aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/fixed-value.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-26 05:37:19 (GMT)
committerBen Cheng <bccheng@google.com>2014-03-26 05:37:19 (GMT)
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/fixed-value.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/fixed-value.c')
-rw-r--r--gcc-4.9/gcc/fixed-value.c1115
1 files changed, 1115 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/fixed-value.c b/gcc-4.9/gcc/fixed-value.c
new file mode 100644
index 0000000..58f63ba
--- /dev/null
+++ b/gcc-4.9/gcc/fixed-value.c
@@ -0,0 +1,1115 @@
+/* Fixed-point arithmetic support.
+ Copyright (C) 2006-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "diagnostic-core.h"
+
+/* Compare two fixed objects for bitwise identity. */
+
+bool
+fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
+{
+ return (a->mode == b->mode
+ && a->data.high == b->data.high
+ && a->data.low == b->data.low);
+}
+
+/* Calculate a hash value. */
+
+unsigned int
+fixed_hash (const FIXED_VALUE_TYPE *f)
+{
+ return (unsigned int) (f->data.low ^ f->data.high);
+}
+
+/* Define the enum code for the range of the fixed-point value. */
+enum fixed_value_range_code {
+ FIXED_OK, /* The value is within the range. */
+ FIXED_UNDERFLOW, /* The value is less than the minimum. */
+ FIXED_GT_MAX_EPS, /* The value is greater than the maximum, but not equal
+ to the maximum plus the epsilon. */
+ FIXED_MAX_EPS /* The value equals the maximum plus the epsilon. */
+};
+
+/* Check REAL_VALUE against the range of the fixed-point mode.
+ Return FIXED_OK, if it is within the range.
+ FIXED_UNDERFLOW, if it is less than the minimum.
+ FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
+ the maximum plus the epsilon.
+ FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon. */
+
+static enum fixed_value_range_code
+check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, enum machine_mode mode)
+{
+ REAL_VALUE_TYPE max_value, min_value, epsilon_value;
+
+ real_2expN (&max_value, GET_MODE_IBIT (mode), mode);
+ real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), mode);
+
+ if (SIGNED_FIXED_POINT_MODE_P (mode))
+ min_value = real_value_negate (&max_value);
+ else
+ real_from_string (&min_value, "0.0");
+
+ if (real_compare (LT_EXPR, real_value, &min_value))
+ return FIXED_UNDERFLOW;
+ if (real_compare (EQ_EXPR, real_value, &max_value))
+ return FIXED_MAX_EPS;
+ real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
+ if (real_compare (GT_EXPR, real_value, &max_value))
+ return FIXED_GT_MAX_EPS;
+ return FIXED_OK;
+}
+
+
+/* Construct a CONST_FIXED from a bit payload and machine mode MODE.
+ The bits in PAYLOAD are sign-extended/zero-extended according to MODE. */
+
+FIXED_VALUE_TYPE
+fixed_from_double_int (double_int payload, enum machine_mode mode)
+{
+ FIXED_VALUE_TYPE value;
+
+ gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
+
+ if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
+ value.data = payload.sext (1 + GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
+ else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
+ value.data = payload.zext (GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
+ else
+ gcc_unreachable ();
+
+ value.mode = mode;
+
+ return value;
+}
+
+
+/* Initialize from a decimal or hexadecimal string. */
+
+void
+fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, enum machine_mode mode)
+{
+ REAL_VALUE_TYPE real_value, fixed_value, base_value;
+ unsigned int fbit;
+ enum fixed_value_range_code temp;
+
+ f->mode = mode;
+ fbit = GET_MODE_FBIT (mode);
+
+ real_from_string (&real_value, str);
+ temp = check_real_for_fixed_mode (&real_value, f->mode);
+ /* We don't want to warn the case when the _Fract value is 1.0. */
+ if (temp == FIXED_UNDERFLOW
+ || temp == FIXED_GT_MAX_EPS
+ || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
+ warning (OPT_Woverflow,
+ "large fixed-point constant implicitly truncated to fixed-point type");
+ real_2expN (&base_value, fbit, mode);
+ real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
+ real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high,
+ &fixed_value);
+
+ if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
+ {
+ /* From the spec, we need to evaluate 1 to the maximal value. */
+ f->data.low = -1;
+ f->data.high = -1;
+ f->data = f->data.zext (GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode));
+ }
+ else
+ f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
+ + GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+}
+
+/* Render F as a decimal floating point constant. */
+
+void
+fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
+ size_t buf_size)
+{
+ REAL_VALUE_TYPE real_value, base_value, fixed_value;
+
+ real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), f_orig->mode);
+ real_from_integer (&real_value, VOIDmode, f_orig->data.low, f_orig->data.high,
+ UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode));
+ real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
+ real_to_decimal (str, &fixed_value, buf_size, 0, 1);
+}
+
+/* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
+ the machine mode MODE.
