aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/explow.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/explow.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/explow.c')
-rw-r--r--gcc-4.9/gcc/explow.c1951
1 files changed, 1951 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/explow.c b/gcc-4.9/gcc/explow.c
new file mode 100644
index 000000000..f4df9df42
--- /dev/null
+++ b/gcc-4.9/gcc/explow.c
@@ -0,0 +1,1951 @@
+/* Subroutines for manipulating rtx's in semantically interesting ways.
+ Copyright (C) 1987-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "diagnostic-core.h"
+#include "rtl.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "tm_p.h"
+#include "flags.h"
+#include "except.h"
+#include "function.h"
+#include "expr.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "ggc.h"
+#include "recog.h"
+#include "langhooks.h"
+#include "target.h"
+#include "common/common-target.h"
+#include "output.h"
+
+static rtx break_out_memory_refs (rtx);
+
+
+/* Truncate and perhaps sign-extend C as appropriate for MODE. */
+
+HOST_WIDE_INT
+trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
+{
+ int width = GET_MODE_PRECISION (mode);
+
+ /* You want to truncate to a _what_? */
+ gcc_assert (SCALAR_INT_MODE_P (mode));
+
+ /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
+ if (mode == BImode)
+ return c & 1 ? STORE_FLAG_VALUE : 0;
+
+ /* Sign-extend for the requested mode. */
+
+ if (width < HOST_BITS_PER_WIDE_INT)
+ {
+ HOST_WIDE_INT sign = 1;
+ sign <<= width - 1;
+ c &= (sign << 1) - 1;
+ c ^= sign;
+ c -= sign;
+ }
+
+ return c;
+}
+
+/* Return an rtx for the sum of X and the integer C, given that X has
+ mode MODE. */
+
+rtx
+plus_constant (enum machine_mode mode, rtx x, HOST_WIDE_INT c)
+{
+ RTX_CODE code;
+ rtx y;
+ rtx tem;
+ int all_constant = 0;
+
+ gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
+
+ if (c == 0)
+ return x;
+
+ restart:
+
+ code = GET_CODE (x);
+ y = x;
+
+ switch (code)
+ {
+ case CONST_INT:
+ if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
+ {
+ double_int di_x = double_int::from_shwi (INTVAL (x));
+ double_int di_c = double_int::from_shwi (c);
+
+ bool overflow;
+ double_int v = di_x.add_with_sign (di_c, false, &overflow);
+ if (overflow)
+ gcc_unreachable ();
+
+ return immed_double_int_const (v, mode);
+ }
+
+ return gen_int_mode (INTVAL (x) + c, mode);
+
+ case CONST_DOUBLE:
+ {
+ double_int di_x = double_int::from_pair (CONST_DOUBLE_HIGH (x),
+ CONST_DOUBLE_LOW (x));
+ double_int di_c = double_int::from_shwi (c);
+
+ bool overflow;
+ double_int v = di_x.add_with_sign (di_c, false, &overflow);
+ if (overflow)
+ /* Sorry, we have no way to represent overflows this wide.
+ To fix, add constant support wider than CONST_DOUBLE. */
+ gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
+
+ return immed_double_int_const (v, mode);
+ }
+
+ case MEM:
+ /* If this is a reference to the constant pool, try replacing it with
+ a reference to a new constant. If the resulting address isn't
+ valid, don't return it because we have no way to validize it. */
+ if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
+ {
+ tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
+ tem = force_const_mem (GET_MODE (x), tem);
+ if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
+ return tem;
+ }
+ break;
+
+ case CONST:
+ /* If adding to something entirely constant, set a flag
+ so that we can add a CONST around the result. */
+ x = XEXP (x, 0);
+ all_constant = 1;
+ goto restart;
+
+ case SYMBOL_REF:
+ case LABEL_REF:
+ all_constant = 1;
+ break;
+
+ case PLUS:
+ /* The interesting case is adding the integer to a sum. Look
+ for constant term in the sum and combine with C. For an
+ integer constant term or a constant term that is not an
+ explicit integer, we combine or group them together anyway.
+
+ We may not immediately return from the recursive call here, lest
+ all_constant gets lost. */
+
+ if (CONSTANT_P (XEXP (x, 1)))
+ {
+ x = gen_rtx_PLUS (mode, XEXP (x, 0),
+ plus_constant (mode, XEXP (x, 1), c));
+ c = 0;
+ }
+ else if (find_constant_term_loc (&y))
+ {
+ /* We need to be careful since X may be shared and we can't
+ modify it in place. */
+ rtx copy = copy_rtx (x);
+ rtx *const_loc = find_constant_term_loc (&copy);
+
+ *const_loc = plus_constant (mode, *const_loc, c);
+ x = copy;
+ c = 0;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ if (c != 0)
+ x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
+
+ if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
+ return x;
+ else if (all_constant)
+ return gen_rtx_CONST (mode, x);
+ else
+ return x;
+}
+
+/* If X is a sum, return a new sum like X but lacking any constant terms.
+ Add all the removed constant terms into *CONSTPTR.
+ X itself is not altered. The result != X if and only if
+ it is not isomorphic to X. */
+
+rtx
+eliminate_constant_term (rtx x, rtx *constptr)
+{
+ rtx x0, x1;
+ rtx tem;
+
+ if (GET_CODE (x) != PLUS)
+ return x;
+
+ /* First handle constants appearing at this level explicitly. */
+ if (CONST_INT_P (XEXP (x, 1))
+ && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
+ XEXP (x, 1)))
+ && CONST_INT_P (tem))
+ {
+ *constptr = tem;
+ return eliminate_constant_term (XEXP (x, 0), constptr);
+ }
+
+ tem = const0_rtx;
+ x0 = eliminate_constant_term (XEXP (x, 0), &tem);
+ x1 = eliminate_constant_term (XEXP (x, 1), &tem);
+ if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
+ && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
+ *constptr, tem))
+ && CONST_INT_P (tem))
+ {
+ *constptr = tem;
+ return gen_rtx_PLUS (GET_MODE (x), x0, x1);
+ }
+
+ return x;
+}
+
+/* Returns a tree for the size of EXP in bytes. */
+
+static tree
+tree_expr_size (const_tree exp)
+{
+ if (DECL_P (exp)
+ && DECL_SIZE_UNIT (exp) != 0)
+ return DECL_SIZE_UNIT (exp);
+ else
+ return size_in_bytes (TREE_TYPE (exp));
+}
+
+/* Return an rtx for the size in bytes of the value of EXP. */
+
+rtx
+expr_size (tree exp)
+{
+ tree size;
+
+ if (TREE_CODE (exp) == WITH_SIZE_EXPR)
+ size = TREE_OPERAND (exp, 1);
+ else
+ {
+ size = tree_expr_size (exp);
+ gcc_assert (size);
+ gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
+ }
+
+ return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
+}
+
+/* Return a wide integer for the size in bytes of the value of EXP, or -1
+ if the size can vary or is larger than an integer. */
+
+HOST_WIDE_INT
+int_expr_size (tree exp)
+{
+ tree size;
+
+ if (TREE_CODE (exp) == WITH_SIZE_EXPR)
+ size = TREE_OPERAND (exp, 1);
+ else
+ {
+ size = tree_expr_size (exp);
+ gcc_assert (size);
+ }
+
+ if (size == 0 || !tree_fits_shwi_p (size))
+ return -1;
+
+ return tree_to_shwi (size);
+}
+
+/* Return a copy of X in which all memory references
+ and all constants that involve symbol refs
+ have been replaced with new temporary registers.
