aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/i386/i386.h
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/config/i386/i386.h
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/config/i386/i386.h')
-rw-r--r--gcc-4.9/gcc/config/i386/i386.h2552
1 files changed, 2552 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/i386/i386.h b/gcc-4.9/gcc/config/i386/i386.h
new file mode 100644
index 000000000..51659deb3
--- /dev/null
+++ b/gcc-4.9/gcc/config/i386/i386.h
@@ -0,0 +1,2552 @@
+/* Definitions of target machine for GCC for IA-32.
+ Copyright (C) 1988-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+/* The purpose of this file is to define the characteristics of the i386,
+ independent of assembler syntax or operating system.
+
+ Three other files build on this one to describe a specific assembler syntax:
+ bsd386.h, att386.h, and sun386.h.
+
+ The actual tm.h file for a particular system should include
+ this file, and then the file for the appropriate assembler syntax.
+
+ Many macros that specify assembler syntax are omitted entirely from
+ this file because they really belong in the files for particular
+ assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
+ ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
+ that start with ASM_ or end in ASM_OP. */
+
+/* Redefines for option macros. */
+
+#define TARGET_64BIT TARGET_ISA_64BIT
+#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
+#define TARGET_MMX TARGET_ISA_MMX
+#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
+#define TARGET_3DNOW TARGET_ISA_3DNOW
+#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
+#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
+#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
+#define TARGET_SSE TARGET_ISA_SSE
+#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
+#define TARGET_SSE2 TARGET_ISA_SSE2
+#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
+#define TARGET_SSE3 TARGET_ISA_SSE3
+#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
+#define TARGET_SSSE3 TARGET_ISA_SSSE3
+#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
+#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
+#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
+#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
+#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
+#define TARGET_AVX TARGET_ISA_AVX
+#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
+#define TARGET_AVX2 TARGET_ISA_AVX2
+#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
+#define TARGET_AVX512F TARGET_ISA_AVX512F
+#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
+#define TARGET_AVX512PF TARGET_ISA_AVX512PF
+#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
+#define TARGET_AVX512ER TARGET_ISA_AVX512ER
+#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
+#define TARGET_AVX512CD TARGET_ISA_AVX512CD
+#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
+#define TARGET_FMA TARGET_ISA_FMA
+#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
+#define TARGET_SSE4A TARGET_ISA_SSE4A
+#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
+#define TARGET_FMA4 TARGET_ISA_FMA4
+#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
+#define TARGET_XOP TARGET_ISA_XOP
+#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
+#define TARGET_LWP TARGET_ISA_LWP
+#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
+#define TARGET_ROUND TARGET_ISA_ROUND
+#define TARGET_ABM TARGET_ISA_ABM
+#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
+#define TARGET_BMI TARGET_ISA_BMI
+#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
+#define TARGET_BMI2 TARGET_ISA_BMI2
+#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
+#define TARGET_LZCNT TARGET_ISA_LZCNT
+#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
+#define TARGET_TBM TARGET_ISA_TBM
+#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
+#define TARGET_POPCNT TARGET_ISA_POPCNT
+#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
+#define TARGET_SAHF TARGET_ISA_SAHF
+#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
+#define TARGET_MOVBE TARGET_ISA_MOVBE
+#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
+#define TARGET_CRC32 TARGET_ISA_CRC32
+#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
+#define TARGET_AES TARGET_ISA_AES
+#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
+#define TARGET_SHA TARGET_ISA_SHA
+#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
+#define TARGET_PCLMUL TARGET_ISA_PCLMUL
+#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
+#define TARGET_CMPXCHG16B TARGET_ISA_CX16
+#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
+#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
+#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
+#define TARGET_RDRND TARGET_ISA_RDRND
+#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
+#define TARGET_F16C TARGET_ISA_F16C
+#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
+#define TARGET_RTM TARGET_ISA_RTM
+#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
+#define TARGET_HLE TARGET_ISA_HLE
+#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
+#define TARGET_RDSEED TARGET_ISA_RDSEED
+#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
+#define TARGET_PRFCHW TARGET_ISA_PRFCHW
+#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
+#define TARGET_ADX TARGET_ISA_ADX
+#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
+#define TARGET_FXSR TARGET_ISA_FXSR
+#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
+#define TARGET_XSAVE TARGET_ISA_XSAVE
+#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
+#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
+#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
+#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
+#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
+
+#define TARGET_LP64 TARGET_ABI_64
+#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
+#define TARGET_X32 TARGET_ABI_X32
+#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
+#define TARGET_16BIT TARGET_CODE16
+#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
+
+/* SSE4.1 defines round instructions */
+#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
+#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
+
+#include "config/vxworks-dummy.h"
+
+#include "config/i386/i386-opts.h"
+
+#define MAX_STRINGOP_ALGS 4
+
+/* Specify what algorithm to use for stringops on known size.
+ When size is unknown, the UNKNOWN_SIZE alg is used. When size is
+ known at compile time or estimated via feedback, the SIZE array
+ is walked in order until MAX is greater then the estimate (or -1
+ means infinity). Corresponding ALG is used then.
+ When NOALIGN is true the code guaranting the alignment of the memory
+ block is skipped.
+
+ For example initializer:
+ {{256, loop}, {-1, rep_prefix_4_byte}}
+ will use loop for blocks smaller or equal to 256 bytes, rep prefix will
+ be used otherwise. */
+struct stringop_algs
+{
+ const enum stringop_alg unknown_size;
+ const struct stringop_strategy {
+ const int max;
+ const enum stringop_alg alg;
+ int noalign;
+ } size [MAX_STRINGOP_ALGS];
+};
+
+/* Define the specific costs for a given cpu */
+
+struct processor_costs {
+ const int add; /* cost of an add instruction */
+ const int lea; /* cost of a lea instruction */
+ const int shift_var; /* variable shift costs */
+ const int shift_const; /* constant shift costs */
+ const int mult_init[5]; /* cost of starting a multiply
+ in QImode, HImode, SImode, DImode, TImode*/
+ const int mult_bit; /* cost of multiply per each bit set */
+ const int divide[5]; /* cost of a divide/mod
+ in QImode, HImode, SImode, DImode, TImode*/
+ int movsx; /* The cost of movsx operation. */
+ int movzx; /* The cost of movzx operation. */
+ const int large_insn; /* insns larger than this cost more */
+ const int move_ratio; /* The threshold of number of scalar
+ memory-to-memory move insns. */
+ const int movzbl_load; /* cost of loading using movzbl */
+ const int int_load[3]; /* cost of loading integer registers
+ in QImode, HImode and SImode relative
+ to reg-reg move (2). */
+ const int int_store[3]; /* cost of storing integer register
+ in QImode, HImode and SImode */
+ const int fp_move; /* cost of reg,reg fld/fst */
+ const int fp_load[3]; /* cost of loading FP register
+ in SFmode, DFmode and XFmode */
+ const int fp_store[3]; /* cost of storing FP register
+ in SFmode, DFmode and XFmode */
+ const int mmx_move; /* cost of moving MMX register. */
+ const int mmx_load[2]; /* cost of loading MMX register
+ in SImode and DImode */
+ const int mmx_store[2]; /* cost of storing MMX register
+ in SImode and DImode */
+ const int sse_move; /* cost of moving SSE register. */
+ const int sse_load[3]; /* cost of loading SSE register
+ in SImode, DImode and TImode*/
+ const int sse_store[3]; /* cost of storing SSE register
+ in SImode, DImode and TImode*/
+ const int mmxsse_to_integer; /* cost of moving mmxsse register to
+ integer and vice versa. */
+ const int l1_cache_size; /* size of l1 cache, in kilobytes. */
+ const int l2_cache_size; /* size of l2 cache, in kilobytes. */
+ const int prefetch_block; /* bytes moved to cache for prefetch. */
+ const int simultaneous_prefetches; /* number of parallel prefetch
+ operations. */
+ const int branch_cost; /* Default value for BRANCH_COST. */
+ const int fadd; /* cost of FADD and FSUB instructions. */
+ const int fmul; /* cost of FMUL instruction. */
+ const int fdiv; /* cost of FDIV instruction. */
+ const int fabs; /* cost of FABS instruction. */
+ const int fchs; /* cost of FCHS instruction. */
+ const int fsqrt; /* cost of FSQRT instruction. */
+ /* Specify what algorithm
+ to use for stringops on unknown size. */
+ struct stringop_algs *memcpy, *memset;
+ const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
+ load and store. */
+ const int scalar_load_cost; /* Cost of scalar load. */
+ const int scalar_store_cost; /* Cost of scalar store. */
+ const int vec_stmt_cost; /* Cost of any vector operation, excluding
+ load, store, vector-to-scalar and
+ scalar-to-vector operation. */
+ const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
+ const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
+ const int vec_align_load_cost; /* Cost of aligned vector load. */
+ const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
+ const int vec_store_cost; /* Cost of vector store. */
+ const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
+ cost model. */
+ const int cond_not_taken_branch_cost;/* Cost of not taken branch for
+ vectorizer cost model. */
+};
+
+extern const struct processor_costs *ix86_cost;
+extern const struct processor_costs ix86_size_cost;
+
+#define ix86_cur_cost() \
+ (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
+
+/* Macros used in the machine description to test the flags. */
+
+/* configure can arrange to change it. */
+
+#ifndef TARGET_CPU_DEFAULT
+#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
+#endif
+
+#ifndef TARGET_FPMATH_DEFAULT
+#define TARGET_FPMATH_DEFAULT \
+ (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
+#endif
+
+#ifndef TARGET_FPMATH_DEFAULT_P
+#define TARGET_FPMATH_DEFAULT_P(x) \
+ (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
+#endif
+
+#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
+#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
+
+/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
+ compile-time constant. */
+#ifdef IN_LIBGCC2
+#undef TARGET_64BIT
+#ifdef __x86_64__
+#define TARGET_64BIT 1
+#else
+#define TARGET_64BIT 0
+#endif
+#else
+#ifndef TARGET_BI_ARCH
+#undef TARGET_64BIT
+#undef TARGET_64BIT_P
+#if TARGET_64BIT_DEFAULT
+#define TARGET_64BIT 1
+#define TARGET_64BIT_P(x) 1
+#else
+#define TARGET_64BIT 0
+#define TARGET_64BIT_P(x) 0
+#endif
+#endif
+#endif
+
+#define HAS_LONG_COND_BRANCH 1
+#define HAS_LONG_UNCOND_BRANCH 1
+
+#define TARGET_386 (ix86_tune == PROCESSOR_I386)
+#define TARGET_486 (ix86_tune == PROCESSOR_I486)
+#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
+#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
+#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
+#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
+#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
+#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
+#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
+#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
+#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
+#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
+#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
+#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
+#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
+#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
