aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/i386/i386.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/config/i386/i386.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/config/i386/i386.c')
-rw-r--r--gcc-4.9/gcc/config/i386/i386.c47138
1 files changed, 47138 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/i386/i386.c b/gcc-4.9/gcc/config/i386/i386.c
new file mode 100644
index 000000000..842be686d
--- /dev/null
+++ b/gcc-4.9/gcc/config/i386/i386.c
@@ -0,0 +1,47138 @@
+/* Subroutines used for code generation on IA-32.
+ Copyright (C) 1988-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "stringpool.h"
+#include "attribs.h"
+#include "calls.h"
+#include "stor-layout.h"
+#include "varasm.h"
+#include "tm_p.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "output.h"
+#include "insn-codes.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "except.h"
+#include "function.h"
+#include "recog.h"
+#include "expr.h"
+#include "optabs.h"
+#include "diagnostic-core.h"
+#include "toplev.h"
+#include "basic-block.h"
+#include "ggc.h"
+#include "target.h"
+#include "target-def.h"
+#include "common/common-target.h"
+#include "langhooks.h"
+#include "reload.h"
+#include "cgraph.h"
+#include "pointer-set.h"
+#include "hash-table.h"
+#include "vec.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "cfgloop.h"
+#include "dwarf2.h"
+#include "df.h"
+#include "tm-constrs.h"
+#include "params.h"
+#include "cselib.h"
+#include "debug.h"
+#include "sched-int.h"
+#include "sbitmap.h"
+#include "fibheap.h"
+#include "opts.h"
+#include "diagnostic.h"
+#include "dumpfile.h"
+#include "tree-pass.h"
+#include "context.h"
+#include "pass_manager.h"
+#include "target-globals.h"
+
+static rtx legitimize_dllimport_symbol (rtx, bool);
+static rtx legitimize_pe_coff_extern_decl (rtx, bool);
+static rtx legitimize_pe_coff_symbol (rtx, bool);
+
+#ifndef CHECK_STACK_LIMIT
+#define CHECK_STACK_LIMIT (-1)
+#endif
+
+/* Return index of given mode in mult and division cost tables. */
+#define MODE_INDEX(mode) \
+ ((mode) == QImode ? 0 \
+ : (mode) == HImode ? 1 \
+ : (mode) == SImode ? 2 \
+ : (mode) == DImode ? 3 \
+ : 4)
+
+/* Processor costs (relative to an add) */
+/* We assume COSTS_N_INSNS is defined as (N)*4 and an addition is 2 bytes. */
+#define COSTS_N_BYTES(N) ((N) * 2)
+
+#define DUMMY_STRINGOP_ALGS {libcall, {{-1, libcall, false}}}
+
+static stringop_algs ix86_size_memcpy[2] = {
+ {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}},
+ {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}}};
+static stringop_algs ix86_size_memset[2] = {
+ {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}},
+ {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}}};
+
+const
+struct processor_costs ix86_size_cost = {/* costs for tuning for size */
+ COSTS_N_BYTES (2), /* cost of an add instruction */
+ COSTS_N_BYTES (3), /* cost of a lea instruction */
+ COSTS_N_BYTES (2), /* variable shift costs */
+ COSTS_N_BYTES (3), /* constant shift costs */
+ {COSTS_N_BYTES (3), /* cost of starting multiply for QI */
+ COSTS_N_BYTES (3), /* HI */
+ COSTS_N_BYTES (3), /* SI */
+ COSTS_N_BYTES (3), /* DI */
+ COSTS_N_BYTES (5)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_BYTES (3), /* cost of a divide/mod for QI */
+ COSTS_N_BYTES (3), /* HI */
+ COSTS_N_BYTES (3), /* SI */
+ COSTS_N_BYTES (3), /* DI */
+ COSTS_N_BYTES (5)}, /* other */
+ COSTS_N_BYTES (3), /* cost of movsx */
+ COSTS_N_BYTES (3), /* cost of movzx */
+ 0, /* "large" insn */
+ 2, /* MOVE_RATIO */
+ 2, /* cost for loading QImode using movzbl */
+ {2, 2, 2}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {2, 2, 2}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {2, 2, 2}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {2, 2, 2}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 3, /* cost of moving MMX register */
+ {3, 3}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {3, 3}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 3, /* cost of moving SSE register */
+ {3, 3, 3}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {3, 3, 3}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 3, /* MMX or SSE register to integer */
+ 0, /* size of l1 cache */
+ 0, /* size of l2 cache */
+ 0, /* size of prefetch block */
+ 0, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_BYTES (2), /* cost of FADD and FSUB insns. */
+ COSTS_N_BYTES (2), /* cost of FMUL instruction. */
+ COSTS_N_BYTES (2), /* cost of FDIV instruction. */
+ COSTS_N_BYTES (2), /* cost of FABS instruction. */
+ COSTS_N_BYTES (2), /* cost of FCHS instruction. */
+ COSTS_N_BYTES (2), /* cost of FSQRT instruction. */
+ ix86_size_memcpy,
+ ix86_size_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 1, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 1, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* Processor costs (relative to an add) */
+static stringop_algs i386_memcpy[2] = {
+ {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}},
+ DUMMY_STRINGOP_ALGS};
+static stringop_algs i386_memset[2] = {
+ {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}},
+ DUMMY_STRINGOP_ALGS};
+
+static const
+struct processor_costs i386_cost = { /* 386 specific costs */
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (3), /* variable shift costs */
+ COSTS_N_INSNS (2), /* constant shift costs */
+ {COSTS_N_INSNS (6), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (6), /* HI */
+ COSTS_N_INSNS (6), /* SI */
+ COSTS_N_INSNS (6), /* DI */
+ COSTS_N_INSNS (6)}, /* other */
+ COSTS_N_INSNS (1), /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (23), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (23), /* HI */
+ COSTS_N_INSNS (23), /* SI */
+ COSTS_N_INSNS (23), /* DI */
+ COSTS_N_INSNS (23)}, /* other */
+ COSTS_N_INSNS (3), /* cost of movsx */
+ COSTS_N_INSNS (2), /* cost of movzx */
+ 15, /* "large" insn */
+ 3, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {2, 4, 2}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {2, 4, 2}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {8, 8, 8}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {8, 8, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {4, 8}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 8}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 8, 16}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 8, 16}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 3, /* MMX or SSE register to integer */
+ 0, /* size of l1 cache */
+ 0, /* size of l2 cache */
+ 0, /* size of prefetch block */
+ 0, /* number of parallel prefetches */
+ 1, /* Branch cost */
+ COSTS_N_INSNS (23), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (27), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (88), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (22), /* cost of FABS instruction. */
+ COSTS_N_INSNS (24), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (122), /* cost of FSQRT instruction. */
+ i386_memcpy,
+ i386_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs i486_memcpy[2] = {
+ {rep_prefix_4_byte, {{-1, rep_prefix_4_byte, false}}},
+ DUMMY_STRINGOP_ALGS};
+static stringop_algs i486_memset[2] = {
+ {rep_prefix_4_byte, {{-1, rep_prefix_4_byte, false}}},
+ DUMMY_STRINGOP_ALGS};
+
+static const
+struct processor_costs i486_cost = { /* 486 specific costs */
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (3), /* variable shift costs */
+ COSTS_N_INSNS (2), /* constant shift costs */
+ {COSTS_N_INSNS (12), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (12), /* HI */
+ COSTS_N_INSNS (12), /* SI */
+ COSTS_N_INSNS (12), /* DI */
+ COSTS_N_INSNS (12)}, /* other */
+ 1, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (40), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (40), /* HI */
+ COSTS_N_INSNS (40), /* SI */
+ COSTS_N_INSNS (40), /* DI */
+ COSTS_N_INSNS (40)}, /* other */
+ COSTS_N_INSNS (3), /* cost of movsx */
+ COSTS_N_INSNS (2), /* cost of movzx */
+ 15, /* "large" insn */
+ 3, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {2, 4, 2}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {2, 4, 2}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {8, 8, 8}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {8, 8, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {4, 8}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 8}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 8, 16}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 8, 16}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 3, /* MMX or SSE register to integer */
+ 4, /* size of l1 cache. 486 has 8kB cache
+ shared for code and data, so 4kB is
+ not really precise. */
+ 4, /* size of l2 cache */
+ 0, /* size of prefetch block */
+ 0, /* number of parallel prefetches */
+ 1, /* Branch cost */
+ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (16), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (73), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (3), /* cost of FABS instruction. */
+ COSTS_N_INSNS (3), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (83), /* cost of FSQRT instruction. */
+ i486_memcpy,
+ i486_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs pentium_memcpy[2] = {
+ {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+static stringop_algs pentium_memset[2] = {
+ {libcall, {{-1, rep_prefix_4_byte, false}}},
+ DUMMY_STRINGOP_ALGS};
+
+static const
+struct processor_costs pentium_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (4), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (11), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (11), /* HI */
+ COSTS_N_INSNS (11), /* SI */
+ COSTS_N_INSNS (11), /* DI */
+ COSTS_N_INSNS (11)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (25), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (25), /* HI */
+ COSTS_N_INSNS (25), /* SI */
+ COSTS_N_INSNS (25), /* DI */
+ COSTS_N_INSNS (25)}, /* other */
+ COSTS_N_INSNS (3), /* cost of movsx */
+ COSTS_N_INSNS (2), /* cost of movzx */
+ 8, /* "large" insn */
+ 6, /* MOVE_RATIO */
+ 6, /* cost for loading QImode using movzbl */
+ {2, 4, 2}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {2, 4, 2}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {2, 2, 6}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 6}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 8, /* cost of moving MMX register */
+ {8, 8}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {8, 8}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 8, 16}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 8, 16}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 3, /* MMX or SSE register to integer */
+ 8, /* size of l1 cache. */
+ 8, /* size of l2 cache */
+ 0, /* size of prefetch block */
+ 0, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (3), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (39), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (1), /* cost of FABS instruction. */
+ COSTS_N_INSNS (1), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (70), /* cost of FSQRT instruction. */
+ pentium_memcpy,
+ pentium_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* PentiumPro has optimized rep instructions for blocks aligned by 8 bytes
+ (we ensure the alignment). For small blocks inline loop is still a
+ noticeable win, for bigger blocks either rep movsl or rep movsb is
+ way to go. Rep movsb has apparently more expensive startup time in CPU,
+ but after 4K the difference is down in the noise. */
+static stringop_algs pentiumpro_memcpy[2] = {
+ {rep_prefix_4_byte, {{128, loop, false}, {1024, unrolled_loop, false},
+ {8192, rep_prefix_4_byte, false},
+ {-1, rep_prefix_1_byte, false}}},
+ DUMMY_STRINGOP_ALGS};
+static stringop_algs pentiumpro_memset[2] = {
+ {rep_prefix_4_byte, {{1024, unrolled_loop, false},
+ {8192, rep_prefix_4_byte, false},
+ {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+static const
+struct processor_costs pentiumpro_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (4), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (4)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (17), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (17), /* HI */
+ COSTS_N_INSNS (17), /* SI */
+ COSTS_N_INSNS (17), /* DI */
+ COSTS_N_INSNS (17)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 6, /* MOVE_RATIO */
+ 2, /* cost for loading QImode using movzbl */
+ {4, 4, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {2, 2, 2}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {2, 2, 6}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 6}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {2, 2}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {2, 2}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {2, 2, 8}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {2, 2, 8}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 3, /* MMX or SSE register to integer */
+ 8, /* size of l1 cache. */
+ 256, /* size of l2 cache */
+ 32, /* size of prefetch block */
+ 6, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (5), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (56), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (56), /* cost of FSQRT instruction. */
+ pentiumpro_memcpy,
+ pentiumpro_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs geode_memcpy[2] = {
+ {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+static stringop_algs geode_memset[2] = {
+ {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+static const
+struct processor_costs geode_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (2), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (7), /* SI */
+ COSTS_N_INSNS (7), /* DI */
+ COSTS_N_INSNS (7)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (15), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (23), /* HI */
+ COSTS_N_INSNS (39), /* SI */
+ COSTS_N_INSNS (39), /* DI */
+ COSTS_N_INSNS (39)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 4, /* MOVE_RATIO */
+ 1, /* cost for loading QImode using movzbl */
+ {1, 1, 1}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {1, 1, 1}, /* cost of storing integer registers */
+ 1, /* cost of reg,reg fld/fst */
+ {1, 1, 1}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 6, 6}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+
+ 1, /* cost of moving MMX register */
+ {1, 1}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {1, 1}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 1, /* cost of moving SSE register */
+ {1, 1, 1}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {1, 1, 1}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 1, /* MMX or SSE register to integer */
+ 64, /* size of l1 cache. */
+ 128, /* size of l2 cache. */
+ 32, /* size of prefetch block */
+ 1, /* number of parallel prefetches */
+ 1, /* Branch cost */
+ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (11), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (47), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (1), /* cost of FABS instruction. */
+ COSTS_N_INSNS (1), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (54), /* cost of FSQRT instruction. */
+ geode_memcpy,
+ geode_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs k6_memcpy[2] = {
+ {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+static stringop_algs k6_memset[2] = {
+ {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+static const
+struct processor_costs k6_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (2), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (3), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (3), /* DI */
+ COSTS_N_INSNS (3)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (18), /* HI */
+ COSTS_N_INSNS (18), /* SI */
+ COSTS_N_INSNS (18), /* DI */
+ COSTS_N_INSNS (18)}, /* other */
+ COSTS_N_INSNS (2), /* cost of movsx */
+ COSTS_N_INSNS (2), /* cost of movzx */
+ 8, /* "large" insn */
+ 4, /* MOVE_RATIO */
+ 3, /* cost for loading QImode using movzbl */
+ {4, 5, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {2, 3, 2}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {6, 6, 6}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 4}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {2, 2}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {2, 2}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {2, 2, 8}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {2, 2, 8}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 6, /* MMX or SSE register to integer */
+ 32, /* size of l1 cache. */
+ 32, /* size of l2 cache. Some models
+ have integrated l2 cache, but
+ optimizing for k6 is not important
+ enough to worry about that. */
+ 32, /* size of prefetch block */
+ 1, /* number of parallel prefetches */
+ 1, /* Branch cost */
+ COSTS_N_INSNS (2), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (2), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (56), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (56), /* cost of FSQRT instruction. */
+ k6_memcpy,
+ k6_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* For some reason, Athlon deals better with REP prefix (relative to loops)
+ compared to K8. Alignment becomes important after 8 bytes for memcpy and
+ 128 bytes for memset. */
+static stringop_algs athlon_memcpy[2] = {
+ {libcall, {{2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+static stringop_algs athlon_memset[2] = {
+ {libcall, {{2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+static const
+struct processor_costs athlon_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (2), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (5), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (5), /* HI */
+ COSTS_N_INSNS (5), /* SI */
+ COSTS_N_INSNS (5), /* DI */
+ COSTS_N_INSNS (5)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (26), /* HI */
+ COSTS_N_INSNS (42), /* SI */
+ COSTS_N_INSNS (74), /* DI */
+ COSTS_N_INSNS (74)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {3, 4, 3}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {3, 4, 3}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {4, 4, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {4, 4}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 6}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 5}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 5, /* MMX or SSE register to integer */
+ 64, /* size of l1 cache. */
+ 256, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 6, /* number of parallel prefetches */
+ 5, /* Branch cost */
+ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (4), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (24), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */
+ athlon_memcpy,
+ athlon_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* K8 has optimized REP instruction for medium sized blocks, but for very
+ small blocks it is better to use loop. For large blocks, libcall can
+ do nontemporary accesses and beat inline considerably. */
+static stringop_algs k8_memcpy[2] = {
+ {libcall, {{6, loop, false}, {14, unrolled_loop, false},
+ {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs k8_memset[2] = {
+ {libcall, {{8, loop, false}, {24, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{48, unrolled_loop, false},
+ {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}};
+static const
+struct processor_costs k8_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (2), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (5)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (26), /* HI */
+ COSTS_N_INSNS (42), /* SI */
+ COSTS_N_INSNS (74), /* DI */
+ COSTS_N_INSNS (74)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {3, 4, 3}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {3, 4, 3}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {4, 4, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {3, 3}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 3, 6}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 5}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 5, /* MMX or SSE register to integer */
+ 64, /* size of l1 cache. */
+ 512, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ /* New AMD processors never drop prefetches; if they cannot be performed
+ immediately, they are queued. We set number of simultaneous prefetches
+ to a large constant to reflect this (it probably is not a good idea not
+ to limit number of prefetches at all, as their execution also takes some
+ time). */
+ 100, /* number of parallel prefetches */
+ 3, /* Branch cost */
+ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (4), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (19), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */
+
+ k8_memcpy,
+ k8_memset,
+ 4, /* scalar_stmt_cost. */
+ 2, /* scalar load_cost. */
+ 2, /* scalar_store_cost. */
+ 5, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 2, /* vec_align_load_cost. */
+ 3, /* vec_unalign_load_cost. */
+ 3, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 2, /* cond_not_taken_branch_cost. */
+};
+
+/* AMDFAM10 has optimized REP instruction for medium sized blocks, but for
+ very small blocks it is better to use loop. For large blocks, libcall can
+ do nontemporary accesses and beat inline considerably. */
+static stringop_algs amdfam10_memcpy[2] = {
+ {libcall, {{6, loop, false}, {14, unrolled_loop, false},
+ {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs amdfam10_memset[2] = {
+ {libcall, {{8, loop, false}, {24, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+struct processor_costs amdfam10_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (2), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (5)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (35), /* HI */
+ COSTS_N_INSNS (51), /* SI */
+ COSTS_N_INSNS (83), /* DI */
+ COSTS_N_INSNS (83)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {3, 4, 3}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {3, 4, 3}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {4, 4, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {3, 3}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 3}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 5}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 3, /* MMX or SSE register to integer */
+ /* On K8:
+ MOVD reg64, xmmreg Double FSTORE 4
+ MOVD reg32, xmmreg Double FSTORE 4
+ On AMDFAM10:
+ MOVD reg64, xmmreg Double FADD 3
+ 1/1 1/1
+ MOVD reg32, xmmreg Double FADD 3
+ 1/1 1/1 */
+ 64, /* size of l1 cache. */
+ 512, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ /* New AMD processors never drop prefetches; if they cannot be performed
+ immediately, they are queued. We set number of simultaneous prefetches
+ to a large constant to reflect this (it probably is not a good idea not
+ to limit number of prefetches at all, as their execution also takes some
+ time). */
+ 100, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (4), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (19), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */
+
+ amdfam10_memcpy,
+ amdfam10_memset,
+ 4, /* scalar_stmt_cost. */
+ 2, /* scalar load_cost. */
+ 2, /* scalar_store_cost. */
+ 6, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 2, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 2, /* vec_store_cost. */
+ 2, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* BDVER1 has optimized REP instruction for medium sized blocks, but for
+ very small blocks it is better to use loop. For large blocks, libcall
+ can do nontemporary accesses and beat inline considerably. */
+static stringop_algs bdver1_memcpy[2] = {
+ {libcall, {{6, loop, false}, {14, unrolled_loop, false},
+ {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs bdver1_memset[2] = {
+ {libcall, {{8, loop, false}, {24, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+
+const struct processor_costs bdver1_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (4), /* SI */
+ COSTS_N_INSNS (6), /* DI */
+ COSTS_N_INSNS (6)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (35), /* HI */
+ COSTS_N_INSNS (51), /* SI */
+ COSTS_N_INSNS (83), /* DI */
+ COSTS_N_INSNS (83)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {5, 5, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {5, 5, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {4, 4}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 4}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 4}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 2, /* MMX or SSE register to integer */
+ /* On K8:
+ MOVD reg64, xmmreg Double FSTORE 4
+ MOVD reg32, xmmreg Double FSTORE 4
+ On AMDFAM10:
+ MOVD reg64, xmmreg Double FADD 3
+ 1/1 1/1
+ MOVD reg32, xmmreg Double FADD 3
+ 1/1 1/1 */
+ 16, /* size of l1 cache. */
+ 2048, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ /* New AMD processors never drop prefetches; if they cannot be performed
+ immediately, they are queued. We set number of simultaneous prefetches
+ to a large constant to reflect this (it probably is not a good idea not
+ to limit number of prefetches at all, as their execution also takes some
+ time). */
+ 100, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (6), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (42), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */
+
+ bdver1_memcpy,
+ bdver1_memset,
+ 6, /* scalar_stmt_cost. */
+ 4, /* scalar load_cost. */
+ 4, /* scalar_store_cost. */
+ 6, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 4, /* vec_align_load_cost. */
+ 4, /* vec_unalign_load_cost. */
+ 4, /* vec_store_cost. */
+ 2, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* BDVER2 has optimized REP instruction for medium sized blocks, but for
+ very small blocks it is better to use loop. For large blocks, libcall
+ can do nontemporary accesses and beat inline considerably. */
+
+static stringop_algs bdver2_memcpy[2] = {
+ {libcall, {{6, loop, false}, {14, unrolled_loop, false},
+ {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs bdver2_memset[2] = {
+ {libcall, {{8, loop, false}, {24, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+
+const struct processor_costs bdver2_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (4), /* SI */
+ COSTS_N_INSNS (6), /* DI */
+ COSTS_N_INSNS (6)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (35), /* HI */
+ COSTS_N_INSNS (51), /* SI */
+ COSTS_N_INSNS (83), /* DI */
+ COSTS_N_INSNS (83)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {5, 5, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {5, 5, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {4, 4}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 4}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 4}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 2, /* MMX or SSE register to integer */
+ /* On K8:
+ MOVD reg64, xmmreg Double FSTORE 4
+ MOVD reg32, xmmreg Double FSTORE 4
+ On AMDFAM10:
+ MOVD reg64, xmmreg Double FADD 3
+ 1/1 1/1
+ MOVD reg32, xmmreg Double FADD 3
+ 1/1 1/1 */
+ 16, /* size of l1 cache. */
+ 2048, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ /* New AMD processors never drop prefetches; if they cannot be performed
+ immediately, they are queued. We set number of simultaneous prefetches
+ to a large constant to reflect this (it probably is not a good idea not
+ to limit number of prefetches at all, as their execution also takes some
+ time). */
+ 100, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (6), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (42), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */
+
+ bdver2_memcpy,
+ bdver2_memset,
+ 6, /* scalar_stmt_cost. */
+ 4, /* scalar load_cost. */
+ 4, /* scalar_store_cost. */
+ 6, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 4, /* vec_align_load_cost. */
+ 4, /* vec_unalign_load_cost. */
+ 4, /* vec_store_cost. */
+ 2, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+
+ /* BDVER3 has optimized REP instruction for medium sized blocks, but for
+ very small blocks it is better to use loop. For large blocks, libcall
+ can do nontemporary accesses and beat inline considerably. */
+static stringop_algs bdver3_memcpy[2] = {
+ {libcall, {{6, loop, false}, {14, unrolled_loop, false},
+ {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs bdver3_memset[2] = {
+ {libcall, {{8, loop, false}, {24, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+struct processor_costs bdver3_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (4), /* SI */
+ COSTS_N_INSNS (6), /* DI */
+ COSTS_N_INSNS (6)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (35), /* HI */
+ COSTS_N_INSNS (51), /* SI */
+ COSTS_N_INSNS (83), /* DI */
+ COSTS_N_INSNS (83)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {5, 5, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {5, 5, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {4, 4}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 4}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 4}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 2, /* MMX or SSE register to integer */
+ 16, /* size of l1 cache. */
+ 2048, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ /* New AMD processors never drop prefetches; if they cannot be performed
+ immediately, they are queued. We set number of simultaneous prefetches
+ to a large constant to reflect this (it probably is not a good idea not
+ to limit number of prefetches at all, as their execution also takes some
+ time). */
+ 100, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (6), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (42), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */
+
+ bdver3_memcpy,
+ bdver3_memset,
+ 6, /* scalar_stmt_cost. */
+ 4, /* scalar load_cost. */
+ 4, /* scalar_store_cost. */
+ 6, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 4, /* vec_align_load_cost. */
+ 4, /* vec_unalign_load_cost. */
+ 4, /* vec_store_cost. */
+ 2, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* BDVER4 has optimized REP instruction for medium sized blocks, but for
+ very small blocks it is better to use loop. For large blocks, libcall
+ can do nontemporary accesses and beat inline considerably. */
+static stringop_algs bdver4_memcpy[2] = {
+ {libcall, {{6, loop, false}, {14, unrolled_loop, false},
+ {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs bdver4_memset[2] = {
+ {libcall, {{8, loop, false}, {24, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+struct processor_costs bdver4_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (4), /* SI */
+ COSTS_N_INSNS (6), /* DI */
+ COSTS_N_INSNS (6)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (35), /* HI */
+ COSTS_N_INSNS (51), /* SI */
+ COSTS_N_INSNS (83), /* DI */
+ COSTS_N_INSNS (83)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {5, 5, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {5, 5, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {4, 4}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 4}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 4}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 2, /* MMX or SSE register to integer */
+ 16, /* size of l1 cache. */
+ 2048, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ /* New AMD processors never drop prefetches; if they cannot be performed
+ immediately, they are queued. We set number of simultaneous prefetches
+ to a large constant to reflect this (it probably is not a good idea not
+ to limit number of prefetches at all, as their execution also takes some
+ time). */
+ 100, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (6), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (42), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */
+
+ bdver4_memcpy,
+ bdver4_memset,
+ 6, /* scalar_stmt_cost. */
+ 4, /* scalar load_cost. */
+ 4, /* scalar_store_cost. */
+ 6, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 4, /* vec_align_load_cost. */
+ 4, /* vec_unalign_load_cost. */
+ 4, /* vec_store_cost. */
+ 2, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+ /* BTVER1 has optimized REP instruction for medium sized blocks, but for
+ very small blocks it is better to use loop. For large blocks, libcall can
+ do nontemporary accesses and beat inline considerably. */
+static stringop_algs btver1_memcpy[2] = {
+ {libcall, {{6, loop, false}, {14, unrolled_loop, false},
+ {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs btver1_memset[2] = {
+ {libcall, {{8, loop, false}, {24, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+const struct processor_costs btver1_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (2), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (5)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (35), /* HI */
+ COSTS_N_INSNS (51), /* SI */
+ COSTS_N_INSNS (83), /* DI */
+ COSTS_N_INSNS (83)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {3, 4, 3}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {3, 4, 3}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {4, 4, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {3, 3}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 3}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 5}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 3, /* MMX or SSE register to integer */
+ /* On K8:
+ MOVD reg64, xmmreg Double FSTORE 4
+ MOVD reg32, xmmreg Double FSTORE 4
+ On AMDFAM10:
+ MOVD reg64, xmmreg Double FADD 3
+ 1/1 1/1
+ MOVD reg32, xmmreg Double FADD 3
+ 1/1 1/1 */
+ 32, /* size of l1 cache. */
+ 512, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 100, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (4), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (19), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */
+
+ btver1_memcpy,
+ btver1_memset,
+ 4, /* scalar_stmt_cost. */
+ 2, /* scalar load_cost. */
+ 2, /* scalar_store_cost. */
+ 6, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 2, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 2, /* vec_store_cost. */
+ 2, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs btver2_memcpy[2] = {
+ {libcall, {{6, loop, false}, {14, unrolled_loop, false},
+ {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs btver2_memset[2] = {
+ {libcall, {{8, loop, false}, {24, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+const struct processor_costs btver2_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (2), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (5)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (35), /* HI */
+ COSTS_N_INSNS (51), /* SI */
+ COSTS_N_INSNS (83), /* DI */
+ COSTS_N_INSNS (83)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 9, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {3, 4, 3}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {3, 4, 3}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {4, 4, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {3, 3}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {4, 4}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {4, 4, 3}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {4, 4, 5}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 3, /* MMX or SSE register to integer */
+ /* On K8:
+ MOVD reg64, xmmreg Double FSTORE 4
+ MOVD reg32, xmmreg Double FSTORE 4
+ On AMDFAM10:
+ MOVD reg64, xmmreg Double FADD 3
+ 1/1 1/1
+ MOVD reg32, xmmreg Double FADD 3
+ 1/1 1/1 */
+ 32, /* size of l1 cache. */
+ 2048, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 100, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (4), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (19), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */
+ btver2_memcpy,
+ btver2_memset,
+ 4, /* scalar_stmt_cost. */
+ 2, /* scalar load_cost. */
+ 2, /* scalar_store_cost. */
+ 6, /* vec_stmt_cost. */
+ 0, /* vec_to_scalar_cost. */
+ 2, /* scalar_to_vec_cost. */
+ 2, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 2, /* vec_store_cost. */
+ 2, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs pentium4_memcpy[2] = {
+ {libcall, {{12, loop_1_byte, false}, {-1, rep_prefix_4_byte, false}}},
+ DUMMY_STRINGOP_ALGS};
+static stringop_algs pentium4_memset[2] = {
+ {libcall, {{6, loop_1_byte, false}, {48, loop, false},
+ {20480, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ DUMMY_STRINGOP_ALGS};
+
+static const
+struct processor_costs pentium4_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (3), /* cost of a lea instruction */
+ COSTS_N_INSNS (4), /* variable shift costs */
+ COSTS_N_INSNS (4), /* constant shift costs */
+ {COSTS_N_INSNS (15), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (15), /* HI */
+ COSTS_N_INSNS (15), /* SI */
+ COSTS_N_INSNS (15), /* DI */
+ COSTS_N_INSNS (15)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (56), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (56), /* HI */
+ COSTS_N_INSNS (56), /* SI */
+ COSTS_N_INSNS (56), /* DI */
+ COSTS_N_INSNS (56)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 16, /* "large" insn */
+ 6, /* MOVE_RATIO */
+ 2, /* cost for loading QImode using movzbl */
+ {4, 5, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {2, 3, 2}, /* cost of storing integer registers */
+ 2, /* cost of reg,reg fld/fst */
+ {2, 2, 6}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 6}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {2, 2}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {2, 2}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 12, /* cost of moving SSE register */
+ {12, 12, 12}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {2, 2, 8}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 10, /* MMX or SSE register to integer */
+ 8, /* size of l1 cache. */
+ 256, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 6, /* number of parallel prefetches */
+ 2, /* Branch cost */
+ COSTS_N_INSNS (5), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (7), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (43), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (2), /* cost of FABS instruction. */
+ COSTS_N_INSNS (2), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (43), /* cost of FSQRT instruction. */
+ pentium4_memcpy,
+ pentium4_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs nocona_memcpy[2] = {
+ {libcall, {{12, loop_1_byte, false}, {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{32, loop, false}, {20000, rep_prefix_8_byte, false},
+ {100000, unrolled_loop, false}, {-1, libcall, false}}}};
+
+static stringop_algs nocona_memset[2] = {
+ {libcall, {{6, loop_1_byte, false}, {48, loop, false},
+ {20480, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{24, loop, false}, {64, unrolled_loop, false},
+ {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}};
+
+static const
+struct processor_costs nocona_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1), /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (10), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (10), /* HI */
+ COSTS_N_INSNS (10), /* SI */
+ COSTS_N_INSNS (10), /* DI */
+ COSTS_N_INSNS (10)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (66), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (66), /* HI */
+ COSTS_N_INSNS (66), /* SI */
+ COSTS_N_INSNS (66), /* DI */
+ COSTS_N_INSNS (66)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 16, /* "large" insn */
+ 17, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {4, 4, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 3, /* cost of reg,reg fld/fst */
+ {12, 12, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {4, 4, 4}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 6, /* cost of moving MMX register */
+ {12, 12}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {12, 12}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 6, /* cost of moving SSE register */
+ {12, 12, 12}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {12, 12, 12}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 8, /* MMX or SSE register to integer */
+ 8, /* size of l1 cache. */
+ 1024, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 8, /* number of parallel prefetches */
+ 1, /* Branch cost */
+ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (8), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (40), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (3), /* cost of FABS instruction. */
+ COSTS_N_INSNS (3), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (44), /* cost of FSQRT instruction. */
+ nocona_memcpy,
+ nocona_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs atom_memcpy[2] = {
+ {libcall, {{11, loop, false}, {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{32, loop, false}, {64, rep_prefix_4_byte, false},
+ {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}};
+static stringop_algs atom_memset[2] = {
+ {libcall, {{8, loop, false}, {15, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{24, loop, false}, {32, unrolled_loop, false},
+ {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}};
+static const
+struct processor_costs atom_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (2)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (26), /* HI */
+ COSTS_N_INSNS (42), /* SI */
+ COSTS_N_INSNS (74), /* DI */
+ COSTS_N_INSNS (74)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 17, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {4, 4, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {12, 12, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {8, 8}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {8, 8}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {8, 8, 8}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {8, 8, 8}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 5, /* MMX or SSE register to integer */
+ 32, /* size of l1 cache. */
+ 256, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 6, /* number of parallel prefetches */
+ 3, /* Branch cost */
+ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (8), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (20), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (8), /* cost of FABS instruction. */
+ COSTS_N_INSNS (8), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */
+ atom_memcpy,
+ atom_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs slm_memcpy[2] = {
+ {libcall, {{11, loop, false}, {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{32, loop, false}, {64, rep_prefix_4_byte, false},
+ {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}};
+static stringop_algs slm_memset[2] = {
+ {libcall, {{8, loop, false}, {15, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{24, loop, false}, {32, unrolled_loop, false},
+ {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}};
+static const
+struct processor_costs slm_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (3), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (2)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (26), /* HI */
+ COSTS_N_INSNS (42), /* SI */
+ COSTS_N_INSNS (74), /* DI */
+ COSTS_N_INSNS (74)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 17, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {4, 4, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {12, 12, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {8, 8}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {8, 8}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {8, 8, 8}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {8, 8, 8}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 5, /* MMX or SSE register to integer */
+ 32, /* size of l1 cache. */
+ 256, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 6, /* number of parallel prefetches */
+ 3, /* Branch cost */
+ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (8), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (20), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (8), /* cost of FABS instruction. */
+ COSTS_N_INSNS (8), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */
+ slm_memcpy,
+ slm_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+static stringop_algs intel_memcpy[2] = {
+ {libcall, {{11, loop, false}, {-1, rep_prefix_4_byte, false}}},
+ {libcall, {{32, loop, false}, {64, rep_prefix_4_byte, false},
+ {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}};
+static stringop_algs intel_memset[2] = {
+ {libcall, {{8, loop, false}, {15, unrolled_loop, false},
+ {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}},
+ {libcall, {{24, loop, false}, {32, unrolled_loop, false},
+ {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}};
+static const
+struct processor_costs intel_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (3), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (2)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (26), /* HI */
+ COSTS_N_INSNS (42), /* SI */
+ COSTS_N_INSNS (74), /* DI */
+ COSTS_N_INSNS (74)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 17, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {4, 4, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {12, 12, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {8, 8}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {8, 8}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {8, 8, 8}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {8, 8, 8}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 5, /* MMX or SSE register to integer */
+ 32, /* size of l1 cache. */
+ 256, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 6, /* number of parallel prefetches */
+ 3, /* Branch cost */
+ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (8), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (20), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (8), /* cost of FABS instruction. */
+ COSTS_N_INSNS (8), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */
+ intel_memcpy,
+ intel_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* Generic should produce code tuned for Core-i7 (and newer chips)
+ and btver1 (and newer chips). */
+
+static stringop_algs generic_memcpy[2] = {
+ {libcall, {{32, loop, false}, {8192, rep_prefix_4_byte, false},
+ {-1, libcall, false}}},
+ {libcall, {{32, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static stringop_algs generic_memset[2] = {
+ {libcall, {{32, loop, false}, {8192, rep_prefix_4_byte, false},
+ {-1, libcall, false}}},
+ {libcall, {{32, loop, false}, {8192, rep_prefix_8_byte, false},
+ {-1, libcall, false}}}};
+static const
+struct processor_costs generic_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ /* On all chips taken into consideration lea is 2 cycles and more. With
+ this cost however our current implementation of synth_mult results in
+ use of unnecessary temporary registers causing regression on several
+ SPECfp benchmarks. */
+ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (2)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (26), /* HI */
+ COSTS_N_INSNS (42), /* SI */
+ COSTS_N_INSNS (74), /* DI */
+ COSTS_N_INSNS (74)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 17, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {4, 4, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {12, 12, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {8, 8}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {8, 8}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {8, 8, 8}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {8, 8, 8}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 5, /* MMX or SSE register to integer */
+ 32, /* size of l1 cache. */
+ 512, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 6, /* number of parallel prefetches */
+ /* Benchmarks shows large regressions on K8 sixtrack benchmark when this
+ value is increased to perhaps more appropriate value of 5. */
+ 3, /* Branch cost */
+ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (8), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (20), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (8), /* cost of FABS instruction. */
+ COSTS_N_INSNS (8), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */
+ generic_memcpy,
+ generic_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+/* core_cost should produce code tuned for Core familly of CPUs. */
+static stringop_algs core_memcpy[2] = {
+ {libcall, {{1024, rep_prefix_4_byte, true}, {-1, libcall, false}}},
+ {libcall, {{24, loop, true}, {128, rep_prefix_8_byte, true},
+ {-1, libcall, false}}}};
+static stringop_algs core_memset[2] = {
+ {libcall, {{6, loop_1_byte, true},
+ {24, loop, true},
+ {8192, rep_prefix_4_byte, true},
+ {-1, libcall, false}}},
+ {libcall, {{24, loop, true}, {512, rep_prefix_8_byte, true},
+ {-1, libcall, false}}}};
+
+static const
+struct processor_costs core_cost = {
+ COSTS_N_INSNS (1), /* cost of an add instruction */
+ /* On all chips taken into consideration lea is 2 cycles and more. With
+ this cost however our current implementation of synth_mult results in
+ use of unnecessary temporary registers causing regression on several
+ SPECfp benchmarks. */
+ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */
+ COSTS_N_INSNS (1), /* variable shift costs */
+ COSTS_N_INSNS (1), /* constant shift costs */
+ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */
+ COSTS_N_INSNS (4), /* HI */
+ COSTS_N_INSNS (3), /* SI */
+ COSTS_N_INSNS (4), /* DI */
+ COSTS_N_INSNS (2)}, /* other */
+ 0, /* cost of multiply per each bit set */
+ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */
+ COSTS_N_INSNS (26), /* HI */
+ COSTS_N_INSNS (42), /* SI */
+ COSTS_N_INSNS (74), /* DI */
+ COSTS_N_INSNS (74)}, /* other */
+ COSTS_N_INSNS (1), /* cost of movsx */
+ COSTS_N_INSNS (1), /* cost of movzx */
+ 8, /* "large" insn */
+ 17, /* MOVE_RATIO */
+ 4, /* cost for loading QImode using movzbl */
+ {4, 4, 4}, /* cost of loading integer registers
+ in QImode, HImode and SImode.
+ Relative to reg-reg move (2). */
+ {4, 4, 4}, /* cost of storing integer registers */
+ 4, /* cost of reg,reg fld/fst */
+ {12, 12, 12}, /* cost of loading fp registers
+ in SFmode, DFmode and XFmode */
+ {6, 6, 8}, /* cost of storing fp registers
+ in SFmode, DFmode and XFmode */
+ 2, /* cost of moving MMX register */
+ {8, 8}, /* cost of loading MMX registers
+ in SImode and DImode */
+ {8, 8}, /* cost of storing MMX registers
+ in SImode and DImode */
+ 2, /* cost of moving SSE register */
+ {8, 8, 8}, /* cost of loading SSE registers
+ in SImode, DImode and TImode */
+ {8, 8, 8}, /* cost of storing SSE registers
+ in SImode, DImode and TImode */
+ 5, /* MMX or SSE register to integer */
+ 64, /* size of l1 cache. */
+ 512, /* size of l2 cache. */
+ 64, /* size of prefetch block */
+ 6, /* number of parallel prefetches */
+ /* FIXME perhaps more appropriate value is 5. */
+ 3, /* Branch cost */
+ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */
+ COSTS_N_INSNS (8), /* cost of FMUL instruction. */
+ COSTS_N_INSNS (20), /* cost of FDIV instruction. */
+ COSTS_N_INSNS (8), /* cost of FABS instruction. */
+ COSTS_N_INSNS (8), /* cost of FCHS instruction. */
+ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */
+ core_memcpy,
+ core_memset,
+ 1, /* scalar_stmt_cost. */
+ 1, /* scalar load_cost. */
+ 1, /* scalar_store_cost. */
+ 1, /* vec_stmt_cost. */
+ 1, /* vec_to_scalar_cost. */
+ 1, /* scalar_to_vec_cost. */
+ 1, /* vec_align_load_cost. */
+ 2, /* vec_unalign_load_cost. */
+ 1, /* vec_store_cost. */
+ 3, /* cond_taken_branch_cost. */
+ 1, /* cond_not_taken_branch_cost. */
+};
+
+
+/* Set by -mtune. */
+const struct processor_costs *ix86_tune_cost = &pentium_cost;
+
+/* Set by -mtune or -Os. */
+const struct processor_costs *ix86_cost = &pentium_cost;
+
+/* Processor feature/optimization bitmasks. */
+#define m_386 (1<<PROCESSOR_I386)
+#define m_486 (1<<PROCESSOR_I486)
+#define m_PENT (1<<PROCESSOR_PENTIUM)
+#define m_PPRO (1<<PROCESSOR_PENTIUMPRO)
+#define m_PENT4 (1<<PROCESSOR_PENTIUM4)
+#define m_NOCONA (1<<PROCESSOR_NOCONA)
+#define m_P4_NOCONA (m_PENT4 | m_NOCONA)
+#define m_CORE2 (1<<PROCESSOR_CORE2)
+#define m_NEHALEM (1<<PROCESSOR_NEHALEM)
+#define m_SANDYBRIDGE (1<<PROCESSOR_SANDYBRIDGE)
+#define m_HASWELL (1<<PROCESSOR_HASWELL)
+#define m_CORE_ALL (m_CORE2 | m_NEHALEM | m_SANDYBRIDGE | m_HASWELL)
+#define m_BONNELL (1<<PROCESSOR_BONNELL)
+#define m_SILVERMONT (1<<PROCESSOR_SILVERMONT)
+#define m_INTEL (1<<PROCESSOR_INTEL)
+
+#define m_GEODE (1<<PROCESSOR_GEODE)
+#define m_K6 (1<<PROCESSOR_K6)
+#define m_K6_GEODE (m_K6 | m_GEODE)
+#define m_K8 (1<<PROCESSOR_K8)
+#define m_ATHLON (1<<PROCESSOR_ATHLON)
+#define m_ATHLON_K8 (m_K8 | m_ATHLON)
+#define m_AMDFAM10 (1<<PROCESSOR_AMDFAM10)
+#define m_BDVER1 (1<<PROCESSOR_BDVER1)
+#define m_BDVER2 (1<<PROCESSOR_BDVER2)
+#define m_BDVER3 (1<<PROCESSOR_BDVER3)
+#define m_BDVER4 (1<<PROCESSOR_BDVER4)
+#define m_BTVER1 (1<<PROCESSOR_BTVER1)
+#define m_BTVER2 (1<<PROCESSOR_BTVER2)
+#define m_BDVER (m_BDVER1 | m_BDVER2 | m_BDVER3 | m_BDVER4)
+#define m_BTVER (m_BTVER1 | m_BTVER2)
+#define m_AMD_MULTIPLE (m_ATHLON_K8 | m_AMDFAM10 | m_BDVER | m_BTVER)
+
+#define m_GENERIC (1<<PROCESSOR_GENERIC)
+
+const char* ix86_tune_feature_names[X86_TUNE_LAST] = {
+#undef DEF_TUNE
+#define DEF_TUNE(tune, name, selector) name,
+#include "x86-tune.def"
+#undef DEF_TUNE
+};
+
+/* Feature tests against the various tunings. */
+unsigned char ix86_tune_features[X86_TUNE_LAST];
+
+/* Feature tests against the various tunings used to create ix86_tune_features
+ based on the processor mask. */
+static unsigned int initial_ix86_tune_features[X86_TUNE_LAST] = {
+#undef DEF_TUNE
+#define DEF_TUNE(tune, name, selector) selector,
+#include "x86-tune.def"
+#undef DEF_TUNE
+};
+
+/* Feature tests against the various architecture variations. */
+unsigned char ix86_arch_features[X86_ARCH_LAST];
+
+/* Feature tests against the various architecture variations, used to create
+ ix86_arch_features based on the processor mask. */
+static unsigned int initial_ix86_arch_features[X86_ARCH_LAST] = {
+ /* X86_ARCH_CMOV: Conditional move was added for pentiumpro. */
+ ~(m_386 | m_486 | m_PENT | m_K6),
+
+ /* X86_ARCH_CMPXCHG: Compare and exchange was added for 80486. */
+ ~m_386,
+
+ /* X86_ARCH_CMPXCHG8B: Compare and exchange 8 bytes was added for pentium. */
+ ~(m_386 | m_486),
+
+ /* X86_ARCH_XADD: Exchange and add was added for 80486. */
+ ~m_386,
+
+ /* X86_ARCH_BSWAP: Byteswap was added for 80486. */
+ ~m_386,
+};
+
+/* In case the average insn count for single function invocation is
+ lower than this constant, emit fast (but longer) prologue and
+ epilogue code. */
+#define FAST_PROLOGUE_INSN_COUNT 20
+
+/* Names for 8 (low), 8 (high), and 16-bit registers, respectively. */
+static const char *const qi_reg_name[] = QI_REGISTER_NAMES;
+static const char *const qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES;
+static const char *const hi_reg_name[] = HI_REGISTER_NAMES;
+
+/* Array of the smallest class containing reg number REGNO, indexed by
+ REGNO. Used by REGNO_REG_CLASS in i386.h. */
+
+enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER] =
+{
+ /* ax, dx, cx, bx */
+ AREG, DREG, CREG, BREG,
+ /* si, di, bp, sp */
+ SIREG, DIREG, NON_Q_REGS, NON_Q_REGS,
+ /* FP registers */
+ FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS,
+ FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS,
+ /* arg pointer */
+ NON_Q_REGS,
+ /* flags, fpsr, fpcr, frame */
+ NO_REGS, NO_REGS, NO_REGS, NON_Q_REGS,
+ /* SSE registers */
+ SSE_FIRST_REG, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS,
+ SSE_REGS, SSE_REGS,
+ /* MMX registers */
+ MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS,
+ MMX_REGS, MMX_REGS,
+ /* REX registers */
+ NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS,
+ NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS,
+ /* SSE REX registers */
+ SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS,
+ SSE_REGS, SSE_REGS,
+ /* AVX-512 SSE registers */
+ EVEX_SSE_REGS, EVEX_SSE_REGS, EVEX_SSE_REGS, EVEX_SSE_REGS,
+ EVEX_SSE_REGS, EVEX_SSE_REGS, EVEX_SSE_REGS, EVEX_SSE_REGS,
+ EVEX_SSE_REGS, EVEX_SSE_REGS, EVEX_SSE_REGS, EVEX_SSE_REGS,
+ EVEX_SSE_REGS, EVEX_SSE_REGS, EVEX_SSE_REGS, EVEX_SSE_REGS,
+ /* Mask registers. */
+ MASK_REGS, MASK_EVEX_REGS, MASK_EVEX_REGS, MASK_EVEX_REGS,
+ MASK_EVEX_REGS, MASK_EVEX_REGS, MASK_EVEX_REGS, MASK_EVEX_REGS,
+};
+
+/* The "default" register map used in 32bit mode. */
+
+int const dbx_register_map[FIRST_PSEUDO_REGISTER] =
+{
+ 0, 2, 1, 3, 6, 7, 4, 5, /* general regs */
+ 12, 13, 14, 15, 16, 17, 18, 19, /* fp regs */
+ -1, -1, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */
+ 21, 22, 23, 24, 25, 26, 27, 28, /* SSE */
+ 29, 30, 31, 32, 33, 34, 35, 36, /* MMX */
+ -1, -1, -1, -1, -1, -1, -1, -1, /* extended integer registers */
+ -1, -1, -1, -1, -1, -1, -1, -1, /* extended SSE registers */
+ -1, -1, -1, -1, -1, -1, -1, -1, /* AVX-512 registers 16-23*/
+ -1, -1, -1, -1, -1, -1, -1, -1, /* AVX-512 registers 24-31*/
+ 93, 94, 95, 96, 97, 98, 99, 100, /* Mask registers */
+};
+
+/* The "default" register map used in 64bit mode. */
+
+int const dbx64_register_map[FIRST_PSEUDO_REGISTER] =
+{
+ 0, 1, 2, 3, 4, 5, 6, 7, /* general regs */
+ 33, 34, 35, 36, 37, 38, 39, 40, /* fp regs */
+ -1, -1, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */
+ 17, 18, 19, 20, 21, 22, 23, 24, /* SSE */
+ 41, 42, 43, 44, 45, 46, 47, 48, /* MMX */
+ 8,9,10,11,12,13,14,15, /* extended integer registers */
+ 25, 26, 27, 28, 29, 30, 31, 32, /* extended SSE registers */
+ 67, 68, 69, 70, 71, 72, 73, 74, /* AVX-512 registers 16-23 */
+ 75, 76, 77, 78, 79, 80, 81, 82, /* AVX-512 registers 24-31 */
+ 118, 119, 120, 121, 122, 123, 124, 125, /* Mask registers */
+};
+
+/* Define the register numbers to be used in Dwarf debugging information.
+ The SVR4 reference port C compiler uses the following register numbers
+ in its Dwarf output code:
+ 0 for %eax (gcc regno = 0)
+ 1 for %ecx (gcc regno = 2)
+ 2 for %edx (gcc regno = 1)
+ 3 for %ebx (gcc regno = 3)
+ 4 for %esp (gcc regno = 7)
+ 5 for %ebp (gcc regno = 6)
+ 6 for %esi (gcc regno = 4)
+ 7 for %edi (gcc regno = 5)
+ The following three DWARF register numbers are never generated by
+ the SVR4 C compiler or by the GNU compilers, but SDB on x86/svr4
+ believes these numbers have these meanings.
+ 8 for %eip (no gcc equivalent)
+ 9 for %eflags (gcc regno = 17)
+ 10 for %trapno (no gcc equivalent)
+ It is not at all clear how we should number the FP stack registers
+ for the x86 architecture. If the version of SDB on x86/svr4 were
+ a bit less brain dead with respect to floating-point then we would
+ have a precedent to follow with respect to DWARF register numbers
+ for x86 FP registers, but the SDB on x86/svr4 is so completely
+ broken with respect to FP registers that it is hardly worth thinking
+ of it as something to strive for compatibility with.
+ The version of x86/svr4 SDB I have at the moment does (partially)
+ seem to believe that DWARF register number 11 is associated with
+ the x86 register %st(0), but that's about all. Higher DWARF
+ register numbers don't seem to be associated with anything in
+ particular, and even for DWARF regno 11, SDB only seems to under-
+ stand that it should say that a variable lives in %st(0) (when
+ asked via an `=' command) if we said it was in DWARF regno 11,
+ but SDB still prints garbage when asked for the value of the
+ variable in question (via a `/' command).
+ (Also note that the labels SDB prints for various FP stack regs
+ when doing an `x' command are all wrong.)
+ Note that these problems generally don't affect the native SVR4
+ C compiler because it doesn't allow the use of -O with -g and
+ because when it is *not* optimizing, it allocates a memory
+ location for each floating-point variable, and the memory
+ location is what gets described in the DWARF AT_location
+ attribute for the variable in question.
+ Regardless of the severe mental illness of the x86/svr4 SDB, we
+ do something sensible here and we use the following DWARF
+ register numbers. Note that these are all stack-top-relative
+ numbers.
+ 11 for %st(0) (gcc regno = 8)
+ 12 for %st(1) (gcc regno = 9)
+ 13 for %st(2) (gcc regno = 10)
+ 14 for %st(3) (gcc regno = 11)
+ 15 for %st(4) (gcc regno = 12)
+ 16 for %st(5) (gcc regno = 13)
+ 17 for %st(6) (gcc regno = 14)
+ 18 for %st(7) (gcc regno = 15)
+*/
+int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER] =
+{
+ 0, 2, 1, 3, 6, 7, 5, 4, /* general regs */
+ 11, 12, 13, 14, 15, 16, 17, 18, /* fp regs */
+ -1, 9, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */
+ 21, 22, 23, 24, 25, 26, 27, 28, /* SSE registers */
+ 29, 30, 31, 32, 33, 34, 35, 36, /* MMX registers */
+ -1, -1, -1, -1, -1, -1, -1, -1, /* extended integer registers */
+ -1, -1, -1, -1, -1, -1, -1, -1, /* extended SSE registers */
+ -1, -1, -1, -1, -1, -1, -1, -1, /* AVX-512 registers 16-23*/
+ -1, -1, -1, -1, -1, -1, -1, -1, /* AVX-512 registers 24-31*/
+ 93, 94, 95, 96, 97, 98, 99, 100, /* Mask registers */
+};
+
+/* Define parameter passing and return registers. */
+
+static int const x86_64_int_parameter_registers[6] =
+{
+ DI_REG, SI_REG, DX_REG, CX_REG, R8_REG, R9_REG
+};
+
+static int const x86_64_ms_abi_int_parameter_registers[4] =
+{
+ CX_REG, DX_REG, R8_REG, R9_REG
+};
+
+static int const x86_64_int_return_registers[4] =
+{
+ AX_REG, DX_REG, DI_REG, SI_REG
+};
+
+/* Additional registers that are clobbered by SYSV calls. */
+
+int const x86_64_ms_sysv_extra_clobbered_registers[12] =
+{
+ SI_REG, DI_REG,
+ XMM6_REG, XMM7_REG,
+ XMM8_REG, XMM9_REG, XMM10_REG, XMM11_REG,
+ XMM12_REG, XMM13_REG, XMM14_REG, XMM15_REG
+};
+
+/* Define the structure for the machine field in struct function. */
+
+struct GTY(()) stack_local_entry {
+ unsigned short mode;
+ unsigned short n;
+ rtx rtl;
+ struct stack_local_entry *next;
+};
+
+/* Structure describing stack frame layout.
+ Stack grows downward:
+
+ [arguments]
+ <- ARG_POINTER
+ saved pc
+
+ saved static chain if ix86_static_chain_on_stack
+
+ saved frame pointer if frame_pointer_needed
+ <- HARD_FRAME_POINTER
+ [saved regs]
+ <- regs_save_offset
+ [padding0]
+
+ [saved SSE regs]
+ <- sse_regs_save_offset
+ [padding1] |
+ | <- FRAME_POINTER
+ [va_arg registers] |
+ |
+ [frame] |
+ |
+ [padding2] | = to_allocate
+ <- STACK_POINTER
+ */
+struct ix86_frame
+{
+ int nsseregs;
+ int nregs;
+ int va_arg_size;
+ int red_zone_size;
+ int outgoing_arguments_size;
+
+ /* The offsets relative to ARG_POINTER. */
+ HOST_WIDE_INT frame_pointer_offset;
+ HOST_WIDE_INT hard_frame_pointer_offset;
+ HOST_WIDE_INT stack_pointer_offset;
+ HOST_WIDE_INT hfp_save_offset;
+ HOST_WIDE_INT reg_save_offset;
+ HOST_WIDE_INT sse_reg_save_offset;
+
+ /* When save_regs_using_mov is set, emit prologue using
+ move instead of push instructions. */
+ bool save_regs_using_mov;
+};
+
+/* Which cpu are we scheduling for. */
+enum attr_cpu ix86_schedule;
+
+/* Which cpu are we optimizing for. */
+enum processor_type ix86_tune;
+
+/* Which instruction set architecture to use. */
+enum processor_type ix86_arch;
+
+/* True if processor has SSE prefetch instruction. */
+unsigned char x86_prefetch_sse;
+
+/* -mstackrealign option */
+static const char ix86_force_align_arg_pointer_string[]
+ = "force_align_arg_pointer";
+
+static rtx (*ix86_gen_leave) (void);
+static rtx (*ix86_gen_add3) (rtx, rtx, rtx);
+static rtx (*ix86_gen_sub3) (rtx, rtx, rtx);
+static rtx (*ix86_gen_sub3_carry) (rtx, rtx, rtx, rtx, rtx);
+static rtx (*ix86_gen_one_cmpl2) (rtx, rtx);
+static rtx (*ix86_gen_monitor) (rtx, rtx, rtx);
+static rtx (*ix86_gen_andsp) (rtx, rtx, rtx);
+static rtx (*ix86_gen_allocate_stack_worker) (rtx, rtx);
+static rtx (*ix86_gen_adjust_stack_and_probe) (rtx, rtx, rtx);
+static rtx (*ix86_gen_probe_stack_range) (rtx, rtx, rtx);
+static rtx (*ix86_gen_tls_global_dynamic_64) (rtx, rtx, rtx);
+static rtx (*ix86_gen_tls_local_dynamic_base_64) (rtx, rtx);
+
+/* Preferred alignment for stack boundary in bits. */
+unsigned int ix86_preferred_stack_boundary;
+
+/* Alignment for incoming stack boundary in bits specified at
+ command line. */
+static unsigned int ix86_user_incoming_stack_boundary;
+
+/* Default alignment for incoming stack boundary in bits. */
+static unsigned int ix86_default_incoming_stack_boundary;
+
+/* Alignment for incoming stack boundary in bits. */
+unsigned int ix86_incoming_stack_boundary;
+
+/* Calling abi specific va_list type nodes. */
+static GTY(()) tree sysv_va_list_type_node;
+static GTY(()) tree ms_va_list_type_node;
+
+/* Prefix built by ASM_GENERATE_INTERNAL_LABEL. */
+char internal_label_prefix[16];
+int internal_label_prefix_len;
+
+/* Fence to use after loop using movnt. */
+tree x86_mfence;
+
+/* Register class used for passing given 64bit part of the argument.
+ These represent classes as documented by the PS ABI, with the exception
+ of SSESF, SSEDF classes, that are basically SSE class, just gcc will
+ use SF or DFmode move instead of DImode to avoid reformatting penalties.
