. However, sometimes we can find a fixed upper limit on
+ the size, so try that instead. */
+ else if (size == -1)
+ size = max_int_size_in_bytes (type);
+
+ /* The size of the temporary may be too large to fit into an integer. */
+ /* ??? Not sure this should happen except for user silliness, so limit
+ this to things that aren't compiler-generated temporaries. The
+ rest of the time we'll die in assign_stack_temp_for_type. */
+ if (decl && size == -1
+ && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
+ {
+ error ("size of variable %q+D is too large", decl);
+ size = 1;
+ }
+
+ tmp = assign_stack_temp_for_type (mode, size, type);
+ return tmp;
+ }
+
+#ifdef PROMOTE_MODE
+ if (! dont_promote)
+ mode = promote_mode (type, mode, &unsignedp);
+#endif
+
+ return gen_reg_rtx (mode);
+}
+
+/* Combine temporary stack slots which are adjacent on the stack.
+
+ This allows for better use of already allocated stack space. This is only
+ done for BLKmode slots because we can be sure that we won't have alignment
+ problems in this case. */
+
+static void
+combine_temp_slots (void)
+{
+ struct temp_slot *p, *q, *next, *next_q;
+ int num_slots;
+
+ /* We can't combine slots, because the information about which slot
+ is in which alias set will be lost. */
+ if (flag_strict_aliasing)
+ return;
+
+ /* If there are a lot of temp slots, don't do anything unless
+ high levels of optimization. */
+ if (! flag_expensive_optimizations)
+ for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
+ if (num_slots > 100 || (num_slots > 10 && optimize == 0))
+ return;
+
+ for (p = avail_temp_slots; p; p = next)
+ {
+ int delete_p = 0;
+
+ next = p->next;
+
+ if (GET_MODE (p->slot) != BLKmode)
+ continue;
+
+ for (q = p->next; q; q = next_q)
+ {
+ int delete_q = 0;
+
+ next_q = q->next;
+
+ if (GET_MODE (q->slot) != BLKmode)
+ continue;
+
+ if (p->base_offset + p->full_size == q->base_offset)
+ {
+ /* Q comes after P; combine Q into P. */
+ p->size += q->size;
+ p->full_size += q->full_size;
+ delete_q = 1;
+ }
+ else if (q->base_offset + q->full_size == p->base_offset)
+ {
+ /* P comes after Q; combine P into Q. */
+ q->size += p->size;
+ q->full_size += p->full_size;
+ delete_p = 1;
+ break;
+ }
+ if (delete_q)
+ cut_slot_from_list (q, &avail_temp_slots);
+ }
+
+ /* Either delete P or advance past it. */
+ if (delete_p)
+ cut_slot_from_list (p, &avail_temp_slots);
+ }
+}
+
+/* Indicate that NEW_RTX is an alternate way of referring to the temp
+ slot that previously was known by OLD_RTX. */
+
+void
+update_temp_slot_address (rtx old_rtx, rtx new_rtx)
+{
+ struct temp_slot *p;
+
+ if (rtx_equal_p (old_rtx, new_rtx))
+ return;
+
+ p = find_temp_slot_from_address (old_rtx);
+
+ /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
+ NEW_RTX is a register, see if one operand of the PLUS is a
+ temporary location. If so, NEW_RTX points into it. Otherwise,
+ if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
+ in common between them. If so, try a recursive call on those
+ values. */
+ if (p == 0)
+ {
+ if (GET_CODE (old_rtx) != PLUS)
+ return;
+
+ if (REG_P (new_rtx))
+ {
+ update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
+ update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
+ return;
+ }
+ else if (GET_CODE (new_rtx) != PLUS)
+ return;
+
+ if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
+ update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
+ else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
+ update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
+ else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
+ update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
+ else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
+ update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
+
+ return;
+ }
+
+ /* Otherwise add an alias for the temp's address. */
+ insert_temp_slot_address (new_rtx, p);
+}
+
+/* If X could be a reference to a temporary slot, mark that slot as
+ belonging to the to one level higher than the current level. If X
+ matched one of our slots, just mark that one. Otherwise, we can't
+ easily predict which it is, so upgrade all of them.
+
+ This is called when an ({...}) construct occurs and a statement
+ returns a value in memory. */
+
+void
+preserve_temp_slots (rtx x)
+{
+ struct temp_slot *p = 0, *next;
+
+ if (x == 0)
+ return;
+
+ /* If X is a register that is being used as a pointer, see if we have
+ a temporary slot we know it points to. */
+ if (REG_P (x) && REG_POINTER (x))
+ p = find_temp_slot_from_address (x);
+
+ /* If X is not in memory or is at a constant address, it cannot be in
+ a temporary slot. */
+ if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
+ return;
+
+ /* First see if we can find a match. */
+ if (p == 0)
+ p = find_temp_slot_from_address (XEXP (x, 0));
+
+ if (p != 0)
+ {
+ if (p->level == temp_slot_level)
+ move_slot_to_level (p, temp_slot_level - 1);
+ return;
+ }
+
+ /* Otherwise, preserve all non-kept slots at this level. */
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
+ move_slot_to_level (p, temp_slot_level - 1);
+ }
+}
+
+/* Free all temporaries used so far. This is normally called at the
+ end of generating code for a statement. */
+
+void
+free_temp_slots (void)
+{
+ struct temp_slot *p, *next;
+ bool some_available = false;
+
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
+ make_slot_available (p);
+ some_available = true;
+ }
+
+ if (some_available)
+ {
+ remove_unused_temp_slot_addresses ();
+ combine_temp_slots ();
+ }
+}
+
+/* Push deeper into the nesting level for stack temporaries. */
+
+void
+push_temp_slots (void)
+{
+ temp_slot_level++;
+}
+
+/* Pop a temporary nesting level. All slots in use in the current level
+ are freed. */
+
+void
+pop_temp_slots (void)
+{
+ free_temp_slots ();
+ temp_slot_level--;
+}
+
+/* Initialize temporary slots. */
+
+void
+init_temp_slots (void)
+{
+ /* We have not allocated any temporaries yet. */
+ avail_temp_slots = 0;
+ vec_alloc (used_temp_slots, 0);
+ temp_slot_level = 0;
+ n_temp_slots_in_use = 0;
+
+ /* Set up the table to map addresses to temp slots. */
+ if (! temp_slot_address_table)
+ temp_slot_address_table = htab_create_ggc (32,
+ temp_slot_address_hash,
+ temp_slot_address_eq,
+ NULL);
+ else
+ htab_empty (temp_slot_address_table);
+}
+
+/* Functions and data structures to keep track of the values hard regs
+ had at the start of the function. */
+
+/* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
+ and has_hard_reg_initial_val.. */
+typedef struct GTY(()) initial_value_pair {
+ rtx hard_reg;
+ rtx pseudo;
+} initial_value_pair;
+/* ??? This could be a VEC but there is currently no way to define an
+ opaque VEC type. This could be worked around by defining struct
+ initial_value_pair in function.h. */
+typedef struct GTY(()) initial_value_struct {
+ int num_entries;
+ int max_entries;
+ initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
+} initial_value_struct;
+
+/* If a pseudo represents an initial hard reg (or expression), return
+ it, else return NULL_RTX. */
+
+rtx
+get_hard_reg_initial_reg (rtx reg)
+{
+ struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
+ int i;
+
+ if (ivs == 0)
+ return NULL_RTX;
+
+ for (i = 0; i < ivs->num_entries; i++)
+ if (rtx_equal_p (ivs->entries[i].pseudo, reg))
+ return ivs->entries[i].hard_reg;
+
+ return NULL_RTX;
+}
+
+/* Make sure that there's a pseudo register of mode MODE that stores the
+ initial value of hard register REGNO. Return an rtx for such a pseudo. */
+
+rtx
+get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
+{
+ struct initial_value_struct *ivs;
+ rtx rv;
+
+ rv = has_hard_reg_initial_val (mode, regno);
+ if (rv)
+ return rv;
+
+ ivs = crtl->hard_reg_initial_vals;
+ if (ivs == 0)
+ {
+ ivs = ggc_alloc_initial_value_struct ();
+ ivs->num_entries = 0;
+ ivs->max_entries = 5;
+ ivs->entries = ggc_alloc_vec_initial_value_pair (5);
+ crtl->hard_reg_initial_vals = ivs;
+ }
+
+ if (ivs->num_entries >= ivs->max_entries)
+ {
+ ivs->max_entries += 5;
+ ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
+ ivs->max_entries);
+ }
+
+ ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
+ ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
+
+ return ivs->entries[ivs->num_entries++].pseudo;
+}
+
+/* See if get_hard_reg_initial_val has been used to create a pseudo
+ for the initial value of hard register REGNO in mode MODE. Return
+ the associated pseudo if so, otherwise return NULL. */
+
+rtx
+has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
+{
+ struct initial_value_struct *ivs;
+ int i;
+
+ ivs = crtl->hard_reg_initial_vals;
+ if (ivs != 0)
+ for (i = 0; i < ivs->num_entries; i++)
+ if (GET_MODE (ivs->entries[i].hard_reg) == mode
+ && REGNO (ivs->entries[i].hard_reg) == regno)
+ return ivs->entries[i].pseudo;
+
+ return NULL_RTX;
+}
+
+unsigned int
+emit_initial_value_sets (void)
+{
+ struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
+ int i;
+ rtx seq;
+
+ if (ivs == 0)
+ return 0;
+
+ start_sequence ();
+ for (i = 0; i < ivs->num_entries; i++)
+ emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_at_entry (seq);
+ return 0;
+}
+
+/* Return the hardreg-pseudoreg initial values pair entry I and
+ TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
+bool
+initial_value_entry (int i, rtx *hreg, rtx *preg)
+{
+ struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
+ if (!ivs || i >= ivs->num_entries)
+ return false;
+
+ *hreg = ivs->entries[i].hard_reg;
+ *preg = ivs->entries[i].pseudo;
+ return true;
+}
+
+/* These routines are responsible for converting virtual register references
+ to the actual hard register references once RTL generation is complete.
+
+ The following four variables are used for communication between the
+ routines. They contain the offsets of the virtual registers from their
+ respective hard registers. */
+
+static int in_arg_offset;
+static int var_offset;
+static int dynamic_offset;
+static int out_arg_offset;
+static int cfa_offset;
+
+/* In most machines, the stack pointer register is equivalent to the bottom
+ of the stack. */
+
+#ifndef STACK_POINTER_OFFSET
+#define STACK_POINTER_OFFSET 0
+#endif
+
+/* If not defined, pick an appropriate default for the offset of dynamically
+ allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
+ REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
+
+#ifndef STACK_DYNAMIC_OFFSET
+
+/* The bottom of the stack points to the actual arguments. If
+ REG_PARM_STACK_SPACE is defined, this includes the space for the register
+ parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
+ stack space for register parameters is not pushed by the caller, but
+ rather part of the fixed stack areas and hence not included in
+ `crtl->outgoing_args_size'. Nevertheless, we must allow
+ for it when allocating stack dynamic objects. */
+
+#if defined(REG_PARM_STACK_SPACE)
+#define STACK_DYNAMIC_OFFSET(FNDECL) \
+((ACCUMULATE_OUTGOING_ARGS \
+ ? (crtl->outgoing_args_size \
+ + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
+ : REG_PARM_STACK_SPACE (FNDECL))) \
+ : 0) + (STACK_POINTER_OFFSET))
+#else
+#define STACK_DYNAMIC_OFFSET(FNDECL) \
+((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
+ + (STACK_POINTER_OFFSET))
+#endif
+#endif
+
+
+/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
+ is a virtual register, return the equivalent hard register and set the
+ offset indirectly through the pointer. Otherwise, return 0. */
+
+static rtx
+instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
+{
+ rtx new_rtx;
+ HOST_WIDE_INT offset;
+
+ if (x == virtual_incoming_args_rtx)
+ {
+ if (stack_realign_drap)
+ {
+ /* Replace virtual_incoming_args_rtx with internal arg
+ pointer if DRAP is used to realign stack. */
+ new_rtx = crtl->args.internal_arg_pointer;
+ offset = 0;
+ }
+ else
+ new_rtx = arg_pointer_rtx, offset = in_arg_offset;
+ }
+ else if (x == virtual_stack_vars_rtx)
+ new_rtx = frame_pointer_rtx, offset = var_offset;
+ else if (x == virtual_stack_dynamic_rtx)
+ new_rtx = stack_pointer_rtx, offset = dynamic_offset;
+ else if (x == virtual_outgoing_args_rtx)
+ new_rtx = stack_pointer_rtx, offset = out_arg_offset;
+ else if (x == virtual_cfa_rtx)
+ {
+#ifdef FRAME_POINTER_CFA_OFFSET
+ new_rtx = frame_pointer_rtx;
+#else
+ new_rtx = arg_pointer_rtx;
+#endif
+ offset = cfa_offset;
+ }
+ else if (x == virtual_preferred_stack_boundary_rtx)
+ {
+ new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
+ offset = 0;
+ }
+ else
+ return NULL_RTX;
+
+ *poffset = offset;
+ return new_rtx;
+}
+
+/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
+ Instantiate any virtual registers present inside of *LOC. The expression
+ is simplified, as much as possible, but is not to be considered "valid"
+ in any sense implied by the target. If any change is made, set CHANGED
+ to true. */
+
+static int
+instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
+{
+ HOST_WIDE_INT offset;
+ bool *changed = (bool *) data;
+ rtx x, new_rtx;
+
+ x = *loc;
+ if (x == 0)
+ return 0;
+
+ switch (GET_CODE (x))
+ {
+ case REG:
+ new_rtx = instantiate_new_reg (x, &offset);
+ if (new_rtx)
+ {
+ *loc = plus_constant (GET_MODE (x), new_rtx, offset);
+ if (changed)
+ *changed = true;
+ }
+ return -1;
+
+ case PLUS:
+ new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
+ if (new_rtx)
+ {
+ new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
+ *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
+ if (changed)
+ *changed = true;
+ return -1;
+ }
+
+ /* FIXME -- from old code */
+ /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
+ we can commute the PLUS and SUBREG because pointers into the
+ frame are well-behaved. */
+ break;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
+ matches the predicate for insn CODE operand OPERAND. */
+
+static int
+safe_insn_predicate (int code, int operand, rtx x)
+{
+ return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
+}
+
+/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
+ registers present inside of insn. The result will be a valid insn. */
+
+static void
+instantiate_virtual_regs_in_insn (rtx insn)
+{
+ HOST_WIDE_INT offset;
+ int insn_code, i;
+ bool any_change = false;
+ rtx set, new_rtx, x, seq;
+
+ /* There are some special cases to be handled first. */
+ set = single_set (insn);
+ if (set)
+ {
+ /* We're allowed to assign to a virtual register. This is interpreted
+ to mean that the underlying register gets assigned the inverse
+ transformation. This is used, for example, in the handling of
+ non-local gotos. */
+ new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
+ if (new_rtx)
+ {
+ start_sequence ();
+
+ for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
+ x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
+ gen_int_mode (-offset, GET_MODE (new_rtx)));
+ x = force_operand (x, new_rtx);
+ if (x != new_rtx)
+ emit_move_insn (new_rtx, x);
+
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_before (seq, insn);
+ delete_insn (insn);
+ return;
+ }
+
+ /* Handle a straight copy from a virtual register by generating a
+ new add insn. The difference between this and falling through
+ to the generic case is avoiding a new pseudo and eliminating a
+ move insn in the initial rtl stream. */
+ new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
+ if (new_rtx && offset != 0
+ && REG_P (SET_DEST (set))
+ && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
+ {
+ start_sequence ();
+
+ x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
+ gen_int_mode (offset,
+ GET_MODE (SET_DEST (set))),
+ SET_DEST (set), 1, OPTAB_LIB_WIDEN);
+ if (x != SET_DEST (set))
+ emit_move_insn (SET_DEST (set), x);
+
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_before (seq, insn);
+ delete_insn (insn);
+ return;
+ }
+
+ extract_insn (insn);
+ insn_code = INSN_CODE (insn);
+
+ /* Handle a plus involving a virtual register by determining if the
+ operands remain valid if they're modified in place. */
+ if (GET_CODE (SET_SRC (set)) == PLUS
+ && recog_data.n_operands >= 3
+ && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
+ && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
+ && CONST_INT_P (recog_data.operand[2])
+ && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
+ {
+ offset += INTVAL (recog_data.operand[2]);
+
+ /* If the sum is zero, then replace with a plain move. */
+ if (offset == 0
+ && REG_P (SET_DEST (set))
+ && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
+ {
+ start_sequence ();
+ emit_move_insn (SET_DEST (set), new_rtx);
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_before (seq, insn);
+ delete_insn (insn);
+ return;
+ }
+
+ x = gen_int_mode (offset, recog_data.operand_mode[2]);
+
+ /* Using validate_change and apply_change_group here leaves
+ recog_data in an invalid state. Since we know exactly what
+ we want to check, do those two by hand. */
+ if (safe_insn_predicate (insn_code, 1, new_rtx)
+ && safe_insn_predicate (insn_code, 2, x))
+ {
+ *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
+ *recog_data.operand_loc[2] = recog_data.operand[2] = x;
+ any_change = true;
+
+ /* Fall through into the regular operand fixup loop in
+ order to take care of operands other than 1 and 2. */
+ }
+ }
+ }
+ else
+ {
+ extract_insn (insn);
+ insn_code = INSN_CODE (insn);
+ }
+
+ /* In the general case, we expect virtual registers to appear only in
+ operands, and then only as either bare registers or inside memories. */
+ for (i = 0; i < recog_data.n_operands; ++i)
+ {
+ x = recog_data.operand[i];
+ switch (GET_CODE (x))
+ {
+ case MEM:
+ {
+ rtx addr = XEXP (x, 0);
+ bool changed = false;
+
+ for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
+ if (!changed)
+ continue;
+
+ start_sequence ();
+ x = replace_equiv_address (x, addr);
+ /* It may happen that the address with the virtual reg
+ was valid (e.g. based on the virtual stack reg, which might
+ be acceptable to the predicates with all offsets), whereas
+ the address now isn't anymore, for instance when the address
+ is still offsetted, but the base reg isn't virtual-stack-reg
+ anymore. Below we would do a force_reg on the whole operand,
+ but this insn might actually only accept memory. Hence,
+ before doing that last resort, try to reload the address into
+ a register, so this operand stays a MEM. */
+ if (!safe_insn_predicate (insn_code, i, x))
+ {
+ addr = force_reg (GET_MODE (addr), addr);
+ x = replace_equiv_address (x, addr);
+ }
+ seq = get_insns ();
+ end_sequence ();
+ if (seq)
+ emit_insn_before (seq, insn);
+ }
+ break;
+
+ case REG:
+ new_rtx = instantiate_new_reg (x, &offset);
+ if (new_rtx == NULL)
+ continue;
+ if (offset == 0)
+ x = new_rtx;
+ else
+ {
+ start_sequence ();
+
+ /* Careful, special mode predicates may have stuff in
+ insn_data[insn_code].operand[i].mode that isn't useful
+ to us for computing a new value. */
+ /* ??? Recognize address_operand and/or "p" constraints
+ to see if (plus new offset) is a valid before we put
+ this through expand_simple_binop. */
+ x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
+ gen_int_mode (offset, GET_MODE (x)),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ seq = get_insns ();
+ end_sequence ();
+ emit_insn_before (seq, insn);
+ }
+ break;
+
+ case SUBREG:
+ new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
+ if (new_rtx == NULL)
+ continue;
+ if (offset != 0)
+ {
+ start_sequence ();
+ new_rtx = expand_simple_binop
+ (GET_MODE (new_rtx), PLUS, new_rtx,
+ gen_int_mode (offset, GET_MODE (new_rtx)),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ seq = get_insns ();
+ end_sequence ();
+ emit_insn_before (seq, insn);
+ }
+ x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
+ GET_MODE (new_rtx), SUBREG_BYTE (x));
+ gcc_assert (x);
+ break;
+
+ default:
+ continue;
+ }
+
+ /* At this point, X contains the new value for the operand.
