aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/dominance.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/dominance.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/dominance.c')
-rw-r--r--gcc-4.9/gcc/dominance.c1536
1 files changed, 1536 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/dominance.c b/gcc-4.9/gcc/dominance.c
new file mode 100644
index 000000000..ff0dfe671
--- /dev/null
+++ b/gcc-4.9/gcc/dominance.c
@@ -0,0 +1,1536 @@
+/* Calculate (post)dominators in slightly super-linear time.
+ Copyright (C) 2000-2014 Free Software Foundation, Inc.
+ Contributed by Michael Matz (matz@ifh.de).
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3, or (at your option)
+ any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+/* This file implements the well known algorithm from Lengauer and Tarjan
+ to compute the dominators in a control flow graph. A basic block D is said
+ to dominate another block X, when all paths from the entry node of the CFG
+ to X go also over D. The dominance relation is a transitive reflexive
+ relation and its minimal transitive reduction is a tree, called the
+ dominator tree. So for each block X besides the entry block exists a
+ block I(X), called the immediate dominator of X, which is the parent of X
+ in the dominator tree.
+
+ The algorithm computes this dominator tree implicitly by computing for
+ each block its immediate dominator. We use tree balancing and path
+ compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
+ slowly growing functional inverse of the Ackerman function. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "hard-reg-set.h"
+#include "obstack.h"
+#include "basic-block.h"
+#include "diagnostic-core.h"
+#include "et-forest.h"
+#include "timevar.h"
+#include "pointer-set.h"
+#include "graphds.h"
+#include "bitmap.h"
+
+/* We name our nodes with integers, beginning with 1. Zero is reserved for
+ 'undefined' or 'end of list'. The name of each node is given by the dfs
+ number of the corresponding basic block. Please note, that we include the
+ artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
+ support multiple entry points. Its dfs number is of course 1. */
+
+/* Type of Basic Block aka. TBB */
+typedef unsigned int TBB;
+
+/* We work in a poor-mans object oriented fashion, and carry an instance of
+ this structure through all our 'methods'. It holds various arrays
+ reflecting the (sub)structure of the flowgraph. Most of them are of type
+ TBB and are also indexed by TBB. */
+
+struct dom_info
+{
+ /* The parent of a node in the DFS tree. */
+ TBB *dfs_parent;
+ /* For a node x key[x] is roughly the node nearest to the root from which
+ exists a way to x only over nodes behind x. Such a node is also called
+ semidominator. */
+ TBB *key;
+ /* The value in path_min[x] is the node y on the path from x to the root of
+ the tree x is in with the smallest key[y]. */
+ TBB *path_min;
+ /* bucket[x] points to the first node of the set of nodes having x as key. */
+ TBB *bucket;
+ /* And next_bucket[x] points to the next node. */
+ TBB *next_bucket;
+ /* After the algorithm is done, dom[x] contains the immediate dominator
+ of x. */
+ TBB *dom;
+
+ /* The following few fields implement the structures needed for disjoint
+ sets. */
+ /* set_chain[x] is the next node on the path from x to the representative
+ of the set containing x. If set_chain[x]==0 then x is a root. */
+ TBB *set_chain;
+ /* set_size[x] is the number of elements in the set named by x. */
+ unsigned int *set_size;
+ /* set_child[x] is used for balancing the tree representing a set. It can
+ be understood as the next sibling of x. */
+ TBB *set_child;
+
+ /* If b is the number of a basic block (BB->index), dfs_order[b] is the
+ number of that node in DFS order counted from 1. This is an index
+ into most of the other arrays in this structure. */
+ TBB *dfs_order;
+ /* If x is the DFS-index of a node which corresponds with a basic block,
+ dfs_to_bb[x] is that basic block. Note, that in our structure there are
+ more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
+ is true for every basic block bb, but not the opposite. */
+ basic_block *dfs_to_bb;
+
+ /* This is the next free DFS number when creating the DFS tree. */
+ unsigned int dfsnum;
+ /* The number of nodes in the DFS tree (==dfsnum-1). */
+ unsigned int nodes;
+
+ /* Blocks with bits set here have a fake edge to EXIT. These are used
+ to turn a DFS forest into a proper tree. */
+ bitmap fake_exit_edge;
+};
+
+static void init_dom_info (struct dom_info *, enum cdi_direction);
+static void free_dom_info (struct dom_info *);
+static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
+static void calc_dfs_tree (struct dom_info *, bool);
+static void compress (struct dom_info *, TBB);
+static TBB eval (struct dom_info *, TBB);
+static void link_roots (struct dom_info *, TBB, TBB);
+static void calc_idoms (struct dom_info *, bool);
+void debug_dominance_info (enum cdi_direction);
+void debug_dominance_tree (enum cdi_direction, basic_block);
+
+/* Helper macro for allocating and initializing an array,
+ for aesthetic reasons. */
+#define init_ar(var, type, num, content) \
+ do \
+ { \
+ unsigned int i = 1; /* Catch content == i. */ \
+ if (! (content)) \
+ (var) = XCNEWVEC (type, num); \
+ else \
+ { \
+ (var) = XNEWVEC (type, (num)); \
+ for (i = 0; i < num; i++) \
+ (var)[i] = (content); \
+ } \
+ } \
+ while (0)
+
+/* Allocate all needed memory in a pessimistic fashion (so we round up).