+#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
+#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
+#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
+#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
+#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
+#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
+#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
+#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
+#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
+#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
+
+/* Feature tests against the various tunings. */
+enum ix86_tune_indices {
+#undef DEF_TUNE
+#define DEF_TUNE(tune, name, selector) tune,
+#include "x86-tune.def"
+#undef DEF_TUNE
+X86_TUNE_LAST
+};
+
+extern unsigned char ix86_tune_features[X86_TUNE_LAST];
+
+#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
+#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
+#define TARGET_ZERO_EXTEND_WITH_AND \
+ ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
+#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
+#define TARGET_BRANCH_PREDICTION_HINTS \
+ ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
+#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
+#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
+#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
+#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
+#define TARGET_PARTIAL_FLAG_REG_STALL \
+ ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
+#define TARGET_LCP_STALL \
+ ix86_tune_features[X86_TUNE_LCP_STALL]
+#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
+#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
+#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
+#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
+#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
+#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
+#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
+#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
+#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
+#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
+#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
+#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
+ ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
+#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
+#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
+#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
+#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
+#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
+#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
+#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
+#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
+#define TARGET_INTEGER_DFMODE_MOVES \
+ ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
+#define TARGET_PARTIAL_REG_DEPENDENCY \
+ ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
+#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
+ ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
+#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
+ ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
+#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
+ ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
+#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
+ ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
+#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
+#define TARGET_SSE_TYPELESS_STORES \
+ ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
+#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
+#define TARGET_MEMORY_MISMATCH_STALL \
+ ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
+#define TARGET_PROLOGUE_USING_MOVE \
+ ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
+#define TARGET_EPILOGUE_USING_MOVE \
+ ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
+#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
+#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
+#define TARGET_INTER_UNIT_MOVES_TO_VEC \
+ ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
+#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
+ ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
+#define TARGET_INTER_UNIT_CONVERSIONS \
+ ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
+#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
+#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
+#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
+#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
+#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
+#define TARGET_PAD_SHORT_FUNCTION \
+ ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
+#define TARGET_EXT_80387_CONSTANTS \
+ ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
+#define TARGET_AVOID_VECTOR_DECODE \
+ ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
+#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
+ ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
+#define TARGET_SLOW_IMUL_IMM32_MEM \
+ ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
+#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
+#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
+#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
+#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
+#define TARGET_USE_VECTOR_FP_CONVERTS \
+ ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
+#define TARGET_USE_VECTOR_CONVERTS \
+ ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
+#define TARGET_FUSE_CMP_AND_BRANCH_32 \
+ ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
+#define TARGET_FUSE_CMP_AND_BRANCH_64 \
+ ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
+#define TARGET_FUSE_CMP_AND_BRANCH \
+ (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
+ : TARGET_FUSE_CMP_AND_BRANCH_32)
+#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
+ ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
+#define TARGET_FUSE_ALU_AND_BRANCH \
+ ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
+#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
+#define TARGET_AVOID_LEA_FOR_ADDR \
+ ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
+#define TARGET_VECTORIZE_DOUBLE \
+ ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
+#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
+ ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
+#define TARGET_AVX128_OPTIMAL \
+ ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
+#define TARGET_REASSOC_INT_TO_PARALLEL \
+ ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
+#define TARGET_REASSOC_FP_TO_PARALLEL \
+ ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
+#define TARGET_GENERAL_REGS_SSE_SPILL \
+ ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
+#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
+ ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
+#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
+ ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
+#define TARGET_ADJUST_UNROLL \
+ ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
+
+/* Feature tests against the various architecture variations. */
+enum ix86_arch_indices {
+ X86_ARCH_CMOV,
+ X86_ARCH_CMPXCHG,
+ X86_ARCH_CMPXCHG8B,
+ X86_ARCH_XADD,
+ X86_ARCH_BSWAP,
+
+ X86_ARCH_LAST
+};
+
+extern unsigned char ix86_arch_features[X86_ARCH_LAST];
+
+#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
+#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
+#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
+#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
+#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
+
+/* For sane SSE instruction set generation we need fcomi instruction.
+ It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
+ expands to a sequence that includes conditional move. */
+#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
+
+#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
+
+extern unsigned char x86_prefetch_sse;
+#define TARGET_PREFETCH_SSE x86_prefetch_sse
+
+#define ASSEMBLER_DIALECT (ix86_asm_dialect)
+
+#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
+#define TARGET_MIX_SSE_I387 \
+ ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
+
+#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
+#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
+#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
+#define TARGET_SUN_TLS 0
+
+#ifndef TARGET_64BIT_DEFAULT
+#define TARGET_64BIT_DEFAULT 0
+#endif
+#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
+#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
+#endif
+
+#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
+#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
+
+/* Fence to use after loop using storent. */
+
+extern tree x86_mfence;
+#define FENCE_FOLLOWING_MOVNT x86_mfence
+
+/* Once GDB has been enhanced to deal with functions without frame
+ pointers, we can change this to allow for elimination of
+ the frame pointer in leaf functions. */
+#define TARGET_DEFAULT 0
+
+/* Extra bits to force. */
+#define TARGET_SUBTARGET_DEFAULT 0
+#define TARGET_SUBTARGET_ISA_DEFAULT 0
+
+/* Extra bits to force on w/ 32-bit mode. */
+#define TARGET_SUBTARGET32_DEFAULT 0
+#define TARGET_SUBTARGET32_ISA_DEFAULT 0
+
+/* Extra bits to force on w/ 64-bit mode. */
+#define TARGET_SUBTARGET64_DEFAULT 0
+#define TARGET_SUBTARGET64_ISA_DEFAULT 0
+
+/* Replace MACH-O, ifdefs by in-line tests, where possible.
+ (a) Macros defined in config/i386/darwin.h */
+#define TARGET_MACHO 0
+#define TARGET_MACHO_BRANCH_ISLANDS 0
+#define MACHOPIC_ATT_STUB 0
+/* (b) Macros defined in config/darwin.h */
+#define MACHO_DYNAMIC_NO_PIC_P 0
+#define MACHOPIC_INDIRECT 0
+#define MACHOPIC_PURE 0
+
+/* For the RDOS */
+#define TARGET_RDOS 0
+
+/* For the Windows 64-bit ABI. */
+#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
+
+/* For the Windows 32-bit ABI. */
+#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
+
+/* This is re-defined by cygming.h. */
+#define TARGET_SEH 0
+
+/* This is re-defined by cygming.h. */
+#define TARGET_PECOFF 0
+
+/* The default abi used by target. */
+#define DEFAULT_ABI SYSV_ABI
+
+/* The default TLS segment register used by target. */
+#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
+
+/* Subtargets may reset this to 1 in order to enable 96-bit long double
+ with the rounding mode forced to 53 bits. */
+#define TARGET_96_ROUND_53_LONG_DOUBLE 0
+
+/* -march=native handling only makes sense with compiler running on
+ an x86 or x86_64 chip. If changing this condition, also change
+ the condition in driver-i386.c. */
+#if defined(__i386__) || defined(__x86_64__)
+/* In driver-i386.c. */
+extern const char *host_detect_local_cpu (int argc, const char **argv);
+#define EXTRA_SPEC_FUNCTIONS \
+ { "local_cpu_detect", host_detect_local_cpu },
+#define HAVE_LOCAL_CPU_DETECT
+#endif
+
+#if TARGET_64BIT_DEFAULT
+#define OPT_ARCH64 "!m32"
+#define OPT_ARCH32 "m32"
+#else
+#define OPT_ARCH64 "m64|mx32"
+#define OPT_ARCH32 "m64|mx32:;"
+#endif
+
+/* Support for configure-time defaults of some command line options.
+ The order here is important so that -march doesn't squash the
+ tune or cpu values. */
+#define OPTION_DEFAULT_SPECS \
+ {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
+ {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
+ {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
+ {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
+ {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
+ {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
+ {"arch", "%{!march=*:-march=%(VALUE)}"}, \
+ {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
+ {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
+
+/* Specs for the compiler proper */
+
+#ifndef CC1_CPU_SPEC
+#define CC1_CPU_SPEC_1 ""
+
+#ifndef HAVE_LOCAL_CPU_DETECT
+#define CC1_CPU_SPEC CC1_CPU_SPEC_1
+#else
+#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
+"%{march=native:%>march=native %:local_cpu_detect(arch) \
+ %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
+%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
+#endif
+#endif
+
+/* Target CPU builtins. */
+#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
+
+/* Target Pragmas. */
+#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
+
+#ifndef CC1_SPEC
+#define CC1_SPEC "%(cc1_cpu) "
+#endif
+
+/* This macro defines names of additional specifications to put in the
+ specs that can be used in various specifications like CC1_SPEC. Its
+ definition is an initializer with a subgrouping for each command option.
+
+ Each subgrouping contains a string constant, that defines the
+ specification name, and a string constant that used by the GCC driver
+ program.