+ Do not modify *F otherwise.
+ This function assumes the width of double_int is greater than the width
+ of the fixed-point value (the sum of a possible sign bit, possible ibits,
+ and fbits).
+ Return true, if !SAT_P and overflow. */
+
+static bool
+fixed_saturate1 (enum machine_mode mode, double_int a, double_int *f,
+ bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+ int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+
+ if (unsigned_p) /* Unsigned type. */
+ {
+ double_int max;
+ max.low = -1;
+ max.high = -1;
+ max = max.zext (i_f_bits);
+ if (a.ugt (max))
+ {
+ if (sat_p)
+ *f = max;
+ else
+ overflow_p = true;
+ }
+ }
+ else /* Signed type. */
+ {
+ double_int max, min;
+ max.high = -1;
+ max.low = -1;
+ max = max.zext (i_f_bits);
+ min.high = 0;
+ min.low = 1;
+ min = min.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
+ min = min.sext (1 + i_f_bits);
+ if (a.sgt (max))
+ {
+ if (sat_p)
+ *f = max;
+ else
+ overflow_p = true;
+ }
+ else if (a.slt (min))
+ {
+ if (sat_p)
+ *f = min;
+ else
+ overflow_p = true;
+ }
+ }
+ return overflow_p;
+}
+
+/* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
+ save to *F based on the machine mode MODE.
+ Do not modify *F otherwise.
+ This function assumes the width of two double_int is greater than the width
+ of the fixed-point value (the sum of a possible sign bit, possible ibits,
+ and fbits).
+ Return true, if !SAT_P and overflow. */
+
+static bool
+fixed_saturate2 (enum machine_mode mode, double_int a_high, double_int a_low,
+ double_int *f, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+ int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+
+ if (unsigned_p) /* Unsigned type. */
+ {
+ double_int max_r, max_s;
+ max_r.high = 0;
+ max_r.low = 0;
+ max_s.high = -1;
+ max_s.low = -1;
+ max_s = max_s.zext (i_f_bits);
+ if (a_high.ugt (max_r)
+ || (a_high == max_r &&
+ a_low.ugt (max_s)))
+ {
+ if (sat_p)
+ *f = max_s;
+ else
+ overflow_p = true;
+ }
+ }
+ else /* Signed type. */
+ {
+ double_int max_r, max_s, min_r, min_s;
+ max_r.high = 0;
+ max_r.low = 0;
+ max_s.high = -1;
+ max_s.low = -1;
+ max_s = max_s.zext (i_f_bits);
+ min_r.high = -1;
+ min_r.low = -1;
+ min_s.high = 0;
+ min_s.low = 1;
+ min_s = min_s.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
+ min_s = min_s.sext (1 + i_f_bits);
+ if (a_high.sgt (max_r)
+ || (a_high == max_r &&
+ a_low.ugt (max_s)))
+ {
+ if (sat_p)
+ *f = max_s;
+ else
+ overflow_p = true;
+ }
+ else if (a_high.slt (min_r)
+ || (a_high == min_r &&
+ a_low.ult (min_s)))
+ {
+ if (sat_p)
+ *f = min_s;
+ else
+ overflow_p = true;
+ }
+ }
+ return overflow_p;
+}
+
+/* Return the sign bit based on I_F_BITS. */
+
+static inline int
+get_fixed_sign_bit (double_int a, int i_f_bits)
+{
+ if (i_f_bits < HOST_BITS_PER_WIDE_INT)
+ return (a.low >> i_f_bits) & 1;
+ else
+ return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
+}
+
+/* Calculate F = A + (SUBTRACT_P ? -B : B).