+ This initializes the contents of DI, which already must be allocated. */
+
+static void
+init_dom_info (struct dom_info *di, enum cdi_direction dir)
+{
+ /* We need memory for n_basic_blocks nodes. */
+ unsigned int num = n_basic_blocks_for_fn (cfun);
+ init_ar (di->dfs_parent, TBB, num, 0);
+ init_ar (di->path_min, TBB, num, i);
+ init_ar (di->key, TBB, num, i);
+ init_ar (di->dom, TBB, num, 0);
+
+ init_ar (di->bucket, TBB, num, 0);
+ init_ar (di->next_bucket, TBB, num, 0);
+
+ init_ar (di->set_chain, TBB, num, 0);
+ init_ar (di->set_size, unsigned int, num, 1);
+ init_ar (di->set_child, TBB, num, 0);
+
+ init_ar (di->dfs_order, TBB,
+ (unsigned int) last_basic_block_for_fn (cfun) + 1, 0);
+ init_ar (di->dfs_to_bb, basic_block, num, 0);
+
+ di->dfsnum = 1;
+ di->nodes = 0;
+
+ switch (dir)
+ {
+ case CDI_DOMINATORS:
+ di->fake_exit_edge = NULL;
+ break;
+ case CDI_POST_DOMINATORS:
+ di->fake_exit_edge = BITMAP_ALLOC (NULL);
+ break;
+ default:
+ gcc_unreachable ();
+ break;
+ }
+}
+
+#undef init_ar
+
+/* Map dominance calculation type to array index used for various
+ dominance information arrays. This version is simple -- it will need
+ to be modified, obviously, if additional values are added to
+ cdi_direction. */
+
+static unsigned int
+dom_convert_dir_to_idx (enum cdi_direction dir)
+{
+ gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
+ return dir - 1;
+}
+
+/* Free all allocated memory in DI, but not DI itself. */
+
+static void
+free_dom_info (struct dom_info *di)
+{
+ free (di->dfs_parent);
+ free (di->path_min);
+ free (di->key);
+ free (di->dom);
+ free (di->bucket);
+ free (di->next_bucket);
+ free (di->set_chain);
+ free (di->set_size);
+ free (di->set_child);
+ free (di->dfs_order);
+ free (di->dfs_to_bb);
+ BITMAP_FREE (di->fake_exit_edge);
+}
+
+/* The nonrecursive variant of creating a DFS tree. DI is our working
+ structure, BB the starting basic block for this tree and REVERSE
+ is true, if predecessors should be visited instead of successors of a
+ node. After this is done all nodes reachable from BB were visited, have
+ assigned their dfs number and are linked together to form a tree. */
+
+static void
+calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
+{
+ /* We call this _only_ if bb is not already visited. */
+ edge e;
+ TBB child_i, my_i = 0;
+ edge_iterator *stack;
+ edge_iterator ei, einext;
+ int sp;
+ /* Start block (the entry block for forward problem, exit block for backward
+ problem). */
+ basic_block en_block;
+ /* Ending block. */
+ basic_block ex_block;
+
+ stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
+ sp = 0;
+
+ /* Initialize our border blocks, and the first edge. */
+ if (reverse)
+ {
+ ei = ei_start (bb->preds);
+ en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
+ ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
+ }
+ else
+ {
+ ei = ei_start (bb->succs);
+ en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
+ ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
+ }
+
+ /* When the stack is empty we break out of this loop. */
+ while (1)
+ {
+ basic_block bn;
+
+ /* This loop traverses edges e in depth first manner, and fills the
+ stack. */
+ while (!ei_end_p (ei))
+ {
+ e = ei_edge (ei);
+
+ /* Deduce from E the current and the next block (BB and BN), and the
+ next edge. */
+ if (reverse)
+ {
+ bn = e->src;
+
+ /* If the next node BN is either already visited or a border
+ block the current edge is useless, and simply overwritten
+ with the next edge out of the current node. */
+ if (bn == ex_block || di->dfs_order[bn->index])
+ {
+ ei_next (&ei);
+ continue;
+ }
+ bb = e->dest;
+ einext = ei_start (bn->preds);
+ }
+ else
+ {
+ bn = e->dest;
+ if (bn == ex_block || di->dfs_order[bn->index])
+ {
+ ei_next (&ei);
+ continue;
+ }
+ bb = e->src;
+ einext = ei_start (bn->succs);
+ }
+
+ gcc_assert (bn != en_block);
+
+ /* Fill the DFS tree info calculatable _before_ recursing. */
+ if (bb != en_block)
+ my_i = di->dfs_order[bb->index];
+ else
+ my_i = di->dfs_order[last_basic_block_for_fn (cfun)];
+ child_i = di->dfs_order[bn->index] = di->dfsnum++;
+ di->dfs_to_bb[child_i] = bn;
+ di->dfs_parent[child_i] = my_i;
+
+ /* Save the current point in the CFG on the stack, and recurse. */
+ stack[sp++] = ei;
+ ei = einext;
+ }
+
+ if (!sp)
+ break;
+ ei = stack[--sp];
+
+ /* OK. The edge-list was exhausted, meaning normally we would
+ end the recursion. After returning from the recursive call,
+ there were (may be) other statements which were run after a
+ child node was completely considered by DFS. Here is the
+ point to do it in the non-recursive variant.