+ Validate the new value vs the insn predicate. Note that
+ asm insns will have insn_code -1 here. */
+ if (!safe_insn_predicate (insn_code, i, x))
+ {
+ start_sequence ();
+ if (REG_P (x))
+ {
+ gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
+ x = copy_to_reg (x);
+ }
+ else
+ x = force_reg (insn_data[insn_code].operand[i].mode, x);
+ seq = get_insns ();
+ end_sequence ();
+ if (seq)
+ emit_insn_before (seq, insn);
+ }
+
+ *recog_data.operand_loc[i] = recog_data.operand[i] = x;
+ any_change = true;
+ }
+
+ if (any_change)
+ {
+ /* Propagate operand changes into the duplicates. */
+ for (i = 0; i < recog_data.n_dups; ++i)
+ *recog_data.dup_loc[i]
+ = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
+
+ /* Force re-recognition of the instruction for validation. */
+ INSN_CODE (insn) = -1;
+ }
+
+ if (asm_noperands (PATTERN (insn)) >= 0)
+ {
+ if (!check_asm_operands (PATTERN (insn)))
+ {
+ error_for_asm (insn, "impossible constraint in %<asm%>");
+ /* For asm goto, instead of fixing up all the edges
+ just clear the template and clear input operands
+ (asm goto doesn't have any output operands). */
+ if (JUMP_P (insn))
+ {
+ rtx asm_op = extract_asm_operands (PATTERN (insn));
+ ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
+ ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
+ ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
+ }
+ else
+ delete_insn (insn);
+ }
+ }
+ else
+ {
+ if (recog_memoized (insn) < 0)
+ fatal_insn_not_found (insn);
+ }
+}
+
+/* Subroutine of instantiate_decls. Given RTL representing a decl,
+ do any instantiation required. */
+
+void
+instantiate_decl_rtl (rtx x)
+{
+ rtx addr;
+
+ if (x == 0)
+ return;
+
+ /* If this is a CONCAT, recurse for the pieces. */
+ if (GET_CODE (x) == CONCAT)
+ {
+ instantiate_decl_rtl (XEXP (x, 0));
+ instantiate_decl_rtl (XEXP (x, 1));
+ return;
+ }
+
+ /* If this is not a MEM, no need to do anything. Similarly if the
+ address is a constant or a register that is not a virtual register. */
+ if (!MEM_P (x))
+ return;
+
+ addr = XEXP (x, 0);
+ if (CONSTANT_P (addr)
+ || (REG_P (addr)
+ && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
+ || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
+ return;
+
+ for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
+}
+
+/* Helper for instantiate_decls called via walk_tree: Process all decls
+ in the given DECL_VALUE_EXPR. */
+
+static tree
+instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
+{
+ tree t = *tp;
+ if (! EXPR_P (t))
+ {
+ *walk_subtrees = 0;
+ if (DECL_P (t))
+ {
+ if (DECL_RTL_SET_P (t))
+ instantiate_decl_rtl (DECL_RTL (t));
+ if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
+ && DECL_INCOMING_RTL (t))
+ instantiate_decl_rtl (DECL_INCOMING_RTL (t));
+ if ((TREE_CODE (t) == VAR_DECL
+ || TREE_CODE (t) == RESULT_DECL)
+ && DECL_HAS_VALUE_EXPR_P (t))
+ {
+ tree v = DECL_VALUE_EXPR (t);
+ walk_tree (&v, instantiate_expr, NULL, NULL);
+ }
+ }
+ }
+ return NULL;
+}
+
+/* Subroutine of instantiate_decls: Process all decls in the given
+ BLOCK node and all its subblocks. */
+
+static void
+instantiate_decls_1 (tree let)
+{
+ tree t;
+
+ for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
+ {
+ if (DECL_RTL_SET_P (t))
+ instantiate_decl_rtl (DECL_RTL (t));
+ if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
+ {
+ tree v = DECL_VALUE_EXPR (t);
+ walk_tree (&v, instantiate_expr, NULL, NULL);
+ }
+ }
+
+ /* Process all subblocks. */
+ for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
+ instantiate_decls_1 (t);
+}
+
+/* Scan all decls in FNDECL (both variables and parameters) and instantiate
+ all virtual registers in their DECL_RTL's. */
+
+static void
+instantiate_decls (tree fndecl)
+{
+ tree decl;
+ unsigned ix;
+
+ /* Process all parameters of the function. */
+ for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
+ {
+ instantiate_decl_rtl (DECL_RTL (decl));
+ instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
+ if (DECL_HAS_VALUE_EXPR_P (decl))
+ {
+ tree v = DECL_VALUE_EXPR (decl);
+ walk_tree (&v, instantiate_expr, NULL, NULL);
+ }
+ }
+
+ if ((decl = DECL_RESULT (fndecl))
+ && TREE_CODE (decl) == RESULT_DECL)
+ {
+ if (DECL_RTL_SET_P (decl))
+ instantiate_decl_rtl (DECL_RTL (decl));
+ if (DECL_HAS_VALUE_EXPR_P (decl))
+ {
+ tree v = DECL_VALUE_EXPR (decl);
+ walk_tree (&v, instantiate_expr, NULL, NULL);
+ }
+ }
+
+ /* Now process all variables defined in the function or its subblocks. */
+ instantiate_decls_1 (DECL_INITIAL (fndecl));
+
+ FOR_EACH_LOCAL_DECL (cfun, ix, decl)
+ if (DECL_RTL_SET_P (decl))
+ instantiate_decl_rtl (DECL_RTL (decl));
+ vec_free (cfun->local_decls);
+}
+
+/* Pass through the INSNS of function FNDECL and convert virtual register
+ references to hard register references. */
+
+static unsigned int
+instantiate_virtual_regs (void)
+{
+ rtx insn;
+
+ /* Compute the offsets to use for this function. */
+ in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
+ var_offset = STARTING_FRAME_OFFSET;
+ dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
+ out_arg_offset = STACK_POINTER_OFFSET;
+#ifdef FRAME_POINTER_CFA_OFFSET
+ cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
+#else
+ cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
+#endif
+
+ /* Initialize recognition, indicating that volatile is OK. */
+ init_recog ();
+
+ /* Scan through all the insns, instantiating every virtual register still
+ present. */
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (INSN_P (insn))
+ {
+ /* These patterns in the instruction stream can never be recognized.
+ Fortunately, they shouldn't contain virtual registers either. */
+ if (GET_CODE (PATTERN (insn)) == USE
+ || GET_CODE (PATTERN (insn)) == CLOBBER
+ || GET_CODE (PATTERN (insn)) == ASM_INPUT)
+ continue;
+ else if (DEBUG_INSN_P (insn))
+ for_each_rtx (&INSN_VAR_LOCATION (insn),
+ instantiate_virtual_regs_in_rtx, NULL);
+ else
+ instantiate_virtual_regs_in_insn (insn);
+
+ if (INSN_DELETED_P (insn))
+ continue;
+
+ for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
+
+ /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
+ if (CALL_P (insn))
+ for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
+ instantiate_virtual_regs_in_rtx, NULL);
+ }
+
+ /* Instantiate the virtual registers in the DECLs for debugging purposes. */
+ instantiate_decls (current_function_decl);
+
+ targetm.instantiate_decls ();
+
+ /* Indicate that, from now on, assign_stack_local should use
+ frame_pointer_rtx. */
+ virtuals_instantiated = 1;
+
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_instantiate_virtual_regs =
+{
+ RTL_PASS, /* type */
+ "vregs", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_instantiate_virtual_regs : public rtl_opt_pass
+{
+public:
+ pass_instantiate_virtual_regs (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () { return instantiate_virtual_regs (); }
+
+}; // class pass_instantiate_virtual_regs
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_instantiate_virtual_regs (gcc::context *ctxt)
+{
+ return new pass_instantiate_virtual_regs (ctxt);
+}
+
+
+/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
+ This means a type for which function calls must pass an address to the
+ function or get an address back from the function.
+ EXP may be a type node or an expression (whose type is tested). */
+
+int
+aggregate_value_p (const_tree exp, const_tree fntype)
+{
+ const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
+ int i, regno, nregs;
+ rtx reg;
+
+ if (fntype)
+ switch (TREE_CODE (fntype))
+ {
+ case CALL_EXPR:
+ {
+ tree fndecl = get_callee_fndecl (fntype);
+ fntype = (fndecl
+ ? TREE_TYPE (fndecl)
+ : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
+ }
+ break;
+ case FUNCTION_DECL:
+ fntype = TREE_TYPE (fntype);
+ break;
+ case FUNCTION_TYPE:
+ case METHOD_TYPE:
+ break;
+ case IDENTIFIER_NODE:
+ fntype = NULL_TREE;
+ break;
+ default:
+ /* We don't expect other tree types here. */
+ gcc_unreachable ();
+ }
+
+ if (VOID_TYPE_P (type))
+ return 0;
+
+ /* If a record should be passed the same as its first (and only) member
+ don't pass it as an aggregate. */
+ if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
+ return aggregate_value_p (first_field (type), fntype);
+
+ /* If the front end has decided that this needs to be passed by
+ reference, do so. */
+ if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
+ && DECL_BY_REFERENCE (exp))
+ return 1;
+
+ /* Function types that are TREE_ADDRESSABLE force return in memory. */
+ if (fntype && TREE_ADDRESSABLE (fntype))
+ return 1;
+
+ /* Types that are TREE_ADDRESSABLE must be constructed in memory,
+ and thus can't be returned in registers. */
+ if (TREE_ADDRESSABLE (type))
+ return 1;
+
+ if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
+ return 1;
+
+ if (targetm.calls.return_in_memory (type, fntype))
+ return 1;
+
+ /* Make sure we have suitable call-clobbered regs to return
+ the value in; if not, we must return it in memory. */
+ reg = hard_function_value (type, 0, fntype, 0);
+
+ /* If we have something other than a REG (e.g. a PARALLEL), then assume
+ it is OK. */
+ if (!REG_P (reg))
+ return 0;
+
+ regno = REGNO (reg);
+ nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
+ for (i = 0; i < nregs; i++)
+ if (! call_used_regs[regno + i])
+ return 1;
+
+ return 0;
+}
+
+/* Return true if we should assign DECL a pseudo register; false if it
+ should live on the local stack. */
+
+bool
+use_register_for_decl (const_tree decl)
+{
+ if (!targetm.calls.allocate_stack_slots_for_args ())
+ return true;
+
+ /* Honor volatile. */
+ if (TREE_SIDE_EFFECTS (decl))
+ return false;
+
+ /* Honor addressability. */
+ if (TREE_ADDRESSABLE (decl))
+ return false;
+
+ /* Only register-like things go in registers. */
+ if (DECL_MODE (decl) == BLKmode)
+ return false;
+
+ /* If -ffloat-store specified, don't put explicit float variables
+ into registers. */
+ /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
+ propagates values across these stores, and it probably shouldn't. */
+ if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
+ return false;
+
+ /* If we're not interested in tracking debugging information for
+ this decl, then we can certainly put it in a register. */
+ if (DECL_IGNORED_P (decl))
+ return true;
+
+ if (optimize)
+ return true;
+
+ if (!DECL_REGISTER (decl))
+ return false;
+
+ switch (TREE_CODE (TREE_TYPE (decl)))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ /* When not optimizing, disregard register keyword for variables with
+ types containing methods, otherwise the methods won't be callable
+ from the debugger. */
+ if (TYPE_METHODS (TREE_TYPE (decl)))
+ return false;
+ break;
+ default:
+ break;
+ }
+
+ return true;
+}
+
+/* Return true if TYPE should be passed by invisible reference. */
+
+bool
+pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
+ tree type, bool named_arg)
+{
+ if (type)
+ {
+ /* If this type contains non-trivial constructors, then it is
+ forbidden for the middle-end to create any new copies. */
+ if (TREE_ADDRESSABLE (type))
+ return true;
+
+ /* GCC post 3.4 passes *all* variable sized types by reference. */
+ if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
+ return true;
+
+ /* If a record type should be passed the same as its first (and only)
+ member, use the type and mode of that member. */
+ if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
+ {
+ type = TREE_TYPE (first_field (type));
+ mode = TYPE_MODE (type);
+ }
+ }
+
+ return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
+ type, named_arg);
+}
+
+/* Return true if TYPE, which is passed by reference, should be callee
+ copied instead of caller copied. */
+
+bool
+reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
+ tree type, bool named_arg)
+{
+ if (type && TREE_ADDRESSABLE (type))
+ return false;
+ return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
+ named_arg);
+}
+
+/* Structures to communicate between the subroutines of assign_parms.
+ The first holds data persistent across all parameters, the second
+ is cleared out for each parameter. */
+
+struct assign_parm_data_all
+{
+ /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
+ should become a job of the target or otherwise encapsulated. */
+ CUMULATIVE_ARGS args_so_far_v;
+ cumulative_args_t args_so_far;
+ struct args_size stack_args_size;
+ tree function_result_decl;
+ tree orig_fnargs;
+ rtx first_conversion_insn;
+ rtx last_conversion_insn;
+ HOST_WIDE_INT pretend_args_size;
+ HOST_WIDE_INT extra_pretend_bytes;
+ int reg_parm_stack_space;
+};
+
+struct assign_parm_data_one
+{
+ tree nominal_type;
+ tree passed_type;
+ rtx entry_parm;
+ rtx stack_parm;
+ enum machine_mode nominal_mode;
+ enum machine_mode passed_mode;
+ enum machine_mode promoted_mode;
+ struct locate_and_pad_arg_data locate;
+ int partial;
+ BOOL_BITFIELD named_arg : 1;
+ BOOL_BITFIELD passed_pointer : 1;
+ BOOL_BITFIELD on_stack : 1;
+ BOOL_BITFIELD loaded_in_reg : 1;
+};
+
+/* A subroutine of assign_parms. Initialize ALL. */
+
+static void
+assign_parms_initialize_all (struct assign_parm_data_all *all)
+{
+ tree fntype ATTRIBUTE_UNUSED;
+
+ memset (all, 0, sizeof (*all));
+
+ fntype = TREE_TYPE (current_function_decl);
+
+#ifdef INIT_CUMULATIVE_INCOMING_ARGS
+ INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
+#else
+ INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
+ current_function_decl, -1);
+#endif
+ all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
+
+#ifdef REG_PARM_STACK_SPACE
+ all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
+#endif
+}
+
+/* If ARGS contains entries with complex types, split the entry into two
+ entries of the component type. Return a new list of substitutions are
+ needed, else the old list. */
+
+static void
+split_complex_args (vec<tree> *args)
+{
+ unsigned i;
+ tree p;
+
+ FOR_EACH_VEC_ELT (*args, i, p)
+ {
+ tree type = TREE_TYPE (p);
+ if (TREE_CODE (type) == COMPLEX_TYPE
+ && targetm.calls.split_complex_arg (type))
+ {
+ tree decl;
+ tree subtype = TREE_TYPE (type);
+ bool addressable = TREE_ADDRESSABLE (p);
+
+ /* Rewrite the PARM_DECL's type with its component. */
+ p = copy_node (p);
+ TREE_TYPE (p) = subtype;
+ DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
+ DECL_MODE (p) = VOIDmode;
+ DECL_SIZE (p) = NULL;
+ DECL_SIZE_UNIT (p) = NULL;
+ /* If this arg must go in memory, put it in a pseudo here.
+ We can't allow it to go in memory as per normal parms,
+ because the usual place might not have the imag part
+ adjacent to the real part. */
+ DECL_ARTIFICIAL (p) = addressable;
+ DECL_IGNORED_P (p) = addressable;
+ TREE_ADDRESSABLE (p) = 0;
+ layout_decl (p, 0);
+ (*args)[i] = p;
+
+ /* Build a second synthetic decl. */
+ decl = build_decl (EXPR_LOCATION (p),
+ PARM_DECL, NULL_TREE, subtype);
+ DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
+ DECL_ARTIFICIAL (decl) = addressable;
+ DECL_IGNORED_P (decl) = addressable;
+ layout_decl (decl, 0);
+ args->safe_insert (++i, decl);
+ }
+ }
+}
+
+/* A subroutine of assign_parms. Adjust the parameter list to incorporate
+ the hidden struct return argument, and (abi willing) complex args.
+ Return the new parameter list. */
+
+static vec<tree>
+assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
+{
+ tree fndecl = current_function_decl;
+ tree fntype = TREE_TYPE (fndecl);
+ vec<tree> fnargs = vNULL;
+ tree arg;
+
+ for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
+ fnargs.safe_push (arg);
+
+ all->orig_fnargs = DECL_ARGUMENTS (fndecl);
+
+ /* If struct value address is treated as the first argument, make it so. */
+ if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
+ && ! cfun->returns_pcc_struct
+ && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
+ {
+ tree type = build_pointer_type (TREE_TYPE (fntype));
+ tree decl;
+
+ decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
+ PARM_DECL, get_identifier (".result_ptr"), type);
+ DECL_ARG_TYPE (decl) = type;
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_NAMELESS (decl) = 1;
+ TREE_CONSTANT (decl) = 1;
+
+ DECL_CHAIN (decl) = all->orig_fnargs;
+ all->orig_fnargs = decl;
+ fnargs.safe_insert (0, decl);
+
+ all->function_result_decl = decl;
+ }
+
+ /* If the target wants to split complex arguments into scalars, do so. */
+ if (targetm.calls.split_complex_arg)
+ split_complex_args (&fnargs);
+
+ return fnargs;
+}
+
+/* A subroutine of assign_parms. Examine PARM and pull out type and mode
+ data for the parameter. Incorporate ABI specifics such as pass-by-
+ reference and type promotion. */
+
+static void
+assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
+ struct assign_parm_data_one *data)
+{
+ tree nominal_type, passed_type;
+ enum machine_mode nominal_mode, passed_mode, promoted_mode;
+ int unsignedp;
+
+ memset (data, 0, sizeof (*data));
+
+ /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
+ if (!cfun->stdarg)
+ data->named_arg = 1; /* No variadic parms. */
+ else if (DECL_CHAIN (parm))
+ data->named_arg = 1; /* Not the last non-variadic parm. */
+ else if (targetm.calls.strict_argument_naming (all->args_so_far))
+ data->named_arg = 1; /* Only variadic ones are unnamed. */
+ else
+ data->named_arg = 0; /* Treat as variadic. */
+
+ nominal_type = TREE_TYPE (parm);
+ passed_type = DECL_ARG_TYPE (parm);
+
+ /* Look out for errors propagating this far. Also, if the parameter's
+ type is void then its value doesn't matter. */
+ if (TREE_TYPE (parm) == error_mark_node
+ /* This can happen after weird syntax errors
+ or if an enum type is defined among the parms. */
+ || TREE_CODE (parm) != PARM_DECL
+ || passed_type == NULL
+ || VOID_TYPE_P (nominal_type))
+ {
+ nominal_type = passed_type = void_type_node;
+ nominal_mode = passed_mode = promoted_mode = VOIDmode;
+ goto egress;
+ }
+
+ /* Find mode of arg as it is passed, and mode of arg as it should be
+ during execution of this function. */
+ passed_mode = TYPE_MODE (passed_type);
+ nominal_mode = TYPE_MODE (nominal_type);
+
+ /* If the parm is to be passed as a transparent union or record, use the
+ type of the first field for the tests below. We have already verified
+ that the modes are the same. */
+ if ((TREE_CODE (passed_type) == UNION_TYPE
+ || TREE_CODE (passed_type) == RECORD_TYPE)
+ && TYPE_TRANSPARENT_AGGR (passed_type))
+ passed_type = TREE_TYPE (first_field (passed_type));
+
+ /* See if this arg was passed by invisible reference. */
+ if (pass_by_reference (&all->args_so_far_v, passed_mode,
+ passed_type, data->named_arg))
+ {
+ passed_type = nominal_type = build_pointer_type (passed_type);
+ data->passed_pointer = true;
+ passed_mode = nominal_mode = TYPE_MODE (nominal_type);
+ }
+
+ /* Find mode as it is passed by the ABI. */
+ unsignedp = TYPE_UNSIGNED (passed_type);
+ promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
+ TREE_TYPE (current_function_decl), 0);
+
+ egress:
+ data->nominal_type = nominal_type;
+ data->passed_type = passed_type;
+ data->nominal_mode = nominal_mode;
+ data->passed_mode = passed_mode;
+ data->promoted_mode = promoted_mode;
+}
+
+/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
+
+static void
+assign_parms_setup_varargs (struct assign_parm_data_all *all,
+ struct assign_parm_data_one *data, bool no_rtl)
+{
+ int varargs_pretend_bytes = 0;
+
+ targetm.calls.setup_incoming_varargs (all->args_so_far,
+ data->promoted_mode,
+ data->passed_type,
+ &varargs_pretend_bytes, no_rtl);
+
+ /* If the back-end has requested extra stack space, record how much is
+ needed. Do not change pretend_args_size otherwise since it may be
+ nonzero from an earlier partial argument. */
+ if (varargs_pretend_bytes > 0)
+ all->pretend_args_size = varargs_pretend_bytes;
+}
+
+/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
+ the incoming location of the current parameter. */
+
+static void
+assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
+ struct assign_parm_data_one *data)
+{
+ HOST_WIDE_INT pretend_bytes = 0;
+ rtx entry_parm;
+ bool in_regs;
+
+ if (data->promoted_mode == VOIDmode)
+ {
+ data->entry_parm = data->stack_parm = const0_rtx;
+ return;
+ }
+
+ entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
+ data->promoted_mode,
+ data->passed_type,
+ data->named_arg);
+
+ if (entry_parm == 0)
+ data->promoted_mode = data->passed_mode;
+
+ /* Determine parm's home in the stack, in case it arrives in the stack
+ or we should pretend it did. Compute the stack position and rtx where
+ the argument arrives and its size.
+
+ There is one complexity here: If this was a parameter that would
+ have been passed in registers, but wasn't only because it is
+ __builtin_va_alist, we want locate_and_pad_parm to treat it as if
+ it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
+ In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
+ as it was the previous time. */
+ in_regs = entry_parm != 0;
+#ifdef STACK_PARMS_IN_REG_PARM_AREA
+ in_regs = true;
+#endif
+ if (!in_regs && !data->named_arg)
+ {
+ if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
+ {
+ rtx tem;
+ tem = targetm.calls.function_incoming_arg (all->args_so_far,
+ data->promoted_mode,
+ data->passed_type, true);
+ in_regs = tem != NULL;
+ }
+ }
+
+ /* If this parameter was passed both in registers and in the stack, use
+ the copy on the stack. */
+ if (targetm.calls.must_pass_in_stack (data->promoted_mode,
+ data->passed_type))
+ entry_parm = 0;
+
+ if (entry_parm)
+ {
+ int partial;
+
+ partial = targetm.calls.arg_partial_bytes (all->args_so_far,
+ data->promoted_mode,
+ data->passed_type,
+ data->named_arg);
+ data->partial = partial;
+
+ /* The caller might already have allocated stack space for the
+ register parameters. */
+ if (partial != 0 && all->reg_parm_stack_space == 0)
+ {
+ /* Part of this argument is passed in registers and part
+ is passed on the stack. Ask the prologue code to extend
+ the stack part so that we can recreate the full value.
+
+ PRETEND_BYTES is the size of the registers we need to store.
+ CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
+ stack space that the prologue should allocate.
+
+ Internally, gcc assumes that the argument pointer is aligned
+ to STACK_BOUNDARY bits. This is used both for alignment
+ optimizations (see init_emit) and to locate arguments that are
+ aligned to more than PARM_BOUNDARY bits. We must preserve this
+ invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
+ a stack boundary. */
+
+ /* We assume at most one partial arg, and it must be the first
+ argument on the stack. */
+ gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
+
+ pretend_bytes = partial;
+ all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
+
+ /* We want to align relative to the actual stack pointer, so
+ don't include this in the stack size until later. */
+ all->extra_pretend_bytes = all->pretend_args_size;
+ }
+ }
+
+ locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
+ all->reg_parm_stack_space,
+ entry_parm ? data->partial : 0, current_function_decl,
+ &all->stack_args_size, &data->locate);
+
+ /* Update parm_stack_boundary if this parameter is passed in the
+ stack. */
+ if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
+ crtl->parm_stack_boundary = data->locate.boundary;
+
+ /* Adjust offsets to include the pretend args. */
+ pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
+ data->locate.slot_offset.constant += pretend_bytes;
+ data->locate.offset.constant += pretend_bytes;
+
+ data->entry_parm = entry_parm;
+}
+
+/* A subroutine of assign_parms. If there is actually space on the stack
+ for this parm, count it in stack_args_size and return true. */
+
+static bool
+assign_parm_is_stack_parm (struct assign_parm_data_all *all,
+ struct assign_parm_data_one *data)
+{
+ /* Trivially true if we've no incoming register. */
+ if (data->entry_parm == NULL)
+ ;
+ /* Also true if we're partially in registers and partially not,
+ since we've arranged to drop the entire argument on the stack. */
+ else if (data->partial != 0)
+ ;
+ /* Also true if the target says that it's passed in both registers
+ and on the stack. */
+ else if (GET_CODE (data->entry_parm) == PARALLEL
+ && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
+ ;
+ /* Also true if the target says that there's stack allocated for
+ all register parameters. */
+ else if (all->reg_parm_stack_space > 0)
+ ;
+ /* Otherwise, no, this parameter has no ABI defined stack slot. */
+ else
+ return false;
+
+ all->stack_args_size.constant += data->locate.size.constant;
+ if (data->locate.size.var)
+ ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
+
+ return true;
+}
+
+/* A subroutine of assign_parms. Given that this parameter is allocated
+ stack space by the ABI, find it. */
+
+static void
+assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
+{
+ rtx offset_rtx, stack_parm;
+ unsigned int align, boundary;
+
+ /* If we're passing this arg using a reg, make its stack home the
+ aligned stack slot. */
+ if (data->entry_parm)
+ offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
+ else
+ offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
+
+ stack_parm = crtl->args.internal_arg_pointer;
+ if (offset_rtx != const0_rtx)
+ stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
+ stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
+
+ if (!data->passed_pointer)
+ {
+ set_mem_attributes (stack_parm, parm, 1);
+ /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
+ while promoted mode's size is needed. */
+ if (data->promoted_mode != BLKmode
+ && data->promoted_mode != DECL_MODE (parm))
+ {
+ set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
+ if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
+ {
+ int offset = subreg_lowpart_offset (DECL_MODE (parm),
+ data->promoted_mode);
+ if (offset)
+ set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
+ }
+ }
+ }
+
+ boundary = data->locate.boundary;
+ align = BITS_PER_UNIT;
+
+ /* If we're padding upward, we know that the alignment of the slot
+ is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
+ intentionally forcing upward padding. Otherwise we have to come
+ up with a guess at the alignment based on OFFSET_RTX. */
+ if (data->locate.where_pad != downward || data->entry_parm)
+ align = boundary;
+ else if (CONST_INT_P (offset_rtx))
+ {
+ align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
+ align = align & -align;
+ }
+ set_mem_align (stack_parm, align);
+
+ if (data->entry_parm)
+ set_reg_attrs_for_parm (data->entry_parm, stack_parm);
+
+ data->stack_parm = stack_parm;
+}
+
+/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
+ always valid and contiguous. */
+
+static void
+assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
+{
+ rtx entry_parm = data->entry_parm;
+ rtx stack_parm = data->stack_parm;
+
+ /* If this parm was passed part in regs and part in memory, pretend it
+ arrived entirely in memory by pushing the register-part onto the stack.