+
+ Similarly we play games with INTEGERSI_CLASS to use cheaper SImode moves
+ whenever possible (upper half does contain padding). */
+enum x86_64_reg_class
+ {
+ X86_64_NO_CLASS,
+ X86_64_INTEGER_CLASS,
+ X86_64_INTEGERSI_CLASS,
+ X86_64_SSE_CLASS,
+ X86_64_SSESF_CLASS,
+ X86_64_SSEDF_CLASS,
+ X86_64_SSEUP_CLASS,
+ X86_64_X87_CLASS,
+ X86_64_X87UP_CLASS,
+ X86_64_COMPLEX_X87_CLASS,
+ X86_64_MEMORY_CLASS
+ };
+
+#define MAX_CLASSES 8
+
+/* Table of constants used by fldpi, fldln2, etc.... */
+static REAL_VALUE_TYPE ext_80387_constants_table [5];
+static bool ext_80387_constants_init = 0;
+
+
+static struct machine_function * ix86_init_machine_status (void);
+static rtx ix86_function_value (const_tree, const_tree, bool);
+static bool ix86_function_value_regno_p (const unsigned int);
+static unsigned int ix86_function_arg_boundary (enum machine_mode,
+ const_tree);
+static rtx ix86_static_chain (const_tree, bool);
+static int ix86_function_regparm (const_tree, const_tree);
+static void ix86_compute_frame_layout (struct ix86_frame *);
+static bool ix86_expand_vector_init_one_nonzero (bool, enum machine_mode,
+ rtx, rtx, int);
+static void ix86_add_new_builtins (HOST_WIDE_INT);
+static tree ix86_canonical_va_list_type (tree);
+static void predict_jump (int);
+static unsigned int split_stack_prologue_scratch_regno (void);
+static bool i386_asm_output_addr_const_extra (FILE *, rtx);
+
+enum ix86_function_specific_strings
+{
+ IX86_FUNCTION_SPECIFIC_ARCH,
+ IX86_FUNCTION_SPECIFIC_TUNE,
+ IX86_FUNCTION_SPECIFIC_MAX
+};
+
+static char *ix86_target_string (HOST_WIDE_INT, int, const char *,
+ const char *, enum fpmath_unit, bool);
+static void ix86_function_specific_save (struct cl_target_option *,
+ struct gcc_options *opts);
+static void ix86_function_specific_restore (struct gcc_options *opts,
+ struct cl_target_option *);
+static void ix86_function_specific_print (FILE *, int,
+ struct cl_target_option *);
+static bool ix86_valid_target_attribute_p (tree, tree, tree, int);
+static bool ix86_valid_target_attribute_inner_p (tree, char *[],
+ struct gcc_options *,
+ struct gcc_options *,
+ struct gcc_options *);
+static bool ix86_can_inline_p (tree, tree);
+static void ix86_set_current_function (tree);
+static unsigned int ix86_minimum_incoming_stack_boundary (bool);
+
+static enum calling_abi ix86_function_abi (const_tree);
+
+
+#ifndef SUBTARGET32_DEFAULT_CPU
+#define SUBTARGET32_DEFAULT_CPU "i386"
+#endif
+
+/* Whether -mtune= or -march= were specified */
+static int ix86_tune_defaulted;
+static int ix86_arch_specified;
+
+/* Vectorization library interface and handlers. */
+static tree (*ix86_veclib_handler) (enum built_in_function, tree, tree);
+
+static tree ix86_veclibabi_svml (enum built_in_function, tree, tree);
+static tree ix86_veclibabi_acml (enum built_in_function, tree, tree);
+
+/* Processor target table, indexed by processor number */
+struct ptt
+{
+ const char *const name; /* processor name */
+ const struct processor_costs *cost; /* Processor costs */
+ const int align_loop; /* Default alignments. */
+ const int align_loop_max_skip;
+ const int align_jump;
+ const int align_jump_max_skip;
+ const int align_func;
+};
+
+/* This table must be in sync with enum processor_type in i386.h. */
+static const struct ptt processor_target_table[PROCESSOR_max] =
+{
+ {"generic", &generic_cost, 16, 10, 16, 10, 16},
+ {"i386", &i386_cost, 4, 3, 4, 3, 4},
+ {"i486", &i486_cost, 16, 15, 16, 15, 16},
+ {"pentium", &pentium_cost, 16, 7, 16, 7, 16},
+ {"pentiumpro", &pentiumpro_cost, 16, 15, 16, 10, 16},
+ {"pentium4", &pentium4_cost, 0, 0, 0, 0, 0},
+ {"nocona", &nocona_cost, 0, 0, 0, 0, 0},
+ {"core2", &core_cost, 16, 10, 16, 10, 16},
+ {"nehalem", &core_cost, 16, 10, 16, 10, 16},
+ {"sandybridge", &core_cost, 16, 10, 16, 10, 16},
+ {"haswell", &core_cost, 16, 10, 16, 10, 16},
+ {"bonnell", &atom_cost, 16, 15, 16, 7, 16},
+ {"silvermont", &slm_cost, 16, 15, 16, 7, 16},
+ {"intel", &intel_cost, 16, 15, 16, 7, 16},
+ {"geode", &geode_cost, 0, 0, 0, 0, 0},
+ {"k6", &k6_cost, 32, 7, 32, 7, 32},
+ {"athlon", &athlon_cost, 16, 7, 16, 7, 16},
+ {"k8", &k8_cost, 16, 7, 16, 7, 16},
+ {"amdfam10", &amdfam10_cost, 32, 24, 32, 7, 32},
+ {"bdver1", &bdver1_cost, 16, 10, 16, 7, 11},
+ {"bdver2", &bdver2_cost, 16, 10, 16, 7, 11},
+ {"bdver3", &bdver3_cost, 16, 10, 16, 7, 11},
+ {"bdver4", &bdver4_cost, 16, 10, 16, 7, 11},
+ {"btver1", &btver1_cost, 16, 10, 16, 7, 11},
+ {"btver2", &btver2_cost, 16, 10, 16, 7, 11}
+};
+
+static bool
+gate_insert_vzeroupper (void)
+{
+ return TARGET_AVX && !TARGET_AVX512F && TARGET_VZEROUPPER;
+}
+
+static unsigned int
+rest_of_handle_insert_vzeroupper (void)
+{
+ int i;
+
+ /* vzeroupper instructions are inserted immediately after reload to
+ account for possible spills from 256bit registers. The pass
+ reuses mode switching infrastructure by re-running mode insertion
+ pass, so disable entities that have already been processed. */
+ for (i = 0; i < MAX_386_ENTITIES; i++)
+ ix86_optimize_mode_switching[i] = 0;
+
+ ix86_optimize_mode_switching[AVX_U128] = 1;
+
+ /* Call optimize_mode_switching. */
+ g->get_passes ()->execute_pass_mode_switching ();
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_insert_vzeroupper =
+{
+ RTL_PASS, /* type */
+ "vzeroupper", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
+};
+
+class pass_insert_vzeroupper : public rtl_opt_pass
+{
+public:
+ pass_insert_vzeroupper(gcc::context *ctxt)
+ : rtl_opt_pass(pass_data_insert_vzeroupper, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_insert_vzeroupper (); }
+ unsigned int execute () { return rest_of_handle_insert_vzeroupper (); }
+
+}; // class pass_insert_vzeroupper
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_insert_vzeroupper (gcc::context *ctxt)
+{
+ return new pass_insert_vzeroupper (ctxt);
+}
+
+/* Return true if a red-zone is in use. */
+
+static inline bool
+ix86_using_red_zone (void)
+{
+ return TARGET_RED_ZONE && !TARGET_64BIT_MS_ABI;
+}
+
+/* Return a string that documents the current -m options. The caller is
+ responsible for freeing the string. */
+
+static char *
+ix86_target_string (HOST_WIDE_INT isa, int flags, const char *arch,
+ const char *tune, enum fpmath_unit fpmath,
+ bool add_nl_p)
+{
+ struct ix86_target_opts
+ {
+ const char *option; /* option string */
+ HOST_WIDE_INT mask; /* isa mask options */
+ };
+
+ /* This table is ordered so that options like -msse4.2 that imply
+ preceding options while match those first. */
+ static struct ix86_target_opts isa_opts[] =
+ {
+ { "-mfma4", OPTION_MASK_ISA_FMA4 },
+ { "-mfma", OPTION_MASK_ISA_FMA },
+ { "-mxop", OPTION_MASK_ISA_XOP },
+ { "-mlwp", OPTION_MASK_ISA_LWP },
+ { "-mavx512f", OPTION_MASK_ISA_AVX512F },
+ { "-mavx512er", OPTION_MASK_ISA_AVX512ER },
+ { "-mavx512cd", OPTION_MASK_ISA_AVX512CD },
+ { "-mavx512pf", OPTION_MASK_ISA_AVX512PF },
+ { "-msse4a", OPTION_MASK_ISA_SSE4A },
+ { "-msse4.2", OPTION_MASK_ISA_SSE4_2 },
+ { "-msse4.1", OPTION_MASK_ISA_SSE4_1 },
+ { "-mssse3", OPTION_MASK_ISA_SSSE3 },
+ { "-msse3", OPTION_MASK_ISA_SSE3 },
+ { "-msse2", OPTION_MASK_ISA_SSE2 },
+ { "-msse", OPTION_MASK_ISA_SSE },
+ { "-m3dnow", OPTION_MASK_ISA_3DNOW },
+ { "-m3dnowa", OPTION_MASK_ISA_3DNOW_A },
+ { "-mmmx", OPTION_MASK_ISA_MMX },
+ { "-mabm", OPTION_MASK_ISA_ABM },
+ { "-mbmi", OPTION_MASK_ISA_BMI },
+ { "-mbmi2", OPTION_MASK_ISA_BMI2 },
+ { "-mlzcnt", OPTION_MASK_ISA_LZCNT },
+ { "-mhle", OPTION_MASK_ISA_HLE },
+ { "-mfxsr", OPTION_MASK_ISA_FXSR },
+ { "-mrdseed", OPTION_MASK_ISA_RDSEED },
+ { "-mprfchw", OPTION_MASK_ISA_PRFCHW },
+ { "-madx", OPTION_MASK_ISA_ADX },
+ { "-mtbm", OPTION_MASK_ISA_TBM },
+ { "-mpopcnt", OPTION_MASK_ISA_POPCNT },
+ { "-mmovbe", OPTION_MASK_ISA_MOVBE },
+ { "-mcrc32", OPTION_MASK_ISA_CRC32 },
+ { "-maes", OPTION_MASK_ISA_AES },
+ { "-msha", OPTION_MASK_ISA_SHA },
+ { "-mpclmul", OPTION_MASK_ISA_PCLMUL },
+ { "-mfsgsbase", OPTION_MASK_ISA_FSGSBASE },
+ { "-mrdrnd", OPTION_MASK_ISA_RDRND },
+ { "-mf16c", OPTION_MASK_ISA_F16C },
+ { "-mrtm", OPTION_MASK_ISA_RTM },
+ { "-mxsave", OPTION_MASK_ISA_XSAVE },
+ { "-mxsaveopt", OPTION_MASK_ISA_XSAVEOPT },
+ { "-mprefetchwt1", OPTION_MASK_ISA_PREFETCHWT1 },
+ };
+
+ /* Flag options. */
+ static struct ix86_target_opts flag_opts[] =
+ {
+ { "-m128bit-long-double", MASK_128BIT_LONG_DOUBLE },
+ { "-mlong-double-128", MASK_LONG_DOUBLE_128 },
+ { "-mlong-double-64", MASK_LONG_DOUBLE_64 },
+ { "-m80387", MASK_80387 },
+ { "-maccumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS },
+ { "-malign-double", MASK_ALIGN_DOUBLE },
+ { "-mcld", MASK_CLD },
+ { "-mfp-ret-in-387", MASK_FLOAT_RETURNS },
+ { "-mieee-fp", MASK_IEEE_FP },
+ { "-minline-all-stringops", MASK_INLINE_ALL_STRINGOPS },
+ { "-minline-stringops-dynamically", MASK_INLINE_STRINGOPS_DYNAMICALLY },
+ { "-mms-bitfields", MASK_MS_BITFIELD_LAYOUT },
+ { "-mno-align-stringops", MASK_NO_ALIGN_STRINGOPS },
+ { "-mno-fancy-math-387", MASK_NO_FANCY_MATH_387 },
+ { "-mno-push-args", MASK_NO_PUSH_ARGS },
+ { "-mno-red-zone", MASK_NO_RED_ZONE },
+ { "-momit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER },
+ { "-mrecip", MASK_RECIP },
+ { "-mrtd", MASK_RTD },
+ { "-msseregparm", MASK_SSEREGPARM },
+ { "-mstack-arg-probe", MASK_STACK_PROBE },
+ { "-mtls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS },
+ { "-mvect8-ret-in-mem", MASK_VECT8_RETURNS },
+ { "-m8bit-idiv", MASK_USE_8BIT_IDIV },
+ { "-mvzeroupper", MASK_VZEROUPPER },
+ { "-mavx256-split-unaligned-load", MASK_AVX256_SPLIT_UNALIGNED_LOAD},
+ { "-mavx256-split-unaligned-store", MASK_AVX256_SPLIT_UNALIGNED_STORE},
+ { "-mprefer-avx128", MASK_PREFER_AVX128},
+ };
+
+ const char *opts[ARRAY_SIZE (isa_opts) + ARRAY_SIZE (flag_opts) + 6][2];
+
+ char isa_other[40];
+ char target_other[40];
+ unsigned num = 0;
+ unsigned i, j;
+ char *ret;
+ char *ptr;
+ size_t len;
+ size_t line_len;
+ size_t sep_len;
+ const char *abi;
+
+ memset (opts, '\0', sizeof (opts));
+
+ /* Add -march= option. */
+ if (arch)
+ {
+ opts[num][0] = "-march=";
+ opts[num++][1] = arch;
+ }
+
+ /* Add -mtune= option. */
+ if (tune)
+ {
+ opts[num][0] = "-mtune=";
+ opts[num++][1] = tune;
+ }
+
+ /* Add -m32/-m64/-mx32. */
+ if ((isa & OPTION_MASK_ISA_64BIT) != 0)
+ {
+ if ((isa & OPTION_MASK_ABI_64) != 0)
+ abi = "-m64";
+ else
+ abi = "-mx32";
+ isa &= ~ (OPTION_MASK_ISA_64BIT
+ | OPTION_MASK_ABI_64
+ | OPTION_MASK_ABI_X32);
+ }
+ else
+ abi = "-m32";
+ opts[num++][0] = abi;
+
+ /* Pick out the options in isa options. */
+ for (i = 0; i < ARRAY_SIZE (isa_opts); i++)
+ {
+ if ((isa & isa_opts[i].mask) != 0)
+ {
+ opts[num++][0] = isa_opts[i].option;
+ isa &= ~ isa_opts[i].mask;
+ }
+ }
+
+ if (isa && add_nl_p)
+ {
+ opts[num++][0] = isa_other;
+ sprintf (isa_other, "(other isa: %#" HOST_WIDE_INT_PRINT "x)",
+ isa);
+ }
+
+ /* Add flag options. */
+ for (i = 0; i < ARRAY_SIZE (flag_opts); i++)
+ {
+ if ((flags & flag_opts[i].mask) != 0)
+ {
+ opts[num++][0] = flag_opts[i].option;
+ flags &= ~ flag_opts[i].mask;
+ }
+ }
+
+ if (flags && add_nl_p)
+ {
+ opts[num++][0] = target_other;
+ sprintf (target_other, "(other flags: %#x)", flags);
+ }
+
+ /* Add -fpmath= option. */
+ if (fpmath)
+ {
+ opts[num][0] = "-mfpmath=";
+ switch ((int) fpmath)
+ {
+ case FPMATH_387:
+ opts[num++][1] = "387";
+ break;
+
+ case FPMATH_SSE:
+ opts[num++][1] = "sse";
+ break;
+
+ case FPMATH_387 | FPMATH_SSE:
+ opts[num++][1] = "sse+387";
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* Any options? */
+ if (num == 0)
+ return NULL;
+
+ gcc_assert (num < ARRAY_SIZE (opts));
+
+ /* Size the string. */
+ len = 0;
+ sep_len = (add_nl_p) ? 3 : 1;
+ for (i = 0; i < num; i++)
+ {
+ len += sep_len;
+ for (j = 0; j < 2; j++)
+ if (opts[i][j])
+ len += strlen (opts[i][j]);
+ }
+
+ /* Build the string. */
+ ret = ptr = (char *) xmalloc (len);
+ line_len = 0;
+
+ for (i = 0; i < num; i++)
+ {
+ size_t len2[2];
+
+ for (j = 0; j < 2; j++)
+ len2[j] = (opts[i][j]) ? strlen (opts[i][j]) : 0;
+
+ if (i != 0)
+ {
+ *ptr++ = ' ';
+ line_len++;
+
+ if (add_nl_p && line_len + len2[0] + len2[1] > 70)
+ {
+ *ptr++ = '\\';
+ *ptr++ = '\n';
+ line_len = 0;
+ }
+ }
+
+ for (j = 0; j < 2; j++)
+ if (opts[i][j])
+ {
+ memcpy (ptr, opts[i][j], len2[j]);
+ ptr += len2[j];
+ line_len += len2[j];
+ }
+ }
+
+ *ptr = '\0';
+ gcc_assert (ret + len >= ptr);
+
+ return ret;
+}
+
+/* Return true, if profiling code should be emitted before
+ prologue. Otherwise it returns false.
+ Note: For x86 with "hotfix" it is sorried. */
+static bool
+ix86_profile_before_prologue (void)
+{
+ return flag_fentry != 0;
+}
+
+/* Function that is callable from the debugger to print the current
+ options. */
+void ATTRIBUTE_UNUSED
+ix86_debug_options (void)
+{
+ char *opts = ix86_target_string (ix86_isa_flags, target_flags,
+ ix86_arch_string, ix86_tune_string,
+ ix86_fpmath, true);
+
+ if (opts)
+ {
+ fprintf (stderr, "%s\n\n", opts);
+ free (opts);
+ }
+ else
+ fputs ("<no options>\n\n", stderr);
+
+ return;
+}
+
+static const char *stringop_alg_names[] = {
+#define DEF_ENUM
+#define DEF_ALG(alg, name) #name,
+#include "stringop.def"
+#undef DEF_ENUM
+#undef DEF_ALG
+};
+
+/* Parse parameter string passed to -mmemcpy-strategy= or -mmemset-strategy=.
+ The string is of the following form (or comma separated list of it):
+
+ strategy_alg:max_size:[align|noalign]
+
+ where the full size range for the strategy is either [0, max_size] or
+ [min_size, max_size], in which min_size is the max_size + 1 of the
+ preceding range. The last size range must have max_size == -1.
+
+ Examples:
+
+ 1.
+ -mmemcpy-strategy=libcall:-1:noalign
+
+ this is equivalent to (for known size memcpy) -mstringop-strategy=libcall
+
+
+ 2.
+ -mmemset-strategy=rep_8byte:16:noalign,vector_loop:2048:align,libcall:-1:noalign
+
+ This is to tell the compiler to use the following strategy for memset
+ 1) when the expected size is between [1, 16], use rep_8byte strategy;
+ 2) when the size is between [17, 2048], use vector_loop;
+ 3) when the size is > 2048, use libcall. */
+
+struct stringop_size_range
+{
+ int max;
+ stringop_alg alg;
+ bool noalign;
+};
+
+static void
+ix86_parse_stringop_strategy_string (char *strategy_str, bool is_memset)
+{
+ const struct stringop_algs *default_algs;
+ stringop_size_range input_ranges[MAX_STRINGOP_ALGS];
+ char *curr_range_str, *next_range_str;
+ int i = 0, n = 0;
+
+ if (is_memset)
+ default_algs = &ix86_cost->memset[TARGET_64BIT != 0];
+ else
+ default_algs = &ix86_cost->memcpy[TARGET_64BIT != 0];
+
+ curr_range_str = strategy_str;
+
+ do
+ {
+ int maxs;
+ char alg_name[128];
+ char align[16];
+ next_range_str = strchr (curr_range_str, ',');
+ if (next_range_str)
+ *next_range_str++ = '\0';
+
+ if (3 != sscanf (curr_range_str, "%20[^:]:%d:%10s",
+ alg_name, &maxs, align))
+ {
+ error ("wrong arg %s to option %s", curr_range_str,
+ is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy=");
+ return;
+ }
+
+ if (n > 0 && (maxs < (input_ranges[n - 1].max + 1) && maxs != -1))
+ {
+ error ("size ranges of option %s should be increasing",
+ is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy=");
+ return;
+ }
+
+ for (i = 0; i < last_alg; i++)
+ if (!strcmp (alg_name, stringop_alg_names[i]))
+ break;
+
+ if (i == last_alg)
+ {
+ error ("wrong stringop strategy name %s specified for option %s",
+ alg_name,
+ is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy=");
+ return;
+ }
+
+ input_ranges[n].max = maxs;
+ input_ranges[n].alg = (stringop_alg) i;
+ if (!strcmp (align, "align"))
+ input_ranges[n].noalign = false;
+ else if (!strcmp (align, "noalign"))
+ input_ranges[n].noalign = true;
+ else
+ {
+ error ("unknown alignment %s specified for option %s",
+ align, is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy=");
+ return;
+ }
+ n++;
+ curr_range_str = next_range_str;
+ }
+ while (curr_range_str);
+
+ if (input_ranges[n - 1].max != -1)
+ {
+ error ("the max value for the last size range should be -1"
+ " for option %s",
+ is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy=");
+ return;
+ }
+
+ if (n > MAX_STRINGOP_ALGS)
+ {
+ error ("too many size ranges specified in option %s",
+ is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy=");
+ return;
+ }
+
+ /* Now override the default algs array. */
+ for (i = 0; i < n; i++)
+ {
+ *const_cast<int *>(&default_algs->size[i].max) = input_ranges[i].max;
+ *const_cast<stringop_alg *>(&default_algs->size[i].alg)
+ = input_ranges[i].alg;
+ *const_cast<int *>(&default_algs->size[i].noalign)
+ = input_ranges[i].noalign;
+ }
+}
+
+
+/* parse -mtune-ctrl= option. When DUMP is true,
+ print the features that are explicitly set. */
+
+static void
+parse_mtune_ctrl_str (bool dump)
+{
+ if (!ix86_tune_ctrl_string)
+ return;
+
+ char *next_feature_string = NULL;
+ char *curr_feature_string = xstrdup (ix86_tune_ctrl_string);
+ char *orig = curr_feature_string;
+ int i;
+ do
+ {
+ bool clear = false;
+
+ next_feature_string = strchr (curr_feature_string, ',');
+ if (next_feature_string)
+ *next_feature_string++ = '\0';
+ if (*curr_feature_string == '^')
+ {
+ curr_feature_string++;
+ clear = true;
+ }
+ for (i = 0; i < X86_TUNE_LAST; i++)
+ {
+ if (!strcmp (curr_feature_string, ix86_tune_feature_names[i]))
+ {
+ ix86_tune_features[i] = !clear;
+ if (dump)
+ fprintf (stderr, "Explicitly %s feature %s\n",
+ clear ? "clear" : "set", ix86_tune_feature_names[i]);
+ break;
+ }
+ }
+ if (i == X86_TUNE_LAST)
+ error ("Unknown parameter to option -mtune-ctrl: %s",
+ clear ? curr_feature_string - 1 : curr_feature_string);
+ curr_feature_string = next_feature_string;
+ }
+ while (curr_feature_string);
+ free (orig);
+}
+
+/* Helper function to set ix86_tune_features. IX86_TUNE is the
+ processor type. */
+
+static void
+set_ix86_tune_features (enum processor_type ix86_tune, bool dump)
+{
+ unsigned int ix86_tune_mask = 1u << ix86_tune;
+ int i;
+
+ for (i = 0; i < X86_TUNE_LAST; ++i)
+ {
+ if (ix86_tune_no_default)
+ ix86_tune_features[i] = 0;
+ else
+ ix86_tune_features[i] = !!(initial_ix86_tune_features[i] & ix86_tune_mask);
+ }
+
+ if (dump)
+ {
+ fprintf (stderr, "List of x86 specific tuning parameter names:\n");
+ for (i = 0; i < X86_TUNE_LAST; i++)
+ fprintf (stderr, "%s : %s\n", ix86_tune_feature_names[i],
+ ix86_tune_features[i] ? "on" : "off");
+ }
+
+ parse_mtune_ctrl_str (dump);
+}
+
+
+/* Override various settings based on options. If MAIN_ARGS_P, the
+ options are from the command line, otherwise they are from
+ attributes. */
+
+static void
+ix86_option_override_internal (bool main_args_p,
+ struct gcc_options *opts,
+ struct gcc_options *opts_set)
+{
+ int i;
+ unsigned int ix86_arch_mask;
+ const bool ix86_tune_specified = (opts->x_ix86_tune_string != NULL);
+ const char *prefix;
+ const char *suffix;
+ const char *sw;
+
+#define PTA_3DNOW (HOST_WIDE_INT_1 << 0)
+#define PTA_3DNOW_A (HOST_WIDE_INT_1 << 1)
+#define PTA_64BIT (HOST_WIDE_INT_1 << 2)
+#define PTA_ABM (HOST_WIDE_INT_1 << 3)
+#define PTA_AES (HOST_WIDE_INT_1 << 4)
+#define PTA_AVX (HOST_WIDE_INT_1 << 5)
+#define PTA_BMI (HOST_WIDE_INT_1 << 6)
+#define PTA_CX16 (HOST_WIDE_INT_1 << 7)
+#define PTA_F16C (HOST_WIDE_INT_1 << 8)
+#define PTA_FMA (HOST_WIDE_INT_1 << 9)
+#define PTA_FMA4 (HOST_WIDE_INT_1 << 10)
+#define PTA_FSGSBASE (HOST_WIDE_INT_1 << 11)
+#define PTA_LWP (HOST_WIDE_INT_1 << 12)
+#define PTA_LZCNT (HOST_WIDE_INT_1 << 13)
+#define PTA_MMX (HOST_WIDE_INT_1 << 14)
+#define PTA_MOVBE (HOST_WIDE_INT_1 << 15)
+#define PTA_NO_SAHF (HOST_WIDE_INT_1 << 16)
+#define PTA_PCLMUL (HOST_WIDE_INT_1 << 17)
+#define PTA_POPCNT (HOST_WIDE_INT_1 << 18)
+#define PTA_PREFETCH_SSE (HOST_WIDE_INT_1 << 19)
+#define PTA_RDRND (HOST_WIDE_INT_1 << 20)
+#define PTA_SSE (HOST_WIDE_INT_1 << 21)
+#define PTA_SSE2 (HOST_WIDE_INT_1 << 22)
+#define PTA_SSE3 (HOST_WIDE_INT_1 << 23)
+#define PTA_SSE4_1 (HOST_WIDE_INT_1 << 24)
+#define PTA_SSE4_2 (HOST_WIDE_INT_1 << 25)
+#define PTA_SSE4A (HOST_WIDE_INT_1 << 26)
+#define PTA_SSSE3 (HOST_WIDE_INT_1 << 27)
+#define PTA_TBM (HOST_WIDE_INT_1 << 28)
+#define PTA_XOP (HOST_WIDE_INT_1 << 29)
+#define PTA_AVX2 (HOST_WIDE_INT_1 << 30)
+#define PTA_BMI2 (HOST_WIDE_INT_1 << 31)
+#define PTA_RTM (HOST_WIDE_INT_1 << 32)
+#define PTA_HLE (HOST_WIDE_INT_1 << 33)
+#define PTA_PRFCHW (HOST_WIDE_INT_1 << 34)
+#define PTA_RDSEED (HOST_WIDE_INT_1 << 35)
+#define PTA_ADX (HOST_WIDE_INT_1 << 36)
+#define PTA_FXSR (HOST_WIDE_INT_1 << 37)
+#define PTA_XSAVE (HOST_WIDE_INT_1 << 38)
+#define PTA_XSAVEOPT (HOST_WIDE_INT_1 << 39)
+#define PTA_AVX512F (HOST_WIDE_INT_1 << 40)
+#define PTA_AVX512ER (HOST_WIDE_INT_1 << 41)
+#define PTA_AVX512PF (HOST_WIDE_INT_1 << 42)
+#define PTA_AVX512CD (HOST_WIDE_INT_1 << 43)
+#define PTA_SHA (HOST_WIDE_INT_1 << 45)
+#define PTA_PREFETCHWT1 (HOST_WIDE_INT_1 << 46)
+
+#define PTA_CORE2 \
+ (PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 \
+ | PTA_CX16 | PTA_FXSR)
+#define PTA_NEHALEM \
+ (PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_POPCNT)
+#define PTA_WESTMERE \
+ (PTA_NEHALEM | PTA_AES | PTA_PCLMUL)
+#define PTA_SANDYBRIDGE \
+ (PTA_WESTMERE | PTA_AVX | PTA_XSAVE | PTA_XSAVEOPT)
+#define PTA_IVYBRIDGE \
+ (PTA_SANDYBRIDGE | PTA_FSGSBASE | PTA_RDRND | PTA_F16C)
+#define PTA_HASWELL \
+ (PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_LZCNT \
+ | PTA_FMA | PTA_MOVBE | PTA_RTM | PTA_HLE)
+#define PTA_BROADWELL \
+ (PTA_HASWELL | PTA_ADX | PTA_PRFCHW | PTA_RDSEED)
+#define PTA_BONNELL \
+ (PTA_CORE2 | PTA_MOVBE)
+#define PTA_SILVERMONT \
+ (PTA_WESTMERE | PTA_MOVBE)
+
+/* if this reaches 64, need to widen struct pta flags below */
+
+ static struct pta
+ {
+ const char *const name; /* processor name or nickname. */
+ const enum processor_type processor;
+ const enum attr_cpu schedule;
+ const unsigned HOST_WIDE_INT flags;
+ }
+ const processor_alias_table[] =
+ {
+ {"i386", PROCESSOR_I386, CPU_NONE, 0},
+ {"i486", PROCESSOR_I486, CPU_NONE, 0},
+ {"i586", PROCESSOR_PENTIUM, CPU_PENTIUM, 0},
+ {"pentium", PROCESSOR_PENTIUM, CPU_PENTIUM, 0},
+ {"pentium-mmx", PROCESSOR_PENTIUM, CPU_PENTIUM, PTA_MMX},
+ {"winchip-c6", PROCESSOR_I486, CPU_NONE, PTA_MMX},
+ {"winchip2", PROCESSOR_I486, CPU_NONE, PTA_MMX | PTA_3DNOW | PTA_PRFCHW},
+ {"c3", PROCESSOR_I486, CPU_NONE, PTA_MMX | PTA_3DNOW | PTA_PRFCHW},
+ {"c3-2", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO,
+ PTA_MMX | PTA_SSE | PTA_FXSR},
+ {"i686", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, 0},
+ {"pentiumpro", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, 0},
+ {"pentium2", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_FXSR},
+ {"pentium3", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO,
+ PTA_MMX | PTA_SSE | PTA_FXSR},
+ {"pentium3m", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO,
+ PTA_MMX | PTA_SSE | PTA_FXSR},
+ {"pentium-m", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO,
+ PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_FXSR},
+ {"pentium4", PROCESSOR_PENTIUM4, CPU_NONE,
+ PTA_MMX |PTA_SSE | PTA_SSE2 | PTA_FXSR},
+ {"pentium4m", PROCESSOR_PENTIUM4, CPU_NONE,
+ PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_FXSR},
+ {"prescott", PROCESSOR_NOCONA, CPU_NONE,
+ PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_FXSR},
+ {"nocona", PROCESSOR_NOCONA, CPU_NONE,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
+ | PTA_CX16 | PTA_NO_SAHF | PTA_FXSR},
+ {"core2", PROCESSOR_CORE2, CPU_CORE2, PTA_CORE2},
+ {"nehalem", PROCESSOR_NEHALEM, CPU_NEHALEM, PTA_NEHALEM},
+ {"corei7", PROCESSOR_NEHALEM, CPU_NEHALEM, PTA_NEHALEM},
+ {"westmere", PROCESSOR_NEHALEM, CPU_NEHALEM, PTA_WESTMERE},
+ {"sandybridge", PROCESSOR_SANDYBRIDGE, CPU_NEHALEM,
+ PTA_SANDYBRIDGE},
+ {"corei7-avx", PROCESSOR_SANDYBRIDGE, CPU_NEHALEM,
+ PTA_SANDYBRIDGE},
+ {"ivybridge", PROCESSOR_SANDYBRIDGE, CPU_NEHALEM,
+ PTA_IVYBRIDGE},
+ {"core-avx-i", PROCESSOR_SANDYBRIDGE, CPU_NEHALEM,
+ PTA_IVYBRIDGE},
+ {"haswell", PROCESSOR_HASWELL, CPU_NEHALEM, PTA_HASWELL},
+ {"core-avx2", PROCESSOR_HASWELL, CPU_NEHALEM, PTA_HASWELL},
+ {"broadwell", PROCESSOR_HASWELL, CPU_NEHALEM, PTA_BROADWELL},
+ {"bonnell", PROCESSOR_BONNELL, CPU_ATOM, PTA_BONNELL},
+ {"atom", PROCESSOR_BONNELL, CPU_ATOM, PTA_BONNELL},
+ {"silvermont", PROCESSOR_SILVERMONT, CPU_SLM, PTA_SILVERMONT},
+ {"slm", PROCESSOR_SILVERMONT, CPU_SLM, PTA_SILVERMONT},
+ {"intel", PROCESSOR_INTEL, CPU_SLM, PTA_NEHALEM},
+ {"geode", PROCESSOR_GEODE, CPU_GEODE,
+ PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE | PTA_PRFCHW},
+ {"k6", PROCESSOR_K6, CPU_K6, PTA_MMX},
+ {"k6-2", PROCESSOR_K6, CPU_K6, PTA_MMX | PTA_3DNOW | PTA_PRFCHW},
+ {"k6-3", PROCESSOR_K6, CPU_K6, PTA_MMX | PTA_3DNOW | PTA_PRFCHW},
+ {"athlon", PROCESSOR_ATHLON, CPU_ATHLON,
+ PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE | PTA_PRFCHW},
+ {"athlon-tbird", PROCESSOR_ATHLON, CPU_ATHLON,
+ PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE | PTA_PRFCHW},
+ {"athlon-4", PROCESSOR_ATHLON, CPU_ATHLON,
+ PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_PRFCHW | PTA_FXSR},
+ {"athlon-xp", PROCESSOR_ATHLON, CPU_ATHLON,
+ PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_PRFCHW | PTA_FXSR},
+ {"athlon-mp", PROCESSOR_ATHLON, CPU_ATHLON,
+ PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_PRFCHW | PTA_FXSR},
+ {"x86-64", PROCESSOR_K8, CPU_K8,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF | PTA_FXSR},
+ {"k8", PROCESSOR_K8, CPU_K8,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE
+ | PTA_SSE2 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR},
+ {"k8-sse3", PROCESSOR_K8, CPU_K8,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE
+ | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR},
+ {"opteron", PROCESSOR_K8, CPU_K8,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE
+ | PTA_SSE2 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR},
+ {"opteron-sse3", PROCESSOR_K8, CPU_K8,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE
+ | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR},
+ {"athlon64", PROCESSOR_K8, CPU_K8,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE
+ | PTA_SSE2 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR},
+ {"athlon64-sse3", PROCESSOR_K8, CPU_K8,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE
+ | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR},
+ {"athlon-fx", PROCESSOR_K8, CPU_K8,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE
+ | PTA_SSE2 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR},
+ {"amdfam10", PROCESSOR_AMDFAM10, CPU_AMDFAM10,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2
+ | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_PRFCHW | PTA_FXSR},
+ {"barcelona", PROCESSOR_AMDFAM10, CPU_AMDFAM10,
+ PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2
+ | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_PRFCHW | PTA_FXSR},
+ {"bdver1", PROCESSOR_BDVER1, CPU_BDVER1,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
+ | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
+ | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_FMA4
+ | PTA_XOP | PTA_LWP | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE},
+ {"bdver2", PROCESSOR_BDVER2, CPU_BDVER2,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
+ | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
+ | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_FMA4
+ | PTA_XOP | PTA_LWP | PTA_BMI | PTA_TBM | PTA_F16C
+ | PTA_FMA | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE},
+ {"bdver3", PROCESSOR_BDVER3, CPU_BDVER3,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
+ | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
+ | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_FMA4
+ | PTA_XOP | PTA_LWP | PTA_BMI | PTA_TBM | PTA_F16C
+ | PTA_FMA | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE
+ | PTA_XSAVEOPT | PTA_FSGSBASE},
+ {"bdver4", PROCESSOR_BDVER4, CPU_BDVER4,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
+ | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
+ | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_AVX2
+ | PTA_FMA4 | PTA_XOP | PTA_LWP | PTA_BMI | PTA_BMI2
+ | PTA_TBM | PTA_F16C | PTA_FMA | PTA_PRFCHW | PTA_FXSR
+ | PTA_XSAVE | PTA_XSAVEOPT | PTA_FSGSBASE},
+ {"btver1", PROCESSOR_BTVER1, CPU_GENERIC,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
+ | PTA_SSSE3 | PTA_SSE4A |PTA_ABM | PTA_CX16 | PTA_PRFCHW
+ | PTA_FXSR | PTA_XSAVE},
+ {"btver2", PROCESSOR_BTVER2, CPU_BTVER2,
+ PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3
+ | PTA_SSSE3 | PTA_SSE4A |PTA_ABM | PTA_CX16 | PTA_SSE4_1
+ | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX
+ | PTA_BMI | PTA_F16C | PTA_MOVBE | PTA_PRFCHW
+ | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT},
+
+ {"generic", PROCESSOR_GENERIC, CPU_GENERIC,
+ PTA_64BIT
+ | PTA_HLE /* flags are only used for -march switch. */ },
+ };
+
+ /* -mrecip options. */
+ static struct
+ {
+ const char *string; /* option name */
+ unsigned int mask; /* mask bits to set */
+ }
+ const recip_options[] =
+ {
+ { "all", RECIP_MASK_ALL },
+ { "none", RECIP_MASK_NONE },
+ { "div", RECIP_MASK_DIV },
+ { "sqrt", RECIP_MASK_SQRT },
+ { "vec-div", RECIP_MASK_VEC_DIV },
+ { "vec-sqrt", RECIP_MASK_VEC_SQRT },
+ };
+
+ int const pta_size = ARRAY_SIZE (processor_alias_table);
+
+ /* Set up prefix/suffix so the error messages refer to either the command
+ line argument, or the attribute(target). */
+ if (main_args_p)
+ {
+ prefix = "-m";
+ suffix = "";
+ sw = "switch";
+ }
+ else
+ {
+ prefix = "option(\"";
+ suffix = "\")";
+ sw = "attribute";
+ }
+
+ /* Turn off both OPTION_MASK_ABI_64 and OPTION_MASK_ABI_X32 if
+ TARGET_64BIT_DEFAULT is true and TARGET_64BIT is false. */
+ if (TARGET_64BIT_DEFAULT && !TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_isa_flags &= ~(OPTION_MASK_ABI_64 | OPTION_MASK_ABI_X32);
+#ifdef TARGET_BI_ARCH
+ else
+ {
+#if TARGET_BI_ARCH == 1
+ /* When TARGET_BI_ARCH == 1, by default, OPTION_MASK_ABI_64
+ is on and OPTION_MASK_ABI_X32 is off. We turn off
+ OPTION_MASK_ABI_64 if OPTION_MASK_ABI_X32 is turned on by
+ -mx32. */
+ if (TARGET_X32_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_isa_flags &= ~OPTION_MASK_ABI_64;
+#else
+ /* When TARGET_BI_ARCH == 2, by default, OPTION_MASK_ABI_X32 is
+ on and OPTION_MASK_ABI_64 is off. We turn off
+ OPTION_MASK_ABI_X32 if OPTION_MASK_ABI_64 is turned on by
+ -m64. */
+ if (TARGET_LP64_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_isa_flags &= ~OPTION_MASK_ABI_X32;
+#endif
+ }
+#endif
+
+ if (TARGET_X32_P (opts->x_ix86_isa_flags))
+ {
+ /* Always turn on OPTION_MASK_ISA_64BIT and turn off
+ OPTION_MASK_ABI_64 for TARGET_X32. */
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_64BIT;
+ opts->x_ix86_isa_flags &= ~OPTION_MASK_ABI_64;
+ }
+ else if (TARGET_16BIT_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_isa_flags &= ~(OPTION_MASK_ISA_64BIT
+ | OPTION_MASK_ABI_X32
+ | OPTION_MASK_ABI_64);
+ else if (TARGET_LP64_P (opts->x_ix86_isa_flags))
+ {
+ /* Always turn on OPTION_MASK_ISA_64BIT and turn off
+ OPTION_MASK_ABI_X32 for TARGET_LP64. */
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_64BIT;
+ opts->x_ix86_isa_flags &= ~OPTION_MASK_ABI_X32;
+ }
+
+#ifdef SUBTARGET_OVERRIDE_OPTIONS
+ SUBTARGET_OVERRIDE_OPTIONS;
+#endif
+
+#ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
+ SUBSUBTARGET_OVERRIDE_OPTIONS;
+#endif
+
+ /* -fPIC is the default for x86_64. */
+ if (TARGET_MACHO && TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ opts->x_flag_pic = 2;
+
+ /* Need to check -mtune=generic first. */
+ if (opts->x_ix86_tune_string)
+ {
+ /* As special support for cross compilers we read -mtune=native
+ as -mtune=generic. With native compilers we won't see the
+ -mtune=native, as it was changed by the driver. */
+ if (!strcmp (opts->x_ix86_tune_string, "native"))
+ {
+ opts->x_ix86_tune_string = "generic";
+ }
+ else if (!strcmp (opts->x_ix86_tune_string, "x86-64"))
+ warning (OPT_Wdeprecated, "%stune=x86-64%s is deprecated; use "
+ "%stune=k8%s or %stune=generic%s instead as appropriate",
+ prefix, suffix, prefix, suffix, prefix, suffix);
+ }
+ else
+ {
+ if (opts->x_ix86_arch_string)
+ opts->x_ix86_tune_string = opts->x_ix86_arch_string;
+ if (!opts->x_ix86_tune_string)
+ {
+ opts->x_ix86_tune_string
+ = processor_target_table[TARGET_CPU_DEFAULT].name;
+ ix86_tune_defaulted = 1;
+ }
+
+ /* opts->x_ix86_tune_string is set to opts->x_ix86_arch_string
+ or defaulted. We need to use a sensible tune option. */
+ if (!strcmp (opts->x_ix86_tune_string, "x86-64"))
+ {
+ opts->x_ix86_tune_string = "generic";
+ }
+ }
+
+ if (opts->x_ix86_stringop_alg == rep_prefix_8_byte
+ && !TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ {
+ /* rep; movq isn't available in 32-bit code. */
+ error ("-mstringop-strategy=rep_8byte not supported for 32-bit code");
+ opts->x_ix86_stringop_alg = no_stringop;
+ }
+
+ if (!opts->x_ix86_arch_string)
+ opts->x_ix86_arch_string
+ = TARGET_64BIT_P (opts->x_ix86_isa_flags)
+ ? "x86-64" : SUBTARGET32_DEFAULT_CPU;
+ else
+ ix86_arch_specified = 1;
+
+ if (opts_set->x_ix86_pmode)
+ {
+ if ((TARGET_LP64_P (opts->x_ix86_isa_flags)
+ && opts->x_ix86_pmode == PMODE_SI)
+ || (!TARGET_64BIT_P (opts->x_ix86_isa_flags)
+ && opts->x_ix86_pmode == PMODE_DI))
+ error ("address mode %qs not supported in the %s bit mode",
+ TARGET_64BIT_P (opts->x_ix86_isa_flags) ? "short" : "long",
+ TARGET_64BIT_P (opts->x_ix86_isa_flags) ? "64" : "32");
+ }
+ else
+ opts->x_ix86_pmode = TARGET_LP64_P (opts->x_ix86_isa_flags)
+ ? PMODE_DI : PMODE_SI;
+
+ if (!opts_set->x_ix86_abi)
+ opts->x_ix86_abi = DEFAULT_ABI;
+
+ /* For targets using ms ABI enable ms-extensions, if not
+ explicit turned off. For non-ms ABI we turn off this
+ option. */
+ if (!opts_set->x_flag_ms_extensions)
+ opts->x_flag_ms_extensions = (MS_ABI == DEFAULT_ABI);
+
+ if (opts_set->x_ix86_cmodel)
+ {
+ switch (opts->x_ix86_cmodel)
+ {
+ case CM_SMALL:
+ case CM_SMALL_PIC:
+ if (opts->x_flag_pic)
+ opts->x_ix86_cmodel = CM_SMALL_PIC;
+ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ error ("code model %qs not supported in the %s bit mode",
+ "small", "32");
+ break;
+
+ case CM_MEDIUM:
+ case CM_MEDIUM_PIC:
+ if (opts->x_flag_pic)
+ opts->x_ix86_cmodel = CM_MEDIUM_PIC;
+ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ error ("code model %qs not supported in the %s bit mode",
+ "medium", "32");
+ else if (TARGET_X32_P (opts->x_ix86_isa_flags))
+ error ("code model %qs not supported in x32 mode",
+ "medium");
+ break;
+
+ case CM_LARGE:
+ case CM_LARGE_PIC:
+ if (opts->x_flag_pic)
+ opts->x_ix86_cmodel = CM_LARGE_PIC;
+ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ error ("code model %qs not supported in the %s bit mode",
+ "large", "32");
+ else if (TARGET_X32_P (opts->x_ix86_isa_flags))
+ error ("code model %qs not supported in x32 mode",
+ "large");
+ break;
+
+ case CM_32:
+ if (opts->x_flag_pic)
+ error ("code model %s does not support PIC mode", "32");
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ error ("code model %qs not supported in the %s bit mode",
+ "32", "64");
+ break;
+
+ case CM_KERNEL:
+ if (opts->x_flag_pic)
+ {
+ error ("code model %s does not support PIC mode", "kernel");
+ opts->x_ix86_cmodel = CM_32;
+ }
+ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ error ("code model %qs not supported in the %s bit mode",
+ "kernel", "32");
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ else
+ {
+ /* For TARGET_64BIT and MS_ABI, force pic on, in order to enable the
+ use of rip-relative addressing. This eliminates fixups that
+ would otherwise be needed if this object is to be placed in a
+ DLL, and is essentially just as efficient as direct addressing. */
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags)
+ && (TARGET_RDOS || TARGET_PECOFF))
+ opts->x_ix86_cmodel = CM_MEDIUM_PIC, opts->x_flag_pic = 1;
+ else if (TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_cmodel = opts->x_flag_pic ? CM_SMALL_PIC : CM_SMALL;
+ else
+ opts->x_ix86_cmodel = CM_32;
+ }
+ if (TARGET_MACHO && opts->x_ix86_asm_dialect == ASM_INTEL)
+ {
+ error ("-masm=intel not supported in this configuration");
+ opts->x_ix86_asm_dialect = ASM_ATT;
+ }
+ if ((TARGET_64BIT_P (opts->x_ix86_isa_flags) != 0)
+ != ((opts->x_ix86_isa_flags & OPTION_MASK_ISA_64BIT) != 0))
+ sorry ("%i-bit mode not compiled in",
+ (opts->x_ix86_isa_flags & OPTION_MASK_ISA_64BIT) ? 64 : 32);
+
+ for (i = 0; i < pta_size; i++)
+ if (! strcmp (opts->x_ix86_arch_string, processor_alias_table[i].name))
+ {
+ ix86_schedule = processor_alias_table[i].schedule;
+ ix86_arch = processor_alias_table[i].processor;
+ /* Default cpu tuning to the architecture. */
+ ix86_tune = ix86_arch;
+
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags)
+ && !(processor_alias_table[i].flags & PTA_64BIT))
+ error ("CPU you selected does not support x86-64 "
+ "instruction set");
+
+ if (processor_alias_table[i].flags & PTA_MMX
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_MMX))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_MMX;
+ if (processor_alias_table[i].flags & PTA_3DNOW
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_3DNOW))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_3DNOW;
+ if (processor_alias_table[i].flags & PTA_3DNOW_A
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_3DNOW_A))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_3DNOW_A;
+ if (processor_alias_table[i].flags & PTA_SSE
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE;
+ if (processor_alias_table[i].flags & PTA_SSE2
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE2))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE2;
+ if (processor_alias_table[i].flags & PTA_SSE3
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE3))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE3;
+ if (processor_alias_table[i].flags & PTA_SSSE3
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSSE3))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSSE3;
+ if (processor_alias_table[i].flags & PTA_SSE4_1
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4_1))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE4_1;
+ if (processor_alias_table[i].flags & PTA_SSE4_2
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4_2))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE4_2;
+ if (processor_alias_table[i].flags & PTA_AVX
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX;
+ if (processor_alias_table[i].flags & PTA_AVX2
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX2))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX2;
+ if (processor_alias_table[i].flags & PTA_FMA
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_FMA))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_FMA;
+ if (processor_alias_table[i].flags & PTA_SSE4A
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4A))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE4A;
+ if (processor_alias_table[i].flags & PTA_FMA4
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_FMA4))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_FMA4;
+ if (processor_alias_table[i].flags & PTA_XOP
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_XOP))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_XOP;
+ if (processor_alias_table[i].flags & PTA_LWP
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_LWP))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_LWP;
+ if (processor_alias_table[i].flags & PTA_ABM
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_ABM))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_ABM;
+ if (processor_alias_table[i].flags & PTA_BMI
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_BMI))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_BMI;
+ if (processor_alias_table[i].flags & (PTA_LZCNT | PTA_ABM)
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_LZCNT))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_LZCNT;
+ if (processor_alias_table[i].flags & PTA_TBM
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_TBM))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_TBM;
+ if (processor_alias_table[i].flags & PTA_BMI2
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_BMI2))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_BMI2;
+ if (processor_alias_table[i].flags & PTA_CX16
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_CX16))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_CX16;
+ if (processor_alias_table[i].flags & (PTA_POPCNT | PTA_ABM)
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_POPCNT))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_POPCNT;
+ if (!(TARGET_64BIT_P (opts->x_ix86_isa_flags)
+ && (processor_alias_table[i].flags & PTA_NO_SAHF))
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SAHF))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SAHF;
+ if (processor_alias_table[i].flags & PTA_MOVBE
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_MOVBE))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_MOVBE;
+ if (processor_alias_table[i].flags & PTA_AES
+ && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_AES))
+ ix86_isa_flags |= OPTION_MASK_ISA_AES;
+ if (processor_alias_table[i].flags & PTA_SHA
+ && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SHA))
+ ix86_isa_flags |= OPTION_MASK_ISA_SHA;
+ if (processor_alias_table[i].flags & PTA_PCLMUL
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_PCLMUL))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_PCLMUL;
+ if (processor_alias_table[i].flags & PTA_FSGSBASE
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_FSGSBASE))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_FSGSBASE;
+ if (processor_alias_table[i].flags & PTA_RDRND
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_RDRND))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_RDRND;
+ if (processor_alias_table[i].flags & PTA_F16C
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_F16C))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_F16C;
+ if (processor_alias_table[i].flags & PTA_RTM
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_RTM))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_RTM;
+ if (processor_alias_table[i].flags & PTA_HLE
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_HLE))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_HLE;
+ if (processor_alias_table[i].flags & PTA_PRFCHW
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_PRFCHW))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_PRFCHW;
+ if (processor_alias_table[i].flags & PTA_RDSEED
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_RDSEED))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_RDSEED;
+ if (processor_alias_table[i].flags & PTA_ADX
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_ADX))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_ADX;
+ if (processor_alias_table[i].flags & PTA_FXSR
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_FXSR))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_FXSR;
+ if (processor_alias_table[i].flags & PTA_XSAVE
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_XSAVE))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_XSAVE;
+ if (processor_alias_table[i].flags & PTA_XSAVEOPT
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_XSAVEOPT))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_XSAVEOPT;
+ if (processor_alias_table[i].flags & PTA_AVX512F
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX512F))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX512F;
+ if (processor_alias_table[i].flags & PTA_AVX512ER
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX512ER))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX512ER;
+ if (processor_alias_table[i].flags & PTA_AVX512PF
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX512PF))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX512PF;
+ if (processor_alias_table[i].flags & PTA_AVX512CD
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX512CD))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX512CD;
+ if (processor_alias_table[i].flags & PTA_PREFETCHWT1
+ && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_PREFETCHWT1))
+ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_PREFETCHWT1;
+ if (processor_alias_table[i].flags & (PTA_PREFETCH_SSE | PTA_SSE))
+ x86_prefetch_sse = true;
+
+ break;
+ }
+
+ if (!strcmp (opts->x_ix86_arch_string, "generic"))
+ error ("generic CPU can be used only for %stune=%s %s",
+ prefix, suffix, sw);
+ else if (!strcmp (opts->x_ix86_arch_string, "intel"))
+ error ("intel CPU can be used only for %stune=%s %s",
+ prefix, suffix, sw);
+ else if (i == pta_size)
+ error ("bad value (%s) for %sarch=%s %s",
+ opts->x_ix86_arch_string, prefix, suffix, sw);
+
+ ix86_arch_mask = 1u << ix86_arch;
+ for (i = 0; i < X86_ARCH_LAST; ++i)
+ ix86_arch_features[i] = !!(initial_ix86_arch_features[i] & ix86_arch_mask);
+
+ for (i = 0; i < pta_size; i++)
+ if (! strcmp (opts->x_ix86_tune_string, processor_alias_table[i].name))
+ {
+ ix86_schedule = processor_alias_table[i].schedule;
+ ix86_tune = processor_alias_table[i].processor;
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ {
+ if (!(processor_alias_table[i].flags & PTA_64BIT))
+ {
+ if (ix86_tune_defaulted)
+ {
+ opts->x_ix86_tune_string = "x86-64";
+ for (i = 0; i < pta_size; i++)
+ if (! strcmp (opts->x_ix86_tune_string,
+ processor_alias_table[i].name))
+ break;
+ ix86_schedule = processor_alias_table[i].schedule;
+ ix86_tune = processor_alias_table[i].processor;
+ }
+ else
+ error ("CPU you selected does not support x86-64 "
+ "instruction set");
+ }
+ }
+ /* Intel CPUs have always interpreted SSE prefetch instructions as
+ NOPs; so, we can enable SSE prefetch instructions even when
+ -mtune (rather than -march) points us to a processor that has them.