+ E.g. The block just completed is in e->dest for forward DFS,
+ the block not yet completed (the parent of the one above)
+ in e->src. This could be used e.g. for computing the number of
+ descendants or the tree depth. */
+ ei_next (&ei);
+ }
+ free (stack);
+}
+
+/* The main entry for calculating the DFS tree or forest. DI is our working
+ structure and REVERSE is true, if we are interested in the reverse flow
+ graph. In that case the result is not necessarily a tree but a forest,
+ because there may be nodes from which the EXIT_BLOCK is unreachable. */
+
+static void
+calc_dfs_tree (struct dom_info *di, bool reverse)
+{
+ /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
+ basic_block begin = (reverse
+ ? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
+ di->dfs_order[last_basic_block_for_fn (cfun)] = di->dfsnum;
+ di->dfs_to_bb[di->dfsnum] = begin;
+ di->dfsnum++;
+
+ calc_dfs_tree_nonrec (di, begin, reverse);
+
+ if (reverse)
+ {
+ /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
+ They are reverse-unreachable. In the dom-case we disallow such
+ nodes, but in post-dom we have to deal with them.
+
+ There are two situations in which this occurs. First, noreturn
+ functions. Second, infinite loops. In the first case we need to
+ pretend that there is an edge to the exit block. In the second
+ case, we wind up with a forest. We need to process all noreturn
+ blocks before we know if we've got any infinite loops. */
+
+ basic_block b;
+ bool saw_unconnected = false;
+
+ FOR_EACH_BB_REVERSE_FN (b, cfun)
+ {
+ if (EDGE_COUNT (b->succs) > 0)
+ {
+ if (di->dfs_order[b->index] == 0)
+ saw_unconnected = true;
+ continue;
+ }
+ bitmap_set_bit (di->fake_exit_edge, b->index);
+ di->dfs_order[b->index] = di->dfsnum;
+ di->dfs_to_bb[di->dfsnum] = b;
+ di->dfs_parent[di->dfsnum] =
+ di->dfs_order[last_basic_block_for_fn (cfun)];
+ di->dfsnum++;
+ calc_dfs_tree_nonrec (di, b, reverse);
+ }
+
+ if (saw_unconnected)
+ {
+ FOR_EACH_BB_REVERSE_FN (b, cfun)
+ {
+ basic_block b2;
+ if (di->dfs_order[b->index])
+ continue;
+ b2 = dfs_find_deadend (b);
+ gcc_checking_assert (di->dfs_order[b2->index] == 0);
+ bitmap_set_bit (di->fake_exit_edge, b2->index);
+ di->dfs_order[b2->index] = di->dfsnum;
+ di->dfs_to_bb[di->dfsnum] = b2;
+ di->dfs_parent[di->dfsnum] =
+ di->dfs_order[last_basic_block_for_fn (cfun)];
+ di->dfsnum++;
+ calc_dfs_tree_nonrec (di, b2, reverse);
+ gcc_checking_assert (di->dfs_order[b->index]);
+ }
+ }
+ }
+
+ di->nodes = di->dfsnum - 1;
+
+ /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
+ gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
+}
+
+/* Compress the path from V to the root of its set and update path_min at the
+ same time. After compress(di, V) set_chain[V] is the root of the set V is
+ in and path_min[V] is the node with the smallest key[] value on the path
+ from V to that root. */
+
+static void
+compress (struct dom_info *di, TBB v)
+{
+ /* Btw. It's not worth to unrecurse compress() as the depth is usually not
+ greater than 5 even for huge graphs (I've not seen call depth > 4).
+ Also performance wise compress() ranges _far_ behind eval(). */
+ TBB parent = di->set_chain[v];
+ if (di->set_chain[parent])
+ {
+ compress (di, parent);
+ if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
+ di->path_min[v] = di->path_min[parent];
+ di->set_chain[v] = di->set_chain[parent];
+ }
+}
+
+/* Compress the path from V to the set root of V if needed (when the root has
+ changed since the last call). Returns the node with the smallest key[]
+ value on the path from V to the root. */
+
+static inline TBB
+eval (struct dom_info *di, TBB v)
+{
+ /* The representative of the set V is in, also called root (as the set
+ representation is a tree). */
+ TBB rep = di->set_chain[v];
+
+ /* V itself is the root. */
+ if (!rep)
+ return di->path_min[v];
+
+ /* Compress only if necessary. */
+ if (di->set_chain[rep])
+ {
+ compress (di, v);
+ rep = di->set_chain[v];
+ }
+
+ if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
+ return di->path_min[v];
+ else
+ return di->path_min[rep];
+}
+
+/* This essentially merges the two sets of V and W, giving a single set with
+ the new root V. The internal representation of these disjoint sets is a
+ balanced tree. Currently link(V,W) is only used with V being the parent
+ of W. */
+
+static void
+link_roots (struct dom_info *di, TBB v, TBB w)
+{
+ TBB s = w;
+
+ /* Rebalance the tree. */
+ while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
+ {
+ if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
+ >= 2 * di->set_size[di->set_child[s]])
+ {
+ di->set_chain[di->set_child[s]] = s;
+ di->set_child[s] = di->set_child[di->set_child[s]];
+ }
+ else
+ {
+ di->set_size[di->set_child[s]] = di->set_size[s];
+ s = di->set_chain[s] = di->set_child[s];
+ }
+ }
+
+ di->path_min[s] = di->path_min[w];
+ di->set_size[v] += di->set_size[w];
+ if (di->set_size[v] < 2 * di->set_size[w])
+ {
+ TBB tmp = s;
+ s = di->set_child[v];
+ di->set_child[v] = tmp;
+ }
+
+ /* Merge all subtrees. */
+ while (s)
+ {
+ di->set_chain[s] = v;
+ s = di->set_child[s];
+ }
+}
+
+/* This calculates the immediate dominators (or post-dominators if REVERSE is
+ true). DI is our working structure and should hold the DFS forest.