+ In the special case of a DImode or DFmode that is split, we could put
+ it together in a pseudoreg directly, but for now that's not worth
+ bothering with. */
+ if (data->partial != 0)
+ {
+ /* Handle calls that pass values in multiple non-contiguous
+ locations. The Irix 6 ABI has examples of this. */
+ if (GET_CODE (entry_parm) == PARALLEL)
+ emit_group_store (validize_mem (stack_parm), entry_parm,
+ data->passed_type,
+ int_size_in_bytes (data->passed_type));
+ else
+ {
+ gcc_assert (data->partial % UNITS_PER_WORD == 0);
+ move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
+ data->partial / UNITS_PER_WORD);
+ }
+
+ entry_parm = stack_parm;
+ }
+
+ /* If we didn't decide this parm came in a register, by default it came
+ on the stack. */
+ else if (entry_parm == NULL)
+ entry_parm = stack_parm;
+
+ /* When an argument is passed in multiple locations, we can't make use
+ of this information, but we can save some copying if the whole argument
+ is passed in a single register. */
+ else if (GET_CODE (entry_parm) == PARALLEL
+ && data->nominal_mode != BLKmode
+ && data->passed_mode != BLKmode)
+ {
+ size_t i, len = XVECLEN (entry_parm, 0);
+
+ for (i = 0; i < len; i++)
+ if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
+ && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
+ && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
+ == data->passed_mode)
+ && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
+ {
+ entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
+ break;
+ }
+ }
+
+ data->entry_parm = entry_parm;
+}
+
+/* A subroutine of assign_parms. Reconstitute any values which were
+ passed in multiple registers and would fit in a single register. */
+
+static void
+assign_parm_remove_parallels (struct assign_parm_data_one *data)
+{
+ rtx entry_parm = data->entry_parm;
+
+ /* Convert the PARALLEL to a REG of the same mode as the parallel.
+ This can be done with register operations rather than on the
+ stack, even if we will store the reconstituted parameter on the
+ stack later. */
+ if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
+ {
+ rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
+ emit_group_store (parmreg, entry_parm, data->passed_type,
+ GET_MODE_SIZE (GET_MODE (entry_parm)));
+ entry_parm = parmreg;
+ }
+
+ data->entry_parm = entry_parm;
+}
+
+/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
+ always valid and properly aligned. */
+
+static void
+assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
+{
+ rtx stack_parm = data->stack_parm;
+
+ /* If we can't trust the parm stack slot to be aligned enough for its
+ ultimate type, don't use that slot after entry. We'll make another
+ stack slot, if we need one. */
+ if (stack_parm
+ && ((STRICT_ALIGNMENT
+ && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
+ || (data->nominal_type
+ && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
+ && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
+ stack_parm = NULL;
+
+ /* If parm was passed in memory, and we need to convert it on entry,
+ don't store it back in that same slot. */
+ else if (data->entry_parm == stack_parm
+ && data->nominal_mode != BLKmode
+ && data->nominal_mode != data->passed_mode)
+ stack_parm = NULL;
+
+ /* If stack protection is in effect for this function, don't leave any
+ pointers in their passed stack slots. */
+ else if (crtl->stack_protect_guard
+ && (flag_stack_protect == 2
+ || data->passed_pointer
+ || POINTER_TYPE_P (data->nominal_type)))
+ stack_parm = NULL;
+
+ data->stack_parm = stack_parm;
+}
+
+/* A subroutine of assign_parms. Return true if the current parameter
+ should be stored as a BLKmode in the current frame. */
+
+static bool
+assign_parm_setup_block_p (struct assign_parm_data_one *data)
+{
+ if (data->nominal_mode == BLKmode)
+ return true;
+ if (GET_MODE (data->entry_parm) == BLKmode)
+ return true;
+
+#ifdef BLOCK_REG_PADDING
+ /* Only assign_parm_setup_block knows how to deal with register arguments
+ that are padded at the least significant end. */
+ if (REG_P (data->entry_parm)
+ && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
+ && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
+ == (BYTES_BIG_ENDIAN ? upward : downward)))
+ return true;
+#endif
+
+ return false;
+}
+
+/* A subroutine of assign_parms. Arrange for the parameter to be
+ present and valid in DATA->STACK_RTL. */
+
+static void
+assign_parm_setup_block (struct assign_parm_data_all *all,
+ tree parm, struct assign_parm_data_one *data)
+{
+ rtx entry_parm = data->entry_parm;
+ rtx stack_parm = data->stack_parm;
+ HOST_WIDE_INT size;
+ HOST_WIDE_INT size_stored;
+
+ if (GET_CODE (entry_parm) == PARALLEL)
+ entry_parm = emit_group_move_into_temps (entry_parm);
+
+ size = int_size_in_bytes (data->passed_type);
+ size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
+ if (stack_parm == 0)
+ {
+ DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
+ stack_parm = assign_stack_local (BLKmode, size_stored,
+ DECL_ALIGN (parm));
+ if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
+ PUT_MODE (stack_parm, GET_MODE (entry_parm));
+ set_mem_attributes (stack_parm, parm, 1);
+ }
+
+ /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
+ calls that pass values in multiple non-contiguous locations. */
+ if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
+ {
+ rtx mem;
+
+ /* Note that we will be storing an integral number of words.
+ So we have to be careful to ensure that we allocate an
+ integral number of words. We do this above when we call
+ assign_stack_local if space was not allocated in the argument
+ list. If it was, this will not work if PARM_BOUNDARY is not
+ a multiple of BITS_PER_WORD. It isn't clear how to fix this
+ if it becomes a problem. Exception is when BLKmode arrives
+ with arguments not conforming to word_mode. */
+
+ if (data->stack_parm == 0)
+ ;
+ else if (GET_CODE (entry_parm) == PARALLEL)
+ ;
+ else
+ gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
+
+ mem = validize_mem (stack_parm);
+
+ /* Handle values in multiple non-contiguous locations. */
+ if (GET_CODE (entry_parm) == PARALLEL)
+ {
+ push_to_sequence2 (all->first_conversion_insn,
+ all->last_conversion_insn);
+ emit_group_store (mem, entry_parm, data->passed_type, size);
+ all->first_conversion_insn = get_insns ();
+ all->last_conversion_insn = get_last_insn ();
+ end_sequence ();
+ }
+
+ else if (size == 0)
+ ;
+
+ /* If SIZE is that of a mode no bigger than a word, just use
+ that mode's store operation. */
+ else if (size <= UNITS_PER_WORD)
+ {
+ enum machine_mode mode
+ = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
+
+ if (mode != BLKmode
+#ifdef BLOCK_REG_PADDING
+ && (size == UNITS_PER_WORD
+ || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
+ != (BYTES_BIG_ENDIAN ? upward : downward)))
+#endif
+ )
+ {
+ rtx reg;
+
+ /* We are really truncating a word_mode value containing
+ SIZE bytes into a value of mode MODE. If such an
+ operation requires no actual instructions, we can refer
+ to the value directly in mode MODE, otherwise we must
+ start with the register in word_mode and explicitly
+ convert it. */
+ if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
+ reg = gen_rtx_REG (mode, REGNO (entry_parm));
+ else
+ {
+ reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
+ reg = convert_to_mode (mode, copy_to_reg (reg), 1);
+ }
+ emit_move_insn (change_address (mem, mode, 0), reg);
+ }
+
+ /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
+ machine must be aligned to the left before storing
+ to memory. Note that the previous test doesn't
+ handle all cases (e.g. SIZE == 3). */
+ else if (size != UNITS_PER_WORD
+#ifdef BLOCK_REG_PADDING
+ && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
+ == downward)
+#else
+ && BYTES_BIG_ENDIAN
+#endif
+ )
+ {
+ rtx tem, x;
+ int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
+ rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
+
+ x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
+ tem = change_address (mem, word_mode, 0);
+ emit_move_insn (tem, x);
+ }
+ else
+ move_block_from_reg (REGNO (entry_parm), mem,
+ size_stored / UNITS_PER_WORD);
+ }
+ else
+ move_block_from_reg (REGNO (entry_parm), mem,
+ size_stored / UNITS_PER_WORD);
+ }
+ else if (data->stack_parm == 0)
+ {
+ push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
+ emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
+ BLOCK_OP_NORMAL);
+ all->first_conversion_insn = get_insns ();
+ all->last_conversion_insn = get_last_insn ();
+ end_sequence ();
+ }
+
+ data->stack_parm = stack_parm;
+ SET_DECL_RTL (parm, stack_parm);
+}
+
+/* A subroutine of assign_parms. Allocate a pseudo to hold the current
+ parameter. Get it there. Perform all ABI specified conversions. */
+
+static void
+assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
+ struct assign_parm_data_one *data)
+{
+ rtx parmreg, validated_mem;
+ rtx equiv_stack_parm;
+ enum machine_mode promoted_nominal_mode;
+ int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
+ bool did_conversion = false;
+ bool need_conversion, moved;
+
+ /* Store the parm in a pseudoregister during the function, but we may
+ need to do it in a wider mode. Using 2 here makes the result
+ consistent with promote_decl_mode and thus expand_expr_real_1. */
+ promoted_nominal_mode
+ = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
+ TREE_TYPE (current_function_decl), 2);
+
+ parmreg = gen_reg_rtx (promoted_nominal_mode);
+
+ if (!DECL_ARTIFICIAL (parm))
+ mark_user_reg (parmreg);
+
+ /* If this was an item that we received a pointer to,
+ set DECL_RTL appropriately. */
+ if (data->passed_pointer)
+ {
+ rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
+ set_mem_attributes (x, parm, 1);
+ SET_DECL_RTL (parm, x);
+ }
+ else
+ SET_DECL_RTL (parm, parmreg);
+
+ assign_parm_remove_parallels (data);
+
+ /* Copy the value into the register, thus bridging between
+ assign_parm_find_data_types and expand_expr_real_1. */
+
+ equiv_stack_parm = data->stack_parm;
+ validated_mem = validize_mem (data->entry_parm);
+
+ need_conversion = (data->nominal_mode != data->passed_mode
+ || promoted_nominal_mode != data->promoted_mode);
+ moved = false;
+
+ if (need_conversion
+ && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
+ && data->nominal_mode == data->passed_mode
+ && data->nominal_mode == GET_MODE (data->entry_parm))
+ {
+ /* ENTRY_PARM has been converted to PROMOTED_MODE, its
+ mode, by the caller. We now have to convert it to
+ NOMINAL_MODE, if different. However, PARMREG may be in
+ a different mode than NOMINAL_MODE if it is being stored
+ promoted.
+
+ If ENTRY_PARM is a hard register, it might be in a register
+ not valid for operating in its mode (e.g., an odd-numbered
+ register for a DFmode). In that case, moves are the only
+ thing valid, so we can't do a convert from there. This
+ occurs when the calling sequence allow such misaligned
+ usages.
+
+ In addition, the conversion may involve a call, which could
+ clobber parameters which haven't been copied to pseudo
+ registers yet.
+
+ First, we try to emit an insn which performs the necessary
+ conversion. We verify that this insn does not clobber any
+ hard registers. */
+
+ enum insn_code icode;
+ rtx op0, op1;
+
+ icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
+ unsignedp);
+
+ op0 = parmreg;
+ op1 = validated_mem;
+ if (icode != CODE_FOR_nothing
+ && insn_operand_matches (icode, 0, op0)
+ && insn_operand_matches (icode, 1, op1))
+ {
+ enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
+ rtx insn, insns, t = op1;
+ HARD_REG_SET hardregs;
+
+ start_sequence ();
+ /* If op1 is a hard register that is likely spilled, first
+ force it into a pseudo, otherwise combiner might extend
+ its lifetime too much. */
+ if (GET_CODE (t) == SUBREG)
+ t = SUBREG_REG (t);
+ if (REG_P (t)
+ && HARD_REGISTER_P (t)
+ && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
+ && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
+ {
+ t = gen_reg_rtx (GET_MODE (op1));
+ emit_move_insn (t, op1);
+ }
+ else
+ t = op1;
+ insn = gen_extend_insn (op0, t, promoted_nominal_mode,
+ data->passed_mode, unsignedp);
+ emit_insn (insn);
+ insns = get_insns ();
+
+ moved = true;
+ CLEAR_HARD_REG_SET (hardregs);
+ for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
+ {
+ if (INSN_P (insn))
+ note_stores (PATTERN (insn), record_hard_reg_sets,
+ &hardregs);
+ if (!hard_reg_set_empty_p (hardregs))
+ moved = false;
+ }
+
+ end_sequence ();
+
+ if (moved)
+ {
+ emit_insn (insns);
+ if (equiv_stack_parm != NULL_RTX)
+ equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
+ equiv_stack_parm);
+ }
+ }
+ }
+
+ if (moved)
+ /* Nothing to do. */
+ ;
+ else if (need_conversion)
+ {
+ /* We did not have an insn to convert directly, or the sequence
+ generated appeared unsafe. We must first copy the parm to a
+ pseudo reg, and save the conversion until after all
+ parameters have been moved. */
+
+ int save_tree_used;
+ rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
+
+ emit_move_insn (tempreg, validated_mem);
+
+ push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
+ tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
+
+ if (GET_CODE (tempreg) == SUBREG
+ && GET_MODE (tempreg) == data->nominal_mode
+ && REG_P (SUBREG_REG (tempreg))
+ && data->nominal_mode == data->passed_mode
+ && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
+ && GET_MODE_SIZE (GET_MODE (tempreg))
+ < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
+ {
+ /* The argument is already sign/zero extended, so note it
+ into the subreg. */
+ SUBREG_PROMOTED_VAR_P (tempreg) = 1;
+ SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
+ }
+
+ /* TREE_USED gets set erroneously during expand_assignment. */
+ save_tree_used = TREE_USED (parm);
+ expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
+ TREE_USED (parm) = save_tree_used;
+ all->first_conversion_insn = get_insns ();
+ all->last_conversion_insn = get_last_insn ();
+ end_sequence ();
+
+ did_conversion = true;
+ }
+ else
+ emit_move_insn (parmreg, validated_mem);
+
+ /* If we were passed a pointer but the actual value can safely live
+ in a register, retrieve it and use it directly. */
+ if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
+ {
+ /* We can't use nominal_mode, because it will have been set to
+ Pmode above. We must use the actual mode of the parm. */
+ if (use_register_for_decl (parm))
+ {
+ parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
+ mark_user_reg (parmreg);
+ }
+ else
+ {
+ int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
+ TYPE_MODE (TREE_TYPE (parm)),
+ TYPE_ALIGN (TREE_TYPE (parm)));
+ parmreg
+ = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
+ GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
+ align);
+ set_mem_attributes (parmreg, parm, 1);
+ }
+
+ if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
+ {
+ rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
+ int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
+
+ push_to_sequence2 (all->first_conversion_insn,
+ all->last_conversion_insn);
+ emit_move_insn (tempreg, DECL_RTL (parm));
+ tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
+ emit_move_insn (parmreg, tempreg);
+ all->first_conversion_insn = get_insns ();
+ all->last_conversion_insn = get_last_insn ();
+ end_sequence ();
+
+ did_conversion = true;
+ }
+ else
+ emit_move_insn (parmreg, DECL_RTL (parm));
+
+ SET_DECL_RTL (parm, parmreg);
+
+ /* STACK_PARM is the pointer, not the parm, and PARMREG is
+ now the parm. */
+ data->stack_parm = NULL;
+ }
+
+ /* Mark the register as eliminable if we did no conversion and it was
+ copied from memory at a fixed offset, and the arg pointer was not
+ copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
+ offset formed an invalid address, such memory-equivalences as we
+ make here would screw up life analysis for it. */
+ if (data->nominal_mode == data->passed_mode
+ && !did_conversion
+ && data->stack_parm != 0
+ && MEM_P (data->stack_parm)
+ && data->locate.offset.var == 0
+ && reg_mentioned_p (virtual_incoming_args_rtx,
+ XEXP (data->stack_parm, 0)))
+ {
+ rtx linsn = get_last_insn ();
+ rtx sinsn, set;
+
+ /* Mark complex types separately. */
+ if (GET_CODE (parmreg) == CONCAT)
+ {
+ enum machine_mode submode
+ = GET_MODE_INNER (GET_MODE (parmreg));
+ int regnor = REGNO (XEXP (parmreg, 0));
+ int regnoi = REGNO (XEXP (parmreg, 1));
+ rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
+ rtx stacki = adjust_address_nv (data->stack_parm, submode,
+ GET_MODE_SIZE (submode));
+
+ /* Scan backwards for the set of the real and
+ imaginary parts. */
+ for (sinsn = linsn; sinsn != 0;
+ sinsn = prev_nonnote_insn (sinsn))
+ {
+ set = single_set (sinsn);
+ if (set == 0)
+ continue;
+
+ if (SET_DEST (set) == regno_reg_rtx [regnoi])
+ set_unique_reg_note (sinsn, REG_EQUIV, stacki);
+ else if (SET_DEST (set) == regno_reg_rtx [regnor])
+ set_unique_reg_note (sinsn, REG_EQUIV, stackr);
+ }
+ }
+ else
+ set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
+ }
+
+ /* For pointer data type, suggest pointer register. */
+ if (POINTER_TYPE_P (TREE_TYPE (parm)))
+ mark_reg_pointer (parmreg,
+ TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
+}
+
+/* A subroutine of assign_parms. Allocate stack space to hold the current
+ parameter. Get it there. Perform all ABI specified conversions. */
+
+static void
+assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
+ struct assign_parm_data_one *data)
+{
+ /* Value must be stored in the stack slot STACK_PARM during function
+ execution. */
+ bool to_conversion = false;
+
+ assign_parm_remove_parallels (data);
+
+ if (data->promoted_mode != data->nominal_mode)
+ {
+ /* Conversion is required. */
+ rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
+
+ emit_move_insn (tempreg, validize_mem (data->entry_parm));
+
+ push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
+ to_conversion = true;
+
+ data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
+ TYPE_UNSIGNED (TREE_TYPE (parm)));
+
+ if (data->stack_parm)
+ {
+ int offset = subreg_lowpart_offset (data->nominal_mode,
+ GET_MODE (data->stack_parm));
+ /* ??? This may need a big-endian conversion on sparc64. */
+ data->stack_parm
+ = adjust_address (data->stack_parm, data->nominal_mode, 0);
+ if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
+ set_mem_offset (data->stack_parm,
+ MEM_OFFSET (data->stack_parm) + offset);
+ }
+ }
+
+ if (data->entry_parm != data->stack_parm)
+ {
+ rtx src, dest;
+
+ if (data->stack_parm == 0)
+ {
+ int align = STACK_SLOT_ALIGNMENT (data->passed_type,
+ GET_MODE (data->entry_parm),
+ TYPE_ALIGN (data->passed_type));
+ data->stack_parm
+ = assign_stack_local (GET_MODE (data->entry_parm),
+ GET_MODE_SIZE (GET_MODE (data->entry_parm)),
+ align);
+ set_mem_attributes (data->stack_parm, parm, 1);
+ }
+
+ dest = validize_mem (data->stack_parm);
+ src = validize_mem (data->entry_parm);
+
+ if (MEM_P (src))
+ {
+ /* Use a block move to handle potentially misaligned entry_parm. */
+ if (!to_conversion)
+ push_to_sequence2 (all->first_conversion_insn,
+ all->last_conversion_insn);
+ to_conversion = true;
+
+ emit_block_move (dest, src,
+ GEN_INT (int_size_in_bytes (data->passed_type)),
+ BLOCK_OP_NORMAL);
+ }
+ else
+ emit_move_insn (dest, src);
+ }
+
+ if (to_conversion)
+ {
+ all->first_conversion_insn = get_insns ();
+ all->last_conversion_insn = get_last_insn ();
+ end_sequence ();
+ }
+
+ SET_DECL_RTL (parm, data->stack_parm);
+}
+
+/* A subroutine of assign_parms. If the ABI splits complex arguments, then
+ undo the frobbing that we did in assign_parms_augmented_arg_list. */
+
+static void
+assign_parms_unsplit_complex (struct assign_parm_data_all *all,
+ vec<tree> fnargs)
+{
+ tree parm;
+ tree orig_fnargs = all->orig_fnargs;
+ unsigned i = 0;
+
+ for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
+ {
+ if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
+ && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
+ {
+ rtx tmp, real, imag;
+ enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
+
+ real = DECL_RTL (fnargs[i]);
+ imag = DECL_RTL (fnargs[i + 1]);
+ if (inner != GET_MODE (real))
+ {
+ real = gen_lowpart_SUBREG (inner, real);
+ imag = gen_lowpart_SUBREG (inner, imag);
+ }
+
+ if (TREE_ADDRESSABLE (parm))
+ {
+ rtx rmem, imem;
+ HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
+ int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
+ DECL_MODE (parm),
+ TYPE_ALIGN (TREE_TYPE (parm)));
+
+ /* split_complex_arg put the real and imag parts in
+ pseudos. Move them to memory. */
+ tmp = assign_stack_local (DECL_MODE (parm), size, align);
+ set_mem_attributes (tmp, parm, 1);
+ rmem = adjust_address_nv (tmp, inner, 0);
+ imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
+ push_to_sequence2 (all->first_conversion_insn,
+ all->last_conversion_insn);
+ emit_move_insn (rmem, real);
+ emit_move_insn (imem, imag);
+ all->first_conversion_insn = get_insns ();
+ all->last_conversion_insn = get_last_insn ();
+ end_sequence ();
+ }
+ else
+ tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
+ SET_DECL_RTL (parm, tmp);
+
+ real = DECL_INCOMING_RTL (fnargs[i]);