+ However, the VIA C3 gives a SIGILL, so we only do that for i686 and
+ higher processors. */
+ if (TARGET_CMOV
+ && (processor_alias_table[i].flags & (PTA_PREFETCH_SSE | PTA_SSE)))
+ x86_prefetch_sse = true;
+ break;
+ }
+
+ if (ix86_tune_specified && i == pta_size)
+ error ("bad value (%s) for %stune=%s %s",
+ opts->x_ix86_tune_string, prefix, suffix, sw);
+
+ set_ix86_tune_features (ix86_tune, opts->x_ix86_dump_tunes);
+
+#ifndef USE_IX86_FRAME_POINTER
+#define USE_IX86_FRAME_POINTER 0
+#endif
+
+#ifndef USE_X86_64_FRAME_POINTER
+#define USE_X86_64_FRAME_POINTER 0
+#endif
+
+ /* Set the default values for switches whose default depends on TARGET_64BIT
+ in case they weren't overwritten by command line options. */
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ {
+ if (opts->x_optimize >= 1 && !opts_set->x_flag_omit_frame_pointer)
+ opts->x_flag_omit_frame_pointer = !USE_X86_64_FRAME_POINTER;
+ if (opts->x_flag_asynchronous_unwind_tables
+ && !opts_set->x_flag_unwind_tables
+ && TARGET_64BIT_MS_ABI)
+ opts->x_flag_unwind_tables = 1;
+ if (opts->x_flag_asynchronous_unwind_tables == 2)
+ opts->x_flag_unwind_tables
+ = opts->x_flag_asynchronous_unwind_tables = 1;
+ if (opts->x_flag_pcc_struct_return == 2)
+ opts->x_flag_pcc_struct_return = 0;
+ }
+ else
+ {
+ if (opts->x_optimize >= 1 && !opts_set->x_flag_omit_frame_pointer)
+ opts->x_flag_omit_frame_pointer
+ = !(USE_IX86_FRAME_POINTER || opts->x_optimize_size);
+ if (opts->x_flag_asynchronous_unwind_tables == 2)
+ opts->x_flag_asynchronous_unwind_tables = !USE_IX86_FRAME_POINTER;
+ if (opts->x_flag_pcc_struct_return == 2)
+ opts->x_flag_pcc_struct_return = DEFAULT_PCC_STRUCT_RETURN;
+ }
+
+ ix86_tune_cost = processor_target_table[ix86_tune].cost;
+ if (opts->x_optimize_size)
+ ix86_cost = &ix86_size_cost;
+ else
+ ix86_cost = ix86_tune_cost;
+
+ /* Arrange to set up i386_stack_locals for all functions. */
+ init_machine_status = ix86_init_machine_status;
+
+ /* Validate -mregparm= value. */
+ if (opts_set->x_ix86_regparm)
+ {
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ warning (0, "-mregparm is ignored in 64-bit mode");
+ if (opts->x_ix86_regparm > REGPARM_MAX)
+ {
+ error ("-mregparm=%d is not between 0 and %d",
+ opts->x_ix86_regparm, REGPARM_MAX);
+ opts->x_ix86_regparm = 0;
+ }
+ }
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_regparm = REGPARM_MAX;
+
+ /* Default align_* from the processor table. */
+ if (opts->x_align_loops == 0)
+ {
+ opts->x_align_loops = processor_target_table[ix86_tune].align_loop;
+ align_loops_max_skip = processor_target_table[ix86_tune].align_loop_max_skip;
+ }
+ if (opts->x_align_jumps == 0)
+ {
+ opts->x_align_jumps = processor_target_table[ix86_tune].align_jump;
+ align_jumps_max_skip = processor_target_table[ix86_tune].align_jump_max_skip;
+ }
+ if (opts->x_align_functions == 0)
+ {
+ opts->x_align_functions = processor_target_table[ix86_tune].align_func;
+ }
+
+ /* Provide default for -mbranch-cost= value. */
+ if (!opts_set->x_ix86_branch_cost)
+ opts->x_ix86_branch_cost = ix86_cost->branch_cost;
+
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ {
+ opts->x_target_flags
+ |= TARGET_SUBTARGET64_DEFAULT & ~opts_set->x_target_flags;
+
+ /* Enable by default the SSE and MMX builtins. Do allow the user to
+ explicitly disable any of these. In particular, disabling SSE and
+ MMX for kernel code is extremely useful. */
+ if (!ix86_arch_specified)
+ opts->x_ix86_isa_flags
+ |= ((OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_MMX
+ | TARGET_SUBTARGET64_ISA_DEFAULT)
+ & ~opts->x_ix86_isa_flags_explicit);
+
+ if (TARGET_RTD_P (opts->x_target_flags))
+ warning (0, "%srtd%s is ignored in 64bit mode", prefix, suffix);
+ }
+ else
+ {
+ opts->x_target_flags
+ |= TARGET_SUBTARGET32_DEFAULT & ~opts_set->x_target_flags;
+
+ if (!ix86_arch_specified)
+ opts->x_ix86_isa_flags
+ |= TARGET_SUBTARGET32_ISA_DEFAULT & ~opts->x_ix86_isa_flags_explicit;
+
+ /* i386 ABI does not specify red zone. It still makes sense to use it
+ when programmer takes care to stack from being destroyed. */
+ if (!(opts_set->x_target_flags & MASK_NO_RED_ZONE))
+ opts->x_target_flags |= MASK_NO_RED_ZONE;
+ }
+
+ /* Keep nonleaf frame pointers. */
+ if (opts->x_flag_omit_frame_pointer)
+ opts->x_target_flags &= ~MASK_OMIT_LEAF_FRAME_POINTER;
+ else if (TARGET_OMIT_LEAF_FRAME_POINTER_P (opts->x_target_flags))
+ opts->x_flag_omit_frame_pointer = 1;
+
+ /* If we're doing fast math, we don't care about comparison order
+ wrt NaNs. This lets us use a shorter comparison sequence. */
+ if (opts->x_flag_finite_math_only)
+ opts->x_target_flags &= ~MASK_IEEE_FP;
+
+ /* If the architecture always has an FPU, turn off NO_FANCY_MATH_387,
+ since the insns won't need emulation. */
+ if (ix86_tune_features [X86_TUNE_ALWAYS_FANCY_MATH_387])
+ opts->x_target_flags &= ~MASK_NO_FANCY_MATH_387;
+
+ /* Likewise, if the target doesn't have a 387, or we've specified
+ software floating point, don't use 387 inline intrinsics. */
+ if (!TARGET_80387_P (opts->x_target_flags))
+ opts->x_target_flags |= MASK_NO_FANCY_MATH_387;
+
+ /* Turn on MMX builtins for -msse. */
+ if (TARGET_SSE_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_isa_flags
+ |= OPTION_MASK_ISA_MMX & ~opts->x_ix86_isa_flags_explicit;
+
+ /* Enable SSE prefetch. */
+ if (TARGET_SSE_P (opts->x_ix86_isa_flags)
+ || (TARGET_PRFCHW && !TARGET_3DNOW_P (opts->x_ix86_isa_flags)))
+ x86_prefetch_sse = true;
+
+ /* Enable prefetch{,w} instructions for -m3dnow and -mprefetchwt1. */
+ if (TARGET_3DNOW_P (opts->x_ix86_isa_flags)
+ || TARGET_PREFETCHWT1_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_isa_flags
+ |= OPTION_MASK_ISA_PRFCHW & ~opts->x_ix86_isa_flags_explicit;
+
+ /* Enable popcnt instruction for -msse4.2 or -mabm. */
+ if (TARGET_SSE4_2_P (opts->x_ix86_isa_flags)
+ || TARGET_ABM_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_isa_flags
+ |= OPTION_MASK_ISA_POPCNT & ~opts->x_ix86_isa_flags_explicit;
+
+ /* Enable lzcnt instruction for -mabm. */
+ if (TARGET_ABM_P(opts->x_ix86_isa_flags))
+ opts->x_ix86_isa_flags
+ |= OPTION_MASK_ISA_LZCNT & ~opts->x_ix86_isa_flags_explicit;
+
+ /* Validate -mpreferred-stack-boundary= value or default it to
+ PREFERRED_STACK_BOUNDARY_DEFAULT. */
+ ix86_preferred_stack_boundary = PREFERRED_STACK_BOUNDARY_DEFAULT;
+ if (opts_set->x_ix86_preferred_stack_boundary_arg)
+ {
+ int min = (TARGET_64BIT_P (opts->x_ix86_isa_flags)
+ ? (TARGET_SSE_P (opts->x_ix86_isa_flags) ? 4 : 3) : 2);
+ int max = (TARGET_SEH ? 4 : 12);
+
+ if (opts->x_ix86_preferred_stack_boundary_arg < min
+ || opts->x_ix86_preferred_stack_boundary_arg > max)
+ {
+ if (min == max)
+ error ("-mpreferred-stack-boundary is not supported "
+ "for this target");
+ else
+ error ("-mpreferred-stack-boundary=%d is not between %d and %d",
+ opts->x_ix86_preferred_stack_boundary_arg, min, max);
+ }
+ else
+ ix86_preferred_stack_boundary
+ = (1 << opts->x_ix86_preferred_stack_boundary_arg) * BITS_PER_UNIT;
+ }
+
+ /* Set the default value for -mstackrealign. */
+ if (opts->x_ix86_force_align_arg_pointer == -1)
+ opts->x_ix86_force_align_arg_pointer = STACK_REALIGN_DEFAULT;
+
+ ix86_default_incoming_stack_boundary = PREFERRED_STACK_BOUNDARY;
+
+ /* Validate -mincoming-stack-boundary= value or default it to
+ MIN_STACK_BOUNDARY/PREFERRED_STACK_BOUNDARY. */
+ ix86_incoming_stack_boundary = ix86_default_incoming_stack_boundary;
+ if (opts_set->x_ix86_incoming_stack_boundary_arg)
+ {
+ if (opts->x_ix86_incoming_stack_boundary_arg
+ < (TARGET_64BIT_P (opts->x_ix86_isa_flags) ? 4 : 2)
+ || opts->x_ix86_incoming_stack_boundary_arg > 12)
+ error ("-mincoming-stack-boundary=%d is not between %d and 12",
+ opts->x_ix86_incoming_stack_boundary_arg,
+ TARGET_64BIT_P (opts->x_ix86_isa_flags) ? 4 : 2);
+ else
+ {
+ ix86_user_incoming_stack_boundary
+ = (1 << opts->x_ix86_incoming_stack_boundary_arg) * BITS_PER_UNIT;
+ ix86_incoming_stack_boundary
+ = ix86_user_incoming_stack_boundary;
+ }
+ }
+
+ /* Accept -msseregparm only if at least SSE support is enabled. */
+ if (TARGET_SSEREGPARM_P (opts->x_target_flags)
+ && ! TARGET_SSE_P (opts->x_ix86_isa_flags))
+ error ("%ssseregparm%s used without SSE enabled", prefix, suffix);
+
+ if (opts_set->x_ix86_fpmath)
+ {
+ if (opts->x_ix86_fpmath & FPMATH_SSE)
+ {
+ if (!TARGET_SSE_P (opts->x_ix86_isa_flags))
+ {
+ warning (0, "SSE instruction set disabled, using 387 arithmetics");
+ opts->x_ix86_fpmath = FPMATH_387;
+ }
+ else if ((opts->x_ix86_fpmath & FPMATH_387)
+ && !TARGET_80387_P (opts->x_target_flags))
+ {
+ warning (0, "387 instruction set disabled, using SSE arithmetics");
+ opts->x_ix86_fpmath = FPMATH_SSE;
+ }
+ }
+ }
+ /* For all chips supporting SSE2, -mfpmath=sse performs better than
+ fpmath=387. The second is however default at many targets since the
+ extra 80bit precision of temporaries is considered to be part of ABI.
+ Overwrite the default at least for -ffast-math.
+ TODO: -mfpmath=both seems to produce same performing code with bit
+ smaller binaries. It is however not clear if register allocation is
+ ready for this setting.
+ Also -mfpmath=387 is overall a lot more compact (bout 4-5%) than SSE
+ codegen. We may switch to 387 with -ffast-math for size optimized
+ functions. */
+ else if (fast_math_flags_set_p (&global_options)
+ && TARGET_SSE2_P (opts->x_ix86_isa_flags))
+ opts->x_ix86_fpmath = FPMATH_SSE;
+ else
+ opts->x_ix86_fpmath = TARGET_FPMATH_DEFAULT_P (opts->x_ix86_isa_flags);
+
+ /* If the i387 is disabled, then do not return values in it. */
+ if (!TARGET_80387_P (opts->x_target_flags))
+ opts->x_target_flags &= ~MASK_FLOAT_RETURNS;
+
+ /* Use external vectorized library in vectorizing intrinsics. */
+ if (opts_set->x_ix86_veclibabi_type)
+ switch (opts->x_ix86_veclibabi_type)
+ {
+ case ix86_veclibabi_type_svml:
+ ix86_veclib_handler = ix86_veclibabi_svml;
+ break;
+
+ case ix86_veclibabi_type_acml:
+ ix86_veclib_handler = ix86_veclibabi_acml;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (ix86_tune_features [X86_TUNE_ACCUMULATE_OUTGOING_ARGS]
+ && !(opts_set->x_target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
+ && !opts->x_optimize_size)
+ opts->x_target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS;
+
+ /* If stack probes are required, the space used for large function
+ arguments on the stack must also be probed, so enable
+ -maccumulate-outgoing-args so this happens in the prologue. */
+ if (TARGET_STACK_PROBE_P (opts->x_target_flags)
+ && !(opts->x_target_flags & MASK_ACCUMULATE_OUTGOING_ARGS))
+ {
+ if (opts_set->x_target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
+ warning (0, "stack probing requires %saccumulate-outgoing-args%s "
+ "for correctness", prefix, suffix);
+ opts->x_target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS;
+ }
+
+ /* Figure out what ASM_GENERATE_INTERNAL_LABEL builds as a prefix. */
+ {
+ char *p;
+ ASM_GENERATE_INTERNAL_LABEL (internal_label_prefix, "LX", 0);
+ p = strchr (internal_label_prefix, 'X');
+ internal_label_prefix_len = p - internal_label_prefix;
+ *p = '\0';
+ }
+
+ /* When scheduling description is not available, disable scheduler pass
+ so it won't slow down the compilation and make x87 code slower. */
+ if (!TARGET_SCHEDULE)
+ opts->x_flag_schedule_insns_after_reload = opts->x_flag_schedule_insns = 0;
+
+ maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
+ ix86_tune_cost->simultaneous_prefetches,
+ opts->x_param_values,
+ opts_set->x_param_values);
+ maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
+ ix86_tune_cost->prefetch_block,
+ opts->x_param_values,
+ opts_set->x_param_values);
+ maybe_set_param_value (PARAM_L1_CACHE_SIZE,
+ ix86_tune_cost->l1_cache_size,
+ opts->x_param_values,
+ opts_set->x_param_values);
+ maybe_set_param_value (PARAM_L2_CACHE_SIZE,
+ ix86_tune_cost->l2_cache_size,
+ opts->x_param_values,
+ opts_set->x_param_values);
+
+ /* Enable sw prefetching at -O3 for CPUS that prefetching is helpful. */
+ if (opts->x_flag_prefetch_loop_arrays < 0
+ && HAVE_prefetch
+ && (opts->x_optimize >= 3 || opts->x_flag_profile_use)
+ && TARGET_SOFTWARE_PREFETCHING_BENEFICIAL)
+ opts->x_flag_prefetch_loop_arrays = 1;
+
+ /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0)
+ can be opts->x_optimized to ap = __builtin_next_arg (0). */
+ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags) && !opts->x_flag_split_stack)
+ targetm.expand_builtin_va_start = NULL;
+
+ if (TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ {
+ ix86_gen_leave = gen_leave_rex64;
+ if (Pmode == DImode)
+ {
+ ix86_gen_tls_global_dynamic_64 = gen_tls_global_dynamic_64_di;
+ ix86_gen_tls_local_dynamic_base_64
+ = gen_tls_local_dynamic_base_64_di;
+ }
+ else
+ {
+ ix86_gen_tls_global_dynamic_64 = gen_tls_global_dynamic_64_si;
+ ix86_gen_tls_local_dynamic_base_64
+ = gen_tls_local_dynamic_base_64_si;
+ }
+ }
+ else
+ ix86_gen_leave = gen_leave;
+
+ if (Pmode == DImode)
+ {
+ ix86_gen_add3 = gen_adddi3;
+ ix86_gen_sub3 = gen_subdi3;
+ ix86_gen_sub3_carry = gen_subdi3_carry;
+ ix86_gen_one_cmpl2 = gen_one_cmpldi2;
+ ix86_gen_andsp = gen_anddi3;
+ ix86_gen_allocate_stack_worker = gen_allocate_stack_worker_probe_di;
+ ix86_gen_adjust_stack_and_probe = gen_adjust_stack_and_probedi;
+ ix86_gen_probe_stack_range = gen_probe_stack_rangedi;
+ ix86_gen_monitor = gen_sse3_monitor_di;
+ }
+ else
+ {
+ ix86_gen_add3 = gen_addsi3;
+ ix86_gen_sub3 = gen_subsi3;
+ ix86_gen_sub3_carry = gen_subsi3_carry;
+ ix86_gen_one_cmpl2 = gen_one_cmplsi2;
+ ix86_gen_andsp = gen_andsi3;
+ ix86_gen_allocate_stack_worker = gen_allocate_stack_worker_probe_si;
+ ix86_gen_adjust_stack_and_probe = gen_adjust_stack_and_probesi;
+ ix86_gen_probe_stack_range = gen_probe_stack_rangesi;
+ ix86_gen_monitor = gen_sse3_monitor_si;
+ }
+
+#ifdef USE_IX86_CLD
+ /* Use -mcld by default for 32-bit code if configured with --enable-cld. */
+ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags))
+ opts->x_target_flags |= MASK_CLD & ~opts_set->x_target_flags;
+#endif
+
+ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags) && opts->x_flag_pic)
+ {
+ if (opts->x_flag_fentry > 0)
+ sorry ("-mfentry isn%'t supported for 32-bit in combination "
+ "with -fpic");
+ opts->x_flag_fentry = 0;
+ }
+ else if (TARGET_SEH)
+ {
+ if (opts->x_flag_fentry == 0)
+ sorry ("-mno-fentry isn%'t compatible with SEH");
+ opts->x_flag_fentry = 1;
+ }
+ else if (opts->x_flag_fentry < 0)
+ {
+#if defined(PROFILE_BEFORE_PROLOGUE)
+ opts->x_flag_fentry = 1;
+#else
+ opts->x_flag_fentry = 0;
+#endif
+ }
+
+ /* When not opts->x_optimize for size, enable vzeroupper optimization for
+ TARGET_AVX with -fexpensive-optimizations and split 32-byte
+ AVX unaligned load/store. */
+ if (!opts->x_optimize_size)
+ {
+ if (flag_expensive_optimizations
+ && !(opts_set->x_target_flags & MASK_VZEROUPPER))
+ opts->x_target_flags |= MASK_VZEROUPPER;
+ if (!ix86_tune_features[X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL]
+ && !(opts_set->x_target_flags & MASK_AVX256_SPLIT_UNALIGNED_LOAD))
+ opts->x_target_flags |= MASK_AVX256_SPLIT_UNALIGNED_LOAD;
+ if (!ix86_tune_features[X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL]
+ && !(opts_set->x_target_flags & MASK_AVX256_SPLIT_UNALIGNED_STORE))
+ opts->x_target_flags |= MASK_AVX256_SPLIT_UNALIGNED_STORE;
+ /* Enable 128-bit AVX instruction generation
+ for the auto-vectorizer. */
+ if (TARGET_AVX128_OPTIMAL
+ && !(opts_set->x_target_flags & MASK_PREFER_AVX128))
+ opts->x_target_flags |= MASK_PREFER_AVX128;
+ }
+
+ if (opts->x_ix86_recip_name)
+ {
+ char *p = ASTRDUP (opts->x_ix86_recip_name);
+ char *q;
+ unsigned int mask, i;
+ bool invert;
+
+ while ((q = strtok (p, ",")) != NULL)
+ {
+ p = NULL;
+ if (*q == '!')
+ {
+ invert = true;
+ q++;
+ }
+ else
+ invert = false;
+
+ if (!strcmp (q, "default"))
+ mask = RECIP_MASK_ALL;
+ else
+ {
+ for (i = 0; i < ARRAY_SIZE (recip_options); i++)
+ if (!strcmp (q, recip_options[i].string))
+ {
+ mask = recip_options[i].mask;
+ break;
+ }
+
+ if (i == ARRAY_SIZE (recip_options))
+ {
+ error ("unknown option for -mrecip=%s", q);
+ invert = false;
+ mask = RECIP_MASK_NONE;
+ }
+ }
+
+ opts->x_recip_mask_explicit |= mask;
+ if (invert)
+ opts->x_recip_mask &= ~mask;
+ else
+ opts->x_recip_mask |= mask;
+ }
+ }
+
+ if (TARGET_RECIP_P (opts->x_target_flags))
+ opts->x_recip_mask |= RECIP_MASK_ALL & ~opts->x_recip_mask_explicit;
+ else if (opts_set->x_target_flags & MASK_RECIP)
+ opts->x_recip_mask &= ~(RECIP_MASK_ALL & ~opts->x_recip_mask_explicit);
+
+ /* Default long double to 64-bit for 32-bit Bionic and to __float128
+ for 64-bit Bionic. */
+ if (TARGET_HAS_BIONIC
+ && !(opts_set->x_target_flags
+ & (MASK_LONG_DOUBLE_64 | MASK_LONG_DOUBLE_128)))
+ opts->x_target_flags |= (TARGET_64BIT
+ ? MASK_LONG_DOUBLE_128
+ : MASK_LONG_DOUBLE_64);
+
+ /* Only one of them can be active. */
+ gcc_assert ((opts->x_target_flags & MASK_LONG_DOUBLE_64) == 0
+ || (opts->x_target_flags & MASK_LONG_DOUBLE_128) == 0);
+
+ /* Save the initial options in case the user does function specific
+ options. */
+ if (main_args_p)
+ target_option_default_node = target_option_current_node
+ = build_target_option_node (opts);
+
+ /* Handle stack protector */
+ if (!opts_set->x_ix86_stack_protector_guard)
+ opts->x_ix86_stack_protector_guard
+ = TARGET_HAS_BIONIC ? SSP_GLOBAL : SSP_TLS;
+
+ /* Handle -mmemcpy-strategy= and -mmemset-strategy= */
+ if (opts->x_ix86_tune_memcpy_strategy)
+ {
+ char *str = xstrdup (opts->x_ix86_tune_memcpy_strategy);
+ ix86_parse_stringop_strategy_string (str, false);
+ free (str);
+ }
+
+ if (opts->x_ix86_tune_memset_strategy)
+ {
+ char *str = xstrdup (opts->x_ix86_tune_memset_strategy);
+ ix86_parse_stringop_strategy_string (str, true);
+ free (str);
+ }
+}
+
+/* Implement the TARGET_OPTION_OVERRIDE hook. */
+
+static void
+ix86_option_override (void)
+{
+ opt_pass *pass_insert_vzeroupper = make_pass_insert_vzeroupper (g);
+ static struct register_pass_info insert_vzeroupper_info
+ = { pass_insert_vzeroupper, "reload",
+ 1, PASS_POS_INSERT_AFTER
+ };
+
+ ix86_option_override_internal (true, &global_options, &global_options_set);
+
+
+ /* This needs to be done at start up. It's convenient to do it here. */
+ register_pass (&insert_vzeroupper_info);
+}
+
+/* Update register usage after having seen the compiler flags. */
+
+static void
+ix86_conditional_register_usage (void)
+{
+ int i, c_mask;
+ unsigned int j;
+
+ /* The PIC register, if it exists, is fixed. */
+ j = PIC_OFFSET_TABLE_REGNUM;
+ if (j != INVALID_REGNUM)
+ fixed_regs[j] = call_used_regs[j] = 1;
+
+ /* For 32-bit targets, squash the REX registers. */
+ if (! TARGET_64BIT)
+ {
+ for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)
+ fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";
+ for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)
+ fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";
+ for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++)
+ fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";
+ }
+
+ /* See the definition of CALL_USED_REGISTERS in i386.h. */
+ c_mask = (TARGET_64BIT_MS_ABI ? (1 << 3)
+ : TARGET_64BIT ? (1 << 2)
+ : (1 << 1));
+
+ CLEAR_HARD_REG_SET (reg_class_contents[(int)CLOBBERED_REGS]);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ /* Set/reset conditionally defined registers from
+ CALL_USED_REGISTERS initializer. */
+ if (call_used_regs[i] > 1)
+ call_used_regs[i] = !!(call_used_regs[i] & c_mask);
+
+ /* Calculate registers of CLOBBERED_REGS register set
+ as call used registers from GENERAL_REGS register set. */
+ if (TEST_HARD_REG_BIT (reg_class_contents[(int)GENERAL_REGS], i)
+ && call_used_regs[i])
+ SET_HARD_REG_BIT (reg_class_contents[(int)CLOBBERED_REGS], i);
+ }
+
+ /* If MMX is disabled, squash the registers. */
+ if (! TARGET_MMX)
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))
+ fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";
+
+ /* If SSE is disabled, squash the registers. */
+ if (! TARGET_SSE)
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))
+ fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";
+
+ /* If the FPU is disabled, squash the registers. */
+ if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387))
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[(int)FLOAT_REGS], i))
+ fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";
+
+ /* If AVX512F is disabled, squash the registers. */
+ if (! TARGET_AVX512F)
+ {
+ for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++)
+ fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";
+
+ for (i = FIRST_MASK_REG; i <= LAST_MASK_REG; i++)
+ fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";
+ }
+}
+
+
+/* Save the current options */
+
+static void
+ix86_function_specific_save (struct cl_target_option *ptr,
+ struct gcc_options *opts)
+{
+ ptr->arch = ix86_arch;
+ ptr->schedule = ix86_schedule;
+ ptr->tune = ix86_tune;
+ ptr->branch_cost = ix86_branch_cost;
+ ptr->tune_defaulted = ix86_tune_defaulted;
+ ptr->arch_specified = ix86_arch_specified;
+ ptr->x_ix86_isa_flags_explicit = opts->x_ix86_isa_flags_explicit;
+ ptr->x_ix86_target_flags_explicit = opts->x_ix86_target_flags_explicit;
+ ptr->x_recip_mask_explicit = opts->x_recip_mask_explicit;
+ ptr->x_ix86_arch_string = opts->x_ix86_arch_string;
+ ptr->x_ix86_tune_string = opts->x_ix86_tune_string;
+ ptr->x_ix86_cmodel = opts->x_ix86_cmodel;
+ ptr->x_ix86_abi = opts->x_ix86_abi;
+ ptr->x_ix86_asm_dialect = opts->x_ix86_asm_dialect;
+ ptr->x_ix86_branch_cost = opts->x_ix86_branch_cost;
+ ptr->x_ix86_dump_tunes = opts->x_ix86_dump_tunes;
+ ptr->x_ix86_force_align_arg_pointer = opts->x_ix86_force_align_arg_pointer;
+ ptr->x_ix86_force_drap = opts->x_ix86_force_drap;
+ ptr->x_ix86_incoming_stack_boundary_arg = opts->x_ix86_incoming_stack_boundary_arg;
+ ptr->x_ix86_pmode = opts->x_ix86_pmode;
+ ptr->x_ix86_preferred_stack_boundary_arg = opts->x_ix86_preferred_stack_boundary_arg;
+ ptr->x_ix86_recip_name = opts->x_ix86_recip_name;
+ ptr->x_ix86_regparm = opts->x_ix86_regparm;
+ ptr->x_ix86_section_threshold = opts->x_ix86_section_threshold;
+ ptr->x_ix86_sse2avx = opts->x_ix86_sse2avx;
+ ptr->x_ix86_stack_protector_guard = opts->x_ix86_stack_protector_guard;
+ ptr->x_ix86_stringop_alg = opts->x_ix86_stringop_alg;
+ ptr->x_ix86_tls_dialect = opts->x_ix86_tls_dialect;
+ ptr->x_ix86_tune_ctrl_string = opts->x_ix86_tune_ctrl_string;
+ ptr->x_ix86_tune_memcpy_strategy = opts->x_ix86_tune_memcpy_strategy;
+ ptr->x_ix86_tune_memset_strategy = opts->x_ix86_tune_memset_strategy;
+ ptr->x_ix86_tune_no_default = opts->x_ix86_tune_no_default;
+ ptr->x_ix86_veclibabi_type = opts->x_ix86_veclibabi_type;
+
+ /* The fields are char but the variables are not; make sure the
+ values fit in the fields. */
+ gcc_assert (ptr->arch == ix86_arch);
+ gcc_assert (ptr->schedule == ix86_schedule);
+ gcc_assert (ptr->tune == ix86_tune);
+ gcc_assert (ptr->branch_cost == ix86_branch_cost);
+}
+
+/* Restore the current options */
+
+static void
+ix86_function_specific_restore (struct gcc_options *opts,
+ struct cl_target_option *ptr)
+{
+ enum processor_type old_tune = ix86_tune;
+ enum processor_type old_arch = ix86_arch;
+ unsigned int ix86_arch_mask;
+ int i;
+
+ /* We don't change -fPIC. */
+ opts->x_flag_pic = flag_pic;
+
+ ix86_arch = (enum processor_type) ptr->arch;
+ ix86_schedule = (enum attr_cpu) ptr->schedule;
+ ix86_tune = (enum processor_type) ptr->tune;
+ opts->x_ix86_branch_cost = ptr->branch_cost;
+ ix86_tune_defaulted = ptr->tune_defaulted;
+ ix86_arch_specified = ptr->arch_specified;
+ opts->x_ix86_isa_flags_explicit = ptr->x_ix86_isa_flags_explicit;
+ opts->x_ix86_target_flags_explicit = ptr->x_ix86_target_flags_explicit;
+ opts->x_recip_mask_explicit = ptr->x_recip_mask_explicit;
+ opts->x_ix86_arch_string = ptr->x_ix86_arch_string;
+ opts->x_ix86_tune_string = ptr->x_ix86_tune_string;
+ opts->x_ix86_cmodel = ptr->x_ix86_cmodel;
+ opts->x_ix86_abi = ptr->x_ix86_abi;
+ opts->x_ix86_asm_dialect = ptr->x_ix86_asm_dialect;
+ opts->x_ix86_branch_cost = ptr->x_ix86_branch_cost;
+ opts->x_ix86_dump_tunes = ptr->x_ix86_dump_tunes;
+ opts->x_ix86_force_align_arg_pointer = ptr->x_ix86_force_align_arg_pointer;
+ opts->x_ix86_force_drap = ptr->x_ix86_force_drap;
+ opts->x_ix86_incoming_stack_boundary_arg = ptr->x_ix86_incoming_stack_boundary_arg;
+ opts->x_ix86_pmode = ptr->x_ix86_pmode;
+ opts->x_ix86_preferred_stack_boundary_arg = ptr->x_ix86_preferred_stack_boundary_arg;
+ opts->x_ix86_recip_name = ptr->x_ix86_recip_name;
+ opts->x_ix86_regparm = ptr->x_ix86_regparm;
+ opts->x_ix86_section_threshold = ptr->x_ix86_section_threshold;
+ opts->x_ix86_sse2avx = ptr->x_ix86_sse2avx;
+ opts->x_ix86_stack_protector_guard = ptr->x_ix86_stack_protector_guard;
+ opts->x_ix86_stringop_alg = ptr->x_ix86_stringop_alg;
+ opts->x_ix86_tls_dialect = ptr->x_ix86_tls_dialect;
+ opts->x_ix86_tune_ctrl_string = ptr->x_ix86_tune_ctrl_string;
+ opts->x_ix86_tune_memcpy_strategy = ptr->x_ix86_tune_memcpy_strategy;
+ opts->x_ix86_tune_memset_strategy = ptr->x_ix86_tune_memset_strategy;
+ opts->x_ix86_tune_no_default = ptr->x_ix86_tune_no_default;
+ opts->x_ix86_veclibabi_type = ptr->x_ix86_veclibabi_type;
+
+ /* Recreate the arch feature tests if the arch changed */
+ if (old_arch != ix86_arch)
+ {
+ ix86_arch_mask = 1u << ix86_arch;
+ for (i = 0; i < X86_ARCH_LAST; ++i)
+ ix86_arch_features[i]
+ = !!(initial_ix86_arch_features[i] & ix86_arch_mask);
+ }
+
+ /* Recreate the tune optimization tests */
+ if (old_tune != ix86_tune)
+ set_ix86_tune_features (ix86_tune, false);
+}
+
+/* Print the current options */
+
+static void
+ix86_function_specific_print (FILE *file, int indent,
+ struct cl_target_option *ptr)
+{
+ char *target_string
+ = ix86_target_string (ptr->x_ix86_isa_flags, ptr->x_target_flags,
+ NULL, NULL, ptr->x_ix86_fpmath, false);
+
+ gcc_assert (ptr->arch < PROCESSOR_max);
+ fprintf (file, "%*sarch = %d (%s)\n",
+ indent, "",
+ ptr->arch, processor_target_table[ptr->arch].name);
+
+ gcc_assert (ptr->tune < PROCESSOR_max);
+ fprintf (file, "%*stune = %d (%s)\n",
+ indent, "",
+ ptr->tune, processor_target_table[ptr->tune].name);
+
+ fprintf (file, "%*sbranch_cost = %d\n", indent, "", ptr->branch_cost);
+
+ if (target_string)
+ {
+ fprintf (file, "%*s%s\n", indent, "", target_string);
+ free (target_string);
+ }
+}
+
+
+/* Inner function to process the attribute((target(...))), take an argument and
+ set the current options from the argument. If we have a list, recursively go
+ over the list. */
+
+static bool
+ix86_valid_target_attribute_inner_p (tree args, char *p_strings[],
+ struct gcc_options *opts,
+ struct gcc_options *opts_set,
+ struct gcc_options *enum_opts_set)
+{
+ char *next_optstr;
+ bool ret = true;
+
+#define IX86_ATTR_ISA(S,O) { S, sizeof (S)-1, ix86_opt_isa, O, 0 }
+#define IX86_ATTR_STR(S,O) { S, sizeof (S)-1, ix86_opt_str, O, 0 }
+#define IX86_ATTR_ENUM(S,O) { S, sizeof (S)-1, ix86_opt_enum, O, 0 }
+#define IX86_ATTR_YES(S,O,M) { S, sizeof (S)-1, ix86_opt_yes, O, M }
+#define IX86_ATTR_NO(S,O,M) { S, sizeof (S)-1, ix86_opt_no, O, M }
+
+ enum ix86_opt_type
+ {
+ ix86_opt_unknown,
+ ix86_opt_yes,
+ ix86_opt_no,
+ ix86_opt_str,
+ ix86_opt_enum,
+ ix86_opt_isa
+ };
+
+ static const struct
+ {
+ const char *string;
+ size_t len;
+ enum ix86_opt_type type;
+ int opt;
+ int mask;
+ } attrs[] = {
+ /* isa options */
+ IX86_ATTR_ISA ("3dnow", OPT_m3dnow),
+ IX86_ATTR_ISA ("abm", OPT_mabm),
+ IX86_ATTR_ISA ("bmi", OPT_mbmi),
+ IX86_ATTR_ISA ("bmi2", OPT_mbmi2),
+ IX86_ATTR_ISA ("lzcnt", OPT_mlzcnt),
+ IX86_ATTR_ISA ("tbm", OPT_mtbm),
+ IX86_ATTR_ISA ("aes", OPT_maes),
+ IX86_ATTR_ISA ("sha", OPT_msha),
+ IX86_ATTR_ISA ("avx", OPT_mavx),
+ IX86_ATTR_ISA ("avx2", OPT_mavx2),
+ IX86_ATTR_ISA ("avx512f", OPT_mavx512f),
+ IX86_ATTR_ISA ("avx512pf", OPT_mavx512pf),
+ IX86_ATTR_ISA ("avx512er", OPT_mavx512er),
+ IX86_ATTR_ISA ("avx512cd", OPT_mavx512cd),
+ IX86_ATTR_ISA ("mmx", OPT_mmmx),
+ IX86_ATTR_ISA ("pclmul", OPT_mpclmul),
+ IX86_ATTR_ISA ("popcnt", OPT_mpopcnt),
+ IX86_ATTR_ISA ("sse", OPT_msse),
+ IX86_ATTR_ISA ("sse2", OPT_msse2),
+ IX86_ATTR_ISA ("sse3", OPT_msse3),
+ IX86_ATTR_ISA ("sse4", OPT_msse4),
+ IX86_ATTR_ISA ("sse4.1", OPT_msse4_1),
+ IX86_ATTR_ISA ("sse4.2", OPT_msse4_2),
+ IX86_ATTR_ISA ("sse4a", OPT_msse4a),
+ IX86_ATTR_ISA ("ssse3", OPT_mssse3),
+ IX86_ATTR_ISA ("fma4", OPT_mfma4),
+ IX86_ATTR_ISA ("fma", OPT_mfma),
+ IX86_ATTR_ISA ("xop", OPT_mxop),
+ IX86_ATTR_ISA ("lwp", OPT_mlwp),
+ IX86_ATTR_ISA ("fsgsbase", OPT_mfsgsbase),
+ IX86_ATTR_ISA ("rdrnd", OPT_mrdrnd),
+ IX86_ATTR_ISA ("f16c", OPT_mf16c),
+ IX86_ATTR_ISA ("rtm", OPT_mrtm),
+ IX86_ATTR_ISA ("hle", OPT_mhle),
+ IX86_ATTR_ISA ("prfchw", OPT_mprfchw),
+ IX86_ATTR_ISA ("rdseed", OPT_mrdseed),
+ IX86_ATTR_ISA ("adx", OPT_madx),
+ IX86_ATTR_ISA ("fxsr", OPT_mfxsr),
+ IX86_ATTR_ISA ("xsave", OPT_mxsave),
+ IX86_ATTR_ISA ("xsaveopt", OPT_mxsaveopt),
+ IX86_ATTR_ISA ("prefetchwt1", OPT_mprefetchwt1),
+
+ /* enum options */
+ IX86_ATTR_ENUM ("fpmath=", OPT_mfpmath_),
+
+ /* string options */
+ IX86_ATTR_STR ("arch=", IX86_FUNCTION_SPECIFIC_ARCH),
+ IX86_ATTR_STR ("tune=", IX86_FUNCTION_SPECIFIC_TUNE),
+
+ /* flag options */
+ IX86_ATTR_YES ("cld",
+ OPT_mcld,
+ MASK_CLD),
+
+ IX86_ATTR_NO ("fancy-math-387",
+ OPT_mfancy_math_387,
+ MASK_NO_FANCY_MATH_387),
+
+ IX86_ATTR_YES ("ieee-fp",
+ OPT_mieee_fp,
+ MASK_IEEE_FP),
+
+ IX86_ATTR_YES ("inline-all-stringops",
+ OPT_minline_all_stringops,
+ MASK_INLINE_ALL_STRINGOPS),
+
+ IX86_ATTR_YES ("inline-stringops-dynamically",
+ OPT_minline_stringops_dynamically,
+ MASK_INLINE_STRINGOPS_DYNAMICALLY),
+
+ IX86_ATTR_NO ("align-stringops",
+ OPT_mno_align_stringops,
+ MASK_NO_ALIGN_STRINGOPS),
+
+ IX86_ATTR_YES ("recip",
+ OPT_mrecip,
+ MASK_RECIP),
+
+ };
+
+ /* If this is a list, recurse to get the options. */
+ if (TREE_CODE (args) == TREE_LIST)
+ {
+ bool ret = true;
+
+ for (; args; args = TREE_CHAIN (args))
+ if (TREE_VALUE (args)
+ && !ix86_valid_target_attribute_inner_p (TREE_VALUE (args),
+ p_strings, opts, opts_set,
+ enum_opts_set))
+ ret = false;
+
+ return ret;
+ }
+
+ else if (TREE_CODE (args) != STRING_CST)
+ {
+ error ("attribute %<target%> argument not a string");
+ return false;
+ }
+
+ /* Handle multiple arguments separated by commas. */
+ next_optstr = ASTRDUP (TREE_STRING_POINTER (args));
+
+ while (next_optstr && *next_optstr != '\0')
+ {
+ char *p = next_optstr;
+ char *orig_p = p;
+ char *comma = strchr (next_optstr, ',');
+ const char *opt_string;
+ size_t len, opt_len;
+ int opt;
+ bool opt_set_p;
+ char ch;
+ unsigned i;
+ enum ix86_opt_type type = ix86_opt_unknown;
+ int mask = 0;
+
+ if (comma)
+ {
+ *comma = '\0';
+ len = comma - next_optstr;
+ next_optstr = comma + 1;
+ }
+ else
+ {
+ len = strlen (p);
+ next_optstr = NULL;
+ }
+
+ /* Recognize no-xxx. */
+ if (len > 3 && p[0] == 'n' && p[1] == 'o' && p[2] == '-')
+ {
+ opt_set_p = false;
+ p += 3;
+ len -= 3;
+ }
+ else
+ opt_set_p = true;
+
+ /* Find the option. */
+ ch = *p;
+ opt = N_OPTS;
+ for (i = 0; i < ARRAY_SIZE (attrs); i++)
+ {
+ type = attrs[i].type;
+ opt_len = attrs[i].len;
+ if (ch == attrs[i].string[0]
+ && ((type != ix86_opt_str && type != ix86_opt_enum)
+ ? len == opt_len
+ : len > opt_len)
+ && memcmp (p, attrs[i].string, opt_len) == 0)
+ {
+ opt = attrs[i].opt;
+ mask = attrs[i].mask;
+ opt_string = attrs[i].string;
+ break;
+ }
+ }
+
+ /* Process the option. */
+ if (opt == N_OPTS)
+ {
+ error ("attribute(target(\"%s\")) is unknown", orig_p);
+ ret = false;
+ }
+
+ else if (type == ix86_opt_isa)
+ {
+ struct cl_decoded_option decoded;
+
+ generate_option (opt, NULL, opt_set_p, CL_TARGET, &decoded);
+ ix86_handle_option (opts, opts_set,
+ &decoded, input_location);
+ }
+
+ else if (type == ix86_opt_yes || type == ix86_opt_no)
+ {
+ if (type == ix86_opt_no)
+ opt_set_p = !opt_set_p;
+
+ if (opt_set_p)
+ opts->x_target_flags |= mask;
+ else
+ opts->x_target_flags &= ~mask;
+ }
+
+ else if (type == ix86_opt_str)
+ {
+ if (p_strings[opt])
+ {
+ error ("option(\"%s\") was already specified", opt_string);
+ ret = false;
+ }
+ else
+ p_strings[opt] = xstrdup (p + opt_len);
+ }
+
+ else if (type == ix86_opt_enum)
+ {
+ bool arg_ok;
+ int value;
+
+ arg_ok = opt_enum_arg_to_value (opt, p + opt_len, &value, CL_TARGET);
+ if (arg_ok)
+ set_option (opts, enum_opts_set, opt, value,
+ p + opt_len, DK_UNSPECIFIED, input_location,
+ global_dc);
+ else
+ {
+ error ("attribute(target(\"%s\")) is unknown", orig_p);
+ ret = false;
+ }
+ }
+
+ else
+ gcc_unreachable ();
+ }
+
+ return ret;
+}
+
+/* Return a TARGET_OPTION_NODE tree of the target options listed or NULL. */
+
+tree
+ix86_valid_target_attribute_tree (tree args,
+ struct gcc_options *opts,
+ struct gcc_options *opts_set)
+{
+ const char *orig_arch_string = opts->x_ix86_arch_string;
+ const char *orig_tune_string = opts->x_ix86_tune_string;
+ enum fpmath_unit orig_fpmath_set = opts_set->x_ix86_fpmath;
+ int orig_tune_defaulted = ix86_tune_defaulted;
+ int orig_arch_specified = ix86_arch_specified;
+ char *option_strings[IX86_FUNCTION_SPECIFIC_MAX] = { NULL, NULL };
+ tree t = NULL_TREE;
+ int i;
+ struct cl_target_option *def
+ = TREE_TARGET_OPTION (target_option_default_node);
+ struct gcc_options enum_opts_set;
+
+ memset (&enum_opts_set, 0, sizeof (enum_opts_set));
+
+ /* Process each of the options on the chain. */
+ if (! ix86_valid_target_attribute_inner_p (args, option_strings, opts,
+ opts_set, &enum_opts_set))
+ return error_mark_node;
+
+ /* If the changed options are different from the default, rerun
+ ix86_option_override_internal, and then save the options away.
+ The string options are are attribute options, and will be undone
+ when we copy the save structure. */
+ if (opts->x_ix86_isa_flags != def->x_ix86_isa_flags
+ || opts->x_target_flags != def->x_target_flags
+ || option_strings[IX86_FUNCTION_SPECIFIC_ARCH]
+ || option_strings[IX86_FUNCTION_SPECIFIC_TUNE]
+ || enum_opts_set.x_ix86_fpmath)
+ {
+ /* If we are using the default tune= or arch=, undo the string assigned,
+ and use the default. */
+ if (option_strings[IX86_FUNCTION_SPECIFIC_ARCH])
+ opts->x_ix86_arch_string = option_strings[IX86_FUNCTION_SPECIFIC_ARCH];
+ else if (!orig_arch_specified)
+ opts->x_ix86_arch_string = NULL;
+
+ if (option_strings[IX86_FUNCTION_SPECIFIC_TUNE])
+ opts->x_ix86_tune_string = option_strings[IX86_FUNCTION_SPECIFIC_TUNE];
+ else if (orig_tune_defaulted)
+ opts->x_ix86_tune_string = NULL;
+
+ /* If fpmath= is not set, and we now have sse2 on 32-bit, use it. */
+ if (enum_opts_set.x_ix86_fpmath)
+ opts_set->x_ix86_fpmath = (enum fpmath_unit) 1;
+ else if (!TARGET_64BIT_P (opts->x_ix86_isa_flags)
+ && TARGET_SSE_P (opts->x_ix86_isa_flags))
+ {
+ opts->x_ix86_fpmath = (enum fpmath_unit) (FPMATH_SSE | FPMATH_387);
+ opts_set->x_ix86_fpmath = (enum fpmath_unit) 1;
+ }
+
+ /* Do any overrides, such as arch=xxx, or tune=xxx support. */
+ ix86_option_override_internal (false, opts, opts_set);
+
+ /* Add any builtin functions with the new isa if any. */
+ ix86_add_new_builtins (opts->x_ix86_isa_flags);
+
+ /* Save the current options unless we are validating options for
+ #pragma. */
+ t = build_target_option_node (opts);
+
+ opts->x_ix86_arch_string = orig_arch_string;
+ opts->x_ix86_tune_string = orig_tune_string;
+ opts_set->x_ix86_fpmath = orig_fpmath_set;
+
+ /* Free up memory allocated to hold the strings */
+ for (i = 0; i < IX86_FUNCTION_SPECIFIC_MAX; i++)
+ free (option_strings[i]);
+ }
+
+ return t;
+}
+
+/* Hook to validate attribute((target("string"))). */
+
+static bool
+ix86_valid_target_attribute_p (tree fndecl,
+ tree ARG_UNUSED (name),
+ tree args,
+ int ARG_UNUSED (flags))
+{
+ struct gcc_options func_options;
+ tree new_target, new_optimize;
+ bool ret = true;
+
+ /* attribute((target("default"))) does nothing, beyond
+ affecting multi-versioning. */
+ if (TREE_VALUE (args)
+ && TREE_CODE (TREE_VALUE (args)) == STRING_CST
+ && TREE_CHAIN (args) == NULL_TREE
+ && strcmp (TREE_STRING_POINTER (TREE_VALUE (args)), "default") == 0)
+ return true;
+
+ tree old_optimize = build_optimization_node (&global_options);
+
+ /* Get the optimization options of the current function. */
+ tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);
+
+ if (!func_optimize)
+ func_optimize = old_optimize;
+
+ /* Init func_options. */
+ memset (&func_options, 0, sizeof (func_options));
+ init_options_struct (&func_options, NULL);
+ lang_hooks.init_options_struct (&func_options);
+
+ cl_optimization_restore (&func_options,
+ TREE_OPTIMIZATION (func_optimize));
+
+ /* Initialize func_options to the default before its target options can
+ be set. */
+ cl_target_option_restore (&func_options,
+ TREE_TARGET_OPTION (target_option_default_node));
+
+ new_target = ix86_valid_target_attribute_tree (args, &func_options,
+ &global_options_set);
+
+ new_optimize = build_optimization_node (&func_options);
+
+ if (new_target == error_mark_node)
+ ret = false;
+
+ else if (fndecl && new_target)
+ {
+ DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;
+
+ if (old_optimize != new_optimize)
+ DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
+ }
+
+ return ret;
+}
+
+
+/* Hook to determine if one function can safely inline another. */
+
+static bool
+ix86_can_inline_p (tree caller, tree callee)
+{
+ bool ret = false;
+ tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
+ tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);
+
+ /* If callee has no option attributes, then it is ok to inline. */
+ if (!callee_tree)
+ ret = true;
+
+ /* If caller has no option attributes, but callee does then it is not ok to
+ inline. */
+ else if (!caller_tree)
+ ret = false;
+
+ else
+ {
+ struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree);
+ struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);
+
+ /* Callee's isa options should a subset of the caller's, i.e. a SSE4 function
+ can inline a SSE2 function but a SSE2 function can't inline a SSE4
+ function. */
+ if ((caller_opts->x_ix86_isa_flags & callee_opts->x_ix86_isa_flags)
+ != callee_opts->x_ix86_isa_flags)
+ ret = false;
+
+ /* See if we have the same non-isa options. */
+ else if (caller_opts->x_target_flags != callee_opts->x_target_flags)
+ ret = false;
+
+ /* See if arch, tune, etc. are the same. */
+ else if (caller_opts->arch != callee_opts->arch)
+ ret = false;
+
+ else if (caller_opts->tune != callee_opts->tune)
+ ret = false;
+
+ else if (caller_opts->x_ix86_fpmath != callee_opts->x_ix86_fpmath)
+ ret = false;
+
+ else if (caller_opts->branch_cost != callee_opts->branch_cost)
+ ret = false;
+
+ else
+ ret = true;
+ }
+
+ return ret;
+}
+
+
+/* Remember the last target of ix86_set_current_function. */
+static GTY(()) tree ix86_previous_fndecl;
+
+/* Invalidate ix86_previous_fndecl cache. */
+void
+ix86_reset_previous_fndecl (void)
+{
+ ix86_previous_fndecl = NULL_TREE;
+}
+
+/* Establish appropriate back-end context for processing the function
+ FNDECL. The argument might be NULL to indicate processing at top
+ level, outside of any function scope. */
+static void
+ix86_set_current_function (tree fndecl)
+{
+ /* Only change the context if the function changes. This hook is called
+ several times in the course of compiling a function, and we don't want to
+ slow things down too much or call target_reinit when it isn't safe. */
+ if (fndecl && fndecl != ix86_previous_fndecl)
+ {
+ tree old_tree = (ix86_previous_fndecl
+ ? DECL_FUNCTION_SPECIFIC_TARGET (ix86_previous_fndecl)
+ : NULL_TREE);
+
+ tree new_tree = (fndecl
+ ? DECL_FUNCTION_SPECIFIC_TARGET (fndecl)
+ : NULL_TREE);
+
+ ix86_previous_fndecl = fndecl;
+ if (old_tree == new_tree)
+ ;
+
+ else if (new_tree)
+ {
+ cl_target_option_restore (&global_options,
+ TREE_TARGET_OPTION (new_tree));
+ if (TREE_TARGET_GLOBALS (new_tree))
+ restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
+ else
+ TREE_TARGET_GLOBALS (new_tree)
+ = save_target_globals_default_opts ();
+ }
+
+ else if (old_tree)
+ {
+ new_tree = target_option_current_node;
+ cl_target_option_restore (&global_options,
+ TREE_TARGET_OPTION (new_tree));
+ if (TREE_TARGET_GLOBALS (new_tree))
+ restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
+ else if (new_tree == target_option_default_node)
+ restore_target_globals (&default_target_globals);
+ else
+ TREE_TARGET_GLOBALS (new_tree)
+ = save_target_globals_default_opts ();
+ }
+ }
+}
+
+
+/* Return true if this goes in large data/bss. */
+
+static bool
+ix86_in_large_data_p (tree exp)
+{
+ if (ix86_cmodel != CM_MEDIUM && ix86_cmodel != CM_MEDIUM_PIC)
+ return false;
+
+ /* Functions are never large data. */
+ if (TREE_CODE (exp) == FUNCTION_DECL)
+ return false;
+
+ if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
+ {
+ const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
+ if (strcmp (section, ".ldata") == 0
+ || strcmp (section, ".lbss") == 0)
+ return true;
+ return false;
+ }
+ else
+ {
+ HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
+
+ /* If this is an incomplete type with size 0, then we can't put it
+ in data because it might be too big when completed. */
+ if (!size || size > ix86_section_threshold)
+ return true;
+ }
+
+ return false;
+}
+
+/* Switch to the appropriate section for output of DECL.
+ DECL is either a `VAR_DECL' node or a constant of some sort.
+ RELOC indicates whether forming the initial value of DECL requires
+ link-time relocations. */
+
+ATTRIBUTE_UNUSED static section *
+x86_64_elf_select_section (tree decl, int reloc,
+ unsigned HOST_WIDE_INT align)
+{
+ if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC)
+ && ix86_in_large_data_p (decl))
+ {
+ const char *sname = NULL;
+ unsigned int flags = SECTION_WRITE;
+ switch (categorize_decl_for_section (decl, reloc))
+ {
+ case SECCAT_DATA:
+ sname = ".ldata";
+ break;
+ case SECCAT_DATA_REL:
+ sname = ".ldata.rel";
+ break;
+ case SECCAT_DATA_REL_LOCAL:
+ sname = ".ldata.rel.local";
+ break;
+ case SECCAT_DATA_REL_RO:
+ sname = ".ldata.rel.ro";
+ break;
+ case SECCAT_DATA_REL_RO_LOCAL:
+ sname = ".ldata.rel.ro.local";
+ break;
+ case SECCAT_BSS:
+ sname = ".lbss";
+ flags |= SECTION_BSS;
+ break;
+ case SECCAT_RODATA:
+ case SECCAT_RODATA_MERGE_STR:
+ case SECCAT_RODATA_MERGE_STR_INIT:
+ case SECCAT_RODATA_MERGE_CONST:
+ sname = ".lrodata";
+ flags = 0;
+ break;
+ case SECCAT_SRODATA:
+ case SECCAT_SDATA:
+ case SECCAT_SBSS:
+ gcc_unreachable ();
+ case SECCAT_TEXT:
+ case SECCAT_TDATA:
+ case SECCAT_TBSS:
+ /* We don't split these for medium model. Place them into
+ default sections and hope for best. */
+ break;
+ }
+ if (sname)
+ {
+ /* We might get called with string constants, but get_named_section
+ doesn't like them as they are not DECLs. Also, we need to set
+ flags in that case. */
+ if (!DECL_P (decl))
+ return get_section (sname, flags, NULL);
+ return get_named_section (decl, sname, reloc);
+ }
+ }
+ return default_elf_select_section (decl, reloc, align);
+}
+
+/* Select a set of attributes for section NAME based on the properties
+ of DECL and whether or not RELOC indicates that DECL's initializer
+ might contain runtime relocations. */
+
+static unsigned int ATTRIBUTE_UNUSED
+x86_64_elf_section_type_flags (tree decl, const char *name, int reloc)
+{
+ unsigned int flags = default_section_type_flags (decl, name, reloc);
+
+ if (decl == NULL_TREE
+ && (strcmp (name, ".ldata.rel.ro") == 0
+ || strcmp (name, ".ldata.rel.ro.local") == 0))
+ flags |= SECTION_RELRO;
+
+ if (strcmp (name, ".lbss") == 0
+ || strncmp (name, ".lbss.", 5) == 0
+ || strncmp (name, ".gnu.linkonce.lb.", 16) == 0)
+ flags |= SECTION_BSS;
+
+ return flags;
+}
+
+/* Build up a unique section name, expressed as a
+ STRING_CST node, and assign it to DECL_SECTION_NAME (decl).
+ RELOC indicates whether the initial value of EXP requires
+ link-time relocations. */
+
+static void ATTRIBUTE_UNUSED
+x86_64_elf_unique_section (tree decl, int reloc)
+{
+ if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC)
+ && ix86_in_large_data_p (decl))
+ {
+ const char *prefix = NULL;
+ /* We only need to use .gnu.linkonce if we don't have COMDAT groups. */
+ bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP;
+
+ switch (categorize_decl_for_section (decl, reloc))
+ {
+ case SECCAT_DATA:
+ case SECCAT_DATA_REL:
+ case SECCAT_DATA_REL_LOCAL:
+ case SECCAT_DATA_REL_RO:
+ case SECCAT_DATA_REL_RO_LOCAL:
+ prefix = one_only ? ".ld" : ".ldata";
+ break;
+ case SECCAT_BSS:
+ prefix = one_only ? ".lb" : ".lbss";
+ break;
+ case SECCAT_RODATA:
+ case SECCAT_RODATA_MERGE_STR:
+ case SECCAT_RODATA_MERGE_STR_INIT:
+ case SECCAT_RODATA_MERGE_CONST:
+ prefix = one_only ? ".lr" : ".lrodata";
+ break;
+ case SECCAT_SRODATA:
+ case SECCAT_SDATA:
+ case SECCAT_SBSS:
+ gcc_unreachable ();
+ case SECCAT_TEXT:
+ case SECCAT_TDATA:
+ case SECCAT_TBSS:
+ /* We don't split these for medium model. Place them into
+ default sections and hope for best. */
+ break;
+ }
+ if (prefix)
+ {
+ const char *name, *linkonce;
+ char *string;
+
+ name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
+ name = targetm.strip_name_encoding (name);
+
+ /* If we're using one_only, then there needs to be a .gnu.linkonce
+ prefix to the section name. */
+ linkonce = one_only ? ".gnu.linkonce" : "";
+
+ string = ACONCAT ((linkonce, prefix, ".", name, NULL));
+
+ DECL_SECTION_NAME (decl) = build_string (strlen (string), string);
+ return;
+ }
+ }
+ default_unique_section (decl, reloc);
+}
+
+#ifdef COMMON_ASM_OP
+/* This says how to output assembler code to declare an
+ uninitialized external linkage data object.
+
+ For medium model x86-64 we need to use .largecomm opcode for
+ large objects. */
+void
+x86_elf_aligned_common (FILE *file,
+ const char *name, unsigned HOST_WIDE_INT size,
+ int align)
+{
+ if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC)
+ && size > (unsigned int)ix86_section_threshold)
+ fputs (".largecomm\t", file);
+ else
+ fputs (COMMON_ASM_OP, file);
+ assemble_name (file, name);
+ fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
+ size, align / BITS_PER_UNIT);
+}
+#endif
+
+/* Utility function for targets to use in implementing
+ ASM_OUTPUT_ALIGNED_BSS. */
+
+void
+x86_output_aligned_bss (FILE *file, tree decl ATTRIBUTE_UNUSED,
+ const char *name, unsigned HOST_WIDE_INT size,
+ int align)
+{
+ if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC)
+ && size > (unsigned int)ix86_section_threshold)
+ switch_to_section (get_named_section (decl, ".lbss", 0));
+ else
+ switch_to_section (bss_section);
+ ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
+#ifdef ASM_DECLARE_OBJECT_NAME
+ last_assemble_variable_decl = decl;
+ ASM_DECLARE_OBJECT_NAME (file, name, decl);
+#else
+ /* Standard thing is just output label for the object. */
+ ASM_OUTPUT_LABEL (file, name);
+#endif /* ASM_DECLARE_OBJECT_NAME */
+ ASM_OUTPUT_SKIP (file, size ? size : 1);
+}
+
+/* Decide whether we must probe the stack before any space allocation
+ on this target. It's essentially TARGET_STACK_PROBE except when
+ -fstack-check causes the stack to be already probed differently. */
+
+bool
+ix86_target_stack_probe (void)
+{
+ /* Do not probe the stack twice if static stack checking is enabled. */
+ if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
+ return false;
+
+ return TARGET_STACK_PROBE;
+}
+
+/* Decide whether we can make a sibling call to a function. DECL is the
+ declaration of the function being targeted by the call and EXP is the
+ CALL_EXPR representing the call. */
+
+static bool
+ix86_function_ok_for_sibcall (tree decl, tree exp)
+{
+ tree type, decl_or_type;
+ rtx a, b;
+
+ /* If we are generating position-independent code, we cannot sibcall
+ optimize any indirect call, or a direct call to a global function,
+ as the PLT requires %ebx be live. (Darwin does not have a PLT.) */
+ if (!TARGET_MACHO
+ && !TARGET_64BIT
+ && flag_pic
+ && (!decl || !targetm.binds_local_p (decl)))
+ return false;
+
+ /* If we need to align the outgoing stack, then sibcalling would
+ unalign the stack, which may break the called function. */
+ if (ix86_minimum_incoming_stack_boundary (true)
+ < PREFERRED_STACK_BOUNDARY)
+ return false;
+
+ if (decl)
+ {
+ decl_or_type = decl;
+ type = TREE_TYPE (decl);
+ }
+ else
+ {
+ /* We're looking at the CALL_EXPR, we need the type of the function. */
+ type = CALL_EXPR_FN (exp); /* pointer expression */
+ type = TREE_TYPE (type); /* pointer type */
+ type = TREE_TYPE (type); /* function type */
+ decl_or_type = type;
+ }
+
+ /* Check that the return value locations are the same. Like
+ if we are returning floats on the 80387 register stack, we cannot
+ make a sibcall from a function that doesn't return a float to a
+ function that does or, conversely, from a function that does return
+ a float to a function that doesn't; the necessary stack adjustment
+ would not be executed. This is also the place we notice
+ differences in the return value ABI. Note that it is ok for one
+ of the functions to have void return type as long as the return
+ value of the other is passed in a register. */
+ a = ix86_function_value (TREE_TYPE (exp), decl_or_type, false);
+ b = ix86_function_value (TREE_TYPE (DECL_RESULT (cfun->decl)),
+ cfun->decl, false);
+ if (STACK_REG_P (a) || STACK_REG_P (b))
+ {
+ if (!rtx_equal_p (a, b))
+ return false;
+ }
+ else if (VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
+ ;
+ else if (!rtx_equal_p (a, b))
+ return false;
+
+ if (TARGET_64BIT)
+ {
+ /* The SYSV ABI has more call-clobbered registers;
+ disallow sibcalls from MS to SYSV. */
+ if (cfun->machine->call_abi == MS_ABI
+ && ix86_function_type_abi (type) == SYSV_ABI)
+ return false;
+ }
+ else
+ {
+ /* If this call is indirect, we'll need to be able to use a
+ call-clobbered register for the address of the target function.