+ On return the immediate dominator to node V is in di->dom[V]. */
+
+static void
+calc_idoms (struct dom_info *di, bool reverse)
+{
+ TBB v, w, k, par;
+ basic_block en_block;
+ edge_iterator ei, einext;
+
+ if (reverse)
+ en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
+ else
+ en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
+
+ /* Go backwards in DFS order, to first look at the leafs. */
+ v = di->nodes;
+ while (v > 1)
+ {
+ basic_block bb = di->dfs_to_bb[v];
+ edge e;
+
+ par = di->dfs_parent[v];
+ k = v;
+
+ ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
+
+ if (reverse)
+ {
+ /* If this block has a fake edge to exit, process that first. */
+ if (bitmap_bit_p (di->fake_exit_edge, bb->index))
+ {
+ einext = ei;
+ einext.index = 0;
+ goto do_fake_exit_edge;
+ }
+ }
+
+ /* Search all direct predecessors for the smallest node with a path
+ to them. That way we have the smallest node with also a path to
+ us only over nodes behind us. In effect we search for our
+ semidominator. */
+ while (!ei_end_p (ei))
+ {
+ TBB k1;
+ basic_block b;
+
+ e = ei_edge (ei);
+ b = (reverse) ? e->dest : e->src;
+ einext = ei;
+ ei_next (&einext);
+
+ if (b == en_block)
+ {
+ do_fake_exit_edge:
+ k1 = di->dfs_order[last_basic_block_for_fn (cfun)];
+ }
+ else
+ k1 = di->dfs_order[b->index];
+
+ /* Call eval() only if really needed. If k1 is above V in DFS tree,
+ then we know, that eval(k1) == k1 and key[k1] == k1. */
+ if (k1 > v)
+ k1 = di->key[eval (di, k1)];
+ if (k1 < k)
+ k = k1;
+
+ ei = einext;
+ }
+
+ di->key[v] = k;
+ link_roots (di, par, v);
+ di->next_bucket[v] = di->bucket[k];
+ di->bucket[k] = v;
+
+ /* Transform semidominators into dominators. */
+ for (w = di->bucket[par]; w; w = di->next_bucket[w])
+ {
+ k = eval (di, w);
+ if (di->key[k] < di->key[w])
+ di->dom[w] = k;
+ else
+ di->dom[w] = par;
+ }
+ /* We don't need to cleanup next_bucket[]. */
+ di->bucket[par] = 0;
+ v--;
+ }
+
+ /* Explicitly define the dominators. */
+ di->dom[1] = 0;
+ for (v = 2; v <= di->nodes; v++)
+ if (di->dom[v] != di->key[v])
+ di->dom[v] = di->dom[di->dom[v]];
+}
+
+/* Assign dfs numbers starting from NUM to NODE and its sons. */
+
+static void
+assign_dfs_numbers (struct et_node *node, int *num)
+{
+ struct et_node *son;
+
+ node->dfs_num_in = (*num)++;
+
+ if (node->son)
+ {
+ assign_dfs_numbers (node->son, num);
+ for (son = node->son->right; son != node->son; son = son->right)
+ assign_dfs_numbers (son, num);
+ }
+
+ node->dfs_num_out = (*num)++;
+}
+
+/* Compute the data necessary for fast resolving of dominator queries in a
+ static dominator tree. */
+
+static void
+compute_dom_fast_query (enum cdi_direction dir)
+{
+ int num = 0;
+ basic_block bb;
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ gcc_checking_assert (dom_info_available_p (dir));
+
+ if (dom_computed[dir_index] == DOM_OK)
+ return;
+
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ if (!bb->dom[dir_index]->father)
+ assign_dfs_numbers (bb->dom[dir_index], &num);
+ }
+
+ dom_computed[dir_index] = DOM_OK;
+}
+
+/* The main entry point into this module. DIR is set depending on whether
+ we want to compute dominators or postdominators. */
+
+void
+calculate_dominance_info (enum cdi_direction dir)
+{
+ struct dom_info di;
+ basic_block b;
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
+
+ if (dom_computed[dir_index] == DOM_OK)
+ return;
+
+ timevar_push (TV_DOMINANCE);
+ if (!dom_info_available_p (dir))
+ {
+ gcc_assert (!n_bbs_in_dom_tree[dir_index]);
+
+ FOR_ALL_BB_FN (b, cfun)
+ {
+ b->dom[dir_index] = et_new_tree (b);
+ }
+ n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
+
+ init_dom_info (&di, dir);
+ calc_dfs_tree (&di, reverse);
+ calc_idoms (&di, reverse);
+
+ FOR_EACH_BB_FN (b, cfun)
+ {
+ TBB d = di.dom[di.dfs_order[b->index]];
+
+ if (di.dfs_to_bb[d])
+ et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
+ }
+
+ free_dom_info (&di);
+ dom_computed[dir_index] = DOM_NO_FAST_QUERY;
+ }
+
+ compute_dom_fast_query (dir);
+
+ timevar_pop (TV_DOMINANCE);
+}
+
+/* Free dominance information for direction DIR. */
+void
+free_dominance_info (enum cdi_direction dir)
+{
+ basic_block bb;
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ if (!dom_info_available_p (dir))
+ return;
+
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ et_free_tree_force (bb->dom[dir_index]);
+ bb->dom[dir_index] = NULL;
+ }
+ et_free_pools ();
+
+ n_bbs_in_dom_tree[dir_index] = 0;
+
+ dom_computed[dir_index] = DOM_NONE;
+}
+
+/* Return the immediate dominator of basic block BB. */
+basic_block
+get_immediate_dominator (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *node = bb->dom[dir_index];
+
+ gcc_checking_assert (dom_computed[dir_index]);