+ Also emit code to load the memory locations and constants
+ into those registers.
+
+ If X contains no such constants or memory references,
+ X itself (not a copy) is returned.
+
+ If a constant is found in the address that is not a legitimate constant
+ in an insn, it is left alone in the hope that it might be valid in the
+ address.
+
+ X may contain no arithmetic except addition, subtraction and multiplication.
+ Values returned by expand_expr with 1 for sum_ok fit this constraint. */
+
+static rtx
+break_out_memory_refs (rtx x)
+{
+ if (MEM_P (x)
+ || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
+ && GET_MODE (x) != VOIDmode))
+ x = force_reg (GET_MODE (x), x);
+ else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
+ || GET_CODE (x) == MULT)
+ {
+ rtx op0 = break_out_memory_refs (XEXP (x, 0));
+ rtx op1 = break_out_memory_refs (XEXP (x, 1));
+
+ if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
+ x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
+ }
+
+ return x;
+}
+
+/* Given X, a memory address in address space AS' pointer mode, convert it to
+ an address in the address space's address mode, or vice versa (TO_MODE says
+ which way). We take advantage of the fact that pointers are not allowed to
+ overflow by commuting arithmetic operations over conversions so that address
+ arithmetic insns can be used. */
+
+rtx
+convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
+ rtx x, addr_space_t as ATTRIBUTE_UNUSED)
+{
+#ifndef POINTERS_EXTEND_UNSIGNED
+ gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
+ return x;
+#else /* defined(POINTERS_EXTEND_UNSIGNED) */
+ enum machine_mode pointer_mode, address_mode, from_mode;
+ rtx temp;
+ enum rtx_code code;
+
+ /* If X already has the right mode, just return it. */
+ if (GET_MODE (x) == to_mode)
+ return x;
+
+ pointer_mode = targetm.addr_space.pointer_mode (as);
+ address_mode = targetm.addr_space.address_mode (as);
+ from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
+
+ /* Here we handle some special cases. If none of them apply, fall through
+ to the default case. */
+ switch (GET_CODE (x))
+ {
+ CASE_CONST_SCALAR_INT:
+ if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
+ code = TRUNCATE;
+ else if (POINTERS_EXTEND_UNSIGNED < 0)
+ break;
+ else if (POINTERS_EXTEND_UNSIGNED > 0)
+ code = ZERO_EXTEND;
+ else
+ code = SIGN_EXTEND;
+ temp = simplify_unary_operation (code, to_mode, x, from_mode);
+ if (temp)
+ return temp;
+ break;
+
+ case SUBREG:
+ if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
+ && GET_MODE (SUBREG_REG (x)) == to_mode)
+ return SUBREG_REG (x);
+ break;
+
+ case LABEL_REF:
+ temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
+ LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
+ return temp;
+ break;
+
+ case SYMBOL_REF:
+ temp = shallow_copy_rtx (x);
+ PUT_MODE (temp, to_mode);
+ return temp;
+ break;
+
+ case CONST:
+ return gen_rtx_CONST (to_mode,
+ convert_memory_address_addr_space
+ (to_mode, XEXP (x, 0), as));
+ break;
+
+ case PLUS:
+ case MULT:
+ /* FIXME: For addition, we used to permute the conversion and
+ addition operation only if one operand is a constant and
+ converting the constant does not change it or if one operand
+ is a constant and we are using a ptr_extend instruction
+ (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
+ may overflow/underflow. We relax the condition to include
+ zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
+ parts of the compiler depend on it. See PR 49721.
+
+ We can always safely permute them if we are making the address
+ narrower. */
+ if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
+ || (GET_CODE (x) == PLUS
+ && CONST_INT_P (XEXP (x, 1))
+ && (POINTERS_EXTEND_UNSIGNED != 0
+ || XEXP (x, 1) == convert_memory_address_addr_space
+ (to_mode, XEXP (x, 1), as))))
+ return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
+ convert_memory_address_addr_space
+ (to_mode, XEXP (x, 0), as),
+ XEXP (x, 1));
+ break;
+
+ default:
+ break;
+ }
+
+ return convert_modes (to_mode, from_mode,
+ x, POINTERS_EXTEND_UNSIGNED);
+#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
+}
+
+/* Return something equivalent to X but valid as a memory address for something
+ of mode MODE in the named address space AS. When X is not itself valid,
+ this works by copying X or subexpressions of it into registers. */
+
+rtx
+memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
+{
+ rtx oldx = x;
+ enum machine_mode address_mode = targetm.addr_space.address_mode (as);
+
+ x = convert_memory_address_addr_space (address_mode, x, as);
+
+ /* By passing constant addresses through registers
+ we get a chance to cse them. */
+ if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
+ x = force_reg (address_mode, x);
+
+ /* We get better cse by rejecting indirect addressing at this stage.
+ Let the combiner create indirect addresses where appropriate.
+ For now, generate the code so that the subexpressions useful to share
+ are visible. But not if cse won't be done! */
+ else
+ {
+ if (! cse_not_expected && !REG_P (x))
+ x = break_out_memory_refs (x);
+
+ /* At this point, any valid address is accepted. */
+ if (memory_address_addr_space_p (mode, x, as))
+ goto done;
+
+ /* If it was valid before but breaking out memory refs invalidated it,
+ use it the old way. */
+ if (memory_address_addr_space_p (mode, oldx, as))
+ {
+ x = oldx;
+ goto done;
+ }
+
+ /* Perform machine-dependent transformations on X
+ in certain cases. This is not necessary since the code
+ below can handle all possible cases, but machine-dependent
+ transformations can make better code. */
+ {
+ rtx orig_x = x;
+ x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
+ if (orig_x != x && memory_address_addr_space_p (mode, x, as))
+ goto done;
+ }
+
+ /* PLUS and MULT can appear in special ways
+ as the result of attempts to make an address usable for indexing.
+ Usually they are dealt with by calling force_operand, below.