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+ const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p;
+ double_int temp;
+ int i_f_bits;
+
+ /* This was a conditional expression but it triggered a bug in
+ Sun C 5.5. */
+ if (subtract_p)
+ temp = -b->data;
+ else
+ temp = b->data;
+
+ unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+ f->data = a->data + temp;
+ if (unsigned_p) /* Unsigned type. */
+ {
+ if (subtract_p) /* Unsigned subtraction. */
+ {
+ if (a->data.ult (b->data))
+ {
+ if (sat_p)
+ {
+ f->data.high = 0;
+ f->data.low = 0;
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ else /* Unsigned addition. */
+ {
+ f->data = f->data.zext (i_f_bits);
+ if (f->data.ult (a->data)
+ || f->data.ult (b->data))
+ {
+ if (sat_p)
+ {
+ f->data.high = -1;
+ f->data.low = -1;
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ }
+ else /* Signed type. */
+ {
+ if ((!subtract_p
+ && (get_fixed_sign_bit (a->data, i_f_bits)
+ == get_fixed_sign_bit (b->data, i_f_bits))
+ && (get_fixed_sign_bit (a->data, i_f_bits)
+ != get_fixed_sign_bit (f->data, i_f_bits)))
+ || (subtract_p
+ && (get_fixed_sign_bit (a->data, i_f_bits)
+ != get_fixed_sign_bit (b->data, i_f_bits))
+ && (get_fixed_sign_bit (a->data, i_f_bits)
+ != get_fixed_sign_bit (f->data, i_f_bits))))
+ {
+ if (sat_p)
+ {
+ f->data.low = 1;
+ f->data.high = 0;
+ f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
+ if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
+ {
+ --f->data;
+ }
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Calculate F = A * B.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+ const FIXED_VALUE_TYPE *b, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+ if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ f->data = a->data * b->data;
+ f->data = f->data.lshift (-GET_MODE_FBIT (f->mode),
+ HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+ }
+ else
+ {
+ /* The result of multiplication expands to two double_int. */
+ double_int a_high, a_low, b_high, b_low;
+ double_int high_high, high_low, low_high, low_low;
+ double_int r, s, temp1, temp2;
+ int carry = 0;
+
+ /* Decompose a and b to four double_int. */
+ a_high.low = a->data.high;
+ a_high.high = 0;
+ a_low.low = a->data.low;
+ a_low.high = 0;
+ b_high.low = b->data.high;
+ b_high.high = 0;
+ b_low.low = b->data.low;
+ b_low.high = 0;
+
+ /* Perform four multiplications. */
+ low_low = a_low * b_low;
+ low_high = a_low * b_high;
+ high_low = a_high * b_low;
+ high_high = a_high * b_high;
+
+ /* Accumulate four results to {r, s}. */
+ temp1.high = high_low.low;
+ temp1.low = 0;
+ s = low_low + temp1;
+ if (s.ult (low_low)
+ || s.ult (temp1))
+ carry ++; /* Carry */
+ temp1.high = s.high;
+ temp1.low = s.low;
+ temp2.high = low_high.low;
+ temp2.low = 0;
+ s = temp1 + temp2;
+ if (s.ult (temp1)
+ || s.ult (temp2))
+ carry ++; /* Carry */
+
+ temp1.low = high_low.high;
+ temp1.high = 0;
+ r = high_high + temp1;
+ temp1.low = low_high.high;
+ temp1.high = 0;
+ r += temp1;
+ temp1.low = carry;
+ temp1.high = 0;
+ r += temp1;
+
+ /* We need to subtract b from r, if a < 0. */
+ if (!unsigned_p && a->data.high < 0)
+ r -= b->data;