+
+ if (!node->father)
+ return NULL;
+
+ return (basic_block) node->father->data;
+}
+
+/* Set the immediate dominator of the block possibly removing
+ existing edge. NULL can be used to remove any edge. */
+void
+set_immediate_dominator (enum cdi_direction dir, basic_block bb,
+ basic_block dominated_by)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *node = bb->dom[dir_index];
+
+ gcc_checking_assert (dom_computed[dir_index]);
+
+ if (node->father)
+ {
+ if (node->father->data == dominated_by)
+ return;
+ et_split (node);
+ }
+
+ if (dominated_by)
+ et_set_father (node, dominated_by->dom[dir_index]);
+
+ if (dom_computed[dir_index] == DOM_OK)
+ dom_computed[dir_index] = DOM_NO_FAST_QUERY;
+}
+
+/* Returns the list of basic blocks immediately dominated by BB, in the
+ direction DIR. */
+vec<basic_block>
+get_dominated_by (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
+ vec<basic_block> bbs = vNULL;
+
+ gcc_checking_assert (dom_computed[dir_index]);
+
+ if (!son)
+ return vNULL;
+
+ bbs.safe_push ((basic_block) son->data);
+ for (ason = son->right; ason != son; ason = ason->right)
+ bbs.safe_push ((basic_block) ason->data);
+
+ return bbs;
+}
+
+/* Returns the list of basic blocks that are immediately dominated (in
+ direction DIR) by some block between N_REGION ones stored in REGION,
+ except for blocks in the REGION itself. */
+
+vec<basic_block>
+get_dominated_by_region (enum cdi_direction dir, basic_block *region,
+ unsigned n_region)
+{
+ unsigned i;
+ basic_block dom;
+ vec<basic_block> doms = vNULL;
+
+ for (i = 0; i < n_region; i++)
+ region[i]->flags |= BB_DUPLICATED;
+ for (i = 0; i < n_region; i++)
+ for (dom = first_dom_son (dir, region[i]);
+ dom;
+ dom = next_dom_son (dir, dom))
+ if (!(dom->flags & BB_DUPLICATED))
+ doms.safe_push (dom);
+ for (i = 0; i < n_region; i++)
+ region[i]->flags &= ~BB_DUPLICATED;
+
+ return doms;
+}
+
+/* Returns the list of basic blocks including BB dominated by BB, in the
+ direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
+ produce a vector containing all dominated blocks. The vector will be sorted
+ in preorder. */
+
+vec<basic_block>
+get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
+{
+ vec<basic_block> bbs = vNULL;
+ unsigned i;
+ unsigned next_level_start;
+
+ i = 0;
+ bbs.safe_push (bb);
+ next_level_start = 1; /* = bbs.length (); */
+
+ do
+ {
+ basic_block son;
+
+ bb = bbs[i++];
+ for (son = first_dom_son (dir, bb);
+ son;
+ son = next_dom_son (dir, son))
+ bbs.safe_push (son);
+
+ if (i == next_level_start && --depth)
+ next_level_start = bbs.length ();
+ }
+ while (i < next_level_start);
+
+ return bbs;
+}
+
+/* Returns the list of basic blocks including BB dominated by BB, in the
+ direction DIR. The vector will be sorted in preorder. */
+
+vec<basic_block>
+get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
+{
+ return get_dominated_to_depth (dir, bb, 0);
+}
+
+/* Redirect all edges pointing to BB to TO. */
+void
+redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
+ basic_block to)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *bb_node, *to_node, *son;
+
+ bb_node = bb->dom[dir_index];
+ to_node = to->dom[dir_index];
+
+ gcc_checking_assert (dom_computed[dir_index]);
+
+ if (!bb_node->son)
+ return;
+
+ while (bb_node->son)
+ {
+ son = bb_node->son;
+
+ et_split (son);
+ et_set_father (son, to_node);
+ }
+
+ if (dom_computed[dir_index] == DOM_OK)
+ dom_computed[dir_index] = DOM_NO_FAST_QUERY;
+}
+
+/* Find first basic block in the tree dominating both BB1 and BB2. */
+basic_block
+nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ gcc_checking_assert (dom_computed[dir_index]);
+
+ if (!bb1)
+ return bb2;
+ if (!bb2)
+ return bb1;
+
+ return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
+}
+
+
+/* Find the nearest common dominator for the basic blocks in BLOCKS,
+ using dominance direction DIR. */
+
+basic_block
+nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
+{
+ unsigned i, first;
+ bitmap_iterator bi;
+ basic_block dom;
+
+ first = bitmap_first_set_bit (blocks);
+ dom = BASIC_BLOCK_FOR_FN (cfun, first);
+ EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
+ if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
+ dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
+
+ return dom;
+}
+
+/* Given a dominator tree, we can determine whether one thing
+ dominates another in constant time by using two DFS numbers:
+
+ 1. The number for when we visit a node on the way down the tree
+ 2. The number for when we visit a node on the way back up the tree
+
+ You can view these as bounds for the range of dfs numbers the
+ nodes in the subtree of the dominator tree rooted at that node
+ will contain.