+ imag = DECL_INCOMING_RTL (fnargs[i + 1]);
+ if (inner != GET_MODE (real))
+ {
+ real = gen_lowpart_SUBREG (inner, real);
+ imag = gen_lowpart_SUBREG (inner, imag);
+ }
+ tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
+ set_decl_incoming_rtl (parm, tmp, false);
+ i++;
+ }
+ }
+}
+
+/* Assign RTL expressions to the function's parameters. This may involve
+ copying them into registers and using those registers as the DECL_RTL. */
+
+static void
+assign_parms (tree fndecl)
+{
+ struct assign_parm_data_all all;
+ tree parm;
+ vec<tree> fnargs;
+ unsigned i;
+
+ crtl->args.internal_arg_pointer
+ = targetm.calls.internal_arg_pointer ();
+
+ assign_parms_initialize_all (&all);
+ fnargs = assign_parms_augmented_arg_list (&all);
+
+ FOR_EACH_VEC_ELT (fnargs, i, parm)
+ {
+ struct assign_parm_data_one data;
+
+ /* Extract the type of PARM; adjust it according to ABI. */
+ assign_parm_find_data_types (&all, parm, &data);
+
+ /* Early out for errors and void parameters. */
+ if (data.passed_mode == VOIDmode)
+ {
+ SET_DECL_RTL (parm, const0_rtx);
+ DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
+ continue;
+ }
+
+ /* Estimate stack alignment from parameter alignment. */
+ if (SUPPORTS_STACK_ALIGNMENT)
+ {
+ unsigned int align
+ = targetm.calls.function_arg_boundary (data.promoted_mode,
+ data.passed_type);
+ align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
+ align);
+ if (TYPE_ALIGN (data.nominal_type) > align)
+ align = MINIMUM_ALIGNMENT (data.nominal_type,
+ TYPE_MODE (data.nominal_type),
+ TYPE_ALIGN (data.nominal_type));
+ if (crtl->stack_alignment_estimated < align)
+ {
+ gcc_assert (!crtl->stack_realign_processed);
+ crtl->stack_alignment_estimated = align;
+ }
+ }
+
+ if (cfun->stdarg && !DECL_CHAIN (parm))
+ assign_parms_setup_varargs (&all, &data, false);
+
+ /* Find out where the parameter arrives in this function. */
+ assign_parm_find_entry_rtl (&all, &data);
+
+ /* Find out where stack space for this parameter might be. */
+ if (assign_parm_is_stack_parm (&all, &data))
+ {
+ assign_parm_find_stack_rtl (parm, &data);
+ assign_parm_adjust_entry_rtl (&data);
+ }
+
+ /* Record permanently how this parm was passed. */
+ if (data.passed_pointer)
+ {
+ rtx incoming_rtl
+ = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
+ data.entry_parm);
+ set_decl_incoming_rtl (parm, incoming_rtl, true);
+ }
+ else
+ set_decl_incoming_rtl (parm, data.entry_parm, false);
+
+ /* Update info on where next arg arrives in registers. */
+ targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
+ data.passed_type, data.named_arg);
+
+ assign_parm_adjust_stack_rtl (&data);
+
+ if (assign_parm_setup_block_p (&data))
+ assign_parm_setup_block (&all, parm, &data);
+ else if (data.passed_pointer || use_register_for_decl (parm))
+ assign_parm_setup_reg (&all, parm, &data);
+ else
+ assign_parm_setup_stack (&all, parm, &data);
+ }
+
+ if (targetm.calls.split_complex_arg)
+ assign_parms_unsplit_complex (&all, fnargs);
+
+ fnargs.release ();
+
+ /* Output all parameter conversion instructions (possibly including calls)
+ now that all parameters have been copied out of hard registers. */
+ emit_insn (all.first_conversion_insn);
+
+ /* Estimate reload stack alignment from scalar return mode. */
+ if (SUPPORTS_STACK_ALIGNMENT)
+ {
+ if (DECL_RESULT (fndecl))
+ {
+ tree type = TREE_TYPE (DECL_RESULT (fndecl));
+ enum machine_mode mode = TYPE_MODE (type);
+
+ if (mode != BLKmode
+ && mode != VOIDmode
+ && !AGGREGATE_TYPE_P (type))
+ {
+ unsigned int align = GET_MODE_ALIGNMENT (mode);
+ if (crtl->stack_alignment_estimated < align)
+ {
+ gcc_assert (!crtl->stack_realign_processed);
+ crtl->stack_alignment_estimated = align;
+ }
+ }
+ }
+ }
+
+ /* If we are receiving a struct value address as the first argument, set up
+ the RTL for the function result. As this might require code to convert
+ the transmitted address to Pmode, we do this here to ensure that possible
+ preliminary conversions of the address have been emitted already. */
+ if (all.function_result_decl)
+ {
+ tree result = DECL_RESULT (current_function_decl);
+ rtx addr = DECL_RTL (all.function_result_decl);
+ rtx x;
+
+ if (DECL_BY_REFERENCE (result))
+ {
+ SET_DECL_VALUE_EXPR (result, all.function_result_decl);
+ x = addr;
+ }
+ else
+ {
+ SET_DECL_VALUE_EXPR (result,
+ build1 (INDIRECT_REF, TREE_TYPE (result),
+ all.function_result_decl));
+ addr = convert_memory_address (Pmode, addr);
+ x = gen_rtx_MEM (DECL_MODE (result), addr);
+ set_mem_attributes (x, result, 1);
+ }
+
+ DECL_HAS_VALUE_EXPR_P (result) = 1;
+
+ SET_DECL_RTL (result, x);
+ }
+
+ /* We have aligned all the args, so add space for the pretend args. */
+ crtl->args.pretend_args_size = all.pretend_args_size;
+ all.stack_args_size.constant += all.extra_pretend_bytes;
+ crtl->args.size = all.stack_args_size.constant;
+
+ /* Adjust function incoming argument size for alignment and
+ minimum length. */
+
+ crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
+ crtl->args.size = CEIL_ROUND (crtl->args.size,
+ PARM_BOUNDARY / BITS_PER_UNIT);
+
+#ifdef ARGS_GROW_DOWNWARD
+ crtl->args.arg_offset_rtx
+ = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
+ : expand_expr (size_diffop (all.stack_args_size.var,
+ size_int (-all.stack_args_size.constant)),
+ NULL_RTX, VOIDmode, EXPAND_NORMAL));
+#else
+ crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
+#endif
+
+ /* See how many bytes, if any, of its args a function should try to pop
+ on return. */
+
+ crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
+ TREE_TYPE (fndecl),
+ crtl->args.size);
+
+ /* For stdarg.h function, save info about
+ regs and stack space used by the named args. */
+
+ crtl->args.info = all.args_so_far_v;
+
+ /* Set the rtx used for the function return value. Put this in its
+ own variable so any optimizers that need this information don't have
+ to include tree.h. Do this here so it gets done when an inlined
+ function gets output. */
+
+ crtl->return_rtx
+ = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
+ ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
+
+ /* If scalar return value was computed in a pseudo-reg, or was a named
+ return value that got dumped to the stack, copy that to the hard
+ return register. */
+ if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
+ {
+ tree decl_result = DECL_RESULT (fndecl);
+ rtx decl_rtl = DECL_RTL (decl_result);
+
+ if (REG_P (decl_rtl)
+ ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
+ : DECL_REGISTER (decl_result))
+ {
+ rtx real_decl_rtl;
+
+ real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
+ fndecl, true);
+ REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
+ /* The delay slot scheduler assumes that crtl->return_rtx
+ holds the hard register containing the return value, not a
+ temporary pseudo. */
+ crtl->return_rtx = real_decl_rtl;
+ }
+ }
+}
+
+/* A subroutine of gimplify_parameters, invoked via walk_tree.
+ For all seen types, gimplify their sizes. */
+
+static tree
+gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
+{
+ tree t = *tp;
+
+ *walk_subtrees = 0;
+ if (TYPE_P (t))
+ {
+ if (POINTER_TYPE_P (t))
+ *walk_subtrees = 1;
+ else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
+ && !TYPE_SIZES_GIMPLIFIED (t))
+ {
+ gimplify_type_sizes (t, (gimple_seq *) data);
+ *walk_subtrees = 1;
+ }
+ }
+
+ return NULL;
+}
+
+/* Gimplify the parameter list for current_function_decl. This involves
+ evaluating SAVE_EXPRs of variable sized parameters and generating code
+ to implement callee-copies reference parameters. Returns a sequence of
+ statements to add to the beginning of the function. */
+
+gimple_seq
+gimplify_parameters (void)
+{
+ struct assign_parm_data_all all;
+ tree parm;
+ gimple_seq stmts = NULL;
+ vec<tree> fnargs;
+ unsigned i;
+
+ assign_parms_initialize_all (&all);
+ fnargs = assign_parms_augmented_arg_list (&all);
+
+ FOR_EACH_VEC_ELT (fnargs, i, parm)
+ {
+ struct assign_parm_data_one data;
+
+ /* Extract the type of PARM; adjust it according to ABI. */
+ assign_parm_find_data_types (&all, parm, &data);
+
+ /* Early out for errors and void parameters. */
+ if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
+ continue;
+
+ /* Update info on where next arg arrives in registers. */
+ targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
+ data.passed_type, data.named_arg);
+
+ /* ??? Once upon a time variable_size stuffed parameter list
+ SAVE_EXPRs (amongst others) onto a pending sizes list. This
+ turned out to be less than manageable in the gimple world.
+ Now we have to hunt them down ourselves. */
+ walk_tree_without_duplicates (&data.passed_type,
+ gimplify_parm_type, &stmts);
+
+ if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
+ {
+ gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
+ gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
+ }
+
+ if (data.passed_pointer)
+ {
+ tree type = TREE_TYPE (data.passed_type);
+ if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
+ type, data.named_arg))
+ {
+ tree local, t;
+
+ /* For constant-sized objects, this is trivial; for
+ variable-sized objects, we have to play games. */
+ if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
+ && !(flag_stack_check == GENERIC_STACK_CHECK
+ && compare_tree_int (DECL_SIZE_UNIT (parm),
+ STACK_CHECK_MAX_VAR_SIZE) > 0))
+ {
+ local = create_tmp_var (type, get_name (parm));
+ DECL_IGNORED_P (local) = 0;
+ /* If PARM was addressable, move that flag over
+ to the local copy, as its address will be taken,
+ not the PARMs. Keep the parms address taken
+ as we'll query that flag during gimplification. */
+ if (TREE_ADDRESSABLE (parm))
+ TREE_ADDRESSABLE (local) = 1;
+ else if (TREE_CODE (type) == COMPLEX_TYPE
+ || TREE_CODE (type) == VECTOR_TYPE)
+ DECL_GIMPLE_REG_P (local) = 1;
+ }
+ else
+ {
+ tree ptr_type, addr;
+
+ ptr_type = build_pointer_type (type);
+ addr = create_tmp_reg (ptr_type, get_name (parm));
+ DECL_IGNORED_P (addr) = 0;
+ local = build_fold_indirect_ref (addr);
+
+ t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
+ t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
+ size_int (DECL_ALIGN (parm)));
+
+ /* The call has been built for a variable-sized object. */
+ CALL_ALLOCA_FOR_VAR_P (t) = 1;
+ t = fold_convert (ptr_type, t);
+ t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
+ gimplify_and_add (t, &stmts);
+ }
+
+ gimplify_assign (local, parm, &stmts);
+
+ SET_DECL_VALUE_EXPR (parm, local);
+ DECL_HAS_VALUE_EXPR_P (parm) = 1;
+ }
+ }
+ }
+
+ fnargs.release ();
+
+ return stmts;
+}
+
+/* Compute the size and offset from the start of the stacked arguments for a
+ parm passed in mode PASSED_MODE and with type TYPE.
+
+ INITIAL_OFFSET_PTR points to the current offset into the stacked
+ arguments.
+
+ The starting offset and size for this parm are returned in
+ LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
+ nonzero, the offset is that of stack slot, which is returned in
+ LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
+ padding required from the initial offset ptr to the stack slot.
+
+ IN_REGS is nonzero if the argument will be passed in registers. It will
+ never be set if REG_PARM_STACK_SPACE is not defined.
+
+ REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
+ for arguments which are passed in registers.
+
+ FNDECL is the function in which the argument was defined.
+
+ There are two types of rounding that are done. The first, controlled by
+ TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
+ argument list to be aligned to the specific boundary (in bits). This
+ rounding affects the initial and starting offsets, but not the argument
+ size.
+
+ The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
+ optionally rounds the size of the parm to PARM_BOUNDARY. The
+ initial offset is not affected by this rounding, while the size always
+ is and the starting offset may be. */
+
+/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
+ INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
+ callers pass in the total size of args so far as
+ INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
+
+void
+locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
+ int reg_parm_stack_space, int partial,
+ tree fndecl ATTRIBUTE_UNUSED,
+ struct args_size *initial_offset_ptr,
+ struct locate_and_pad_arg_data *locate)
+{
+ tree sizetree;
+ enum direction where_pad;
+ unsigned int boundary, round_boundary;
+ int part_size_in_regs;
+
+ /* If we have found a stack parm before we reach the end of the
+ area reserved for registers, skip that area. */
+ if (! in_regs)
+ {
+ if (reg_parm_stack_space > 0)
+ {
+ if (initial_offset_ptr->var)
+ {
+ initial_offset_ptr->var
+ = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
+ ssize_int (reg_parm_stack_space));
+ initial_offset_ptr->constant = 0;
+ }
+ else if (initial_offset_ptr->constant < reg_parm_stack_space)
+ initial_offset_ptr->constant = reg_parm_stack_space;
+ }
+ }
+
+ part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
+
+ sizetree
+ = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
+ where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
+ boundary = targetm.calls.function_arg_boundary (passed_mode, type);
+ round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
+ type);
+ locate->where_pad = where_pad;
+
+ /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
+ if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
+ boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
+
+ locate->boundary = boundary;
+
+ if (SUPPORTS_STACK_ALIGNMENT)
+ {
+ /* stack_alignment_estimated can't change after stack has been
+ realigned. */
+ if (crtl->stack_alignment_estimated < boundary)
+ {
+ if (!crtl->stack_realign_processed)
+ crtl->stack_alignment_estimated = boundary;
+ else
+ {
+ /* If stack is realigned and stack alignment value
+ hasn't been finalized, it is OK not to increase
+ stack_alignment_estimated. The bigger alignment
+ requirement is recorded in stack_alignment_needed
+ below. */
+ gcc_assert (!crtl->stack_realign_finalized
+ && crtl->stack_realign_needed);
+ }
+ }
+ }
+
+ /* Remember if the outgoing parameter requires extra alignment on the
+ calling function side. */
+ if (crtl->stack_alignment_needed < boundary)
+ crtl->stack_alignment_needed = boundary;
+ if (crtl->preferred_stack_boundary < boundary)
+ crtl->preferred_stack_boundary = boundary;
+
+#ifdef ARGS_GROW_DOWNWARD
+ locate->slot_offset.constant = -initial_offset_ptr->constant;
+ if (initial_offset_ptr->var)
+ locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
+ initial_offset_ptr->var);
+
+ {
+ tree s2 = sizetree;
+ if (where_pad != none
+ && (!tree_fits_uhwi_p (sizetree)
+ || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
+ s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
+ SUB_PARM_SIZE (locate->slot_offset, s2);
+ }
+
+ locate->slot_offset.constant += part_size_in_regs;
+
+ if (!in_regs || reg_parm_stack_space > 0)
+ pad_to_arg_alignment (&locate->slot_offset, boundary,
+ &locate->alignment_pad);
+
+ locate->size.constant = (-initial_offset_ptr->constant
+ - locate->slot_offset.constant);
+ if (initial_offset_ptr->var)
+ locate->size.var = size_binop (MINUS_EXPR,
+ size_binop (MINUS_EXPR,
+ ssize_int (0),
+ initial_offset_ptr->var),
+ locate->slot_offset.var);
+
+ /* Pad_below needs the pre-rounded size to know how much to pad
+ below. */
+ locate->offset = locate->slot_offset;
+ if (where_pad == downward)
+ pad_below (&locate->offset, passed_mode, sizetree);
+
+#else /* !ARGS_GROW_DOWNWARD */
+ if (!in_regs || reg_parm_stack_space > 0)
+ pad_to_arg_alignment (initial_offset_ptr, boundary,
+ &locate->alignment_pad);
+ locate->slot_offset = *initial_offset_ptr;
+
+#ifdef PUSH_ROUNDING
+ if (passed_mode != BLKmode)
+ sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
+#endif
+
+ /* Pad_below needs the pre-rounded size to know how much to pad below
+ so this must be done before rounding up. */
+ locate->offset = locate->slot_offset;
+ if (where_pad == downward)
+ pad_below (&locate->offset, passed_mode, sizetree);
+
+ if (where_pad != none
+ && (!tree_fits_uhwi_p (sizetree)
+ || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
+ sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
+
+ ADD_PARM_SIZE (locate->size, sizetree);
+
+ locate->size.constant -= part_size_in_regs;
+#endif /* ARGS_GROW_DOWNWARD */
+
+#ifdef FUNCTION_ARG_OFFSET
+ locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
+#endif
+}
+
+/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
+ BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
+
+static void
+pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
+ struct args_size *alignment_pad)
+{
+ tree save_var = NULL_TREE;
+ HOST_WIDE_INT save_constant = 0;
+ int boundary_in_bytes = boundary / BITS_PER_UNIT;
+ HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
+
+#ifdef SPARC_STACK_BOUNDARY_HACK
+ /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
+ the real alignment of %sp. However, when it does this, the
+ alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
+ if (SPARC_STACK_BOUNDARY_HACK)
+ sp_offset = 0;
+#endif
+
+ if (boundary > PARM_BOUNDARY)
+ {
+ save_var = offset_ptr->var;
+ save_constant = offset_ptr->constant;
+ }
+
+ alignment_pad->var = NULL_TREE;
+ alignment_pad->constant = 0;
+
+ if (boundary > BITS_PER_UNIT)
+ {
+ if (offset_ptr->var)
+ {
+ tree sp_offset_tree = ssize_int (sp_offset);
+ tree offset = size_binop (PLUS_EXPR,
+ ARGS_SIZE_TREE (*offset_ptr),
+ sp_offset_tree);
+#ifdef ARGS_GROW_DOWNWARD
+ tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
+#else
+ tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
+#endif
+
+ offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
+ /* ARGS_SIZE_TREE includes constant term. */
+ offset_ptr->constant = 0;
+ if (boundary > PARM_BOUNDARY)
+ alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
+ save_var);
+ }
+ else
+ {
+ offset_ptr->constant = -sp_offset +
+#ifdef ARGS_GROW_DOWNWARD
+ FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
+#else
+ CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
+#endif
+ if (boundary > PARM_BOUNDARY)
+ alignment_pad->constant = offset_ptr->constant - save_constant;
+ }
+ }
+}
+
+static void
+pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
+{
+ if (passed_mode != BLKmode)
+ {
+ if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
+ offset_ptr->constant
+ += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
+ / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
+ - GET_MODE_SIZE (passed_mode));
+ }
+ else
+ {
+ if (TREE_CODE (sizetree) != INTEGER_CST
+ || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
+ {
+ /* Round the size up to multiple of PARM_BOUNDARY bits. */
+ tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
+ /* Add it in. */
+ ADD_PARM_SIZE (*offset_ptr, s2);
+ SUB_PARM_SIZE (*offset_ptr, sizetree);
+ }
+ }
+}
+
+
+/* True if register REGNO was alive at a place where `setjmp' was
+ called and was set more than once or is an argument. Such regs may
+ be clobbered by `longjmp'. */
+
+static bool
+regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
+{
+ /* There appear to be cases where some local vars never reach the
+ backend but have bogus regnos. */
+ if (regno >= max_reg_num ())
+ return false;
+
+ return ((REG_N_SETS (regno) > 1
+ || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
+ regno))
+ && REGNO_REG_SET_P (setjmp_crosses, regno));
+}
+
+/* Walk the tree of blocks describing the binding levels within a
+ function and warn about variables the might be killed by setjmp or
+ vfork. This is done after calling flow_analysis before register
+ allocation since that will clobber the pseudo-regs to hard
+ regs. */
+
+static void
+setjmp_vars_warning (bitmap setjmp_crosses, tree block)
+{
+ tree decl, sub;
+
+ for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
+ {
+ if (TREE_CODE (decl) == VAR_DECL
+ && DECL_RTL_SET_P (decl)
+ && REG_P (DECL_RTL (decl))
+ && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
+ warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
+ " %<longjmp%> or %<vfork%>", decl);
+ }
+
+ for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
+ setjmp_vars_warning (setjmp_crosses, sub);
+}
+
+/* Do the appropriate part of setjmp_vars_warning
+ but for arguments instead of local variables. */
+
+static void
+setjmp_args_warning (bitmap setjmp_crosses)
+{
+ tree decl;
+ for (decl = DECL_ARGUMENTS (current_function_decl);
+ decl; decl = DECL_CHAIN (decl))
+ if (DECL_RTL (decl) != 0
+ && REG_P (DECL_RTL (decl))
+ && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
+ warning (OPT_Wclobbered,
+ "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
+ decl);
+}
+
+/* Generate warning messages for variables live across setjmp. */
+
+void
+generate_setjmp_warnings (void)
+{
+ bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
+
+ if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
+ || bitmap_empty_p (setjmp_crosses))
+ return;
+
+ setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
+ setjmp_args_warning (setjmp_crosses);
+}
+
+
+/* Reverse the order of elements in the fragment chain T of blocks,
+ and return the new head of the chain (old last element).