+ But a sum containing constant terms is special
+ if removing them makes the sum a valid address:
+ then we generate that address in a register
+ and index off of it. We do this because it often makes
+ shorter code, and because the addresses thus generated
+ in registers often become common subexpressions. */
+ if (GET_CODE (x) == PLUS)
+ {
+ rtx constant_term = const0_rtx;
+ rtx y = eliminate_constant_term (x, &constant_term);
+ if (constant_term == const0_rtx
+ || ! memory_address_addr_space_p (mode, y, as))
+ x = force_operand (x, NULL_RTX);
+ else
+ {
+ y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
+ if (! memory_address_addr_space_p (mode, y, as))
+ x = force_operand (x, NULL_RTX);
+ else
+ x = y;
+ }
+ }
+
+ else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
+ x = force_operand (x, NULL_RTX);
+
+ /* If we have a register that's an invalid address,
+ it must be a hard reg of the wrong class. Copy it to a pseudo. */
+ else if (REG_P (x))
+ x = copy_to_reg (x);
+
+ /* Last resort: copy the value to a register, since
+ the register is a valid address. */
+ else
+ x = force_reg (address_mode, x);
+ }
+
+ done:
+
+ gcc_assert (memory_address_addr_space_p (mode, x, as));
+ /* If we didn't change the address, we are done. Otherwise, mark
+ a reg as a pointer if we have REG or REG + CONST_INT. */
+ if (oldx == x)
+ return x;
+ else if (REG_P (x))
+ mark_reg_pointer (x, BITS_PER_UNIT);
+ else if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && CONST_INT_P (XEXP (x, 1)))
+ mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
+
+ /* OLDX may have been the address on a temporary. Update the address
+ to indicate that X is now used. */
+ update_temp_slot_address (oldx, x);
+
+ return x;
+}
+
+/* Convert a mem ref into one with a valid memory address.
+ Pass through anything else unchanged. */
+
+rtx
+validize_mem (rtx ref)
+{
+ if (!MEM_P (ref))
+ return ref;
+ ref = use_anchored_address (ref);
+ if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
+ MEM_ADDR_SPACE (ref)))
+ return ref;
+
+ /* Don't alter REF itself, since that is probably a stack slot. */
+ return replace_equiv_address (ref, XEXP (ref, 0));
+}
+
+/* If X is a memory reference to a member of an object block, try rewriting
+ it to use an anchor instead. Return the new memory reference on success
+ and the old one on failure. */
+
+rtx
+use_anchored_address (rtx x)
+{
+ rtx base;
+ HOST_WIDE_INT offset;
+ enum machine_mode mode;
+
+ if (!flag_section_anchors)
+ return x;
+
+ if (!MEM_P (x))
+ return x;
+
+ /* Split the address into a base and offset. */
+ base = XEXP (x, 0);
+ offset = 0;
+ if (GET_CODE (base) == CONST
+ && GET_CODE (XEXP (base, 0)) == PLUS
+ && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
+ {
+ offset += INTVAL (XEXP (XEXP (base, 0), 1));
+ base = XEXP (XEXP (base, 0), 0);
+ }
+
+ /* Check whether BASE is suitable for anchors. */
+ if (GET_CODE (base) != SYMBOL_REF
+ || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
+ || SYMBOL_REF_ANCHOR_P (base)
+ || SYMBOL_REF_BLOCK (base) == NULL
+ || !targetm.use_anchors_for_symbol_p (base))
+ return x;
+
+ /* Decide where BASE is going to be. */
+ place_block_symbol (base);
+
+ /* Get the anchor we need to use. */
+ offset += SYMBOL_REF_BLOCK_OFFSET (base);
+ base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
+ SYMBOL_REF_TLS_MODEL (base));
+
+ /* Work out the offset from the anchor. */
+ offset -= SYMBOL_REF_BLOCK_OFFSET (base);
+
+ /* If we're going to run a CSE pass, force the anchor into a register.
+ We will then be able to reuse registers for several accesses, if the
+ target costs say that that's worthwhile. */
+ mode = GET_MODE (base);
+ if (!cse_not_expected)
+ base = force_reg (mode, base);
+
+ return replace_equiv_address (x, plus_constant (mode, base, offset));
+}
+
+/* Copy the value or contents of X to a new temp reg and return that reg. */
+
+rtx
+copy_to_reg (rtx x)
+{
+ rtx temp = gen_reg_rtx (GET_MODE (x));
+
+ /* If not an operand, must be an address with PLUS and MULT so
+ do the computation. */
+ if (! general_operand (x, VOIDmode))
+ x = force_operand (x, temp);
+
+ if (x != temp)
+ emit_move_insn (temp, x);
+
+ return temp;
+}
+
+/* Like copy_to_reg but always give the new register mode Pmode
+ in case X is a constant. */
+
+rtx
+copy_addr_to_reg (rtx x)
+{
+ return copy_to_mode_reg (Pmode, x);
+}
+
+/* Like copy_to_reg but always give the new register mode MODE
+ in case X is a constant. */
+
+rtx
+copy_to_mode_reg (enum machine_mode mode, rtx x)
+{
+ rtx temp = gen_reg_rtx (mode);
+
+ /* If not an operand, must be an address with PLUS and MULT so
+ do the computation. */
+ if (! general_operand (x, VOIDmode))
+ x = force_operand (x, temp);
+
+ gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
+ if (x != temp)
+ emit_move_insn (temp, x);
+ return temp;
+}
+
+/* Load X into a register if it is not already one.
+ Use mode MODE for the register.
+ X should be valid for mode MODE, but it may be a constant which
+ is valid for all integer modes; that's why caller must specify MODE.
+
+ The caller must not alter the value in the register we return,
+ since we mark it as a "constant" register. */
+
+rtx
+force_reg (enum machine_mode mode, rtx x)
+{
+ rtx temp, insn, set;
+
+ if (REG_P (x))
+ return x;
+
+ if (general_operand (x, mode))
+ {
+ temp = gen_reg_rtx (mode);
+ insn = emit_move_insn (temp, x);
+ }
+ else
+ {
+ temp = force_operand (x, NULL_RTX);
+ if (REG_P (temp))
+ insn = get_last_insn ();
+ else
+ {
+ rtx temp2 = gen_reg_rtx (mode);
+ insn = emit_move_insn (temp2, temp);
+ temp = temp2;
+ }
+ }
+
+ /* Let optimizers know that TEMP's value never changes
+ and that X can be substituted for it. Don't get confused
+ if INSN set something else (such as a SUBREG of TEMP). */
+ if (CONSTANT_P (x)
+ && (set = single_set (insn)) != 0
+ && SET_DEST (set) == temp
+ && ! rtx_equal_p (x, SET_SRC (set)))
+ set_unique_reg_note (insn, REG_EQUAL, x);
+
+ /* Let optimizers know that TEMP is a pointer, and if so, the
+ known alignment of that pointer. */
+ {
+ unsigned align = 0;
+ if (GET_CODE (x) == SYMBOL_REF)
+ {
+ align = BITS_PER_UNIT;
+ if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
+ align = DECL_ALIGN (SYMBOL_REF_DECL (x));
+ }
+ else if (GET_CODE (x) == LABEL_REF)
+ align = BITS_PER_UNIT;
+ else if (GET_CODE (x) == CONST
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
+ && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
+ {
+ rtx s = XEXP (XEXP (x, 0), 0);
+ rtx c = XEXP (XEXP (x, 0), 1);
+ unsigned sa, ca;
+
+ sa = BITS_PER_UNIT;
+ if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
+ sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
+
+ if (INTVAL (c) == 0)
+ align = sa;
+ else
+ {
+ ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
+ align = MIN (sa, ca);
+ }
+ }
+
+ if (align || (MEM_P (x) && MEM_POINTER (x)))
+ mark_reg_pointer (temp, align);
+ }
+
+ return temp;
+}
+
+/* If X is a memory ref, copy its contents to a new temp reg and return
+ that reg. Otherwise, return X. */
+
+rtx
+force_not_mem (rtx x)
+{
+ rtx temp;
+
+ if (!MEM_P (x) || GET_MODE (x) == BLKmode)
+ return x;
+
+ temp = gen_reg_rtx (GET_MODE (x));
+
+ if (MEM_POINTER (x))
+ REG_POINTER (temp) = 1;
+
+ emit_move_insn (temp, x);
+ return temp;
+}
+
+/* Copy X to TARGET (if it's nonzero and a reg)
+ or to a new temp reg and return that reg.