+ /* We need to subtract a from r, if b < 0. */
+ if (!unsigned_p && b->data.high < 0)
+ r -= a->data;
+
+ /* Shift right the result by FBIT. */
+ if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
+ {
+ s.low = r.low;
+ s.high = r.high;
+ if (unsigned_p)
+ {
+ r.low = 0;
+ r.high = 0;
+ }
+ else
+ {
+ r.low = -1;
+ r.high = -1;
+ }
+ f->data.low = s.low;
+ f->data.high = s.high;
+ }
+ else
+ {
+ s = s.llshift ((-GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT);
+ f->data = r.llshift ((HOST_BITS_PER_DOUBLE_INT
+ - GET_MODE_FBIT (f->mode)),
+ HOST_BITS_PER_DOUBLE_INT);
+ f->data.low = f->data.low | s.low;
+ f->data.high = f->data.high | s.high;
+ s.low = f->data.low;
+ s.high = f->data.high;
+ r = r.lshift (-GET_MODE_FBIT (f->mode),
+ HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
+ }
+
+ overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
+ }
+
+ f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Calculate F = A / B.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+ const FIXED_VALUE_TYPE *b, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+ if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ f->data = a->data.lshift (GET_MODE_FBIT (f->mode),
+ HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
+ f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR);
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+ }
+ else
+ {
+ double_int pos_a, pos_b, r, s;
+ double_int quo_r, quo_s, mod, temp;
+ int num_of_neg = 0;
+ int i;
+
+ /* If a < 0, negate a. */
+ if (!unsigned_p && a->data.high < 0)
+ {
+ pos_a = -a->data;
+ num_of_neg ++;
+ }
+ else
+ pos_a = a->data;
+
+ /* If b < 0, negate b. */
+ if (!unsigned_p && b->data.high < 0)
+ {
+ pos_b = -b->data;
+ num_of_neg ++;
+ }
+ else
+ pos_b = b->data;
+
+ /* Left shift pos_a to {r, s} by FBIT. */
+ if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
+ {
+ r = pos_a;
+ s.high = 0;
+ s.low = 0;
+ }
+ else
+ {
+ s = pos_a.llshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT);
+ r = pos_a.llshift (- (HOST_BITS_PER_DOUBLE_INT
+ - GET_MODE_FBIT (f->mode)),
+ HOST_BITS_PER_DOUBLE_INT);
+ }
+
+ /* Divide r by pos_b to quo_r. The remainder is in mod. */
+ quo_r = r.divmod (pos_b, 1, TRUNC_DIV_EXPR, &mod);
+ quo_s = double_int_zero;
+
+ for (i = 0; i < HOST_BITS_PER_DOUBLE_INT; i++)
+ {
+ /* Record the leftmost bit of mod. */
+ int leftmost_mod = (mod.high < 0);
+
+ /* Shift left mod by 1 bit. */
+ mod = mod.lshift (1);
+
+ /* Test the leftmost bit of s to add to mod. */
+ if (s.high < 0)
+ mod.low += 1;
+
+ /* Shift left quo_s by 1 bit. */
+ quo_s = quo_s.lshift (1);
+
+ /* Try to calculate (mod - pos_b). */
+ temp = mod - pos_b;
+
+ if (leftmost_mod == 1 || mod.ucmp (pos_b) != -1)
+ {
+ quo_s.low += 1;
+ mod = temp;
+ }
+
+ /* Shift left s by 1 bit. */
+ s = s.lshift (1);
+
+ }
+
+ if (num_of_neg == 1)
+ {
+ quo_s = -quo_s;
+ if (quo_s.high == 0 && quo_s.low == 0)
+ quo_r = -quo_r;
+ else
+ {
+ quo_r.low = ~quo_r.low;
+ quo_r.high = ~quo_r.high;
+ }
+ }
+
+ f->data = quo_s;
+ overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
+ }
+