+ Make sure that all such registers are not used for passing
+ parameters. Note that DLLIMPORT functions are indirect. */
+ if (!decl
+ || (TARGET_DLLIMPORT_DECL_ATTRIBUTES && DECL_DLLIMPORT_P (decl)))
+ {
+ if (ix86_function_regparm (type, NULL) >= 3)
+ {
+ /* ??? Need to count the actual number of registers to be used,
+ not the possible number of registers. Fix later. */
+ return false;
+ }
+ }
+ }
+
+ /* Otherwise okay. That also includes certain types of indirect calls. */
+ return true;
+}
+
+/* Handle "cdecl", "stdcall", "fastcall", "regparm", "thiscall",
+ and "sseregparm" calling convention attributes;
+ arguments as in struct attribute_spec.handler. */
+
+static tree
+ix86_handle_cconv_attribute (tree *node, tree name,
+ tree args,
+ int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_TYPE
+ && TREE_CODE (*node) != METHOD_TYPE
+ && TREE_CODE (*node) != FIELD_DECL
+ && TREE_CODE (*node) != TYPE_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ /* Can combine regparm with all attributes but fastcall, and thiscall. */
+ if (is_attribute_p ("regparm", name))
+ {
+ tree cst;
+
+ if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("fastcall and regparm attributes are not compatible");
+ }
+
+ if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("regparam and thiscall attributes are not compatible");
+ }
+
+ cst = TREE_VALUE (args);
+ if (TREE_CODE (cst) != INTEGER_CST)
+ {
+ warning (OPT_Wattributes,
+ "%qE attribute requires an integer constant argument",
+ name);
+ *no_add_attrs = true;
+ }
+ else if (compare_tree_int (cst, REGPARM_MAX) > 0)
+ {
+ warning (OPT_Wattributes, "argument to %qE attribute larger than %d",
+ name, REGPARM_MAX);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+ }
+
+ if (TARGET_64BIT)
+ {
+ /* Do not warn when emulating the MS ABI. */
+ if ((TREE_CODE (*node) != FUNCTION_TYPE
+ && TREE_CODE (*node) != METHOD_TYPE)
+ || ix86_function_type_abi (*node) != MS_ABI)
+ warning (OPT_Wattributes, "%qE attribute ignored",
+ name);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ /* Can combine fastcall with stdcall (redundant) and sseregparm. */
+ if (is_attribute_p ("fastcall", name))
+ {
+ if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("fastcall and cdecl attributes are not compatible");
+ }
+ if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("fastcall and stdcall attributes are not compatible");
+ }
+ if (lookup_attribute ("regparm", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("fastcall and regparm attributes are not compatible");
+ }
+ if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("fastcall and thiscall attributes are not compatible");
+ }
+ }
+
+ /* Can combine stdcall with fastcall (redundant), regparm and
+ sseregparm. */
+ else if (is_attribute_p ("stdcall", name))
+ {
+ if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("stdcall and cdecl attributes are not compatible");
+ }
+ if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("stdcall and fastcall attributes are not compatible");
+ }
+ if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("stdcall and thiscall attributes are not compatible");
+ }
+ }
+
+ /* Can combine cdecl with regparm and sseregparm. */
+ else if (is_attribute_p ("cdecl", name))
+ {
+ if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("stdcall and cdecl attributes are not compatible");
+ }
+ if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("fastcall and cdecl attributes are not compatible");
+ }
+ if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("cdecl and thiscall attributes are not compatible");
+ }
+ }
+ else if (is_attribute_p ("thiscall", name))
+ {
+ if (TREE_CODE (*node) != METHOD_TYPE && pedantic)
+ warning (OPT_Wattributes, "%qE attribute is used for none class-method",
+ name);
+ if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("stdcall and thiscall attributes are not compatible");
+ }
+ if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("fastcall and thiscall attributes are not compatible");
+ }
+ if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("cdecl and thiscall attributes are not compatible");
+ }
+ }
+
+ /* Can combine sseregparm with all attributes. */
+
+ return NULL_TREE;
+}
+
+/* The transactional memory builtins are implicitly regparm or fastcall
+ depending on the ABI. Override the generic do-nothing attribute that
+ these builtins were declared with, and replace it with one of the two
+ attributes that we expect elsewhere. */
+
+static tree
+ix86_handle_tm_regparm_attribute (tree *node, tree name ATTRIBUTE_UNUSED,
+ tree args ATTRIBUTE_UNUSED,
+ int flags, bool *no_add_attrs)
+{
+ tree alt;
+
+ /* In no case do we want to add the placeholder attribute. */
+ *no_add_attrs = true;
+
+ /* The 64-bit ABI is unchanged for transactional memory. */
+ if (TARGET_64BIT)
+ return NULL_TREE;
+
+ /* ??? Is there a better way to validate 32-bit windows? We have
+ cfun->machine->call_abi, but that seems to be set only for 64-bit. */
+ if (CHECK_STACK_LIMIT > 0)
+ alt = tree_cons (get_identifier ("fastcall"), NULL, NULL);
+ else
+ {
+ alt = tree_cons (NULL, build_int_cst (NULL, 2), NULL);
+ alt = tree_cons (get_identifier ("regparm"), alt, NULL);
+ }
+ decl_attributes (node, alt, flags);
+
+ return NULL_TREE;
+}
+
+/* This function determines from TYPE the calling-convention. */
+
+unsigned int
+ix86_get_callcvt (const_tree type)
+{
+ unsigned int ret = 0;
+ bool is_stdarg;
+ tree attrs;
+
+ if (TARGET_64BIT)
+ return IX86_CALLCVT_CDECL;
+
+ attrs = TYPE_ATTRIBUTES (type);
+ if (attrs != NULL_TREE)
+ {
+ if (lookup_attribute ("cdecl", attrs))
+ ret |= IX86_CALLCVT_CDECL;
+ else if (lookup_attribute ("stdcall", attrs))
+ ret |= IX86_CALLCVT_STDCALL;
+ else if (lookup_attribute ("fastcall", attrs))
+ ret |= IX86_CALLCVT_FASTCALL;
+ else if (lookup_attribute ("thiscall", attrs))
+ ret |= IX86_CALLCVT_THISCALL;
+
+ /* Regparam isn't allowed for thiscall and fastcall. */
+ if ((ret & (IX86_CALLCVT_THISCALL | IX86_CALLCVT_FASTCALL)) == 0)
+ {
+ if (lookup_attribute ("regparm", attrs))
+ ret |= IX86_CALLCVT_REGPARM;
+ if (lookup_attribute ("sseregparm", attrs))
+ ret |= IX86_CALLCVT_SSEREGPARM;
+ }
+
+ if (IX86_BASE_CALLCVT(ret) != 0)
+ return ret;
+ }
+
+ is_stdarg = stdarg_p (type);
+ if (TARGET_RTD && !is_stdarg)
+ return IX86_CALLCVT_STDCALL | ret;
+
+ if (ret != 0
+ || is_stdarg
+ || TREE_CODE (type) != METHOD_TYPE
+ || ix86_function_type_abi (type) != MS_ABI)
+ return IX86_CALLCVT_CDECL | ret;
+
+ return IX86_CALLCVT_THISCALL;
+}
+
+/* Return 0 if the attributes for two types are incompatible, 1 if they
+ are compatible, and 2 if they are nearly compatible (which causes a
+ warning to be generated). */
+
+static int
+ix86_comp_type_attributes (const_tree type1, const_tree type2)
+{
+ unsigned int ccvt1, ccvt2;
+
+ if (TREE_CODE (type1) != FUNCTION_TYPE
+ && TREE_CODE (type1) != METHOD_TYPE)
+ return 1;
+
+ ccvt1 = ix86_get_callcvt (type1);
+ ccvt2 = ix86_get_callcvt (type2);
+ if (ccvt1 != ccvt2)
+ return 0;
+ if (ix86_function_regparm (type1, NULL)
+ != ix86_function_regparm (type2, NULL))
+ return 0;
+
+ return 1;
+}
+
+/* Return the regparm value for a function with the indicated TYPE and DECL.
+ DECL may be NULL when calling function indirectly
+ or considering a libcall. */
+
+static int
+ix86_function_regparm (const_tree type, const_tree decl)
+{
+ tree attr;
+ int regparm;
+ unsigned int ccvt;
+
+ if (TARGET_64BIT)
+ return (ix86_function_type_abi (type) == SYSV_ABI
+ ? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX);
+ ccvt = ix86_get_callcvt (type);
+ regparm = ix86_regparm;
+
+ if ((ccvt & IX86_CALLCVT_REGPARM) != 0)
+ {
+ attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (type));
+ if (attr)
+ {
+ regparm = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));
+ return regparm;
+ }
+ }
+ else if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
+ return 2;
+ else if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
+ return 1;
+
+ /* Use register calling convention for local functions when possible. */
+ if (decl
+ && TREE_CODE (decl) == FUNCTION_DECL
+ /* Caller and callee must agree on the calling convention, so
+ checking here just optimize means that with
+ __attribute__((optimize (...))) caller could use regparm convention
+ and callee not, or vice versa. Instead look at whether the callee
+ is optimized or not. */
+ && opt_for_fn (decl, optimize)
+ && !(profile_flag && !flag_fentry))
+ {
+ /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */
+ struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE (decl));
+ if (i && i->local && i->can_change_signature)
+ {
+ int local_regparm, globals = 0, regno;
+
+ /* Make sure no regparm register is taken by a
+ fixed register variable. */
+ for (local_regparm = 0; local_regparm < REGPARM_MAX; local_regparm++)
+ if (fixed_regs[local_regparm])
+ break;
+
+ /* We don't want to use regparm(3) for nested functions as
+ these use a static chain pointer in the third argument. */
+ if (local_regparm == 3 && DECL_STATIC_CHAIN (decl))
+ local_regparm = 2;
+
+ /* In 32-bit mode save a register for the split stack. */
+ if (!TARGET_64BIT && local_regparm == 3 && flag_split_stack)
+ local_regparm = 2;
+
+ /* Each fixed register usage increases register pressure,
+ so less registers should be used for argument passing.
+ This functionality can be overriden by an explicit
+ regparm value. */
+ for (regno = AX_REG; regno <= DI_REG; regno++)
+ if (fixed_regs[regno])
+ globals++;
+
+ local_regparm
+ = globals < local_regparm ? local_regparm - globals : 0;
+
+ if (local_regparm > regparm)
+ regparm = local_regparm;
+ }
+ }
+
+ return regparm;
+}
+
+/* Return 1 or 2, if we can pass up to SSE_REGPARM_MAX SFmode (1) and
+ DFmode (2) arguments in SSE registers for a function with the
+ indicated TYPE and DECL. DECL may be NULL when calling function
+ indirectly or considering a libcall. Otherwise return 0. */
+
+static int
+ix86_function_sseregparm (const_tree type, const_tree decl, bool warn)
+{
+ gcc_assert (!TARGET_64BIT);
+
+ /* Use SSE registers to pass SFmode and DFmode arguments if requested
+ by the sseregparm attribute. */
+ if (TARGET_SSEREGPARM
+ || (type && lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type))))
+ {
+ if (!TARGET_SSE)
+ {
+ if (warn)
+ {
+ if (decl)
+ error ("calling %qD with attribute sseregparm without "
+ "SSE/SSE2 enabled", decl);
+ else
+ error ("calling %qT with attribute sseregparm without "
+ "SSE/SSE2 enabled", type);
+ }
+ return 0;
+ }
+
+ return 2;
+ }
+
+ /* For local functions, pass up to SSE_REGPARM_MAX SFmode
+ (and DFmode for SSE2) arguments in SSE registers. */
+ if (decl && TARGET_SSE_MATH && optimize
+ && !(profile_flag && !flag_fentry))
+ {
+ /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */
+ struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE(decl));
+ if (i && i->local && i->can_change_signature)
+ return TARGET_SSE2 ? 2 : 1;
+ }
+
+ return 0;
+}
+
+/* Return true if EAX is live at the start of the function. Used by
+ ix86_expand_prologue to determine if we need special help before
+ calling allocate_stack_worker. */
+
+static bool
+ix86_eax_live_at_start_p (void)
+{
+ /* Cheat. Don't bother working forward from ix86_function_regparm
+ to the function type to whether an actual argument is located in
+ eax. Instead just look at cfg info, which is still close enough
+ to correct at this point. This gives false positives for broken
+ functions that might use uninitialized data that happens to be
+ allocated in eax, but who cares? */
+ return REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), 0);
+}
+
+static bool
+ix86_keep_aggregate_return_pointer (tree fntype)
+{
+ tree attr;
+
+ if (!TARGET_64BIT)
+ {
+ attr = lookup_attribute ("callee_pop_aggregate_return",
+ TYPE_ATTRIBUTES (fntype));
+ if (attr)
+ return (TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))) == 0);
+
+ /* For 32-bit MS-ABI the default is to keep aggregate
+ return pointer. */
+ if (ix86_function_type_abi (fntype) == MS_ABI)
+ return true;
+ }
+ return KEEP_AGGREGATE_RETURN_POINTER != 0;
+}
+
+/* Value is the number of bytes of arguments automatically
+ popped when returning from a subroutine call.
+ FUNDECL is the declaration node of the function (as a tree),
+ FUNTYPE is the data type of the function (as a tree),
+ or for a library call it is an identifier node for the subroutine name.
+ SIZE is the number of bytes of arguments passed on the stack.
+
+ On the 80386, the RTD insn may be used to pop them if the number
+ of args is fixed, but if the number is variable then the caller
+ must pop them all. RTD can't be used for library calls now
+ because the library is compiled with the Unix compiler.
+ Use of RTD is a selectable option, since it is incompatible with
+ standard Unix calling sequences. If the option is not selected,
+ the caller must always pop the args.
+
+ The attribute stdcall is equivalent to RTD on a per module basis. */
+
+static int
+ix86_return_pops_args (tree fundecl, tree funtype, int size)
+{
+ unsigned int ccvt;
+
+ /* None of the 64-bit ABIs pop arguments. */
+ if (TARGET_64BIT)
+ return 0;
+
+ ccvt = ix86_get_callcvt (funtype);
+
+ if ((ccvt & (IX86_CALLCVT_STDCALL | IX86_CALLCVT_FASTCALL
+ | IX86_CALLCVT_THISCALL)) != 0
+ && ! stdarg_p (funtype))
+ return size;
+
+ /* Lose any fake structure return argument if it is passed on the stack. */
+ if (aggregate_value_p (TREE_TYPE (funtype), fundecl)
+ && !ix86_keep_aggregate_return_pointer (funtype))
+ {
+ int nregs = ix86_function_regparm (funtype, fundecl);
+ if (nregs == 0)
+ return GET_MODE_SIZE (Pmode);
+ }
+
+ return 0;
+}
+
+/* Implement the TARGET_LEGITIMATE_COMBINED_INSN hook. */
+
+static bool
+ix86_legitimate_combined_insn (rtx insn)
+{
+ /* Check operand constraints in case hard registers were propagated
+ into insn pattern. This check prevents combine pass from
+ generating insn patterns with invalid hard register operands.
+ These invalid insns can eventually confuse reload to error out
+ with a spill failure. See also PRs 46829 and 46843. */
+ if ((INSN_CODE (insn) = recog (PATTERN (insn), insn, 0)) >= 0)
+ {
+ int i;
+
+ extract_insn (insn);
+ preprocess_constraints ();
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ {
+ rtx op = recog_data.operand[i];
+ enum machine_mode mode = GET_MODE (op);
+ struct operand_alternative *op_alt;
+ int offset = 0;
+ bool win;
+ int j;
+
+ /* For pre-AVX disallow unaligned loads/stores where the
+ instructions don't support it. */
+ if (!TARGET_AVX
+ && VECTOR_MODE_P (GET_MODE (op))
+ && misaligned_operand (op, GET_MODE (op)))
+ {
+ int min_align = get_attr_ssememalign (insn);
+ if (min_align == 0)
+ return false;
+ }
+
+ /* A unary operator may be accepted by the predicate, but it
+ is irrelevant for matching constraints. */
+ if (UNARY_P (op))
+ op = XEXP (op, 0);
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (REG_P (SUBREG_REG (op))
+ && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+ GET_MODE (SUBREG_REG (op)),
+ SUBREG_BYTE (op),
+ GET_MODE (op));
+ op = SUBREG_REG (op);
+ }
+
+ if (!(REG_P (op) && HARD_REGISTER_P (op)))
+ continue;
+
+ op_alt = recog_op_alt[i];
+
+ /* Operand has no constraints, anything is OK. */
+ win = !recog_data.n_alternatives;
+
+ for (j = 0; j < recog_data.n_alternatives; j++)
+ {
+ if (op_alt[j].anything_ok
+ || (op_alt[j].matches != -1
+ && operands_match_p
+ (recog_data.operand[i],
+ recog_data.operand[op_alt[j].matches]))
+ || reg_fits_class_p (op, op_alt[j].cl, offset, mode))
+ {
+ win = true;
+ break;
+ }
+ }
+
+ if (!win)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */
+
+static unsigned HOST_WIDE_INT
+ix86_asan_shadow_offset (void)
+{
+ return TARGET_LP64 ? (TARGET_MACHO ? (HOST_WIDE_INT_1 << 44)
+ : HOST_WIDE_INT_C (0x7fff8000))
+ : (HOST_WIDE_INT_1 << 29);
+}
+
+/* Argument support functions. */
+
+/* Return true when register may be used to pass function parameters. */
+bool
+ix86_function_arg_regno_p (int regno)
+{
+ int i;
+ const int *parm_regs;
+
+ if (!TARGET_64BIT)
+ {
+ if (TARGET_MACHO)
+ return (regno < REGPARM_MAX
+ || (TARGET_SSE && SSE_REGNO_P (regno) && !fixed_regs[regno]));
+ else
+ return (regno < REGPARM_MAX
+ || (TARGET_MMX && MMX_REGNO_P (regno)
+ && (regno < FIRST_MMX_REG + MMX_REGPARM_MAX))
+ || (TARGET_SSE && SSE_REGNO_P (regno)
+ && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX)));
+ }
+
+ if (TARGET_SSE && SSE_REGNO_P (regno)
+ && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX))
+ return true;
+
+ /* TODO: The function should depend on current function ABI but
+ builtins.c would need updating then. Therefore we use the
+ default ABI. */
+
+ /* RAX is used as hidden argument to va_arg functions. */
+ if (ix86_abi == SYSV_ABI && regno == AX_REG)
+ return true;
+
+ if (ix86_abi == MS_ABI)
+ parm_regs = x86_64_ms_abi_int_parameter_registers;
+ else
+ parm_regs = x86_64_int_parameter_registers;
+ for (i = 0; i < (ix86_abi == MS_ABI
+ ? X86_64_MS_REGPARM_MAX : X86_64_REGPARM_MAX); i++)
+ if (regno == parm_regs[i])
+ return true;
+ return false;
+}
+
+/* Return if we do not know how to pass TYPE solely in registers. */
+
+static bool
+ix86_must_pass_in_stack (enum machine_mode mode, const_tree type)
+{
+ if (must_pass_in_stack_var_size_or_pad (mode, type))
+ return true;
+
+ /* For 32-bit, we want TImode aggregates to go on the stack. But watch out!
+ The layout_type routine is crafty and tries to trick us into passing
+ currently unsupported vector types on the stack by using TImode. */
+ return (!TARGET_64BIT && mode == TImode
+ && type && TREE_CODE (type) != VECTOR_TYPE);
+}
+
+/* It returns the size, in bytes, of the area reserved for arguments passed
+ in registers for the function represented by fndecl dependent to the used
+ abi format. */
+int
+ix86_reg_parm_stack_space (const_tree fndecl)
+{
+ enum calling_abi call_abi = SYSV_ABI;
+ if (fndecl != NULL_TREE && TREE_CODE (fndecl) == FUNCTION_DECL)
+ call_abi = ix86_function_abi (fndecl);
+ else
+ call_abi = ix86_function_type_abi (fndecl);
+ if (TARGET_64BIT && call_abi == MS_ABI)
+ return 32;
+ return 0;
+}
+
+/* Returns value SYSV_ABI, MS_ABI dependent on fntype, specifying the
+ call abi used. */
+enum calling_abi
+ix86_function_type_abi (const_tree fntype)
+{
+ if (fntype != NULL_TREE && TYPE_ATTRIBUTES (fntype) != NULL_TREE)
+ {
+ enum calling_abi abi = ix86_abi;
+ if (abi == SYSV_ABI)
+ {
+ if (lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (fntype)))
+ abi = MS_ABI;
+ }
+ else if (lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (fntype)))
+ abi = SYSV_ABI;
+ return abi;
+ }
+ return ix86_abi;
+}
+
+/* We add this as a workaround in order to use libc_has_function
+ hook in i386.md. */
+bool
+ix86_libc_has_function (enum function_class fn_class)
+{
+ return targetm.libc_has_function (fn_class);
+}
+
+static bool
+ix86_function_ms_hook_prologue (const_tree fn)
+{
+ if (fn && lookup_attribute ("ms_hook_prologue", DECL_ATTRIBUTES (fn)))
+ {
+ if (decl_function_context (fn) != NULL_TREE)
+ error_at (DECL_SOURCE_LOCATION (fn),
+ "ms_hook_prologue is not compatible with nested function");
+ else
+ return true;
+ }
+ return false;
+}
+
+static enum calling_abi
+ix86_function_abi (const_tree fndecl)
+{
+ if (! fndecl)
+ return ix86_abi;
+ return ix86_function_type_abi (TREE_TYPE (fndecl));
+}
+
+/* Returns value SYSV_ABI, MS_ABI dependent on cfun, specifying the
+ call abi used. */
+enum calling_abi
+ix86_cfun_abi (void)
+{
+ if (! cfun)
+ return ix86_abi;
+ return cfun->machine->call_abi;
+}
+
+/* Write the extra assembler code needed to declare a function properly. */
+
+void
+ix86_asm_output_function_label (FILE *asm_out_file, const char *fname,
+ tree decl)
+{
+ bool is_ms_hook = ix86_function_ms_hook_prologue (decl);
+
+ if (is_ms_hook)
+ {
+ int i, filler_count = (TARGET_64BIT ? 32 : 16);
+ unsigned int filler_cc = 0xcccccccc;
+
+ for (i = 0; i < filler_count; i += 4)
+ fprintf (asm_out_file, ASM_LONG " %#x\n", filler_cc);
+ }
+
+#ifdef SUBTARGET_ASM_UNWIND_INIT
+ SUBTARGET_ASM_UNWIND_INIT (asm_out_file);
+#endif
+
+ ASM_OUTPUT_LABEL (asm_out_file, fname);
+
+ /* Output magic byte marker, if hot-patch attribute is set. */
+ if (is_ms_hook)
+ {
+ if (TARGET_64BIT)
+ {
+ /* leaq [%rsp + 0], %rsp */
+ asm_fprintf (asm_out_file, ASM_BYTE
+ "0x48, 0x8d, 0xa4, 0x24, 0x00, 0x00, 0x00, 0x00\n");
+ }
+ else
+ {
+ /* movl.s %edi, %edi
+ push %ebp
+ movl.s %esp, %ebp */
+ asm_fprintf (asm_out_file, ASM_BYTE
+ "0x8b, 0xff, 0x55, 0x8b, 0xec\n");
+ }
+ }
+}
+
+/* regclass.c */
+extern void init_regs (void);
+
+/* Implementation of call abi switching target hook. Specific to FNDECL
+ the specific call register sets are set. See also
+ ix86_conditional_register_usage for more details. */
+void
+ix86_call_abi_override (const_tree fndecl)
+{
+ if (fndecl == NULL_TREE)
+ cfun->machine->call_abi = ix86_abi;
+ else
+ cfun->machine->call_abi = ix86_function_type_abi (TREE_TYPE (fndecl));
+}
+
+/* 64-bit MS and SYSV ABI have different set of call used registers. Avoid
+ expensive re-initialization of init_regs each time we switch function context
+ since this is needed only during RTL expansion. */
+static void
+ix86_maybe_switch_abi (void)
+{
+ if (TARGET_64BIT &&
+ call_used_regs[SI_REG] == (cfun->machine->call_abi == MS_ABI))
+ reinit_regs ();
+}
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0. */
+
+void
+init_cumulative_args (CUMULATIVE_ARGS *cum, /* Argument info to initialize */
+ tree fntype, /* tree ptr for function decl */
+ rtx libname, /* SYMBOL_REF of library name or 0 */
+ tree fndecl,
+ int caller)
+{
+ struct cgraph_local_info *i;
+
+ memset (cum, 0, sizeof (*cum));
+
+ if (fndecl)
+ {
+ i = cgraph_local_info (fndecl);
+ cum->call_abi = ix86_function_abi (fndecl);
+ }
+ else
+ {
+ i = NULL;
+ cum->call_abi = ix86_function_type_abi (fntype);
+ }
+
+ cum->caller = caller;
+
+ /* Set up the number of registers to use for passing arguments. */
+ cum->nregs = ix86_regparm;
+ if (TARGET_64BIT)
+ {
+ cum->nregs = (cum->call_abi == SYSV_ABI
+ ? X86_64_REGPARM_MAX
+ : X86_64_MS_REGPARM_MAX);
+ }
+ if (TARGET_SSE)
+ {
+ cum->sse_nregs = SSE_REGPARM_MAX;
+ if (TARGET_64BIT)
+ {
+ cum->sse_nregs = (cum->call_abi == SYSV_ABI
+ ? X86_64_SSE_REGPARM_MAX
+ : X86_64_MS_SSE_REGPARM_MAX);
+ }
+ }
+ if (TARGET_MMX)
+ cum->mmx_nregs = MMX_REGPARM_MAX;
+ cum->warn_avx512f = true;
+ cum->warn_avx = true;
+ cum->warn_sse = true;
+ cum->warn_mmx = true;
+
+ /* Because type might mismatch in between caller and callee, we need to
+ use actual type of function for local calls.
+ FIXME: cgraph_analyze can be told to actually record if function uses
+ va_start so for local functions maybe_vaarg can be made aggressive
+ helping K&R code.
+ FIXME: once typesytem is fixed, we won't need this code anymore. */
+ if (i && i->local && i->can_change_signature)
+ fntype = TREE_TYPE (fndecl);
+ cum->maybe_vaarg = (fntype
+ ? (!prototype_p (fntype) || stdarg_p (fntype))
+ : !libname);
+
+ if (!TARGET_64BIT)
+ {
+ /* If there are variable arguments, then we won't pass anything
+ in registers in 32-bit mode. */
+ if (stdarg_p (fntype))
+ {
+ cum->nregs = 0;
+ cum->sse_nregs = 0;
+ cum->mmx_nregs = 0;
+ cum->warn_avx512f = false;
+ cum->warn_avx = false;
+ cum->warn_sse = false;
+ cum->warn_mmx = false;
+ return;
+ }
+
+ /* Use ecx and edx registers if function has fastcall attribute,
+ else look for regparm information. */
+ if (fntype)
+ {
+ unsigned int ccvt = ix86_get_callcvt (fntype);
+ if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
+ {
+ cum->nregs = 1;
+ cum->fastcall = 1; /* Same first register as in fastcall. */
+ }
+ else if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
+ {
+ cum->nregs = 2;
+ cum->fastcall = 1;
+ }
+ else
+ cum->nregs = ix86_function_regparm (fntype, fndecl);
+ }
+
+ /* Set up the number of SSE registers used for passing SFmode
+ and DFmode arguments. Warn for mismatching ABI. */
+ cum->float_in_sse = ix86_function_sseregparm (fntype, fndecl, true);
+ }
+}
+
+/* Return the "natural" mode for TYPE. In most cases, this is just TYPE_MODE.
+ But in the case of vector types, it is some vector mode.
+
+ When we have only some of our vector isa extensions enabled, then there
+ are some modes for which vector_mode_supported_p is false. For these
+ modes, the generic vector support in gcc will choose some non-vector mode
+ in order to implement the type. By computing the natural mode, we'll
+ select the proper ABI location for the operand and not depend on whatever
+ the middle-end decides to do with these vector types.
+
+ The midde-end can't deal with the vector types > 16 bytes. In this
+ case, we return the original mode and warn ABI change if CUM isn't
+ NULL.
+
+ If INT_RETURN is true, warn ABI change if the vector mode isn't
+ available for function return value. */
+
+static enum machine_mode
+type_natural_mode (const_tree type, const CUMULATIVE_ARGS *cum,
+ bool in_return)
+{
+ enum machine_mode mode = TYPE_MODE (type);
+
+ if (TREE_CODE (type) == VECTOR_TYPE && !VECTOR_MODE_P (mode))
+ {
+ HOST_WIDE_INT size = int_size_in_bytes (type);
+ if ((size == 8 || size == 16 || size == 32 || size == 64)
+ /* ??? Generic code allows us to create width 1 vectors. Ignore. */
+ && TYPE_VECTOR_SUBPARTS (type) > 1)
+ {
+ enum machine_mode innermode = TYPE_MODE (TREE_TYPE (type));
+
+ if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
+ mode = MIN_MODE_VECTOR_FLOAT;
+ else
+ mode = MIN_MODE_VECTOR_INT;
+
+ /* Get the mode which has this inner mode and number of units. */
+ for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
+ if (GET_MODE_NUNITS (mode) == TYPE_VECTOR_SUBPARTS (type)
+ && GET_MODE_INNER (mode) == innermode)
+ {
+ if (size == 64 && !TARGET_AVX512F)
+ {
+ static bool warnedavx512f;
+ static bool warnedavx512f_ret;
+
+ if (cum && cum->warn_avx512f && !warnedavx512f)
+ {
+ if (warning (OPT_Wpsabi, "AVX512F vector argument "
+ "without AVX512F enabled changes the ABI"))
+ warnedavx512f = true;
+ }
+ else if (in_return && !warnedavx512f_ret)
+ {
+ if (warning (OPT_Wpsabi, "AVX512F vector return "
+ "without AVX512F enabled changes the ABI"))
+ warnedavx512f_ret = true;
+ }
+
+ return TYPE_MODE (type);
+ }
+ else if (size == 32 && !TARGET_AVX)
+ {
+ static bool warnedavx;
+ static bool warnedavx_ret;
+
+ if (cum && cum->warn_avx && !warnedavx)
+ {
+ if (warning (OPT_Wpsabi, "AVX vector argument "
+ "without AVX enabled changes the ABI"))
+ warnedavx = true;
+ }
+ else if (in_return && !warnedavx_ret)
+ {
+ if (warning (OPT_Wpsabi, "AVX vector return "
+ "without AVX enabled changes the ABI"))
+ warnedavx_ret = true;
+ }
+
+ return TYPE_MODE (type);
+ }
+ else if (((size == 8 && TARGET_64BIT) || size == 16)
+ && !TARGET_SSE)
+ {
+ static bool warnedsse;
+ static bool warnedsse_ret;
+
+ if (cum && cum->warn_sse && !warnedsse)
+ {
+ if (warning (OPT_Wpsabi, "SSE vector argument "
+ "without SSE enabled changes the ABI"))
+ warnedsse = true;
+ }
+ else if (!TARGET_64BIT && in_return && !warnedsse_ret)
+ {
+ if (warning (OPT_Wpsabi, "SSE vector return "
+ "without SSE enabled changes the ABI"))
+ warnedsse_ret = true;
+ }
+ }
+ else if ((size == 8 && !TARGET_64BIT) && !TARGET_MMX)
+ {
+ static bool warnedmmx;
+ static bool warnedmmx_ret;
+
+ if (cum && cum->warn_mmx && !warnedmmx)
+ {
+ if (warning (OPT_Wpsabi, "MMX vector argument "
+ "without MMX enabled changes the ABI"))
+ warnedmmx = true;
+ }
+ else if (in_return && !warnedmmx_ret)
+ {
+ if (warning (OPT_Wpsabi, "MMX vector return "
+ "without MMX enabled changes the ABI"))
+ warnedmmx_ret = true;
+ }
+ }
+ return mode;
+ }
+
+ gcc_unreachable ();
+ }
+ }
+
+ return mode;
+}
+
+/* We want to pass a value in REGNO whose "natural" mode is MODE. However,
+ this may not agree with the mode that the type system has chosen for the
+ register, which is ORIG_MODE. If ORIG_MODE is not BLKmode, then we can
+ go ahead and use it. Otherwise we have to build a PARALLEL instead. */
+
+static rtx
+gen_reg_or_parallel (enum machine_mode mode, enum machine_mode orig_mode,
+ unsigned int regno)
+{
+ rtx tmp;
+
+ if (orig_mode != BLKmode)
+ tmp = gen_rtx_REG (orig_mode, regno);
+ else
+ {
+ tmp = gen_rtx_REG (mode, regno);
+ tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, const0_rtx);
+ tmp = gen_rtx_PARALLEL (orig_mode, gen_rtvec (1, tmp));
+ }
+
+ return tmp;
+}
+
+/* x86-64 register passing implementation. See x86-64 ABI for details. Goal
+ of this code is to classify each 8bytes of incoming argument by the register
+ class and assign registers accordingly. */
+
+/* Return the union class of CLASS1 and CLASS2.
+ See the x86-64 PS ABI for details. */
+
+static enum x86_64_reg_class
+merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
+{
+ /* Rule #1: If both classes are equal, this is the resulting class. */
+ if (class1 == class2)
+ return class1;
+
+ /* Rule #2: If one of the classes is NO_CLASS, the resulting class is
+ the other class. */
+ if (class1 == X86_64_NO_CLASS)
+ return class2;
+ if (class2 == X86_64_NO_CLASS)
+ return class1;
+
+ /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
+ if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
+ return X86_64_MEMORY_CLASS;
+
+ /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
+ if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
+ || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
+ return X86_64_INTEGERSI_CLASS;
+ if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
+ || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
+ return X86_64_INTEGER_CLASS;
+
+ /* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class,
+ MEMORY is used. */
+ if (class1 == X86_64_X87_CLASS
+ || class1 == X86_64_X87UP_CLASS
+ || class1 == X86_64_COMPLEX_X87_CLASS
+ || class2 == X86_64_X87_CLASS
+ || class2 == X86_64_X87UP_CLASS
+ || class2 == X86_64_COMPLEX_X87_CLASS)
+ return X86_64_MEMORY_CLASS;
+
+ /* Rule #6: Otherwise class SSE is used. */
+ return X86_64_SSE_CLASS;
+}
+
+/* Classify the argument of type TYPE and mode MODE.
+ CLASSES will be filled by the register class used to pass each word
+ of the operand. The number of words is returned. In case the parameter
+ should be passed in memory, 0 is returned. As a special case for zero
+ sized containers, classes[0] will be NO_CLASS and 1 is returned.
+
+ BIT_OFFSET is used internally for handling records and specifies offset
+ of the offset in bits modulo 512 to avoid overflow cases.
+
+ See the x86-64 PS ABI for details.
+*/
+
+static int
+classify_argument (enum machine_mode mode, const_tree type,
+ enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
+{
+ HOST_WIDE_INT bytes =
+ (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);
+ int words
+ = (bytes + (bit_offset % 64) / 8 + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ /* Variable sized entities are always passed/returned in memory. */
+ if (bytes < 0)
+ return 0;
+
+ if (mode != VOIDmode
+ && targetm.calls.must_pass_in_stack (mode, type))
+ return 0;
+
+ if (type && AGGREGATE_TYPE_P (type))
+ {
+ int i;
+ tree field;
+ enum x86_64_reg_class subclasses[MAX_CLASSES];
+
+ /* On x86-64 we pass structures larger than 64 bytes on the stack. */
+ if (bytes > 64)
+ return 0;
+
+ for (i = 0; i < words; i++)
+ classes[i] = X86_64_NO_CLASS;
+
+ /* Zero sized arrays or structures are NO_CLASS. We return 0 to
+ signalize memory class, so handle it as special case. */
+ if (!words)
+ {
+ classes[0] = X86_64_NO_CLASS;
+ return 1;
+ }
+
+ /* Classify each field of record and merge classes. */
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ /* And now merge the fields of structure. */
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ if (TREE_CODE (field) == FIELD_DECL)
+ {
+ int num;
+
+ if (TREE_TYPE (field) == error_mark_node)
+ continue;
+
+ /* Bitfields are always classified as integer. Handle them
+ early, since later code would consider them to be
+ misaligned integers. */
+ if (DECL_BIT_FIELD (field))
+ {
+ for (i = (int_bit_position (field)
+ + (bit_offset % 64)) / 8 / 8;
+ i < ((int_bit_position (field) + (bit_offset % 64))
+ + tree_to_shwi (DECL_SIZE (field))
+ + 63) / 8 / 8; i++)
+ classes[i] =
+ merge_classes (X86_64_INTEGER_CLASS,
+ classes[i]);
+ }
+ else
+ {
+ int pos;
+
+ type = TREE_TYPE (field);
+
+ /* Flexible array member is ignored. */
+ if (TYPE_MODE (type) == BLKmode
+ && TREE_CODE (type) == ARRAY_TYPE
+ && TYPE_SIZE (type) == NULL_TREE
+ && TYPE_DOMAIN (type) != NULL_TREE
+ && (TYPE_MAX_VALUE (TYPE_DOMAIN (type))
+ == NULL_TREE))
+ {
+ static bool warned;
+
+ if (!warned && warn_psabi)
+ {
+ warned = true;
+ inform (input_location,
+ "the ABI of passing struct with"
+ " a flexible array member has"
+ " changed in GCC 4.4");
+ }
+ continue;
+ }
+ num = classify_argument (TYPE_MODE (type), type,
+ subclasses,
+ (int_bit_position (field)
+ + bit_offset) % 512);
+ if (!num)
+ return 0;
+ pos = (int_bit_position (field)
+ + (bit_offset % 64)) / 8 / 8;
+ for (i = 0; i < num && (i + pos) < words; i++)
+ classes[i + pos] =
+ merge_classes (subclasses[i], classes[i + pos]);
+ }
+ }
+ }
+ break;
+
+ case ARRAY_TYPE:
+ /* Arrays are handled as small records. */
+ {
+ int num;
+ num = classify_argument (TYPE_MODE (TREE_TYPE (type)),
+ TREE_TYPE (type), subclasses, bit_offset);
+ if (!num)
+ return 0;
+
+ /* The partial classes are now full classes. */
+ if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
+ subclasses[0] = X86_64_SSE_CLASS;
+ if (subclasses[0] == X86_64_INTEGERSI_CLASS
+ && !((bit_offset % 64) == 0 && bytes == 4))
+ subclasses[0] = X86_64_INTEGER_CLASS;
+
+ for (i = 0; i < words; i++)
+ classes[i] = subclasses[i % num];
+
+ break;
+ }
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ /* Unions are similar to RECORD_TYPE but offset is always 0.
+ */
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ if (TREE_CODE (field) == FIELD_DECL)
+ {
+ int num;
+
+ if (TREE_TYPE (field) == error_mark_node)
+ continue;
+
+ num = classify_argument (TYPE_MODE (TREE_TYPE (field)),
+ TREE_TYPE (field), subclasses,
+ bit_offset);
+ if (!num)
+ return 0;
+ for (i = 0; i < num; i++)
+ classes[i] = merge_classes (subclasses[i], classes[i]);
+ }
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (words > 2)
+ {
+ /* When size > 16 bytes, if the first one isn't
+ X86_64_SSE_CLASS or any other ones aren't
+ X86_64_SSEUP_CLASS, everything should be passed in
+ memory. */
+ if (classes[0] != X86_64_SSE_CLASS)
+ return 0;
+
+ for (i = 1; i < words; i++)
+ if (classes[i] != X86_64_SSEUP_CLASS)
+ return 0;
+ }
+
+ /* Final merger cleanup. */
+ for (i = 0; i < words; i++)
+ {
+ /* If one class is MEMORY, everything should be passed in
+ memory. */
+ if (classes[i] == X86_64_MEMORY_CLASS)
+ return 0;
+
+ /* The X86_64_SSEUP_CLASS should be always preceded by
+ X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */
+ if (classes[i] == X86_64_SSEUP_CLASS
+ && classes[i - 1] != X86_64_SSE_CLASS
+ && classes[i - 1] != X86_64_SSEUP_CLASS)
+ {
+ /* The first one should never be X86_64_SSEUP_CLASS. */
+ gcc_assert (i != 0);
+ classes[i] = X86_64_SSE_CLASS;
+ }
+
+ /* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS,
+ everything should be passed in memory. */
+ if (classes[i] == X86_64_X87UP_CLASS
+ && (classes[i - 1] != X86_64_X87_CLASS))
+ {
+ static bool warned;
+
+ /* The first one should never be X86_64_X87UP_CLASS. */
+ gcc_assert (i != 0);
+ if (!warned && warn_psabi)
+ {
+ warned = true;
+ inform (input_location,
+ "the ABI of passing union with long double"
+ " has changed in GCC 4.4");
+ }
+ return 0;
+ }
+ }
+ return words;
+ }
+
+ /* Compute alignment needed. We align all types to natural boundaries with
+ exception of XFmode that is aligned to 64bits. */
+ if (mode != VOIDmode && mode != BLKmode)
+ {
+ int mode_alignment = GET_MODE_BITSIZE (mode);
+
+ if (mode == XFmode)
+ mode_alignment = 128;
+ else if (mode == XCmode)
+ mode_alignment = 256;
+ if (COMPLEX_MODE_P (mode))
+ mode_alignment /= 2;
+ /* Misaligned fields are always returned in memory. */
+ if (bit_offset % mode_alignment)
+ return 0;
+ }
+
+ /* for V1xx modes, just use the base mode */
+ if (VECTOR_MODE_P (mode) && mode != V1DImode && mode != V1TImode
+ && GET_MODE_SIZE (GET_MODE_INNER (mode)) == bytes)
+ mode = GET_MODE_INNER (mode);
+
+ /* Classification of atomic types. */
+ switch (mode)
+ {
+ case SDmode:
+ case DDmode:
+ classes[0] = X86_64_SSE_CLASS;
+ return 1;
+ case TDmode:
+ classes[0] = X86_64_SSE_CLASS;
+ classes[1] = X86_64_SSEUP_CLASS;
+ return 2;
+ case DImode:
+ case SImode:
+ case HImode:
+ case QImode:
+ case CSImode:
+ case CHImode:
+ case CQImode:
+ {
+ int size = bit_offset + (int) GET_MODE_BITSIZE (mode);
+
+ /* Analyze last 128 bits only. */
+ size = (size - 1) & 0x7f;
+
+ if (size < 32)
+ {
+ classes[0] = X86_64_INTEGERSI_CLASS;
+ return 1;
+ }
+ else if (size < 64)
+ {
+ classes[0] = X86_64_INTEGER_CLASS;
+ return 1;
+ }
+ else if (size < 64+32)
+ {
+ classes[0] = X86_64_INTEGER_CLASS;
+ classes[1] = X86_64_INTEGERSI_CLASS;
+ return 2;
+ }
+ else if (size < 64+64)
+ {
+ classes[0] = classes[1] = X86_64_INTEGER_CLASS;
+ return 2;
+ }
+ else
+ gcc_unreachable ();
+ }
+ case CDImode:
+ case TImode:
+ classes[0] = classes[1] = X86_64_INTEGER_CLASS;
+ return 2;
+ case COImode:
+ case OImode:
+ /* OImode shouldn't be used directly. */
+ gcc_unreachable ();
+ case CTImode:
+ return 0;
+ case SFmode:
+ if (!(bit_offset % 64))
+ classes[0] = X86_64_SSESF_CLASS;
+ else
+ classes[0] = X86_64_SSE_CLASS;
+ return 1;
+ case DFmode:
+ classes[0] = X86_64_SSEDF_CLASS;
+ return 1;
+ case XFmode:
+ classes[0] = X86_64_X87_CLASS;
+ classes[1] = X86_64_X87UP_CLASS;
+ return 2;
+ case TFmode:
+ classes[0] = X86_64_SSE_CLASS;
+ classes[1] = X86_64_SSEUP_CLASS;
+ return 2;
+ case SCmode:
+ classes[0] = X86_64_SSE_CLASS;
+ if (!(bit_offset % 64))
+ return 1;
+ else
+ {
+ static bool warned;
+
+ if (!warned && warn_psabi)
+ {
+ warned = true;
+ inform (input_location,
+ "the ABI of passing structure with complex float"
+ " member has changed in GCC 4.4");
+ }
+ classes[1] = X86_64_SSESF_CLASS;
+ return 2;
+ }
+ case DCmode:
+ classes[0] = X86_64_SSEDF_CLASS;
+ classes[1] = X86_64_SSEDF_CLASS;
+ return 2;
+ case XCmode:
+ classes[0] = X86_64_COMPLEX_X87_CLASS;
+ return 1;
+ case TCmode:
+ /* This modes is larger than 16 bytes. */
+ return 0;
+ case V8SFmode:
+ case V8SImode:
+ case V32QImode:
+ case V16HImode:
+ case V4DFmode:
+ case V4DImode:
+ classes[0] = X86_64_SSE_CLASS;
+ classes[1] = X86_64_SSEUP_CLASS;
+ classes[2] = X86_64_SSEUP_CLASS;
+ classes[3] = X86_64_SSEUP_CLASS;
+ return 4;
+ case V8DFmode:
+ case V16SFmode:
+ case V8DImode:
+ case V16SImode:
+ case V32HImode:
+ case V64QImode:
+ classes[0] = X86_64_SSE_CLASS;
+ classes[1] = X86_64_SSEUP_CLASS;
+ classes[2] = X86_64_SSEUP_CLASS;
+ classes[3] = X86_64_SSEUP_CLASS;
+ classes[4] = X86_64_SSEUP_CLASS;
+ classes[5] = X86_64_SSEUP_CLASS;
+ classes[6] = X86_64_SSEUP_CLASS;
+ classes[7] = X86_64_SSEUP_CLASS;
+ return 8;
+ case V4SFmode:
+ case V4SImode:
+ case V16QImode:
+ case V8HImode:
+ case V2DFmode:
+ case V2DImode:
+ classes[0] = X86_64_SSE_CLASS;
+ classes[1] = X86_64_SSEUP_CLASS;
+ return 2;
+ case V1TImode:
+ case V1DImode:
+ case V2SFmode:
+ case V2SImode:
+ case V4HImode:
+ case V8QImode:
+ classes[0] = X86_64_SSE_CLASS;
+ return 1;
+ case BLKmode:
+ case VOIDmode:
+ return 0;
+ default:
+ gcc_assert (VECTOR_MODE_P (mode));
+
+ if (bytes > 16)
+ return 0;
+
+ gcc_assert (GET_MODE_CLASS (GET_MODE_INNER (mode)) == MODE_INT);
+
+ if (bit_offset + GET_MODE_BITSIZE (mode) <= 32)
+ classes[0] = X86_64_INTEGERSI_CLASS;
+ else
+ classes[0] = X86_64_INTEGER_CLASS;
+ classes[1] = X86_64_INTEGER_CLASS;
+ return 1 + (bytes > 8);
+ }
+}
+
+/* Examine the argument and return set number of register required in each
+ class. Return 0 iff parameter should be passed in memory. */
+static int
+examine_argument (enum machine_mode mode, const_tree type, int in_return,
+ int *int_nregs, int *sse_nregs)
+{
+ enum x86_64_reg_class regclass[MAX_CLASSES];
+ int n = classify_argument (mode, type, regclass, 0);
+
+ *int_nregs = 0;
+ *sse_nregs = 0;
+ if (!n)
+ return 0;
+ for (n--; n >= 0; n--)
+ switch (regclass[n])
+ {
+ case X86_64_INTEGER_CLASS:
+ case X86_64_INTEGERSI_CLASS:
+ (*int_nregs)++;
+ break;
+ case X86_64_SSE_CLASS:
+ case X86_64_SSESF_CLASS:
+ case X86_64_SSEDF_CLASS:
+ (*sse_nregs)++;
+ break;
+ case X86_64_NO_CLASS:
+ case X86_64_SSEUP_CLASS:
+ break;
+ case X86_64_X87_CLASS:
+ case X86_64_X87UP_CLASS:
+ if (!in_return)
+ return 0;
+ break;
+ case X86_64_COMPLEX_X87_CLASS:
+ return in_return ? 2 : 0;
+ case X86_64_MEMORY_CLASS:
+ gcc_unreachable ();
+ }
+ return 1;
+}
+
+/* Construct container for the argument used by GCC interface. See
+ FUNCTION_ARG for the detailed description. */
+
+static rtx
+construct_container (enum machine_mode mode, enum machine_mode orig_mode,
+ const_tree type, int in_return, int nintregs, int nsseregs,
+ const int *intreg, int sse_regno)
+{
+ /* The following variables hold the static issued_error state. */
+ static bool issued_sse_arg_error;
+ static bool issued_sse_ret_error;
+ static bool issued_x87_ret_error;
+
+ enum machine_mode tmpmode;
+ int bytes =
+ (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);
+ enum x86_64_reg_class regclass[MAX_CLASSES];
+ int n;
+ int i;
+ int nexps = 0;
+ int needed_sseregs, needed_intregs;
+ rtx exp[MAX_CLASSES];
+ rtx ret;
+
+ n = classify_argument (mode, type, regclass, 0);
+ if (!n)
+ return NULL;
+ if (!examine_argument (mode, type, in_return, &needed_intregs,
+ &needed_sseregs))
+ return NULL;
+ if (needed_intregs > nintregs || needed_sseregs > nsseregs)
+ return NULL;
+
+ /* We allowed the user to turn off SSE for kernel mode. Don't crash if
+ some less clueful developer tries to use floating-point anyway. */
+ if (needed_sseregs && !TARGET_SSE)
+ {
+ if (in_return)
+ {
+ if (!issued_sse_ret_error)
+ {
+ error ("SSE register return with SSE disabled");
+ issued_sse_ret_error = true;
+ }
+ }
+ else if (!issued_sse_arg_error)
+ {
+ error ("SSE register argument with SSE disabled");
+ issued_sse_arg_error = true;
+ }
+ return NULL;
+ }
+
+ /* Likewise, error if the ABI requires us to return values in the
+ x87 registers and the user specified -mno-80387. */
+ if (!TARGET_FLOAT_RETURNS_IN_80387 && in_return)
+ for (i = 0; i < n; i++)
+ if (regclass[i] == X86_64_X87_CLASS
+ || regclass[i] == X86_64_X87UP_CLASS
+ || regclass[i] == X86_64_COMPLEX_X87_CLASS)
+ {
+ if (!issued_x87_ret_error)
+ {
+ error ("x87 register return with x87 disabled");
+ issued_x87_ret_error = true;
+ }
+ return NULL;
+ }
+
+ /* First construct simple cases. Avoid SCmode, since we want to use
+ single register to pass this type. */
+ if (n == 1 && mode != SCmode)
+ switch (regclass[0])
+ {
+ case X86_64_INTEGER_CLASS:
+ case X86_64_INTEGERSI_CLASS:
+ return gen_rtx_REG (mode, intreg[0]);
+ case X86_64_SSE_CLASS:
+ case X86_64_SSESF_CLASS:
+ case X86_64_SSEDF_CLASS:
+ if (mode != BLKmode)
+ return gen_reg_or_parallel (mode, orig_mode,
+ SSE_REGNO (sse_regno));
+ break;
+ case X86_64_X87_CLASS:
+ case X86_64_COMPLEX_X87_CLASS:
+ return gen_rtx_REG (mode, FIRST_STACK_REG);
+ case X86_64_NO_CLASS:
+ /* Zero sized array, struct or class. */
+ return NULL;
+ default:
+ gcc_unreachable ();
+ }
+ if (n == 2
+ && regclass[0] == X86_64_SSE_CLASS
+ && regclass[1] == X86_64_SSEUP_CLASS
+ && mode != BLKmode)
+ return gen_reg_or_parallel (mode, orig_mode,
+ SSE_REGNO (sse_regno));
+ if (n == 4
+ && regclass[0] == X86_64_SSE_CLASS
+ && regclass[1] == X86_64_SSEUP_CLASS
+ && regclass[2] == X86_64_SSEUP_CLASS
+ && regclass[3] == X86_64_SSEUP_CLASS
+ && mode != BLKmode)
+ return gen_reg_or_parallel (mode, orig_mode,
+ SSE_REGNO (sse_regno));
+ if (n == 8
+ && regclass[0] == X86_64_SSE_CLASS
+ && regclass[1] == X86_64_SSEUP_CLASS
+ && regclass[2] == X86_64_SSEUP_CLASS
+ && regclass[3] == X86_64_SSEUP_CLASS
+ && regclass[4] == X86_64_SSEUP_CLASS
+ && regclass[5] == X86_64_SSEUP_CLASS
+ && regclass[6] == X86_64_SSEUP_CLASS
+ && regclass[7] == X86_64_SSEUP_CLASS
+ && mode != BLKmode)
+ return gen_reg_or_parallel (mode, orig_mode,
+ SSE_REGNO (sse_regno));
+ if (n == 2
+ && regclass[0] == X86_64_X87_CLASS
+ && regclass[1] == X86_64_X87UP_CLASS)
+ return gen_rtx_REG (XFmode, FIRST_STACK_REG);
+
+ if (n == 2
+ && regclass[0] == X86_64_INTEGER_CLASS
+ && regclass[1] == X86_64_INTEGER_CLASS
+ && (mode == CDImode || mode == TImode)
+ && intreg[0] + 1 == intreg[1])
+ return gen_rtx_REG (mode, intreg[0]);
+
+ /* Otherwise figure out the entries of the PARALLEL. */
+ for (i = 0; i < n; i++)
+ {
+ int pos;
+
+ switch (regclass[i])
+ {
+ case X86_64_NO_CLASS:
+ break;
+ case X86_64_INTEGER_CLASS:
+ case X86_64_INTEGERSI_CLASS:
+ /* Merge TImodes on aligned occasions here too. */
+ if (i * 8 + 8 > bytes)
+ tmpmode
+ = mode_for_size ((bytes - i * 8) * BITS_PER_UNIT, MODE_INT, 0);
+ else if (regclass[i] == X86_64_INTEGERSI_CLASS)
+ tmpmode = SImode;
+ else
+ tmpmode = DImode;
+ /* We've requested 24 bytes we
+ don't have mode for. Use DImode. */
+ if (tmpmode == BLKmode)
+ tmpmode = DImode;
+ exp [nexps++]
+ = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (tmpmode, *intreg),
+ GEN_INT (i*8));
+ intreg++;
+ break;
+ case X86_64_SSESF_CLASS:
+ exp [nexps++]
+ = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (SFmode,
+ SSE_REGNO (sse_regno)),
+ GEN_INT (i*8));
+ sse_regno++;
+ break;
+ case X86_64_SSEDF_CLASS:
+ exp [nexps++]
+ = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (DFmode,
+ SSE_REGNO (sse_regno)),
+ GEN_INT (i*8));
+ sse_regno++;
+ break;
+ case X86_64_SSE_CLASS:
+ pos = i;
+ switch (n)
+ {
+ case 1:
+ tmpmode = DImode;
+ break;
+ case 2:
+ if (i == 0 && regclass[1] == X86_64_SSEUP_CLASS)
+ {
+ tmpmode = TImode;
+ i++;
+ }
+ else
+ tmpmode = DImode;
+ break;
+ case 4:
+ gcc_assert (i == 0
+ && regclass[1] == X86_64_SSEUP_CLASS
+ && regclass[2] == X86_64_SSEUP_CLASS
+ && regclass[3] == X86_64_SSEUP_CLASS);
+ tmpmode = OImode;
+ i += 3;
+ break;
+ case 8:
+ gcc_assert (i == 0
+ && regclass[1] == X86_64_SSEUP_CLASS
+ && regclass[2] == X86_64_SSEUP_CLASS
+ && regclass[3] == X86_64_SSEUP_CLASS
+ && regclass[4] == X86_64_SSEUP_CLASS
+ && regclass[5] == X86_64_SSEUP_CLASS
+ && regclass[6] == X86_64_SSEUP_CLASS
+ && regclass[7] == X86_64_SSEUP_CLASS);
+ tmpmode = XImode;
+ i += 7;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ exp [nexps++]
+ = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (tmpmode,
+ SSE_REGNO (sse_regno)),
+ GEN_INT (pos*8));
+ sse_regno++;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* Empty aligned struct, union or class. */
+ if (nexps == 0)
+ return NULL;
+
+ ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nexps));
+ for (i = 0; i < nexps; i++)
+ XVECEXP (ret, 0, i) = exp [i];
+ return ret;
+}
+
+/* Update the data in CUM to advance over an argument of mode MODE
+ and data type TYPE. (TYPE is null for libcalls where that information
+ may not be available.) */
+
+static void
+function_arg_advance_32 (CUMULATIVE_ARGS *cum, enum machine_mode mode,
+ const_tree type, HOST_WIDE_INT bytes,
+ HOST_WIDE_INT words)
+{
+ switch (mode)
+ {
+ default:
+ break;
+
+ case BLKmode:
+ if (bytes < 0)
+ break;
+ /* FALLTHRU */
+
+ case DImode:
+ case SImode:
+ case HImode:
+ case QImode:
+ cum->words += words;
+ cum->nregs -= words;
+ cum->regno += words;
+
+ if (cum->nregs <= 0)
+ {
+ cum->nregs = 0;
+ cum->regno = 0;
+ }
+ break;
+
+ case OImode:
+ /* OImode shouldn't be used directly. */
+ gcc_unreachable ();
+
+ case DFmode:
+ if (cum->float_in_sse < 2)
+ break;
+ case SFmode:
+ if (cum->float_in_sse < 1)
+ break;
+ /* FALLTHRU */
+
+ case V8SFmode:
+ case V8SImode:
+ case V64QImode:
+ case V32HImode:
+ case V16SImode:
+ case V8DImode:
+ case V16SFmode:
+ case V8DFmode:
+ case V32QImode:
+ case V16HImode:
+ case V4DFmode:
+ case V4DImode:
+ case TImode:
+ case V16QImode:
+ case V8HImode:
+ case V4SImode:
+ case V2DImode:
+ case V4SFmode:
+ case V2DFmode:
+ if (!type || !AGGREGATE_TYPE_P (type))
+ {
+ cum->sse_words += words;
+ cum->sse_nregs -= 1;
+ cum->sse_regno += 1;
+ if (cum->sse_nregs <= 0)
+ {
+ cum->sse_nregs = 0;
+ cum->sse_regno = 0;
+ }
+ }
+ break;
+
+ case V8QImode:
+ case V4HImode:
+ case V2SImode:
+ case V2SFmode:
+ case V1TImode:
+ case V1DImode:
+ if (!type || !AGGREGATE_TYPE_P (type))
+ {
+ cum->mmx_words += words;
+ cum->mmx_nregs -= 1;
+ cum->mmx_regno += 1;
+ if (cum->mmx_nregs <= 0)
+ {
+ cum->mmx_nregs = 0;
+ cum->mmx_regno = 0;
+ }
+ }
+ break;
+ }
+}
+
+static void
+function_arg_advance_64 (CUMULATIVE_ARGS *cum, enum machine_mode mode,
+ const_tree type, HOST_WIDE_INT words, bool named)
+{
+ int int_nregs, sse_nregs;
+
+ /* Unnamed 512 and 256bit vector mode parameters are passed on stack. */
+ if (!named && (VALID_AVX512F_REG_MODE (mode)
+ || VALID_AVX256_REG_MODE (mode)))
+ return;
+
+ if (examine_argument (mode, type, 0, &int_nregs, &sse_nregs)
+ && sse_nregs <= cum->sse_nregs && int_nregs <= cum->nregs)
+ {
+ cum->nregs -= int_nregs;
+ cum->sse_nregs -= sse_nregs;
+ cum->regno += int_nregs;
+ cum->sse_regno += sse_nregs;
+ }
+ else
+ {
+ int align = ix86_function_arg_boundary (mode, type) / BITS_PER_WORD;
+ cum->words = (cum->words + align - 1) & ~(align - 1);
+ cum->words += words;
+ }
+}
+
+static void
+function_arg_advance_ms_64 (CUMULATIVE_ARGS *cum, HOST_WIDE_INT bytes,
+ HOST_WIDE_INT words)
+{
+ /* Otherwise, this should be passed indirect. */
+ gcc_assert (bytes == 1 || bytes == 2 || bytes == 4 || bytes == 8);
+
+ cum->words += words;
+ if (cum->nregs > 0)
+ {
+ cum->nregs -= 1;
+ cum->regno += 1;
+ }
+}
+
+/* Update the data in CUM to advance over an argument of mode MODE and
+ data type TYPE. (TYPE is null for libcalls where that information
+ may not be available.) */
+
+static void
+ix86_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ HOST_WIDE_INT bytes, words;
+
+ if (mode == BLKmode)
+ bytes = int_size_in_bytes (type);
+ else
+ bytes = GET_MODE_SIZE (mode);
+ words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ if (type)
+ mode = type_natural_mode (type, NULL, false);
+
+ if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI)
+ function_arg_advance_ms_64 (cum, bytes, words);
+ else if (TARGET_64BIT)
+ function_arg_advance_64 (cum, mode, type, words, named);
+ else
+ function_arg_advance_32 (cum, mode, type, bytes, words);
+}
+
+/* Define where to put the arguments to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis). */
+
+static rtx
+function_arg_32 (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
+ enum machine_mode orig_mode, const_tree type,
+ HOST_WIDE_INT bytes, HOST_WIDE_INT words)
+{
+ /* Avoid the AL settings for the Unix64 ABI. */
+ if (mode == VOIDmode)
+ return constm1_rtx;
+
+ switch (mode)
+ {
+ default:
+ break;
+
+ case BLKmode:
+ if (bytes < 0)
+ break;
+ /* FALLTHRU */
+ case DImode:
+ case SImode:
+ case HImode:
+ case QImode:
+ if (words <= cum->nregs)
+ {
+ int regno = cum->regno;
+
+ /* Fastcall allocates the first two DWORD (SImode) or
+ smaller arguments to ECX and EDX if it isn't an
+ aggregate type . */
+ if (cum->fastcall)
+ {
+ if (mode == BLKmode
+ || mode == DImode
+ || (type && AGGREGATE_TYPE_P (type)))
+ break;
+
+ /* ECX not EAX is the first allocated register. */
+ if (regno == AX_REG)
+ regno = CX_REG;
+ }
+ return gen_rtx_REG (mode, regno);
+ }
+ break;
+
+ case DFmode:
+ if (cum->float_in_sse < 2)
+ break;
+ case SFmode:
+ if (cum->float_in_sse < 1)
+ break;
+ /* FALLTHRU */
+ case TImode:
+ /* In 32bit, we pass TImode in xmm registers. */
+ case V16QImode:
+ case V8HImode:
+ case V4SImode:
+ case V2DImode:
+ case V4SFmode:
+ case V2DFmode:
+ if (!type || !AGGREGATE_TYPE_P (type))
+ {
+ if (cum->sse_nregs)
+ return gen_reg_or_parallel (mode, orig_mode,
+ cum->sse_regno + FIRST_SSE_REG);
+ }
+ break;
+
+ case OImode:
+ case XImode:
+ /* OImode and XImode shouldn't be used directly. */
+ gcc_unreachable ();
+
+ case V64QImode:
+ case V32HImode:
+ case V16SImode:
+ case V8DImode:
+ case V16SFmode:
+ case V8DFmode:
+ case V8SFmode:
+ case V8SImode:
+ case V32QImode:
+ case V16HImode:
+ case V4DFmode:
+ case V4DImode:
+ if (!type || !AGGREGATE_TYPE_P (type))
+ {
+ if (cum->sse_nregs)
+ return gen_reg_or_parallel (mode, orig_mode,
+ cum->sse_regno + FIRST_SSE_REG);
+ }
+ break;
+
+ case V8QImode:
+ case V4HImode:
+ case V2SImode:
+ case V2SFmode:
+ case V1TImode:
+ case V1DImode:
+ if (!type || !AGGREGATE_TYPE_P (type))
+ {
+ if (cum->mmx_nregs)
+ return gen_reg_or_parallel (mode, orig_mode,
+ cum->mmx_regno + FIRST_MMX_REG);
+ }
+ break;
+ }
+
+ return NULL_RTX;
+}
+
+static rtx
+function_arg_64 (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
+ enum machine_mode orig_mode, const_tree type, bool named)
+{
+ /* Handle a hidden AL argument containing number of registers
+ for varargs x86-64 functions. */
+ if (mode == VOIDmode)
+ return GEN_INT (cum->maybe_vaarg
+ ? (cum->sse_nregs < 0
+ ? X86_64_SSE_REGPARM_MAX
+ : cum->sse_regno)
+ : -1);
+
+ switch (mode)
+ {
+ default:
+ break;
+
+ case V8SFmode:
+ case V8SImode:
+ case V32QImode:
+ case V16HImode:
+ case V4DFmode:
+ case V4DImode:
+ case V16SFmode:
+ case V16SImode:
+ case V64QImode:
+ case V32HImode:
+ case V8DFmode:
+ case V8DImode:
+ /* Unnamed 256 and 512bit vector mode parameters are passed on stack. */
+ if (!named)
+ return NULL;
+ break;
+ }
+
+ return construct_container (mode, orig_mode, type, 0, cum->nregs,
+ cum->sse_nregs,
+ &x86_64_int_parameter_registers [cum->regno],
+ cum->sse_regno);
+}
+
+static rtx
+function_arg_ms_64 (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
+ enum machine_mode orig_mode, bool named,
+ HOST_WIDE_INT bytes)
+{
+ unsigned int regno;
+
+ /* We need to add clobber for MS_ABI->SYSV ABI calls in expand_call.