+ MODE is the mode to use for X in case it is a constant. */
+
+rtx
+copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
+{
+ rtx temp;
+
+ if (target && REG_P (target))
+ temp = target;
+ else
+ temp = gen_reg_rtx (mode);
+
+ emit_move_insn (temp, x);
+ return temp;
+}
+
+/* Return the mode to use to pass or return a scalar of TYPE and MODE.
+ PUNSIGNEDP points to the signedness of the type and may be adjusted
+ to show what signedness to use on extension operations.
+
+ FOR_RETURN is nonzero if the caller is promoting the return value
+ of FNDECL, else it is for promoting args. */
+
+enum machine_mode
+promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
+ const_tree funtype, int for_return)
+{
+ /* Called without a type node for a libcall. */
+ if (type == NULL_TREE)
+ {
+ if (INTEGRAL_MODE_P (mode))
+ return targetm.calls.promote_function_mode (NULL_TREE, mode,
+ punsignedp, funtype,
+ for_return);
+ else
+ return mode;
+ }
+
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
+ case POINTER_TYPE: case REFERENCE_TYPE:
+ return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
+ for_return);
+
+ default:
+ return mode;
+ }
+}
+/* Return the mode to use to store a scalar of TYPE and MODE.
+ PUNSIGNEDP points to the signedness of the type and may be adjusted
+ to show what signedness to use on extension operations. */
+
+enum machine_mode
+promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
+ int *punsignedp ATTRIBUTE_UNUSED)
+{
+#ifdef PROMOTE_MODE
+ enum tree_code code;
+ int unsignedp;
+#endif
+
+ /* For libcalls this is invoked without TYPE from the backends
+ TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
+ case. */
+ if (type == NULL_TREE)
+ return mode;
+
+ /* FIXME: this is the same logic that was there until GCC 4.4, but we
+ probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
+ is not defined. The affected targets are M32C, S390, SPARC. */
+#ifdef PROMOTE_MODE
+ code = TREE_CODE (type);
+ unsignedp = *punsignedp;
+
+ switch (code)
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
+ PROMOTE_MODE (mode, unsignedp, type);
+ *punsignedp = unsignedp;
+ return mode;
+ break;
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+ case REFERENCE_TYPE:
+ case POINTER_TYPE:
+ *punsignedp = POINTERS_EXTEND_UNSIGNED;
+ return targetm.addr_space.address_mode
+ (TYPE_ADDR_SPACE (TREE_TYPE (type)));
+ break;
+#endif
+
+ default:
+ return mode;
+ }
+#else
+ return mode;
+#endif
+}
+
+
+/* Use one of promote_mode or promote_function_mode to find the promoted
+ mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
+ of DECL after promotion. */
+
+enum machine_mode
+promote_decl_mode (const_tree decl, int *punsignedp)
+{
+ tree type = TREE_TYPE (decl);
+ int unsignedp = TYPE_UNSIGNED (type);
+ enum machine_mode mode = DECL_MODE (decl);
+ enum machine_mode pmode;
+
+ if (TREE_CODE (decl) == RESULT_DECL
+ || TREE_CODE (decl) == PARM_DECL)
+ pmode = promote_function_mode (type, mode, &unsignedp,
+ TREE_TYPE (current_function_decl), 2);
+ else
+ pmode = promote_mode (type, mode, &unsignedp);
+
+ if (punsignedp)
+ *punsignedp = unsignedp;
+ return pmode;
+}
+
+
+/* Controls the behaviour of {anti_,}adjust_stack. */
+static bool suppress_reg_args_size;
+
+/* A helper for adjust_stack and anti_adjust_stack. */
+
+static void
+adjust_stack_1 (rtx adjust, bool anti_p)
+{
+ rtx temp, insn;
+
+#ifndef STACK_GROWS_DOWNWARD
+ /* Hereafter anti_p means subtract_p. */
+ anti_p = !anti_p;
+#endif
+
+ temp = expand_binop (Pmode,
+ anti_p ? sub_optab : add_optab,
+ stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
+ OPTAB_LIB_WIDEN);
+
+ if (temp != stack_pointer_rtx)
+ insn = emit_move_insn (stack_pointer_rtx, temp);
+ else
+ {
+ insn = get_last_insn ();
+ temp = single_set (insn);
+ gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
+ }
+
+ if (!suppress_reg_args_size)
+ add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
+}
+
+/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
+ This pops when ADJUST is positive. ADJUST need not be constant. */
+
+void
+adjust_stack (rtx adjust)
+{
+ if (adjust == const0_rtx)
+ return;
+
+ /* We expect all variable sized adjustments to be multiple of
+ PREFERRED_STACK_BOUNDARY. */
+ if (CONST_INT_P (adjust))
+ stack_pointer_delta -= INTVAL (adjust);
+
+ adjust_stack_1 (adjust, false);
+}
+
+/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
+ This pushes when ADJUST is positive. ADJUST need not be constant. */
+
+void
+anti_adjust_stack (rtx adjust)
+{
+ if (adjust == const0_rtx)
+ return;
+
+ /* We expect all variable sized adjustments to be multiple of
+ PREFERRED_STACK_BOUNDARY. */
+ if (CONST_INT_P (adjust))
+ stack_pointer_delta += INTVAL (adjust);
+
+ adjust_stack_1 (adjust, true);
+}
+
+/* Round the size of a block to be pushed up to the boundary required
+ by this machine. SIZE is the desired size, which need not be constant. */
+
+static rtx
+round_push (rtx size)
+{
+ rtx align_rtx, alignm1_rtx;
+
+ if (!SUPPORTS_STACK_ALIGNMENT
+ || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
+ {
+ int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
+
+ if (align == 1)
+ return size;
+
+ if (CONST_INT_P (size))
+ {
+ HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
+
+ if (INTVAL (size) != new_size)
+ size = GEN_INT (new_size);
+ return size;
+ }
+
+ align_rtx = GEN_INT (align);
+ alignm1_rtx = GEN_INT (align - 1);
+ }
+ else
+ {
+ /* If crtl->preferred_stack_boundary might still grow, use
+ virtual_preferred_stack_boundary_rtx instead. This will be
+ substituted by the right value in vregs pass and optimized
+ during combine. */
+ align_rtx = virtual_preferred_stack_boundary_rtx;
+ alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
+ NULL_RTX);
+ }
+
+ /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
+ but we know it can't. So add ourselves and then do
+ TRUNC_DIV_EXPR. */
+ size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
+ NULL_RTX, 1);
+ size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
+
+ return size;
+}
+
+/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
+ to a previously-created save area. If no save area has been allocated,
+ this function will allocate one. If a save area is specified, it
+ must be of the proper mode. */
+
+void
+emit_stack_save (enum save_level save_level, rtx *psave)
+{
+ rtx sa = *psave;
+ /* The default is that we use a move insn and save in a Pmode object. */
+ rtx (*fcn) (rtx, rtx) = gen_move_insn;
+ enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
+
+ /* See if this machine has anything special to do for this kind of save. */
+ switch (save_level)
+ {
+#ifdef HAVE_save_stack_block
+ case SAVE_BLOCK:
+ if (HAVE_save_stack_block)
+ fcn = gen_save_stack_block;
+ break;
+#endif
+#ifdef HAVE_save_stack_function
+ case SAVE_FUNCTION:
+ if (HAVE_save_stack_function)
+ fcn = gen_save_stack_function;
+ break;
+#endif
+#ifdef HAVE_save_stack_nonlocal
+ case SAVE_NONLOCAL:
+ if (HAVE_save_stack_nonlocal)
+ fcn = gen_save_stack_nonlocal;
+ break;
+#endif
+ default:
+ break;
+ }
+
+ /* If there is no save area and we have to allocate one, do so. Otherwise
+ verify the save area is the proper mode. */
+
+ if (sa == 0)
+ {
+ if (mode != VOIDmode)
+ {
+ if (save_level == SAVE_NONLOCAL)
+ *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
+ else
+ *psave = sa = gen_reg_rtx (mode);
+ }
+ }
+
+ do_pending_stack_adjust ();
+ if (sa != 0)
+ sa = validize_mem (sa);
+ emit_insn (fcn (sa, stack_pointer_rtx));
+}
+
+/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
+ area made by emit_stack_save. If it is zero, we have nothing to do. */
+
+void
+emit_stack_restore (enum save_level save_level, rtx sa)
+{
+ /* The default is that we use a move insn. */
+ rtx (*fcn) (rtx, rtx) = gen_move_insn;
+
+ /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
+ STACK_POINTER and HARD_FRAME_POINTER.