+
+ Do not define this macro if it does not need to do anything. */
+
+#ifndef SUBTARGET_EXTRA_SPECS
+#define SUBTARGET_EXTRA_SPECS
+#endif
+
+#define EXTRA_SPECS \
+ { "cc1_cpu", CC1_CPU_SPEC }, \
+ SUBTARGET_EXTRA_SPECS
+
+
+/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
+ FPU, assume that the fpcw is set to extended precision; when using
+ only SSE, rounding is correct; when using both SSE and the FPU,
+ the rounding precision is indeterminate, since either may be chosen
+ apparently at random. */
+#define TARGET_FLT_EVAL_METHOD \
+ (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
+
+/* Whether to allow x87 floating-point arithmetic on MODE (one of
+ SFmode, DFmode and XFmode) in the current excess precision
+ configuration. */
+#define X87_ENABLE_ARITH(MODE) \
+ (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
+
+/* Likewise, whether to allow direct conversions from integer mode
+ IMODE (HImode, SImode or DImode) to MODE. */
+#define X87_ENABLE_FLOAT(MODE, IMODE) \
+ (flag_excess_precision == EXCESS_PRECISION_FAST \
+ || (MODE) == XFmode \
+ || ((MODE) == DFmode && (IMODE) == SImode) \
+ || (IMODE) == HImode)
+
+/* target machine storage layout */
+
+#define SHORT_TYPE_SIZE 16
+#define INT_TYPE_SIZE 32
+#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
+#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
+#define LONG_LONG_TYPE_SIZE 64
+#define FLOAT_TYPE_SIZE 32
+#define DOUBLE_TYPE_SIZE 64
+#define LONG_DOUBLE_TYPE_SIZE \
+ (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
+
+/* Define this to set long double type size to use in libgcc2.c, which can
+ not depend on target_flags. */
+#ifdef __LONG_DOUBLE_64__
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
+#elif defined (__LONG_DOUBLE_128__)
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
+#else
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
+#endif
+
+#define WIDEST_HARDWARE_FP_SIZE 80
+
+#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
+#define MAX_BITS_PER_WORD 64
+#else
+#define MAX_BITS_PER_WORD 32
+#endif
+
+/* Define this if most significant byte of a word is the lowest numbered. */
+/* That is true on the 80386. */
+
+#define BITS_BIG_ENDIAN 0
+
+/* Define this if most significant byte of a word is the lowest numbered. */
+/* That is not true on the 80386. */
+#define BYTES_BIG_ENDIAN 0
+
+/* Define this if most significant word of a multiword number is the lowest
+ numbered. */
+/* Not true for 80386 */
+#define WORDS_BIG_ENDIAN 0
+
+/* Width of a word, in units (bytes). */
+#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
+
+#ifndef IN_LIBGCC2
+#define MIN_UNITS_PER_WORD 4
+#endif
+
+/* Allocation boundary (in *bits*) for storing arguments in argument list. */
+#define PARM_BOUNDARY BITS_PER_WORD
+
+/* Boundary (in *bits*) on which stack pointer should be aligned. */
+#define STACK_BOUNDARY \
+ (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
+
+/* Stack boundary of the main function guaranteed by OS. */
+#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
+
+/* Minimum stack boundary. */
+#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
+
+/* Boundary (in *bits*) on which the stack pointer prefers to be
+ aligned; the compiler cannot rely on having this alignment. */
+#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
+
+/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
+ both 32bit and 64bit, to support codes that need 128 bit stack
+ alignment for SSE instructions, but can't realign the stack. */
+#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
+
+/* 1 if -mstackrealign should be turned on by default. It will
+ generate an alternate prologue and epilogue that realigns the
+ runtime stack if nessary. This supports mixing codes that keep a
+ 4-byte aligned stack, as specified by i386 psABI, with codes that
+ need a 16-byte aligned stack, as required by SSE instructions. */
+#define STACK_REALIGN_DEFAULT 0
+
+/* Boundary (in *bits*) on which the incoming stack is aligned. */
+#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
+
+/* According to Windows x64 software convention, the maximum stack allocatable
+ in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
+ instructions allowed to adjust the stack pointer in the epilog, forcing the
+ use of frame pointer for frames larger than 2 GB. This theorical limit
+ is reduced by 256, an over-estimated upper bound for the stack use by the
+ prologue.
+ We define only one threshold for both the prolog and the epilog. When the
+ frame size is larger than this threshold, we allocate the area to save SSE
+ regs, then save them, and then allocate the remaining. There is no SEH
+ unwind info for this later allocation. */
+#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
+
+/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
+ mandatory for the 64-bit ABI, and may or may not be true for other
+ operating systems. */
+#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
+
+/* Minimum allocation boundary for the code of a function. */
+#define FUNCTION_BOUNDARY 8
+
+/* C++ stores the virtual bit in the lowest bit of function pointers. */
+#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
+
+/* Minimum size in bits of the largest boundary to which any
+ and all fundamental data types supported by the hardware
+ might need to be aligned. No data type wants to be aligned
+ rounder than this.
+
+ Pentium+ prefers DFmode values to be aligned to 64 bit boundary
+ and Pentium Pro XFmode values at 128 bit boundaries. */
+
+#define BIGGEST_ALIGNMENT \
+ (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
+
+/* Maximum stack alignment. */
+#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
+
+/* Alignment value for attribute ((aligned)). It is a constant since
+ it is the part of the ABI. We shouldn't change it with -mavx. */
+#define ATTRIBUTE_ALIGNED_VALUE 128
+
+/* Decide whether a variable of mode MODE should be 128 bit aligned. */
+#define ALIGN_MODE_128(MODE) \
+ ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
+
+/* The published ABIs say that doubles should be aligned on word
+ boundaries, so lower the alignment for structure fields unless
+ -malign-double is set. */
+
+/* ??? Blah -- this macro is used directly by libobjc. Since it
+ supports no vector modes, cut out the complexity and fall back
+ on BIGGEST_FIELD_ALIGNMENT. */
+#ifdef IN_TARGET_LIBS
+#ifdef __x86_64__
+#define BIGGEST_FIELD_ALIGNMENT 128
+#else
+#define BIGGEST_FIELD_ALIGNMENT 32
+#endif
+#else
+#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
+ x86_field_alignment (FIELD, COMPUTED)
+#endif
+
+/* If defined, a C expression to compute the alignment given to a
+ constant that is being placed in memory. EXP is the constant
+ and ALIGN is the alignment that the object would ordinarily have.
+ The value of this macro is used instead of that alignment to align
+ the object.
+
+ If this macro is not defined, then ALIGN is used.
+
+ The typical use of this macro is to increase alignment for string
+ constants to be word aligned so that `strcpy' calls that copy
+ constants can be done inline. */
+
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
+
+/* If defined, a C expression to compute the alignment for a static
+ variable. TYPE is the data type, and ALIGN is the alignment that
+ the object would ordinarily have. The value of this macro is used
+ instead of that alignment to align the object.
+
+ If this macro is not defined, then ALIGN is used.
+
+ One use of this macro is to increase alignment of medium-size
+ data to make it all fit in fewer cache lines. Another is to
+ cause character arrays to be word-aligned so that `strcpy' calls
+ that copy constants to character arrays can be done inline. */
+
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
+ ix86_data_alignment ((TYPE), (ALIGN), true)
+
+/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
+ some alignment increase, instead of optimization only purposes. E.g.
+ AMD x86-64 psABI says that variables with array type larger than 15 bytes
+ must be aligned to 16 byte boundaries.
+
+ If this macro is not defined, then ALIGN is used. */
+
+#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
+ ix86_data_alignment ((TYPE), (ALIGN), false)
+
+/* If defined, a C expression to compute the alignment for a local
+ variable. TYPE is the data type, and ALIGN is the alignment that
+ the object would ordinarily have. The value of this macro is used
+ instead of that alignment to align the object.
+
+ If this macro is not defined, then ALIGN is used.
+
+ One use of this macro is to increase alignment of medium-size
+ data to make it all fit in fewer cache lines. */
+
+#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
+ ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
+
+/* If defined, a C expression to compute the alignment for stack slot.
+ TYPE is the data type, MODE is the widest mode available, and ALIGN
+ is the alignment that the slot would ordinarily have. The value of
+ this macro is used instead of that alignment to align the slot.
+
+ If this macro is not defined, then ALIGN is used when TYPE is NULL,
+ Otherwise, LOCAL_ALIGNMENT will be used.
+
+ One use of this macro is to set alignment of stack slot to the
+ maximum alignment of all possible modes which the slot may have. */
+
+#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
+ ix86_local_alignment ((TYPE), (MODE), (ALIGN))
+
+/* If defined, a C expression to compute the alignment for a local
+ variable DECL.
+
+ If this macro is not defined, then
+ LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
+
+ One use of this macro is to increase alignment of medium-size
+ data to make it all fit in fewer cache lines. */
+
+#define LOCAL_DECL_ALIGNMENT(DECL) \
+ ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
+
+/* If defined, a C expression to compute the minimum required alignment
+ for dynamic stack realignment purposes for EXP (a TYPE or DECL),
+ MODE, assuming normal alignment ALIGN.
+
+ If this macro is not defined, then (ALIGN) will be used. */
+
+#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
+ ix86_minimum_alignment (EXP, MODE, ALIGN)
+
+
+/* Set this nonzero if move instructions will actually fail to work
+ when given unaligned data. */
+#define STRICT_ALIGNMENT 0
+
+/* If bit field type is int, don't let it cross an int,
+ and give entire struct the alignment of an int. */
+/* Required on the 386 since it doesn't have bit-field insns. */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/* Standard register usage. */
+
+/* This processor has special stack-like registers. See reg-stack.c
+ for details. */
+
+#define STACK_REGS
+
+#define IS_STACK_MODE(MODE) \
+ (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
+ || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
+ || (MODE) == XFmode)
+
+/* Number of actual hardware registers.
+ The hardware registers are assigned numbers for the compiler
+ from 0 to just below FIRST_PSEUDO_REGISTER.
+ All registers that the compiler knows about must be given numbers,
+ even those that are not normally considered general registers.
+
+ In the 80386 we give the 8 general purpose registers the numbers 0-7.
+ We number the floating point registers 8-15.
+ Note that registers 0-7 can be accessed as a short or int,
+ while only 0-3 may be used with byte `mov' instructions.
+
+ Reg 16 does not correspond to any hardware register, but instead
+ appears in the RTL as an argument pointer prior to reload, and is
+ eliminated during reloading in favor of either the stack or frame
+ pointer. */
+
+#define FIRST_PSEUDO_REGISTER 77
+
+/* Number of hardware registers that go into the DWARF-2 unwind info.