+
+ The dominator tree is always a simple acyclic tree, so there are
+ only three possible relations two nodes in the dominator tree have
+ to each other:
+
+ 1. Node A is above Node B (and thus, Node A dominates node B)
+
+ A
+ |
+ C
+ / \
+ B D
+
+
+ In the above case, DFS_Number_In of A will be <= DFS_Number_In of
+ B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
+ because we must hit A in the dominator tree *before* B on the walk
+ down, and we will hit A *after* B on the walk back up
+
+ 2. Node A is below node B (and thus, node B dominates node A)
+
+
+ B
+ |
+ A
+ / \
+ C D
+
+ In the above case, DFS_Number_In of A will be >= DFS_Number_In of
+ B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
+
+ This is because we must hit A in the dominator tree *after* B on
+ the walk down, and we will hit A *before* B on the walk back up
+
+ 3. Node A and B are siblings (and thus, neither dominates the other)
+
+ C
+ |
+ D
+ / \
+ A B
+
+ In the above case, DFS_Number_In of A will *always* be <=
+ DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
+ DFS_Number_Out of B. This is because we will always finish the dfs
+ walk of one of the subtrees before the other, and thus, the dfs
+ numbers for one subtree can't intersect with the range of dfs
+ numbers for the other subtree. If you swap A and B's position in
+ the dominator tree, the comparison changes direction, but the point
+ is that both comparisons will always go the same way if there is no
+ dominance relationship.
+
+ Thus, it is sufficient to write
+
+ A_Dominates_B (node A, node B)
+ {
+ return DFS_Number_In(A) <= DFS_Number_In(B)
+ && DFS_Number_Out (A) >= DFS_Number_Out(B);
+ }
+
+ A_Dominated_by_B (node A, node B)
+ {
+ return DFS_Number_In(A) >= DFS_Number_In(A)
+ && DFS_Number_Out (A) <= DFS_Number_Out(B);
+ } */
+
+/* Return TRUE in case BB1 is dominated by BB2. */
+bool
+dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
+
+ gcc_checking_assert (dom_computed[dir_index]);
+
+ if (dom_computed[dir_index] == DOM_OK)
+ return (n1->dfs_num_in >= n2->dfs_num_in
+ && n1->dfs_num_out <= n2->dfs_num_out);
+
+ return et_below (n1, n2);
+}
+
+/* Returns the entry dfs number for basic block BB, in the direction DIR. */
+
+unsigned
+bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *n = bb->dom[dir_index];
+
+ gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
+ return n->dfs_num_in;
+}
+
+/* Returns the exit dfs number for basic block BB, in the direction DIR. */
+
+unsigned
+bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *n = bb->dom[dir_index];
+
+ gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
+ return n->dfs_num_out;
+}
+
+/* Verify invariants of dominator structure. */
+DEBUG_FUNCTION void
+verify_dominators (enum cdi_direction dir)
+{
+ int err = 0;
+ basic_block bb, imm_bb, imm_bb_correct;
+ struct dom_info di;
+ bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
+
+ gcc_assert (dom_info_available_p (dir));
+
+ init_dom_info (&di, dir);
+ calc_dfs_tree (&di, reverse);
+ calc_idoms (&di, reverse);
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ imm_bb = get_immediate_dominator (dir, bb);
+ if (!imm_bb)
+ {
+ error ("dominator of %d status unknown", bb->index);
+ err = 1;
+ }
+
+ imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
+ if (imm_bb != imm_bb_correct)
+ {
+ error ("dominator of %d should be %d, not %d",
+ bb->index, imm_bb_correct->index, imm_bb->index);
+ err = 1;
+ }
+ }
+
+ free_dom_info (&di);
+ gcc_assert (!err);
+}
+
+/* Determine immediate dominator (or postdominator, according to DIR) of BB,
+ assuming that dominators of other blocks are correct. We also use it to
+ recompute the dominators in a restricted area, by iterating it until it
+ reaches a fixed point. */
+
+basic_block
+recompute_dominator (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ basic_block dom_bb = NULL;
+ edge e;
+ edge_iterator ei;
+
+ gcc_checking_assert (dom_computed[dir_index]);
+
+ if (dir == CDI_DOMINATORS)
+ {
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ if (!dominated_by_p (dir, e->src, bb))
+ dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
+ }
+ }
+ else
+ {
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (!dominated_by_p (dir, e->dest, bb))
+ dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
+ }
+ }
+
+ return dom_bb;
+}
+
+/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
+ of BBS. We assume that all the immediate dominators except for those of the
+ blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
+ currently recorded immediate dominators of blocks in BBS really dominate the
+ blocks. The basic blocks for that we determine the dominator are removed
+ from BBS. */
+
+static void
+prune_bbs_to_update_dominators (vec<basic_block> bbs,
+ bool conservative)
+{
+ unsigned i;
+ bool single;
+ basic_block bb, dom = NULL;
+ edge_iterator ei;
+ edge e;
+
+ for (i = 0; bbs.iterate (i, &bb);)
+ {
+ if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ goto succeed;
+
+ if (single_pred_p (bb))
+ {
+ set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
+ goto succeed;
+ }
+
+ if (!conservative)
+ goto fail;
+
+ single = true;
+ dom = NULL;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
+ continue;
+
+ if (!dom)
+ dom = e->src;
+ else
+ {
+ single = false;
+ dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
+ }
+ }
+
+ gcc_assert (dom != NULL);
+ if (single
+ || find_edge (dom, bb))
+ {
+ set_immediate_dominator (CDI_DOMINATORS, bb, dom);
+ goto succeed;
+ }
+
+fail:
+ i++;
+ continue;
+
+succeed:
+ bbs.unordered_remove (i);
+ }
+}
+
+/* Returns root of the dominance tree in the direction DIR that contains