+ If stack_realign_fp, the x86 backend emits a prologue that aligns only
+ STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
+ aligned variables, which is reflected in ix86_can_eliminate.
+ We normally still have the realigned STACK_POINTER that we can use.
+ But if there is a stack restore still present at reload, it can trigger
+ mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
+ FRAME_POINTER into a hard reg.
+ To prevent this situation, we force need_drap if we emit a stack
+ restore. */
+ if (SUPPORTS_STACK_ALIGNMENT)
+ crtl->need_drap = true;
+
+ /* See if this machine has anything special to do for this kind of save. */
+ switch (save_level)
+ {
+#ifdef HAVE_restore_stack_block
+ case SAVE_BLOCK:
+ if (HAVE_restore_stack_block)
+ fcn = gen_restore_stack_block;
+ break;
+#endif
+#ifdef HAVE_restore_stack_function
+ case SAVE_FUNCTION:
+ if (HAVE_restore_stack_function)
+ fcn = gen_restore_stack_function;
+ break;
+#endif
+#ifdef HAVE_restore_stack_nonlocal
+ case SAVE_NONLOCAL:
+ if (HAVE_restore_stack_nonlocal)
+ fcn = gen_restore_stack_nonlocal;
+ break;
+#endif
+ default:
+ break;
+ }
+
+ if (sa != 0)
+ {
+ sa = validize_mem (sa);
+ /* These clobbers prevent the scheduler from moving
+ references to variable arrays below the code
+ that deletes (pops) the arrays. */
+ emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
+ emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
+ }
+
+ discard_pending_stack_adjust ();
+
+ emit_insn (fcn (stack_pointer_rtx, sa));
+}
+
+/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
+ function. This function should be called whenever we allocate or
+ deallocate dynamic stack space. */
+
+void
+update_nonlocal_goto_save_area (void)
+{
+ tree t_save;
+ rtx r_save;
+
+ /* The nonlocal_goto_save_area object is an array of N pointers. The
+ first one is used for the frame pointer save; the rest are sized by
+ STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
+ of the stack save area slots. */
+ t_save = build4 (ARRAY_REF,
+ TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
+ cfun->nonlocal_goto_save_area,
+ integer_one_node, NULL_TREE, NULL_TREE);
+ r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+ emit_stack_save (SAVE_NONLOCAL, &r_save);
+}
+
+/* Return an rtx representing the address of an area of memory dynamically
+ pushed on the stack.
+
+ Any required stack pointer alignment is preserved.
+
+ SIZE is an rtx representing the size of the area.
+
+ SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
+ parameter may be zero. If so, a proper value will be extracted
+ from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
+
+ REQUIRED_ALIGN is the alignment (in bits) required for the region
+ of memory.
+
+ If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
+ stack space allocated by the generated code cannot be added with itself
+ in the course of the execution of the function. It is always safe to
+ pass FALSE here and the following criterion is sufficient in order to
+ pass TRUE: every path in the CFG that starts at the allocation point and
+ loops to it executes the associated deallocation code. */
+
+rtx
+allocate_dynamic_stack_space (rtx size, unsigned size_align,
+ unsigned required_align, bool cannot_accumulate)
+{
+ HOST_WIDE_INT stack_usage_size = -1;
+ rtx final_label, final_target, target;
+ unsigned extra_align = 0;
+ bool must_align;
+
+ /* If we're asking for zero bytes, it doesn't matter what we point
+ to since we can't dereference it. But return a reasonable
+ address anyway. */
+ if (size == const0_rtx)
+ return virtual_stack_dynamic_rtx;
+
+ /* Otherwise, show we're calling alloca or equivalent. */
+ cfun->calls_alloca = 1;
+
+ /* If stack usage info is requested, look into the size we are passed.
+ We need to do so this early to avoid the obfuscation that may be
+ introduced later by the various alignment operations. */
+ if (flag_stack_usage_info)
+ {
+ if (CONST_INT_P (size))
+ stack_usage_size = INTVAL (size);
+ else if (REG_P (size))
+ {
+ /* Look into the last emitted insn and see if we can deduce
+ something for the register. */
+ rtx insn, set, note;
+ insn = get_last_insn ();
+ if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
+ {
+ if (CONST_INT_P (SET_SRC (set)))
+ stack_usage_size = INTVAL (SET_SRC (set));
+ else if ((note = find_reg_equal_equiv_note (insn))
+ && CONST_INT_P (XEXP (note, 0)))
+ stack_usage_size = INTVAL (XEXP (note, 0));
+ }
+ }
+
+ /* If the size is not constant, we can't say anything. */
+ if (stack_usage_size == -1)
+ {
+ current_function_has_unbounded_dynamic_stack_size = 1;
+ stack_usage_size = 0;
+ }
+ }
+
+ /* Ensure the size is in the proper mode. */
+ if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
+ size = convert_to_mode (Pmode, size, 1);
+
+ /* Adjust SIZE_ALIGN, if needed. */
+ if (CONST_INT_P (size))
+ {
+ unsigned HOST_WIDE_INT lsb;
+
+ lsb = INTVAL (size);
+ lsb &= -lsb;
+
+ /* Watch out for overflow truncating to "unsigned". */
+ if (lsb > UINT_MAX / BITS_PER_UNIT)
+ size_align = 1u << (HOST_BITS_PER_INT - 1);
+ else
+ size_align = (unsigned)lsb * BITS_PER_UNIT;
+ }
+ else if (size_align < BITS_PER_UNIT)
+ size_align = BITS_PER_UNIT;
+
+ /* We can't attempt to minimize alignment necessary, because we don't
+ know the final value of preferred_stack_boundary yet while executing
+ this code. */
+ if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
+ crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
+
+ /* We will need to ensure that the address we return is aligned to
+ REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
+ always know its final value at this point in the compilation (it
+ might depend on the size of the outgoing parameter lists, for
+ example), so we must align the value to be returned in that case.