+ If not defined, equals FIRST_PSEUDO_REGISTER. */
+
+#define DWARF_FRAME_REGISTERS 17
+
+/* 1 for registers that have pervasive standard uses
+ and are not available for the register allocator.
+ On the 80386, the stack pointer is such, as is the arg pointer.
+
+ REX registers are disabled for 32bit targets in
+ TARGET_CONDITIONAL_REGISTER_USAGE. */
+
+#define FIXED_REGISTERS \
+/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
+{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
+/*arg,flags,fpsr,fpcr,frame*/ \
+ 1, 1, 1, 1, 1, \
+/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
+ 0, 0, 0, 0, 0, 0, 0, 0 }
+
+/* 1 for registers not available across function calls.
+ These must include the FIXED_REGISTERS and also any
+ registers that can be used without being saved.
+ The latter must include the registers where values are returned
+ and the register where structure-value addresses are passed.
+ Aside from that, you can include as many other registers as you like.
+
+ Value is set to 1 if the register is call used unconditionally.
+ Bit one is set if the register is call used on TARGET_32BIT ABI.
+ Bit two is set if the register is call used on TARGET_64BIT ABI.
+ Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
+
+ Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
+
+#define CALL_USED_REGISTERS \
+/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
+{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
+/*arg,flags,fpsr,fpcr,frame*/ \
+ 1, 1, 1, 1, 1, \
+/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
+ 1, 1, 1, 1, 1, 1, 6, 6, \
+/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
+ 1, 1, 1, 1, 1, 1, 1, 1, \
+/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
+ 1, 1, 1, 1, 2, 2, 2, 2, \
+/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
+ 6, 6, 6, 6, 6, 6, 6, 6, \
+/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
+ 6, 6, 6, 6, 6, 6, 6, 6, \
+/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
+ 6, 6, 6, 6, 6, 6, 6, 6, \
+ /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
+ 1, 1, 1, 1, 1, 1, 1, 1 }
+
+/* Order in which to allocate registers. Each register must be
+ listed once, even those in FIXED_REGISTERS. List frame pointer
+ late and fixed registers last. Note that, in general, we prefer
+ registers listed in CALL_USED_REGISTERS, keeping the others
+ available for storage of persistent values.
+
+ The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
+ so this is just empty initializer for array. */
+
+#define REG_ALLOC_ORDER \
+{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
+ 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
+ 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
+
+/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
+ to be rearranged based on a particular function. When using sse math,
+ we want to allocate SSE before x87 registers and vice versa. */
+
+#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
+
+
+#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
+
+/* Return number of consecutive hard regs needed starting at reg REGNO
+ to hold something of mode MODE.
+ This is ordinarily the length in words of a value of mode MODE
+ but can be less for certain modes in special long registers.
+
+ Actually there are no two word move instructions for consecutive
+ registers. And only registers 0-3 may have mov byte instructions
+ applied to them. */
+
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
+ ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
+ : ((MODE) == XFmode \
+ ? (TARGET_64BIT ? 2 : 3) \
+ : (MODE) == XCmode \
+ ? (TARGET_64BIT ? 4 : 6) \
+ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
+
+#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
+ ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
+ ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
+ ? 0 \
+ : ((MODE) == XFmode || (MODE) == XCmode)) \
+ : 0)
+
+#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
+
+#define VALID_AVX256_REG_MODE(MODE) \
+ ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
+ || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
+ || (MODE) == V4DFmode)
+
+#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
+ (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
+
+#define VALID_AVX512F_SCALAR_MODE(MODE) \
+ ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
+ || (MODE) == SFmode)
+
+#define VALID_AVX512F_REG_MODE(MODE) \
+ ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
+ || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode)
+
+#define VALID_SSE2_REG_MODE(MODE) \
+ ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
+ || (MODE) == V2DImode || (MODE) == DFmode)
+
+#define VALID_SSE_REG_MODE(MODE) \
+ ((MODE) == V1TImode || (MODE) == TImode \
+ || (MODE) == V4SFmode || (MODE) == V4SImode \
+ || (MODE) == SFmode || (MODE) == TFmode)
+
+#define VALID_MMX_REG_MODE_3DNOW(MODE) \
+ ((MODE) == V2SFmode || (MODE) == SFmode)
+
+#define VALID_MMX_REG_MODE(MODE) \
+ ((MODE == V1DImode) || (MODE) == DImode \
+ || (MODE) == V2SImode || (MODE) == SImode \
+ || (MODE) == V4HImode || (MODE) == V8QImode)
+
+#define VALID_DFP_MODE_P(MODE) \
+ ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
+
+#define VALID_FP_MODE_P(MODE) \
+ ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
+ || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
+
+#define VALID_INT_MODE_P(MODE) \
+ ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
+ || (MODE) == DImode \
+ || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
+ || (MODE) == CDImode \
+ || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
+ || (MODE) == TFmode || (MODE) == TCmode)))
+
+/* Return true for modes passed in SSE registers. */
+#define SSE_REG_MODE_P(MODE) \
+ ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
+ || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
+ || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
+ || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
+ || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
+ || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
+ || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
+ || (MODE) == V16SFmode)
+
+#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
+
+/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
+
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ ix86_hard_regno_mode_ok ((REGNO), (MODE))
+
+/* Value is 1 if it is a good idea to tie two pseudo registers
+ when one has mode MODE1 and one has mode MODE2.
+ If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
+ for any hard reg, then this must be 0 for correct output. */
+
+#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
+
+/* It is possible to write patterns to move flags; but until someone
+ does it, */
+#define AVOID_CCMODE_COPIES
+
+/* Specify the modes required to caller save a given hard regno.
+ We do this on i386 to prevent flags from being saved at all.
+
+ Kill any attempts to combine saving of modes. */
+
+#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
+ (CC_REGNO_P (REGNO) ? VOIDmode \
+ : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
+ : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
+ : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
+ || MASK_REGNO_P (REGNO)) ? SImode \
+ : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
+ || MASK_REGNO_P (REGNO)) ? SImode \
+ : (MODE))
+
+/* The only ABI that saves SSE registers across calls is Win64 (thus no
+ need to check the current ABI here), and with AVX enabled Win64 only
+ guarantees that the low 16 bytes are saved. */
+#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
+ (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
+
+/* Specify the registers used for certain standard purposes.
+ The values of these macros are register numbers. */
+
+/* on the 386 the pc register is %eip, and is not usable as a general
+ register. The ordinary mov instructions won't work */
+/* #define PC_REGNUM */
+
+/* Register to use for pushing function arguments. */
+#define STACK_POINTER_REGNUM 7
+
+/* Base register for access to local variables of the function. */
+#define HARD_FRAME_POINTER_REGNUM 6
+
+/* Base register for access to local variables of the function. */
+#define FRAME_POINTER_REGNUM 20
+
+/* First floating point reg */
+#define FIRST_FLOAT_REG 8
+
+/* First & last stack-like regs */
+#define FIRST_STACK_REG FIRST_FLOAT_REG
+#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
+
+#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
+#define LAST_SSE_REG (FIRST_SSE_REG + 7)
+
+#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
+#define LAST_MMX_REG (FIRST_MMX_REG + 7)
+
+#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
+#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
+
+#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
+#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
+
+#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
+#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
+
+#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
+#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
+
+/* Override this in other tm.h files to cope with various OS lossage
+ requiring a frame pointer. */
+#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
+#define SUBTARGET_FRAME_POINTER_REQUIRED 0
+#endif
+
+/* Make sure we can access arbitrary call frames. */
+#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
+
+/* Base register for access to arguments of the function. */
+#define ARG_POINTER_REGNUM 16
+
+/* Register to hold the addressing base for position independent
+ code access to data items. We don't use PIC pointer for 64bit
+ mode. Define the regnum to dummy value to prevent gcc from
+ pessimizing code dealing with EBX.
+
+ To avoid clobbering a call-saved register unnecessarily, we renumber
+ the pic register when possible. The change is visible after the
+ prologue has been emitted. */
+
+#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
+
+#define PIC_OFFSET_TABLE_REGNUM \
+ ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
+ || TARGET_PECOFF)) \
+ || !flag_pic ? INVALID_REGNUM \
+ : reload_completed ? REGNO (pic_offset_table_rtx) \
+ : REAL_PIC_OFFSET_TABLE_REGNUM)
+
+#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
+
+/* This is overridden by <cygwin.h>. */
+#define MS_AGGREGATE_RETURN 0
+
+#define KEEP_AGGREGATE_RETURN_POINTER 0
+
+/* Define the classes of registers for register constraints in the
+ machine description. Also define ranges of constants.
+
+ One of the classes must always be named ALL_REGS and include all hard regs.
+ If there is more than one class, another class must be named NO_REGS
+ and contain no registers.
+
+ The name GENERAL_REGS must be the name of a class (or an alias for
+ another name such as ALL_REGS). This is the class of registers
+ that is allowed by "g" or "r" in a register constraint.
+ Also, registers outside this class are allocated only when
+ instructions express preferences for them.
+
+ The classes must be numbered in nondecreasing order; that is,
+ a larger-numbered class must never be contained completely
+ in a smaller-numbered class.
+
+ For any two classes, it is very desirable that there be another
+ class that represents their union.
+
+ It might seem that class BREG is unnecessary, since no useful 386
+ opcode needs reg %ebx. But some systems pass args to the OS in ebx,
+ and the "b" register constraint is useful in asms for syscalls.