+ BB. */
+
+static basic_block
+root_of_dom_tree (enum cdi_direction dir, basic_block bb)
+{
+ return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
+}
+
+/* See the comment in iterate_fix_dominators. Finds the immediate dominators
+ for the sons of Y, found using the SON and BROTHER arrays representing
+ the dominance tree of graph G. BBS maps the vertices of G to the basic
+ blocks. */
+
+static void
+determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
+ int y, int *son, int *brother)
+{
+ bitmap gprime;
+ int i, a, nc;
+ vec<int> *sccs;
+ basic_block bb, dom, ybb;
+ unsigned si;
+ edge e;
+ edge_iterator ei;
+
+ if (son[y] == -1)
+ return;
+ if (y == (int) bbs.length ())
+ ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
+ else
+ ybb = bbs[y];
+
+ if (brother[son[y]] == -1)
+ {
+ /* Handle the common case Y has just one son specially. */
+ bb = bbs[son[y]];
+ set_immediate_dominator (CDI_DOMINATORS, bb,
+ recompute_dominator (CDI_DOMINATORS, bb));
+ identify_vertices (g, y, son[y]);
+ return;
+ }
+
+ gprime = BITMAP_ALLOC (NULL);
+ for (a = son[y]; a != -1; a = brother[a])
+ bitmap_set_bit (gprime, a);
+
+ nc = graphds_scc (g, gprime);
+ BITMAP_FREE (gprime);
+
+ /* ??? Needed to work around the pre-processor confusion with
+ using a multi-argument template type as macro argument. */
+ typedef vec<int> vec_int_heap;
+ sccs = XCNEWVEC (vec_int_heap, nc);
+ for (a = son[y]; a != -1; a = brother[a])
+ sccs[g->vertices[a].component].safe_push (a);
+
+ for (i = nc - 1; i >= 0; i--)
+ {
+ dom = NULL;
+ FOR_EACH_VEC_ELT (sccs[i], si, a)
+ {
+ bb = bbs[a];
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
+ continue;
+
+ dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
+ }
+ }
+
+ gcc_assert (dom != NULL);
+ FOR_EACH_VEC_ELT (sccs[i], si, a)
+ {
+ bb = bbs[a];
+ set_immediate_dominator (CDI_DOMINATORS, bb, dom);
+ }
+ }
+
+ for (i = 0; i < nc; i++)
+ sccs[i].release ();
+ free (sccs);
+
+ for (a = son[y]; a != -1; a = brother[a])
+ identify_vertices (g, y, a);
+}
+
+/* Recompute dominance information for basic blocks in the set BBS. The
+ function assumes that the immediate dominators of all the other blocks
+ in CFG are correct, and that there are no unreachable blocks.
+
+ If CONSERVATIVE is true, we additionally assume that all the ancestors of
+ a block of BBS in the current dominance tree dominate it. */
+
+void
+iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
+ bool conservative)
+{
+ unsigned i;
+ basic_block bb, dom;
+ struct graph *g;
+ int n, y;
+ size_t dom_i;
+ edge e;
+ edge_iterator ei;
+ pointer_map<int> *map;
+ int *parent, *son, *brother;
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ /* We only support updating dominators. There are some problems with
+ updating postdominators (need to add fake edges from infinite loops
+ and noreturn functions), and since we do not currently use
+ iterate_fix_dominators for postdominators, any attempt to handle these
+ problems would be unused, untested, and almost surely buggy. We keep
+ the DIR argument for consistency with the rest of the dominator analysis
+ interface. */
+ gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
+
+ /* The algorithm we use takes inspiration from the following papers, although
+ the details are quite different from any of them:
+
+ [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
+ Dominator Tree of a Reducible Flowgraph
+ [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
+ dominator trees
+ [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
+ Algorithm
+
+ First, we use the following heuristics to decrease the size of the BBS
+ set:
+ a) if BB has a single predecessor, then its immediate dominator is this
+ predecessor
+ additionally, if CONSERVATIVE is true:
+ b) if all the predecessors of BB except for one (X) are dominated by BB,
+ then X is the immediate dominator of BB
+ c) if the nearest common ancestor of the predecessors of BB is X and
+ X -> BB is an edge in CFG, then X is the immediate dominator of BB
+
+ Then, we need to establish the dominance relation among the basic blocks
+ in BBS. We split the dominance tree by removing the immediate dominator
+ edges from BBS, creating a forest F. We form a graph G whose vertices
+ are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
+ X' -> Y in CFG such that X' belongs to the tree of the dominance forest
+ whose root is X. We then determine dominance tree of G. Note that
+ for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
+ In this step, we can use arbitrary algorithm to determine dominators.
+ We decided to prefer the algorithm [3] to the algorithm of
+ Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
+ 10 during gcc bootstrap), and [3] should perform better in this case.
+
+ Finally, we need to determine the immediate dominators for the basic
+ blocks of BBS. If the immediate dominator of X in G is Y, then
+ the immediate dominator of X in CFG belongs to the tree of F rooted in
+ Y. We process the dominator tree T of G recursively, starting from leaves.
+ Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
+ subtrees of the dominance tree of CFG rooted in X_i are already correct.
+ Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
+ the following observations:
+ (i) the immediate dominator of all blocks in a strongly connected
+ component of G' is the same
+ (ii) if X has no predecessors in G', then the immediate dominator of X
+ is the nearest common ancestor of the predecessors of X in the
+ subtree of F rooted in Y
+ Therefore, it suffices to find the topological ordering of G', and
+ process the nodes X_i in this order using the rules (i) and (ii).