+ (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
+ STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
+ We must also do an alignment operation on the returned value if
+ the stack pointer alignment is less strict than REQUIRED_ALIGN.
+
+ If we have to align, we must leave space in SIZE for the hole
+ that might result from the alignment operation. */
+
+ must_align = (crtl->preferred_stack_boundary < required_align);
+ if (must_align)
+ {
+ if (required_align > PREFERRED_STACK_BOUNDARY)
+ extra_align = PREFERRED_STACK_BOUNDARY;
+ else if (required_align > STACK_BOUNDARY)
+ extra_align = STACK_BOUNDARY;
+ else
+ extra_align = BITS_PER_UNIT;
+ }
+
+ /* ??? STACK_POINTER_OFFSET is always defined now. */
+#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
+ must_align = true;
+ extra_align = BITS_PER_UNIT;
+#endif
+
+ if (must_align)
+ {
+ unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
+
+ size = plus_constant (Pmode, size, extra);
+ size = force_operand (size, NULL_RTX);
+
+ if (flag_stack_usage_info)
+ stack_usage_size += extra;
+
+ if (extra && size_align > extra_align)
+ size_align = extra_align;
+ }
+
+ /* Round the size to a multiple of the required stack alignment.
+ Since the stack if presumed to be rounded before this allocation,
+ this will maintain the required alignment.
+
+ If the stack grows downward, we could save an insn by subtracting
+ SIZE from the stack pointer and then aligning the stack pointer.
+ The problem with this is that the stack pointer may be unaligned
+ between the execution of the subtraction and alignment insns and
+ some machines do not allow this. Even on those that do, some
+ signal handlers malfunction if a signal should occur between those
+ insns. Since this is an extremely rare event, we have no reliable
+ way of knowing which systems have this problem. So we avoid even
+ momentarily mis-aligning the stack. */
+ if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
+ {
+ size = round_push (size);
+
+ if (flag_stack_usage_info)
+ {
+ int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
+ stack_usage_size = (stack_usage_size + align - 1) / align * align;
+ }
+ }
+
+ target = gen_reg_rtx (Pmode);
+
+ /* The size is supposed to be fully adjusted at this point so record it
+ if stack usage info is requested. */
+ if (flag_stack_usage_info)
+ {
+ current_function_dynamic_stack_size += stack_usage_size;
+
+ /* ??? This is gross but the only safe stance in the absence
+ of stack usage oriented flow analysis. */
+ if (!cannot_accumulate)
+ current_function_has_unbounded_dynamic_stack_size = 1;
+ }
+
+ final_label = NULL_RTX;
+ final_target = NULL_RTX;
+
+ /* If we are splitting the stack, we need to ask the backend whether
+ there is enough room on the current stack. If there isn't, or if
+ the backend doesn't know how to tell is, then we need to call a
+ function to allocate memory in some other way. This memory will
+ be released when we release the current stack segment. The
+ effect is that stack allocation becomes less efficient, but at
+ least it doesn't cause a stack overflow. */
+ if (flag_split_stack)
+ {
+ rtx available_label, ask, space, func;
+
+ available_label = NULL_RTX;
+
+#ifdef HAVE_split_stack_space_check
+ if (HAVE_split_stack_space_check)
+ {
+ available_label = gen_label_rtx ();
+
+ /* This instruction will branch to AVAILABLE_LABEL if there
+ are SIZE bytes available on the stack. */
+ emit_insn (gen_split_stack_space_check (size, available_label));
+ }
+#endif
+
+ /* The __morestack_allocate_stack_space function will allocate
+ memory using malloc. If the alignment of the memory returned
+ by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
+ make sure we allocate enough space. */
+ if (MALLOC_ABI_ALIGNMENT >= required_align)
+ ask = size;
+ else
+ {
+ ask = expand_binop (Pmode, add_optab, size,
+ gen_int_mode (required_align / BITS_PER_UNIT - 1,
+ Pmode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ must_align = true;
+ }
+
+ func = init_one_libfunc ("__morestack_allocate_stack_space");
+
+ space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
+ 1, ask, Pmode);
+
+ if (available_label == NULL_RTX)
+ return space;
+
+ final_target = gen_reg_rtx (Pmode);
+
+ emit_move_insn (final_target, space);
+
+ final_label = gen_label_rtx ();
+ emit_jump (final_label);
+
+ emit_label (available_label);
+ }
+
+ do_pending_stack_adjust ();
+
+ /* We ought to be called always on the toplevel and stack ought to be aligned
+ properly. */
+ gcc_assert (!(stack_pointer_delta
+ % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
+
+ /* If needed, check that we have the required amount of stack. Take into
+ account what has already been checked. */
+ if (STACK_CHECK_MOVING_SP)
+ ;
+ else if (flag_stack_check == GENERIC_STACK_CHECK)
+ probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
+ size);
+ else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
+ probe_stack_range (STACK_CHECK_PROTECT, size);
+
+ /* Don't let anti_adjust_stack emit notes. */
+ suppress_reg_args_size = true;
+
+ /* Perform the required allocation from the stack. Some systems do
+ this differently than simply incrementing/decrementing from the
+ stack pointer, such as acquiring the space by calling malloc(). */
+#ifdef HAVE_allocate_stack
+ if (HAVE_allocate_stack)
+ {
+ struct expand_operand ops[2];
+ /* We don't have to check against the predicate for operand 0 since
+ TARGET is known to be a pseudo of the proper mode, which must
+ be valid for the operand. */
+ create_fixed_operand (&ops[0], target);
+ create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
+ expand_insn (CODE_FOR_allocate_stack, 2, ops);
+ }
+ else
+#endif
+ {
+ int saved_stack_pointer_delta;
+
+#ifndef STACK_GROWS_DOWNWARD
+ emit_move_insn (target, virtual_stack_dynamic_rtx);
+#endif
+
+ /* Check stack bounds if necessary. */
+ if (crtl->limit_stack)
+ {
+ rtx available;
+ rtx space_available = gen_label_rtx ();
+#ifdef STACK_GROWS_DOWNWARD
+ available = expand_binop (Pmode, sub_optab,
+ stack_pointer_rtx, stack_limit_rtx,
+ NULL_RTX, 1, OPTAB_WIDEN);
+#else
+ available = expand_binop (Pmode, sub_optab,
+ stack_limit_rtx, stack_pointer_rtx,
+ NULL_RTX, 1, OPTAB_WIDEN);
+#endif
+ emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
+ space_available);
+#ifdef HAVE_trap
+ if (HAVE_trap)
+ emit_insn (gen_trap ());
+ else
+#endif
+ error ("stack limits not supported on this target");
+ emit_barrier ();
+ emit_label (space_available);
+ }
+
+ saved_stack_pointer_delta = stack_pointer_delta;
+
+ if (flag_stack_check && STACK_CHECK_MOVING_SP)
+ anti_adjust_stack_and_probe (size, false);
+ else
+ anti_adjust_stack (size);
+
+ /* Even if size is constant, don't modify stack_pointer_delta.