+
+ The flags, fpsr and fpcr registers are in no class. */
+
+enum reg_class
+{
+ NO_REGS,
+ AREG, DREG, CREG, BREG, SIREG, DIREG,
+ AD_REGS, /* %eax/%edx for DImode */
+ Q_REGS, /* %eax %ebx %ecx %edx */
+ NON_Q_REGS, /* %esi %edi %ebp %esp */
+ INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
+ LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
+ CLOBBERED_REGS, /* call-clobbered integer registers */
+ GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
+ %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
+ FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
+ FLOAT_REGS,
+ SSE_FIRST_REG,
+ SSE_REGS,
+ EVEX_SSE_REGS,
+ ALL_SSE_REGS,
+ MMX_REGS,
+ FP_TOP_SSE_REGS,
+ FP_SECOND_SSE_REGS,
+ FLOAT_SSE_REGS,
+ FLOAT_INT_REGS,
+ INT_SSE_REGS,
+ FLOAT_INT_SSE_REGS,
+ MASK_EVEX_REGS,
+ MASK_REGS,
+ ALL_REGS, LIM_REG_CLASSES
+};
+
+#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
+
+#define INTEGER_CLASS_P(CLASS) \
+ reg_class_subset_p ((CLASS), GENERAL_REGS)
+#define FLOAT_CLASS_P(CLASS) \
+ reg_class_subset_p ((CLASS), FLOAT_REGS)
+#define SSE_CLASS_P(CLASS) \
+ reg_class_subset_p ((CLASS), ALL_SSE_REGS)
+#define MMX_CLASS_P(CLASS) \
+ ((CLASS) == MMX_REGS)
+#define MAYBE_INTEGER_CLASS_P(CLASS) \
+ reg_classes_intersect_p ((CLASS), GENERAL_REGS)
+#define MAYBE_FLOAT_CLASS_P(CLASS) \
+ reg_classes_intersect_p ((CLASS), FLOAT_REGS)
+#define MAYBE_SSE_CLASS_P(CLASS) \
+ reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
+#define MAYBE_MMX_CLASS_P(CLASS) \
+ reg_classes_intersect_p ((CLASS), MMX_REGS)
+#define MAYBE_MASK_CLASS_P(CLASS) \
+ reg_classes_intersect_p ((CLASS), MASK_REGS)
+
+#define Q_CLASS_P(CLASS) \
+ reg_class_subset_p ((CLASS), Q_REGS)
+
+#define MAYBE_NON_Q_CLASS_P(CLASS) \
+ reg_classes_intersect_p ((CLASS), NON_Q_REGS)
+
+/* Give names of register classes as strings for dump file. */
+
+#define REG_CLASS_NAMES \
+{ "NO_REGS", \
+ "AREG", "DREG", "CREG", "BREG", \
+ "SIREG", "DIREG", \
+ "AD_REGS", \
+ "Q_REGS", "NON_Q_REGS", \
+ "INDEX_REGS", \
+ "LEGACY_REGS", \
+ "CLOBBERED_REGS", \
+ "GENERAL_REGS", \
+ "FP_TOP_REG", "FP_SECOND_REG", \
+ "FLOAT_REGS", \
+ "SSE_FIRST_REG", \
+ "SSE_REGS", \
+ "EVEX_SSE_REGS", \
+ "ALL_SSE_REGS", \
+ "MMX_REGS", \
+ "FP_TOP_SSE_REGS", \
+ "FP_SECOND_SSE_REGS", \
+ "FLOAT_SSE_REGS", \
+ "FLOAT_INT_REGS", \
+ "INT_SSE_REGS", \
+ "FLOAT_INT_SSE_REGS", \
+ "MASK_EVEX_REGS", \
+ "MASK_REGS", \
+ "ALL_REGS" }
+
+/* Define which registers fit in which classes. This is an initializer
+ for a vector of HARD_REG_SET of length N_REG_CLASSES.
+
+ Note that CLOBBERED_REGS are calculated by
+ TARGET_CONDITIONAL_REGISTER_USAGE. */
+
+#define REG_CLASS_CONTENTS \
+{ { 0x00, 0x0, 0x0 }, \
+ { 0x01, 0x0, 0x0 }, /* AREG */ \
+ { 0x02, 0x0, 0x0 }, /* DREG */ \
+ { 0x04, 0x0, 0x0 }, /* CREG */ \
+ { 0x08, 0x0, 0x0 }, /* BREG */ \
+ { 0x10, 0x0, 0x0 }, /* SIREG */ \
+ { 0x20, 0x0, 0x0 }, /* DIREG */ \
+ { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
+ { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
+ { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
+ { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
+ { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
+ { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
+ { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
+ { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
+ { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
+ { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
+ { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
+{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
+ { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
+{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
+{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
+{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
+{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
+{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
+{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
+{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
+{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
+ { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
+ { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
+{ 0xffffffff,0xffffffff,0x1fff } \
+}
+
+/* The same information, inverted:
+ Return the class number of the smallest class containing
+ reg number REGNO. This could be a conditional expression
+ or could index an array. */
+
+#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
+
+/* When this hook returns true for MODE, the compiler allows
+ registers explicitly used in the rtl to be used as spill registers
+ but prevents the compiler from extending the lifetime of these
+ registers. */
+#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
+
+#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
+#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
+
+#define GENERAL_REG_P(X) \
+ (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
+#define GENERAL_REGNO_P(N) \
+ (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
+
+#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
+#define ANY_QI_REGNO_P(N) \
+ (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
+
+#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
+#define REX_INT_REGNO_P(N) \
+ IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
+
+#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
+#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
+
+#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
+#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
+
+#define X87_FLOAT_MODE_P(MODE) \
+ (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
+
+#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
+#define SSE_REGNO_P(N) \
+ (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
+ || REX_SSE_REGNO_P (N) \
+ || EXT_REX_SSE_REGNO_P (N))
+
+#define REX_SSE_REGNO_P(N) \
+ IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
+
+#define EXT_REX_SSE_REGNO_P(N) \
+ IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
+
+#define SSE_REGNO(N) \
+ ((N) < 8 ? FIRST_SSE_REG + (N) \
+ : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
+ : (FIRST_EXT_REX_SSE_REG + (N) - 16))
+
+#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
+#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
+
+#define SSE_FLOAT_MODE_P(MODE) \
+ ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
+
+#define FMA4_VEC_FLOAT_MODE_P(MODE) \
+ (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
+ || (MODE) == V8SFmode || (MODE) == V4DFmode))
+
+#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
+#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
+
+#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
+
+#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
+#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
+
+/* The class value for index registers, and the one for base regs. */
+
+#define INDEX_REG_CLASS INDEX_REGS
+#define BASE_REG_CLASS GENERAL_REGS
+
+/* Place additional restrictions on the register class to use when it
+ is necessary to be able to hold a value of mode MODE in a reload
+ register for which class CLASS would ordinarily be used.
+
+ We avoid classes containing registers from multiple units due to
+ the limitation in ix86_secondary_memory_needed. We limit these
+ classes to their "natural mode" single unit register class, depending
+ on the unit availability.
+
+ Please note that reg_class_subset_p is not commutative, so these
+ conditions mean "... if (CLASS) includes ALL registers from the
+ register set." */
+
+#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
+ (((MODE) == QImode && !TARGET_64BIT \
+ && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
+ : (((MODE) == SImode || (MODE) == DImode) \
+ && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
+ : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
+ && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
+ : (X87_FLOAT_MODE_P (MODE) \
+ && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
+ : (CLASS))
+
+/* If we are copying between general and FP registers, we need a memory
+ location. The same is true for SSE and MMX registers. */
+#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
+ ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
+
+/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
+ There is no need to emit full 64 bit move on 64 bit targets
+ for integral modes that can be moved using 32 bit move. */
+#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
+ (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
+ ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
+ : MODE)
+
+/* Return a class of registers that cannot change FROM mode to TO mode. */
+
+#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
+ ix86_cannot_change_mode_class (FROM, TO, CLASS)
+
+/* Stack layout; function entry, exit and calling. */
+
+/* Define this if pushing a word on the stack
+ makes the stack pointer a smaller address. */
+#define STACK_GROWS_DOWNWARD
+
+/* Define this to nonzero if the nominal address of the stack frame
+ is at the high-address end of the local variables;
+ that is, each additional local variable allocated
+ goes at a more negative offset in the frame. */
+#define FRAME_GROWS_DOWNWARD 1
+
+/* Offset within stack frame to start allocating local variables at.
+ If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
+ first local allocated. Otherwise, it is the offset to the BEGINNING
+ of the first local allocated. */
+#define STARTING_FRAME_OFFSET 0
+
+/* If we generate an insn to push BYTES bytes, this says how many the stack
+ pointer really advances by. On 386, we have pushw instruction that
+ decrements by exactly 2 no matter what the position was, there is no pushb.
+
+ But as CIE data alignment factor on this arch is -4 for 32bit targets
+ and -8 for 64bit targets, we need to make sure all stack pointer adjustments
+ are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
+
+#define PUSH_ROUNDING(BYTES) \
+ (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
+
+/* If defined, the maximum amount of space required for outgoing arguments
+ will be computed and placed into the variable `crtl->outgoing_args_size'.
+ No space will be pushed onto the stack for each call; instead, the
+ function prologue should increase the stack frame size by this amount.
+
+ In 32bit mode enabling argument accumulation results in about 5% code size
+ growth becuase move instructions are less compact than push. In 64bit
+ mode the difference is less drastic but visible.
+
+ FIXME: Unlike earlier implementations, the size of unwind info seems to
+ actually grow with accumulation. Is that because accumulated args
+ unwind info became unnecesarily bloated?
+
+ With the 64-bit MS ABI, we can generate correct code with or without
+ accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
+ generated without accumulated args is terrible.
+
+ If stack probes are required, the space used for large function
+ arguments on the stack must also be probed, so enable
+ -maccumulate-outgoing-args so this happens in the prologue. */
+
+#define ACCUMULATE_OUTGOING_ARGS \
+ ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
+ || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
+
+/* If defined, a C expression whose value is nonzero when we want to use PUSH
+ instructions to pass outgoing arguments. */
+
+#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
+
+/* We want the stack and args grow in opposite directions, even if
+ PUSH_ARGS is 0. */
+#define PUSH_ARGS_REVERSED 1
+
+/* Offset of first parameter from the argument pointer register value. */
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* Define this macro if functions should assume that stack space has been
+ allocated for arguments even when their values are passed in registers.
+
+ The value of this macro is the size, in bytes, of the area reserved for
+ arguments passed in registers for the function represented by FNDECL.