+ In addition to that clear BLOCK_SAME_RANGE flags when needed
+ and adjust BLOCK_SUPERCONTEXT from the super fragment to
+ its super fragment origin. */
+
+static tree
+block_fragments_nreverse (tree t)
+{
+ tree prev = 0, block, next, prev_super = 0;
+ tree super = BLOCK_SUPERCONTEXT (t);
+ if (BLOCK_FRAGMENT_ORIGIN (super))
+ super = BLOCK_FRAGMENT_ORIGIN (super);
+ for (block = t; block; block = next)
+ {
+ next = BLOCK_FRAGMENT_CHAIN (block);
+ BLOCK_FRAGMENT_CHAIN (block) = prev;
+ if ((prev && !BLOCK_SAME_RANGE (prev))
+ || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
+ != prev_super))
+ BLOCK_SAME_RANGE (block) = 0;
+ prev_super = BLOCK_SUPERCONTEXT (block);
+ BLOCK_SUPERCONTEXT (block) = super;
+ prev = block;
+ }
+ t = BLOCK_FRAGMENT_ORIGIN (t);
+ if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
+ != prev_super)
+ BLOCK_SAME_RANGE (t) = 0;
+ BLOCK_SUPERCONTEXT (t) = super;
+ return prev;
+}
+
+/* Reverse the order of elements in the chain T of blocks,
+ and return the new head of the chain (old last element).
+ Also do the same on subblocks and reverse the order of elements
+ in BLOCK_FRAGMENT_CHAIN as well. */
+
+static tree
+blocks_nreverse_all (tree t)
+{
+ tree prev = 0, block, next;
+ for (block = t; block; block = next)
+ {
+ next = BLOCK_CHAIN (block);
+ BLOCK_CHAIN (block) = prev;
+ if (BLOCK_FRAGMENT_CHAIN (block)
+ && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
+ {
+ BLOCK_FRAGMENT_CHAIN (block)
+ = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
+ if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
+ BLOCK_SAME_RANGE (block) = 0;
+ }
+ BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
+ prev = block;
+ }
+ return prev;
+}
+
+
+/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
+ and create duplicate blocks. */
+/* ??? Need an option to either create block fragments or to create
+ abstract origin duplicates of a source block. It really depends
+ on what optimization has been performed. */
+
+void
+reorder_blocks (void)
+{
+ tree block = DECL_INITIAL (current_function_decl);
+
+ if (block == NULL_TREE)
+ return;
+
+ auto_vec<tree, 10> block_stack;
+
+ /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
+ clear_block_marks (block);
+
+ /* Prune the old trees away, so that they don't get in the way. */
+ BLOCK_SUBBLOCKS (block) = NULL_TREE;
+ BLOCK_CHAIN (block) = NULL_TREE;
+
+ /* Recreate the block tree from the note nesting. */
+ reorder_blocks_1 (get_insns (), block, &block_stack);
+ BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
+}
+
+/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
+
+void
+clear_block_marks (tree block)
+{
+ while (block)
+ {
+ TREE_ASM_WRITTEN (block) = 0;
+ clear_block_marks (BLOCK_SUBBLOCKS (block));
+ block = BLOCK_CHAIN (block);
+ }
+}
+
+static void
+reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
+{
+ rtx insn;
+ tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
+
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ {
+ if (NOTE_P (insn))
+ {
+ if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
+ {
+ tree block = NOTE_BLOCK (insn);
+ tree origin;
+
+ gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
+ origin = block;
+
+ if (prev_end)
+ BLOCK_SAME_RANGE (prev_end) = 0;
+ prev_end = NULL_TREE;
+
+ /* If we have seen this block before, that means it now
+ spans multiple address regions. Create a new fragment. */
+ if (TREE_ASM_WRITTEN (block))
+ {
+ tree new_block = copy_node (block);
+
+ BLOCK_SAME_RANGE (new_block) = 0;
+ BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
+ BLOCK_FRAGMENT_CHAIN (new_block)
+ = BLOCK_FRAGMENT_CHAIN (origin);
+ BLOCK_FRAGMENT_CHAIN (origin) = new_block;
+
+ NOTE_BLOCK (insn) = new_block;
+ block = new_block;
+ }
+
+ if (prev_beg == current_block && prev_beg)
+ BLOCK_SAME_RANGE (block) = 1;
+
+ prev_beg = origin;
+
+ BLOCK_SUBBLOCKS (block) = 0;
+ TREE_ASM_WRITTEN (block) = 1;
+ /* When there's only one block for the entire function,
+ current_block == block and we mustn't do this, it
+ will cause infinite recursion. */
+ if (block != current_block)
+ {
+ tree super;
+ if (block != origin)
+ gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
+ || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
+ (origin))
+ == current_block);
+ if (p_block_stack->is_empty ())
+ super = current_block;
+ else
+ {
+ super = p_block_stack->last ();
+ gcc_assert (super == current_block
+ || BLOCK_FRAGMENT_ORIGIN (super)
+ == current_block);
+ }
+ BLOCK_SUPERCONTEXT (block) = super;
+ BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
+ BLOCK_SUBBLOCKS (current_block) = block;
+ current_block = origin;
+ }
+ p_block_stack->safe_push (block);
+ }
+ else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
+ {
+ NOTE_BLOCK (insn) = p_block_stack->pop ();
+ current_block = BLOCK_SUPERCONTEXT (current_block);
+ if (BLOCK_FRAGMENT_ORIGIN (current_block))
+ current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
+ prev_beg = NULL_TREE;
+ prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
+ ? NOTE_BLOCK (insn) : NULL_TREE;
+ }
+ }
+ else
+ {
+ prev_beg = NULL_TREE;
+ if (prev_end)
+ BLOCK_SAME_RANGE (prev_end) = 0;
+ prev_end = NULL_TREE;
+ }
+ }
+}
+
+/* Reverse the order of elements in the chain T of blocks,
+ and return the new head of the chain (old last element). */
+
+tree
+blocks_nreverse (tree t)
+{
+ tree prev = 0, block, next;
+ for (block = t; block; block = next)
+ {
+ next = BLOCK_CHAIN (block);
+ BLOCK_CHAIN (block) = prev;
+ prev = block;
+ }
+ return prev;
+}
+
+/* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
+ by modifying the last node in chain 1 to point to chain 2. */
+
+tree
+block_chainon (tree op1, tree op2)
+{
+ tree t1;
+
+ if (!op1)
+ return op2;
+ if (!op2)
+ return op1;
+
+ for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
+ continue;
+ BLOCK_CHAIN (t1) = op2;
+
+#ifdef ENABLE_TREE_CHECKING
+ {
+ tree t2;
+ for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
+ gcc_assert (t2 != t1);
+ }
+#endif
+
+ return op1;
+}
+
+/* Count the subblocks of the list starting with BLOCK. If VECTOR is
+ non-NULL, list them all into VECTOR, in a depth-first preorder
+ traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
+ blocks. */
+
+static int
+all_blocks (tree block, tree *vector)
+{
+ int n_blocks = 0;
+
+ while (block)
+ {
+ TREE_ASM_WRITTEN (block) = 0;
+
+ /* Record this block. */
+ if (vector)
+ vector[n_blocks] = block;
+
+ ++n_blocks;
+
+ /* Record the subblocks, and their subblocks... */
+ n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
+ vector ? vector + n_blocks : 0);
+ block = BLOCK_CHAIN (block);
+ }
+
+ return n_blocks;
+}
+
+/* Return a vector containing all the blocks rooted at BLOCK. The
+ number of elements in the vector is stored in N_BLOCKS_P. The
+ vector is dynamically allocated; it is the caller's responsibility
+ to call `free' on the pointer returned. */
+
+static tree *
+get_block_vector (tree block, int *n_blocks_p)
+{
+ tree *block_vector;
+
+ *n_blocks_p = all_blocks (block, NULL);
+ block_vector = XNEWVEC (tree, *n_blocks_p);
+ all_blocks (block, block_vector);
+
+ return block_vector;
+}
+
+static GTY(()) int next_block_index = 2;
+
+/* Set BLOCK_NUMBER for all the blocks in FN. */
+
+void
+number_blocks (tree fn)
+{
+ int i;
+ int n_blocks;
+ tree *block_vector;
+
+ /* For SDB and XCOFF debugging output, we start numbering the blocks
+ from 1 within each function, rather than keeping a running
+ count. */
+#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
+ if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
+ next_block_index = 1;
+#endif
+
+ block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
+
+ /* The top-level BLOCK isn't numbered at all. */
+ for (i = 1; i < n_blocks; ++i)
+ /* We number the blocks from two. */
+ BLOCK_NUMBER (block_vector[i]) = next_block_index++;
+
+ free (block_vector);
+
+ return;
+}
+
+/* If VAR is present in a subblock of BLOCK, return the subblock. */
+
+DEBUG_FUNCTION tree
+debug_find_var_in_block_tree (tree var, tree block)
+{
+ tree t;
+
+ for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
+ if (t == var)
+ return block;
+
+ for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
+ {
+ tree ret = debug_find_var_in_block_tree (var, t);
+ if (ret)
+ return ret;
+ }
+
+ return NULL_TREE;
+}
+
+/* Keep track of whether we're in a dummy function context. If we are,
+ we don't want to invoke the set_current_function hook, because we'll
+ get into trouble if the hook calls target_reinit () recursively or
+ when the initial initialization is not yet complete. */
+
+static bool in_dummy_function;
+
+/* Invoke the target hook when setting cfun. Update the optimization options
+ if the function uses different options than the default. */
+
+static void
+invoke_set_current_function_hook (tree fndecl)
+{
+ if (!in_dummy_function)
+ {
+ tree opts = ((fndecl)
+ ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
+ : optimization_default_node);
+
+ if (!opts)
+ opts = optimization_default_node;
+
+ /* Change optimization options if needed. */
+ if (optimization_current_node != opts)
+ {
+ optimization_current_node = opts;
+ cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
+ }
+
+ targetm.set_current_function (fndecl);
+ this_fn_optabs = this_target_optabs;
+
+ if (opts != optimization_default_node)
+ {
+ init_tree_optimization_optabs (opts);
+ if (TREE_OPTIMIZATION_OPTABS (opts))
+ this_fn_optabs = (struct target_optabs *)
+ TREE_OPTIMIZATION_OPTABS (opts);
+ }
+ }
+}
+
+/* cfun should never be set directly; use this function. */
+
+void
+set_cfun (struct function *new_cfun)
+{
+ if (cfun != new_cfun)
+ {
+ cfun = new_cfun;
+ invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
+ }
+}
+
+/* Initialized with NOGC, making this poisonous to the garbage collector. */
+
+static vec<function_p> cfun_stack;
+
+/* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
+ current_function_decl accordingly. */
+
+void
+push_cfun (struct function *new_cfun)
+{
+ gcc_assert ((!cfun && !current_function_decl)
+ || (cfun && current_function_decl == cfun->decl));
+ cfun_stack.safe_push (cfun);
+ current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
+ set_cfun (new_cfun);
+}
+
+/* Pop cfun from the stack. Also set current_function_decl accordingly. */
+
+void
+pop_cfun (void)
+{
+ struct function *new_cfun = cfun_stack.pop ();
+ /* When in_dummy_function, we do have a cfun but current_function_decl is
+ NULL. We also allow pushing NULL cfun and subsequently changing
+ current_function_decl to something else and have both restored by
+ pop_cfun. */
+ gcc_checking_assert (in_dummy_function
+ || !cfun
+ || current_function_decl == cfun->decl);
+ set_cfun (new_cfun);
+ current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
+}
+
+/* Return value of funcdef and increase it. */
+int
+get_next_funcdef_no (void)
+{
+ return funcdef_no++;
+}
+
+/* Return value of funcdef. */
+int
+get_last_funcdef_no (void)
+{
+ return funcdef_no;
+}
+
+/* Allocate a function structure for FNDECL and set its contents
+ to the defaults. Set cfun to the newly-allocated object.
+ Some of the helper functions invoked during initialization assume
+ that cfun has already been set. Therefore, assign the new object
+ directly into cfun and invoke the back end hook explicitly at the
+ very end, rather than initializing a temporary and calling set_cfun
+ on it.
+
+ ABSTRACT_P is true if this is a function that will never be seen by
+ the middle-end. Such functions are front-end concepts (like C++
+ function templates) that do not correspond directly to functions
+ placed in object files. */
+
+void
+allocate_struct_function (tree fndecl, bool abstract_p)
+{
+ tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
+
+ cfun = ggc_alloc_cleared_function ();
+
+ init_eh_for_function ();
+
+ if (init_machine_status)
+ cfun->machine = (*init_machine_status) ();
+
+#ifdef OVERRIDE_ABI_FORMAT
+ OVERRIDE_ABI_FORMAT (fndecl);
+#endif
+
+ if (fndecl != NULL_TREE)
+ {
+ DECL_STRUCT_FUNCTION (fndecl) = cfun;
+ cfun->decl = fndecl;
+ current_function_funcdef_no = get_next_funcdef_no ();
+ }
+
+ invoke_set_current_function_hook (fndecl);
+
+ if (fndecl != NULL_TREE)
+ {
+ tree result = DECL_RESULT (fndecl);
+ if (!abstract_p && aggregate_value_p (result, fndecl))
+ {
+#ifdef PCC_STATIC_STRUCT_RETURN
+ cfun->returns_pcc_struct = 1;
+#endif
+ cfun->returns_struct = 1;
+ }
+
+ cfun->stdarg = stdarg_p (fntype);
+
+ /* Assume all registers in stdarg functions need to be saved. */
+ cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
+ cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
+
+ /* ??? This could be set on a per-function basis by the front-end
+ but is this worth the hassle? */
+ cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
+ }
+}
+
+/* This is like allocate_struct_function, but pushes a new cfun for FNDECL
+ instead of just setting it. */
+
+void
+push_struct_function (tree fndecl)
+{
+ /* When in_dummy_function we might be in the middle of a pop_cfun and
+ current_function_decl and cfun may not match. */
+ gcc_assert (in_dummy_function
+ || (!cfun && !current_function_decl)
+ || (cfun && current_function_decl == cfun->decl));
+ cfun_stack.safe_push (cfun);
+ current_function_decl = fndecl;
+ allocate_struct_function (fndecl, false);
+}
+
+/* Reset crtl and other non-struct-function variables to defaults as
+ appropriate for emitting rtl at the start of a function. */
+
+static void
+prepare_function_start (void)
+{
+ gcc_assert (!crtl->emit.x_last_insn);
+ init_temp_slots ();
+ init_emit ();
+ init_varasm_status ();
+ init_expr ();
+ default_rtl_profile ();
+
+ if (flag_stack_usage_info)
+ {
+ cfun->su = ggc_alloc_cleared_stack_usage ();
+ cfun->su->static_stack_size = -1;
+ }
+
+ cse_not_expected = ! optimize;
+
+ /* Caller save not needed yet. */
+ caller_save_needed = 0;
+
+ /* We haven't done register allocation yet. */
+ reg_renumber = 0;
+
+ /* Indicate that we have not instantiated virtual registers yet. */
+ virtuals_instantiated = 0;
+
+ /* Indicate that we want CONCATs now. */
+ generating_concat_p = 1;
+
+ /* Indicate we have no need of a frame pointer yet. */
+ frame_pointer_needed = 0;
+}
+
+/* Initialize the rtl expansion mechanism so that we can do simple things
+ like generate sequences. This is used to provide a context during global
+ initialization of some passes. You must call expand_dummy_function_end
+ to exit this context. */
+
+void
+init_dummy_function_start (void)
+{
+ gcc_assert (!in_dummy_function);
+ in_dummy_function = true;
+ push_struct_function (NULL_TREE);
+ prepare_function_start ();
+}
+
+/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
+ and initialize static variables for generating RTL for the statements
+ of the function. */
+
+void
+init_function_start (tree subr)
+{
+ if (subr && DECL_STRUCT_FUNCTION (subr))
+ set_cfun (DECL_STRUCT_FUNCTION (subr));
+ else
+ allocate_struct_function (subr, false);
+ prepare_function_start ();
+ decide_function_section (subr);
+
+ /* Warn if this value is an aggregate type,
+ regardless of which calling convention we are using for it. */
+ if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
+ warning (OPT_Waggregate_return, "function returns an aggregate");
+}
+
+/* Expand code to verify the stack_protect_guard. This is invoked at
+ the end of a function to be protected. */
+
+#ifndef HAVE_stack_protect_test
+# define HAVE_stack_protect_test 0
+# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
+#endif
+
+void
+stack_protect_epilogue (void)
+{
+ tree guard_decl = targetm.stack_protect_guard ();
+ rtx label = gen_label_rtx ();
+ rtx x, y, tmp;
+
+ x = expand_normal (crtl->stack_protect_guard);
+ y = expand_normal (guard_decl);
+
+ /* Allow the target to compare Y with X without leaking either into
+ a register. */
+ switch (HAVE_stack_protect_test != 0)
+ {
+ case 1:
+ tmp = gen_stack_protect_test (x, y, label);
+ if (tmp)
+ {
+ emit_insn (tmp);
+ break;
+ }
+ /* FALLTHRU */
+
+ default:
+ emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
+ break;
+ }
+
+ /* The noreturn predictor has been moved to the tree level. The rtl-level
+ predictors estimate this branch about 20%, which isn't enough to get
+ things moved out of line. Since this is the only extant case of adding
+ a noreturn function at the rtl level, it doesn't seem worth doing ought
+ except adding the prediction by hand. */
+ tmp = get_last_insn ();
+ if (JUMP_P (tmp))
+ predict_insn_def (tmp, PRED_NORETURN, TAKEN);
+
+ expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
+ free_temp_slots ();
+ emit_label (label);
+}
+
+/* Start the RTL for a new function, and set variables used for
+ emitting RTL.
+ SUBR is the FUNCTION_DECL node.
+ PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
+ the function's parameters, which must be run at any return statement. */
+
+void
+expand_function_start (tree subr)
+{
+ /* Make sure volatile mem refs aren't considered
+ valid operands of arithmetic insns. */
+ init_recog_no_volatile ();
+
+ crtl->profile
+ = (profile_flag
+ && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
+
+ crtl->limit_stack
+ = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
+
+ /* Make the label for return statements to jump to. Do not special
+ case machines with special return instructions -- they will be
+ handled later during jump, ifcvt, or epilogue creation. */
+ return_label = gen_label_rtx ();
+
+ /* Initialize rtx used to return the value. */
+ /* Do this before assign_parms so that we copy the struct value address
+ before any library calls that assign parms might generate. */
+
+ /* Decide whether to return the value in memory or in a register. */
+ if (aggregate_value_p (DECL_RESULT (subr), subr))
+ {
+ /* Returning something that won't go in a register. */
+ rtx value_address = 0;
+
+#ifdef PCC_STATIC_STRUCT_RETURN
+ if (cfun->returns_pcc_struct)
+ {
+ int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
+ value_address = assemble_static_space (size);
+ }
+ else
+#endif
+ {
+ rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
+ /* Expect to be passed the address of a place to store the value.
+ If it is passed as an argument, assign_parms will take care of
+ it. */
+ if (sv)
+ {
+ value_address = gen_reg_rtx (Pmode);
+ emit_move_insn (value_address, sv);
+ }
+ }
+ if (value_address)
+ {
+ rtx x = value_address;
+ if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
+ {
+ x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
+ set_mem_attributes (x, DECL_RESULT (subr), 1);
+ }
+ SET_DECL_RTL (DECL_RESULT (subr), x);
+ }
+ }
+ else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
+ /* If return mode is void, this decl rtl should not be used. */
+ SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
+ else
+ {
+ /* Compute the return values into a pseudo reg, which we will copy
+ into the true return register after the cleanups are done. */
+ tree return_type = TREE_TYPE (DECL_RESULT (subr));
+ if (TYPE_MODE (return_type) != BLKmode
+ && targetm.calls.return_in_msb (return_type))
+ /* expand_function_end will insert the appropriate padding in
+ this case. Use the return value's natural (unpadded) mode
+ within the function proper. */
+ SET_DECL_RTL (DECL_RESULT (subr),
+ gen_reg_rtx (TYPE_MODE (return_type)));
+ else
+ {
+ /* In order to figure out what mode to use for the pseudo, we
+ figure out what the mode of the eventual return register will
+ actually be, and use that. */
+ rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
+
+ /* Structures that are returned in registers are not
+ aggregate_value_p, so we may see a PARALLEL or a REG. */
+ if (REG_P (hard_reg))
+ SET_DECL_RTL (DECL_RESULT (subr),
+ gen_reg_rtx (GET_MODE (hard_reg)));
+ else
+ {
+ gcc_assert (GET_CODE (hard_reg) == PARALLEL);
+ SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
+ }
+ }
+
+ /* Set DECL_REGISTER flag so that expand_function_end will copy the
+ result to the real return register(s). */
+ DECL_REGISTER (DECL_RESULT (subr)) = 1;
+ }
+
+ /* Initialize rtx for parameters and local variables.
+ In some cases this requires emitting insns. */
+ assign_parms (subr);
+
+ /* If function gets a static chain arg, store it. */
+ if (cfun->static_chain_decl)
+ {
+ tree parm = cfun->static_chain_decl;
+ rtx local, chain, insn;
+
+ local = gen_reg_rtx (Pmode);
+ chain = targetm.calls.static_chain (current_function_decl, true);
+
+ set_decl_incoming_rtl (parm, chain, false);
+ SET_DECL_RTL (parm, local);
+ mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
+
+ insn = emit_move_insn (local, chain);
+
+ /* Mark the register as eliminable, similar to parameters. */
+ if (MEM_P (chain)
+ && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
+ set_dst_reg_note (insn, REG_EQUIV, chain, local);
+ }
+
+ /* If the function receives a non-local goto, then store the
+ bits we need to restore the frame pointer. */
+ if (cfun->nonlocal_goto_save_area)
+ {
+ tree t_save;
+ rtx r_save;
+
+ tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
+ gcc_assert (DECL_RTL_SET_P (var));
+
+ t_save = build4 (ARRAY_REF,
+ TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
+ cfun->nonlocal_goto_save_area,
+ integer_zero_node, NULL_TREE, NULL_TREE);
+ r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ gcc_assert (GET_MODE (r_save) == Pmode);
+
+ emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
+ update_nonlocal_goto_save_area ();
+ }
+
+ /* The following was moved from init_function_start.