+ We use value of -2 to specify that current function call is MSABI. */
+ if (mode == VOIDmode)
+ return GEN_INT (-2);
+
+ /* If we've run out of registers, it goes on the stack. */
+ if (cum->nregs == 0)
+ return NULL_RTX;
+
+ regno = x86_64_ms_abi_int_parameter_registers[cum->regno];
+
+ /* Only floating point modes are passed in anything but integer regs. */
+ if (TARGET_SSE && (mode == SFmode || mode == DFmode))
+ {
+ if (named)
+ regno = cum->regno + FIRST_SSE_REG;
+ else
+ {
+ rtx t1, t2;
+
+ /* Unnamed floating parameters are passed in both the
+ SSE and integer registers. */
+ t1 = gen_rtx_REG (mode, cum->regno + FIRST_SSE_REG);
+ t2 = gen_rtx_REG (mode, regno);
+ t1 = gen_rtx_EXPR_LIST (VOIDmode, t1, const0_rtx);
+ t2 = gen_rtx_EXPR_LIST (VOIDmode, t2, const0_rtx);
+ return gen_rtx_PARALLEL (mode, gen_rtvec (2, t1, t2));
+ }
+ }
+ /* Handle aggregated types passed in register. */
+ if (orig_mode == BLKmode)
+ {
+ if (bytes > 0 && bytes <= 8)
+ mode = (bytes > 4 ? DImode : SImode);
+ if (mode == BLKmode)
+ mode = DImode;
+ }
+
+ return gen_reg_or_parallel (mode, orig_mode, regno);
+}
+
+/* Return where to put the arguments to a function.
+ Return zero to push the argument on the stack, or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode. TYPE is the data type of the
+ argument. It is null for libcalls where that information may not be
+ available. CUM gives information about the preceding args and about
+ the function being called. NAMED is nonzero if this argument is a
+ named parameter (otherwise it is an extra parameter matching an
+ ellipsis). */
+
+static rtx
+ix86_function_arg (cumulative_args_t cum_v, enum machine_mode omode,
+ const_tree type, bool named)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ enum machine_mode mode = omode;
+ HOST_WIDE_INT bytes, words;
+ rtx arg;
+
+ if (mode == BLKmode)
+ bytes = int_size_in_bytes (type);
+ else
+ bytes = GET_MODE_SIZE (mode);
+ words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ /* To simplify the code below, represent vector types with a vector mode
+ even if MMX/SSE are not active. */
+ if (type && TREE_CODE (type) == VECTOR_TYPE)
+ mode = type_natural_mode (type, cum, false);
+
+ if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI)
+ arg = function_arg_ms_64 (cum, mode, omode, named, bytes);
+ else if (TARGET_64BIT)
+ arg = function_arg_64 (cum, mode, omode, type, named);
+ else
+ arg = function_arg_32 (cum, mode, omode, type, bytes, words);
+
+ return arg;
+}
+
+/* A C expression that indicates when an argument must be passed by
+ reference. If nonzero for an argument, a copy of that argument is
+ made in memory and a pointer to the argument is passed instead of
+ the argument itself. The pointer is passed in whatever way is
+ appropriate for passing a pointer to that type. */
+
+static bool
+ix86_pass_by_reference (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+
+ /* See Windows x64 Software Convention. */
+ if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI)
+ {
+ int msize = (int) GET_MODE_SIZE (mode);
+ if (type)
+ {
+ /* Arrays are passed by reference. */
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ return true;
+
+ if (AGGREGATE_TYPE_P (type))
+ {
+ /* Structs/unions of sizes other than 8, 16, 32, or 64 bits
+ are passed by reference. */
+ msize = int_size_in_bytes (type);
+ }
+ }
+
+ /* __m128 is passed by reference. */
+ switch (msize) {
+ case 1: case 2: case 4: case 8:
+ break;
+ default:
+ return true;
+ }
+ }
+ else if (TARGET_64BIT && type && int_size_in_bytes (type) == -1)
+ return 1;
+
+ return 0;
+}
+
+/* Return true when TYPE should be 128bit aligned for 32bit argument
+ passing ABI. XXX: This function is obsolete and is only used for
+ checking psABI compatibility with previous versions of GCC. */
+
+static bool
+ix86_compat_aligned_value_p (const_tree type)
+{
+ enum machine_mode mode = TYPE_MODE (type);
+ if (((TARGET_SSE && SSE_REG_MODE_P (mode))
+ || mode == TDmode
+ || mode == TFmode
+ || mode == TCmode)
+ && (!TYPE_USER_ALIGN (type) || TYPE_ALIGN (type) > 128))
+ return true;
+ if (TYPE_ALIGN (type) < 128)
+ return false;
+
+ if (AGGREGATE_TYPE_P (type))
+ {
+ /* Walk the aggregates recursively. */
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree field;
+
+ /* Walk all the structure fields. */
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ if (TREE_CODE (field) == FIELD_DECL
+ && ix86_compat_aligned_value_p (TREE_TYPE (field)))
+ return true;
+ }
+ break;
+ }
+
+ case ARRAY_TYPE:
+ /* Just for use if some languages passes arrays by value. */
+ if (ix86_compat_aligned_value_p (TREE_TYPE (type)))
+ return true;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ return false;
+}
+
+/* Return the alignment boundary for MODE and TYPE with alignment ALIGN.
+ XXX: This function is obsolete and is only used for checking psABI
+ compatibility with previous versions of GCC. */
+
+static unsigned int
+ix86_compat_function_arg_boundary (enum machine_mode mode,
+ const_tree type, unsigned int align)
+{
+ /* In 32bit, only _Decimal128 and __float128 are aligned to their
+ natural boundaries. */
+ if (!TARGET_64BIT && mode != TDmode && mode != TFmode)
+ {
+ /* i386 ABI defines all arguments to be 4 byte aligned. We have to
+ make an exception for SSE modes since these require 128bit
+ alignment.
+
+ The handling here differs from field_alignment. ICC aligns MMX
+ arguments to 4 byte boundaries, while structure fields are aligned
+ to 8 byte boundaries. */
+ if (!type)
+ {
+ if (!(TARGET_SSE && SSE_REG_MODE_P (mode)))
+ align = PARM_BOUNDARY;
+ }
+ else
+ {
+ if (!ix86_compat_aligned_value_p (type))
+ align = PARM_BOUNDARY;
+ }
+ }
+ if (align > BIGGEST_ALIGNMENT)
+ align = BIGGEST_ALIGNMENT;
+ return align;
+}
+
+/* Return true when TYPE should be 128bit aligned for 32bit argument
+ passing ABI. */
+
+static bool
+ix86_contains_aligned_value_p (const_tree type)
+{
+ enum machine_mode mode = TYPE_MODE (type);
+
+ if (mode == XFmode || mode == XCmode)
+ return false;
+
+ if (TYPE_ALIGN (type) < 128)
+ return false;
+
+ if (AGGREGATE_TYPE_P (type))
+ {
+ /* Walk the aggregates recursively. */
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree field;
+
+ /* Walk all the structure fields. */
+ for (field = TYPE_FIELDS (type);
+ field;
+ field = DECL_CHAIN (field))
+ {
+ if (TREE_CODE (field) == FIELD_DECL
+ && ix86_contains_aligned_value_p (TREE_TYPE (field)))
+ return true;
+ }
+ break;
+ }
+
+ case ARRAY_TYPE:
+ /* Just for use if some languages passes arrays by value. */
+ if (ix86_contains_aligned_value_p (TREE_TYPE (type)))
+ return true;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ else
+ return TYPE_ALIGN (type) >= 128;
+
+ return false;
+}
+
+/* Gives the alignment boundary, in bits, of an argument with the
+ specified mode and type. */
+
+static unsigned int
+ix86_function_arg_boundary (enum machine_mode mode, const_tree type)
+{
+ unsigned int align;
+ if (type)
+ {
+ /* Since the main variant type is used for call, we convert it to
+ the main variant type. */
+ type = TYPE_MAIN_VARIANT (type);
+ align = TYPE_ALIGN (type);
+ }
+ else
+ align = GET_MODE_ALIGNMENT (mode);
+ if (align < PARM_BOUNDARY)
+ align = PARM_BOUNDARY;
+ else
+ {
+ static bool warned;
+ unsigned int saved_align = align;
+
+ if (!TARGET_64BIT)
+ {
+ /* i386 ABI defines XFmode arguments to be 4 byte aligned. */
+ if (!type)
+ {
+ if (mode == XFmode || mode == XCmode)
+ align = PARM_BOUNDARY;
+ }
+ else if (!ix86_contains_aligned_value_p (type))
+ align = PARM_BOUNDARY;
+
+ if (align < 128)
+ align = PARM_BOUNDARY;
+ }
+
+ if (warn_psabi
+ && !warned
+ && align != ix86_compat_function_arg_boundary (mode, type,
+ saved_align))
+ {
+ warned = true;
+ inform (input_location,
+ "The ABI for passing parameters with %d-byte"
+ " alignment has changed in GCC 4.6",
+ align / BITS_PER_UNIT);
+ }
+ }
+
+ return align;
+}
+
+/* Return true if N is a possible register number of function value. */
+
+static bool
+ix86_function_value_regno_p (const unsigned int regno)
+{
+ switch (regno)
+ {
+ case AX_REG:
+ case DX_REG:
+ return true;
+ case DI_REG:
+ case SI_REG:
+ return TARGET_64BIT && ix86_abi != MS_ABI;
+
+ /* Complex values are returned in %st(0)/%st(1) pair. */
+ case ST0_REG:
+ case ST1_REG:
+ /* TODO: The function should depend on current function ABI but
+ builtins.c would need updating then. Therefore we use the
+ default ABI. */
+ if (TARGET_64BIT && ix86_abi == MS_ABI)
+ return false;
+ return TARGET_FLOAT_RETURNS_IN_80387;
+
+ /* Complex values are returned in %xmm0/%xmm1 pair. */
+ case XMM0_REG:
+ case XMM1_REG:
+ return TARGET_SSE;
+
+ case MM0_REG:
+ if (TARGET_MACHO || TARGET_64BIT)
+ return false;
+ return TARGET_MMX;
+ }
+
+ return false;
+}
+
+/* Define how to find the value returned by a function.
+ VALTYPE is the data type of the value (as a tree).
+ If the precise function being called is known, FUNC is its FUNCTION_DECL;
+ otherwise, FUNC is 0. */
+
+static rtx
+function_value_32 (enum machine_mode orig_mode, enum machine_mode mode,
+ const_tree fntype, const_tree fn)
+{
+ unsigned int regno;
+
+ /* 8-byte vector modes in %mm0. See ix86_return_in_memory for where
+ we normally prevent this case when mmx is not available. However
+ some ABIs may require the result to be returned like DImode. */
+ if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8)
+ regno = FIRST_MMX_REG;
+
+ /* 16-byte vector modes in %xmm0. See ix86_return_in_memory for where
+ we prevent this case when sse is not available. However some ABIs
+ may require the result to be returned like integer TImode. */
+ else if (mode == TImode
+ || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16))
+ regno = FIRST_SSE_REG;
+
+ /* 32-byte vector modes in %ymm0. */
+ else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 32)
+ regno = FIRST_SSE_REG;
+
+ /* 64-byte vector modes in %zmm0. */
+ else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 64)
+ regno = FIRST_SSE_REG;
+
+ /* Floating point return values in %st(0) (unless -mno-fp-ret-in-387). */
+ else if (X87_FLOAT_MODE_P (mode) && TARGET_FLOAT_RETURNS_IN_80387)
+ regno = FIRST_FLOAT_REG;
+ else
+ /* Most things go in %eax. */
+ regno = AX_REG;
+
+ /* Override FP return register with %xmm0 for local functions when
+ SSE math is enabled or for functions with sseregparm attribute. */
+ if ((fn || fntype) && (mode == SFmode || mode == DFmode))
+ {
+ int sse_level = ix86_function_sseregparm (fntype, fn, false);
+ if ((sse_level >= 1 && mode == SFmode)
+ || (sse_level == 2 && mode == DFmode))
+ regno = FIRST_SSE_REG;
+ }
+
+ /* OImode shouldn't be used directly. */
+ gcc_assert (mode != OImode);
+
+ return gen_rtx_REG (orig_mode, regno);
+}
+
+static rtx
+function_value_64 (enum machine_mode orig_mode, enum machine_mode mode,
+ const_tree valtype)
+{
+ rtx ret;
+
+ /* Handle libcalls, which don't provide a type node. */
+ if (valtype == NULL)
+ {
+ unsigned int regno;
+
+ switch (mode)
+ {
+ case SFmode:
+ case SCmode:
+ case DFmode:
+ case DCmode:
+ case TFmode:
+ case SDmode:
+ case DDmode:
+ case TDmode:
+ regno = FIRST_SSE_REG;
+ break;
+ case XFmode:
+ case XCmode:
+ regno = FIRST_FLOAT_REG;
+ break;
+ case TCmode:
+ return NULL;
+ default:
+ regno = AX_REG;
+ }
+
+ return gen_rtx_REG (mode, regno);
+ }
+ else if (POINTER_TYPE_P (valtype))
+ {
+ /* Pointers are always returned in word_mode. */
+ mode = word_mode;
+ }
+
+ ret = construct_container (mode, orig_mode, valtype, 1,
+ X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX,
+ x86_64_int_return_registers, 0);
+
+ /* For zero sized structures, construct_container returns NULL, but we
+ need to keep rest of compiler happy by returning meaningful value. */
+ if (!ret)
+ ret = gen_rtx_REG (orig_mode, AX_REG);
+
+ return ret;
+}
+
+static rtx
+function_value_ms_64 (enum machine_mode orig_mode, enum machine_mode mode,
+ const_tree valtype)
+{
+ unsigned int regno = AX_REG;
+
+ if (TARGET_SSE)
+ {
+ switch (GET_MODE_SIZE (mode))
+ {
+ case 16:
+ if (valtype != NULL_TREE
+ && !VECTOR_INTEGER_TYPE_P (valtype)
+ && !VECTOR_INTEGER_TYPE_P (valtype)
+ && !INTEGRAL_TYPE_P (valtype)
+ && !VECTOR_FLOAT_TYPE_P (valtype))
+ break;
+ if ((SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode))
+ && !COMPLEX_MODE_P (mode))
+ regno = FIRST_SSE_REG;
+ break;
+ case 8:
+ case 4:
+ if (mode == SFmode || mode == DFmode)
+ regno = FIRST_SSE_REG;
+ break;
+ default:
+ break;
+ }
+ }
+ return gen_rtx_REG (orig_mode, regno);
+}
+
+static rtx
+ix86_function_value_1 (const_tree valtype, const_tree fntype_or_decl,
+ enum machine_mode orig_mode, enum machine_mode mode)
+{
+ const_tree fn, fntype;
+
+ fn = NULL_TREE;
+ if (fntype_or_decl && DECL_P (fntype_or_decl))
+ fn = fntype_or_decl;
+ fntype = fn ? TREE_TYPE (fn) : fntype_or_decl;
+
+ if (TARGET_64BIT && ix86_function_type_abi (fntype) == MS_ABI)
+ return function_value_ms_64 (orig_mode, mode, valtype);
+ else if (TARGET_64BIT)
+ return function_value_64 (orig_mode, mode, valtype);
+ else
+ return function_value_32 (orig_mode, mode, fntype, fn);
+}
+
+static rtx
+ix86_function_value (const_tree valtype, const_tree fntype_or_decl,
+ bool outgoing ATTRIBUTE_UNUSED)
+{
+ enum machine_mode mode, orig_mode;
+
+ orig_mode = TYPE_MODE (valtype);
+ mode = type_natural_mode (valtype, NULL, true);
+ return ix86_function_value_1 (valtype, fntype_or_decl, orig_mode, mode);
+}
+
+/* Pointer function arguments and return values are promoted to
+ word_mode. */
+
+static enum machine_mode
+ix86_promote_function_mode (const_tree type, enum machine_mode mode,
+ int *punsignedp, const_tree fntype,
+ int for_return)
+{
+ if (type != NULL_TREE && POINTER_TYPE_P (type))
+ {
+ *punsignedp = POINTERS_EXTEND_UNSIGNED;
+ return word_mode;
+ }
+ return default_promote_function_mode (type, mode, punsignedp, fntype,
+ for_return);
+}
+
+/* Return true if a structure, union or array with MODE containing FIELD
+ should be accessed using BLKmode. */
+
+static bool
+ix86_member_type_forces_blk (const_tree field, enum machine_mode mode)
+{
+ /* Union with XFmode must be in BLKmode. */
+ return (mode == XFmode
+ && (TREE_CODE (DECL_FIELD_CONTEXT (field)) == UNION_TYPE
+ || TREE_CODE (DECL_FIELD_CONTEXT (field)) == QUAL_UNION_TYPE));
+}
+
+rtx
+ix86_libcall_value (enum machine_mode mode)
+{
+ return ix86_function_value_1 (NULL, NULL, mode, mode);
+}
+
+/* Return true iff type is returned in memory. */
+
+static bool ATTRIBUTE_UNUSED
+return_in_memory_32 (const_tree type, enum machine_mode mode)
+{
+ HOST_WIDE_INT size;
+
+ if (mode == BLKmode)
+ return true;
+
+ size = int_size_in_bytes (type);
+
+ if (MS_AGGREGATE_RETURN && AGGREGATE_TYPE_P (type) && size <= 8)
+ return false;
+
+ if (VECTOR_MODE_P (mode) || mode == TImode)
+ {
+ /* User-created vectors small enough to fit in EAX. */
+ if (size < 8)
+ return false;
+
+ /* MMX/3dNow values are returned in MM0,
+ except when it doesn't exits or the ABI prescribes otherwise. */
+ if (size == 8)
+ return !TARGET_MMX || TARGET_VECT8_RETURNS;
+
+ /* SSE values are returned in XMM0, except when it doesn't exist. */
+ if (size == 16)
+ return !TARGET_SSE;
+
+ /* AVX values are returned in YMM0, except when it doesn't exist. */
+ if (size == 32)
+ return !TARGET_AVX;
+
+ /* AVX512F values are returned in ZMM0, except when it doesn't exist. */
+ if (size == 64)
+ return !TARGET_AVX512F;
+ }
+
+ if (mode == XFmode)
+ return false;
+
+ if (size > 12)
+ return true;
+
+ /* OImode shouldn't be used directly. */
+ gcc_assert (mode != OImode);
+
+ return false;
+}
+
+static bool ATTRIBUTE_UNUSED
+return_in_memory_64 (const_tree type, enum machine_mode mode)
+{
+ int needed_intregs, needed_sseregs;
+ return !examine_argument (mode, type, 1, &needed_intregs, &needed_sseregs);
+}
+
+static bool ATTRIBUTE_UNUSED
+return_in_memory_ms_64 (const_tree type, enum machine_mode mode)
+{
+ HOST_WIDE_INT size = int_size_in_bytes (type);
+
+ /* __m128 is returned in xmm0. */
+ if ((!type || VECTOR_INTEGER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
+ || VECTOR_FLOAT_TYPE_P (type))
+ && (SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode))
+ && !COMPLEX_MODE_P (mode) && (GET_MODE_SIZE (mode) == 16 || size == 16))
+ return false;
+
+ /* Otherwise, the size must be exactly in [1248]. */
+ return size != 1 && size != 2 && size != 4 && size != 8;
+}
+
+static bool
+ix86_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
+{
+#ifdef SUBTARGET_RETURN_IN_MEMORY
+ return SUBTARGET_RETURN_IN_MEMORY (type, fntype);
+#else
+ const enum machine_mode mode = type_natural_mode (type, NULL, true);
+
+ if (TARGET_64BIT)
+ {
+ if (ix86_function_type_abi (fntype) == MS_ABI)
+ return return_in_memory_ms_64 (type, mode);
+ else
+ return return_in_memory_64 (type, mode);
+ }
+ else
+ return return_in_memory_32 (type, mode);
+#endif
+}
+
+
+/* Create the va_list data type. */
+
+/* Returns the calling convention specific va_list date type.
+ The argument ABI can be DEFAULT_ABI, MS_ABI, or SYSV_ABI. */
+
+static tree
+ix86_build_builtin_va_list_abi (enum calling_abi abi)
+{
+ tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl;
+
+ /* For i386 we use plain pointer to argument area. */
+ if (!TARGET_64BIT || abi == MS_ABI)
+ return build_pointer_type (char_type_node);
+
+ record = lang_hooks.types.make_type (RECORD_TYPE);
+ type_decl = build_decl (BUILTINS_LOCATION,
+ TYPE_DECL, get_identifier ("__va_list_tag"), record);
+
+ f_gpr = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("gp_offset"),
+ unsigned_type_node);
+ f_fpr = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("fp_offset"),
+ unsigned_type_node);
+ f_ovf = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("overflow_arg_area"),
+ ptr_type_node);
+ f_sav = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("reg_save_area"),
+ ptr_type_node);
+
+ va_list_gpr_counter_field = f_gpr;
+ va_list_fpr_counter_field = f_fpr;
+
+ DECL_FIELD_CONTEXT (f_gpr) = record;
+ DECL_FIELD_CONTEXT (f_fpr) = record;
+ DECL_FIELD_CONTEXT (f_ovf) = record;
+ DECL_FIELD_CONTEXT (f_sav) = record;
+
+ TYPE_STUB_DECL (record) = type_decl;
+ TYPE_NAME (record) = type_decl;
+ TYPE_FIELDS (record) = f_gpr;
+ DECL_CHAIN (f_gpr) = f_fpr;
+ DECL_CHAIN (f_fpr) = f_ovf;
+ DECL_CHAIN (f_ovf) = f_sav;
+
+ layout_type (record);
+
+ /* The correct type is an array type of one element. */
+ return build_array_type (record, build_index_type (size_zero_node));
+}
+
+/* Setup the builtin va_list data type and for 64-bit the additional
+ calling convention specific va_list data types. */
+
+static tree
+ix86_build_builtin_va_list (void)
+{
+ tree ret = ix86_build_builtin_va_list_abi (ix86_abi);
+
+ /* Initialize abi specific va_list builtin types. */
+ if (TARGET_64BIT)
+ {
+ tree t;
+ if (ix86_abi == MS_ABI)
+ {
+ t = ix86_build_builtin_va_list_abi (SYSV_ABI);
+ if (TREE_CODE (t) != RECORD_TYPE)
+ t = build_variant_type_copy (t);
+ sysv_va_list_type_node = t;
+ }
+ else
+ {
+ t = ret;
+ if (TREE_CODE (t) != RECORD_TYPE)
+ t = build_variant_type_copy (t);
+ sysv_va_list_type_node = t;
+ }
+ if (ix86_abi != MS_ABI)
+ {
+ t = ix86_build_builtin_va_list_abi (MS_ABI);
+ if (TREE_CODE (t) != RECORD_TYPE)
+ t = build_variant_type_copy (t);
+ ms_va_list_type_node = t;
+ }
+ else
+ {
+ t = ret;
+ if (TREE_CODE (t) != RECORD_TYPE)
+ t = build_variant_type_copy (t);
+ ms_va_list_type_node = t;
+ }
+ }
+
+ return ret;
+}
+
+/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
+
+static void
+setup_incoming_varargs_64 (CUMULATIVE_ARGS *cum)
+{
+ rtx save_area, mem;
+ alias_set_type set;
+ int i, max;
+
+ /* GPR size of varargs save area. */
+ if (cfun->va_list_gpr_size)
+ ix86_varargs_gpr_size = X86_64_REGPARM_MAX * UNITS_PER_WORD;
+ else
+ ix86_varargs_gpr_size = 0;
+
+ /* FPR size of varargs save area. We don't need it if we don't pass
+ anything in SSE registers. */
+ if (TARGET_SSE && cfun->va_list_fpr_size)
+ ix86_varargs_fpr_size = X86_64_SSE_REGPARM_MAX * 16;
+ else
+ ix86_varargs_fpr_size = 0;
+
+ if (! ix86_varargs_gpr_size && ! ix86_varargs_fpr_size)
+ return;
+
+ save_area = frame_pointer_rtx;
+ set = get_varargs_alias_set ();
+
+ max = cum->regno + cfun->va_list_gpr_size / UNITS_PER_WORD;
+ if (max > X86_64_REGPARM_MAX)
+ max = X86_64_REGPARM_MAX;
+
+ for (i = cum->regno; i < max; i++)
+ {
+ mem = gen_rtx_MEM (word_mode,
+ plus_constant (Pmode, save_area, i * UNITS_PER_WORD));
+ MEM_NOTRAP_P (mem) = 1;
+ set_mem_alias_set (mem, set);
+ emit_move_insn (mem,
+ gen_rtx_REG (word_mode,
+ x86_64_int_parameter_registers[i]));
+ }
+
+ if (ix86_varargs_fpr_size)
+ {
+ enum machine_mode smode;
+ rtx label, test;
+
+ /* Now emit code to save SSE registers. The AX parameter contains number
+ of SSE parameter registers used to call this function, though all we
+ actually check here is the zero/non-zero status. */
+
+ label = gen_label_rtx ();
+ test = gen_rtx_EQ (VOIDmode, gen_rtx_REG (QImode, AX_REG), const0_rtx);
+ emit_jump_insn (gen_cbranchqi4 (test, XEXP (test, 0), XEXP (test, 1),
+ label));
+
+ /* ??? If !TARGET_SSE_TYPELESS_STORES, would we perform better if
+ we used movdqa (i.e. TImode) instead? Perhaps even better would
+ be if we could determine the real mode of the data, via a hook
+ into pass_stdarg. Ignore all that for now. */
+ smode = V4SFmode;
+ if (crtl->stack_alignment_needed < GET_MODE_ALIGNMENT (smode))
+ crtl->stack_alignment_needed = GET_MODE_ALIGNMENT (smode);
+
+ max = cum->sse_regno + cfun->va_list_fpr_size / 16;
+ if (max > X86_64_SSE_REGPARM_MAX)
+ max = X86_64_SSE_REGPARM_MAX;
+
+ for (i = cum->sse_regno; i < max; ++i)
+ {
+ mem = plus_constant (Pmode, save_area,
+ i * 16 + ix86_varargs_gpr_size);
+ mem = gen_rtx_MEM (smode, mem);
+ MEM_NOTRAP_P (mem) = 1;
+ set_mem_alias_set (mem, set);
+ set_mem_align (mem, GET_MODE_ALIGNMENT (smode));
+
+ emit_move_insn (mem, gen_rtx_REG (smode, SSE_REGNO (i)));
+ }
+
+ emit_label (label);
+ }
+}
+
+static void
+setup_incoming_varargs_ms_64 (CUMULATIVE_ARGS *cum)
+{
+ alias_set_type set = get_varargs_alias_set ();
+ int i;
+
+ /* Reset to zero, as there might be a sysv vaarg used
+ before. */
+ ix86_varargs_gpr_size = 0;
+ ix86_varargs_fpr_size = 0;
+
+ for (i = cum->regno; i < X86_64_MS_REGPARM_MAX; i++)
+ {
+ rtx reg, mem;
+
+ mem = gen_rtx_MEM (Pmode,
+ plus_constant (Pmode, virtual_incoming_args_rtx,
+ i * UNITS_PER_WORD));
+ MEM_NOTRAP_P (mem) = 1;
+ set_mem_alias_set (mem, set);
+
+ reg = gen_rtx_REG (Pmode, x86_64_ms_abi_int_parameter_registers[i]);
+ emit_move_insn (mem, reg);
+ }
+}
+
+static void
+ix86_setup_incoming_varargs (cumulative_args_t cum_v, enum machine_mode mode,
+ tree type, int *pretend_size ATTRIBUTE_UNUSED,
+ int no_rtl)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ CUMULATIVE_ARGS next_cum;
+ tree fntype;
+
+ /* This argument doesn't appear to be used anymore. Which is good,
+ because the old code here didn't suppress rtl generation. */
+ gcc_assert (!no_rtl);
+
+ if (!TARGET_64BIT)
+ return;
+
+ fntype = TREE_TYPE (current_function_decl);
+
+ /* For varargs, we do not want to skip the dummy va_dcl argument.
+ For stdargs, we do want to skip the last named argument. */
+ next_cum = *cum;
+ if (stdarg_p (fntype))
+ ix86_function_arg_advance (pack_cumulative_args (&next_cum), mode, type,
+ true);
+
+ if (cum->call_abi == MS_ABI)
+ setup_incoming_varargs_ms_64 (&next_cum);
+ else
+ setup_incoming_varargs_64 (&next_cum);
+}
+
+/* Checks if TYPE is of kind va_list char *. */
+
+static bool
+is_va_list_char_pointer (tree type)
+{
+ tree canonic;
+
+ /* For 32-bit it is always true. */
+ if (!TARGET_64BIT)
+ return true;
+ canonic = ix86_canonical_va_list_type (type);
+ return (canonic == ms_va_list_type_node
+ || (ix86_abi == MS_ABI && canonic == va_list_type_node));
+}
+
+/* Implement va_start. */
+
+static void
+ix86_va_start (tree valist, rtx nextarg)
+{
+ HOST_WIDE_INT words, n_gpr, n_fpr;
+ tree f_gpr, f_fpr, f_ovf, f_sav;
+ tree gpr, fpr, ovf, sav, t;
+ tree type;
+ rtx ovf_rtx;
+
+ if (flag_split_stack
+ && cfun->machine->split_stack_varargs_pointer == NULL_RTX)
+ {
+ unsigned int scratch_regno;
+
+ /* When we are splitting the stack, we can't refer to the stack
+ arguments using internal_arg_pointer, because they may be on
+ the old stack. The split stack prologue will arrange to
+ leave a pointer to the old stack arguments in a scratch
+ register, which we here copy to a pseudo-register. The split
+ stack prologue can't set the pseudo-register directly because
+ it (the prologue) runs before any registers have been saved. */
+
+ scratch_regno = split_stack_prologue_scratch_regno ();
+ if (scratch_regno != INVALID_REGNUM)
+ {
+ rtx reg, seq;
+
+ reg = gen_reg_rtx (Pmode);
+ cfun->machine->split_stack_varargs_pointer = reg;
+
+ start_sequence ();
+ emit_move_insn (reg, gen_rtx_REG (Pmode, scratch_regno));
+ seq = get_insns ();
+ end_sequence ();
+
+ push_topmost_sequence ();
+ emit_insn_after (seq, entry_of_function ());
+ pop_topmost_sequence ();
+ }
+ }
+
+ /* Only 64bit target needs something special. */
+ if (!TARGET_64BIT || is_va_list_char_pointer (TREE_TYPE (valist)))
+ {
+ if (cfun->machine->split_stack_varargs_pointer == NULL_RTX)
+ std_expand_builtin_va_start (valist, nextarg);
+ else
+ {
+ rtx va_r, next;
+
+ va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ next = expand_binop (ptr_mode, add_optab,
+ cfun->machine->split_stack_varargs_pointer,
+ crtl->args.arg_offset_rtx,
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ convert_move (va_r, next, 0);
+ }
+ return;
+ }
+
+ f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node));
+ f_fpr = DECL_CHAIN (f_gpr);
+ f_ovf = DECL_CHAIN (f_fpr);
+ f_sav = DECL_CHAIN (f_ovf);
+
+ valist = build_simple_mem_ref (valist);
+ TREE_TYPE (valist) = TREE_TYPE (sysv_va_list_type_node);
+ /* The following should be folded into the MEM_REF offset. */
+ gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), unshare_expr (valist),
+ f_gpr, NULL_TREE);
+ fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
+ f_fpr, NULL_TREE);
+ ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
+ f_ovf, NULL_TREE);
+ sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
+ f_sav, NULL_TREE);
+
+ /* Count number of gp and fp argument registers used. */
+ words = crtl->args.info.words;
+ n_gpr = crtl->args.info.regno;
+ n_fpr = crtl->args.info.sse_regno;
+
+ if (cfun->va_list_gpr_size)
+ {
+ type = TREE_TYPE (gpr);
+ t = build2 (MODIFY_EXPR, type,
+ gpr, build_int_cst (type, n_gpr * 8));
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+
+ if (TARGET_SSE && cfun->va_list_fpr_size)
+ {
+ type = TREE_TYPE (fpr);
+ t = build2 (MODIFY_EXPR, type, fpr,
+ build_int_cst (type, n_fpr * 16 + 8*X86_64_REGPARM_MAX));
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+
+ /* Find the overflow area. */
+ type = TREE_TYPE (ovf);
+ if (cfun->machine->split_stack_varargs_pointer == NULL_RTX)
+ ovf_rtx = crtl->args.internal_arg_pointer;
+ else
+ ovf_rtx = cfun->machine->split_stack_varargs_pointer;
+ t = make_tree (type, ovf_rtx);
+ if (words != 0)
+ t = fold_build_pointer_plus_hwi (t, words * UNITS_PER_WORD);
+ t = build2 (MODIFY_EXPR, type, ovf, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ if (ix86_varargs_gpr_size || ix86_varargs_fpr_size)
+ {
+ /* Find the register save area.
+ Prologue of the function save it right above stack frame. */
+ type = TREE_TYPE (sav);
+ t = make_tree (type, frame_pointer_rtx);
+ if (!ix86_varargs_gpr_size)
+ t = fold_build_pointer_plus_hwi (t, -8 * X86_64_REGPARM_MAX);
+ t = build2 (MODIFY_EXPR, type, sav, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+}
+
+/* Implement va_arg. */
+
+static tree
+ix86_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
+ gimple_seq *post_p)
+{
+ static const int intreg[6] = { 0, 1, 2, 3, 4, 5 };
+ tree f_gpr, f_fpr, f_ovf, f_sav;
+ tree gpr, fpr, ovf, sav, t;
+ int size, rsize;
+ tree lab_false, lab_over = NULL_TREE;
+ tree addr, t2;
+ rtx container;
+ int indirect_p = 0;
+ tree ptrtype;
+ enum machine_mode nat_mode;
+ unsigned int arg_boundary;
+
+ /* Only 64bit target needs something special. */
+ if (!TARGET_64BIT || is_va_list_char_pointer (TREE_TYPE (valist)))
+ return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
+
+ f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node));
+ f_fpr = DECL_CHAIN (f_gpr);
+ f_ovf = DECL_CHAIN (f_fpr);
+ f_sav = DECL_CHAIN (f_ovf);
+
+ gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr),
+ build_va_arg_indirect_ref (valist), f_gpr, NULL_TREE);
+ valist = build_va_arg_indirect_ref (valist);
+ fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE);
+ ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE);
+ sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE);
+
+ indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false);
+ if (indirect_p)
+ type = build_pointer_type (type);
+ size = int_size_in_bytes (type);
+ rsize = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ nat_mode = type_natural_mode (type, NULL, false);
+ switch (nat_mode)
+ {
+ case V8SFmode:
+ case V8SImode:
+ case V32QImode:
+ case V16HImode:
+ case V4DFmode:
+ case V4DImode:
+ case V16SFmode:
+ case V16SImode:
+ case V64QImode:
+ case V32HImode:
+ case V8DFmode:
+ case V8DImode:
+ /* Unnamed 256 and 512bit vector mode parameters are passed on stack. */
+ if (!TARGET_64BIT_MS_ABI)
+ {
+ container = NULL;
+ break;
+ }
+
+ default:
+ container = construct_container (nat_mode, TYPE_MODE (type),
+ type, 0, X86_64_REGPARM_MAX,
+ X86_64_SSE_REGPARM_MAX, intreg,
+ 0);
+ break;
+ }
+
+ /* Pull the value out of the saved registers. */
+
+ addr = create_tmp_var (ptr_type_node, "addr");
+
+ if (container)
+ {
+ int needed_intregs, needed_sseregs;
+ bool need_temp;
+ tree int_addr, sse_addr;
+
+ lab_false = create_artificial_label (UNKNOWN_LOCATION);
+ lab_over = create_artificial_label (UNKNOWN_LOCATION);
+
+ examine_argument (nat_mode, type, 0, &needed_intregs, &needed_sseregs);
+
+ need_temp = (!REG_P (container)
+ && ((needed_intregs && TYPE_ALIGN (type) > 64)
+ || TYPE_ALIGN (type) > 128));
+
+ /* In case we are passing structure, verify that it is consecutive block
+ on the register save area. If not we need to do moves. */
+ if (!need_temp && !REG_P (container))
+ {
+ /* Verify that all registers are strictly consecutive */
+ if (SSE_REGNO_P (REGNO (XEXP (XVECEXP (container, 0, 0), 0))))
+ {
+ int i;
+
+ for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++)
+ {
+ rtx slot = XVECEXP (container, 0, i);
+ if (REGNO (XEXP (slot, 0)) != FIRST_SSE_REG + (unsigned int) i
+ || INTVAL (XEXP (slot, 1)) != i * 16)
+ need_temp = 1;
+ }
+ }
+ else
+ {
+ int i;
+
+ for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++)
+ {
+ rtx slot = XVECEXP (container, 0, i);
+ if (REGNO (XEXP (slot, 0)) != (unsigned int) i
+ || INTVAL (XEXP (slot, 1)) != i * 8)
+ need_temp = 1;
+ }
+ }
+ }
+ if (!need_temp)
+ {
+ int_addr = addr;
+ sse_addr = addr;
+ }
+ else
+ {
+ int_addr = create_tmp_var (ptr_type_node, "int_addr");
+ sse_addr = create_tmp_var (ptr_type_node, "sse_addr");
+ }
+
+ /* First ensure that we fit completely in registers. */
+ if (needed_intregs)
+ {
+ t = build_int_cst (TREE_TYPE (gpr),
+ (X86_64_REGPARM_MAX - needed_intregs + 1) * 8);
+ t = build2 (GE_EXPR, boolean_type_node, gpr, t);
+ t2 = build1 (GOTO_EXPR, void_type_node, lab_false);
+ t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE);
+ gimplify_and_add (t, pre_p);
+ }
+ if (needed_sseregs)
+ {
+ t = build_int_cst (TREE_TYPE (fpr),
+ (X86_64_SSE_REGPARM_MAX - needed_sseregs + 1) * 16
+ + X86_64_REGPARM_MAX * 8);
+ t = build2 (GE_EXPR, boolean_type_node, fpr, t);
+ t2 = build1 (GOTO_EXPR, void_type_node, lab_false);
+ t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE);
+ gimplify_and_add (t, pre_p);
+ }
+
+ /* Compute index to start of area used for integer regs. */
+ if (needed_intregs)
+ {
+ /* int_addr = gpr + sav; */
+ t = fold_build_pointer_plus (sav, gpr);
+ gimplify_assign (int_addr, t, pre_p);
+ }
+ if (needed_sseregs)
+ {
+ /* sse_addr = fpr + sav; */
+ t = fold_build_pointer_plus (sav, fpr);
+ gimplify_assign (sse_addr, t, pre_p);
+ }
+ if (need_temp)
+ {
+ int i, prev_size = 0;
+ tree temp = create_tmp_var (type, "va_arg_tmp");
+
+ /* addr = &temp; */
+ t = build1 (ADDR_EXPR, build_pointer_type (type), temp);
+ gimplify_assign (addr, t, pre_p);
+
+ for (i = 0; i < XVECLEN (container, 0); i++)
+ {
+ rtx slot = XVECEXP (container, 0, i);
+ rtx reg = XEXP (slot, 0);
+ enum machine_mode mode = GET_MODE (reg);
+ tree piece_type;
+ tree addr_type;
+ tree daddr_type;
+ tree src_addr, src;
+ int src_offset;
+ tree dest_addr, dest;
+ int cur_size = GET_MODE_SIZE (mode);
+
+ gcc_assert (prev_size <= INTVAL (XEXP (slot, 1)));
+ prev_size = INTVAL (XEXP (slot, 1));
+ if (prev_size + cur_size > size)
+ {
+ cur_size = size - prev_size;
+ mode = mode_for_size (cur_size * BITS_PER_UNIT, MODE_INT, 1);
+ if (mode == BLKmode)
+ mode = QImode;
+ }
+ piece_type = lang_hooks.types.type_for_mode (mode, 1);
+ if (mode == GET_MODE (reg))
+ addr_type = build_pointer_type (piece_type);
+ else
+ addr_type = build_pointer_type_for_mode (piece_type, ptr_mode,
+ true);
+ daddr_type = build_pointer_type_for_mode (piece_type, ptr_mode,
+ true);
+
+ if (SSE_REGNO_P (REGNO (reg)))
+ {
+ src_addr = sse_addr;
+ src_offset = (REGNO (reg) - FIRST_SSE_REG) * 16;
+ }
+ else
+ {
+ src_addr = int_addr;
+ src_offset = REGNO (reg) * 8;
+ }
+ src_addr = fold_convert (addr_type, src_addr);
+ src_addr = fold_build_pointer_plus_hwi (src_addr, src_offset);
+
+ dest_addr = fold_convert (daddr_type, addr);
+ dest_addr = fold_build_pointer_plus_hwi (dest_addr, prev_size);
+ if (cur_size == GET_MODE_SIZE (mode))
+ {
+ src = build_va_arg_indirect_ref (src_addr);
+ dest = build_va_arg_indirect_ref (dest_addr);
+
+ gimplify_assign (dest, src, pre_p);
+ }
+ else
+ {
+ tree copy
+ = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY),
+ 3, dest_addr, src_addr,
+ size_int (cur_size));
+ gimplify_and_add (copy, pre_p);
+ }
+ prev_size += cur_size;
+ }
+ }
+
+ if (needed_intregs)
+ {
+ t = build2 (PLUS_EXPR, TREE_TYPE (gpr), gpr,
+ build_int_cst (TREE_TYPE (gpr), needed_intregs * 8));
+ gimplify_assign (gpr, t, pre_p);
+ }
+
+ if (needed_sseregs)
+ {
+ t = build2 (PLUS_EXPR, TREE_TYPE (fpr), fpr,
+ build_int_cst (TREE_TYPE (fpr), needed_sseregs * 16));
+ gimplify_assign (fpr, t, pre_p);
+ }
+
+ gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
+
+ gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false));
+ }
+
+ /* ... otherwise out of the overflow area. */
+
+ /* When we align parameter on stack for caller, if the parameter
+ alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
+ aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee
+ here with caller. */
+ arg_boundary = ix86_function_arg_boundary (VOIDmode, type);
+ if ((unsigned int) arg_boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
+ arg_boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
+
+ /* Care for on-stack alignment if needed. */
+ if (arg_boundary <= 64 || size == 0)
+ t = ovf;
+ else
+ {
+ HOST_WIDE_INT align = arg_boundary / 8;
+ t = fold_build_pointer_plus_hwi (ovf, align - 1);
+ t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
+ build_int_cst (TREE_TYPE (t), -align));
+ }
+
+ gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
+ gimplify_assign (addr, t, pre_p);
+
+ t = fold_build_pointer_plus_hwi (t, rsize * UNITS_PER_WORD);
+ gimplify_assign (unshare_expr (ovf), t, pre_p);
+
+ if (container)
+ gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over));
+
+ ptrtype = build_pointer_type_for_mode (type, ptr_mode, true);
+ addr = fold_convert (ptrtype, addr);
+
+ if (indirect_p)
+ addr = build_va_arg_indirect_ref (addr);
+ return build_va_arg_indirect_ref (addr);
+}
+
+/* Return true if OPNUM's MEM should be matched
+ in movabs* patterns. */
+
+bool
+ix86_check_movabs (rtx insn, int opnum)
+{
+ rtx set, mem;
+
+ set = PATTERN (insn);
+ if (GET_CODE (set) == PARALLEL)
+ set = XVECEXP (set, 0, 0);
+ gcc_assert (GET_CODE (set) == SET);
+ mem = XEXP (set, opnum);
+ while (GET_CODE (mem) == SUBREG)
+ mem = SUBREG_REG (mem);
+ gcc_assert (MEM_P (mem));
+ return volatile_ok || !MEM_VOLATILE_P (mem);
+}
+
+/* Initialize the table of extra 80387 mathematical constants. */
+
+static void
+init_ext_80387_constants (void)
+{
+ static const char * cst[5] =
+ {
+ "0.3010299956639811952256464283594894482", /* 0: fldlg2 */
+ "0.6931471805599453094286904741849753009", /* 1: fldln2 */
+ "1.4426950408889634073876517827983434472", /* 2: fldl2e */
+ "3.3219280948873623478083405569094566090", /* 3: fldl2t */
+ "3.1415926535897932385128089594061862044", /* 4: fldpi */
+ };
+ int i;
+
+ for (i = 0; i < 5; i++)
+ {
+ real_from_string (&ext_80387_constants_table[i], cst[i]);
+ /* Ensure each constant is rounded to XFmode precision. */
+ real_convert (&ext_80387_constants_table[i],
+ XFmode, &ext_80387_constants_table[i]);
+ }
+
+ ext_80387_constants_init = 1;
+}
+
+/* Return non-zero if the constant is something that
+ can be loaded with a special instruction. */
+
+int
+standard_80387_constant_p (rtx x)
+{
+ enum machine_mode mode = GET_MODE (x);
+
+ REAL_VALUE_TYPE r;
+
+ if (!(X87_FLOAT_MODE_P (mode) && (GET_CODE (x) == CONST_DOUBLE)))
+ return -1;
+
+ if (x == CONST0_RTX (mode))
+ return 1;
+ if (x == CONST1_RTX (mode))
+ return 2;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, x);
+
+ /* For XFmode constants, try to find a special 80387 instruction when
+ optimizing for size or on those CPUs that benefit from them. */
+ if (mode == XFmode
+ && (optimize_function_for_size_p (cfun) || TARGET_EXT_80387_CONSTANTS))
+ {
+ int i;
+
+ if (! ext_80387_constants_init)
+ init_ext_80387_constants ();
+
+ for (i = 0; i < 5; i++)
+ if (real_identical (&r, &ext_80387_constants_table[i]))
+ return i + 3;
+ }
+
+ /* Load of the constant -0.0 or -1.0 will be split as
+ fldz;fchs or fld1;fchs sequence. */
+ if (real_isnegzero (&r))
+ return 8;
+ if (real_identical (&r, &dconstm1))
+ return 9;
+
+ return 0;
+}
+
+/* Return the opcode of the special instruction to be used to load
+ the constant X. */
+
+const char *
+standard_80387_constant_opcode (rtx x)
+{
+ switch (standard_80387_constant_p (x))
+ {
+ case 1:
+ return "fldz";
+ case 2:
+ return "fld1";
+ case 3:
+ return "fldlg2";
+ case 4:
+ return "fldln2";
+ case 5:
+ return "fldl2e";
+ case 6:
+ return "fldl2t";
+ case 7:
+ return "fldpi";
+ case 8:
+ case 9:
+ return "#";
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return the CONST_DOUBLE representing the 80387 constant that is
+ loaded by the specified special instruction. The argument IDX
+ matches the return value from standard_80387_constant_p. */
+
+rtx
+standard_80387_constant_rtx (int idx)
+{
+ int i;
+
+ if (! ext_80387_constants_init)
+ init_ext_80387_constants ();
+
+ switch (idx)
+ {
+ case 3:
+ case 4:
+ case 5:
+ case 6:
+ case 7:
+ i = idx - 3;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return CONST_DOUBLE_FROM_REAL_VALUE (ext_80387_constants_table[i],
+ XFmode);
+}
+
+/* Return 1 if X is all 0s and 2 if x is all 1s
+ in supported SSE/AVX vector mode. */
+
+int
+standard_sse_constant_p (rtx x)
+{
+ enum machine_mode mode = GET_MODE (x);
+
+ if (x == const0_rtx || x == CONST0_RTX (GET_MODE (x)))
+ return 1;
+ if (vector_all_ones_operand (x, mode))
+ switch (mode)
+ {
+ case V16QImode:
+ case V8HImode:
+ case V4SImode:
+ case V2DImode:
+ if (TARGET_SSE2)
+ return 2;
+ case V32QImode:
+ case V16HImode:
+ case V8SImode:
+ case V4DImode:
+ if (TARGET_AVX2)
+ return 2;
+ case V64QImode:
+ case V32HImode:
+ case V16SImode:
+ case V8DImode:
+ if (TARGET_AVX512F)
+ return 2;
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* Return the opcode of the special instruction to be used to load
+ the constant X. */
+
+const char *
+standard_sse_constant_opcode (rtx insn, rtx x)
+{
+ switch (standard_sse_constant_p (x))
+ {
+ case 1:
+ switch (get_attr_mode (insn))
+ {
+ case MODE_XI:
+ case MODE_V16SF:
+ return "vpxord\t%g0, %g0, %g0";
+ case MODE_V8DF:
+ return "vpxorq\t%g0, %g0, %g0";
+ case MODE_TI:
+ return "%vpxor\t%0, %d0";
+ case MODE_V2DF:
+ return "%vxorpd\t%0, %d0";
+ case MODE_V4SF:
+ return "%vxorps\t%0, %d0";
+
+ case MODE_OI:
+ return "vpxor\t%x0, %x0, %x0";
+ case MODE_V4DF:
+ return "vxorpd\t%x0, %x0, %x0";
+ case MODE_V8SF:
+ return "vxorps\t%x0, %x0, %x0";
+
+ default:
+ break;
+ }
+
+ case 2:
+ if (get_attr_mode (insn) == MODE_XI
+ || get_attr_mode (insn) == MODE_V8DF
+ || get_attr_mode (insn) == MODE_V16SF)
+ return "vpternlogd\t{$0xFF, %g0, %g0, %g0|%g0, %g0, %g0, 0xFF}";
+ if (TARGET_AVX)
+ return "vpcmpeqd\t%0, %0, %0";
+ else
+ return "pcmpeqd\t%0, %0";
+
+ default:
+ break;
+ }
+ gcc_unreachable ();
+}
+
+/* Returns true if OP contains a symbol reference */
+
+bool
+symbolic_reference_mentioned_p (rtx op)
+{
+ const char *fmt;
+ int i;
+
+ if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
+ return true;
+
+ fmt = GET_RTX_FORMAT (GET_CODE (op));
+ for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ int j;
+
+ for (j = XVECLEN (op, i) - 1; j >= 0; j--)
+ if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
+ return true;
+ }
+
+ else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
+ return true;
+ }
+
+ return false;
+}
+
+/* Return true if it is appropriate to emit `ret' instructions in the
+ body of a function. Do this only if the epilogue is simple, needing a
+ couple of insns. Prior to reloading, we can't tell how many registers
+ must be saved, so return false then. Return false if there is no frame
+ marker to de-allocate. */
+
+bool
+ix86_can_use_return_insn_p (void)
+{
+ struct ix86_frame frame;
+
+ if (! reload_completed || frame_pointer_needed)
+ return 0;
+
+ /* Don't allow more than 32k pop, since that's all we can do
+ with one instruction. */
+ if (crtl->args.pops_args && crtl->args.size >= 32768)
+ return 0;
+
+ ix86_compute_frame_layout (&frame);
+ return (frame.stack_pointer_offset == UNITS_PER_WORD
+ && (frame.nregs + frame.nsseregs) == 0);
+}
+
+/* Value should be nonzero if functions must have frame pointers.