+ Then, we contract all the nodes X_i with Y in G, so that the further
+ steps work correctly. */
+
+ if (!conservative)
+ {
+ /* Split the tree now. If the idoms of blocks in BBS are not
+ conservatively correct, setting the dominators using the
+ heuristics in prune_bbs_to_update_dominators could
+ create cycles in the dominance "tree", and cause ICE. */
+ FOR_EACH_VEC_ELT (bbs, i, bb)
+ set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
+ }
+
+ prune_bbs_to_update_dominators (bbs, conservative);
+ n = bbs.length ();
+
+ if (n == 0)
+ return;
+
+ if (n == 1)
+ {
+ bb = bbs[0];
+ set_immediate_dominator (CDI_DOMINATORS, bb,
+ recompute_dominator (CDI_DOMINATORS, bb));
+ return;
+ }
+
+ /* Construct the graph G. */
+ map = new pointer_map<int>;
+ FOR_EACH_VEC_ELT (bbs, i, bb)
+ {
+ /* If the dominance tree is conservatively correct, split it now. */
+ if (conservative)
+ set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
+ *map->insert (bb) = i;
+ }
+ *map->insert (ENTRY_BLOCK_PTR_FOR_FN (cfun)) = n;
+
+ g = new_graph (n + 1);
+ for (y = 0; y < g->n_vertices; y++)
+ g->vertices[y].data = BITMAP_ALLOC (NULL);
+ FOR_EACH_VEC_ELT (bbs, i, bb)
+ {
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
+ if (dom == bb)
+ continue;
+
+ dom_i = *map->contains (dom);
+
+ /* Do not include parallel edges to G. */
+ if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
+ continue;
+
+ add_edge (g, dom_i, i);
+ }
+ }
+ for (y = 0; y < g->n_vertices; y++)
+ BITMAP_FREE (g->vertices[y].data);
+ delete map;
+
+ /* Find the dominator tree of G. */
+ son = XNEWVEC (int, n + 1);
+ brother = XNEWVEC (int, n + 1);
+ parent = XNEWVEC (int, n + 1);
+ graphds_domtree (g, n, parent, son, brother);
+
+ /* Finally, traverse the tree and find the immediate dominators. */
+ for (y = n; son[y] != -1; y = son[y])
+ continue;
+ while (y != -1)
+ {
+ determine_dominators_for_sons (g, bbs, y, son, brother);
+
+ if (brother[y] != -1)
+ {
+ y = brother[y];
+ while (son[y] != -1)
+ y = son[y];
+ }
+ else
+ y = parent[y];
+ }
+
+ free (son);
+ free (brother);
+ free (parent);
+
+ free_graph (g);
+}
+
+void
+add_to_dominance_info (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
+
+ n_bbs_in_dom_tree[dir_index]++;
+
+ bb->dom[dir_index] = et_new_tree (bb);
+
+ if (dom_computed[dir_index] == DOM_OK)
+ dom_computed[dir_index] = DOM_NO_FAST_QUERY;
+}
+
+void
+delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ gcc_checking_assert (dom_computed[dir_index]);
+
+ et_free_tree (bb->dom[dir_index]);
+ bb->dom[dir_index] = NULL;
+ n_bbs_in_dom_tree[dir_index]--;
+
+ if (dom_computed[dir_index] == DOM_OK)
+ dom_computed[dir_index] = DOM_NO_FAST_QUERY;
+}
+
+/* Returns the first son of BB in the dominator or postdominator tree
+ as determined by DIR. */
+
+basic_block
+first_dom_son (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *son = bb->dom[dir_index]->son;
+
+ return (basic_block) (son ? son->data : NULL);
+}
+
+/* Returns the next dominance son after BB in the dominator or postdominator
+ tree as determined by DIR, or NULL if it was the last one. */
+
+basic_block
+next_dom_son (enum cdi_direction dir, basic_block bb)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+ struct et_node *next = bb->dom[dir_index]->right;
+
+ return (basic_block) (next->father->son == next ? NULL : next->data);
+}
+
+/* Return dominance availability for dominance info DIR. */
+
+enum dom_state
+dom_info_state (enum cdi_direction dir)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ return dom_computed[dir_index];
+}
+
+/* Set the dominance availability for dominance info DIR to NEW_STATE. */
+
+void
+set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ dom_computed[dir_index] = new_state;
+}
+
+/* Returns true if dominance information for direction DIR is available. */
+
+bool
+dom_info_available_p (enum cdi_direction dir)
+{
+ unsigned int dir_index = dom_convert_dir_to_idx (dir);
+
+ return dom_computed[dir_index] != DOM_NONE;
+}
+
+DEBUG_FUNCTION void
+debug_dominance_info (enum cdi_direction dir)
+{
+ basic_block bb, bb2;
+ FOR_EACH_BB_FN (bb, cfun)
+ if ((bb2 = get_immediate_dominator (dir, bb)))
+ fprintf (stderr, "%i %i\n", bb->index, bb2->index);
+}
+
+/* Prints to stderr representation of the dominance tree (for direction DIR)
+ rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
+ the first line of the output is not indented. */
+
+static void
+debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
+ unsigned indent, bool indent_first)
+{
+ basic_block son;
+ unsigned i;
+ bool first = true;
+
+ if (indent_first)
+ for (i = 0; i < indent; i++)
+ fprintf (stderr, "\t");
+ fprintf (stderr, "%d\t", root->index);
+
+ for (son = first_dom_son (dir, root);
+ son;
+ son = next_dom_son (dir, son))
+ {
+ debug_dominance_tree_1 (dir, son, indent + 1, !first);
+ first = false;
+ }
+
+ if (first)
+ fprintf (stderr, "\n");
+}
+
+/* Prints to stderr representation of the dominance tree (for direction DIR)
+ rooted in ROOT. */
+
+DEBUG_FUNCTION void
+debug_dominance_tree (enum cdi_direction dir, basic_block root)
+{
+ debug_dominance_tree_1 (dir, root, 0, false);
+}