+ f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Calculate F = A << B if LEFT_P. Otherwise, F = A >> B.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+ const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+
+ if (b->data.low == 0)
+ {
+ f->data = a->data;
+ return overflow_p;
+ }
+
+ if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
+ {
+ f->data = a->data.lshift (left_p ? b->data.low : -b->data.low,
+ HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
+ if (left_p) /* Only left shift saturates. */
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+ }
+ else /* We need two double_int to store the left-shift result. */
+ {
+ double_int temp_high, temp_low;
+ if (b->data.low == HOST_BITS_PER_DOUBLE_INT)
+ {
+ temp_high = a->data;
+ temp_low.high = 0;
+ temp_low.low = 0;
+ }
+ else
+ {
+ temp_low = a->data.lshift (b->data.low,
+ HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
+ /* Logical shift right to temp_high. */
+ temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT,
+ HOST_BITS_PER_DOUBLE_INT);
+ }
+ if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high. */
+ temp_high = temp_high.ext (b->data.low, unsigned_p);
+ f->data = temp_low;
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+ sat_p);
+ }
+ f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Calculate F = -A.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+ f->data = -a->data;
+ f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
+
+ if (unsigned_p) /* Unsigned type. */
+ {
+ if (f->data.low != 0 || f->data.high != 0)
+ {
+ if (sat_p)
+ {
+ f->data.low = 0;
+ f->data.high = 0;
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ else /* Signed type. */
+ {
+ if (!(f->data.high == 0 && f->data.low == 0)
+ && f->data.high == a->data.high && f->data.low == a->data.low )
+ {
+ if (sat_p)
+ {
+ /* Saturate to the maximum by subtracting f->data by one. */
+ f->data.low = -1;
+ f->data.high = -1;
+ f->data = f->data.zext (i_f_bits);
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ return overflow_p;
+}
+
+/* Perform the binary or unary operation described by CODE.
+ Note that OP0 and OP1 must have the same mode for binary operators.
+ For a unary operation, leave OP1 NULL.
+ Return true, if !SAT_P and overflow. */
+
+bool
+fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
+ const FIXED_VALUE_TYPE *op1, bool sat_p)
+{
+ switch (icode)
+ {
+ case NEGATE_EXPR:
+ return do_fixed_neg (f, op0, sat_p);
+ break;
+
+ case PLUS_EXPR:
+ gcc_assert (op0->mode == op1->mode);
+ return do_fixed_add (f, op0, op1, false, sat_p);
+ break;
+
+ case MINUS_EXPR:
+ gcc_assert (op0->mode == op1->mode);
+ return do_fixed_add (f, op0, op1, true, sat_p);
+ break;
+
+ case MULT_EXPR:
+ gcc_assert (op0->mode == op1->mode);
+ return do_fixed_multiply (f, op0, op1, sat_p);
+ break;
+
+ case TRUNC_DIV_EXPR:
+ gcc_assert (op0->mode == op1->mode);
+ return do_fixed_divide (f, op0, op1, sat_p);
+ break;
+
+ case LSHIFT_EXPR:
+ return do_fixed_shift (f, op0, op1, true, sat_p);
+ break;
+
+ case RSHIFT_EXPR:
+ return do_fixed_shift (f, op0, op1, false, sat_p);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ return false;
+}
+
+/* Compare fixed-point values by tree_code.