+
+ This space can be allocated by the caller, or be a part of the
+ machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
+ which. */
+#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
+
+#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
+ (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
+
+/* Define how to find the value returned by a library function
+ assuming the value has mode MODE. */
+
+#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
+
+/* Define the size of the result block used for communication between
+ untyped_call and untyped_return. The block contains a DImode value
+ followed by the block used by fnsave and frstor. */
+
+#define APPLY_RESULT_SIZE (8+108)
+
+/* 1 if N is a possible register number for function argument passing. */
+#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
+
+/* Define a data type for recording info about an argument list
+ during the scan of that argument list. This data type should
+ hold all necessary information about the function itself
+ and about the args processed so far, enough to enable macros
+ such as FUNCTION_ARG to determine where the next arg should go. */
+
+typedef struct ix86_args {
+ int words; /* # words passed so far */
+ int nregs; /* # registers available for passing */
+ int regno; /* next available register number */
+ int fastcall; /* fastcall or thiscall calling convention
+ is used */
+ int sse_words; /* # sse words passed so far */
+ int sse_nregs; /* # sse registers available for passing */
+ int warn_avx512f; /* True when we want to warn
+ about AVX512F ABI. */
+ int warn_avx; /* True when we want to warn about AVX ABI. */
+ int warn_sse; /* True when we want to warn about SSE ABI. */
+ int warn_mmx; /* True when we want to warn about MMX ABI. */
+ int sse_regno; /* next available sse register number */
+ int mmx_words; /* # mmx words passed so far */
+ int mmx_nregs; /* # mmx registers available for passing */
+ int mmx_regno; /* next available mmx register number */
+ int maybe_vaarg; /* true for calls to possibly vardic fncts. */
+ int caller; /* true if it is caller. */
+ int float_in_sse; /* Set to 1 or 2 for 32bit targets if
+ SFmode/DFmode arguments should be passed
+ in SSE registers. Otherwise 0. */
+ enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
+ MS_ABI for ms abi. */
+} CUMULATIVE_ARGS;
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0. */
+
+#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
+ init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
+ (N_NAMED_ARGS) != -1)
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
+
+#define MCOUNT_NAME "_mcount"
+
+#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
+
+#define PROFILE_COUNT_REGISTER "edx"
+
+/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
+ the stack pointer does not matter. The value is tested only in
+ functions that have frame pointers.
+ No definition is equivalent to always zero. */
+/* Note on the 386 it might be more efficient not to define this since
+ we have to restore it ourselves from the frame pointer, in order to
+ use pop */
+
+#define EXIT_IGNORE_STACK 1
+
+/* Output assembler code for a block containing the constant parts
+ of a trampoline, leaving space for the variable parts. */
+
+/* On the 386, the trampoline contains two instructions:
+ mov #STATIC,ecx
+ jmp FUNCTION
+ The trampoline is generated entirely at runtime. The operand of JMP
+ is the address of FUNCTION relative to the instruction following the
+ JMP (which is 5 bytes long). */
+
+/* Length in units of the trampoline for entering a nested function. */
+
+#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
+
+/* Definitions for register eliminations.
+
+ This is an array of structures. Each structure initializes one pair
+ of eliminable registers. The "from" register number is given first,
+ followed by "to". Eliminations of the same "from" register are listed
+ in order of preference.
+
+ There are two registers that can always be eliminated on the i386.
+ The frame pointer and the arg pointer can be replaced by either the
+ hard frame pointer or to the stack pointer, depending upon the
+ circumstances. The hard frame pointer is not used before reload and
+ so it is not eligible for elimination. */
+
+#define ELIMINABLE_REGS \
+{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
+
+/* Define the offset between two registers, one to be eliminated, and the other
+ its replacement, at the start of a routine. */
+
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+ ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
+
+/* Addressing modes, and classification of registers for them. */
+
+/* Macros to check register numbers against specific register classes. */
+
+/* These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ Since they use reg_renumber, they are safe only once reg_renumber
+ has been allocated, which happens in reginfo.c during register
+ allocation. */
+
+#define REGNO_OK_FOR_INDEX_P(REGNO) \
+ ((REGNO) < STACK_POINTER_REGNUM \
+ || REX_INT_REGNO_P (REGNO) \
+ || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
+ || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
+
+#define REGNO_OK_FOR_BASE_P(REGNO) \
+ (GENERAL_REGNO_P (REGNO) \
+ || (REGNO) == ARG_POINTER_REGNUM \
+ || (REGNO) == FRAME_POINTER_REGNUM \
+ || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+ and check its validity for a certain class.
+ We have two alternate definitions for each of them.
+ The usual definition accepts all pseudo regs; the other rejects
+ them unless they have been allocated suitable hard regs.
+ The symbol REG_OK_STRICT causes the latter definition to be used.
+
+ Most source files want to accept pseudo regs in the hope that
+ they will get allocated to the class that the insn wants them to be in.
+ Source files for reload pass need to be strict.
+ After reload, it makes no difference, since pseudo regs have
+ been eliminated by then. */
+
+
+/* Non strict versions, pseudos are ok. */
+#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
+ (REGNO (X) < STACK_POINTER_REGNUM \
+ || REX_INT_REGNO_P (REGNO (X)) \
+ || REGNO (X) >= FIRST_PSEUDO_REGISTER)
+
+#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
+ (GENERAL_REGNO_P (REGNO (X)) \
+ || REGNO (X) == ARG_POINTER_REGNUM \
+ || REGNO (X) == FRAME_POINTER_REGNUM \
+ || REGNO (X) >= FIRST_PSEUDO_REGISTER)
+
+/* Strict versions, hard registers only */
+#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
+#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
+
+#ifndef REG_OK_STRICT
+#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
+#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
+
+#else
+#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
+#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
+#endif
+
+/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
+ that is a valid memory address for an instruction.
+ The MODE argument is the machine mode for the MEM expression
+ that wants to use this address.
+
+ The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
+ except for CONSTANT_ADDRESS_P which is usually machine-independent.
+
+ See legitimize_pic_address in i386.c for details as to what
+ constitutes a legitimate address when -fpic is used. */
+
+#define MAX_REGS_PER_ADDRESS 2
+
+#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
+
+/* Try a machine-dependent way of reloading an illegitimate address
+ operand. If we find one, push the reload and jump to WIN. This
+ macro is used in only one place: `find_reloads_address' in reload.c. */
+
+#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
+do { \
+ if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
+ (int)(TYPE), (INDL))) \
+ goto WIN; \
+} while (0)
+
+/* If defined, a C expression to determine the base term of address X.
+ This macro is used in only one place: `find_base_term' in alias.c.
+
+ It is always safe for this macro to not be defined. It exists so
+ that alias analysis can understand machine-dependent addresses.
+
+ The typical use of this macro is to handle addresses containing
+ a label_ref or symbol_ref within an UNSPEC. */
+
+#define FIND_BASE_TERM(X) ix86_find_base_term (X)
+
+/* Nonzero if the constant value X is a legitimate general operand
+ when generating PIC code. It is given that flag_pic is on and
+ that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
+
+#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
+
+#define SYMBOLIC_CONST(X) \
+ (GET_CODE (X) == SYMBOL_REF \
+ || GET_CODE (X) == LABEL_REF \
+ || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
+
+/* Max number of args passed in registers. If this is more than 3, we will
+ have problems with ebx (register #4), since it is a caller save register and
+ is also used as the pic register in ELF. So for now, don't allow more than
+ 3 registers to be passed in registers. */
+
+/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
+#define X86_64_REGPARM_MAX 6
+#define X86_64_MS_REGPARM_MAX 4
+
+#define X86_32_REGPARM_MAX 3
+
+#define REGPARM_MAX \
+ (TARGET_64BIT \
+ ? (TARGET_64BIT_MS_ABI \
+ ? X86_64_MS_REGPARM_MAX \
+ : X86_64_REGPARM_MAX) \
+ : X86_32_REGPARM_MAX)
+
+#define X86_64_SSE_REGPARM_MAX 8
+#define X86_64_MS_SSE_REGPARM_MAX 4
+
+#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
+
+#define SSE_REGPARM_MAX \
+ (TARGET_64BIT \
+ ? (TARGET_64BIT_MS_ABI \
+ ? X86_64_MS_SSE_REGPARM_MAX \
+ : X86_64_SSE_REGPARM_MAX) \
+ : X86_32_SSE_REGPARM_MAX)
+
+#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
+
+/* Specify the machine mode that this machine uses
+ for the index in the tablejump instruction. */
+#define CASE_VECTOR_MODE \
+ (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
+
+/* Define this as 1 if `char' should by default be signed; else as 0. */
+#define DEFAULT_SIGNED_CHAR 1
+
+/* Max number of bytes we can move from memory to memory
+ in one reasonably fast instruction. */
+#define MOVE_MAX 16
+
+/* MOVE_MAX_PIECES is the number of bytes at a time which we can
+ move efficiently, as opposed to MOVE_MAX which is the maximum
+ number of bytes we can move with a single instruction. */
+#define MOVE_MAX_PIECES UNITS_PER_WORD
+
+/* If a memory-to-memory move would take MOVE_RATIO or more simple
+ move-instruction pairs, we will do a movmem or libcall instead.
+ Increasing the value will always make code faster, but eventually
+ incurs high cost in increased code size.
+
+ If you don't define this, a reasonable default is used. */
+
+#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
+
+/* If a clear memory operation would take CLEAR_RATIO or more simple
+ move-instruction sequences, we will do a clrmem or libcall instead. */
+
+#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
+
+/* Define if shifts truncate the shift count which implies one can
+ omit a sign-extension or zero-extension of a shift count.
+
+ On i386, shifts do truncate the count. But bit test instructions
+ take the modulo of the bit offset operand. */
+
+/* #define SHIFT_COUNT_TRUNCATED */
+
+/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
+ is done just by pretending it is already truncated. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* A macro to update M and UNSIGNEDP when an object whose type is
+ TYPE and which has the specified mode and signedness is to be
+ stored in a register. This macro is only called when TYPE is a
+ scalar type.
+
+ On i386 it is sometimes useful to promote HImode and QImode
+ quantities to SImode. The choice depends on target type. */
+
+#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
+do { \
+ if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
+ || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
+ (MODE) = SImode; \
+} while (0)
+
+/* Specify the machine mode that pointers have.