+ The move is supposed to make sdb output more accurate. */
+ /* Indicate the beginning of the function body,
+ as opposed to parm setup. */
+ emit_note (NOTE_INSN_FUNCTION_BEG);
+
+ gcc_assert (NOTE_P (get_last_insn ()));
+
+ parm_birth_insn = get_last_insn ();
+
+ if (crtl->profile)
+ {
+#ifdef PROFILE_HOOK
+ PROFILE_HOOK (current_function_funcdef_no);
+#endif
+ }
+
+ /* If we are doing generic stack checking, the probe should go here. */
+ if (flag_stack_check == GENERIC_STACK_CHECK)
+ stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
+}
+
+/* Undo the effects of init_dummy_function_start. */
+void
+expand_dummy_function_end (void)
+{
+ gcc_assert (in_dummy_function);
+
+ /* End any sequences that failed to be closed due to syntax errors. */
+ while (in_sequence_p ())
+ end_sequence ();
+
+ /* Outside function body, can't compute type's actual size
+ until next function's body starts. */
+
+ free_after_parsing (cfun);
+ free_after_compilation (cfun);
+ pop_cfun ();
+ in_dummy_function = false;
+}
+
+/* Call DOIT for each hard register used as a return value from
+ the current function. */
+
+void
+diddle_return_value (void (*doit) (rtx, void *), void *arg)
+{
+ rtx outgoing = crtl->return_rtx;
+
+ if (! outgoing)
+ return;
+
+ if (REG_P (outgoing))
+ (*doit) (outgoing, arg);
+ else if (GET_CODE (outgoing) == PARALLEL)
+ {
+ int i;
+
+ for (i = 0; i < XVECLEN (outgoing, 0); i++)
+ {
+ rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
+
+ if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
+ (*doit) (x, arg);
+ }
+ }
+}
+
+static void
+do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
+{
+ emit_clobber (reg);
+}
+
+void
+clobber_return_register (void)
+{
+ diddle_return_value (do_clobber_return_reg, NULL);
+
+ /* In case we do use pseudo to return value, clobber it too. */
+ if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
+ {
+ tree decl_result = DECL_RESULT (current_function_decl);
+ rtx decl_rtl = DECL_RTL (decl_result);
+ if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
+ {
+ do_clobber_return_reg (decl_rtl, NULL);
+ }
+ }
+}
+
+static void
+do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
+{
+ emit_use (reg);
+}
+
+static void
+use_return_register (void)
+{
+ diddle_return_value (do_use_return_reg, NULL);
+}
+
+/* Possibly warn about unused parameters. */
+void
+do_warn_unused_parameter (tree fn)
+{
+ tree decl;
+
+ for (decl = DECL_ARGUMENTS (fn);
+ decl; decl = DECL_CHAIN (decl))
+ if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
+ && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
+ && !TREE_NO_WARNING (decl))
+ warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
+}
+
+/* Set the location of the insn chain starting at INSN to LOC. */
+
+static void
+set_insn_locations (rtx insn, int loc)
+{
+ while (insn != NULL_RTX)
+ {
+ if (INSN_P (insn))
+ INSN_LOCATION (insn) = loc;
+ insn = NEXT_INSN (insn);
+ }
+}
+
+/* Generate RTL for the end of the current function. */
+
+void
+expand_function_end (void)
+{
+ rtx clobber_after;
+
+ /* If arg_pointer_save_area was referenced only from a nested
+ function, we will not have initialized it yet. Do that now. */
+ if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
+ get_arg_pointer_save_area ();
+
+ /* If we are doing generic stack checking and this function makes calls,
+ do a stack probe at the start of the function to ensure we have enough
+ space for another stack frame. */
+ if (flag_stack_check == GENERIC_STACK_CHECK)
+ {
+ rtx insn, seq;
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (CALL_P (insn))
+ {
+ rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
+ start_sequence ();
+ if (STACK_CHECK_MOVING_SP)
+ anti_adjust_stack_and_probe (max_frame_size, true);
+ else
+ probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
+ seq = get_insns ();
+ end_sequence ();
+ set_insn_locations (seq, prologue_location);
+ emit_insn_before (seq, stack_check_probe_note);
+ break;
+ }
+ }
+
+ /* End any sequences that failed to be closed due to syntax errors. */
+ while (in_sequence_p ())
+ end_sequence ();
+
+ clear_pending_stack_adjust ();
+ do_pending_stack_adjust ();
+
+ /* Output a linenumber for the end of the function.
+ SDB depends on this. */
+ set_curr_insn_location (input_location);
+
+ /* Before the return label (if any), clobber the return
+ registers so that they are not propagated live to the rest of
+ the function. This can only happen with functions that drop
+ through; if there had been a return statement, there would
+ have either been a return rtx, or a jump to the return label.
+
+ We delay actual code generation after the current_function_value_rtx
+ is computed. */
+ clobber_after = get_last_insn ();
+
+ /* Output the label for the actual return from the function. */
+ emit_label (return_label);
+
+ if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
+ {
+ /* Let except.c know where it should emit the call to unregister
+ the function context for sjlj exceptions. */
+ if (flag_exceptions)
+ sjlj_emit_function_exit_after (get_last_insn ());
+ }
+ else
+ {
+ /* We want to ensure that instructions that may trap are not
+ moved into the epilogue by scheduling, because we don't
+ always emit unwind information for the epilogue. */
+ if (cfun->can_throw_non_call_exceptions)
+ emit_insn (gen_blockage ());
+ }
+
+ /* If this is an implementation of throw, do what's necessary to
+ communicate between __builtin_eh_return and the epilogue. */
+ expand_eh_return ();
+
+ /* If scalar return value was computed in a pseudo-reg, or was a named
+ return value that got dumped to the stack, copy that to the hard
+ return register. */
+ if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
+ {
+ tree decl_result = DECL_RESULT (current_function_decl);
+ rtx decl_rtl = DECL_RTL (decl_result);
+
+ if (REG_P (decl_rtl)
+ ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
+ : DECL_REGISTER (decl_result))
+ {
+ rtx real_decl_rtl = crtl->return_rtx;
+
+ /* This should be set in assign_parms. */
+ gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
+
+ /* If this is a BLKmode structure being returned in registers,
+ then use the mode computed in expand_return. Note that if
+ decl_rtl is memory, then its mode may have been changed,
+ but that crtl->return_rtx has not. */
+ if (GET_MODE (real_decl_rtl) == BLKmode)
+ PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
+
+ /* If a non-BLKmode return value should be padded at the least
+ significant end of the register, shift it left by the appropriate
+ amount. BLKmode results are handled using the group load/store
+ machinery. */
+ if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
+ && REG_P (real_decl_rtl)
+ && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
+ {
+ emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
+ REGNO (real_decl_rtl)),
+ decl_rtl);
+ shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
+ }
+ /* If a named return value dumped decl_return to memory, then
+ we may need to re-do the PROMOTE_MODE signed/unsigned
+ extension. */
+ else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
+ {
+ int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
+ promote_function_mode (TREE_TYPE (decl_result),
+ GET_MODE (decl_rtl), &unsignedp,
+ TREE_TYPE (current_function_decl), 1);
+
+ convert_move (real_decl_rtl, decl_rtl, unsignedp);
+ }
+ else if (GET_CODE (real_decl_rtl) == PARALLEL)
+ {
+ /* If expand_function_start has created a PARALLEL for decl_rtl,
+ move the result to the real return registers. Otherwise, do
+ a group load from decl_rtl for a named return. */
+ if (GET_CODE (decl_rtl) == PARALLEL)
+ emit_group_move (real_decl_rtl, decl_rtl);
+ else
+ emit_group_load (real_decl_rtl, decl_rtl,
+ TREE_TYPE (decl_result),
+ int_size_in_bytes (TREE_TYPE (decl_result)));
+ }
+ /* In the case of complex integer modes smaller than a word, we'll
+ need to generate some non-trivial bitfield insertions. Do that
+ on a pseudo and not the hard register. */
+ else if (GET_CODE (decl_rtl) == CONCAT
+ && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
+ && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
+ {
+ int old_generating_concat_p;
+ rtx tmp;
+
+ old_generating_concat_p = generating_concat_p;
+ generating_concat_p = 0;
+ tmp = gen_reg_rtx (GET_MODE (decl_rtl));
+ generating_concat_p = old_generating_concat_p;
+
+ emit_move_insn (tmp, decl_rtl);
+ emit_move_insn (real_decl_rtl, tmp);
+ }
+ else
+ emit_move_insn (real_decl_rtl, decl_rtl);
+ }
+ }
+
+ /* If returning a structure, arrange to return the address of the value
+ in a place where debuggers expect to find it.
+
+ If returning a structure PCC style,
+ the caller also depends on this value.
+ And cfun->returns_pcc_struct is not necessarily set. */
+ if (cfun->returns_struct
+ || cfun->returns_pcc_struct)
+ {
+ rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
+ tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
+ rtx outgoing;
+
+ if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
+ type = TREE_TYPE (type);
+ else
+ value_address = XEXP (value_address, 0);
+
+ outgoing = targetm.calls.function_value (build_pointer_type (type),
+ current_function_decl, true);
+
+ /* Mark this as a function return value so integrate will delete the
+ assignment and USE below when inlining this function. */
+ REG_FUNCTION_VALUE_P (outgoing) = 1;
+
+ /* The address may be ptr_mode and OUTGOING may be Pmode. */
+ value_address = convert_memory_address (GET_MODE (outgoing),
+ value_address);
+
+ emit_move_insn (outgoing, value_address);
+
+ /* Show return register used to hold result (in this case the address
+ of the result. */
+ crtl->return_rtx = outgoing;
+ }
+
+ /* Emit the actual code to clobber return register. Don't emit
+ it if clobber_after is a barrier, then the previous basic block
+ certainly doesn't fall thru into the exit block. */
+ if (!BARRIER_P (clobber_after))
+ {
+ rtx seq;
+
+ start_sequence ();
+ clobber_return_register ();
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_after (seq, clobber_after);
+ }
+
+ /* Output the label for the naked return from the function. */
+ if (naked_return_label)
+ emit_label (naked_return_label);
+
+ /* @@@ This is a kludge. We want to ensure that instructions that
+ may trap are not moved into the epilogue by scheduling, because
+ we don't always emit unwind information for the epilogue. */
+ if (cfun->can_throw_non_call_exceptions
+ && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
+ emit_insn (gen_blockage ());
+
+ /* If stack protection is enabled for this function, check the guard. */
+ if (crtl->stack_protect_guard)
+ stack_protect_epilogue ();
+
+ /* If we had calls to alloca, and this machine needs
+ an accurate stack pointer to exit the function,
+ insert some code to save and restore the stack pointer. */
+ if (! EXIT_IGNORE_STACK
+ && cfun->calls_alloca)
+ {
+ rtx tem = 0, seq;
+
+ start_sequence ();
+ emit_stack_save (SAVE_FUNCTION, &tem);
+ seq = get_insns ();
+ end_sequence ();
+ emit_insn_before (seq, parm_birth_insn);
+
+ emit_stack_restore (SAVE_FUNCTION, tem);
+ }
+
+ /* ??? This should no longer be necessary since stupid is no longer with
+ us, but there are some parts of the compiler (eg reload_combine, and
+ sh mach_dep_reorg) that still try and compute their own lifetime info
+ instead of using the general framework. */
+ use_return_register ();
+}
+
+rtx
+get_arg_pointer_save_area (void)
+{
+ rtx ret = arg_pointer_save_area;
+
+ if (! ret)
+ {
+ ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
+ arg_pointer_save_area = ret;
+ }
+
+ if (! crtl->arg_pointer_save_area_init)
+ {
+ rtx seq;
+
+ /* Save the arg pointer at the beginning of the function. The
+ generated stack slot may not be a valid memory address, so we
+ have to check it and fix it if necessary. */
+ start_sequence ();
+ emit_move_insn (validize_mem (ret),
+ crtl->args.internal_arg_pointer);
+ seq = get_insns ();
+ end_sequence ();
+
+ push_topmost_sequence ();
+ emit_insn_after (seq, entry_of_function ());
+ pop_topmost_sequence ();
+
+ crtl->arg_pointer_save_area_init = true;
+ }
+
+ return ret;
+}
+
+/* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
+ for the first time. */
+
+static void
+record_insns (rtx insns, rtx end, htab_t *hashp)
+{
+ rtx tmp;
+ htab_t hash = *hashp;
+
+ if (hash == NULL)
+ *hashp = hash
+ = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
+
+ for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
+ {
+ void **slot = htab_find_slot (hash, tmp, INSERT);
+ gcc_assert (*slot == NULL);
+ *slot = tmp;
+ }
+}
+
+/* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
+ basic block, splitting or peepholes. If INSN is a prologue or epilogue
+ insn, then record COPY as well. */
+
+void
+maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
+{
+ htab_t hash;
+ void **slot;
+
+ hash = epilogue_insn_hash;
+ if (!hash || !htab_find (hash, insn))
+ {
+ hash = prologue_insn_hash;
+ if (!hash || !htab_find (hash, insn))
+ return;
+ }
+
+ slot = htab_find_slot (hash, copy, INSERT);
+ gcc_assert (*slot == NULL);
+ *slot = copy;
+}
+
+/* Determine if any INSNs in HASH are, or are part of, INSN. Because
+ we can be running after reorg, SEQUENCE rtl is possible. */
+
+static bool
+contains (const_rtx insn, htab_t hash)
+{
+ if (hash == NULL)
+ return false;
+
+ if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
+ {
+ int i;
+ for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
+ if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
+ return true;
+ return false;
+ }
+
+ return htab_find (hash, insn) != NULL;
+}
+
+int
+prologue_epilogue_contains (const_rtx insn)
+{
+ if (contains (insn, prologue_insn_hash))
+ return 1;
+ if (contains (insn, epilogue_insn_hash))
+ return 1;
+ return 0;
+}
+
+#ifdef HAVE_simple_return
+
+/* Return true if INSN requires the stack frame to be set up.
+ PROLOGUE_USED contains the hard registers used in the function
+ prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
+ prologue to set up for the function. */
+bool
+requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
+ HARD_REG_SET set_up_by_prologue)
+{
+ df_ref *df_rec;
+ HARD_REG_SET hardregs;
+ unsigned regno;
+
+ if (CALL_P (insn))
+ return !SIBLING_CALL_P (insn);
+
+ /* We need a frame to get the unique CFA expected by the unwinder. */
+ if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
+ return true;
+
+ CLEAR_HARD_REG_SET (hardregs);
+ for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
+ {
+ rtx dreg = DF_REF_REG (*df_rec);
+
+ if (!REG_P (dreg))
+ continue;
+
+ add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
+ REGNO (dreg));
+ }
+ if (hard_reg_set_intersect_p (hardregs, prologue_used))
+ return true;
+ AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hardregs, regno)
+ && df_regs_ever_live_p (regno))
+ return true;
+
+ for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
+ {
+ rtx reg = DF_REF_REG (*df_rec);
+
+ if (!REG_P (reg))
+ continue;
+
+ add_to_hard_reg_set (&hardregs, GET_MODE (reg),
+ REGNO (reg));
+ }
+ if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
+ return true;
+
+ return false;
+}
+
+/* See whether BB has a single successor that uses [REGNO, END_REGNO),
+ and if BB is its only predecessor. Return that block if so,
+ otherwise return null. */
+
+static basic_block
+next_block_for_reg (basic_block bb, int regno, int end_regno)
+{
+ edge e, live_edge;
+ edge_iterator ei;
+ bitmap live;
+ int i;
+
+ live_edge = NULL;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ live = df_get_live_in (e->dest);
+ for (i = regno; i < end_regno; i++)
+ if (REGNO_REG_SET_P (live, i))
+ {
+ if (live_edge && live_edge != e)
+ return NULL;
+ live_edge = e;
+ }
+ }
+
+ /* We can sometimes encounter dead code. Don't try to move it
+ into the exit block. */
+ if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
+ return NULL;
+
+ /* Reject targets of abnormal edges. This is needed for correctness
+ on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
+ exception edges even though it is generally treated as call-saved
+ for the majority of the compilation. Moving across abnormal edges
+ isn't going to be interesting for shrink-wrap usage anyway. */
+ if (live_edge->flags & EDGE_ABNORMAL)
+ return NULL;
+
+ if (EDGE_COUNT (live_edge->dest->preds) > 1)
+ return NULL;
+
+ return live_edge->dest;
+}
+
+/* Try to move INSN from BB to a successor. Return true on success.
+ USES and DEFS are the set of registers that are used and defined
+ after INSN in BB. */
+
+static bool
+move_insn_for_shrink_wrap (basic_block bb, rtx insn,
+ const HARD_REG_SET uses,
+ const HARD_REG_SET defs)
+{
+ rtx set, src, dest;
+ bitmap live_out, live_in, bb_uses, bb_defs;
+ unsigned int i, dregno, end_dregno, sregno, end_sregno;
+ basic_block next_block;
+
+ /* Look for a simple register copy. */
+ set = single_set (insn);
+ if (!set)
+ return false;
+ src = SET_SRC (set);
+ dest = SET_DEST (set);
+ if (!REG_P (dest) || !REG_P (src))
+ return false;
+
+ /* Make sure that the source register isn't defined later in BB. */
+ sregno = REGNO (src);
+ end_sregno = END_REGNO (src);
+ if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
+ return false;
+
+ /* Make sure that the destination register isn't referenced later in BB. */
+ dregno = REGNO (dest);
+ end_dregno = END_REGNO (dest);
+ if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
+ || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
+ return false;
+
+ /* See whether there is a successor block to which we could move INSN. */
+ next_block = next_block_for_reg (bb, dregno, end_dregno);
+ if (!next_block)
+ return false;
+
+ /* At this point we are committed to moving INSN, but let's try to
+ move it as far as we can. */
+ do
+ {
+ live_out = df_get_live_out (bb);
+ live_in = df_get_live_in (next_block);
+ bb = next_block;
+
+ /* Check whether BB uses DEST or clobbers DEST. We need to add
+ INSN to BB if so. Either way, DEST is no longer live on entry,
+ except for any part that overlaps SRC (next loop). */
+ bb_uses = &DF_LR_BB_INFO (bb)->use;
+ bb_defs = &DF_LR_BB_INFO (bb)->def;
+ if (df_live)
+ {
+ for (i = dregno; i < end_dregno; i++)
+ {
+ if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
+ || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
+ next_block = NULL;
+ CLEAR_REGNO_REG_SET (live_out, i);
+ CLEAR_REGNO_REG_SET (live_in, i);
+ }
+
+ /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
+ Either way, SRC is now live on entry. */
+ for (i = sregno; i < end_sregno; i++)
+ {
+ if (REGNO_REG_SET_P (bb_defs, i)
+ || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
+ next_block = NULL;
+ SET_REGNO_REG_SET (live_out, i);
+ SET_REGNO_REG_SET (live_in, i);
+ }
+ }
+ else
+ {
+ /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
+ DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
+ at -O1, just give up searching NEXT_BLOCK. */
+ next_block = NULL;
+ for (i = dregno; i < end_dregno; i++)
+ {
+ CLEAR_REGNO_REG_SET (live_out, i);
+ CLEAR_REGNO_REG_SET (live_in, i);
+ }
+
+ for (i = sregno; i < end_sregno; i++)
+ {
+ SET_REGNO_REG_SET (live_out, i);
+ SET_REGNO_REG_SET (live_in, i);
+ }
+ }
+
+ /* If we don't need to add the move to BB, look for a single
+ successor block. */
+ if (next_block)
+ next_block = next_block_for_reg (next_block, dregno, end_dregno);
+ }
+ while (next_block);
+
+ /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
+ (next loop). */
+ for (i = dregno; i < end_dregno; i++)
+ {
+ CLEAR_REGNO_REG_SET (bb_uses, i);
+ SET_REGNO_REG_SET (bb_defs, i);
+ }
+
+ /* BB now uses SRC. */
+ for (i = sregno; i < end_sregno; i++)
+ SET_REGNO_REG_SET (bb_uses, i);
+
+ emit_insn_after (PATTERN (insn), bb_note (bb));
+ delete_insn (insn);
+ return true;
+}
+
+/* Look for register copies in the first block of the function, and move
+ them down into successor blocks if the register is used only on one
+ path. This exposes more opportunities for shrink-wrapping. These
+ kinds of sets often occur when incoming argument registers are moved
+ to call-saved registers because their values are live across one or
+ more calls during the function. */
+
+static void
+prepare_shrink_wrap (basic_block entry_block)
+{
+ rtx insn, curr, x;
+ HARD_REG_SET uses, defs;
+ df_ref *ref;
+
+ CLEAR_HARD_REG_SET (uses);
+ CLEAR_HARD_REG_SET (defs);
+ FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
+ if (NONDEBUG_INSN_P (insn)
+ && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
+ {
+ /* Add all defined registers to DEFs. */
+ for (ref = DF_INSN_DEFS (insn); *ref; ref++)
+ {
+ x = DF_REF_REG (*ref);
+ if (REG_P (x) && HARD_REGISTER_P (x))
+ SET_HARD_REG_BIT (defs, REGNO (x));
+ }
+
+ /* Add all used registers to USESs. */
+ for (ref = DF_INSN_USES (insn); *ref; ref++)
+ {
+ x = DF_REF_REG (*ref);
+ if (REG_P (x) && HARD_REGISTER_P (x))
+ SET_HARD_REG_BIT (uses, REGNO (x));
+ }
+ }
+}
+
+#endif
+
+#ifdef HAVE_return
+/* Insert use of return register before the end of BB. */
+
+static void
+emit_use_return_register_into_block (basic_block bb)
+{
+ rtx seq, insn;
+ start_sequence ();
+ use_return_register ();
+ seq = get_insns ();
+ end_sequence ();
+ insn = BB_END (bb);
+#ifdef HAVE_cc0
+ if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
+ insn = prev_cc0_setter (insn);
+#endif
+ emit_insn_before (seq, insn);
+}
+
+
+/* Create a return pattern, either simple_return or return, depending on
+ simple_p. */
+
+static rtx
+gen_return_pattern (bool simple_p)
+{
+#ifdef HAVE_simple_return
+ return simple_p ? gen_simple_return () : gen_return ();
+#else
+ gcc_assert (!simple_p);
+ return gen_return ();
+#endif
+}
+
+/* Insert an appropriate return pattern at the end of block BB. This
+ also means updating block_for_insn appropriately. SIMPLE_P is
+ the same as in gen_return_pattern and passed to it. */
+
+static void
+emit_return_into_block (bool simple_p, basic_block bb)
+{
+ rtx jump, pat;
+ jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
+ pat = PATTERN (jump);
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+ gcc_assert (ANY_RETURN_P (pat));
+ JUMP_LABEL (jump) = pat;
+}
+#endif
+
+/* Set JUMP_LABEL for a return insn. */
+
+void
+set_return_jump_label (rtx returnjump)
+{
+ rtx pat = PATTERN (returnjump);
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+ if (ANY_RETURN_P (pat))
+ JUMP_LABEL (returnjump) = pat;
+ else
+ JUMP_LABEL (returnjump) = ret_rtx;
+}
+
+#ifdef HAVE_simple_return
+/* Create a copy of BB instructions and insert at BEFORE. Redirect
+ preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
+static void
+dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
+ bitmap_head *need_prologue)
+{
+ edge_iterator ei;
+ edge e;
+ rtx insn = BB_END (bb);
+
+ /* We know BB has a single successor, so there is no need to copy a
+ simple jump at the end of BB. */
+ if (simplejump_p (insn))
+ insn = PREV_INSN (insn);
+
+ start_sequence ();
+ duplicate_insn_chain (BB_HEAD (bb), insn);
+ if (dump_file)
+ {
+ unsigned count = 0;
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (active_insn_p (insn))
+ ++count;
+ fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
+ bb->index, copy_bb->index, count);
+ }
+ insn = get_insns ();
+ end_sequence ();
+ emit_insn_before (insn, before);
+
+ /* Redirect all the paths that need no prologue into copy_bb. */
+ for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
+ if (!bitmap_bit_p (need_prologue, e->src->index))
+ {
+ int freq = EDGE_FREQUENCY (e);
+ copy_bb->count += e->count;
+ copy_bb->frequency += EDGE_FREQUENCY (e);
+ e->dest->count -= e->count;
+ if (e->dest->count < 0)
+ e->dest->count = 0;
+ e->dest->frequency -= freq;
+ if (e->dest->frequency < 0)
+ e->dest->frequency = 0;
+ redirect_edge_and_branch_force (e, copy_bb);
+ continue;
+ }
+ else
+ ei_next (&ei);
+}
+#endif
+
+#if defined (HAVE_return) || defined (HAVE_simple_return)
+/* Return true if there are any active insns between HEAD and TAIL. */
+static bool
+active_insn_between (rtx head, rtx tail)
+{
+ while (tail)
+ {
+ if (active_insn_p (tail))
+ return true;
+ if (tail == head)
+ return false;
+ tail = PREV_INSN (tail);
+ }
+ return false;
+}
+
+/* LAST_BB is a block that exits, and empty of active instructions.