+ Zero means the frame pointer need not be set up (and parms may
+ be accessed via the stack pointer) in functions that seem suitable. */
+
+static bool
+ix86_frame_pointer_required (void)
+{
+ /* If we accessed previous frames, then the generated code expects
+ to be able to access the saved ebp value in our frame. */
+ if (cfun->machine->accesses_prev_frame)
+ return true;
+
+ /* Several x86 os'es need a frame pointer for other reasons,
+ usually pertaining to setjmp. */
+ if (SUBTARGET_FRAME_POINTER_REQUIRED)
+ return true;
+
+ /* For older 32-bit runtimes setjmp requires valid frame-pointer. */
+ if (TARGET_32BIT_MS_ABI && cfun->calls_setjmp)
+ return true;
+
+ /* Win64 SEH, very large frames need a frame-pointer as maximum stack
+ allocation is 4GB. */
+ if (TARGET_64BIT_MS_ABI && get_frame_size () > SEH_MAX_FRAME_SIZE)
+ return true;
+
+ /* In ix86_option_override_internal, TARGET_OMIT_LEAF_FRAME_POINTER
+ turns off the frame pointer by default. Turn it back on now if
+ we've not got a leaf function. */
+ if (TARGET_OMIT_LEAF_FRAME_POINTER
+ && (!crtl->is_leaf
+ || ix86_current_function_calls_tls_descriptor))
+ return true;
+
+ if (crtl->profile && !flag_fentry)
+ return true;
+
+ return false;
+}
+
+/* Record that the current function accesses previous call frames. */
+
+void
+ix86_setup_frame_addresses (void)
+{
+ cfun->machine->accesses_prev_frame = 1;
+}
+
+#ifndef USE_HIDDEN_LINKONCE
+# if defined(HAVE_GAS_HIDDEN) && (SUPPORTS_ONE_ONLY - 0)
+# define USE_HIDDEN_LINKONCE 1
+# else
+# define USE_HIDDEN_LINKONCE 0
+# endif
+#endif
+
+static int pic_labels_used;
+
+/* Fills in the label name that should be used for a pc thunk for
+ the given register. */
+
+static void
+get_pc_thunk_name (char name[32], unsigned int regno)
+{
+ gcc_assert (!TARGET_64BIT);
+
+ if (USE_HIDDEN_LINKONCE)
+ sprintf (name, "__x86.get_pc_thunk.%s", reg_names[regno]);
+ else
+ ASM_GENERATE_INTERNAL_LABEL (name, "LPR", regno);
+}
+
+
+/* This function generates code for -fpic that loads %ebx with
+ the return address of the caller and then returns. */
+
+static void
+ix86_code_end (void)
+{
+ rtx xops[2];
+ int regno;
+
+ for (regno = AX_REG; regno <= SP_REG; regno++)
+ {
+ char name[32];
+ tree decl;
+
+ if (!(pic_labels_used & (1 << regno)))
+ continue;
+
+ get_pc_thunk_name (name, regno);
+
+ decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
+ get_identifier (name),
+ build_function_type_list (void_type_node, NULL_TREE));
+ DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
+ NULL_TREE, void_type_node);
+ TREE_PUBLIC (decl) = 1;
+ TREE_STATIC (decl) = 1;
+ DECL_IGNORED_P (decl) = 1;
+
+#if TARGET_MACHO
+ if (TARGET_MACHO)
+ {
+ switch_to_section (darwin_sections[text_coal_section]);
+ fputs ("\t.weak_definition\t", asm_out_file);
+ assemble_name (asm_out_file, name);
+ fputs ("\n\t.private_extern\t", asm_out_file);
+ assemble_name (asm_out_file, name);
+ putc ('\n', asm_out_file);
+ ASM_OUTPUT_LABEL (asm_out_file, name);
+ DECL_WEAK (decl) = 1;
+ }
+ else
+#endif
+ if (USE_HIDDEN_LINKONCE)
+ {
+ DECL_COMDAT_GROUP (decl) = DECL_ASSEMBLER_NAME (decl);
+
+ targetm.asm_out.unique_section (decl, 0);
+ switch_to_section (get_named_section (decl, NULL, 0));
+
+ targetm.asm_out.globalize_label (asm_out_file, name);
+ fputs ("\t.hidden\t", asm_out_file);
+ assemble_name (asm_out_file, name);
+ putc ('\n', asm_out_file);
+ ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl);
+ }
+ else
+ {
+ switch_to_section (text_section);
+ ASM_OUTPUT_LABEL (asm_out_file, name);
+ }
+
+ DECL_INITIAL (decl) = make_node (BLOCK);
+ current_function_decl = decl;
+ init_function_start (decl);
+ first_function_block_is_cold = false;
+ /* Make sure unwind info is emitted for the thunk if needed. */
+ final_start_function (emit_barrier (), asm_out_file, 1);
+
+ /* Pad stack IP move with 4 instructions (two NOPs count
+ as one instruction). */
+ if (TARGET_PAD_SHORT_FUNCTION)
+ {
+ int i = 8;
+
+ while (i--)
+ fputs ("\tnop\n", asm_out_file);
+ }
+
+ xops[0] = gen_rtx_REG (Pmode, regno);
+ xops[1] = gen_rtx_MEM (Pmode, stack_pointer_rtx);
+ output_asm_insn ("mov%z0\t{%1, %0|%0, %1}", xops);
+ fputs ("\tret\n", asm_out_file);
+ final_end_function ();
+ init_insn_lengths ();
+ free_after_compilation (cfun);
+ set_cfun (NULL);
+ current_function_decl = NULL;
+ }
+
+ if (flag_split_stack)
+ file_end_indicate_split_stack ();
+}
+
+/* Emit code for the SET_GOT patterns. */
+
+const char *
+output_set_got (rtx dest, rtx label)
+{
+ rtx xops[3];
+
+ xops[0] = dest;
+
+ if (TARGET_VXWORKS_RTP && flag_pic)
+ {
+ /* Load (*VXWORKS_GOTT_BASE) into the PIC register. */
+ xops[2] = gen_rtx_MEM (Pmode,
+ gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE));
+ output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops);
+
+ /* Load (*VXWORKS_GOTT_BASE)[VXWORKS_GOTT_INDEX] into the PIC register.
+ Use %P and a local symbol in order to print VXWORKS_GOTT_INDEX as
+ an unadorned address. */
+ xops[2] = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX);
+ SYMBOL_REF_FLAGS (xops[2]) |= SYMBOL_FLAG_LOCAL;
+ output_asm_insn ("mov{l}\t{%P2(%0), %0|%0, DWORD PTR %P2[%0]}", xops);
+ return "";
+ }
+
+ xops[1] = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME);
+
+ if (!flag_pic)
+ {
+ if (TARGET_MACHO)
+ /* We don't need a pic base, we're not producing pic. */
+ gcc_unreachable ();
+
+ xops[2] = gen_rtx_LABEL_REF (Pmode, label ? label : gen_label_rtx ());
+ output_asm_insn ("mov%z0\t{%2, %0|%0, %2}", xops);
+ targetm.asm_out.internal_label (asm_out_file, "L",
+ CODE_LABEL_NUMBER (XEXP (xops[2], 0)));
+ }
+ else
+ {
+ char name[32];
+ get_pc_thunk_name (name, REGNO (dest));
+ pic_labels_used |= 1 << REGNO (dest);
+
+ xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
+ xops[2] = gen_rtx_MEM (QImode, xops[2]);
+ output_asm_insn ("call\t%X2", xops);
+
+#if TARGET_MACHO
+ /* Output the Mach-O "canonical" pic base label name ("Lxx$pb") here.
+ This is what will be referenced by the Mach-O PIC subsystem. */
+ if (machopic_should_output_picbase_label () || !label)
+ ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME);
+
+ /* When we are restoring the pic base at the site of a nonlocal label,
+ and we decided to emit the pic base above, we will still output a
+ local label used for calculating the correction offset (even though
+ the offset will be 0 in that case). */
+ if (label)
+ targetm.asm_out.internal_label (asm_out_file, "L",
+ CODE_LABEL_NUMBER (label));
+#endif
+ }
+
+ if (!TARGET_MACHO)
+ output_asm_insn ("add%z0\t{%1, %0|%0, %1}", xops);
+
+ return "";
+}
+
+/* Generate an "push" pattern for input ARG. */
+
+static rtx
+gen_push (rtx arg)
+{
+ struct machine_function *m = cfun->machine;
+
+ if (m->fs.cfa_reg == stack_pointer_rtx)
+ m->fs.cfa_offset += UNITS_PER_WORD;
+ m->fs.sp_offset += UNITS_PER_WORD;
+
+ if (REG_P (arg) && GET_MODE (arg) != word_mode)
+ arg = gen_rtx_REG (word_mode, REGNO (arg));
+
+ return gen_rtx_SET (VOIDmode,
+ gen_rtx_MEM (word_mode,
+ gen_rtx_PRE_DEC (Pmode,
+ stack_pointer_rtx)),
+ arg);
+}
+
+/* Generate an "pop" pattern for input ARG. */
+
+static rtx
+gen_pop (rtx arg)
+{
+ if (REG_P (arg) && GET_MODE (arg) != word_mode)
+ arg = gen_rtx_REG (word_mode, REGNO (arg));
+
+ return gen_rtx_SET (VOIDmode,
+ arg,
+ gen_rtx_MEM (word_mode,
+ gen_rtx_POST_INC (Pmode,
+ stack_pointer_rtx)));
+}
+
+/* Return >= 0 if there is an unused call-clobbered register available
+ for the entire function. */
+
+static unsigned int
+ix86_select_alt_pic_regnum (void)
+{
+ if (crtl->is_leaf
+ && !crtl->profile
+ && !ix86_current_function_calls_tls_descriptor)
+ {
+ int i, drap;
+ /* Can't use the same register for both PIC and DRAP. */
+ if (crtl->drap_reg)
+ drap = REGNO (crtl->drap_reg);
+ else
+ drap = -1;
+ for (i = 2; i >= 0; --i)
+ if (i != drap && !df_regs_ever_live_p (i))
+ return i;
+ }
+
+ return INVALID_REGNUM;
+}
+
+/* Return TRUE if we need to save REGNO. */
+
+static bool
+ix86_save_reg (unsigned int regno, bool maybe_eh_return)
+{
+ if (pic_offset_table_rtx
+ && regno == REAL_PIC_OFFSET_TABLE_REGNUM
+ && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM)
+ || crtl->profile
+ || crtl->calls_eh_return
+ || crtl->uses_const_pool
+ || cfun->has_nonlocal_label))
+ return ix86_select_alt_pic_regnum () == INVALID_REGNUM;
+
+ if (crtl->calls_eh_return && maybe_eh_return)
+ {
+ unsigned i;
+ for (i = 0; ; i++)
+ {
+ unsigned test = EH_RETURN_DATA_REGNO (i);
+ if (test == INVALID_REGNUM)
+ break;
+ if (test == regno)
+ return true;
+ }
+ }
+
+ if (crtl->drap_reg
+ && regno == REGNO (crtl->drap_reg)
+ && !cfun->machine->no_drap_save_restore)
+ return true;
+
+ return (df_regs_ever_live_p (regno)
+ && !call_used_regs[regno]
+ && !fixed_regs[regno]
+ && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed));
+}
+
+/* Return number of saved general prupose registers. */
+
+static int
+ix86_nsaved_regs (void)
+{
+ int nregs = 0;
+ int regno;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true))
+ nregs ++;
+ return nregs;
+}
+
+/* Return number of saved SSE registrers. */
+
+static int
+ix86_nsaved_sseregs (void)
+{
+ int nregs = 0;
+ int regno;
+
+ if (!TARGET_64BIT_MS_ABI)
+ return 0;
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true))
+ nregs ++;
+ return nregs;
+}
+
+/* Given FROM and TO register numbers, say whether this elimination is
+ allowed. If stack alignment is needed, we can only replace argument
+ pointer with hard frame pointer, or replace frame pointer with stack
+ pointer. Otherwise, frame pointer elimination is automatically
+ handled and all other eliminations are valid. */
+
+static bool
+ix86_can_eliminate (const int from, const int to)
+{
+ if (stack_realign_fp)
+ return ((from == ARG_POINTER_REGNUM
+ && to == HARD_FRAME_POINTER_REGNUM)
+ || (from == FRAME_POINTER_REGNUM
+ && to == STACK_POINTER_REGNUM));
+ else
+ return to == STACK_POINTER_REGNUM ? !frame_pointer_needed : true;
+}
+
+/* Return the offset between two registers, one to be eliminated, and the other
+ its replacement, at the start of a routine. */
+
+HOST_WIDE_INT
+ix86_initial_elimination_offset (int from, int to)
+{
+ struct ix86_frame frame;
+ ix86_compute_frame_layout (&frame);
+
+ if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
+ return frame.hard_frame_pointer_offset;
+ else if (from == FRAME_POINTER_REGNUM
+ && to == HARD_FRAME_POINTER_REGNUM)
+ return frame.hard_frame_pointer_offset - frame.frame_pointer_offset;
+ else
+ {
+ gcc_assert (to == STACK_POINTER_REGNUM);
+
+ if (from == ARG_POINTER_REGNUM)
+ return frame.stack_pointer_offset;
+
+ gcc_assert (from == FRAME_POINTER_REGNUM);
+ return frame.stack_pointer_offset - frame.frame_pointer_offset;
+ }
+}
+
+/* In a dynamically-aligned function, we can't know the offset from
+ stack pointer to frame pointer, so we must ensure that setjmp
+ eliminates fp against the hard fp (%ebp) rather than trying to
+ index from %esp up to the top of the frame across a gap that is
+ of unknown (at compile-time) size. */
+static rtx
+ix86_builtin_setjmp_frame_value (void)
+{
+ return stack_realign_fp ? hard_frame_pointer_rtx : virtual_stack_vars_rtx;
+}
+
+/* When using -fsplit-stack, the allocation routines set a field in
+ the TCB to the bottom of the stack plus this much space, measured
+ in bytes. */
+
+#define SPLIT_STACK_AVAILABLE 256
+
+/* Fill structure ix86_frame about frame of currently computed function. */
+
+static void
+ix86_compute_frame_layout (struct ix86_frame *frame)
+{
+ unsigned HOST_WIDE_INT stack_alignment_needed;
+ HOST_WIDE_INT offset;
+ unsigned HOST_WIDE_INT preferred_alignment;
+ HOST_WIDE_INT size = get_frame_size ();
+ HOST_WIDE_INT to_allocate;
+
+ frame->nregs = ix86_nsaved_regs ();
+ frame->nsseregs = ix86_nsaved_sseregs ();
+
+ stack_alignment_needed = crtl->stack_alignment_needed / BITS_PER_UNIT;
+ preferred_alignment = crtl->preferred_stack_boundary / BITS_PER_UNIT;
+
+ /* 64-bit MS ABI seem to require stack alignment to be always 16 except for
+ function prologues and leaf. */
+ if ((TARGET_64BIT_MS_ABI && preferred_alignment < 16)
+ && (!crtl->is_leaf || cfun->calls_alloca != 0
+ || ix86_current_function_calls_tls_descriptor))
+ {
+ preferred_alignment = 16;
+ stack_alignment_needed = 16;
+ crtl->preferred_stack_boundary = 128;
+ crtl->stack_alignment_needed = 128;
+ }
+
+ gcc_assert (!size || stack_alignment_needed);
+ gcc_assert (preferred_alignment >= STACK_BOUNDARY / BITS_PER_UNIT);
+ gcc_assert (preferred_alignment <= stack_alignment_needed);
+
+ /* For SEH we have to limit the amount of code movement into the prologue.
+ At present we do this via a BLOCKAGE, at which point there's very little
+ scheduling that can be done, which means that there's very little point
+ in doing anything except PUSHs. */
+ if (TARGET_SEH)
+ cfun->machine->use_fast_prologue_epilogue = false;
+
+ /* During reload iteration the amount of registers saved can change.
+ Recompute the value as needed. Do not recompute when amount of registers
+ didn't change as reload does multiple calls to the function and does not
+ expect the decision to change within single iteration. */
+ else if (!optimize_bb_for_size_p (ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ && cfun->machine->use_fast_prologue_epilogue_nregs != frame->nregs)
+ {
+ int count = frame->nregs;
+ struct cgraph_node *node = cgraph_get_node (current_function_decl);
+
+ cfun->machine->use_fast_prologue_epilogue_nregs = count;
+
+ /* The fast prologue uses move instead of push to save registers. This
+ is significantly longer, but also executes faster as modern hardware
+ can execute the moves in parallel, but can't do that for push/pop.
+
+ Be careful about choosing what prologue to emit: When function takes
+ many instructions to execute we may use slow version as well as in
+ case function is known to be outside hot spot (this is known with
+ feedback only). Weight the size of function by number of registers
+ to save as it is cheap to use one or two push instructions but very
+ slow to use many of them. */
+ if (count)
+ count = (count - 1) * FAST_PROLOGUE_INSN_COUNT;
+ if (node->frequency < NODE_FREQUENCY_NORMAL
+ || (flag_branch_probabilities
+ && node->frequency < NODE_FREQUENCY_HOT))
+ cfun->machine->use_fast_prologue_epilogue = false;
+ else
+ cfun->machine->use_fast_prologue_epilogue
+ = !expensive_function_p (count);
+ }
+
+ frame->save_regs_using_mov
+ = (TARGET_PROLOGUE_USING_MOVE && cfun->machine->use_fast_prologue_epilogue
+ /* If static stack checking is enabled and done with probes,
+ the registers need to be saved before allocating the frame. */
+ && flag_stack_check != STATIC_BUILTIN_STACK_CHECK);
+
+ /* Skip return address. */
+ offset = UNITS_PER_WORD;
+
+ /* Skip pushed static chain. */
+ if (ix86_static_chain_on_stack)
+ offset += UNITS_PER_WORD;
+
+ /* Skip saved base pointer. */
+ if (frame_pointer_needed)
+ offset += UNITS_PER_WORD;
+ frame->hfp_save_offset = offset;
+
+ /* The traditional frame pointer location is at the top of the frame. */
+ frame->hard_frame_pointer_offset = offset;
+
+ /* Register save area */
+ offset += frame->nregs * UNITS_PER_WORD;
+ frame->reg_save_offset = offset;
+
+ /* On SEH target, registers are pushed just before the frame pointer
+ location. */
+ if (TARGET_SEH)
+ frame->hard_frame_pointer_offset = offset;
+
+ /* Align and set SSE register save area. */
+ if (frame->nsseregs)
+ {
+ /* The only ABI that has saved SSE registers (Win64) also has a
+ 16-byte aligned default stack, and thus we don't need to be
+ within the re-aligned local stack frame to save them. */
+ gcc_assert (INCOMING_STACK_BOUNDARY >= 128);
+ offset = (offset + 16 - 1) & -16;
+ offset += frame->nsseregs * 16;
+ }
+ frame->sse_reg_save_offset = offset;
+
+ /* The re-aligned stack starts here. Values before this point are not
+ directly comparable with values below this point. In order to make
+ sure that no value happens to be the same before and after, force
+ the alignment computation below to add a non-zero value. */
+ if (stack_realign_fp)
+ offset = (offset + stack_alignment_needed) & -stack_alignment_needed;
+
+ /* Va-arg area */
+ frame->va_arg_size = ix86_varargs_gpr_size + ix86_varargs_fpr_size;
+ offset += frame->va_arg_size;
+
+ /* Align start of frame for local function. */
+ if (stack_realign_fp
+ || offset != frame->sse_reg_save_offset
+ || size != 0
+ || !crtl->is_leaf
+ || cfun->calls_alloca
+ || ix86_current_function_calls_tls_descriptor)
+ offset = (offset + stack_alignment_needed - 1) & -stack_alignment_needed;
+
+ /* Frame pointer points here. */
+ frame->frame_pointer_offset = offset;
+
+ offset += size;
+
+ /* Add outgoing arguments area. Can be skipped if we eliminated
+ all the function calls as dead code.
+ Skipping is however impossible when function calls alloca. Alloca
+ expander assumes that last crtl->outgoing_args_size
+ of stack frame are unused. */
+ if (ACCUMULATE_OUTGOING_ARGS
+ && (!crtl->is_leaf || cfun->calls_alloca
+ || ix86_current_function_calls_tls_descriptor))
+ {
+ offset += crtl->outgoing_args_size;
+ frame->outgoing_arguments_size = crtl->outgoing_args_size;
+ }
+ else
+ frame->outgoing_arguments_size = 0;
+
+ /* Align stack boundary. Only needed if we're calling another function
+ or using alloca. */
+ if (!crtl->is_leaf || cfun->calls_alloca
+ || ix86_current_function_calls_tls_descriptor)
+ offset = (offset + preferred_alignment - 1) & -preferred_alignment;
+
+ /* We've reached end of stack frame. */
+ frame->stack_pointer_offset = offset;
+
+ /* Size prologue needs to allocate. */
+ to_allocate = offset - frame->sse_reg_save_offset;
+
+ if ((!to_allocate && frame->nregs <= 1)
+ || (TARGET_64BIT && to_allocate >= (HOST_WIDE_INT) 0x80000000))
+ frame->save_regs_using_mov = false;
+
+ if (ix86_using_red_zone ()
+ && crtl->sp_is_unchanging
+ && crtl->is_leaf
+ && !ix86_current_function_calls_tls_descriptor)
+ {
+ frame->red_zone_size = to_allocate;
+ if (frame->save_regs_using_mov)
+ frame->red_zone_size += frame->nregs * UNITS_PER_WORD;
+ if (frame->red_zone_size > RED_ZONE_SIZE - RED_ZONE_RESERVE)
+ frame->red_zone_size = RED_ZONE_SIZE - RED_ZONE_RESERVE;
+ }
+ else
+ frame->red_zone_size = 0;
+ frame->stack_pointer_offset -= frame->red_zone_size;
+
+ /* The SEH frame pointer location is near the bottom of the frame.
+ This is enforced by the fact that the difference between the
+ stack pointer and the frame pointer is limited to 240 bytes in
+ the unwind data structure. */
+ if (TARGET_SEH)
+ {
+ HOST_WIDE_INT diff;
+
+ /* If we can leave the frame pointer where it is, do so. Also, returns
+ the establisher frame for __builtin_frame_address (0). */
+ diff = frame->stack_pointer_offset - frame->hard_frame_pointer_offset;
+ if (diff <= SEH_MAX_FRAME_SIZE
+ && (diff > 240 || (diff & 15) != 0)
+ && !crtl->accesses_prior_frames)
+ {
+ /* Ideally we'd determine what portion of the local stack frame
+ (within the constraint of the lowest 240) is most heavily used.
+ But without that complication, simply bias the frame pointer
+ by 128 bytes so as to maximize the amount of the local stack
+ frame that is addressable with 8-bit offsets. */
+ frame->hard_frame_pointer_offset = frame->stack_pointer_offset - 128;
+ }
+ }
+}
+
+/* This is semi-inlined memory_address_length, but simplified
+ since we know that we're always dealing with reg+offset, and
+ to avoid having to create and discard all that rtl. */
+
+static inline int
+choose_baseaddr_len (unsigned int regno, HOST_WIDE_INT offset)
+{
+ int len = 4;
+
+ if (offset == 0)
+ {
+ /* EBP and R13 cannot be encoded without an offset. */
+ len = (regno == BP_REG || regno == R13_REG);
+ }
+ else if (IN_RANGE (offset, -128, 127))
+ len = 1;
+
+ /* ESP and R12 must be encoded with a SIB byte. */
+ if (regno == SP_REG || regno == R12_REG)
+ len++;
+
+ return len;
+}
+
+/* Return an RTX that points to CFA_OFFSET within the stack frame.
+ The valid base registers are taken from CFUN->MACHINE->FS. */
+
+static rtx
+choose_baseaddr (HOST_WIDE_INT cfa_offset)
+{
+ const struct machine_function *m = cfun->machine;
+ rtx base_reg = NULL;
+ HOST_WIDE_INT base_offset = 0;
+
+ if (m->use_fast_prologue_epilogue)
+ {
+ /* Choose the base register most likely to allow the most scheduling
+ opportunities. Generally FP is valid throughout the function,
+ while DRAP must be reloaded within the epilogue. But choose either
+ over the SP due to increased encoding size. */
+
+ if (m->fs.fp_valid)
+ {
+ base_reg = hard_frame_pointer_rtx;
+ base_offset = m->fs.fp_offset - cfa_offset;
+ }
+ else if (m->fs.drap_valid)
+ {
+ base_reg = crtl->drap_reg;
+ base_offset = 0 - cfa_offset;
+ }
+ else if (m->fs.sp_valid)
+ {
+ base_reg = stack_pointer_rtx;
+ base_offset = m->fs.sp_offset - cfa_offset;
+ }
+ }
+ else
+ {
+ HOST_WIDE_INT toffset;
+ int len = 16, tlen;
+
+ /* Choose the base register with the smallest address encoding.
+ With a tie, choose FP > DRAP > SP. */
+ if (m->fs.sp_valid)
+ {
+ base_reg = stack_pointer_rtx;
+ base_offset = m->fs.sp_offset - cfa_offset;
+ len = choose_baseaddr_len (STACK_POINTER_REGNUM, base_offset);
+ }
+ if (m->fs.drap_valid)
+ {
+ toffset = 0 - cfa_offset;
+ tlen = choose_baseaddr_len (REGNO (crtl->drap_reg), toffset);
+ if (tlen <= len)
+ {
+ base_reg = crtl->drap_reg;
+ base_offset = toffset;
+ len = tlen;
+ }
+ }
+ if (m->fs.fp_valid)
+ {
+ toffset = m->fs.fp_offset - cfa_offset;
+ tlen = choose_baseaddr_len (HARD_FRAME_POINTER_REGNUM, toffset);
+ if (tlen <= len)
+ {
+ base_reg = hard_frame_pointer_rtx;
+ base_offset = toffset;
+ len = tlen;
+ }
+ }
+ }
+ gcc_assert (base_reg != NULL);
+
+ return plus_constant (Pmode, base_reg, base_offset);
+}
+
+/* Emit code to save registers in the prologue. */
+
+static void
+ix86_emit_save_regs (void)
+{
+ unsigned int regno;
+ rtx insn;
+
+ for (regno = FIRST_PSEUDO_REGISTER - 1; regno-- > 0; )
+ if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true))
+ {
+ insn = emit_insn (gen_push (gen_rtx_REG (word_mode, regno)));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+}
+
+/* Emit a single register save at CFA - CFA_OFFSET. */
+
+static void
+ix86_emit_save_reg_using_mov (enum machine_mode mode, unsigned int regno,
+ HOST_WIDE_INT cfa_offset)
+{
+ struct machine_function *m = cfun->machine;
+ rtx reg = gen_rtx_REG (mode, regno);
+ rtx mem, addr, base, insn;
+
+ addr = choose_baseaddr (cfa_offset);
+ mem = gen_frame_mem (mode, addr);
+
+ /* For SSE saves, we need to indicate the 128-bit alignment. */
+ set_mem_align (mem, GET_MODE_ALIGNMENT (mode));
+
+ insn = emit_move_insn (mem, reg);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ base = addr;
+ if (GET_CODE (base) == PLUS)
+ base = XEXP (base, 0);
+ gcc_checking_assert (REG_P (base));
+
+ /* When saving registers into a re-aligned local stack frame, avoid
+ any tricky guessing by dwarf2out. */
+ if (m->fs.realigned)
+ {
+ gcc_checking_assert (stack_realign_drap);
+
+ if (regno == REGNO (crtl->drap_reg))
+ {
+ /* A bit of a hack. We force the DRAP register to be saved in
+ the re-aligned stack frame, which provides us with a copy
+ of the CFA that will last past the prologue. Install it. */
+ gcc_checking_assert (cfun->machine->fs.fp_valid);
+ addr = plus_constant (Pmode, hard_frame_pointer_rtx,
+ cfun->machine->fs.fp_offset - cfa_offset);
+ mem = gen_rtx_MEM (mode, addr);
+ add_reg_note (insn, REG_CFA_DEF_CFA, mem);
+ }
+ else
+ {
+ /* The frame pointer is a stable reference within the
+ aligned frame. Use it. */
+ gcc_checking_assert (cfun->machine->fs.fp_valid);
+ addr = plus_constant (Pmode, hard_frame_pointer_rtx,
+ cfun->machine->fs.fp_offset - cfa_offset);
+ mem = gen_rtx_MEM (mode, addr);
+ add_reg_note (insn, REG_CFA_EXPRESSION,
+ gen_rtx_SET (VOIDmode, mem, reg));
+ }
+ }
+
+ /* The memory may not be relative to the current CFA register,
+ which means that we may need to generate a new pattern for
+ use by the unwind info. */
+ else if (base != m->fs.cfa_reg)
+ {
+ addr = plus_constant (Pmode, m->fs.cfa_reg,
+ m->fs.cfa_offset - cfa_offset);
+ mem = gen_rtx_MEM (mode, addr);
+ add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (VOIDmode, mem, reg));
+ }
+}
+
+/* Emit code to save registers using MOV insns.
+ First register is stored at CFA - CFA_OFFSET. */
+static void
+ix86_emit_save_regs_using_mov (HOST_WIDE_INT cfa_offset)
+{
+ unsigned int regno;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true))
+ {
+ ix86_emit_save_reg_using_mov (word_mode, regno, cfa_offset);
+ cfa_offset -= UNITS_PER_WORD;
+ }
+}
+
+/* Emit code to save SSE registers using MOV insns.
+ First register is stored at CFA - CFA_OFFSET. */
+static void
+ix86_emit_save_sse_regs_using_mov (HOST_WIDE_INT cfa_offset)
+{
+ unsigned int regno;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true))
+ {
+ ix86_emit_save_reg_using_mov (V4SFmode, regno, cfa_offset);
+ cfa_offset -= 16;
+ }
+}
+
+static GTY(()) rtx queued_cfa_restores;
+
+/* Add a REG_CFA_RESTORE REG note to INSN or queue them until next stack
+ manipulation insn. The value is on the stack at CFA - CFA_OFFSET.
+ Don't add the note if the previously saved value will be left untouched
+ within stack red-zone till return, as unwinders can find the same value
+ in the register and on the stack. */
+
+static void
+ix86_add_cfa_restore_note (rtx insn, rtx reg, HOST_WIDE_INT cfa_offset)
+{
+ if (!crtl->shrink_wrapped
+ && cfa_offset <= cfun->machine->fs.red_zone_offset)
+ return;
+
+ if (insn)
+ {
+ add_reg_note (insn, REG_CFA_RESTORE, reg);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ else
+ queued_cfa_restores
+ = alloc_reg_note (REG_CFA_RESTORE, reg, queued_cfa_restores);
+}
+
+/* Add queued REG_CFA_RESTORE notes if any to INSN. */
+
+static void
+ix86_add_queued_cfa_restore_notes (rtx insn)
+{
+ rtx last;
+ if (!queued_cfa_restores)
+ return;
+ for (last = queued_cfa_restores; XEXP (last, 1); last = XEXP (last, 1))
+ ;
+ XEXP (last, 1) = REG_NOTES (insn);
+ REG_NOTES (insn) = queued_cfa_restores;
+ queued_cfa_restores = NULL_RTX;
+ RTX_FRAME_RELATED_P (insn) = 1;
+}
+
+/* Expand prologue or epilogue stack adjustment.
+ The pattern exist to put a dependency on all ebp-based memory accesses.
+ STYLE should be negative if instructions should be marked as frame related,
+ zero if %r11 register is live and cannot be freely used and positive
+ otherwise. */
+
+static void
+pro_epilogue_adjust_stack (rtx dest, rtx src, rtx offset,
+ int style, bool set_cfa)
+{
+ struct machine_function *m = cfun->machine;
+ rtx insn;
+ bool add_frame_related_expr = false;
+
+ if (Pmode == SImode)
+ insn = gen_pro_epilogue_adjust_stack_si_add (dest, src, offset);
+ else if (x86_64_immediate_operand (offset, DImode))
+ insn = gen_pro_epilogue_adjust_stack_di_add (dest, src, offset);
+ else
+ {
+ rtx tmp;
+ /* r11 is used by indirect sibcall return as well, set before the
+ epilogue and used after the epilogue. */
+ if (style)
+ tmp = gen_rtx_REG (DImode, R11_REG);
+ else
+ {
+ gcc_assert (src != hard_frame_pointer_rtx
+ && dest != hard_frame_pointer_rtx);
+ tmp = hard_frame_pointer_rtx;
+ }
+ insn = emit_insn (gen_rtx_SET (DImode, tmp, offset));
+ if (style < 0)
+ add_frame_related_expr = true;
+
+ insn = gen_pro_epilogue_adjust_stack_di_add (dest, src, tmp);
+ }
+
+ insn = emit_insn (insn);
+ if (style >= 0)
+ ix86_add_queued_cfa_restore_notes (insn);
+
+ if (set_cfa)
+ {
+ rtx r;
+
+ gcc_assert (m->fs.cfa_reg == src);
+ m->fs.cfa_offset += INTVAL (offset);
+ m->fs.cfa_reg = dest;
+
+ r = gen_rtx_PLUS (Pmode, src, offset);
+ r = gen_rtx_SET (VOIDmode, dest, r);
+ add_reg_note (insn, REG_CFA_ADJUST_CFA, r);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ else if (style < 0)
+ {
+ RTX_FRAME_RELATED_P (insn) = 1;
+ if (add_frame_related_expr)
+ {
+ rtx r = gen_rtx_PLUS (Pmode, src, offset);
+ r = gen_rtx_SET (VOIDmode, dest, r);
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR, r);
+ }
+ }
+
+ if (dest == stack_pointer_rtx)
+ {
+ HOST_WIDE_INT ooffset = m->fs.sp_offset;
+ bool valid = m->fs.sp_valid;
+
+ if (src == hard_frame_pointer_rtx)
+ {
+ valid = m->fs.fp_valid;
+ ooffset = m->fs.fp_offset;
+ }
+ else if (src == crtl->drap_reg)
+ {
+ valid = m->fs.drap_valid;
+ ooffset = 0;
+ }
+ else
+ {
+ /* Else there are two possibilities: SP itself, which we set
+ up as the default above. Or EH_RETURN_STACKADJ_RTX, which is
+ taken care of this by hand along the eh_return path. */
+ gcc_checking_assert (src == stack_pointer_rtx
+ || offset == const0_rtx);
+ }
+
+ m->fs.sp_offset = ooffset - INTVAL (offset);
+ m->fs.sp_valid = valid;
+ }
+}
+
+/* Find an available register to be used as dynamic realign argument
+ pointer regsiter. Such a register will be written in prologue and
+ used in begin of body, so it must not be
+ 1. parameter passing register.
+ 2. GOT pointer.
+ We reuse static-chain register if it is available. Otherwise, we
+ use DI for i386 and R13 for x86-64. We chose R13 since it has
+ shorter encoding.
+
+ Return: the regno of chosen register. */
+
+static unsigned int
+find_drap_reg (void)
+{
+ tree decl = cfun->decl;
+
+ if (TARGET_64BIT)
+ {
+ /* Use R13 for nested function or function need static chain.
+ Since function with tail call may use any caller-saved
+ registers in epilogue, DRAP must not use caller-saved
+ register in such case. */
+ if (DECL_STATIC_CHAIN (decl) || crtl->tail_call_emit)
+ return R13_REG;
+
+ return R10_REG;
+ }
+ else
+ {
+ /* Use DI for nested function or function need static chain.
+ Since function with tail call may use any caller-saved
+ registers in epilogue, DRAP must not use caller-saved
+ register in such case. */
+ if (DECL_STATIC_CHAIN (decl) || crtl->tail_call_emit)
+ return DI_REG;
+
+ /* Reuse static chain register if it isn't used for parameter
+ passing. */
+ if (ix86_function_regparm (TREE_TYPE (decl), decl) <= 2)
+ {
+ unsigned int ccvt = ix86_get_callcvt (TREE_TYPE (decl));
+ if ((ccvt & (IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) == 0)
+ return CX_REG;
+ }
+ return DI_REG;
+ }
+}
+
+/* Return minimum incoming stack alignment. */
+
+static unsigned int
+ix86_minimum_incoming_stack_boundary (bool sibcall)
+{
+ unsigned int incoming_stack_boundary;
+
+ /* Prefer the one specified at command line. */
+ if (ix86_user_incoming_stack_boundary)
+ incoming_stack_boundary = ix86_user_incoming_stack_boundary;
+ /* In 32bit, use MIN_STACK_BOUNDARY for incoming stack boundary
+ if -mstackrealign is used, it isn't used for sibcall check and
+ estimated stack alignment is 128bit. */
+ else if (!sibcall
+ && !TARGET_64BIT
+ && ix86_force_align_arg_pointer
+ && crtl->stack_alignment_estimated == 128)
+ incoming_stack_boundary = MIN_STACK_BOUNDARY;
+ else
+ incoming_stack_boundary = ix86_default_incoming_stack_boundary;
+
+ /* Incoming stack alignment can be changed on individual functions
+ via force_align_arg_pointer attribute. We use the smallest
+ incoming stack boundary. */
+ if (incoming_stack_boundary > MIN_STACK_BOUNDARY
+ && lookup_attribute (ix86_force_align_arg_pointer_string,
+ TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
+ incoming_stack_boundary = MIN_STACK_BOUNDARY;
+
+ /* The incoming stack frame has to be aligned at least at
+ parm_stack_boundary. */
+ if (incoming_stack_boundary < crtl->parm_stack_boundary)
+ incoming_stack_boundary = crtl->parm_stack_boundary;
+
+ /* Stack at entrance of main is aligned by runtime. We use the
+ smallest incoming stack boundary. */
+ if (incoming_stack_boundary > MAIN_STACK_BOUNDARY
+ && DECL_NAME (current_function_decl)
+ && MAIN_NAME_P (DECL_NAME (current_function_decl))
+ && DECL_FILE_SCOPE_P (current_function_decl))
+ incoming_stack_boundary = MAIN_STACK_BOUNDARY;
+
+ return incoming_stack_boundary;
+}
+
+/* Update incoming stack boundary and estimated stack alignment. */
+
+static void
+ix86_update_stack_boundary (void)
+{
+ ix86_incoming_stack_boundary
+ = ix86_minimum_incoming_stack_boundary (false);
+
+ /* x86_64 vararg needs 16byte stack alignment for register save
+ area. */
+ if (TARGET_64BIT
+ && cfun->stdarg
+ && crtl->stack_alignment_estimated < 128)
+ crtl->stack_alignment_estimated = 128;
+}
+
+/* Handle the TARGET_GET_DRAP_RTX hook. Return NULL if no DRAP is
+ needed or an rtx for DRAP otherwise. */
+
+static rtx
+ix86_get_drap_rtx (void)
+{
+ if (ix86_force_drap || !ACCUMULATE_OUTGOING_ARGS)
+ crtl->need_drap = true;
+
+ if (stack_realign_drap)
+ {
+ /* Assign DRAP to vDRAP and returns vDRAP */
+ unsigned int regno = find_drap_reg ();
+ rtx drap_vreg;
+ rtx arg_ptr;
+ rtx seq, insn;
+
+ arg_ptr = gen_rtx_REG (Pmode, regno);
+ crtl->drap_reg = arg_ptr;
+
+ start_sequence ();
+ drap_vreg = copy_to_reg (arg_ptr);
+ seq = get_insns ();
+ end_sequence ();
+
+ insn = emit_insn_before (seq, NEXT_INSN (entry_of_function ()));
+ if (!optimize)
+ {
+ add_reg_note (insn, REG_CFA_SET_VDRAP, drap_vreg);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ return drap_vreg;
+ }
+ else
+ return NULL;
+}
+
+/* Handle the TARGET_INTERNAL_ARG_POINTER hook. */
+
+static rtx
+ix86_internal_arg_pointer (void)
+{
+ return virtual_incoming_args_rtx;
+}
+
+struct scratch_reg {
+ rtx reg;
+ bool saved;
+};
+
+/* Return a short-lived scratch register for use on function entry.
+ In 32-bit mode, it is valid only after the registers are saved
+ in the prologue. This register must be released by means of
+ release_scratch_register_on_entry once it is dead. */
+
+static void
+get_scratch_register_on_entry (struct scratch_reg *sr)
+{
+ int regno;
+
+ sr->saved = false;
+
+ if (TARGET_64BIT)
+ {
+ /* We always use R11 in 64-bit mode. */
+ regno = R11_REG;
+ }
+ else
+ {
+ tree decl = current_function_decl, fntype = TREE_TYPE (decl);
+ bool fastcall_p
+ = lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE;
+ bool thiscall_p
+ = lookup_attribute ("thiscall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE;
+ bool static_chain_p = DECL_STATIC_CHAIN (decl);
+ int regparm = ix86_function_regparm (fntype, decl);
+ int drap_regno
+ = crtl->drap_reg ? REGNO (crtl->drap_reg) : INVALID_REGNUM;
+
+ /* 'fastcall' sets regparm to 2, uses ecx/edx for arguments and eax
+ for the static chain register. */
+ if ((regparm < 1 || (fastcall_p && !static_chain_p))
+ && drap_regno != AX_REG)
+ regno = AX_REG;
+ /* 'thiscall' sets regparm to 1, uses ecx for arguments and edx
+ for the static chain register. */
+ else if (thiscall_p && !static_chain_p && drap_regno != AX_REG)
+ regno = AX_REG;
+ else if (regparm < 2 && !thiscall_p && drap_regno != DX_REG)
+ regno = DX_REG;
+ /* ecx is the static chain register. */
+ else if (regparm < 3 && !fastcall_p && !thiscall_p
+ && !static_chain_p
+ && drap_regno != CX_REG)
+ regno = CX_REG;
+ else if (ix86_save_reg (BX_REG, true))
+ regno = BX_REG;
+ /* esi is the static chain register. */
+ else if (!(regparm == 3 && static_chain_p)
+ && ix86_save_reg (SI_REG, true))
+ regno = SI_REG;
+ else if (ix86_save_reg (DI_REG, true))
+ regno = DI_REG;
+ else
+ {
+ regno = (drap_regno == AX_REG ? DX_REG : AX_REG);
+ sr->saved = true;
+ }
+ }
+
+ sr->reg = gen_rtx_REG (Pmode, regno);
+ if (sr->saved)
+ {
+ rtx insn = emit_insn (gen_push (sr->reg));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+}
+
+/* Release a scratch register obtained from the preceding function. */
+
+static void
+release_scratch_register_on_entry (struct scratch_reg *sr)
+{
+ if (sr->saved)
+ {
+ struct machine_function *m = cfun->machine;
+ rtx x, insn = emit_insn (gen_pop (sr->reg));
+
+ /* The RTX_FRAME_RELATED_P mechanism doesn't know about pop. */
+ RTX_FRAME_RELATED_P (insn) = 1;
+ x = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD));
+ x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x);
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR, x);
+ m->fs.sp_offset -= UNITS_PER_WORD;
+ }
+}
+
+#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
+
+/* Emit code to adjust the stack pointer by SIZE bytes while probing it. */
+
+static void
+ix86_adjust_stack_and_probe (const HOST_WIDE_INT size)
+{
+ /* We skip the probe for the first interval + a small dope of 4 words and
+ probe that many bytes past the specified size to maintain a protection
+ area at the botton of the stack. */
+ const int dope = 4 * UNITS_PER_WORD;
+ rtx size_rtx = GEN_INT (size), last;
+
+ /* See if we have a constant small number of probes to generate. If so,
+ that's the easy case. The run-time loop is made up of 11 insns in the
+ generic case while the compile-time loop is made up of 3+2*(n-1) insns
+ for n # of intervals. */
+ if (size <= 5 * PROBE_INTERVAL)
+ {
+ HOST_WIDE_INT i, adjust;
+ bool first_probe = true;
+
+ /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
+ values of N from 1 until it exceeds SIZE. If only one probe is
+ needed, this will not generate any code. Then adjust and probe
+ to PROBE_INTERVAL + SIZE. */
+ for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
+ {
+ if (first_probe)
+ {
+ adjust = 2 * PROBE_INTERVAL + dope;
+ first_probe = false;
+ }
+ else
+ adjust = PROBE_INTERVAL;
+
+ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ -adjust)));
+ emit_stack_probe (stack_pointer_rtx);
+ }
+
+ if (first_probe)
+ adjust = size + PROBE_INTERVAL + dope;
+ else
+ adjust = size + PROBE_INTERVAL - i;
+
+ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ -adjust)));
+ emit_stack_probe (stack_pointer_rtx);
+
+ /* Adjust back to account for the additional first interval. */
+ last = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ PROBE_INTERVAL + dope)));
+ }
+
+ /* Otherwise, do the same as above, but in a loop. Note that we must be
+ extra careful with variables wrapping around because we might be at
+ the very top (or the very bottom) of the address space and we have
+ to be able to handle this case properly; in particular, we use an
+ equality test for the loop condition. */
+ else
+ {
+ HOST_WIDE_INT rounded_size;
+ struct scratch_reg sr;
+
+ get_scratch_register_on_entry (&sr);
+
+
+ /* Step 1: round SIZE to the previous multiple of the interval. */
+
+ rounded_size = size & -PROBE_INTERVAL;
+
+
+ /* Step 2: compute initial and final value of the loop counter. */
+
+ /* SP = SP_0 + PROBE_INTERVAL. */
+ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ - (PROBE_INTERVAL + dope))));
+
+ /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
+ emit_move_insn (sr.reg, GEN_INT (-rounded_size));
+ emit_insn (gen_rtx_SET (VOIDmode, sr.reg,
+ gen_rtx_PLUS (Pmode, sr.reg,
+ stack_pointer_rtx)));
+
+
+ /* Step 3: the loop
+
+ while (SP != LAST_ADDR)
+ {
+ SP = SP + PROBE_INTERVAL
+ probe at SP
+ }
+
+ adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for
+ values of N from 1 until it is equal to ROUNDED_SIZE. */
+
+ emit_insn (ix86_gen_adjust_stack_and_probe (sr.reg, sr.reg, size_rtx));
+
+
+ /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
+ assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
+
+ if (size != rounded_size)
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ rounded_size - size)));
+ emit_stack_probe (stack_pointer_rtx);
+ }
+
+ /* Adjust back to account for the additional first interval. */
+ last = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ PROBE_INTERVAL + dope)));
+
+ release_scratch_register_on_entry (&sr);
+ }
+
+ gcc_assert (cfun->machine->fs.cfa_reg != stack_pointer_rtx);
+
+ /* Even if the stack pointer isn't the CFA register, we need to correctly
+ describe the adjustments made to it, in particular differentiate the
+ frame-related ones from the frame-unrelated ones. */
+ if (size > 0)
+ {
+ rtx expr = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (2));
+ XVECEXP (expr, 0, 0)
+ = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx, -size));
+ XVECEXP (expr, 0, 1)
+ = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ PROBE_INTERVAL + dope + size));
+ add_reg_note (last, REG_FRAME_RELATED_EXPR, expr);
+ RTX_FRAME_RELATED_P (last) = 1;
+
+ cfun->machine->fs.sp_offset += size;
+ }
+
+ /* Make sure nothing is scheduled before we are done. */
+ emit_insn (gen_blockage ());
+}
+
+/* Adjust the stack pointer up to REG while probing it. */
+
+const char *
+output_adjust_stack_and_probe (rtx reg)
+{
+ static int labelno = 0;
+ char loop_lab[32], end_lab[32];
+ rtx xops[2];
+
+ ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno);
+ ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++);
+
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
+
+ /* Jump to END_LAB if SP == LAST_ADDR. */
+ xops[0] = stack_pointer_rtx;
+ xops[1] = reg;
+ output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops);
+ fputs ("\tje\t", asm_out_file);
+ assemble_name_raw (asm_out_file, end_lab);
+ fputc ('\n', asm_out_file);
+
+ /* SP = SP + PROBE_INTERVAL. */
+ xops[1] = GEN_INT (PROBE_INTERVAL);
+ output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops);
+
+ /* Probe at SP. */
+ xops[1] = const0_rtx;
+ output_asm_insn ("or%z0\t{%1, (%0)|DWORD PTR [%0], %1}", xops);
+
+ fprintf (asm_out_file, "\tjmp\t");
+ assemble_name_raw (asm_out_file, loop_lab);
+ fputc ('\n', asm_out_file);
+
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab);
+
+ return "";
+}
+
+/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
+ inclusive. These are offsets from the current stack pointer. */
+
+static void
+ix86_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
+{
+ /* See if we have a constant small number of probes to generate. If so,
+ that's the easy case. The run-time loop is made up of 7 insns in the
+ generic case while the compile-time loop is made up of n insns for n #
+ of intervals. */
+ if (size <= 7 * PROBE_INTERVAL)
+ {
+ HOST_WIDE_INT i;
+
+ /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
+ it exceeds SIZE. If only one probe is needed, this will not
+ generate any code. Then probe at FIRST + SIZE. */
+ for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
+ emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
+ -(first + i)));
+
+ emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
+ -(first + size)));
+ }
+
+ /* Otherwise, do the same as above, but in a loop. Note that we must be
+ extra careful with variables wrapping around because we might be at
+ the very top (or the very bottom) of the address space and we have
+ to be able to handle this case properly; in particular, we use an
+ equality test for the loop condition. */
+ else
+ {
+ HOST_WIDE_INT rounded_size, last;
+ struct scratch_reg sr;
+
+ get_scratch_register_on_entry (&sr);
+
+
+ /* Step 1: round SIZE to the previous multiple of the interval. */
+
+ rounded_size = size & -PROBE_INTERVAL;
+
+
+ /* Step 2: compute initial and final value of the loop counter. */
+
+ /* TEST_OFFSET = FIRST. */
+ emit_move_insn (sr.reg, GEN_INT (-first));
+
+ /* LAST_OFFSET = FIRST + ROUNDED_SIZE. */
+ last = first + rounded_size;
+
+
+ /* Step 3: the loop
+
+ while (TEST_ADDR != LAST_ADDR)
+ {
+ TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
+ probe at TEST_ADDR
+ }
+
+ probes at FIRST + N * PROBE_INTERVAL for values of N from 1
+ until it is equal to ROUNDED_SIZE. */
+
+ emit_insn (ix86_gen_probe_stack_range (sr.reg, sr.reg, GEN_INT (-last)));
+
+
+ /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
+ that SIZE is equal to ROUNDED_SIZE. */
+
+ if (size != rounded_size)
+ emit_stack_probe (plus_constant (Pmode,
+ gen_rtx_PLUS (Pmode,
+ stack_pointer_rtx,
+ sr.reg),
+ rounded_size - size));
+
+ release_scratch_register_on_entry (&sr);
+ }
+
+ /* Make sure nothing is scheduled before we are done. */
+ emit_insn (gen_blockage ());
+}
+
+/* Probe a range of stack addresses from REG to END, inclusive. These are
+ offsets from the current stack pointer. */
+
+const char *
+output_probe_stack_range (rtx reg, rtx end)
+{
+ static int labelno = 0;
+ char loop_lab[32], end_lab[32];
+ rtx xops[3];
+
+ ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno);
+ ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++);
+
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
+
+ /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
+ xops[0] = reg;
+ xops[1] = end;
+ output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops);
+ fputs ("\tje\t", asm_out_file);
+ assemble_name_raw (asm_out_file, end_lab);
+ fputc ('\n', asm_out_file);
+
+ /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
+ xops[1] = GEN_INT (PROBE_INTERVAL);
+ output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops);
+
+ /* Probe at TEST_ADDR. */
+ xops[0] = stack_pointer_rtx;
+ xops[1] = reg;
+ xops[2] = const0_rtx;
+ output_asm_insn ("or%z0\t{%2, (%0,%1)|DWORD PTR [%0+%1], %2}", xops);
+
+ fprintf (asm_out_file, "\tjmp\t");
+ assemble_name_raw (asm_out_file, loop_lab);
+ fputc ('\n', asm_out_file);
+
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab);
+
+ return "";
+}
+
+/* Finalize stack_realign_needed flag, which will guide prologue/epilogue
+ to be generated in correct form. */
+static void
+ix86_finalize_stack_realign_flags (void)
+{
+ /* Check if stack realign is really needed after reload, and
+ stores result in cfun */
+ unsigned int incoming_stack_boundary
+ = (crtl->parm_stack_boundary > ix86_incoming_stack_boundary
+ ? crtl->parm_stack_boundary : ix86_incoming_stack_boundary);
+ unsigned int stack_realign = (incoming_stack_boundary
+ < (crtl->is_leaf
+ ? crtl->max_used_stack_slot_alignment
+ : crtl->stack_alignment_needed));
+
+ if (crtl->stack_realign_finalized)
+ {
+ /* After stack_realign_needed is finalized, we can't no longer
+ change it. */
+ gcc_assert (crtl->stack_realign_needed == stack_realign);
+ return;
+ }
+
+ /* If the only reason for frame_pointer_needed is that we conservatively
+ assumed stack realignment might be needed, but in the end nothing that
+ needed the stack alignment had been spilled, clear frame_pointer_needed
+ and say we don't need stack realignment. */
+ if (stack_realign
+ && frame_pointer_needed
+ && crtl->is_leaf
+ && flag_omit_frame_pointer
+ && crtl->sp_is_unchanging
+ && !ix86_current_function_calls_tls_descriptor
+ && !crtl->accesses_prior_frames
+ && !cfun->calls_alloca
+ && !crtl->calls_eh_return
+ && !(flag_stack_check && STACK_CHECK_MOVING_SP)
+ && !ix86_frame_pointer_required ()
+ && get_frame_size () == 0
+ && ix86_nsaved_sseregs () == 0
+ && ix86_varargs_gpr_size + ix86_varargs_fpr_size == 0)
+ {
+ HARD_REG_SET set_up_by_prologue, prologue_used;
+ basic_block bb;
+
+ CLEAR_HARD_REG_SET (prologue_used);
+ CLEAR_HARD_REG_SET (set_up_by_prologue);
+ add_to_hard_reg_set (&set_up_by_prologue, Pmode, STACK_POINTER_REGNUM);
+ add_to_hard_reg_set (&set_up_by_prologue, Pmode, ARG_POINTER_REGNUM);
+ add_to_hard_reg_set (&set_up_by_prologue, Pmode,
+ HARD_FRAME_POINTER_REGNUM);
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ rtx insn;
+ FOR_BB_INSNS (bb, insn)
+ if (NONDEBUG_INSN_P (insn)
+ && requires_stack_frame_p (insn, prologue_used,
+ set_up_by_prologue))
+ {
+ crtl->stack_realign_needed = stack_realign;
+ crtl->stack_realign_finalized = true;
+ return;
+ }
+ }
+
+ /* If drap has been set, but it actually isn't live at the start
+ of the function, there is no reason to set it up. */
+ if (crtl->drap_reg)
+ {
+ basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
+ if (! REGNO_REG_SET_P (DF_LR_IN (bb), REGNO (crtl->drap_reg)))
+ {
+ crtl->drap_reg = NULL_RTX;
+ crtl->need_drap = false;
+ }
+ }
+ else
+ cfun->machine->no_drap_save_restore = true;
+
+ frame_pointer_needed = false;
+ stack_realign = false;
+ crtl->max_used_stack_slot_alignment = incoming_stack_boundary;
+ crtl->stack_alignment_needed = incoming_stack_boundary;
+ crtl->stack_alignment_estimated = incoming_stack_boundary;
+ if (crtl->preferred_stack_boundary > incoming_stack_boundary)
+ crtl->preferred_stack_boundary = incoming_stack_boundary;
+ df_finish_pass (true);
+ df_scan_alloc (NULL);
+ df_scan_blocks ();
+ df_compute_regs_ever_live (true);
+ df_analyze ();
+ }
+
+ crtl->stack_realign_needed = stack_realign;
+ crtl->stack_realign_finalized = true;
+}
+
+/* Expand the prologue into a bunch of separate insns. */
+
+void
+ix86_expand_prologue (void)
+{
+ struct machine_function *m = cfun->machine;
+ rtx insn, t;
+ bool pic_reg_used;
+ struct ix86_frame frame;
+ HOST_WIDE_INT allocate;
+ bool int_registers_saved;
+ bool sse_registers_saved;
+
+ ix86_finalize_stack_realign_flags ();
+
+ /* DRAP should not coexist with stack_realign_fp */
+ gcc_assert (!(crtl->drap_reg && stack_realign_fp));
+
+ memset (&m->fs, 0, sizeof (m->fs));
+
+ /* Initialize CFA state for before the prologue. */
+ m->fs.cfa_reg = stack_pointer_rtx;
+ m->fs.cfa_offset = INCOMING_FRAME_SP_OFFSET;
+
+ /* Track SP offset to the CFA. We continue tracking this after we've
+ swapped the CFA register away from SP. In the case of re-alignment
+ this is fudged; we're interested to offsets within the local frame. */
+ m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET;
+ m->fs.sp_valid = true;
+
+ ix86_compute_frame_layout (&frame);
+
+ if (!TARGET_64BIT && ix86_function_ms_hook_prologue (current_function_decl))
+ {
+ /* We should have already generated an error for any use of
+ ms_hook on a nested function. */
+ gcc_checking_assert (!ix86_static_chain_on_stack);
+
+ /* Check if profiling is active and we shall use profiling before
+ prologue variant. If so sorry. */
+ if (crtl->profile && flag_fentry != 0)
+ sorry ("ms_hook_prologue attribute isn%'t compatible "
+ "with -mfentry for 32-bit");
+
+ /* In ix86_asm_output_function_label we emitted:
+ 8b ff movl.s %edi,%edi
+ 55 push %ebp
+ 8b ec movl.s %esp,%ebp
+
+ This matches the hookable function prologue in Win32 API
+ functions in Microsoft Windows XP Service Pack 2 and newer.
+ Wine uses this to enable Windows apps to hook the Win32 API
+ functions provided by Wine.
+
+ What that means is that we've already set up the frame pointer. */
+
+ if (frame_pointer_needed
+ && !(crtl->drap_reg && crtl->stack_realign_needed))
+ {
+ rtx push, mov;
+
+ /* We've decided to use the frame pointer already set up.
+ Describe this to the unwinder by pretending that both
+ push and mov insns happen right here.
+
+ Putting the unwind info here at the end of the ms_hook
+ is done so that we can make absolutely certain we get
+ the required byte sequence at the start of the function,
+ rather than relying on an assembler that can produce
+ the exact encoding required.
+
+ However it does mean (in the unpatched case) that we have
+ a 1 insn window where the asynchronous unwind info is
+ incorrect. However, if we placed the unwind info at
+ its correct location we would have incorrect unwind info
+ in the patched case. Which is probably all moot since
+ I don't expect Wine generates dwarf2 unwind info for the
+ system libraries that use this feature. */
+
+ insn = emit_insn (gen_blockage ());
+
+ push = gen_push (hard_frame_pointer_rtx);
+ mov = gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
+ stack_pointer_rtx);
+ RTX_FRAME_RELATED_P (push) = 1;
+ RTX_FRAME_RELATED_P (mov) = 1;
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR,
+ gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, push, mov)));
+
+ /* Note that gen_push incremented m->fs.cfa_offset, even
+ though we didn't emit the push insn here. */
+ m->fs.cfa_reg = hard_frame_pointer_rtx;
+ m->fs.fp_offset = m->fs.cfa_offset;
+ m->fs.fp_valid = true;
+ }
+ else
+ {
+ /* The frame pointer is not needed so pop %ebp again.