+ After generation of rtl, the compiler makes no further distinction
+ between pointers and any other objects of this machine mode. */
+#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
+
+/* A C expression whose value is zero if pointers that need to be extended
+ from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
+ greater then zero if they are zero-extended and less then zero if the
+ ptr_extend instruction should be used. */
+
+#define POINTERS_EXTEND_UNSIGNED 1
+
+/* A function address in a call instruction
+ is a byte address (for indexing purposes)
+ so give the MEM rtx a byte's mode. */
+#define FUNCTION_MODE QImode
+
+
+/* A C expression for the cost of a branch instruction. A value of 1
+ is the default; other values are interpreted relative to that. */
+
+#define BRANCH_COST(speed_p, predictable_p) \
+ (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
+
+/* An integer expression for the size in bits of the largest integer machine
+ mode that should actually be used. We allow pairs of registers. */
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
+
+/* Define this macro as a C expression which is nonzero if accessing
+ less than a word of memory (i.e. a `char' or a `short') is no
+ faster than accessing a word of memory, i.e., if such access
+ require more than one instruction or if there is no difference in
+ cost between byte and (aligned) word loads.
+
+ When this macro is not defined, the compiler will access a field by
+ finding the smallest containing object; when it is defined, a
+ fullword load will be used if alignment permits. Unless bytes
+ accesses are faster than word accesses, using word accesses is
+ preferable since it may eliminate subsequent memory access if
+ subsequent accesses occur to other fields in the same word of the
+ structure, but to different bytes. */
+
+#define SLOW_BYTE_ACCESS 0
+
+/* Nonzero if access to memory by shorts is slow and undesirable. */
+#define SLOW_SHORT_ACCESS 0
+
+/* Define this macro to be the value 1 if unaligned accesses have a
+ cost many times greater than aligned accesses, for example if they
+ are emulated in a trap handler.
+
+ When this macro is nonzero, the compiler will act as if
+ `STRICT_ALIGNMENT' were nonzero when generating code for block
+ moves. This can cause significantly more instructions to be
+ produced. Therefore, do not set this macro nonzero if unaligned
+ accesses only add a cycle or two to the time for a memory access.
+
+ If the value of this macro is always zero, it need not be defined. */
+
+/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
+
+/* Define this macro if it is as good or better to call a constant
+ function address than to call an address kept in a register.
+
+ Desirable on the 386 because a CALL with a constant address is
+ faster than one with a register address. */
+
+#define NO_FUNCTION_CSE
+
+/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
+ return the mode to be used for the comparison.
+
+ For floating-point equality comparisons, CCFPEQmode should be used.
+ VOIDmode should be used in all other cases.
+
+ For integer comparisons against zero, reduce to CCNOmode or CCZmode if
+ possible, to allow for more combinations. */
+
+#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
+
+/* Return nonzero if MODE implies a floating point inequality can be
+ reversed. */
+
+#define REVERSIBLE_CC_MODE(MODE) 1
+
+/* A C expression whose value is reversed condition code of the CODE for
+ comparison done in CC_MODE mode. */
+#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
+
+
+/* Control the assembler format that we output, to the extent
+ this does not vary between assemblers. */
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
+ For non floating point regs, the following are the HImode names.
+
+ For float regs, the stack top is sometimes referred to as "%st(0)"
+ instead of just "%st". TARGET_PRINT_OPERAND handles this with the
+ "y" code. */
+
+#define HI_REGISTER_NAMES \
+{"ax","dx","cx","bx","si","di","bp","sp", \
+ "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
+ "argp", "flags", "fpsr", "fpcr", "frame", \
+ "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
+ "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
+ "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
+ "xmm16", "xmm17", "xmm18", "xmm19", \
+ "xmm20", "xmm21", "xmm22", "xmm23", \
+ "xmm24", "xmm25", "xmm26", "xmm27", \
+ "xmm28", "xmm29", "xmm30", "xmm31", \
+ "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
+
+#define REGISTER_NAMES HI_REGISTER_NAMES
+
+/* Table of additional register names to use in user input. */
+
+#define ADDITIONAL_REGISTER_NAMES \
+{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
+ { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
+ { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
+ { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
+ { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
+ { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
+ { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
+ { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
+ { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
+ { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
+ { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
+ { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
+ { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
+ { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
+ { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
+ { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
+ { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
+ { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
+ { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
+ { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
+ { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
+ { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
+
+/* Note we are omitting these since currently I don't know how
+to get gcc to use these, since they want the same but different
+number as al, and ax.
+*/
+
+#define QI_REGISTER_NAMES \
+{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
+
+/* These parallel the array above, and can be used to access bits 8:15
+ of regs 0 through 3. */
+
+#define QI_HIGH_REGISTER_NAMES \
+{"ah", "dh", "ch", "bh", }
+
+/* How to renumber registers for dbx and gdb. */
+
+#define DBX_REGISTER_NUMBER(N) \
+ (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
+
+extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
+extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
+extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
+
+extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
+
+/* Before the prologue, RA is at 0(%esp). */
+#define INCOMING_RETURN_ADDR_RTX \
+ gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
+
+/* After the prologue, RA is at -4(AP) in the current frame. */
+#define RETURN_ADDR_RTX(COUNT, FRAME) \
+ ((COUNT) == 0 \
+ ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
+ -UNITS_PER_WORD)) \
+ : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
+
+/* PC is dbx register 8; let's use that column for RA. */
+#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
+
+/* Before the prologue, the top of the frame is at 4(%esp). */
+#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
+
+/* Describe how we implement __builtin_eh_return. */
+#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
+#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
+
+
+/* Select a format to encode pointers in exception handling data. CODE
+ is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
+ true if the symbol may be affected by dynamic relocations.
+
+ ??? All x86 object file formats are capable of representing this.
+ After all, the relocation needed is the same as for the call insn.
+ Whether or not a particular assembler allows us to enter such, I
+ guess we'll have to see. */
+#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
+ asm_preferred_eh_data_format ((CODE), (GLOBAL))
+
+/* This is how to output an insn to push a register on the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
+do { \
+ if (TARGET_64BIT) \
+ asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
+ reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
+ else \
+ asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
+} while (0)
+
+/* This is how to output an insn to pop a register from the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
+do { \
+ if (TARGET_64BIT) \
+ asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
+ reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
+ else \
+ asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
+} while (0)
+
+/* This is how to output an element of a case-vector that is absolute. */
+
+#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
+ ix86_output_addr_vec_elt ((FILE), (VALUE))
+
+/* This is how to output an element of a case-vector that is relative. */
+
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
+ ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
+
+/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
+
+#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
+{ \
+ if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
+ (PTR) += TARGET_AVX ? 1 : 2; \
+}
+
+/* A C statement or statements which output an assembler instruction
+ opcode to the stdio stream STREAM. The macro-operand PTR is a
+ variable of type `char *' which points to the opcode name in
+ its "internal" form--the form that is written in the machine
+ description. */
+
+#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
+ ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
+
+/* A C statement to output to the stdio stream FILE an assembler
+ command to pad the location counter to a multiple of 1<<LOG
+ bytes if it is within MAX_SKIP bytes. */
+
+#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
+#undef ASM_OUTPUT_MAX_SKIP_PAD
+#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
+ if ((LOG) != 0) \
+ { \
+ if ((MAX_SKIP) == 0) \
+ fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
+ else \
+ fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
+ }
+#endif
+
+/* Write the extra assembler code needed to declare a function
+ properly. */
+
+#undef ASM_OUTPUT_FUNCTION_LABEL
+#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
+ ix86_asm_output_function_label (FILE, NAME, DECL)
+
+/* Under some conditions we need jump tables in the text section,
+ because the assembler cannot handle label differences between
+ sections. This is the case for x86_64 on Mach-O for example. */
+
+#define JUMP_TABLES_IN_TEXT_SECTION \
+ (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
+ || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
+
+/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
+ and switch back. For x86 we do this only to save a few bytes that
+ would otherwise be unused in the text section. */
+#define CRT_MKSTR2(VAL) #VAL
+#define CRT_MKSTR(x) CRT_MKSTR2(x)
+
+#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
+ asm (SECTION_OP "\n\t" \
+ "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
+ TEXT_SECTION_ASM_OP);
+
+/* Default threshold for putting data in large sections
+ with x86-64 medium memory model */
+#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
+
+/* Which processor to tune code generation for. These must be in sync
+ with processor_target_table in i386.c. */
+
+enum processor_type
+{
+ PROCESSOR_GENERIC = 0,
+ PROCESSOR_I386, /* 80386 */
+ PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
+ PROCESSOR_PENTIUM,
+ PROCESSOR_PENTIUMPRO,
+ PROCESSOR_PENTIUM4,
+ PROCESSOR_NOCONA,
+ PROCESSOR_CORE2,
+ PROCESSOR_NEHALEM,
+ PROCESSOR_SANDYBRIDGE,
+ PROCESSOR_HASWELL,
+ PROCESSOR_BONNELL,
+ PROCESSOR_SILVERMONT,
+ PROCESSOR_INTEL,
+ PROCESSOR_GEODE,
+ PROCESSOR_K6,
+ PROCESSOR_ATHLON,
+ PROCESSOR_K8,
+ PROCESSOR_AMDFAM10,
+ PROCESSOR_BDVER1,
+ PROCESSOR_BDVER2,
+ PROCESSOR_BDVER3,
+ PROCESSOR_BDVER4,
+ PROCESSOR_BTVER1,
+ PROCESSOR_BTVER2,
+ PROCESSOR_max
+};
+
+extern enum processor_type ix86_tune;
+extern enum processor_type ix86_arch;
+
+/* Size of the RED_ZONE area. */
+#define RED_ZONE_SIZE 128
+/* Reserved area of the red zone for temporaries. */
+#define RED_ZONE_RESERVE 8
+
+extern unsigned int ix86_preferred_stack_boundary;
+extern unsigned int ix86_incoming_stack_boundary;
+
+/* Smallest class containing REGNO. */
+extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
+
+enum ix86_fpcmp_strategy {
+ IX86_FPCMP_SAHF,
+ IX86_FPCMP_COMI,
+ IX86_FPCMP_ARITH
+};
+
+/* To properly truncate FP values into integers, we need to set i387 control
+ word. We can't emit proper mode switching code before reload, as spills
+ generated by reload may truncate values incorrectly, but we still can avoid
+ redundant computation of new control word by the mode switching pass.