+ Examine its predecessors for jumps that can be converted to
+ (conditional) returns. */
+static vec<edge>
+convert_jumps_to_returns (basic_block last_bb, bool simple_p,
+ vec<edge> unconverted ATTRIBUTE_UNUSED)
+{
+ int i;
+ basic_block bb;
+ rtx label;
+ edge_iterator ei;
+ edge e;
+ auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
+
+ FOR_EACH_EDGE (e, ei, last_bb->preds)
+ if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ src_bbs.quick_push (e->src);
+
+ label = BB_HEAD (last_bb);
+
+ FOR_EACH_VEC_ELT (src_bbs, i, bb)
+ {
+ rtx jump = BB_END (bb);
+
+ if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
+ continue;
+
+ e = find_edge (bb, last_bb);
+
+ /* If we have an unconditional jump, we can replace that
+ with a simple return instruction. */
+ if (simplejump_p (jump))
+ {
+ /* The use of the return register might be present in the exit
+ fallthru block. Either:
+ - removing the use is safe, and we should remove the use in
+ the exit fallthru block, or
+ - removing the use is not safe, and we should add it here.
+ For now, we conservatively choose the latter. Either of the
+ 2 helps in crossjumping. */
+ emit_use_return_register_into_block (bb);
+
+ emit_return_into_block (simple_p, bb);
+ delete_insn (jump);
+ }
+
+ /* If we have a conditional jump branching to the last
+ block, we can try to replace that with a conditional
+ return instruction. */
+ else if (condjump_p (jump))
+ {
+ rtx dest;
+
+ if (simple_p)
+ dest = simple_return_rtx;
+ else
+ dest = ret_rtx;
+ if (!redirect_jump (jump, dest, 0))
+ {
+#ifdef HAVE_simple_return
+ if (simple_p)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "Failed to redirect bb %d branch.\n", bb->index);
+ unconverted.safe_push (e);
+ }
+#endif
+ continue;
+ }
+
+ /* See comment in simplejump_p case above. */
+ emit_use_return_register_into_block (bb);
+
+ /* If this block has only one successor, it both jumps
+ and falls through to the fallthru block, so we can't
+ delete the edge. */
+ if (single_succ_p (bb))
+ continue;
+ }
+ else
+ {
+#ifdef HAVE_simple_return
+ if (simple_p)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "Failed to redirect bb %d branch.\n", bb->index);
+ unconverted.safe_push (e);
+ }
+#endif
+ continue;
+ }
+
+ /* Fix up the CFG for the successful change we just made. */
+ redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
+ e->flags &= ~EDGE_CROSSING;
+ }
+ src_bbs.release ();
+ return unconverted;
+}
+
+/* Emit a return insn for the exit fallthru block. */
+static basic_block
+emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
+{
+ basic_block last_bb = exit_fallthru_edge->src;
+
+ if (JUMP_P (BB_END (last_bb)))
+ {
+ last_bb = split_edge (exit_fallthru_edge);
+ exit_fallthru_edge = single_succ_edge (last_bb);
+ }
+ emit_barrier_after (BB_END (last_bb));
+ emit_return_into_block (simple_p, last_bb);
+ exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
+ return last_bb;
+}
+#endif
+
+
+/* Generate the prologue and epilogue RTL if the machine supports it. Thread
+ this into place with notes indicating where the prologue ends and where
+ the epilogue begins. Update the basic block information when possible.
+
+ Notes on epilogue placement:
+ There are several kinds of edges to the exit block:
+ * a single fallthru edge from LAST_BB
+ * possibly, edges from blocks containing sibcalls
+ * possibly, fake edges from infinite loops
+
+ The epilogue is always emitted on the fallthru edge from the last basic
+ block in the function, LAST_BB, into the exit block.
+
+ If LAST_BB is empty except for a label, it is the target of every
+ other basic block in the function that ends in a return. If a
+ target has a return or simple_return pattern (possibly with
+ conditional variants), these basic blocks can be changed so that a
+ return insn is emitted into them, and their target is adjusted to
+ the real exit block.
+
+ Notes on shrink wrapping: We implement a fairly conservative
+ version of shrink-wrapping rather than the textbook one. We only
+ generate a single prologue and a single epilogue. This is
+ sufficient to catch a number of interesting cases involving early
+ exits.
+
+ First, we identify the blocks that require the prologue to occur before
+ them. These are the ones that modify a call-saved register, or reference
+ any of the stack or frame pointer registers. To simplify things, we then
+ mark everything reachable from these blocks as also requiring a prologue.
+ This takes care of loops automatically, and avoids the need to examine
+ whether MEMs reference the frame, since it is sufficient to check for
+ occurrences of the stack or frame pointer.
+
+ We then compute the set of blocks for which the need for a prologue
+ is anticipatable (borrowing terminology from the shrink-wrapping
+ description in Muchnick's book). These are the blocks which either
+ require a prologue themselves, or those that have only successors
+ where the prologue is anticipatable. The prologue needs to be
+ inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
+ is not. For the moment, we ensure that only one such edge exists.
+
+ The epilogue is placed as described above, but we make a
+ distinction between inserting return and simple_return patterns
+ when modifying other blocks that end in a return. Blocks that end
+ in a sibcall omit the sibcall_epilogue if the block is not in
+ ANTIC. */
+
+static void
+thread_prologue_and_epilogue_insns (void)
+{
+ bool inserted;
+#ifdef HAVE_simple_return
+ vec<edge> unconverted_simple_returns = vNULL;
+ bool nonempty_prologue;
+ bitmap_head bb_flags;
+ unsigned max_grow_size;
+#endif
+ rtx returnjump;
+ rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
+ rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
+ edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
+ edge_iterator ei;
+
+ df_analyze ();
+
+ rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
+
+ inserted = false;
+ seq = NULL_RTX;
+ epilogue_end = NULL_RTX;
+ returnjump = NULL_RTX;
+
+ /* Can't deal with multiple successors of the entry block at the
+ moment. Function should always have at least one entry
+ point. */
+ gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
+ entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
+ orig_entry_edge = entry_edge;
+
+ split_prologue_seq = NULL_RTX;
+ if (flag_split_stack
+ && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
+ == NULL))
+ {
+#ifndef HAVE_split_stack_prologue
+ gcc_unreachable ();
+#else
+ gcc_assert (HAVE_split_stack_prologue);
+
+ start_sequence ();
+ emit_insn (gen_split_stack_prologue ());
+ split_prologue_seq = get_insns ();
+ end_sequence ();
+
+ record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
+ set_insn_locations (split_prologue_seq, prologue_location);
+#endif
+ }
+
+ prologue_seq = NULL_RTX;
+#ifdef HAVE_prologue
+ if (HAVE_prologue)
+ {
+ start_sequence ();
+ seq = gen_prologue ();
+ emit_insn (seq);
+
+ /* Insert an explicit USE for the frame pointer
+ if the profiling is on and the frame pointer is required. */
+ if (crtl->profile && frame_pointer_needed)
+ emit_use (hard_frame_pointer_rtx);
+
+ /* Retain a map of the prologue insns. */
+ record_insns (seq, NULL, &prologue_insn_hash);
+ emit_note (NOTE_INSN_PROLOGUE_END);
+
+ /* Ensure that instructions are not moved into the prologue when
+ profiling is on. The call to the profiling routine can be
+ emitted within the live range of a call-clobbered register. */
+ if (!targetm.profile_before_prologue () && crtl->profile)
+ emit_insn (gen_blockage ());
+
+ prologue_seq = get_insns ();
+ end_sequence ();
+ set_insn_locations (prologue_seq, prologue_location);
+ }
+#endif
+
+#ifdef HAVE_simple_return
+ bitmap_initialize (&bb_flags, &bitmap_default_obstack);
+
+ /* Try to perform a kind of shrink-wrapping, making sure the
+ prologue/epilogue is emitted only around those parts of the
+ function that require it. */
+
+ nonempty_prologue = false;
+ for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
+ if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
+ {
+ nonempty_prologue = true;
+ break;
+ }
+
+ if (flag_shrink_wrap && HAVE_simple_return
+ && (targetm.profile_before_prologue () || !crtl->profile)
+ && nonempty_prologue && !crtl->calls_eh_return)
+ {
+ HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
+ struct hard_reg_set_container set_up_by_prologue;
+ rtx p_insn;
+ vec<basic_block> vec;
+ basic_block bb;
+ bitmap_head bb_antic_flags;
+ bitmap_head bb_on_list;
+ bitmap_head bb_tail;
+
+ if (dump_file)
+ fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
+
+ /* Compute the registers set and used in the prologue. */
+ CLEAR_HARD_REG_SET (prologue_clobbered);
+ CLEAR_HARD_REG_SET (prologue_used);
+ for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
+ {
+ HARD_REG_SET this_used;
+ if (!NONDEBUG_INSN_P (p_insn))
+ continue;
+
+ CLEAR_HARD_REG_SET (this_used);
+ note_uses (&PATTERN (p_insn), record_hard_reg_uses,
+ &this_used);
+ AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
+ IOR_HARD_REG_SET (prologue_used, this_used);
+ note_stores (PATTERN (p_insn), record_hard_reg_sets,
+ &prologue_clobbered);
+ }
+
+ prepare_shrink_wrap (entry_edge->dest);
+
+ bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
+ bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
+ bitmap_initialize (&bb_tail, &bitmap_default_obstack);
+
+ /* Find the set of basic blocks that require a stack frame,
+ and blocks that are too big to be duplicated. */
+
+ vec.create (n_basic_blocks_for_fn (cfun));
+
+ CLEAR_HARD_REG_SET (set_up_by_prologue.set);
+ add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
+ STACK_POINTER_REGNUM);
+ add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
+ if (frame_pointer_needed)
+ add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
+ HARD_FRAME_POINTER_REGNUM);
+ if (pic_offset_table_rtx)
+ add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
+ PIC_OFFSET_TABLE_REGNUM);
+ if (crtl->drap_reg)
+ add_to_hard_reg_set (&set_up_by_prologue.set,
+ GET_MODE (crtl->drap_reg),
+ REGNO (crtl->drap_reg));
+ if (targetm.set_up_by_prologue)
+ targetm.set_up_by_prologue (&set_up_by_prologue);
+
+ /* We don't use a different max size depending on
+ optimize_bb_for_speed_p because increasing shrink-wrapping
+ opportunities by duplicating tail blocks can actually result
+ in an overall decrease in code size. */
+ max_grow_size = get_uncond_jump_length ();
+ max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ rtx insn;
+ unsigned size = 0;
+
+ FOR_BB_INSNS (bb, insn)
+ if (NONDEBUG_INSN_P (insn))
+ {
+ if (requires_stack_frame_p (insn, prologue_used,
+ set_up_by_prologue.set))
+ {
+ if (bb == entry_edge->dest)
+ goto fail_shrinkwrap;
+ bitmap_set_bit (&bb_flags, bb->index);
+ vec.quick_push (bb);
+ break;
+ }
+ else if (size <= max_grow_size)
+ {
+ size += get_attr_min_length (insn);
+ if (size > max_grow_size)
+ bitmap_set_bit (&bb_on_list, bb->index);
+ }
+ }
+ }
+
+ /* Blocks that really need a prologue, or are too big for tails. */
+ bitmap_ior_into (&bb_on_list, &bb_flags);
+
+ /* For every basic block that needs a prologue, mark all blocks
+ reachable from it, so as to ensure they are also seen as
+ requiring a prologue. */
+ while (!vec.is_empty ())
+ {
+ basic_block tmp_bb = vec.pop ();
+
+ FOR_EACH_EDGE (e, ei, tmp_bb->succs)
+ if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
+ && bitmap_set_bit (&bb_flags, e->dest->index))
+ vec.quick_push (e->dest);
+ }
+
+ /* Find the set of basic blocks that need no prologue, have a
+ single successor, can be duplicated, meet a max size
+ requirement, and go to the exit via like blocks. */
+ vec.quick_push (EXIT_BLOCK_PTR_FOR_FN (cfun));
+ while (!vec.is_empty ())
+ {
+ basic_block tmp_bb = vec.pop ();
+
+ FOR_EACH_EDGE (e, ei, tmp_bb->preds)
+ if (single_succ_p (e->src)
+ && !bitmap_bit_p (&bb_on_list, e->src->index)
+ && can_duplicate_block_p (e->src))
+ {
+ edge pe;
+ edge_iterator pei;
+
+ /* If there is predecessor of e->src which doesn't
+ need prologue and the edge is complex,
+ we might not be able to redirect the branch
+ to a copy of e->src. */
+ FOR_EACH_EDGE (pe, pei, e->src->preds)
+ if ((pe->flags & EDGE_COMPLEX) != 0
+ && !bitmap_bit_p (&bb_flags, pe->src->index))
+ break;
+ if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
+ vec.quick_push (e->src);
+ }
+ }
+
+ /* Now walk backwards from every block that is marked as needing
+ a prologue to compute the bb_antic_flags bitmap. Exclude
+ tail blocks; They can be duplicated to be used on paths not
+ needing a prologue. */
+ bitmap_clear (&bb_on_list);
+ bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ if (!bitmap_bit_p (&bb_antic_flags, bb->index))
+ continue;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
+ && bitmap_set_bit (&bb_on_list, e->src->index))
+ vec.quick_push (e->src);
+ }
+ while (!vec.is_empty ())
+ {
+ basic_block tmp_bb = vec.pop ();
+ bool all_set = true;
+
+ bitmap_clear_bit (&bb_on_list, tmp_bb->index);
+ FOR_EACH_EDGE (e, ei, tmp_bb->succs)
+ if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
+ {
+ all_set = false;
+ break;
+ }
+
+ if (all_set)
+ {
+ bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
+ FOR_EACH_EDGE (e, ei, tmp_bb->preds)
+ if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
+ && bitmap_set_bit (&bb_on_list, e->src->index))
+ vec.quick_push (e->src);
+ }
+ }
+ /* Find exactly one edge that leads to a block in ANTIC from
+ a block that isn't. */
+ if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ if (!bitmap_bit_p (&bb_antic_flags, bb->index))
+ continue;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
+ {
+ if (entry_edge != orig_entry_edge)
+ {
+ entry_edge = orig_entry_edge;
+ if (dump_file)
+ fprintf (dump_file, "More than one candidate edge.\n");
+ goto fail_shrinkwrap;
+ }
+ if (dump_file)
+ fprintf (dump_file, "Found candidate edge for "
+ "shrink-wrapping, %d->%d.\n", e->src->index,
+ e->dest->index);
+ entry_edge = e;
+ }
+ }
+
+ if (entry_edge != orig_entry_edge)
+ {
+ /* Test whether the prologue is known to clobber any register
+ (other than FP or SP) which are live on the edge. */
+ CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
+ if (frame_pointer_needed)
+ CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
+ REG_SET_TO_HARD_REG_SET (live_on_edge,
+ df_get_live_in (entry_edge->dest));
+ if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
+ {
+ entry_edge = orig_entry_edge;
+ if (dump_file)
+ fprintf (dump_file,
+ "Shrink-wrapping aborted due to clobber.\n");
+ }
+ }
+ if (entry_edge != orig_entry_edge)
+ {
+ crtl->shrink_wrapped = true;
+ if (dump_file)
+ fprintf (dump_file, "Performing shrink-wrapping.\n");
+
+ /* Find tail blocks reachable from both blocks needing a
+ prologue and blocks not needing a prologue. */
+ if (!bitmap_empty_p (&bb_tail))
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ bool some_pro, some_no_pro;
+ if (!bitmap_bit_p (&bb_tail, bb->index))
+ continue;
+ some_pro = some_no_pro = false;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ if (bitmap_bit_p (&bb_flags, e->src->index))
+ some_pro = true;
+ else
+ some_no_pro = true;
+ }
+ if (some_pro && some_no_pro)
+ vec.quick_push (bb);
+ else
+ bitmap_clear_bit (&bb_tail, bb->index);
+ }
+ /* Find the head of each tail. */
+ while (!vec.is_empty ())
+ {
+ basic_block tbb = vec.pop ();
+
+ if (!bitmap_bit_p (&bb_tail, tbb->index))
+ continue;
+
+ while (single_succ_p (tbb))
+ {
+ tbb = single_succ (tbb);
+ bitmap_clear_bit (&bb_tail, tbb->index);
+ }
+ }
+ /* Now duplicate the tails. */
+ if (!bitmap_empty_p (&bb_tail))
+ FOR_EACH_BB_REVERSE_FN (bb, cfun)
+ {
+ basic_block copy_bb, tbb;
+ rtx insert_point;
+ int eflags;
+
+ if (!bitmap_clear_bit (&bb_tail, bb->index))
+ continue;
+
+ /* Create a copy of BB, instructions and all, for
+ use on paths that don't need a prologue.
+ Ideal placement of the copy is on a fall-thru edge
+ or after a block that would jump to the copy. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (!bitmap_bit_p (&bb_flags, e->src->index)
+ && single_succ_p (e->src))
+ break;
+ if (e)
+ {
+ /* Make sure we insert after any barriers. */
+ rtx end = get_last_bb_insn (e->src);
+ copy_bb = create_basic_block (NEXT_INSN (end),
+ NULL_RTX, e->src);
+ BB_COPY_PARTITION (copy_bb, e->src);
+ }
+ else
+ {
+ /* Otherwise put the copy at the end of the function. */
+ copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
+ EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
+ BB_COPY_PARTITION (copy_bb, bb);
+ }
+
+ insert_point = emit_note_after (NOTE_INSN_DELETED,
+ BB_END (copy_bb));
+ emit_barrier_after (BB_END (copy_bb));
+
+ tbb = bb;
+ while (1)
+ {
+ dup_block_and_redirect (tbb, copy_bb, insert_point,
+ &bb_flags);
+ tbb = single_succ (tbb);
+ if (tbb == EXIT_BLOCK_PTR_FOR_FN (cfun))
+ break;
+ e = split_block (copy_bb, PREV_INSN (insert_point));
+ copy_bb = e->dest;
+ }
+
+ /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
+ We have yet to add a simple_return to the tails,
+ as we'd like to first convert_jumps_to_returns in
+ case the block is no longer used after that. */
+ eflags = EDGE_FAKE;
+ if (CALL_P (PREV_INSN (insert_point))
+ && SIBLING_CALL_P (PREV_INSN (insert_point)))
+ eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
+ make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR_FOR_FN (cfun),
+ eflags);
+
+ /* verify_flow_info doesn't like a note after a
+ sibling call. */
+ delete_insn (insert_point);
+ if (bitmap_empty_p (&bb_tail))
+ break;
+ }
+ }
+
+ fail_shrinkwrap:
+ bitmap_clear (&bb_tail);
+ bitmap_clear (&bb_antic_flags);
+ bitmap_clear (&bb_on_list);
+ vec.release ();
+ }
+#endif
+
+ if (split_prologue_seq != NULL_RTX)
+ {
+ insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
+ inserted = true;
+ }
+ if (prologue_seq != NULL_RTX)
+ {
+ insert_insn_on_edge (prologue_seq, entry_edge);
+ inserted = true;
+ }
+
+ /* If the exit block has no non-fake predecessors, we don't need
+ an epilogue. */
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ if ((e->flags & EDGE_FAKE) == 0)
+ break;
+ if (e == NULL)
+ goto epilogue_done;
+
+ rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
+
+ exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
+
+ /* If we're allowed to generate a simple return instruction, then by
+ definition we don't need a full epilogue. If the last basic
+ block before the exit block does not contain active instructions,
+ examine its predecessors and try to emit (conditional) return
+ instructions. */
+#ifdef HAVE_simple_return
+ if (entry_edge != orig_entry_edge)
+ {
+ if (optimize)
+ {
+ unsigned i, last;
+
+ /* convert_jumps_to_returns may add to preds of the exit block
+ (but won't remove). Stop at end of current preds. */
+ last = EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
+ for (i = 0; i < last; i++)
+ {
+ e = EDGE_I (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, i);
+ if (LABEL_P (BB_HEAD (e->src))
+ && !bitmap_bit_p (&bb_flags, e->src->index)
+ && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
+ unconverted_simple_returns
+ = convert_jumps_to_returns (e->src, true,
+ unconverted_simple_returns);
+ }
+ }
+
+ if (exit_fallthru_edge != NULL
+ && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
+ && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
+ {
+ basic_block last_bb;
+
+ last_bb = emit_return_for_exit (exit_fallthru_edge, true);
+ returnjump = BB_END (last_bb);
+ exit_fallthru_edge = NULL;
+ }
+ }
+#endif
+#ifdef HAVE_return
+ if (HAVE_return)
+ {
+ if (exit_fallthru_edge == NULL)
+ goto epilogue_done;
+
+ if (optimize)
+ {
+ basic_block last_bb = exit_fallthru_edge->src;
+
+ if (LABEL_P (BB_HEAD (last_bb))
+ && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
+ convert_jumps_to_returns (last_bb, false, vNULL);
+
+ if (EDGE_COUNT (last_bb->preds) != 0
+ && single_succ_p (last_bb))
+ {
+ last_bb = emit_return_for_exit (exit_fallthru_edge, false);
+ epilogue_end = returnjump = BB_END (last_bb);
+#ifdef HAVE_simple_return
+ /* Emitting the return may add a basic block.