+ The constant size alloca should preserve
+ crtl->preferred_stack_boundary alignment. */
+ stack_pointer_delta = saved_stack_pointer_delta;
+
+#ifdef STACK_GROWS_DOWNWARD
+ emit_move_insn (target, virtual_stack_dynamic_rtx);
+#endif
+ }
+
+ suppress_reg_args_size = false;
+
+ /* Finish up the split stack handling. */
+ if (final_label != NULL_RTX)
+ {
+ gcc_assert (flag_split_stack);
+ emit_move_insn (final_target, target);
+ emit_label (final_label);
+ target = final_target;
+ }
+
+ if (must_align)
+ {
+ /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
+ but we know it can't. So add ourselves and then do
+ TRUNC_DIV_EXPR. */
+ target = expand_binop (Pmode, add_optab, target,
+ gen_int_mode (required_align / BITS_PER_UNIT - 1,
+ Pmode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
+ gen_int_mode (required_align / BITS_PER_UNIT,
+ Pmode),
+ NULL_RTX, 1);
+ target = expand_mult (Pmode, target,
+ gen_int_mode (required_align / BITS_PER_UNIT,
+ Pmode),
+ NULL_RTX, 1);
+ }
+
+ /* Now that we've committed to a return value, mark its alignment. */
+ mark_reg_pointer (target, required_align);
+
+ /* Record the new stack level for nonlocal gotos. */
+ if (cfun->nonlocal_goto_save_area != 0)
+ update_nonlocal_goto_save_area ();
+
+ return target;
+}
+
+/* A front end may want to override GCC's stack checking by providing a
+ run-time routine to call to check the stack, so provide a mechanism for
+ calling that routine. */
+
+static GTY(()) rtx stack_check_libfunc;
+
+void
+set_stack_check_libfunc (const char *libfunc_name)
+{
+ gcc_assert (stack_check_libfunc == NULL_RTX);
+ stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
+}
+
+/* Emit one stack probe at ADDRESS, an address within the stack. */
+
+void
+emit_stack_probe (rtx address)
+{
+#ifdef HAVE_probe_stack_address
+ if (HAVE_probe_stack_address)
+ emit_insn (gen_probe_stack_address (address));
+ else
+#endif
+ {
+ rtx memref = gen_rtx_MEM (word_mode, address);
+
+ MEM_VOLATILE_P (memref) = 1;
+
+ /* See if we have an insn to probe the stack. */
+#ifdef HAVE_probe_stack
+ if (HAVE_probe_stack)
+ emit_insn (gen_probe_stack (memref));
+ else
+#endif
+ emit_move_insn (memref, const0_rtx);
+ }
+}
+
+/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
+ FIRST is a constant and size is a Pmode RTX. These are offsets from
+ the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
+ or subtract them from the stack pointer. */
+
+#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
+
+#ifdef STACK_GROWS_DOWNWARD
+#define STACK_GROW_OP MINUS
+#define STACK_GROW_OPTAB sub_optab
+#define STACK_GROW_OFF(off) -(off)
+#else
+#define STACK_GROW_OP PLUS
+#define STACK_GROW_OPTAB add_optab
+#define STACK_GROW_OFF(off) (off)
+#endif
+
+void
+probe_stack_range (HOST_WIDE_INT first, rtx size)
+{
+ /* First ensure SIZE is Pmode. */
+ if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
+ size = convert_to_mode (Pmode, size, 1);
+
+ /* Next see if we have a function to check the stack. */
+ if (stack_check_libfunc)
+ {
+ rtx addr = memory_address (Pmode,
+ gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+ stack_pointer_rtx,
+ plus_constant (Pmode,
+ size, first)));
+ emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
+ Pmode);
+ }
+
+ /* Next see if we have an insn to check the stack. */
+#ifdef HAVE_check_stack
+ else if (HAVE_check_stack)
+ {
+ struct expand_operand ops[1];
+ rtx addr = memory_address (Pmode,
+ gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+ stack_pointer_rtx,
+ plus_constant (Pmode,
+ size, first)));
+ bool success;
+ create_input_operand (&ops[0], addr, Pmode);
+ success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
+ gcc_assert (success);
+ }
+#endif
+
+ /* Otherwise we have to generate explicit probes. If we have a constant
+ small number of them to generate, that's the easy case. */
+ else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
+ {
+ HOST_WIDE_INT isize = INTVAL (size), i;
+ rtx addr;
+
+ /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
+ it exceeds SIZE. If only one probe is needed, this will not
+ generate any code. Then probe at FIRST + SIZE. */
+ for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
+ {
+ addr = memory_address (Pmode,
+ plus_constant (Pmode, stack_pointer_rtx,
+ STACK_GROW_OFF (first + i)));
+ emit_stack_probe (addr);
+ }
+
+ addr = memory_address (Pmode,
+ plus_constant (Pmode, stack_pointer_rtx,
+ STACK_GROW_OFF (first + isize)));
+ emit_stack_probe (addr);
+ }
+
+ /* In the variable case, do the same as above, but in a loop. Note that we
+ must be extra careful with variables wrapping around because we might be
+ at the very top (or the very bottom) of the address space and we have to
+ be able to handle this case properly; in particular, we use an equality
+ test for the loop condition. */
+ else
+ {
+ rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
+ rtx loop_lab = gen_label_rtx ();
+ rtx end_lab = gen_label_rtx ();
+
+
+ /* Step 1: round SIZE to the previous multiple of the interval. */
+
+ /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
+ rounded_size
+ = simplify_gen_binary (AND, Pmode, size,
+ gen_int_mode (-PROBE_INTERVAL, Pmode));
+ rounded_size_op = force_operand (rounded_size, NULL_RTX);
+
+
+ /* Step 2: compute initial and final value of the loop counter. */
+
+ /* TEST_ADDR = SP + FIRST. */
+ test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+ stack_pointer_rtx,
+ gen_int_mode (first, Pmode)),
+ NULL_RTX);
+
+ /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
+ last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+ test_addr,
+ rounded_size_op), NULL_RTX);
+
+
+ /* Step 3: the loop
+
+ while (TEST_ADDR != LAST_ADDR)
+ {
+ TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
+ probe at TEST_ADDR
+ }
+
+ probes at FIRST + N * PROBE_INTERVAL for values of N from 1
+ until it is equal to ROUNDED_SIZE. */
+
+ emit_label (loop_lab);
+
+ /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
+ emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
+ end_lab);
+
+ /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
+ temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
+ gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
+ 1, OPTAB_WIDEN);
+
+ gcc_assert (temp == test_addr);
+
+ /* Probe at TEST_ADDR. */
+ emit_stack_probe (test_addr);
+
+ emit_jump (loop_lab);
+
+ emit_label (end_lab);
+
+
+ /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
+ that SIZE is equal to ROUNDED_SIZE. */
+
+ /* TEMP = SIZE - ROUNDED_SIZE. */
+ temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
+ if (temp != const0_rtx)
+ {