+ This leaves us with a pristine state. */
+ emit_insn (gen_pop (hard_frame_pointer_rtx));
+ }
+ }
+
+ /* The first insn of a function that accepts its static chain on the
+ stack is to push the register that would be filled in by a direct
+ call. This insn will be skipped by the trampoline. */
+ else if (ix86_static_chain_on_stack)
+ {
+ insn = emit_insn (gen_push (ix86_static_chain (cfun->decl, false)));
+ emit_insn (gen_blockage ());
+
+ /* We don't want to interpret this push insn as a register save,
+ only as a stack adjustment. The real copy of the register as
+ a save will be done later, if needed. */
+ t = plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD);
+ t = gen_rtx_SET (VOIDmode, stack_pointer_rtx, t);
+ add_reg_note (insn, REG_CFA_ADJUST_CFA, t);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ /* Emit prologue code to adjust stack alignment and setup DRAP, in case
+ of DRAP is needed and stack realignment is really needed after reload */
+ if (stack_realign_drap)
+ {
+ int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT;
+
+ /* Only need to push parameter pointer reg if it is caller saved. */
+ if (!call_used_regs[REGNO (crtl->drap_reg)])
+ {
+ /* Push arg pointer reg */
+ insn = emit_insn (gen_push (crtl->drap_reg));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ /* Grab the argument pointer. */
+ t = plus_constant (Pmode, stack_pointer_rtx, m->fs.sp_offset);
+ insn = emit_insn (gen_rtx_SET (VOIDmode, crtl->drap_reg, t));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ m->fs.cfa_reg = crtl->drap_reg;
+ m->fs.cfa_offset = 0;
+
+ /* Align the stack. */
+ insn = emit_insn (ix86_gen_andsp (stack_pointer_rtx,
+ stack_pointer_rtx,
+ GEN_INT (-align_bytes)));
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ /* Replicate the return address on the stack so that return
+ address can be reached via (argp - 1) slot. This is needed
+ to implement macro RETURN_ADDR_RTX and intrinsic function
+ expand_builtin_return_addr etc. */
+ t = plus_constant (Pmode, crtl->drap_reg, -UNITS_PER_WORD);
+ t = gen_frame_mem (word_mode, t);
+ insn = emit_insn (gen_push (t));
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ /* For the purposes of frame and register save area addressing,
+ we've started over with a new frame. */
+ m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET;
+ m->fs.realigned = true;
+ }
+
+ int_registers_saved = (frame.nregs == 0);
+ sse_registers_saved = (frame.nsseregs == 0);
+
+ if (frame_pointer_needed && !m->fs.fp_valid)
+ {
+ /* Note: AT&T enter does NOT have reversed args. Enter is probably
+ slower on all targets. Also sdb doesn't like it. */
+ insn = emit_insn (gen_push (hard_frame_pointer_rtx));
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ /* Push registers now, before setting the frame pointer
+ on SEH target. */
+ if (!int_registers_saved
+ && TARGET_SEH
+ && !frame.save_regs_using_mov)
+ {
+ ix86_emit_save_regs ();
+ int_registers_saved = true;
+ gcc_assert (m->fs.sp_offset == frame.reg_save_offset);
+ }
+
+ if (m->fs.sp_offset == frame.hard_frame_pointer_offset)
+ {
+ insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ if (m->fs.cfa_reg == stack_pointer_rtx)
+ m->fs.cfa_reg = hard_frame_pointer_rtx;
+ m->fs.fp_offset = m->fs.sp_offset;
+ m->fs.fp_valid = true;
+ }
+ }
+
+ if (!int_registers_saved)
+ {
+ /* If saving registers via PUSH, do so now. */
+ if (!frame.save_regs_using_mov)
+ {
+ ix86_emit_save_regs ();
+ int_registers_saved = true;
+ gcc_assert (m->fs.sp_offset == frame.reg_save_offset);
+ }
+
+ /* When using red zone we may start register saving before allocating
+ the stack frame saving one cycle of the prologue. However, avoid
+ doing this if we have to probe the stack; at least on x86_64 the
+ stack probe can turn into a call that clobbers a red zone location. */
+ else if (ix86_using_red_zone ()
+ && (! TARGET_STACK_PROBE
+ || frame.stack_pointer_offset < CHECK_STACK_LIMIT))
+ {
+ ix86_emit_save_regs_using_mov (frame.reg_save_offset);
+ int_registers_saved = true;
+ }
+ }
+
+ if (stack_realign_fp)
+ {
+ int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT;
+ gcc_assert (align_bytes > MIN_STACK_BOUNDARY / BITS_PER_UNIT);
+
+ /* The computation of the size of the re-aligned stack frame means
+ that we must allocate the size of the register save area before
+ performing the actual alignment. Otherwise we cannot guarantee
+ that there's enough storage above the realignment point. */
+ if (m->fs.sp_offset != frame.sse_reg_save_offset)
+ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (m->fs.sp_offset
+ - frame.sse_reg_save_offset),
+ -1, false);
+
+ /* Align the stack. */
+ insn = emit_insn (ix86_gen_andsp (stack_pointer_rtx,
+ stack_pointer_rtx,
+ GEN_INT (-align_bytes)));
+
+ /* For the purposes of register save area addressing, the stack
+ pointer is no longer valid. As for the value of sp_offset,
+ see ix86_compute_frame_layout, which we need to match in order
+ to pass verification of stack_pointer_offset at the end. */
+ m->fs.sp_offset = (m->fs.sp_offset + align_bytes) & -align_bytes;
+ m->fs.sp_valid = false;
+ }
+
+ allocate = frame.stack_pointer_offset - m->fs.sp_offset;
+
+ if (flag_stack_usage_info)
+ {
+ /* We start to count from ARG_POINTER. */
+ HOST_WIDE_INT stack_size = frame.stack_pointer_offset;
+
+ /* If it was realigned, take into account the fake frame. */
+ if (stack_realign_drap)
+ {
+ if (ix86_static_chain_on_stack)
+ stack_size += UNITS_PER_WORD;
+
+ if (!call_used_regs[REGNO (crtl->drap_reg)])
+ stack_size += UNITS_PER_WORD;
+
+ /* This over-estimates by 1 minimal-stack-alignment-unit but
+ mitigates that by counting in the new return address slot. */
+ current_function_dynamic_stack_size
+ += crtl->stack_alignment_needed / BITS_PER_UNIT;
+ }
+
+ current_function_static_stack_size = stack_size;
+ }
+
+ /* On SEH target with very large frame size, allocate an area to save
+ SSE registers (as the very large allocation won't be described). */
+ if (TARGET_SEH
+ && frame.stack_pointer_offset > SEH_MAX_FRAME_SIZE
+ && !sse_registers_saved)
+ {
+ HOST_WIDE_INT sse_size =
+ frame.sse_reg_save_offset - frame.reg_save_offset;
+
+ gcc_assert (int_registers_saved);
+
+ /* No need to do stack checking as the area will be immediately
+ written. */
+ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (-sse_size), -1,
+ m->fs.cfa_reg == stack_pointer_rtx);
+ allocate -= sse_size;
+ ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset);
+ sse_registers_saved = true;
+ }
+
+ /* The stack has already been decremented by the instruction calling us
+ so probe if the size is non-negative to preserve the protection area. */
+ if (allocate >= 0 && flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
+ {
+ /* We expect the registers to be saved when probes are used. */
+ gcc_assert (int_registers_saved);
+
+ if (STACK_CHECK_MOVING_SP)
+ {
+ if (!(crtl->is_leaf && !cfun->calls_alloca
+ && allocate <= PROBE_INTERVAL))
+ {
+ ix86_adjust_stack_and_probe (allocate);
+ allocate = 0;
+ }
+ }
+ else
+ {
+ HOST_WIDE_INT size = allocate;
+
+ if (TARGET_64BIT && size >= (HOST_WIDE_INT) 0x80000000)
+ size = 0x80000000 - STACK_CHECK_PROTECT - 1;
+
+ if (TARGET_STACK_PROBE)
+ {
+ if (crtl->is_leaf && !cfun->calls_alloca)
+ {
+ if (size > PROBE_INTERVAL)
+ ix86_emit_probe_stack_range (0, size);
+ }
+ else
+ ix86_emit_probe_stack_range (0, size + STACK_CHECK_PROTECT);
+ }
+ else
+ {
+ if (crtl->is_leaf && !cfun->calls_alloca)
+ {
+ if (size > PROBE_INTERVAL && size > STACK_CHECK_PROTECT)
+ ix86_emit_probe_stack_range (STACK_CHECK_PROTECT,
+ size - STACK_CHECK_PROTECT);
+ }
+ else
+ ix86_emit_probe_stack_range (STACK_CHECK_PROTECT, size);
+ }
+ }
+ }
+
+ if (allocate == 0)
+ ;
+ else if (!ix86_target_stack_probe ()
+ || frame.stack_pointer_offset < CHECK_STACK_LIMIT)
+ {
+ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (-allocate), -1,
+ m->fs.cfa_reg == stack_pointer_rtx);
+ }
+ else
+ {
+ rtx eax = gen_rtx_REG (Pmode, AX_REG);
+ rtx r10 = NULL;
+ rtx (*adjust_stack_insn)(rtx, rtx, rtx);
+ const bool sp_is_cfa_reg = (m->fs.cfa_reg == stack_pointer_rtx);
+ bool eax_live = ix86_eax_live_at_start_p ();
+ bool r10_live = false;
+
+ if (TARGET_64BIT)
+ r10_live = (DECL_STATIC_CHAIN (current_function_decl) != 0);
+
+ if (eax_live)
+ {
+ insn = emit_insn (gen_push (eax));
+ allocate -= UNITS_PER_WORD;
+ /* Note that SEH directives need to continue tracking the stack
+ pointer even after the frame pointer has been set up. */
+ if (sp_is_cfa_reg || TARGET_SEH)
+ {
+ if (sp_is_cfa_reg)
+ m->fs.cfa_offset += UNITS_PER_WORD;
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+
+ if (r10_live)
+ {
+ r10 = gen_rtx_REG (Pmode, R10_REG);
+ insn = emit_insn (gen_push (r10));
+ allocate -= UNITS_PER_WORD;
+ if (sp_is_cfa_reg || TARGET_SEH)
+ {
+ if (sp_is_cfa_reg)
+ m->fs.cfa_offset += UNITS_PER_WORD;
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+
+ emit_move_insn (eax, GEN_INT (allocate));
+ emit_insn (ix86_gen_allocate_stack_worker (eax, eax));
+
+ /* Use the fact that AX still contains ALLOCATE. */
+ adjust_stack_insn = (Pmode == DImode
+ ? gen_pro_epilogue_adjust_stack_di_sub
+ : gen_pro_epilogue_adjust_stack_si_sub);
+
+ insn = emit_insn (adjust_stack_insn (stack_pointer_rtx,
+ stack_pointer_rtx, eax));
+
+ if (sp_is_cfa_reg || TARGET_SEH)
+ {
+ if (sp_is_cfa_reg)
+ m->fs.cfa_offset += allocate;
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR,
+ gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ -allocate)));
+ }
+ m->fs.sp_offset += allocate;
+
+ /* Use stack_pointer_rtx for relative addressing so that code
+ works for realigned stack, too. */
+ if (r10_live && eax_live)
+ {
+ t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, eax);
+ emit_move_insn (gen_rtx_REG (word_mode, R10_REG),
+ gen_frame_mem (word_mode, t));
+ t = plus_constant (Pmode, t, UNITS_PER_WORD);
+ emit_move_insn (gen_rtx_REG (word_mode, AX_REG),
+ gen_frame_mem (word_mode, t));
+ }
+ else if (eax_live || r10_live)
+ {
+ t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, eax);
+ emit_move_insn (gen_rtx_REG (word_mode,
+ (eax_live ? AX_REG : R10_REG)),
+ gen_frame_mem (word_mode, t));
+ }
+ }
+ gcc_assert (m->fs.sp_offset == frame.stack_pointer_offset);
+
+ /* If we havn't already set up the frame pointer, do so now. */
+ if (frame_pointer_needed && !m->fs.fp_valid)
+ {
+ insn = ix86_gen_add3 (hard_frame_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (frame.stack_pointer_offset
+ - frame.hard_frame_pointer_offset));
+ insn = emit_insn (insn);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_CFA_ADJUST_CFA, NULL);
+
+ if (m->fs.cfa_reg == stack_pointer_rtx)
+ m->fs.cfa_reg = hard_frame_pointer_rtx;
+ m->fs.fp_offset = frame.hard_frame_pointer_offset;
+ m->fs.fp_valid = true;
+ }
+
+ if (!int_registers_saved)
+ ix86_emit_save_regs_using_mov (frame.reg_save_offset);
+ if (!sse_registers_saved)
+ ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset);
+
+ pic_reg_used = false;
+ /* We don't use pic-register for pe-coff target. */
+ if (pic_offset_table_rtx
+ && !TARGET_PECOFF
+ && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM)
+ || crtl->profile))
+ {
+ unsigned int alt_pic_reg_used = ix86_select_alt_pic_regnum ();
+
+ if (alt_pic_reg_used != INVALID_REGNUM)
+ SET_REGNO (pic_offset_table_rtx, alt_pic_reg_used);
+
+ pic_reg_used = true;
+ }
+
+ if (pic_reg_used)
+ {
+ if (TARGET_64BIT)
+ {
+ if (ix86_cmodel == CM_LARGE_PIC)
+ {
+ rtx label, tmp_reg;
+
+ gcc_assert (Pmode == DImode);
+ label = gen_label_rtx ();
+ emit_label (label);
+ LABEL_PRESERVE_P (label) = 1;
+ tmp_reg = gen_rtx_REG (Pmode, R11_REG);
+ gcc_assert (REGNO (pic_offset_table_rtx) != REGNO (tmp_reg));
+ insn = emit_insn (gen_set_rip_rex64 (pic_offset_table_rtx,
+ label));
+ insn = emit_insn (gen_set_got_offset_rex64 (tmp_reg, label));
+ insn = emit_insn (ix86_gen_add3 (pic_offset_table_rtx,
+ pic_offset_table_rtx, tmp_reg));
+ }
+ else
+ insn = emit_insn (gen_set_got_rex64 (pic_offset_table_rtx));
+ }
+ else
+ {
+ insn = emit_insn (gen_set_got (pic_offset_table_rtx));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL_RTX);
+ }
+ }
+
+ /* In the pic_reg_used case, make sure that the got load isn't deleted
+ when mcount needs it. Blockage to avoid call movement across mcount
+ call is emitted in generic code after the NOTE_INSN_PROLOGUE_END
+ note. */
+ if (crtl->profile && !flag_fentry && pic_reg_used)
+ emit_insn (gen_prologue_use (pic_offset_table_rtx));
+
+ if (crtl->drap_reg && !crtl->stack_realign_needed)
+ {
+ /* vDRAP is setup but after reload it turns out stack realign
+ isn't necessary, here we will emit prologue to setup DRAP
+ without stack realign adjustment */
+ t = choose_baseaddr (0);
+ emit_insn (gen_rtx_SET (VOIDmode, crtl->drap_reg, t));
+ }
+
+ /* Prevent instructions from being scheduled into register save push
+ sequence when access to the redzone area is done through frame pointer.
+ The offset between the frame pointer and the stack pointer is calculated
+ relative to the value of the stack pointer at the end of the function
+ prologue, and moving instructions that access redzone area via frame
+ pointer inside push sequence violates this assumption. */
+ if (frame_pointer_needed && frame.red_zone_size)
+ emit_insn (gen_memory_blockage ());
+
+ /* Emit cld instruction if stringops are used in the function. */
+ if (TARGET_CLD && ix86_current_function_needs_cld)
+ emit_insn (gen_cld ());
+
+ /* SEH requires that the prologue end within 256 bytes of the start of
+ the function. Prevent instruction schedules that would extend that.
+ Further, prevent alloca modifications to the stack pointer from being
+ combined with prologue modifications. */
+ if (TARGET_SEH)
+ emit_insn (gen_prologue_use (stack_pointer_rtx));
+}
+
+/* Emit code to restore REG using a POP insn. */
+
+static void
+ix86_emit_restore_reg_using_pop (rtx reg)
+{
+ struct machine_function *m = cfun->machine;
+ rtx insn = emit_insn (gen_pop (reg));
+
+ ix86_add_cfa_restore_note (insn, reg, m->fs.sp_offset);
+ m->fs.sp_offset -= UNITS_PER_WORD;
+
+ if (m->fs.cfa_reg == crtl->drap_reg
+ && REGNO (reg) == REGNO (crtl->drap_reg))
+ {
+ /* Previously we'd represented the CFA as an expression
+ like *(%ebp - 8). We've just popped that value from
+ the stack, which means we need to reset the CFA to
+ the drap register. This will remain until we restore
+ the stack pointer. */
+ add_reg_note (insn, REG_CFA_DEF_CFA, reg);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ /* This means that the DRAP register is valid for addressing too. */
+ m->fs.drap_valid = true;
+ return;
+ }
+
+ if (m->fs.cfa_reg == stack_pointer_rtx)
+ {
+ rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD);
+ x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x);
+ add_reg_note (insn, REG_CFA_ADJUST_CFA, x);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ m->fs.cfa_offset -= UNITS_PER_WORD;
+ }
+
+ /* When the frame pointer is the CFA, and we pop it, we are
+ swapping back to the stack pointer as the CFA. This happens
+ for stack frames that don't allocate other data, so we assume
+ the stack pointer is now pointing at the return address, i.e.
+ the function entry state, which makes the offset be 1 word. */
+ if (reg == hard_frame_pointer_rtx)
+ {
+ m->fs.fp_valid = false;
+ if (m->fs.cfa_reg == hard_frame_pointer_rtx)
+ {
+ m->fs.cfa_reg = stack_pointer_rtx;
+ m->fs.cfa_offset -= UNITS_PER_WORD;
+
+ add_reg_note (insn, REG_CFA_DEF_CFA,
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ GEN_INT (m->fs.cfa_offset)));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+}
+
+/* Emit code to restore saved registers using POP insns. */
+
+static void
+ix86_emit_restore_regs_using_pop (void)
+{
+ unsigned int regno;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, false))
+ ix86_emit_restore_reg_using_pop (gen_rtx_REG (word_mode, regno));
+}
+
+/* Emit code and notes for the LEAVE instruction. */
+
+static void
+ix86_emit_leave (void)
+{
+ struct machine_function *m = cfun->machine;
+ rtx insn = emit_insn (ix86_gen_leave ());
+
+ ix86_add_queued_cfa_restore_notes (insn);
+
+ gcc_assert (m->fs.fp_valid);
+ m->fs.sp_valid = true;
+ m->fs.sp_offset = m->fs.fp_offset - UNITS_PER_WORD;
+ m->fs.fp_valid = false;
+
+ if (m->fs.cfa_reg == hard_frame_pointer_rtx)
+ {
+ m->fs.cfa_reg = stack_pointer_rtx;
+ m->fs.cfa_offset = m->fs.sp_offset;
+
+ add_reg_note (insn, REG_CFA_DEF_CFA,
+ plus_constant (Pmode, stack_pointer_rtx,
+ m->fs.sp_offset));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ ix86_add_cfa_restore_note (insn, hard_frame_pointer_rtx,
+ m->fs.fp_offset);
+}
+
+/* Emit code to restore saved registers using MOV insns.
+ First register is restored from CFA - CFA_OFFSET. */
+static void
+ix86_emit_restore_regs_using_mov (HOST_WIDE_INT cfa_offset,
+ bool maybe_eh_return)
+{
+ struct machine_function *m = cfun->machine;
+ unsigned int regno;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return))
+ {
+ rtx reg = gen_rtx_REG (word_mode, regno);
+ rtx insn, mem;
+
+ mem = choose_baseaddr (cfa_offset);
+ mem = gen_frame_mem (word_mode, mem);
+ insn = emit_move_insn (reg, mem);
+
+ if (m->fs.cfa_reg == crtl->drap_reg && regno == REGNO (crtl->drap_reg))
+ {
+ /* Previously we'd represented the CFA as an expression
+ like *(%ebp - 8). We've just popped that value from
+ the stack, which means we need to reset the CFA to
+ the drap register. This will remain until we restore
+ the stack pointer. */
+ add_reg_note (insn, REG_CFA_DEF_CFA, reg);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ /* This means that the DRAP register is valid for addressing. */
+ m->fs.drap_valid = true;
+ }
+ else
+ ix86_add_cfa_restore_note (NULL_RTX, reg, cfa_offset);
+
+ cfa_offset -= UNITS_PER_WORD;
+ }
+}
+
+/* Emit code to restore saved registers using MOV insns.
+ First register is restored from CFA - CFA_OFFSET. */
+static void
+ix86_emit_restore_sse_regs_using_mov (HOST_WIDE_INT cfa_offset,
+ bool maybe_eh_return)
+{
+ unsigned int regno;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return))
+ {
+ rtx reg = gen_rtx_REG (V4SFmode, regno);
+ rtx mem;
+
+ mem = choose_baseaddr (cfa_offset);
+ mem = gen_rtx_MEM (V4SFmode, mem);
+ set_mem_align (mem, 128);
+ emit_move_insn (reg, mem);
+
+ ix86_add_cfa_restore_note (NULL_RTX, reg, cfa_offset);
+
+ cfa_offset -= 16;
+ }
+}
+
+/* Restore function stack, frame, and registers. */
+
+void
+ix86_expand_epilogue (int style)
+{
+ struct machine_function *m = cfun->machine;
+ struct machine_frame_state frame_state_save = m->fs;
+ struct ix86_frame frame;
+ bool restore_regs_via_mov;
+ bool using_drap;
+
+ ix86_finalize_stack_realign_flags ();
+ ix86_compute_frame_layout (&frame);
+
+ m->fs.sp_valid = (!frame_pointer_needed
+ || (crtl->sp_is_unchanging
+ && !stack_realign_fp));
+ gcc_assert (!m->fs.sp_valid
+ || m->fs.sp_offset == frame.stack_pointer_offset);
+
+ /* The FP must be valid if the frame pointer is present. */
+ gcc_assert (frame_pointer_needed == m->fs.fp_valid);
+ gcc_assert (!m->fs.fp_valid
+ || m->fs.fp_offset == frame.hard_frame_pointer_offset);
+
+ /* We must have *some* valid pointer to the stack frame. */
+ gcc_assert (m->fs.sp_valid || m->fs.fp_valid);
+
+ /* The DRAP is never valid at this point. */
+ gcc_assert (!m->fs.drap_valid);
+
+ /* See the comment about red zone and frame
+ pointer usage in ix86_expand_prologue. */
+ if (frame_pointer_needed && frame.red_zone_size)
+ emit_insn (gen_memory_blockage ());
+
+ using_drap = crtl->drap_reg && crtl->stack_realign_needed;
+ gcc_assert (!using_drap || m->fs.cfa_reg == crtl->drap_reg);
+
+ /* Determine the CFA offset of the end of the red-zone. */
+ m->fs.red_zone_offset = 0;
+ if (ix86_using_red_zone () && crtl->args.pops_args < 65536)
+ {
+ /* The red-zone begins below the return address. */
+ m->fs.red_zone_offset = RED_ZONE_SIZE + UNITS_PER_WORD;
+
+ /* When the register save area is in the aligned portion of
+ the stack, determine the maximum runtime displacement that
+ matches up with the aligned frame. */
+ if (stack_realign_drap)
+ m->fs.red_zone_offset -= (crtl->stack_alignment_needed / BITS_PER_UNIT
+ + UNITS_PER_WORD);
+ }
+
+ /* Special care must be taken for the normal return case of a function
+ using eh_return: the eax and edx registers are marked as saved, but
+ not restored along this path. Adjust the save location to match. */
+ if (crtl->calls_eh_return && style != 2)
+ frame.reg_save_offset -= 2 * UNITS_PER_WORD;
+
+ /* EH_RETURN requires the use of moves to function properly. */
+ if (crtl->calls_eh_return)
+ restore_regs_via_mov = true;
+ /* SEH requires the use of pops to identify the epilogue. */
+ else if (TARGET_SEH)
+ restore_regs_via_mov = false;
+ /* If we're only restoring one register and sp is not valid then
+ using a move instruction to restore the register since it's
+ less work than reloading sp and popping the register. */
+ else if (!m->fs.sp_valid && frame.nregs <= 1)
+ restore_regs_via_mov = true;
+ else if (TARGET_EPILOGUE_USING_MOVE
+ && cfun->machine->use_fast_prologue_epilogue
+ && (frame.nregs > 1
+ || m->fs.sp_offset != frame.reg_save_offset))
+ restore_regs_via_mov = true;
+ else if (frame_pointer_needed
+ && !frame.nregs
+ && m->fs.sp_offset != frame.reg_save_offset)
+ restore_regs_via_mov = true;
+ else if (frame_pointer_needed
+ && TARGET_USE_LEAVE
+ && cfun->machine->use_fast_prologue_epilogue
+ && frame.nregs == 1)
+ restore_regs_via_mov = true;
+ else
+ restore_regs_via_mov = false;
+
+ if (restore_regs_via_mov || frame.nsseregs)
+ {
+ /* Ensure that the entire register save area is addressable via
+ the stack pointer, if we will restore via sp. */
+ if (TARGET_64BIT
+ && m->fs.sp_offset > 0x7fffffff
+ && !(m->fs.fp_valid || m->fs.drap_valid)
+ && (frame.nsseregs + frame.nregs) != 0)
+ {
+ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (m->fs.sp_offset
+ - frame.sse_reg_save_offset),
+ style,
+ m->fs.cfa_reg == stack_pointer_rtx);
+ }
+ }
+
+ /* If there are any SSE registers to restore, then we have to do it
+ via moves, since there's obviously no pop for SSE regs. */
+ if (frame.nsseregs)
+ ix86_emit_restore_sse_regs_using_mov (frame.sse_reg_save_offset,
+ style == 2);
+
+ if (restore_regs_via_mov)
+ {
+ rtx t;
+
+ if (frame.nregs)
+ ix86_emit_restore_regs_using_mov (frame.reg_save_offset, style == 2);
+
+ /* eh_return epilogues need %ecx added to the stack pointer. */
+ if (style == 2)
+ {
+ rtx insn, sa = EH_RETURN_STACKADJ_RTX;
+
+ /* Stack align doesn't work with eh_return. */
+ gcc_assert (!stack_realign_drap);
+ /* Neither does regparm nested functions. */
+ gcc_assert (!ix86_static_chain_on_stack);
+
+ if (frame_pointer_needed)
+ {
+ t = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx, sa);
+ t = plus_constant (Pmode, t, m->fs.fp_offset - UNITS_PER_WORD);
+ emit_insn (gen_rtx_SET (VOIDmode, sa, t));
+
+ t = gen_frame_mem (Pmode, hard_frame_pointer_rtx);
+ insn = emit_move_insn (hard_frame_pointer_rtx, t);
+
+ /* Note that we use SA as a temporary CFA, as the return
+ address is at the proper place relative to it. We
+ pretend this happens at the FP restore insn because
+ prior to this insn the FP would be stored at the wrong
+ offset relative to SA, and after this insn we have no
+ other reasonable register to use for the CFA. We don't
+ bother resetting the CFA to the SP for the duration of
+ the return insn. */
+ add_reg_note (insn, REG_CFA_DEF_CFA,
+ plus_constant (Pmode, sa, UNITS_PER_WORD));
+ ix86_add_queued_cfa_restore_notes (insn);
+ add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ m->fs.cfa_reg = sa;
+ m->fs.cfa_offset = UNITS_PER_WORD;
+ m->fs.fp_valid = false;
+
+ pro_epilogue_adjust_stack (stack_pointer_rtx, sa,
+ const0_rtx, style, false);
+ }
+ else
+ {
+ t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, sa);
+ t = plus_constant (Pmode, t, m->fs.sp_offset - UNITS_PER_WORD);
+ insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, t));
+ ix86_add_queued_cfa_restore_notes (insn);
+
+ gcc_assert (m->fs.cfa_reg == stack_pointer_rtx);
+ if (m->fs.cfa_offset != UNITS_PER_WORD)
+ {
+ m->fs.cfa_offset = UNITS_PER_WORD;
+ add_reg_note (insn, REG_CFA_DEF_CFA,
+ plus_constant (Pmode, stack_pointer_rtx,
+ UNITS_PER_WORD));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+ m->fs.sp_offset = UNITS_PER_WORD;
+ m->fs.sp_valid = true;
+ }
+ }
+ else
+ {
+ /* SEH requires that the function end with (1) a stack adjustment
+ if necessary, (2) a sequence of pops, and (3) a return or
+ jump instruction. Prevent insns from the function body from
+ being scheduled into this sequence. */
+ if (TARGET_SEH)
+ {
+ /* Prevent a catch region from being adjacent to the standard
+ epilogue sequence. Unfortuantely crtl->uses_eh_lsda nor
+ several other flags that would be interesting to test are
+ not yet set up. */
+ if (flag_non_call_exceptions)
+ emit_insn (gen_nops (const1_rtx));
+ else
+ emit_insn (gen_blockage ());
+ }
+
+ /* First step is to deallocate the stack frame so that we can
+ pop the registers. Also do it on SEH target for very large
+ frame as the emitted instructions aren't allowed by the ABI in
+ epilogues. */
+ if (!m->fs.sp_valid
+ || (TARGET_SEH
+ && (m->fs.sp_offset - frame.reg_save_offset
+ >= SEH_MAX_FRAME_SIZE)))
+ {
+ pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx,
+ GEN_INT (m->fs.fp_offset
+ - frame.reg_save_offset),
+ style, false);
+ }
+ else if (m->fs.sp_offset != frame.reg_save_offset)
+ {
+ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (m->fs.sp_offset
+ - frame.reg_save_offset),
+ style,
+ m->fs.cfa_reg == stack_pointer_rtx);
+ }
+
+ ix86_emit_restore_regs_using_pop ();
+ }
+
+ /* If we used a stack pointer and haven't already got rid of it,
+ then do so now. */
+ if (m->fs.fp_valid)
+ {
+ /* If the stack pointer is valid and pointing at the frame
+ pointer store address, then we only need a pop. */
+ if (m->fs.sp_valid && m->fs.sp_offset == frame.hfp_save_offset)
+ ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx);
+ /* Leave results in shorter dependency chains on CPUs that are
+ able to grok it fast. */
+ else if (TARGET_USE_LEAVE
+ || optimize_bb_for_size_p (EXIT_BLOCK_PTR_FOR_FN (cfun))
+ || !cfun->machine->use_fast_prologue_epilogue)
+ ix86_emit_leave ();
+ else
+ {
+ pro_epilogue_adjust_stack (stack_pointer_rtx,
+ hard_frame_pointer_rtx,
+ const0_rtx, style, !using_drap);
+ ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx);
+ }
+ }
+
+ if (using_drap)
+ {
+ int param_ptr_offset = UNITS_PER_WORD;
+ rtx insn;
+
+ gcc_assert (stack_realign_drap);
+
+ if (ix86_static_chain_on_stack)
+ param_ptr_offset += UNITS_PER_WORD;
+ if (!call_used_regs[REGNO (crtl->drap_reg)])
+ param_ptr_offset += UNITS_PER_WORD;
+
+ insn = emit_insn (gen_rtx_SET
+ (VOIDmode, stack_pointer_rtx,
+ gen_rtx_PLUS (Pmode,
+ crtl->drap_reg,
+ GEN_INT (-param_ptr_offset))));
+ m->fs.cfa_reg = stack_pointer_rtx;
+ m->fs.cfa_offset = param_ptr_offset;
+ m->fs.sp_offset = param_ptr_offset;
+ m->fs.realigned = false;
+
+ add_reg_note (insn, REG_CFA_DEF_CFA,
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ GEN_INT (param_ptr_offset)));
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ if (!call_used_regs[REGNO (crtl->drap_reg)])
+ ix86_emit_restore_reg_using_pop (crtl->drap_reg);
+ }
+
+ /* At this point the stack pointer must be valid, and we must have
+ restored all of the registers. We may not have deallocated the
+ entire stack frame. We've delayed this until now because it may
+ be possible to merge the local stack deallocation with the
+ deallocation forced by ix86_static_chain_on_stack. */
+ gcc_assert (m->fs.sp_valid);
+ gcc_assert (!m->fs.fp_valid);
+ gcc_assert (!m->fs.realigned);
+ if (m->fs.sp_offset != UNITS_PER_WORD)
+ {
+ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (m->fs.sp_offset - UNITS_PER_WORD),
+ style, true);
+ }
+ else
+ ix86_add_queued_cfa_restore_notes (get_last_insn ());
+
+ /* Sibcall epilogues don't want a return instruction. */
+ if (style == 0)
+ {
+ m->fs = frame_state_save;
+ return;
+ }
+
+ if (crtl->args.pops_args && crtl->args.size)
+ {
+ rtx popc = GEN_INT (crtl->args.pops_args);
+
+ /* i386 can only pop 64K bytes. If asked to pop more, pop return
+ address, do explicit add, and jump indirectly to the caller. */
+
+ if (crtl->args.pops_args >= 65536)
+ {
+ rtx ecx = gen_rtx_REG (SImode, CX_REG);
+ rtx insn;
+
+ /* There is no "pascal" calling convention in any 64bit ABI. */
+ gcc_assert (!TARGET_64BIT);
+
+ insn = emit_insn (gen_pop (ecx));
+ m->fs.cfa_offset -= UNITS_PER_WORD;
+ m->fs.sp_offset -= UNITS_PER_WORD;
+
+ rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD);
+ x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x);
+ add_reg_note (insn, REG_CFA_ADJUST_CFA, x);
+ add_reg_note (insn, REG_CFA_REGISTER,
+ gen_rtx_SET (VOIDmode, ecx, pc_rtx));
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx,
+ popc, -1, true);
+ emit_jump_insn (gen_simple_return_indirect_internal (ecx));
+ }
+ else
+ emit_jump_insn (gen_simple_return_pop_internal (popc));
+ }
+ else
+ emit_jump_insn (gen_simple_return_internal ());
+
+ /* Restore the state back to the state from the prologue,
+ so that it's correct for the next epilogue. */
+ m->fs = frame_state_save;
+}
+
+/* Reset from the function's potential modifications. */
+
+static void
+ix86_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED)
+{
+ if (pic_offset_table_rtx)
+ SET_REGNO (pic_offset_table_rtx, REAL_PIC_OFFSET_TABLE_REGNUM);
+#if TARGET_MACHO
+ /* Mach-O doesn't support labels at the end of objects, so if
+ it looks like we might want one, insert a NOP. */
+ {
+ rtx insn = get_last_insn ();
+ rtx deleted_debug_label = NULL_RTX;
+ while (insn
+ && NOTE_P (insn)
+ && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
+ {
+ /* Don't insert a nop for NOTE_INSN_DELETED_DEBUG_LABEL
+ notes only, instead set their CODE_LABEL_NUMBER to -1,
+ otherwise there would be code generation differences
+ in between -g and -g0. */
+ if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
+ deleted_debug_label = insn;
+ insn = PREV_INSN (insn);
+ }
+ if (insn
+ && (LABEL_P (insn)
+ || (NOTE_P (insn)
+ && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL)))
+ fputs ("\tnop\n", file);
+ else if (deleted_debug_label)
+ for (insn = deleted_debug_label; insn; insn = NEXT_INSN (insn))
+ if (NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
+ CODE_LABEL_NUMBER (insn) = -1;
+ }
+#endif
+
+}
+
+/* Return a scratch register to use in the split stack prologue. The
+ split stack prologue is used for -fsplit-stack. It is the first
+ instructions in the function, even before the regular prologue.
+ The scratch register can be any caller-saved register which is not
+ used for parameters or for the static chain. */
+
+static unsigned int
+split_stack_prologue_scratch_regno (void)
+{
+ if (TARGET_64BIT)
+ return R11_REG;
+ else
+ {
+ bool is_fastcall, is_thiscall;
+ int regparm;
+
+ is_fastcall = (lookup_attribute ("fastcall",
+ TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl)))
+ != NULL);
+ is_thiscall = (lookup_attribute ("thiscall",
+ TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl)))
+ != NULL);
+ regparm = ix86_function_regparm (TREE_TYPE (cfun->decl), cfun->decl);
+
+ if (is_fastcall)
+ {
+ if (DECL_STATIC_CHAIN (cfun->decl))
+ {
+ sorry ("-fsplit-stack does not support fastcall with "
+ "nested function");
+ return INVALID_REGNUM;
+ }
+ return AX_REG;
+ }
+ else if (is_thiscall)
+ {
+ if (!DECL_STATIC_CHAIN (cfun->decl))
+ return DX_REG;
+ return AX_REG;
+ }
+ else if (regparm < 3)
+ {
+ if (!DECL_STATIC_CHAIN (cfun->decl))
+ return CX_REG;
+ else
+ {
+ if (regparm >= 2)
+ {
+ sorry ("-fsplit-stack does not support 2 register "
+ " parameters for a nested function");
+ return INVALID_REGNUM;
+ }
+ return DX_REG;
+ }
+ }
+ else
+ {
+ /* FIXME: We could make this work by pushing a register
+ around the addition and comparison. */
+ sorry ("-fsplit-stack does not support 3 register parameters");
+ return INVALID_REGNUM;
+ }
+ }
+}
+
+/* A SYMBOL_REF for the function which allocates new stackspace for
+ -fsplit-stack. */
+
+static GTY(()) rtx split_stack_fn;
+
+/* A SYMBOL_REF for the more stack function when using the large
+ model. */
+
+static GTY(()) rtx split_stack_fn_large;
+
+/* Handle -fsplit-stack. These are the first instructions in the
+ function, even before the regular prologue. */
+
+void
+ix86_expand_split_stack_prologue (void)
+{
+ struct ix86_frame frame;
+ HOST_WIDE_INT allocate;
+ unsigned HOST_WIDE_INT args_size;
+ rtx label, limit, current, jump_insn, allocate_rtx, call_insn, call_fusage;
+ rtx scratch_reg = NULL_RTX;
+ rtx varargs_label = NULL_RTX;
+ rtx fn;
+
+ gcc_assert (flag_split_stack && reload_completed);
+
+ ix86_finalize_stack_realign_flags ();
+ ix86_compute_frame_layout (&frame);
+ allocate = frame.stack_pointer_offset - INCOMING_FRAME_SP_OFFSET;
+
+ /* This is the label we will branch to if we have enough stack
+ space. We expect the basic block reordering pass to reverse this
+ branch if optimizing, so that we branch in the unlikely case. */
+ label = gen_label_rtx ();
+
+ /* We need to compare the stack pointer minus the frame size with
+ the stack boundary in the TCB. The stack boundary always gives
+ us SPLIT_STACK_AVAILABLE bytes, so if we need less than that we
+ can compare directly. Otherwise we need to do an addition. */
+
+ limit = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
+ UNSPEC_STACK_CHECK);
+ limit = gen_rtx_CONST (Pmode, limit);
+ limit = gen_rtx_MEM (Pmode, limit);
+ if (allocate < SPLIT_STACK_AVAILABLE)
+ current = stack_pointer_rtx;
+ else
+ {
+ unsigned int scratch_regno;
+ rtx offset;
+
+ /* We need a scratch register to hold the stack pointer minus
+ the required frame size. Since this is the very start of the
+ function, the scratch register can be any caller-saved
+ register which is not used for parameters. */
+ offset = GEN_INT (- allocate);
+ scratch_regno = split_stack_prologue_scratch_regno ();
+ if (scratch_regno == INVALID_REGNUM)
+ return;
+ scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
+ if (!TARGET_64BIT || x86_64_immediate_operand (offset, Pmode))
+ {
+ /* We don't use ix86_gen_add3 in this case because it will
+ want to split to lea, but when not optimizing the insn
+ will not be split after this point. */
+ emit_insn (gen_rtx_SET (VOIDmode, scratch_reg,
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ offset)));
+ }
+ else
+ {
+ emit_move_insn (scratch_reg, offset);
+ emit_insn (ix86_gen_add3 (scratch_reg, scratch_reg,
+ stack_pointer_rtx));
+ }
+ current = scratch_reg;
+ }
+
+ ix86_expand_branch (GEU, current, limit, label);
+ jump_insn = get_last_insn ();
+ JUMP_LABEL (jump_insn) = label;
+
+ /* Mark the jump as very likely to be taken. */
+ add_int_reg_note (jump_insn, REG_BR_PROB,
+ REG_BR_PROB_BASE - REG_BR_PROB_BASE / 100);
+
+ if (split_stack_fn == NULL_RTX)
+ split_stack_fn = gen_rtx_SYMBOL_REF (Pmode, "__morestack");
+ fn = split_stack_fn;
+
+ /* Get more stack space. We pass in the desired stack space and the
+ size of the arguments to copy to the new stack. In 32-bit mode
+ we push the parameters; __morestack will return on a new stack
+ anyhow. In 64-bit mode we pass the parameters in r10 and
+ r11. */
+ allocate_rtx = GEN_INT (allocate);
+ args_size = crtl->args.size >= 0 ? crtl->args.size : 0;
+ call_fusage = NULL_RTX;
+ if (TARGET_64BIT)
+ {
+ rtx reg10, reg11;
+
+ reg10 = gen_rtx_REG (Pmode, R10_REG);
+ reg11 = gen_rtx_REG (Pmode, R11_REG);
+
+ /* If this function uses a static chain, it will be in %r10.
+ Preserve it across the call to __morestack. */
+ if (DECL_STATIC_CHAIN (cfun->decl))
+ {
+ rtx rax;
+
+ rax = gen_rtx_REG (word_mode, AX_REG);
+ emit_move_insn (rax, gen_rtx_REG (word_mode, R10_REG));
+ use_reg (&call_fusage, rax);
+ }
+
+ if ((ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
+ && !TARGET_PECOFF)
+ {
+ HOST_WIDE_INT argval;
+
+ gcc_assert (Pmode == DImode);
+ /* When using the large model we need to load the address
+ into a register, and we've run out of registers. So we
+ switch to a different calling convention, and we call a
+ different function: __morestack_large. We pass the
+ argument size in the upper 32 bits of r10 and pass the
+ frame size in the lower 32 bits. */
+ gcc_assert ((allocate & (HOST_WIDE_INT) 0xffffffff) == allocate);
+ gcc_assert ((args_size & 0xffffffff) == args_size);
+
+ if (split_stack_fn_large == NULL_RTX)
+ split_stack_fn_large =
+ gen_rtx_SYMBOL_REF (Pmode, "__morestack_large_model");
+
+ if (ix86_cmodel == CM_LARGE_PIC)
+ {
+ rtx label, x;
+
+ label = gen_label_rtx ();
+ emit_label (label);
+ LABEL_PRESERVE_P (label) = 1;
+ emit_insn (gen_set_rip_rex64 (reg10, label));
+ emit_insn (gen_set_got_offset_rex64 (reg11, label));
+ emit_insn (ix86_gen_add3 (reg10, reg10, reg11));
+ x = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, split_stack_fn_large),
+ UNSPEC_GOT);
+ x = gen_rtx_CONST (Pmode, x);
+ emit_move_insn (reg11, x);
+ x = gen_rtx_PLUS (Pmode, reg10, reg11);
+ x = gen_const_mem (Pmode, x);
+ emit_move_insn (reg11, x);
+ }
+ else
+ emit_move_insn (reg11, split_stack_fn_large);
+
+ fn = reg11;
+
+ argval = ((args_size << 16) << 16) + allocate;
+ emit_move_insn (reg10, GEN_INT (argval));
+ }
+ else
+ {
+ emit_move_insn (reg10, allocate_rtx);
+ emit_move_insn (reg11, GEN_INT (args_size));
+ use_reg (&call_fusage, reg11);
+ }
+
+ use_reg (&call_fusage, reg10);
+ }
+ else
+ {
+ emit_insn (gen_push (GEN_INT (args_size)));
+ emit_insn (gen_push (allocate_rtx));
+ }
+ call_insn = ix86_expand_call (NULL_RTX, gen_rtx_MEM (QImode, fn),
+ GEN_INT (UNITS_PER_WORD), constm1_rtx,
+ NULL_RTX, false);
+ add_function_usage_to (call_insn, call_fusage);
+
+ /* In order to make call/return prediction work right, we now need
+ to execute a return instruction. See
+ libgcc/config/i386/morestack.S for the details on how this works.
+
+ For flow purposes gcc must not see this as a return
+ instruction--we need control flow to continue at the subsequent
+ label. Therefore, we use an unspec. */
+ gcc_assert (crtl->args.pops_args < 65536);
+ emit_insn (gen_split_stack_return (GEN_INT (crtl->args.pops_args)));
+
+ /* If we are in 64-bit mode and this function uses a static chain,
+ we saved %r10 in %rax before calling _morestack. */
+ if (TARGET_64BIT && DECL_STATIC_CHAIN (cfun->decl))
+ emit_move_insn (gen_rtx_REG (word_mode, R10_REG),
+ gen_rtx_REG (word_mode, AX_REG));
+
+ /* If this function calls va_start, we need to store a pointer to
+ the arguments on the old stack, because they may not have been
+ all copied to the new stack. At this point the old stack can be
+ found at the frame pointer value used by __morestack, because
+ __morestack has set that up before calling back to us. Here we
+ store that pointer in a scratch register, and in
+ ix86_expand_prologue we store the scratch register in a stack
+ slot. */
+ if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
+ {
+ unsigned int scratch_regno;
+ rtx frame_reg;
+ int words;
+
+ scratch_regno = split_stack_prologue_scratch_regno ();
+ scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
+ frame_reg = gen_rtx_REG (Pmode, BP_REG);
+
+ /* 64-bit:
+ fp -> old fp value
+ return address within this function
+ return address of caller of this function
+ stack arguments
+ So we add three words to get to the stack arguments.
+
+ 32-bit:
+ fp -> old fp value
+ return address within this function
+ first argument to __morestack
+ second argument to __morestack
+ return address of caller of this function
+ stack arguments
+ So we add five words to get to the stack arguments.
+ */
+ words = TARGET_64BIT ? 3 : 5;
+ emit_insn (gen_rtx_SET (VOIDmode, scratch_reg,
+ gen_rtx_PLUS (Pmode, frame_reg,
+ GEN_INT (words * UNITS_PER_WORD))));
+
+ varargs_label = gen_label_rtx ();
+ emit_jump_insn (gen_jump (varargs_label));
+ JUMP_LABEL (get_last_insn ()) = varargs_label;
+
+ emit_barrier ();
+ }
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ /* If this function calls va_start, we now have to set the scratch
+ register for the case where we do not call __morestack. In this
+ case we need to set it based on the stack pointer. */
+ if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, scratch_reg,
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ GEN_INT (UNITS_PER_WORD))));
+
+ emit_label (varargs_label);
+ LABEL_NUSES (varargs_label) = 1;
+ }
+}
+
+/* We may have to tell the dataflow pass that the split stack prologue
+ is initializing a scratch register. */
+
+static void
+ix86_live_on_entry (bitmap regs)
+{
+ if (cfun->machine->split_stack_varargs_pointer != NULL_RTX)
+ {
+ gcc_assert (flag_split_stack);
+ bitmap_set_bit (regs, split_stack_prologue_scratch_regno ());
+ }
+}
+
+/* Extract the parts of an RTL expression that is a valid memory address
+ for an instruction. Return 0 if the structure of the address is
+ grossly off. Return -1 if the address contains ASHIFT, so it is not
+ strictly valid, but still used for computing length of lea instruction. */
+
+int
+ix86_decompose_address (rtx addr, struct ix86_address *out)
+{
+ rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX;
+ rtx base_reg, index_reg;
+ HOST_WIDE_INT scale = 1;
+ rtx scale_rtx = NULL_RTX;
+ rtx tmp;
+ int retval = 1;
+ enum ix86_address_seg seg = SEG_DEFAULT;
+
+ /* Allow zero-extended SImode addresses,
+ they will be emitted with addr32 prefix. */
+ if (TARGET_64BIT && GET_MODE (addr) == DImode)
+ {
+ if (GET_CODE (addr) == ZERO_EXTEND
+ && GET_MODE (XEXP (addr, 0)) == SImode)
+ {
+ addr = XEXP (addr, 0);
+ if (CONST_INT_P (addr))
+ return 0;
+ }
+ else if (GET_CODE (addr) == AND
+ && const_32bit_mask (XEXP (addr, 1), DImode))
+ {
+ addr = simplify_gen_subreg (SImode, XEXP (addr, 0), DImode, 0);
+ if (addr == NULL_RTX)
+ return 0;
+
+ if (CONST_INT_P (addr))
+ return 0;
+ }
+ }
+
+ /* Allow SImode subregs of DImode addresses,
+ they will be emitted with addr32 prefix. */
+ if (TARGET_64BIT && GET_MODE (addr) == SImode)
+ {
+ if (GET_CODE (addr) == SUBREG
+ && GET_MODE (SUBREG_REG (addr)) == DImode)
+ {
+ addr = SUBREG_REG (addr);
+ if (CONST_INT_P (addr))
+ return 0;
+ }
+ }
+
+ if (REG_P (addr))
+ base = addr;
+ else if (GET_CODE (addr) == SUBREG)
+ {
+ if (REG_P (SUBREG_REG (addr)))
+ base = addr;
+ else
+ return 0;
+ }
+ else if (GET_CODE (addr) == PLUS)
+ {
+ rtx addends[4], op;
+ int n = 0, i;
+
+ op = addr;
+ do
+ {
+ if (n >= 4)
+ return 0;
+ addends[n++] = XEXP (op, 1);
+ op = XEXP (op, 0);
+ }
+ while (GET_CODE (op) == PLUS);
+ if (n >= 4)
+ return 0;
+ addends[n] = op;
+
+ for (i = n; i >= 0; --i)
+ {
+ op = addends[i];
+ switch (GET_CODE (op))
+ {
+ case MULT:
+ if (index)
+ return 0;
+ index = XEXP (op, 0);
+ scale_rtx = XEXP (op, 1);
+ break;
+
+ case ASHIFT:
+ if (index)
+ return 0;
+ index = XEXP (op, 0);
+ tmp = XEXP (op, 1);
+ if (!CONST_INT_P (tmp))
+ return 0;
+ scale = INTVAL (tmp);
+ if ((unsigned HOST_WIDE_INT) scale > 3)
+ return 0;
+ scale = 1 << scale;
+ break;
+
+ case ZERO_EXTEND:
+ op = XEXP (op, 0);
+ if (GET_CODE (op) != UNSPEC)
+ return 0;
+ /* FALLTHRU */
+
+ case UNSPEC:
+ if (XINT (op, 1) == UNSPEC_TP
+ && TARGET_TLS_DIRECT_SEG_REFS
+ && seg == SEG_DEFAULT)
+ seg = DEFAULT_TLS_SEG_REG;
+ else
+ return 0;
+ break;
+
+ case SUBREG:
+ if (!REG_P (SUBREG_REG (op)))
+ return 0;
+ /* FALLTHRU */
+
+ case REG:
+ if (!base)
+ base = op;
+ else if (!index)
+ index = op;
+ else
+ return 0;
+ break;
+
+ case CONST:
+ case CONST_INT:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ if (disp)
+ return 0;
+ disp = op;
+ break;
+
+ default:
+ return 0;
+ }
+ }
+ }
+ else if (GET_CODE (addr) == MULT)
+ {
+ index = XEXP (addr, 0); /* index*scale */
+ scale_rtx = XEXP (addr, 1);
+ }
+ else if (GET_CODE (addr) == ASHIFT)
+ {
+ /* We're called for lea too, which implements ashift on occasion. */
+ index = XEXP (addr, 0);
+ tmp = XEXP (addr, 1);
+ if (!CONST_INT_P (tmp))
+ return 0;
+ scale = INTVAL (tmp);
+ if ((unsigned HOST_WIDE_INT) scale > 3)
+ return 0;
+ scale = 1 << scale;
+ retval = -1;
+ }
+ else
+ disp = addr; /* displacement */
+
+ if (index)
+ {
+ if (REG_P (index))
+ ;
+ else if (GET_CODE (index) == SUBREG
+ && REG_P (SUBREG_REG (index)))
+ ;
+ else
+ return 0;
+ }
+
+ /* Extract the integral value of scale. */
+ if (scale_rtx)
+ {
+ if (!CONST_INT_P (scale_rtx))
+ return 0;
+ scale = INTVAL (scale_rtx);
+ }
+
+ base_reg = base && GET_CODE (base) == SUBREG ? SUBREG_REG (base) : base;
+ index_reg = index && GET_CODE (index) == SUBREG ? SUBREG_REG (index) : index;
+
+ /* Avoid useless 0 displacement. */
+ if (disp == const0_rtx && (base || index))
+ disp = NULL_RTX;
+
+ /* Allow arg pointer and stack pointer as index if there is not scaling. */
+ if (base_reg && index_reg && scale == 1
+ && (index_reg == arg_pointer_rtx
+ || index_reg == frame_pointer_rtx
+ || (REG_P (index_reg) && REGNO (index_reg) == STACK_POINTER_REGNUM)))
+ {
+ rtx tmp;
+ tmp = base, base = index, index = tmp;
+ tmp = base_reg, base_reg = index_reg, index_reg = tmp;
+ }
+
+ /* Special case: %ebp cannot be encoded as a base without a displacement.
+ Similarly %r13. */
+ if (!disp
+ && base_reg
+ && (base_reg == hard_frame_pointer_rtx
+ || base_reg == frame_pointer_rtx
+ || base_reg == arg_pointer_rtx
+ || (REG_P (base_reg)
+ && (REGNO (base_reg) == HARD_FRAME_POINTER_REGNUM
+ || REGNO (base_reg) == R13_REG))))
+ disp = const0_rtx;
+
+ /* Special case: on K6, [%esi] makes the instruction vector decoded.
+ Avoid this by transforming to [%esi+0].
+ Reload calls address legitimization without cfun defined, so we need
+ to test cfun for being non-NULL. */
+ if (TARGET_K6 && cfun && optimize_function_for_speed_p (cfun)
+ && base_reg && !index_reg && !disp
+ && REG_P (base_reg) && REGNO (base_reg) == SI_REG)
+ disp = const0_rtx;
+
+ /* Special case: encode reg+reg instead of reg*2. */
+ if (!base && index && scale == 2)
+ base = index, base_reg = index_reg, scale = 1;
+
+ /* Special case: scaling cannot be encoded without base or displacement. */
+ if (!base && !disp && index && scale != 1)
+ disp = const0_rtx;
+
+ out->base = base;
+ out->index = index;
+ out->disp = disp;
+ out->scale = scale;
+ out->seg = seg;
+
+ return retval;
+}
+
+/* Return cost of the memory address x.
+ For i386, it is better to use a complex address than let gcc copy
+ the address into a reg and make a new pseudo. But not if the address
+ requires to two regs - that would mean more pseudos with longer
+ lifetimes. */
+static int
+ix86_address_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
+ addr_space_t as ATTRIBUTE_UNUSED,
+ bool speed ATTRIBUTE_UNUSED)
+{
+ struct ix86_address parts;
+ int cost = 1;
+ int ok = ix86_decompose_address (x, &parts);
+
+ gcc_assert (ok);
+
+ if (parts.base && GET_CODE (parts.base) == SUBREG)
+ parts.base = SUBREG_REG (parts.base);
+ if (parts.index && GET_CODE (parts.index) == SUBREG)
+ parts.index = SUBREG_REG (parts.index);
+
+ /* Attempt to minimize number of registers in the address. */
+ if ((parts.base
+ && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER))
+ || (parts.index
+ && (!REG_P (parts.index)
+ || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER)))
+ cost++;
+
+ if (parts.base
+ && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER)
+ && parts.index
+ && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER)
+ && parts.base != parts.index)
+ cost++;
+
+ /* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b,
+ since it's predecode logic can't detect the length of instructions
+ and it degenerates to vector decoded. Increase cost of such
+ addresses here. The penalty is minimally 2 cycles. It may be worthwhile
+ to split such addresses or even refuse such addresses at all.