+ Fix bb_flags for the added block. */
+ if (last_bb != exit_fallthru_edge->src)
+ bitmap_set_bit (&bb_flags, last_bb->index);
+#endif
+ goto epilogue_done;
+ }
+ }
+ }
+#endif
+
+ /* A small fib -- epilogue is not yet completed, but we wish to re-use
+ this marker for the splits of EH_RETURN patterns, and nothing else
+ uses the flag in the meantime. */
+ epilogue_completed = 1;
+
+#ifdef HAVE_eh_return
+ /* Find non-fallthru edges that end with EH_RETURN instructions. On
+ some targets, these get split to a special version of the epilogue
+ code. In order to be able to properly annotate these with unwind
+ info, try to split them now. If we get a valid split, drop an
+ EPILOGUE_BEG note and mark the insns as epilogue insns. */
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ {
+ rtx prev, last, trial;
+
+ if (e->flags & EDGE_FALLTHRU)
+ continue;
+ last = BB_END (e->src);
+ if (!eh_returnjump_p (last))
+ continue;
+
+ prev = PREV_INSN (last);
+ trial = try_split (PATTERN (last), last, 1);
+ if (trial == last)
+ continue;
+
+ record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
+ emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
+ }
+#endif
+
+ /* If nothing falls through into the exit block, we don't need an
+ epilogue. */
+
+ if (exit_fallthru_edge == NULL)
+ goto epilogue_done;
+
+#ifdef HAVE_epilogue
+ if (HAVE_epilogue)
+ {
+ start_sequence ();
+ epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
+ seq = gen_epilogue ();
+ if (seq)
+ emit_jump_insn (seq);
+
+ /* Retain a map of the epilogue insns. */
+ record_insns (seq, NULL, &epilogue_insn_hash);
+ set_insn_locations (seq, epilogue_location);
+
+ seq = get_insns ();
+ returnjump = get_last_insn ();
+ end_sequence ();
+
+ insert_insn_on_edge (seq, exit_fallthru_edge);
+ inserted = true;
+
+ if (JUMP_P (returnjump))
+ set_return_jump_label (returnjump);
+ }
+ else
+#endif
+ {
+ basic_block cur_bb;
+
+ if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
+ goto epilogue_done;
+ /* We have a fall-through edge to the exit block, the source is not
+ at the end of the function, and there will be an assembler epilogue
+ at the end of the function.
+ We can't use force_nonfallthru here, because that would try to
+ use return. Inserting a jump 'by hand' is extremely messy, so
+ we take advantage of cfg_layout_finalize using
+ fixup_fallthru_exit_predecessor. */
+ cfg_layout_initialize (0);
+ FOR_EACH_BB_FN (cur_bb, cfun)
+ if (cur_bb->index >= NUM_FIXED_BLOCKS
+ && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
+ cur_bb->aux = cur_bb->next_bb;
+ cfg_layout_finalize ();
+ }
+
+epilogue_done:
+
+ default_rtl_profile ();
+
+ if (inserted)
+ {
+ sbitmap blocks;
+
+ commit_edge_insertions ();
+
+ /* Look for basic blocks within the prologue insns. */
+ blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
+ bitmap_clear (blocks);
+ bitmap_set_bit (blocks, entry_edge->dest->index);
+ bitmap_set_bit (blocks, orig_entry_edge->dest->index);
+ find_many_sub_basic_blocks (blocks);
+ sbitmap_free (blocks);
+
+ /* The epilogue insns we inserted may cause the exit edge to no longer
+ be fallthru. */
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ {
+ if (((e->flags & EDGE_FALLTHRU) != 0)
+ && returnjump_p (BB_END (e->src)))
+ e->flags &= ~EDGE_FALLTHRU;
+ }
+ }
+
+#ifdef HAVE_simple_return
+ /* If there were branches to an empty LAST_BB which we tried to
+ convert to conditional simple_returns, but couldn't for some
+ reason, create a block to hold a simple_return insn and redirect
+ those remaining edges. */
+ if (!unconverted_simple_returns.is_empty ())
+ {
+ basic_block simple_return_block_hot = NULL;
+ basic_block simple_return_block_cold = NULL;
+ edge pending_edge_hot = NULL;
+ edge pending_edge_cold = NULL;
+ basic_block exit_pred;
+ int i;
+
+ gcc_assert (entry_edge != orig_entry_edge);
+
+ /* See if we can reuse the last insn that was emitted for the
+ epilogue. */
+ if (returnjump != NULL_RTX
+ && JUMP_LABEL (returnjump) == simple_return_rtx)
+ {
+ e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
+ if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
+ simple_return_block_hot = e->dest;
+ else
+ simple_return_block_cold = e->dest;
+ }
+
+ /* Also check returns we might need to add to tail blocks. */
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ if (EDGE_COUNT (e->src->preds) != 0
+ && (e->flags & EDGE_FAKE) != 0
+ && !bitmap_bit_p (&bb_flags, e->src->index))
+ {
+ if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
+ pending_edge_hot = e;
+ else
+ pending_edge_cold = e;
+ }
+
+ /* Save a pointer to the exit's predecessor BB for use in
+ inserting new BBs at the end of the function. Do this
+ after the call to split_block above which may split
+ the original exit pred. */
+ exit_pred = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
+
+ FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
+ {
+ basic_block *pdest_bb;
+ edge pending;
+
+ if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
+ {
+ pdest_bb = &simple_return_block_hot;
+ pending = pending_edge_hot;
+ }
+ else
+ {
+ pdest_bb = &simple_return_block_cold;
+ pending = pending_edge_cold;
+ }
+
+ if (*pdest_bb == NULL && pending != NULL)
+ {
+ emit_return_into_block (true, pending->src);
+ pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
+ *pdest_bb = pending->src;
+ }
+ else if (*pdest_bb == NULL)
+ {
+ basic_block bb;
+ rtx start;
+
+ bb = create_basic_block (NULL, NULL, exit_pred);
+ BB_COPY_PARTITION (bb, e->src);
+ start = emit_jump_insn_after (gen_simple_return (),
+ BB_END (bb));
+ JUMP_LABEL (start) = simple_return_rtx;
+ emit_barrier_after (start);
+
+ *pdest_bb = bb;
+ make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
+ }
+ redirect_edge_and_branch_force (e, *pdest_bb);
+ }
+ unconverted_simple_returns.release ();
+ }
+
+ if (entry_edge != orig_entry_edge)
+ {
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ if (EDGE_COUNT (e->src->preds) != 0
+ && (e->flags & EDGE_FAKE) != 0
+ && !bitmap_bit_p (&bb_flags, e->src->index))
+ {
+ emit_return_into_block (true, e->src);
+ e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
+ }
+ }
+#endif
+
+#ifdef HAVE_sibcall_epilogue
+ /* Emit sibling epilogues before any sibling call sites. */
+ for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
+ ei_safe_edge (ei));
+ )
+ {
+ basic_block bb = e->src;
+ rtx insn = BB_END (bb);
+ rtx ep_seq;
+
+ if (!CALL_P (insn)
+ || ! SIBLING_CALL_P (insn)
+#ifdef HAVE_simple_return
+ || (entry_edge != orig_entry_edge
+ && !bitmap_bit_p (&bb_flags, bb->index))
+#endif
+ )
+ {
+ ei_next (&ei);
+ continue;
+ }
+
+ ep_seq = gen_sibcall_epilogue ();
+ if (ep_seq)
+ {
+ start_sequence ();
+ emit_note (NOTE_INSN_EPILOGUE_BEG);
+ emit_insn (ep_seq);
+ seq = get_insns ();
+ end_sequence ();
+
+ /* Retain a map of the epilogue insns. Used in life analysis to
+ avoid getting rid of sibcall epilogue insns. Do this before we
+ actually emit the sequence. */
+ record_insns (seq, NULL, &epilogue_insn_hash);
+ set_insn_locations (seq, epilogue_location);
+
+ emit_insn_before (seq, insn);
+ }
+ ei_next (&ei);
+ }
+#endif
+
+#ifdef HAVE_epilogue
+ if (epilogue_end)
+ {
+ rtx insn, next;
+
+ /* Similarly, move any line notes that appear after the epilogue.
+ There is no need, however, to be quite so anal about the existence
+ of such a note. Also possibly move
+ NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
+ info generation. */
+ for (insn = epilogue_end; insn; insn = next)
+ {
+ next = NEXT_INSN (insn);
+ if (NOTE_P (insn)
+ && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
+ reorder_insns (insn, insn, PREV_INSN (epilogue_end));
+ }
+ }
+#endif
+
+#ifdef HAVE_simple_return
+ bitmap_clear (&bb_flags);
+#endif
+
+ /* Threading the prologue and epilogue changes the artificial refs
+ in the entry and exit blocks. */
+ epilogue_completed = 1;
+ df_update_entry_exit_and_calls ();
+}
+
+/* Reposition the prologue-end and epilogue-begin notes after
+ instruction scheduling. */
+
+void
+reposition_prologue_and_epilogue_notes (void)
+{
+#if defined (HAVE_prologue) || defined (HAVE_epilogue) \
+ || defined (HAVE_sibcall_epilogue)
+ /* Since the hash table is created on demand, the fact that it is
+ non-null is a signal that it is non-empty. */
+ if (prologue_insn_hash != NULL)
+ {
+ size_t len = htab_elements (prologue_insn_hash);
+ rtx insn, last = NULL, note = NULL;
+
+ /* Scan from the beginning until we reach the last prologue insn. */
+ /* ??? While we do have the CFG intact, there are two problems:
+ (1) The prologue can contain loops (typically probing the stack),
+ which means that the end of the prologue isn't in the first bb.
+ (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (NOTE_P (insn))
+ {
+ if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
+ note = insn;
+ }
+ else if (contains (insn, prologue_insn_hash))
+ {
+ last = insn;
+ if (--len == 0)
+ break;
+ }
+ }
+
+ if (last)
+ {
+ if (note == NULL)
+ {
+ /* Scan forward looking for the PROLOGUE_END note. It should
+ be right at the beginning of the block, possibly with other
+ insn notes that got moved there. */
+ for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
+ {
+ if (NOTE_P (note)
+ && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
+ break;
+ }
+ }
+
+ /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
+ if (LABEL_P (last))
+ last = NEXT_INSN (last);
+ reorder_insns (note, note, last);
+ }
+ }
+
+ if (epilogue_insn_hash != NULL)
+ {
+ edge_iterator ei;
+ edge e;
+
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ {
+ rtx insn, first = NULL, note = NULL;
+ basic_block bb = e->src;
+
+ /* Scan from the beginning until we reach the first epilogue insn. */
+ FOR_BB_INSNS (bb, insn)
+ {
+ if (NOTE_P (insn))
+ {
+ if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
+ {
+ note = insn;
+ if (first != NULL)
+ break;
+ }
+ }
+ else if (first == NULL && contains (insn, epilogue_insn_hash))
+ {
+ first = insn;
+ if (note != NULL)
+ break;
+ }
+ }
+
+ if (note)
+ {
+ /* If the function has a single basic block, and no real
+ epilogue insns (e.g. sibcall with no cleanup), the
+ epilogue note can get scheduled before the prologue
+ note. If we have frame related prologue insns, having
+ them scanned during the epilogue will result in a crash.
+ In this case re-order the epilogue note to just before
+ the last insn in the block. */
+ if (first == NULL)
+ first = BB_END (bb);
+
+ if (PREV_INSN (first) != note)
+ reorder_insns (note, note, PREV_INSN (first));
+ }
+ }
+ }
+#endif /* HAVE_prologue or HAVE_epilogue */
+}
+
+/* Returns the name of function declared by FNDECL. */
+const char *
+fndecl_name (tree fndecl)
+{
+ if (fndecl == NULL)
+ return "(nofn)";
+ return lang_hooks.decl_printable_name (fndecl, 2);
+}
+
+/* Returns the name of function FN. */
+const char *
+function_name (struct function *fn)
+{
+ tree fndecl = (fn == NULL) ? NULL : fn->decl;
+ return fndecl_name (fndecl);
+}
+
+/* Returns the name of the current function. */
+const char *
+current_function_name (void)
+{
+ return function_name (cfun);
+}
+
+
+static unsigned int
+rest_of_handle_check_leaf_regs (void)
+{
+#ifdef LEAF_REGISTERS
+ crtl->uses_only_leaf_regs
+ = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
+#endif
+ return 0;
+}
+
+/* Insert a TYPE into the used types hash table of CFUN. */
+
+static void
+used_types_insert_helper (tree type, struct function *func)
+{
+ if (type != NULL && func != NULL)
+ {
+ void **slot;
+
+ if (func->used_types_hash == NULL)
+ func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
+ htab_eq_pointer, NULL);
+ slot = htab_find_slot (func->used_types_hash, type, INSERT);
+ if (*slot == NULL)
+ *slot = type;
+ }
+}
+
+/* Given a type, insert it into the used hash table in cfun. */
+void
+used_types_insert (tree t)
+{
+ while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
+ if (TYPE_NAME (t))
+ break;
+ else
+ t = TREE_TYPE (t);
+ if (TREE_CODE (t) == ERROR_MARK)
+ return;
+ if (TYPE_NAME (t) == NULL_TREE
+ || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
+ t = TYPE_MAIN_VARIANT (t);
+ if (debug_info_level > DINFO_LEVEL_NONE)
+ {
+ if (cfun)
+ used_types_insert_helper (t, cfun);
+ else
+ {
+ /* So this might be a type referenced by a global variable.
+ Record that type so that we can later decide to emit its
+ debug information. */
+ vec_safe_push (types_used_by_cur_var_decl, t);
+ }
+ }
+}
+
+/* Helper to Hash a struct types_used_by_vars_entry. */
+
+static hashval_t
+hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
+{
+ gcc_assert (entry && entry->var_decl && entry->type);
+
+ return iterative_hash_object (entry->type,
+ iterative_hash_object (entry->var_decl, 0));
+}
+
+/* Hash function of the types_used_by_vars_entry hash table. */
+
+hashval_t
+types_used_by_vars_do_hash (const void *x)
+{
+ const struct types_used_by_vars_entry *entry =
+ (const struct types_used_by_vars_entry *) x;
+
+ return hash_types_used_by_vars_entry (entry);
+}
+
+/*Equality function of the types_used_by_vars_entry hash table. */
+
+int
+types_used_by_vars_eq (const void *x1, const void *x2)
+{
+ const struct types_used_by_vars_entry *e1 =
+ (const struct types_used_by_vars_entry *) x1;
+ const struct types_used_by_vars_entry *e2 =
+ (const struct types_used_by_vars_entry *)x2;
+
+ return (e1->var_decl == e2->var_decl && e1->type == e2->type);
+}
+
+/* Inserts an entry into the types_used_by_vars_hash hash table. */
+
+void
+types_used_by_var_decl_insert (tree type, tree var_decl)
+{
+ if (type != NULL && var_decl != NULL)
+ {
+ void **slot;
+ struct types_used_by_vars_entry e;
+ e.var_decl = var_decl;
+ e.type = type;
+ if (types_used_by_vars_hash == NULL)
+ types_used_by_vars_hash =
+ htab_create_ggc (37, types_used_by_vars_do_hash,
+ types_used_by_vars_eq, NULL);
+ slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
+ hash_types_used_by_vars_entry (&e), INSERT);
+ if (*slot == NULL)
+ {
+ struct types_used_by_vars_entry *entry;
+ entry = ggc_alloc_types_used_by_vars_entry ();
+ entry->type = type;
+ entry->var_decl = var_decl;
+ *slot = entry;
+ }
+ }
+}
+
+namespace {
+
+const pass_data pass_data_leaf_regs =
+{
+ RTL_PASS, /* type */
+ "*leaf_regs", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_leaf_regs : public rtl_opt_pass
+{
+public:
+ pass_leaf_regs (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_leaf_regs, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
+
+}; // class pass_leaf_regs
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_leaf_regs (gcc::context *ctxt)
+{
+ return new pass_leaf_regs (ctxt);
+}
+
+static unsigned int
+rest_of_handle_thread_prologue_and_epilogue (void)
+{
+ if (optimize)
+ cleanup_cfg (CLEANUP_EXPENSIVE);
+
+ /* On some machines, the prologue and epilogue code, or parts thereof,
+ can be represented as RTL. Doing so lets us schedule insns between
+ it and the rest of the code and also allows delayed branch
+ scheduling to operate in the epilogue. */
+ thread_prologue_and_epilogue_insns ();
+
+ /* Shrink-wrapping can result in unreachable edges in the epilogue,
+ see PR57320. */
+ cleanup_cfg (0);
+
+ /* The stack usage info is finalized during prologue expansion. */
+ if (flag_stack_usage_info)
+ output_stack_usage ();
+
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_thread_prologue_and_epilogue =
+{
+ RTL_PASS, /* type */
+ "pro_and_epilogue", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ TODO_verify_flow, /* todo_flags_start */
+ ( TODO_df_verify | TODO_df_finish
+ | TODO_verify_rtl_sharing ), /* todo_flags_finish */
+};
+
+class pass_thread_prologue_and_epilogue : public rtl_opt_pass
+{
+public:
+ pass_thread_prologue_and_epilogue (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () {
+ return rest_of_handle_thread_prologue_and_epilogue ();
+ }
+
+}; // class pass_thread_prologue_and_epilogue
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
+{
+ return new pass_thread_prologue_and_epilogue (ctxt);
+}
+
+
+/* This mini-pass fixes fall-out from SSA in asm statements that have
+ in-out constraints. Say you start with
+
+ orig = inout;
+ asm ("": "+mr" (inout));
+ use (orig);
+
+ which is transformed very early to use explicit output and match operands:
+
+ orig = inout;
+ asm ("": "=mr" (inout) : "0" (inout));
+ use (orig);
+
+ Or, after SSA and copyprop,
+
+ asm ("": "=mr" (inout_2) : "0" (inout_1));
+ use (inout_1);
+
+ Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
+ they represent two separate values, so they will get different pseudo
+ registers during expansion. Then, since the two operands need to match
+ per the constraints, but use different pseudo registers, reload can
+ only register a reload for these operands. But reloads can only be
+ satisfied by hardregs, not by memory, so we need a register for this
+ reload, just because we are presented with non-matching operands.
+ So, even though we allow memory for this operand, no memory can be
+ used for it, just because the two operands don't match. This can
+ cause reload failures on register-starved targets.
+
+ So it's a symptom of reload not being able to use memory for reloads
+ or, alternatively it's also a symptom of both operands not coming into
+ reload as matching (in which case the pseudo could go to memory just
+ fine, as the alternative allows it, and no reload would be necessary).
+ We fix the latter problem here, by transforming
+
+ asm ("": "=mr" (inout_2) : "0" (inout_1));
+
+ back to
+
+ inout_2 = inout_1;
+ asm ("": "=mr" (inout_2) : "0" (inout_2)); */
+
+static void
+match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
+{
+ int i;
+ bool changed = false;
+ rtx op = SET_SRC (p_sets[0]);
+ int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
+ rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
+ bool *output_matched = XALLOCAVEC (bool, noutputs);
+
+ memset (output_matched, 0, noutputs * sizeof (bool));
+ for (i = 0; i < ninputs; i++)
+ {
+ rtx input, output, insns;
+ const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
+ char *end;
+ int match, j;
+
+ if (*constraint == '%')
+ constraint++;
+
+ match = strtoul (constraint, &end, 10);
+ if (end == constraint)
+ continue;
+
+ gcc_assert (match < noutputs);
+ output = SET_DEST (p_sets[match]);
+ input = RTVEC_ELT (inputs, i);
+ /* Only do the transformation for pseudos. */
+ if (! REG_P (output)
+ || rtx_equal_p (output, input)
+ || (GET_MODE (input) != VOIDmode
+ && GET_MODE (input) != GET_MODE (output)))
+ continue;
+
+ /* We can't do anything if the output is also used as input,
+ as we're going to overwrite it. */
+ for (j = 0; j < ninputs; j++)
+ if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
+ break;
+ if (j != ninputs)
+ continue;
+
+ /* Avoid changing the same input several times. For
+ asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
+ only change in once (to out1), rather than changing it
+ first to out1 and afterwards to out2. */
+ if (i > 0)
+ {
+ for (j = 0; j < noutputs; j++)
+ if (output_matched[j] && input == SET_DEST (p_sets[j]))
+ break;
+ if (j != noutputs)
+ continue;
+ }
+ output_matched[match] = true;
+
+ start_sequence ();
+ emit_move_insn (output, input);
+ insns = get_insns ();
+ end_sequence ();
+ emit_insn_before (insns, insn);
+
+ /* Now replace all mentions of the input with output. We can't
+ just replace the occurrence in inputs[i], as the register might
+ also be used in some other input (or even in an address of an
+ output), which would mean possibly increasing the number of
+ inputs by one (namely 'output' in addition), which might pose
+ a too complicated problem for reload to solve. E.g. this situation:
+
+ asm ("" : "=r" (output), "=m" (input) : "0" (input))
+
+ Here 'input' is used in two occurrences as input (once for the
+ input operand, once for the address in the second output operand).
+ If we would replace only the occurrence of the input operand (to
+ make the matching) we would be left with this:
+
+ output = input
+ asm ("" : "=r" (output), "=m" (input) : "0" (output))
+
+ Now we suddenly have two different input values (containing the same
+ value, but different pseudos) where we formerly had only one.
+ With more complicated asms this might lead to reload failures
+ which wouldn't have happen without this pass. So, iterate over
+ all operands and replace all occurrences of the register used. */
+ for (j = 0; j < noutputs; j++)
+ if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
+ && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
+ SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
+ input, output);
+ for (j = 0; j < ninputs; j++)
+ if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
+ RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
+ input, output);
+
+ changed = true;
+ }
+
+ if (changed)
+ df_insn_rescan (insn);
+}
+
+static unsigned
+rest_of_match_asm_constraints (void)
+{
+ basic_block bb;
+ rtx insn, pat, *p_sets;
+ int noutputs;
+
+ if (!crtl->has_asm_statement)
+ return 0;
+
+ df_set_flags (DF_DEFER_INSN_RESCAN);
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ FOR_BB_INSNS (bb, insn)
+ {
+ if (!INSN_P (insn))
+ continue;
+
+ pat = PATTERN (insn);
+ if (GET_CODE (pat) == PARALLEL)
+ p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
+ else if (GET_CODE (pat) == SET)
+ p_sets = &PATTERN (insn), noutputs = 1;
+ else
+ continue;
+
+ if (GET_CODE (*p_sets) == SET
+ && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
+ match_asm_constraints_1 (insn, p_sets, noutputs);
+ }
+ }
+
+ return TODO_df_finish;
+}
+
+namespace {
+
+const pass_data pass_data_match_asm_constraints =
+{
+ RTL_PASS, /* type */
+ "asmcons", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_match_asm_constraints : public rtl_opt_pass
+{
+public:
+ pass_match_asm_constraints (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () { return rest_of_match_asm_constraints (); }
+
+}; // class pass_match_asm_constraints
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_match_asm_constraints (gcc::context *ctxt)
+{
+ return new pass_match_asm_constraints (ctxt);
+}
+
+
+#include "gt-function.h"