+ Note that OP0 and OP1 must have the same mode. */
+
+bool
+fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
+ const FIXED_VALUE_TYPE *op1)
+{
+ enum tree_code code = (enum tree_code) icode;
+ gcc_assert (op0->mode == op1->mode);
+
+ switch (code)
+ {
+ case NE_EXPR:
+ return op0->data != op1->data;
+
+ case EQ_EXPR:
+ return op0->data == op1->data;
+
+ case LT_EXPR:
+ return op0->data.cmp (op1->data,
+ UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
+
+ case LE_EXPR:
+ return op0->data.cmp (op1->data,
+ UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
+
+ case GT_EXPR:
+ return op0->data.cmp (op1->data,
+ UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
+
+ case GE_EXPR:
+ return op0->data.cmp (op1->data,
+ UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Extend or truncate to a new mode.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+bool
+fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+ const FIXED_VALUE_TYPE *a, bool sat_p)
+{
+ bool overflow_p = false;
+ if (mode == a->mode)
+ {
+ *f = *a;
+ return overflow_p;
+ }
+
+ if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
+ {
+ /* Left shift a to temp_high, temp_low based on a->mode. */
+ double_int temp_high, temp_low;
+ int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
+ temp_low = a->data.lshift (amount,
+ HOST_BITS_PER_DOUBLE_INT,
+ SIGNED_FIXED_POINT_MODE_P (a->mode));
+ /* Logical shift right to temp_high. */
+ temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
+ HOST_BITS_PER_DOUBLE_INT);
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode)
+ && a->data.high < 0) /* Signed-extend temp_high. */
+ temp_high = temp_high.sext (amount);
+ f->mode = mode;
+ f->data = temp_low;
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
+ SIGNED_FIXED_POINT_MODE_P (f->mode))
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+ sat_p);
+ else
+ {
+ /* Take care of the cases when converting between signed and
+ unsigned. */
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode))
+ {
+ /* Signed -> Unsigned. */
+ if (a->data.high < 0)
+ {
+ if (sat_p)
+ {
+ f->data.low = 0; /* Set to zero. */
+ f->data.high = 0; /* Set to zero. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+ &f->data, sat_p);
+ }
+ else
+ {
+ /* Unsigned -> Signed. */
+ if (temp_high.high < 0)
+ {
+ if (sat_p)
+ {
+ /* Set to maximum. */
+ f->data.low = -1; /* Set to all ones. */
+ f->data.high = -1; /* Set to all ones. */
+ f->data = f->data.zext (GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode));
+ /* Clear the sign. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+ &f->data, sat_p);
+ }
+ }
+ }
+ else
+ {
+ /* Right shift a to temp based on a->mode. */
+ double_int temp;
+ temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
+ HOST_BITS_PER_DOUBLE_INT,
+ SIGNED_FIXED_POINT_MODE_P (a->mode));
+ f->mode = mode;
+ f->data = temp;
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
+ SIGNED_FIXED_POINT_MODE_P (f->mode))
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+ else
+ {
+ /* Take care of the cases when converting between signed and
+ unsigned. */
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode))
+ {
+ /* Signed -> Unsigned. */
+ if (a->data.high < 0)
+ {
+ if (sat_p)
+ {
+ f->data.low = 0; /* Set to zero. */
+ f->data.high = 0; /* Set to zero. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
+ sat_p);
+ }
+ else
+ {
+ /* Unsigned -> Signed. */
+ if (temp.high < 0)
+ {
+ if (sat_p)
+ {
+ /* Set to maximum. */
+ f->data.low = -1; /* Set to all ones. */
+ f->data.high = -1; /* Set to all ones. */
+ f->data = f->data.zext (GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode));
+ /* Clear the sign. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
+ sat_p);
+ }
+ }
+ }
+
+ f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
+ + GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+ return overflow_p;
+}
+
+/* Convert to a new fixed-point mode from an integer.