+ rtx addr;
+
+ if (CONST_INT_P (temp))
+ {
+ /* Use [base + disp} addressing mode if supported. */
+ HOST_WIDE_INT offset = INTVAL (temp);
+ addr = memory_address (Pmode,
+ plus_constant (Pmode, last_addr,
+ STACK_GROW_OFF (offset)));
+ }
+ else
+ {
+ /* Manual CSE if the difference is not known at compile-time. */
+ temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
+ addr = memory_address (Pmode,
+ gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+ last_addr, temp));
+ }
+
+ emit_stack_probe (addr);
+ }
+ }
+}
+
+/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
+ while probing it. This pushes when SIZE is positive. SIZE need not
+ be constant. If ADJUST_BACK is true, adjust back the stack pointer
+ by plus SIZE at the end. */
+
+void
+anti_adjust_stack_and_probe (rtx size, bool adjust_back)
+{
+ /* We skip the probe for the first interval + a small dope of 4 words and
+ probe that many bytes past the specified size to maintain a protection
+ area at the botton of the stack. */
+ const int dope = 4 * UNITS_PER_WORD;
+
+ /* First ensure SIZE is Pmode. */
+ if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
+ size = convert_to_mode (Pmode, size, 1);
+
+ /* If we have a constant small number of probes to generate, that's the
+ easy case. */
+ if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
+ {
+ HOST_WIDE_INT isize = INTVAL (size), i;
+ bool first_probe = true;
+
+ /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
+ values of N from 1 until it exceeds SIZE. If only one probe is
+ needed, this will not generate any code. Then adjust and probe
+ to PROBE_INTERVAL + SIZE. */
+ for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
+ {
+ if (first_probe)
+ {
+ anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
+ first_probe = false;
+ }
+ else
+ anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
+ emit_stack_probe (stack_pointer_rtx);
+ }
+
+ if (first_probe)
+ anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
+ else
+ anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
+ emit_stack_probe (stack_pointer_rtx);
+ }
+
+ /* In the variable case, do the same as above, but in a loop. Note that we
+ must be extra careful with variables wrapping around because we might be
+ at the very top (or the very bottom) of the address space and we have to
+ be able to handle this case properly; in particular, we use an equality
+ test for the loop condition. */
+ else
+ {
+ rtx rounded_size, rounded_size_op, last_addr, temp;
+ rtx loop_lab = gen_label_rtx ();
+ rtx end_lab = gen_label_rtx ();
+
+
+ /* Step 1: round SIZE to the previous multiple of the interval. */
+
+ /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
+ rounded_size
+ = simplify_gen_binary (AND, Pmode, size,
+ gen_int_mode (-PROBE_INTERVAL, Pmode));
+ rounded_size_op = force_operand (rounded_size, NULL_RTX);
+
+
+ /* Step 2: compute initial and final value of the loop counter. */
+
+ /* SP = SP_0 + PROBE_INTERVAL. */
+ anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
+
+ /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
+ last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
+ stack_pointer_rtx,
+ rounded_size_op), NULL_RTX);
+
+
+ /* Step 3: the loop
+
+ while (SP != LAST_ADDR)
+ {
+ SP = SP + PROBE_INTERVAL
+ probe at SP
+ }
+
+ adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
+ values of N from 1 until it is equal to ROUNDED_SIZE. */
+
+ emit_label (loop_lab);
+
+ /* Jump to END_LAB if SP == LAST_ADDR. */
+ emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
+ Pmode, 1, end_lab);
+
+ /* SP = SP + PROBE_INTERVAL and probe at SP. */
+ anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
+ emit_stack_probe (stack_pointer_rtx);
+
+ emit_jump (loop_lab);
+
+ emit_label (end_lab);
+
+
+ /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
+ assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
+
+ /* TEMP = SIZE - ROUNDED_SIZE. */
+ temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
+ if (temp != const0_rtx)
+ {
+ /* Manual CSE if the difference is not known at compile-time. */
+ if (GET_CODE (temp) != CONST_INT)
+ temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
+ anti_adjust_stack (temp);
+ emit_stack_probe (stack_pointer_rtx);
+ }
+ }
+
+ /* Adjust back and account for the additional first interval. */
+ if (adjust_back)
+ adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
+ else
+ adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
+}
+
+/* Return an rtx representing the register or memory location
+ in which a scalar value of data type VALTYPE
+ was returned by a function call to function FUNC.
+ FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
+ function is known, otherwise 0.
+ OUTGOING is 1 if on a machine with register windows this function
+ should return the register in which the function will put its result
+ and 0 otherwise. */
+
+rtx
+hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
+ int outgoing ATTRIBUTE_UNUSED)
+{
+ rtx val;
+
+ val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
+
+ if (REG_P (val)
+ && GET_MODE (val) == BLKmode)
+ {
+ unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
+ enum machine_mode tmpmode;
+
+ /* int_size_in_bytes can return -1. We don't need a check here
+ since the value of bytes will then be large enough that no
+ mode will match anyway. */
+
+ for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+ tmpmode != VOIDmode;
+ tmpmode = GET_MODE_WIDER_MODE (tmpmode))
+ {
+ /* Have we found a large enough mode? */
+ if (GET_MODE_SIZE (tmpmode) >= bytes)
+ break;
+ }
+
+ /* No suitable mode found. */
+ gcc_assert (tmpmode != VOIDmode);
+
+ PUT_MODE (val, tmpmode);
+ }
+ return val;
+}
+
+/* Return an rtx representing the register or memory location
+ in which a scalar value of mode MODE was returned by a library call. */
+
+rtx
+hard_libcall_value (enum machine_mode mode, rtx fun)
+{
+ return targetm.calls.libcall_value (mode, fun);
+}
+
+/* Look up the tree code for a given rtx code
+ to provide the arithmetic operation for REAL_ARITHMETIC.
+ The function returns an int because the caller may not know
+ what `enum tree_code' means. */
+
+int
+rtx_to_tree_code (enum rtx_code code)
+{
+ enum tree_code tcode;
+
+ switch (code)
+ {
+ case PLUS:
+ tcode = PLUS_EXPR;
+ break;
+ case MINUS:
+ tcode = MINUS_EXPR;
+ break;
+ case MULT:
+ tcode = MULT_EXPR;
+ break;
+ case DIV:
+ tcode = RDIV_EXPR;
+ break;
+ case SMIN:
+ tcode = MIN_EXPR;
+ break;
+ case SMAX:
+ tcode = MAX_EXPR;
+ break;
+ default:
+ tcode = LAST_AND_UNUSED_TREE_CODE;
+ break;
+ }
+ return ((int) tcode);
+}
+
+#include "gt-explow.h"