+ The fldcw instructions are still emitted redundantly, but this is probably
+ not going to be noticeable problem, as most CPUs do have fast path for
+ the sequence.
+
+ The machinery is to emit simple truncation instructions and split them
+ before reload to instructions having USEs of two memory locations that
+ are filled by this code to old and new control word.
+
+ Post-reload pass may be later used to eliminate the redundant fildcw if
+ needed. */
+
+enum ix86_entity
+{
+ AVX_U128 = 0,
+ I387_TRUNC,
+ I387_FLOOR,
+ I387_CEIL,
+ I387_MASK_PM,
+ MAX_386_ENTITIES
+};
+
+enum ix86_stack_slot
+{
+ SLOT_TEMP = 0,
+ SLOT_CW_STORED,
+ SLOT_CW_TRUNC,
+ SLOT_CW_FLOOR,
+ SLOT_CW_CEIL,
+ SLOT_CW_MASK_PM,
+ MAX_386_STACK_LOCALS
+};
+
+enum avx_u128_state
+{
+ AVX_U128_CLEAN,
+ AVX_U128_DIRTY,
+ AVX_U128_ANY
+};
+
+/* Define this macro if the port needs extra instructions inserted
+ for mode switching in an optimizing compilation. */
+
+#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
+ ix86_optimize_mode_switching[(ENTITY)]
+
+/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
+ initializer for an array of integers. Each initializer element N
+ refers to an entity that needs mode switching, and specifies the
+ number of different modes that might need to be set for this
+ entity. The position of the initializer in the initializer -
+ starting counting at zero - determines the integer that is used to
+ refer to the mode-switched entity in question. */
+
+#define NUM_MODES_FOR_MODE_SWITCHING \
+ { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
+
+/* ENTITY is an integer specifying a mode-switched entity. If
+ `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
+ return an integer value not larger than the corresponding element
+ in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
+ must be switched into prior to the execution of INSN. */
+
+#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
+
+/* If this macro is defined, it is evaluated for every INSN during
+ mode switching. It determines the mode that an insn results in (if
+ different from the incoming mode). */
+
+#define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
+
+/* If this macro is defined, it is evaluated for every ENTITY that
+ needs mode switching. It should evaluate to an integer, which is
+ a mode that ENTITY is assumed to be switched to at function entry. */
+
+#define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
+
+/* If this macro is defined, it is evaluated for every ENTITY that
+ needs mode switching. It should evaluate to an integer, which is
+ a mode that ENTITY is assumed to be switched to at function exit. */
+
+#define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
+
+/* This macro specifies the order in which modes for ENTITY are
+ processed. 0 is the highest priority. */
+
+#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
+
+/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
+ is the set of hard registers live at the point where the insn(s)
+ are to be inserted. */
+
+#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
+ ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
+
+/* Avoid renaming of stack registers, as doing so in combination with
+ scheduling just increases amount of live registers at time and in
+ the turn amount of fxch instructions needed.
+
+ ??? Maybe Pentium chips benefits from renaming, someone can try....
+
+ Don't rename evex to non-evex sse registers. */
+
+#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
+ (EXT_REX_SSE_REGNO_P (SRC) == \
+ EXT_REX_SSE_REGNO_P (TARGET)))
+
+
+#define FASTCALL_PREFIX '@'
+
+/* Machine specific frame tracking during prologue/epilogue generation. */
+
+#ifndef USED_FOR_TARGET
+struct GTY(()) machine_frame_state
+{
+ /* This pair tracks the currently active CFA as reg+offset. When reg
+ is drap_reg, we don't bother trying to record here the real CFA when
+ it might really be a DW_CFA_def_cfa_expression. */
+ rtx cfa_reg;
+ HOST_WIDE_INT cfa_offset;
+
+ /* The current offset (canonically from the CFA) of ESP and EBP.
+ When stack frame re-alignment is active, these may not be relative
+ to the CFA. However, in all cases they are relative to the offsets
+ of the saved registers stored in ix86_frame. */
+ HOST_WIDE_INT sp_offset;
+ HOST_WIDE_INT fp_offset;
+
+ /* The size of the red-zone that may be assumed for the purposes of
+ eliding register restore notes in the epilogue. This may be zero
+ if no red-zone is in effect, or may be reduced from the real
+ red-zone value by a maximum runtime stack re-alignment value. */
+ int red_zone_offset;
+
+ /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
+ value within the frame. If false then the offset above should be
+ ignored. Note that DRAP, if valid, *always* points to the CFA and
+ thus has an offset of zero. */
+ BOOL_BITFIELD sp_valid : 1;
+ BOOL_BITFIELD fp_valid : 1;
+ BOOL_BITFIELD drap_valid : 1;
+
+ /* Indicate whether the local stack frame has been re-aligned. When
+ set, the SP/FP offsets above are relative to the aligned frame
+ and not the CFA. */
+ BOOL_BITFIELD realigned : 1;
+};
+
+/* Private to winnt.c. */
+struct seh_frame_state;
+
+struct GTY(()) machine_function {
+ struct stack_local_entry *stack_locals;
+ const char *some_ld_name;
+ int varargs_gpr_size;
+ int varargs_fpr_size;
+ int optimize_mode_switching[MAX_386_ENTITIES];
+
+ /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
+ has been computed for. */
+ int use_fast_prologue_epilogue_nregs;
+
+ /* For -fsplit-stack support: A stack local which holds a pointer to
+ the stack arguments for a function with a variable number of
+ arguments. This is set at the start of the function and is used
+ to initialize the overflow_arg_area field of the va_list
+ structure. */
+ rtx split_stack_varargs_pointer;
+
+ /* This value is used for amd64 targets and specifies the current abi
+ to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
+ ENUM_BITFIELD(calling_abi) call_abi : 8;
+
+ /* Nonzero if the function accesses a previous frame. */
+ BOOL_BITFIELD accesses_prev_frame : 1;
+
+ /* Nonzero if the function requires a CLD in the prologue. */
+ BOOL_BITFIELD needs_cld : 1;
+
+ /* Set by ix86_compute_frame_layout and used by prologue/epilogue
+ expander to determine the style used. */
+ BOOL_BITFIELD use_fast_prologue_epilogue : 1;
+
+ /* If true, the current function needs the default PIC register, not
+ an alternate register (on x86) and must not use the red zone (on
+ x86_64), even if it's a leaf function. We don't want the
+ function to be regarded as non-leaf because TLS calls need not
+ affect register allocation. This flag is set when a TLS call
+ instruction is expanded within a function, and never reset, even
+ if all such instructions are optimized away. Use the
+ ix86_current_function_calls_tls_descriptor macro for a better
+ approximation. */
+ BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
+
+ /* If true, the current function has a STATIC_CHAIN is placed on the
+ stack below the return address. */
+ BOOL_BITFIELD static_chain_on_stack : 1;
+
+ /* If true, it is safe to not save/restore DRAP register. */
+ BOOL_BITFIELD no_drap_save_restore : 1;
+
+ /* During prologue/epilogue generation, the current frame state.
+ Otherwise, the frame state at the end of the prologue. */
+ struct machine_frame_state fs;
+
+ /* During SEH output, this is non-null. */
+ struct seh_frame_state * GTY((skip(""))) seh;
+};
+#endif
+
+#define ix86_stack_locals (cfun->machine->stack_locals)
+#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
+#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
+#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
+#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
+#define ix86_tls_descriptor_calls_expanded_in_cfun \
+ (cfun->machine->tls_descriptor_call_expanded_p)
+/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
+ calls are optimized away, we try to detect cases in which it was
+ optimized away. Since such instructions (use (reg REG_SP)), we can
+ verify whether there's any such instruction live by testing that
+ REG_SP is live. */
+#define ix86_current_function_calls_tls_descriptor \
+ (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
+#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
+
+/* Control behavior of x86_file_start. */
+#define X86_FILE_START_VERSION_DIRECTIVE false
+#define X86_FILE_START_FLTUSED false
+
+/* Flag to mark data that is in the large address area. */
+#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
+#define SYMBOL_REF_FAR_ADDR_P(X) \
+ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
+
+/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
+ have defined always, to avoid ifdefing. */
+#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
+#define SYMBOL_REF_DLLIMPORT_P(X) \
+ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
+
+#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
+#define SYMBOL_REF_DLLEXPORT_P(X) \
+ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
+
+#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
+#define SYMBOL_REF_STUBVAR_P(X) \
+ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
+
+extern void debug_ready_dispatch (void);
+extern void debug_dispatch_window (int);
+
+/* The value at zero is only defined for the BMI instructions
+ LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
+#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
+ ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
+#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
+ ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
+
+
+/* Flags returned by ix86_get_callcvt (). */
+#define IX86_CALLCVT_CDECL 0x1
+#define IX86_CALLCVT_STDCALL 0x2
+#define IX86_CALLCVT_FASTCALL 0x4
+#define IX86_CALLCVT_THISCALL 0x8
+#define IX86_CALLCVT_REGPARM 0x10
+#define IX86_CALLCVT_SSEREGPARM 0x20
+
+#define IX86_BASE_CALLCVT(FLAGS) \
+ ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
+ | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
+
+#define RECIP_MASK_NONE 0x00
+#define RECIP_MASK_DIV 0x01
+#define RECIP_MASK_SQRT 0x02
+#define RECIP_MASK_VEC_DIV 0x04
+#define RECIP_MASK_VEC_SQRT 0x08
+#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
+ | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
+#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
+
+#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
+#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
+#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
+#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
+
+#define IX86_HLE_ACQUIRE (1 << 16)
+#define IX86_HLE_RELEASE (1 << 17)
+
+/* For switching between functions with different target attributes. */
+#define SWITCHABLE_TARGET 1
+
+/*
+Local variables:
+version-control: t
+End:
+*/