+ If UNSIGNED_P, this integer is unsigned.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+bool
+fixed_convert_from_int (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+ double_int a, bool unsigned_p, bool sat_p)
+{
+ bool overflow_p = false;
+ /* Left shift a to temp_high, temp_low. */
+ double_int temp_high, temp_low;
+ int amount = GET_MODE_FBIT (mode);
+ if (amount == HOST_BITS_PER_DOUBLE_INT)
+ {
+ temp_high = a;
+ temp_low.low = 0;
+ temp_low.high = 0;
+ }
+ else
+ {
+ temp_low = a.llshift (amount, HOST_BITS_PER_DOUBLE_INT);
+
+ /* Logical shift right to temp_high. */
+ temp_high = a.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
+ HOST_BITS_PER_DOUBLE_INT);
+ }
+ if (!unsigned_p && a.high < 0) /* Signed-extend temp_high. */
+ temp_high = temp_high.sext (amount);
+
+ f->mode = mode;
+ f->data = temp_low;
+
+ if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+ sat_p);
+ else
+ {
+ /* Take care of the cases when converting between signed and unsigned. */
+ if (!unsigned_p)
+ {
+ /* Signed -> Unsigned. */
+ if (a.high < 0)
+ {
+ if (sat_p)
+ {
+ f->data.low = 0; /* Set to zero. */
+ f->data.high = 0; /* Set to zero. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+ &f->data, sat_p);
+ }
+ else
+ {
+ /* Unsigned -> Signed. */
+ if (temp_high.high < 0)
+ {
+ if (sat_p)
+ {
+ /* Set to maximum. */
+ f->data.low = -1; /* Set to all ones. */
+ f->data.high = -1; /* Set to all ones. */
+ f->data = f->data.zext (GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode));
+ /* Clear the sign. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+ &f->data, sat_p);
+ }
+ }
+ f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
+ + GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+ return overflow_p;
+}
+
+/* Convert to a new fixed-point mode from a real.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+bool
+fixed_convert_from_real (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+ const REAL_VALUE_TYPE *a, bool sat_p)
+{
+ bool overflow_p = false;
+ REAL_VALUE_TYPE real_value, fixed_value, base_value;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+ int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+ unsigned int fbit = GET_MODE_FBIT (mode);
+ enum fixed_value_range_code temp;
+
+ real_value = *a;
+ f->mode = mode;
+ real_2expN (&base_value, fbit, mode);
+ real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
+ real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high, &fixed_value);
+ temp = check_real_for_fixed_mode (&real_value, mode);
+ if (temp == FIXED_UNDERFLOW) /* Minimum. */
+ {
+ if (sat_p)
+ {
+ if (unsigned_p)
+ {
+ f->data.low = 0;
+ f->data.high = 0;
+ }
+ else
+ {
+ f->data.low = 1;
+ f->data.high = 0;
+ f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
+ f->data = f->data.sext (1 + i_f_bits);
+ }
+ }
+ else
+ overflow_p = true;
+ }
+ else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum. */
+ {
+ if (sat_p)
+ {
+ f->data.low = -1;
+ f->data.high = -1;
+ f->data = f->data.zext (i_f_bits);
+ }
+ else
+ overflow_p = true;
+ }
+ f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Convert to a new real mode from a fixed-point. */
+
+void
+real_convert_from_fixed (REAL_VALUE_TYPE *r, enum machine_mode mode,
+ const FIXED_VALUE_TYPE *f)
+{
+ REAL_VALUE_TYPE base_value, fixed_value, real_value;
+
+ real_2expN (&base_value, GET_MODE_FBIT (f->mode), f->mode);
+ real_from_integer (&fixed_value, VOIDmode, f->data.low, f->data.high,
+ UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+ real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
+ real_convert (r, mode, &real_value);
+}
+
+/* Determine whether a fixed-point value F is negative. */
+
+bool
+fixed_isneg (const FIXED_VALUE_TYPE *f)
+{
+ if (SIGNED_FIXED_POINT_MODE_P (f->mode))
+ {
+ int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
+ int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
+ if (sign_bit == 1)
+ return true;
+ }
+
+ return false;
+}