+
+ Following addressing modes are affected:
+ [base+scale*index]
+ [scale*index+disp]
+ [base+index]
+
+ The first and last case may be avoidable by explicitly coding the zero in
+ memory address, but I don't have AMD-K6 machine handy to check this
+ theory. */
+
+ if (TARGET_K6
+ && ((!parts.disp && parts.base && parts.index && parts.scale != 1)
+ || (parts.disp && !parts.base && parts.index && parts.scale != 1)
+ || (!parts.disp && parts.base && parts.index && parts.scale == 1)))
+ cost += 10;
+
+ return cost;
+}
+
+/* Allow {LABEL | SYMBOL}_REF - SYMBOL_REF-FOR-PICBASE for Mach-O as
+ this is used for to form addresses to local data when -fPIC is in
+ use. */
+
+static bool
+darwin_local_data_pic (rtx disp)
+{
+ return (GET_CODE (disp) == UNSPEC
+ && XINT (disp, 1) == UNSPEC_MACHOPIC_OFFSET);
+}
+
+/* Determine if a given RTX is a valid constant. We already know this
+ satisfies CONSTANT_P. */
+
+static bool
+ix86_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
+{
+ switch (GET_CODE (x))
+ {
+ case CONST:
+ x = XEXP (x, 0);
+
+ if (GET_CODE (x) == PLUS)
+ {
+ if (!CONST_INT_P (XEXP (x, 1)))
+ return false;
+ x = XEXP (x, 0);
+ }
+
+ if (TARGET_MACHO && darwin_local_data_pic (x))
+ return true;
+
+ /* Only some unspecs are valid as "constants". */
+ if (GET_CODE (x) == UNSPEC)
+ switch (XINT (x, 1))
+ {
+ case UNSPEC_GOT:
+ case UNSPEC_GOTOFF:
+ case UNSPEC_PLTOFF:
+ return TARGET_64BIT;
+ case UNSPEC_TPOFF:
+ case UNSPEC_NTPOFF:
+ x = XVECEXP (x, 0, 0);
+ return (GET_CODE (x) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC);
+ case UNSPEC_DTPOFF:
+ x = XVECEXP (x, 0, 0);
+ return (GET_CODE (x) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC);
+ default:
+ return false;
+ }
+
+ /* We must have drilled down to a symbol. */
+ if (GET_CODE (x) == LABEL_REF)
+ return true;
+ if (GET_CODE (x) != SYMBOL_REF)
+ return false;
+ /* FALLTHRU */
+
+ case SYMBOL_REF:
+ /* TLS symbols are never valid. */
+ if (SYMBOL_REF_TLS_MODEL (x))
+ return false;
+
+ /* DLLIMPORT symbols are never valid. */
+ if (TARGET_DLLIMPORT_DECL_ATTRIBUTES
+ && SYMBOL_REF_DLLIMPORT_P (x))
+ return false;
+
+#if TARGET_MACHO
+ /* mdynamic-no-pic */
+ if (MACHO_DYNAMIC_NO_PIC_P)
+ return machopic_symbol_defined_p (x);
+#endif
+ break;
+
+ case CONST_DOUBLE:
+ if (GET_MODE (x) == TImode
+ && x != CONST0_RTX (TImode)
+ && !TARGET_64BIT)
+ return false;
+ break;
+
+ case CONST_VECTOR:
+ if (!standard_sse_constant_p (x))
+ return false;
+
+ default:
+ break;
+ }
+
+ /* Otherwise we handle everything else in the move patterns. */
+ return true;
+}
+
+/* Determine if it's legal to put X into the constant pool. This
+ is not possible for the address of thread-local symbols, which
+ is checked above. */
+
+static bool
+ix86_cannot_force_const_mem (enum machine_mode mode, rtx x)
+{
+ /* We can always put integral constants and vectors in memory. */
+ switch (GET_CODE (x))
+ {
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CONST_VECTOR:
+ return false;
+
+ default:
+ break;
+ }
+ return !ix86_legitimate_constant_p (mode, x);
+}
+
+/* Nonzero if the symbol is marked as dllimport, or as stub-variable,
+ otherwise zero. */
+
+static bool
+is_imported_p (rtx x)
+{
+ if (!TARGET_DLLIMPORT_DECL_ATTRIBUTES
+ || GET_CODE (x) != SYMBOL_REF)
+ return false;
+
+ return SYMBOL_REF_DLLIMPORT_P (x) || SYMBOL_REF_STUBVAR_P (x);
+}
+
+
+/* Nonzero if the constant value X is a legitimate general operand
+ when generating PIC code. It is given that flag_pic is on and
+ that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
+
+bool
+legitimate_pic_operand_p (rtx x)
+{
+ rtx inner;
+
+ switch (GET_CODE (x))
+ {
+ case CONST:
+ inner = XEXP (x, 0);
+ if (GET_CODE (inner) == PLUS
+ && CONST_INT_P (XEXP (inner, 1)))
+ inner = XEXP (inner, 0);
+
+ /* Only some unspecs are valid as "constants". */
+ if (GET_CODE (inner) == UNSPEC)
+ switch (XINT (inner, 1))
+ {
+ case UNSPEC_GOT:
+ case UNSPEC_GOTOFF:
+ case UNSPEC_PLTOFF:
+ return TARGET_64BIT;
+ case UNSPEC_TPOFF:
+ x = XVECEXP (inner, 0, 0);
+ return (GET_CODE (x) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC);
+ case UNSPEC_MACHOPIC_OFFSET:
+ return legitimate_pic_address_disp_p (x);
+ default:
+ return false;
+ }
+ /* FALLTHRU */
+
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return legitimate_pic_address_disp_p (x);
+
+ default:
+ return true;
+ }
+}
+
+/* Determine if a given CONST RTX is a valid memory displacement
+ in PIC mode. */
+
+bool
+legitimate_pic_address_disp_p (rtx disp)
+{
+ bool saw_plus;
+
+ /* In 64bit mode we can allow direct addresses of symbols and labels
+ when they are not dynamic symbols. */
+ if (TARGET_64BIT)
+ {
+ rtx op0 = disp, op1;
+
+ switch (GET_CODE (disp))
+ {
+ case LABEL_REF:
+ return true;
+
+ case CONST:
+ if (GET_CODE (XEXP (disp, 0)) != PLUS)
+ break;
+ op0 = XEXP (XEXP (disp, 0), 0);
+ op1 = XEXP (XEXP (disp, 0), 1);
+ if (!CONST_INT_P (op1)
+ || INTVAL (op1) >= 16*1024*1024
+ || INTVAL (op1) < -16*1024*1024)
+ break;
+ if (GET_CODE (op0) == LABEL_REF)
+ return true;
+ if (GET_CODE (op0) == CONST
+ && GET_CODE (XEXP (op0, 0)) == UNSPEC
+ && XINT (XEXP (op0, 0), 1) == UNSPEC_PCREL)
+ return true;
+ if (GET_CODE (op0) == UNSPEC
+ && XINT (op0, 1) == UNSPEC_PCREL)
+ return true;
+ if (GET_CODE (op0) != SYMBOL_REF)
+ break;
+ /* FALLTHRU */
+
+ case SYMBOL_REF:
+ /* TLS references should always be enclosed in UNSPEC.
+ The dllimported symbol needs always to be resolved. */
+ if (SYMBOL_REF_TLS_MODEL (op0)
+ || (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op0)))
+ return false;
+
+ if (TARGET_PECOFF)
+ {
+ if (is_imported_p (op0))
+ return true;
+
+ if (SYMBOL_REF_FAR_ADDR_P (op0)
+ || !SYMBOL_REF_LOCAL_P (op0))
+ break;
+
+ /* Function-symbols need to be resolved only for
+ large-model.
+ For the small-model we don't need to resolve anything
+ here. */
+ if ((ix86_cmodel != CM_LARGE_PIC
+ && SYMBOL_REF_FUNCTION_P (op0))
+ || ix86_cmodel == CM_SMALL_PIC)
+ return true;
+ /* Non-external symbols don't need to be resolved for
+ large, and medium-model. */
+ if ((ix86_cmodel == CM_LARGE_PIC
+ || ix86_cmodel == CM_MEDIUM_PIC)
+ && !SYMBOL_REF_EXTERNAL_P (op0))
+ return true;
+ }
+ else if (!SYMBOL_REF_FAR_ADDR_P (op0)
+ && SYMBOL_REF_LOCAL_P (op0)
+ && ix86_cmodel != CM_LARGE_PIC)
+ return true;
+ break;
+
+ default:
+ break;
+ }
+ }
+ if (GET_CODE (disp) != CONST)
+ return false;
+ disp = XEXP (disp, 0);
+
+ if (TARGET_64BIT)
+ {
+ /* We are unsafe to allow PLUS expressions. This limit allowed distance
+ of GOT tables. We should not need these anyway. */
+ if (GET_CODE (disp) != UNSPEC
+ || (XINT (disp, 1) != UNSPEC_GOTPCREL
+ && XINT (disp, 1) != UNSPEC_GOTOFF
+ && XINT (disp, 1) != UNSPEC_PCREL
+ && XINT (disp, 1) != UNSPEC_PLTOFF))
+ return false;
+
+ if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF
+ && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF)
+ return false;
+ return true;
+ }
+
+ saw_plus = false;
+ if (GET_CODE (disp) == PLUS)
+ {
+ if (!CONST_INT_P (XEXP (disp, 1)))
+ return false;
+ disp = XEXP (disp, 0);
+ saw_plus = true;
+ }
+
+ if (TARGET_MACHO && darwin_local_data_pic (disp))
+ return true;
+
+ if (GET_CODE (disp) != UNSPEC)
+ return false;
+
+ switch (XINT (disp, 1))
+ {
+ case UNSPEC_GOT:
+ if (saw_plus)
+ return false;
+ /* We need to check for both symbols and labels because VxWorks loads
+ text labels with @GOT rather than @GOTOFF. See gotoff_operand for
+ details. */
+ return (GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF
+ || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF);
+ case UNSPEC_GOTOFF:
+ /* Refuse GOTOFF in 64bit mode since it is always 64bit when used.
+ While ABI specify also 32bit relocation but we don't produce it in
+ small PIC model at all. */
+ if ((GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF
+ || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF)
+ && !TARGET_64BIT)
+ return !TARGET_PECOFF && gotoff_operand (XVECEXP (disp, 0, 0), Pmode);
+ return false;
+ case UNSPEC_GOTTPOFF:
+ case UNSPEC_GOTNTPOFF:
+ case UNSPEC_INDNTPOFF:
+ if (saw_plus)
+ return false;
+ disp = XVECEXP (disp, 0, 0);
+ return (GET_CODE (disp) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_INITIAL_EXEC);
+ case UNSPEC_NTPOFF:
+ disp = XVECEXP (disp, 0, 0);
+ return (GET_CODE (disp) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_EXEC);
+ case UNSPEC_DTPOFF:
+ disp = XVECEXP (disp, 0, 0);
+ return (GET_CODE (disp) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_DYNAMIC);
+ }
+
+ return false;
+}
+
+/* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
+ replace the input X, or the original X if no replacement is called for.
+ The output parameter *WIN is 1 if the calling macro should goto WIN,
+ 0 if it should not. */
+
+bool
+ix86_legitimize_reload_address (rtx x,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ int opnum, int type,
+ int ind_levels ATTRIBUTE_UNUSED)
+{
+ /* Reload can generate:
+
+ (plus:DI (plus:DI (unspec:DI [(const_int 0 [0])] UNSPEC_TP)
+ (reg:DI 97))
+ (reg:DI 2 cx))
+
+ This RTX is rejected from ix86_legitimate_address_p due to
+ non-strictness of base register 97. Following this rejection,
+ reload pushes all three components into separate registers,
+ creating invalid memory address RTX.
+
+ Following code reloads only the invalid part of the
+ memory address RTX. */
+
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 1))
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && REG_P (XEXP (XEXP (x, 0), 1)))
+ {
+ rtx base, index;
+ bool something_reloaded = false;
+
+ base = XEXP (XEXP (x, 0), 1);
+ if (!REG_OK_FOR_BASE_STRICT_P (base))
+ {
+ push_reload (base, NULL_RTX, &XEXP (XEXP (x, 0), 1), NULL,
+ BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+ something_reloaded = true;
+ }
+
+ index = XEXP (x, 1);
+ if (!REG_OK_FOR_INDEX_STRICT_P (index))
+ {
+ push_reload (index, NULL_RTX, &XEXP (x, 1), NULL,
+ INDEX_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+ something_reloaded = true;
+ }
+
+ gcc_assert (something_reloaded);
+ return true;
+ }
+
+ return false;
+}
+
+/* Determine if op is suitable RTX for an address register.
+ Return naked register if a register or a register subreg is
+ found, otherwise return NULL_RTX. */
+
+static rtx
+ix86_validate_address_register (rtx op)
+{
+ enum machine_mode mode = GET_MODE (op);
+
+ /* Only SImode or DImode registers can form the address. */
+ if (mode != SImode && mode != DImode)
+ return NULL_RTX;
+
+ if (REG_P (op))
+ return op;
+ else if (GET_CODE (op) == SUBREG)
+ {
+ rtx reg = SUBREG_REG (op);
+
+ if (!REG_P (reg))
+ return NULL_RTX;
+
+ mode = GET_MODE (reg);
+
+ /* Don't allow SUBREGs that span more than a word. It can
+ lead to spill failures when the register is one word out
+ of a two word structure. */
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ return NULL_RTX;
+
+ /* Allow only SUBREGs of non-eliminable hard registers. */
+ if (register_no_elim_operand (reg, mode))
+ return reg;
+ }
+
+ /* Op is not a register. */
+ return NULL_RTX;
+}
+
+/* Recognizes RTL expressions that are valid memory addresses for an
+ instruction. The MODE argument is the machine mode for the MEM
+ expression that wants to use this address.
+
+ It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
+ convert common non-canonical forms to canonical form so that they will
+ be recognized. */
+
+static bool
+ix86_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
+ rtx addr, bool strict)
+{
+ struct ix86_address parts;
+ rtx base, index, disp;
+ HOST_WIDE_INT scale;
+ enum ix86_address_seg seg;
+
+ if (ix86_decompose_address (addr, &parts) <= 0)
+ /* Decomposition failed. */
+ return false;
+
+ base = parts.base;
+ index = parts.index;
+ disp = parts.disp;
+ scale = parts.scale;
+ seg = parts.seg;
+
+ /* Validate base register. */
+ if (base)
+ {
+ rtx reg = ix86_validate_address_register (base);
+
+ if (reg == NULL_RTX)
+ return false;
+
+ if ((strict && ! REG_OK_FOR_BASE_STRICT_P (reg))
+ || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (reg)))
+ /* Base is not valid. */
+ return false;
+ }
+
+ /* Validate index register. */
+ if (index)
+ {
+ rtx reg = ix86_validate_address_register (index);
+
+ if (reg == NULL_RTX)
+ return false;
+
+ if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (reg))
+ || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (reg)))
+ /* Index is not valid. */
+ return false;
+ }
+
+ /* Index and base should have the same mode. */
+ if (base && index
+ && GET_MODE (base) != GET_MODE (index))
+ return false;
+
+ /* Address override works only on the (%reg) part of %fs:(%reg). */
+ if (seg != SEG_DEFAULT
+ && ((base && GET_MODE (base) != word_mode)
+ || (index && GET_MODE (index) != word_mode)))
+ return false;
+
+ /* Validate scale factor. */
+ if (scale != 1)
+ {
+ if (!index)
+ /* Scale without index. */
+ return false;
+
+ if (scale != 2 && scale != 4 && scale != 8)
+ /* Scale is not a valid multiplier. */
+ return false;
+ }
+
+ /* Validate displacement. */
+ if (disp)
+ {
+ if (GET_CODE (disp) == CONST
+ && GET_CODE (XEXP (disp, 0)) == UNSPEC
+ && XINT (XEXP (disp, 0), 1) != UNSPEC_MACHOPIC_OFFSET)
+ switch (XINT (XEXP (disp, 0), 1))
+ {
+ /* Refuse GOTOFF and GOT in 64bit mode since it is always 64bit when
+ used. While ABI specify also 32bit relocations, we don't produce
+ them at all and use IP relative instead. */
+ case UNSPEC_GOT:
+ case UNSPEC_GOTOFF:
+ gcc_assert (flag_pic);
+ if (!TARGET_64BIT)
+ goto is_legitimate_pic;
+
+ /* 64bit address unspec. */
+ return false;
+
+ case UNSPEC_GOTPCREL:
+ case UNSPEC_PCREL:
+ gcc_assert (flag_pic);
+ goto is_legitimate_pic;
+
+ case UNSPEC_GOTTPOFF:
+ case UNSPEC_GOTNTPOFF:
+ case UNSPEC_INDNTPOFF:
+ case UNSPEC_NTPOFF:
+ case UNSPEC_DTPOFF:
+ break;
+
+ case UNSPEC_STACK_CHECK:
+ gcc_assert (flag_split_stack);
+ break;
+
+ default:
+ /* Invalid address unspec. */
+ return false;
+ }
+
+ else if (SYMBOLIC_CONST (disp)
+ && (flag_pic
+ || (TARGET_MACHO
+#if TARGET_MACHO
+ && MACHOPIC_INDIRECT
+ && !machopic_operand_p (disp)
+#endif
+ )))
+ {
+
+ is_legitimate_pic:
+ if (TARGET_64BIT && (index || base))
+ {
+ /* foo@dtpoff(%rX) is ok. */
+ if (GET_CODE (disp) != CONST
+ || GET_CODE (XEXP (disp, 0)) != PLUS
+ || GET_CODE (XEXP (XEXP (disp, 0), 0)) != UNSPEC
+ || !CONST_INT_P (XEXP (XEXP (disp, 0), 1))
+ || (XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_DTPOFF
+ && XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_NTPOFF))
+ /* Non-constant pic memory reference. */
+ return false;
+ }
+ else if ((!TARGET_MACHO || flag_pic)
+ && ! legitimate_pic_address_disp_p (disp))
+ /* Displacement is an invalid pic construct. */
+ return false;
+#if TARGET_MACHO
+ else if (MACHO_DYNAMIC_NO_PIC_P
+ && !ix86_legitimate_constant_p (Pmode, disp))
+ /* displacment must be referenced via non_lazy_pointer */
+ return false;
+#endif
+
+ /* This code used to verify that a symbolic pic displacement
+ includes the pic_offset_table_rtx register.
+
+ While this is good idea, unfortunately these constructs may
+ be created by "adds using lea" optimization for incorrect
+ code like:
+
+ int a;
+ int foo(int i)
+ {
+ return *(&a+i);
+ }
+
+ This code is nonsensical, but results in addressing
+ GOT table with pic_offset_table_rtx base. We can't
+ just refuse it easily, since it gets matched by
+ "addsi3" pattern, that later gets split to lea in the
+ case output register differs from input. While this
+ can be handled by separate addsi pattern for this case
+ that never results in lea, this seems to be easier and
+ correct fix for crash to disable this test. */
+ }
+ else if (GET_CODE (disp) != LABEL_REF
+ && !CONST_INT_P (disp)
+ && (GET_CODE (disp) != CONST
+ || !ix86_legitimate_constant_p (Pmode, disp))
+ && (GET_CODE (disp) != SYMBOL_REF
+ || !ix86_legitimate_constant_p (Pmode, disp)))
+ /* Displacement is not constant. */
+ return false;
+ else if (TARGET_64BIT
+ && !x86_64_immediate_operand (disp, VOIDmode))
+ /* Displacement is out of range. */
+ return false;
+ /* In x32 mode, constant addresses are sign extended to 64bit, so
+ we have to prevent addresses from 0x80000000 to 0xffffffff. */
+ else if (TARGET_X32 && !(index || base)
+ && CONST_INT_P (disp)
+ && val_signbit_known_set_p (SImode, INTVAL (disp)))
+ return false;
+ }
+
+ /* Everything looks valid. */
+ return true;
+}
+
+/* Determine if a given RTX is a valid constant address. */
+
+bool
+constant_address_p (rtx x)
+{
+ return CONSTANT_P (x) && ix86_legitimate_address_p (Pmode, x, 1);
+}
+
+/* Return a unique alias set for the GOT. */
+
+static alias_set_type
+ix86_GOT_alias_set (void)
+{
+ static alias_set_type set = -1;
+ if (set == -1)
+ set = new_alias_set ();
+ return set;
+}
+
+/* Return a legitimate reference for ORIG (an address) using the
+ register REG. If REG is 0, a new pseudo is generated.
+
+ There are two types of references that must be handled:
+
+ 1. Global data references must load the address from the GOT, via
+ the PIC reg. An insn is emitted to do this load, and the reg is
+ returned.
+
+ 2. Static data references, constant pool addresses, and code labels
+ compute the address as an offset from the GOT, whose base is in
+ the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to
+ differentiate them from global data objects. The returned
+ address is the PIC reg + an unspec constant.
+
+ TARGET_LEGITIMATE_ADDRESS_P rejects symbolic references unless the PIC
+ reg also appears in the address. */
+
+static rtx
+legitimize_pic_address (rtx orig, rtx reg)
+{
+ rtx addr = orig;
+ rtx new_rtx = orig;
+
+#if TARGET_MACHO
+ if (TARGET_MACHO && !TARGET_64BIT)
+ {
+ if (reg == 0)
+ reg = gen_reg_rtx (Pmode);
+ /* Use the generic Mach-O PIC machinery. */
+ return machopic_legitimize_pic_address (orig, GET_MODE (orig), reg);
+ }
+#endif
+
+ if (TARGET_64BIT && TARGET_DLLIMPORT_DECL_ATTRIBUTES)
+ {
+ rtx tmp = legitimize_pe_coff_symbol (addr, true);
+ if (tmp)
+ return tmp;
+ }
+
+ if (TARGET_64BIT && legitimate_pic_address_disp_p (addr))
+ new_rtx = addr;
+ else if (TARGET_64BIT && !TARGET_PECOFF
+ && ix86_cmodel != CM_SMALL_PIC && gotoff_operand (addr, Pmode))
+ {
+ rtx tmpreg;
+ /* This symbol may be referenced via a displacement from the PIC
+ base address (@GOTOFF). */
+
+ if (reload_in_progress)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+ if (GET_CODE (addr) == CONST)
+ addr = XEXP (addr, 0);
+ if (GET_CODE (addr) == PLUS)
+ {
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)),
+ UNSPEC_GOTOFF);
+ new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1));
+ }
+ else
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ if (!reg)
+ tmpreg = gen_reg_rtx (Pmode);
+ else
+ tmpreg = reg;
+ emit_move_insn (tmpreg, new_rtx);
+
+ if (reg != 0)
+ {
+ new_rtx = expand_simple_binop (Pmode, PLUS, reg, pic_offset_table_rtx,
+ tmpreg, 1, OPTAB_DIRECT);
+ new_rtx = reg;
+ }
+ else
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, tmpreg);
+ }
+ else if (!TARGET_64BIT && !TARGET_PECOFF && gotoff_operand (addr, Pmode))
+ {
+ /* This symbol may be referenced via a displacement from the PIC
+ base address (@GOTOFF). */
+
+ if (reload_in_progress)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+ if (GET_CODE (addr) == CONST)
+ addr = XEXP (addr, 0);
+ if (GET_CODE (addr) == PLUS)
+ {
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)),
+ UNSPEC_GOTOFF);
+ new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1));
+ }
+ else
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
+
+ if (reg != 0)
+ {
+ emit_move_insn (reg, new_rtx);
+ new_rtx = reg;
+ }
+ }
+ else if ((GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (addr) == 0)
+ /* We can't use @GOTOFF for text labels on VxWorks;
+ see gotoff_operand. */
+ || (TARGET_VXWORKS_RTP && GET_CODE (addr) == LABEL_REF))
+ {
+ rtx tmp = legitimize_pe_coff_symbol (addr, true);
+ if (tmp)
+ return tmp;
+
+ /* For x64 PE-COFF there is no GOT table. So we use address
+ directly. */
+ if (TARGET_64BIT && TARGET_PECOFF)
+ {
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_PCREL);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+
+ if (reg == 0)
+ reg = gen_reg_rtx (Pmode);
+ emit_move_insn (reg, new_rtx);
+ new_rtx = reg;
+ }
+ else if (TARGET_64BIT && ix86_cmodel != CM_LARGE_PIC)
+ {
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTPCREL);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = gen_const_mem (Pmode, new_rtx);
+ set_mem_alias_set (new_rtx, ix86_GOT_alias_set ());
+
+ if (reg == 0)
+ reg = gen_reg_rtx (Pmode);
+ /* Use directly gen_movsi, otherwise the address is loaded
+ into register for CSE. We don't want to CSE this addresses,
+ instead we CSE addresses from the GOT table, so skip this. */
+ emit_insn (gen_movsi (reg, new_rtx));
+ new_rtx = reg;
+ }
+ else
+ {
+ /* This symbol must be referenced via a load from the
+ Global Offset Table (@GOT). */
+
+ if (reload_in_progress)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ if (TARGET_64BIT)
+ new_rtx = force_reg (Pmode, new_rtx);
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
+ new_rtx = gen_const_mem (Pmode, new_rtx);
+ set_mem_alias_set (new_rtx, ix86_GOT_alias_set ());
+
+ if (reg == 0)
+ reg = gen_reg_rtx (Pmode);
+ emit_move_insn (reg, new_rtx);
+ new_rtx = reg;
+ }
+ }
+ else
+ {
+ if (CONST_INT_P (addr)
+ && !x86_64_immediate_operand (addr, VOIDmode))
+ {
+ if (reg)
+ {
+ emit_move_insn (reg, addr);
+ new_rtx = reg;
+ }
+ else
+ new_rtx = force_reg (Pmode, addr);
+ }
+ else if (GET_CODE (addr) == CONST)
+ {
+ addr = XEXP (addr, 0);
+
+ /* We must match stuff we generate before. Assume the only
+ unspecs that can get here are ours. Not that we could do
+ anything with them anyway.... */
+ if (GET_CODE (addr) == UNSPEC
+ || (GET_CODE (addr) == PLUS
+ && GET_CODE (XEXP (addr, 0)) == UNSPEC))
+ return orig;
+ gcc_assert (GET_CODE (addr) == PLUS);
+ }
+ if (GET_CODE (addr) == PLUS)
+ {
+ rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
+
+ /* Check first to see if this is a constant offset from a @GOTOFF
+ symbol reference. */
+ if (!TARGET_PECOFF && gotoff_operand (op0, Pmode)
+ && CONST_INT_P (op1))
+ {
+ if (!TARGET_64BIT)
+ {
+ if (reload_in_progress)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0),
+ UNSPEC_GOTOFF);
+ new_rtx = gen_rtx_PLUS (Pmode, new_rtx, op1);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
+
+ if (reg != 0)
+ {
+ emit_move_insn (reg, new_rtx);
+ new_rtx = reg;
+ }
+ }
+ else
+ {
+ if (INTVAL (op1) < -16*1024*1024
+ || INTVAL (op1) >= 16*1024*1024)
+ {
+ if (!x86_64_immediate_operand (op1, Pmode))
+ op1 = force_reg (Pmode, op1);
+ new_rtx = gen_rtx_PLUS (Pmode, force_reg (Pmode, op0), op1);
+ }
+ }
+ }
+ else
+ {
+ rtx base = legitimize_pic_address (op0, reg);
+ enum machine_mode mode = GET_MODE (base);
+ new_rtx
+ = legitimize_pic_address (op1, base == reg ? NULL_RTX : reg);
+
+ if (CONST_INT_P (new_rtx))
+ {
+ if (INTVAL (new_rtx) < -16*1024*1024
+ || INTVAL (new_rtx) >= 16*1024*1024)
+ {
+ if (!x86_64_immediate_operand (new_rtx, mode))
+ new_rtx = force_reg (mode, new_rtx);
+ new_rtx
+ = gen_rtx_PLUS (mode, force_reg (mode, base), new_rtx);
+ }
+ else
+ new_rtx = plus_constant (mode, base, INTVAL (new_rtx));
+ }
+ else
+ {
+ if (GET_CODE (new_rtx) == PLUS
+ && CONSTANT_P (XEXP (new_rtx, 1)))
+ {
+ base = gen_rtx_PLUS (mode, base, XEXP (new_rtx, 0));
+ new_rtx = XEXP (new_rtx, 1);
+ }
+ new_rtx = gen_rtx_PLUS (mode, base, new_rtx);
+ }
+ }
+ }
+ }
+ return new_rtx;
+}
+
+/* Load the thread pointer. If TO_REG is true, force it into a register. */
+
+static rtx
+get_thread_pointer (enum machine_mode tp_mode, bool to_reg)
+{
+ rtx tp = gen_rtx_UNSPEC (ptr_mode, gen_rtvec (1, const0_rtx), UNSPEC_TP);
+
+ if (GET_MODE (tp) != tp_mode)
+ {
+ gcc_assert (GET_MODE (tp) == SImode);
+ gcc_assert (tp_mode == DImode);
+
+ tp = gen_rtx_ZERO_EXTEND (tp_mode, tp);
+ }
+
+ if (to_reg)
+ tp = copy_to_mode_reg (tp_mode, tp);
+
+ return tp;
+}
+
+/* Construct the SYMBOL_REF for the tls_get_addr function. */
+
+static GTY(()) rtx ix86_tls_symbol;
+
+static rtx
+ix86_tls_get_addr (void)
+{
+ if (!ix86_tls_symbol)
+ {
+ const char *sym
+ = ((TARGET_ANY_GNU_TLS && !TARGET_64BIT)
+ ? "___tls_get_addr" : "__tls_get_addr");
+
+ ix86_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, sym);
+ }
+
+ if (ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF)
+ {
+ rtx unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, ix86_tls_symbol),
+ UNSPEC_PLTOFF);
+ return gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
+ gen_rtx_CONST (Pmode, unspec));
+ }
+
+ return ix86_tls_symbol;
+}
+
+/* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */
+
+static GTY(()) rtx ix86_tls_module_base_symbol;
+
+rtx
+ix86_tls_module_base (void)
+{
+ if (!ix86_tls_module_base_symbol)
+ {
+ ix86_tls_module_base_symbol
+ = gen_rtx_SYMBOL_REF (Pmode, "_TLS_MODULE_BASE_");
+
+ SYMBOL_REF_FLAGS (ix86_tls_module_base_symbol)
+ |= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT;
+ }
+
+ return ix86_tls_module_base_symbol;
+}
+
+/* A subroutine of ix86_legitimize_address and ix86_expand_move. FOR_MOV is
+ false if we expect this to be used for a memory address and true if
+ we expect to load the address into a register. */
+
+static rtx
+legitimize_tls_address (rtx x, enum tls_model model, bool for_mov)
+{
+ rtx dest, base, off;
+ rtx pic = NULL_RTX, tp = NULL_RTX;
+ enum machine_mode tp_mode = Pmode;
+ int type;
+
+ /* Fall back to global dynamic model if tool chain cannot support local
+ dynamic. */
+ if (TARGET_SUN_TLS && !TARGET_64BIT
+ && !HAVE_AS_IX86_TLSLDMPLT && !HAVE_AS_IX86_TLSLDM
+ && model == TLS_MODEL_LOCAL_DYNAMIC)
+ model = TLS_MODEL_GLOBAL_DYNAMIC;
+
+ switch (model)
+ {
+ case TLS_MODEL_GLOBAL_DYNAMIC:
+ dest = gen_reg_rtx (Pmode);
+
+ if (!TARGET_64BIT)
+ {
+ if (flag_pic && !TARGET_PECOFF)
+ pic = pic_offset_table_rtx;
+ else
+ {
+ pic = gen_reg_rtx (Pmode);
+ emit_insn (gen_set_got (pic));
+ }
+ }
+
+ if (TARGET_GNU2_TLS)
+ {
+ if (TARGET_64BIT)
+ emit_insn (gen_tls_dynamic_gnu2_64 (dest, x));
+ else
+ emit_insn (gen_tls_dynamic_gnu2_32 (dest, x, pic));
+
+ tp = get_thread_pointer (Pmode, true);
+ dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, tp, dest));
+
+ if (GET_MODE (x) != Pmode)
+ x = gen_rtx_ZERO_EXTEND (Pmode, x);
+
+ set_unique_reg_note (get_last_insn (), REG_EQUAL, x);
+ }
+ else
+ {
+ rtx caddr = ix86_tls_get_addr ();
+
+ if (TARGET_64BIT)
+ {
+ rtx rax = gen_rtx_REG (Pmode, AX_REG);
+ rtx insns;
+
+ start_sequence ();
+ emit_call_insn
+ (ix86_gen_tls_global_dynamic_64 (rax, x, caddr));
+ insns = get_insns ();
+ end_sequence ();
+
+ if (GET_MODE (x) != Pmode)
+ x = gen_rtx_ZERO_EXTEND (Pmode, x);
+
+ RTL_CONST_CALL_P (insns) = 1;
+ emit_libcall_block (insns, dest, rax, x);
+ }
+ else
+ emit_insn (gen_tls_global_dynamic_32 (dest, x, pic, caddr));
+ }
+ break;
+
+ case TLS_MODEL_LOCAL_DYNAMIC:
+ base = gen_reg_rtx (Pmode);
+
+ if (!TARGET_64BIT)
+ {
+ if (flag_pic)
+ pic = pic_offset_table_rtx;
+ else
+ {
+ pic = gen_reg_rtx (Pmode);
+ emit_insn (gen_set_got (pic));
+ }
+ }
+
+ if (TARGET_GNU2_TLS)
+ {
+ rtx tmp = ix86_tls_module_base ();
+
+ if (TARGET_64BIT)
+ emit_insn (gen_tls_dynamic_gnu2_64 (base, tmp));
+ else
+ emit_insn (gen_tls_dynamic_gnu2_32 (base, tmp, pic));
+
+ tp = get_thread_pointer (Pmode, true);
+ set_unique_reg_note (get_last_insn (), REG_EQUAL,
+ gen_rtx_MINUS (Pmode, tmp, tp));
+ }
+ else
+ {
+ rtx caddr = ix86_tls_get_addr ();
+
+ if (TARGET_64BIT)
+ {
+ rtx rax = gen_rtx_REG (Pmode, AX_REG);
+ rtx insns, eqv;
+
+ start_sequence ();
+ emit_call_insn
+ (ix86_gen_tls_local_dynamic_base_64 (rax, caddr));
+ insns = get_insns ();
+ end_sequence ();
+
+ /* Attach a unique REG_EQUAL, to allow the RTL optimizers to
+ share the LD_BASE result with other LD model accesses. */
+ eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
+ UNSPEC_TLS_LD_BASE);
+
+ RTL_CONST_CALL_P (insns) = 1;
+ emit_libcall_block (insns, base, rax, eqv);
+ }
+ else
+ emit_insn (gen_tls_local_dynamic_base_32 (base, pic, caddr));
+ }
+
+ off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPOFF);
+ off = gen_rtx_CONST (Pmode, off);
+
+ dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, off));
+
+ if (TARGET_GNU2_TLS)
+ {
+ dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, dest, tp));
+
+ if (GET_MODE (x) != Pmode)
+ x = gen_rtx_ZERO_EXTEND (Pmode, x);
+
+ set_unique_reg_note (get_last_insn (), REG_EQUAL, x);
+ }
+ break;
+
+ case TLS_MODEL_INITIAL_EXEC:
+ if (TARGET_64BIT)
+ {
+ if (TARGET_SUN_TLS && !TARGET_X32)
+ {
+ /* The Sun linker took the AMD64 TLS spec literally
+ and can only handle %rax as destination of the
+ initial executable code sequence. */
+
+ dest = gen_reg_rtx (DImode);
+ emit_insn (gen_tls_initial_exec_64_sun (dest, x));
+ return dest;
+ }
+
+ /* Generate DImode references to avoid %fs:(%reg32)
+ problems and linker IE->LE relaxation bug. */
+ tp_mode = DImode;
+ pic = NULL;
+ type = UNSPEC_GOTNTPOFF;
+ }
+ else if (flag_pic)
+ {
+ if (reload_in_progress)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+ pic = pic_offset_table_rtx;
+ type = TARGET_ANY_GNU_TLS ? UNSPEC_GOTNTPOFF : UNSPEC_GOTTPOFF;
+ }
+ else if (!TARGET_ANY_GNU_TLS)
+ {
+ pic = gen_reg_rtx (Pmode);
+ emit_insn (gen_set_got (pic));
+ type = UNSPEC_GOTTPOFF;
+ }
+ else
+ {
+ pic = NULL;
+ type = UNSPEC_INDNTPOFF;
+ }
+
+ off = gen_rtx_UNSPEC (tp_mode, gen_rtvec (1, x), type);
+ off = gen_rtx_CONST (tp_mode, off);
+ if (pic)
+ off = gen_rtx_PLUS (tp_mode, pic, off);
+ off = gen_const_mem (tp_mode, off);
+ set_mem_alias_set (off, ix86_GOT_alias_set ());
+
+ if (TARGET_64BIT || TARGET_ANY_GNU_TLS)
+ {
+ base = get_thread_pointer (tp_mode,
+ for_mov || !TARGET_TLS_DIRECT_SEG_REFS);
+ off = force_reg (tp_mode, off);
+ return gen_rtx_PLUS (tp_mode, base, off);
+ }
+ else
+ {
+ base = get_thread_pointer (Pmode, true);
+ dest = gen_reg_rtx (Pmode);
+ emit_insn (ix86_gen_sub3 (dest, base, off));
+ }
+ break;
+
+ case TLS_MODEL_LOCAL_EXEC:
+ off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x),
+ (TARGET_64BIT || TARGET_ANY_GNU_TLS)
+ ? UNSPEC_NTPOFF : UNSPEC_TPOFF);
+ off = gen_rtx_CONST (Pmode, off);
+
+ if (TARGET_64BIT || TARGET_ANY_GNU_TLS)
+ {
+ base = get_thread_pointer (Pmode,
+ for_mov || !TARGET_TLS_DIRECT_SEG_REFS);
+ return gen_rtx_PLUS (Pmode, base, off);
+ }
+ else
+ {
+ base = get_thread_pointer (Pmode, true);
+ dest = gen_reg_rtx (Pmode);
+ emit_insn (ix86_gen_sub3 (dest, base, off));
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return dest;
+}
+
+/* Create or return the unique __imp_DECL dllimport symbol corresponding
+ to symbol DECL if BEIMPORT is true. Otherwise create or return the
+ unique refptr-DECL symbol corresponding to symbol DECL. */
+
+static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
+ htab_t dllimport_map;
+
+static tree
+get_dllimport_decl (tree decl, bool beimport)
+{
+ struct tree_map *h, in;
+ void **loc;
+ const char *name;
+ const char *prefix;
+ size_t namelen, prefixlen;
+ char *imp_name;
+ tree to;
+ rtx rtl;
+
+ if (!dllimport_map)
+ dllimport_map = htab_create_ggc (512, tree_map_hash, tree_map_eq, 0);
+
+ in.hash = htab_hash_pointer (decl);
+ in.base.from = decl;
+ loc = htab_find_slot_with_hash (dllimport_map, &in, in.hash, INSERT);
+ h = (struct tree_map *) *loc;
+ if (h)
+ return h->to;
+
+ *loc = h = ggc_alloc_tree_map ();
+ h->hash = in.hash;
+ h->base.from = decl;
+ h->to = to = build_decl (DECL_SOURCE_LOCATION (decl),
+ VAR_DECL, NULL, ptr_type_node);
+ DECL_ARTIFICIAL (to) = 1;
+ DECL_IGNORED_P (to) = 1;
+ DECL_EXTERNAL (to) = 1;
+ TREE_READONLY (to) = 1;
+
+ name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
+ name = targetm.strip_name_encoding (name);
+ if (beimport)
+ prefix = name[0] == FASTCALL_PREFIX || user_label_prefix[0] == 0
+ ? "*__imp_" : "*__imp__";
+ else
+ prefix = user_label_prefix[0] == 0 ? "*.refptr." : "*refptr.";
+ namelen = strlen (name);
+ prefixlen = strlen (prefix);
+ imp_name = (char *) alloca (namelen + prefixlen + 1);
+ memcpy (imp_name, prefix, prefixlen);
+ memcpy (imp_name + prefixlen, name, namelen + 1);
+
+ name = ggc_alloc_string (imp_name, namelen + prefixlen);
+ rtl = gen_rtx_SYMBOL_REF (Pmode, name);
+ SET_SYMBOL_REF_DECL (rtl, to);
+ SYMBOL_REF_FLAGS (rtl) = SYMBOL_FLAG_LOCAL | SYMBOL_FLAG_STUBVAR;
+ if (!beimport)
+ {
+ SYMBOL_REF_FLAGS (rtl) |= SYMBOL_FLAG_EXTERNAL;
+#ifdef SUB_TARGET_RECORD_STUB
+ SUB_TARGET_RECORD_STUB (name);
+#endif
+ }
+
+ rtl = gen_const_mem (Pmode, rtl);
+ set_mem_alias_set (rtl, ix86_GOT_alias_set ());
+
+ SET_DECL_RTL (to, rtl);
+ SET_DECL_ASSEMBLER_NAME (to, get_identifier (name));
+
+ return to;
+}
+
+/* Expand SYMBOL into its corresponding far-addresse symbol.
+ WANT_REG is true if we require the result be a register. */
+
+static rtx
+legitimize_pe_coff_extern_decl (rtx symbol, bool want_reg)
+{
+ tree imp_decl;
+ rtx x;
+
+ gcc_assert (SYMBOL_REF_DECL (symbol));
+ imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol), false);
+
+ x = DECL_RTL (imp_decl);
+ if (want_reg)
+ x = force_reg (Pmode, x);
+ return x;
+}
+
+/* Expand SYMBOL into its corresponding dllimport symbol. WANT_REG is
+ true if we require the result be a register. */
+
+static rtx
+legitimize_dllimport_symbol (rtx symbol, bool want_reg)
+{
+ tree imp_decl;
+ rtx x;
+
+ gcc_assert (SYMBOL_REF_DECL (symbol));
+ imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol), true);
+
+ x = DECL_RTL (imp_decl);
+ if (want_reg)
+ x = force_reg (Pmode, x);
+ return x;
+}
+
+/* Expand SYMBOL into its corresponding dllimport or refptr symbol. WANT_REG
+ is true if we require the result be a register. */
+
+static rtx
+legitimize_pe_coff_symbol (rtx addr, bool inreg)
+{
+ if (!TARGET_PECOFF)
+ return NULL_RTX;
+
+ if (TARGET_DLLIMPORT_DECL_ATTRIBUTES)
+ {
+ if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (addr))
+ return legitimize_dllimport_symbol (addr, inreg);
+ if (GET_CODE (addr) == CONST
+ && GET_CODE (XEXP (addr, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF
+ && SYMBOL_REF_DLLIMPORT_P (XEXP (XEXP (addr, 0), 0)))
+ {
+ rtx t = legitimize_dllimport_symbol (XEXP (XEXP (addr, 0), 0), inreg);
+ return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1));
+ }
+ }
+
+ if (ix86_cmodel != CM_LARGE_PIC && ix86_cmodel != CM_MEDIUM_PIC)
+ return NULL_RTX;
+ if (GET_CODE (addr) == SYMBOL_REF
+ && !is_imported_p (addr)
+ && SYMBOL_REF_EXTERNAL_P (addr)
+ && SYMBOL_REF_DECL (addr))
+ return legitimize_pe_coff_extern_decl (addr, inreg);
+
+ if (GET_CODE (addr) == CONST
+ && GET_CODE (XEXP (addr, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF
+ && !is_imported_p (XEXP (XEXP (addr, 0), 0))
+ && SYMBOL_REF_EXTERNAL_P (XEXP (XEXP (addr, 0), 0))
+ && SYMBOL_REF_DECL (XEXP (XEXP (addr, 0), 0)))
+ {
+ rtx t = legitimize_pe_coff_extern_decl (XEXP (XEXP (addr, 0), 0), inreg);
+ return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1));
+ }
+ return NULL_RTX;
+}
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address.
+ This macro is used in only one place: `memory_address' in explow.c.
+
+ OLDX is the address as it was before break_out_memory_refs was called.
+ In some cases it is useful to look at this to decide what needs to be done.
+
+ It is always safe for this macro to do nothing. It exists to recognize
+ opportunities to optimize the output.
+
+ For the 80386, we handle X+REG by loading X into a register R and
+ using R+REG. R will go in a general reg and indexing will be used.
+ However, if REG is a broken-out memory address or multiplication,
+ nothing needs to be done because REG can certainly go in a general reg.
+
+ When -fpic is used, special handling is needed for symbolic references.
+ See comments by legitimize_pic_address in i386.c for details. */
+
+static rtx
+ix86_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
+ enum machine_mode mode)
+{
+ int changed = 0;
+ unsigned log;
+
+ log = GET_CODE (x) == SYMBOL_REF ? SYMBOL_REF_TLS_MODEL (x) : 0;
+ if (log)
+ return legitimize_tls_address (x, (enum tls_model) log, false);
+ if (GET_CODE (x) == CONST
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
+ && (log = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0))))
+ {
+ rtx t = legitimize_tls_address (XEXP (XEXP (x, 0), 0),
+ (enum tls_model) log, false);
+ return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1));
+ }
+
+ if (TARGET_DLLIMPORT_DECL_ATTRIBUTES)
+ {
+ rtx tmp = legitimize_pe_coff_symbol (x, true);
+ if (tmp)
+ return tmp;
+ }
+
+ if (flag_pic && SYMBOLIC_CONST (x))
+ return legitimize_pic_address (x, 0);
+
+#if TARGET_MACHO
+ if (MACHO_DYNAMIC_NO_PIC_P && SYMBOLIC_CONST (x))
+ return machopic_indirect_data_reference (x, 0);
+#endif
+
+ /* Canonicalize shifts by 0, 1, 2, 3 into multiply */
+ if (GET_CODE (x) == ASHIFT
+ && CONST_INT_P (XEXP (x, 1))
+ && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) < 4)
+ {
+ changed = 1;
+ log = INTVAL (XEXP (x, 1));
+ x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)),
+ GEN_INT (1 << log));
+ }
+
+ if (GET_CODE (x) == PLUS)
+ {
+ /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */
+
+ if (GET_CODE (XEXP (x, 0)) == ASHIFT
+ && CONST_INT_P (XEXP (XEXP (x, 0), 1))
+ && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 0), 1)) < 4)
+ {
+ changed = 1;
+ log = INTVAL (XEXP (XEXP (x, 0), 1));
+ XEXP (x, 0) = gen_rtx_MULT (Pmode,
+ force_reg (Pmode, XEXP (XEXP (x, 0), 0)),
+ GEN_INT (1 << log));
+ }
+
+ if (GET_CODE (XEXP (x, 1)) == ASHIFT
+ && CONST_INT_P (XEXP (XEXP (x, 1), 1))
+ && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 1), 1)) < 4)
+ {
+ changed = 1;
+ log = INTVAL (XEXP (XEXP (x, 1), 1));
+ XEXP (x, 1) = gen_rtx_MULT (Pmode,
+ force_reg (Pmode, XEXP (XEXP (x, 1), 0)),
+ GEN_INT (1 << log));
+ }
+
+ /* Put multiply first if it isn't already. */
+ if (GET_CODE (XEXP (x, 1)) == MULT)
+ {
+ rtx tmp = XEXP (x, 0);
+ XEXP (x, 0) = XEXP (x, 1);
+ XEXP (x, 1) = tmp;
+ changed = 1;
+ }
+
+ /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
+ into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
+ created by virtual register instantiation, register elimination, and
+ similar optimizations. */
+ if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS)
+ {
+ changed = 1;
+ x = gen_rtx_PLUS (Pmode,
+ gen_rtx_PLUS (Pmode, XEXP (x, 0),
+ XEXP (XEXP (x, 1), 0)),
+ XEXP (XEXP (x, 1), 1));
+ }
+
+ /* Canonicalize
+ (plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
+ into (plus (plus (mult (reg) (const)) (reg)) (const)). */
+ else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
+ && CONSTANT_P (XEXP (x, 1)))
+ {
+ rtx constant;
+ rtx other = NULL_RTX;
+
+ if (CONST_INT_P (XEXP (x, 1)))
+ {
+ constant = XEXP (x, 1);
+ other = XEXP (XEXP (XEXP (x, 0), 1), 1);
+ }
+ else if (CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 1), 1)))
+ {
+ constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
+ other = XEXP (x, 1);
+ }
+ else
+ constant = 0;
+
+ if (constant)
+ {
+ changed = 1;
+ x = gen_rtx_PLUS (Pmode,
+ gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0),
+ XEXP (XEXP (XEXP (x, 0), 1), 0)),
+ plus_constant (Pmode, other,
+ INTVAL (constant)));
+ }
+ }
+
+ if (changed && ix86_legitimate_address_p (mode, x, false))
+ return x;
+
+ if (GET_CODE (XEXP (x, 0)) == MULT)
+ {
+ changed = 1;
+ XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
+ }
+
+ if (GET_CODE (XEXP (x, 1)) == MULT)
+ {
+ changed = 1;
+ XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
+ }
+
+ if (changed
+ && REG_P (XEXP (x, 1))
+ && REG_P (XEXP (x, 0)))
+ return x;
+
+ if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1)))
+ {
+ changed = 1;
+ x = legitimize_pic_address (x, 0);
+ }
+
+ if (changed && ix86_legitimate_address_p (mode, x, false))
+ return x;
+
+ if (REG_P (XEXP (x, 0)))
+ {
+ rtx temp = gen_reg_rtx (Pmode);
+ rtx val = force_operand (XEXP (x, 1), temp);
+ if (val != temp)
+ {
+ val = convert_to_mode (Pmode, val, 1);
+ emit_move_insn (temp, val);
+ }
+
+ XEXP (x, 1) = temp;
+ return x;
+ }
+
+ else if (REG_P (XEXP (x, 1)))
+ {
+ rtx temp = gen_reg_rtx (Pmode);
+ rtx val = force_operand (XEXP (x, 0), temp);
+ if (val != temp)
+ {
+ val = convert_to_mode (Pmode, val, 1);
+ emit_move_insn (temp, val);
+ }
+
+ XEXP (x, 0) = temp;
+ return x;
+ }
+ }
+
+ return x;
+}
+
+/* Print an integer constant expression in assembler syntax. Addition
+ and subtraction are the only arithmetic that may appear in these
+ expressions. FILE is the stdio stream to write to, X is the rtx, and
+ CODE is the operand print code from the output string. */
+
+static void
+output_pic_addr_const (FILE *file, rtx x, int code)
+{
+ char buf[256];
+
+ switch (GET_CODE (x))
+ {
+ case PC:
+ gcc_assert (flag_pic);
+ putc ('.', file);
+ break;
+
+ case SYMBOL_REF:
+ if (TARGET_64BIT || ! TARGET_MACHO_BRANCH_ISLANDS)
+ output_addr_const (file, x);
+ else
+ {
+ const char *name = XSTR (x, 0);
+
+ /* Mark the decl as referenced so that cgraph will
+ output the function. */
+ if (SYMBOL_REF_DECL (x))
+ mark_decl_referenced (SYMBOL_REF_DECL (x));
+
+#if TARGET_MACHO
+ if (MACHOPIC_INDIRECT
+ && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
+ name = machopic_indirection_name (x, /*stub_p=*/true);
+#endif
+ assemble_name (file, name);
+ }
+ if (!TARGET_MACHO && !(TARGET_64BIT && TARGET_PECOFF)
+ && code == 'P' && ! SYMBOL_REF_LOCAL_P (x))
+ fputs ("@PLT", file);
+ break;
+
+ case LABEL_REF:
+ x = XEXP (x, 0);
+ /* FALLTHRU */
+ case CODE_LABEL:
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
+ assemble_name (asm_out_file, buf);
+ break;
+
+ case CONST_INT:
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
+ break;
+
+ case CONST:
+ /* This used to output parentheses around the expression,
+ but that does not work on the 386 (either ATT or BSD assembler). */
+ output_pic_addr_const (file, XEXP (x, 0), code);
+ break;
+
+ case CONST_DOUBLE:
+ if (GET_MODE (x) == VOIDmode)
+ {
+ /* We can use %d if the number is <32 bits and positive. */
+ if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0)
+ fprintf (file, "0x%lx%08lx",
+ (unsigned long) CONST_DOUBLE_HIGH (x),
+ (unsigned long) CONST_DOUBLE_LOW (x));
+ else
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
+ }
+ else
+ /* We can't handle floating point constants;
+ TARGET_PRINT_OPERAND must handle them. */
+ output_operand_lossage ("floating constant misused");
+ break;
+
+ case PLUS:
+ /* Some assemblers need integer constants to appear first. */
+ if (CONST_INT_P (XEXP (x, 0)))
+ {
+ output_pic_addr_const (file, XEXP (x, 0), code);
+ putc ('+', file);
+ output_pic_addr_const (file, XEXP (x, 1), code);
+ }
+ else
+ {
+ gcc_assert (CONST_INT_P (XEXP (x, 1)));
+ output_pic_addr_const (file, XEXP (x, 1), code);
+ putc ('+', file);
+ output_pic_addr_const (file, XEXP (x, 0), code);
+ }
+ break;
+
+ case MINUS:
+ if (!TARGET_MACHO)
+ putc (ASSEMBLER_DIALECT == ASM_INTEL ? '(' : '[', file);
+ output_pic_addr_const (file, XEXP (x, 0), code);
+ putc ('-', file);
+ output_pic_addr_const (file, XEXP (x, 1), code);
+ if (!TARGET_MACHO)
+ putc (ASSEMBLER_DIALECT == ASM_INTEL ? ')' : ']', file);
+ break;
+
+ case UNSPEC:
+ if (XINT (x, 1) == UNSPEC_STACK_CHECK)
+ {
+ bool f = i386_asm_output_addr_const_extra (file, x);
+ gcc_assert (f);
+ break;
+ }
+
+ gcc_assert (XVECLEN (x, 0) == 1);
+ output_pic_addr_const (file, XVECEXP (x, 0, 0), code);
+ switch (XINT (x, 1))
+ {
+ case UNSPEC_GOT:
+ fputs ("@GOT", file);
+ break;
+ case UNSPEC_GOTOFF:
+ fputs ("@GOTOFF", file);
+ break;
+ case UNSPEC_PLTOFF:
+ fputs ("@PLTOFF", file);
+ break;
+ case UNSPEC_PCREL:
+ fputs (ASSEMBLER_DIALECT == ASM_ATT ?
+ "(%rip)" : "[rip]", file);
+ break;
+ case UNSPEC_GOTPCREL:
+ fputs (ASSEMBLER_DIALECT == ASM_ATT ?
+ "@GOTPCREL(%rip)" : "@GOTPCREL[rip]", file);
+ break;
+ case UNSPEC_GOTTPOFF:
+ /* FIXME: This might be @TPOFF in Sun ld too. */
+ fputs ("@gottpoff", file);
+ break;
+ case UNSPEC_TPOFF:
+ fputs ("@tpoff", file);
+ break;
+ case UNSPEC_NTPOFF:
+ if (TARGET_64BIT)
+ fputs ("@tpoff", file);
+ else
+ fputs ("@ntpoff", file);
+ break;
+ case UNSPEC_DTPOFF:
+ fputs ("@dtpoff", file);
+ break;
+ case UNSPEC_GOTNTPOFF:
+ if (TARGET_64BIT)
+ fputs (ASSEMBLER_DIALECT == ASM_ATT ?
+ "@gottpoff(%rip)": "@gottpoff[rip]", file);
+ else
+ fputs ("@gotntpoff", file);
+ break;
+ case UNSPEC_INDNTPOFF:
+ fputs ("@indntpoff", file);
+ break;
+#if TARGET_MACHO
+ case UNSPEC_MACHOPIC_OFFSET:
+ putc ('-', file);
+ machopic_output_function_base_name (file);
+ break;
+#endif
+ default:
+ output_operand_lossage ("invalid UNSPEC as operand");
+ break;
+ }
+ break;
+
+ default:
+ output_operand_lossage ("invalid expression as operand");
+ }
+}
+
+/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
+ We need to emit DTP-relative relocations. */
+
+static void ATTRIBUTE_UNUSED
+i386_output_dwarf_dtprel (FILE *file, int size, rtx x)
+{
+ fputs (ASM_LONG, file);
+ output_addr_const (file, x);
+ fputs ("@dtpoff", file);
+ switch (size)
+ {
+ case 4:
+ break;
+ case 8:
+ fputs (", 0", file);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if X is a representation of the PIC register. This copes
+ with calls from ix86_find_base_term, where the register might have
+ been replaced by a cselib value. */
+
+static bool
+ix86_pic_register_p (rtx x)
+{
+ if (GET_CODE (x) == VALUE && CSELIB_VAL_PTR (x))
+ return (pic_offset_table_rtx
+ && rtx_equal_for_cselib_p (x, pic_offset_table_rtx));
+ else
+ return REG_P (x) && REGNO (x) == PIC_OFFSET_TABLE_REGNUM;
+}
+
+/* Helper function for ix86_delegitimize_address.
+ Attempt to delegitimize TLS local-exec accesses. */
+
+static rtx
+ix86_delegitimize_tls_address (rtx orig_x)
+{
+ rtx x = orig_x, unspec;
+ struct ix86_address addr;
+
+ if (!TARGET_TLS_DIRECT_SEG_REFS)
+ return orig_x;
+ if (MEM_P (x))
+ x = XEXP (x, 0);
+ if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
+ return orig_x;
+ if (ix86_decompose_address (x, &addr) == 0
+ || addr.seg != DEFAULT_TLS_SEG_REG
+ || addr.disp == NULL_RTX
+ || GET_CODE (addr.disp) != CONST)
+ return orig_x;
+ unspec = XEXP (addr.disp, 0);
+ if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
+ unspec = XEXP (unspec, 0);
+ if (GET_CODE (unspec) != UNSPEC || XINT (unspec, 1) != UNSPEC_NTPOFF)
+ return orig_x;
+ x = XVECEXP (unspec, 0, 0);
+ gcc_assert (GET_CODE (x) == SYMBOL_REF);
+ if (unspec != XEXP (addr.disp, 0))
+ x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.disp, 0), 1));
+ if (addr.index)
+ {
+ rtx idx = addr.index;
+ if (addr.scale != 1)
+ idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
+ x = gen_rtx_PLUS (Pmode, idx, x);
+ }
+ if (addr.base)
+ x = gen_rtx_PLUS (Pmode, addr.base, x);
+ if (MEM_P (orig_x))
+ x = replace_equiv_address_nv (orig_x, x);
+ return x;
+}
+
+/* In the name of slightly smaller debug output, and to cater to
+ general assembler lossage, recognize PIC+GOTOFF and turn it back
+ into a direct symbol reference.
+
+ On Darwin, this is necessary to avoid a crash, because Darwin
+ has a different PIC label for each routine but the DWARF debugging
+ information is not associated with any particular routine, so it's
+ necessary to remove references to the PIC label from RTL stored by
+ the DWARF output code. */
+
+static rtx
+ix86_delegitimize_address (rtx x)
+{
+ rtx orig_x = delegitimize_mem_from_attrs (x);
+ /* addend is NULL or some rtx if x is something+GOTOFF where
+ something doesn't include the PIC register. */
+ rtx addend = NULL_RTX;
+ /* reg_addend is NULL or a multiple of some register. */
+ rtx reg_addend = NULL_RTX;
+ /* const_addend is NULL or a const_int. */
+ rtx const_addend = NULL_RTX;
+ /* This is the result, or NULL. */
+ rtx result = NULL_RTX;
+
+ x = orig_x;
+
+ if (MEM_P (x))
+ x = XEXP (x, 0);
+
+ if (TARGET_64BIT)
+ {
+ if (GET_CODE (x) == CONST
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_MODE (XEXP (x, 0)) == Pmode
+ && CONST_INT_P (XEXP (XEXP (x, 0), 1))
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == UNSPEC
+ && XINT (XEXP (XEXP (x, 0), 0), 1) == UNSPEC_PCREL)
+ {
+ rtx x2 = XVECEXP (XEXP (XEXP (x, 0), 0), 0, 0);
+ x = gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 1), x2);
+ if (MEM_P (orig_x))
+ x = replace_equiv_address_nv (orig_x, x);
+ return x;
+ }
+
+ if (GET_CODE (x) == CONST
+ && GET_CODE (XEXP (x, 0)) == UNSPEC
+ && (XINT (XEXP (x, 0), 1) == UNSPEC_GOTPCREL
+ || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL)
+ && (MEM_P (orig_x) || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL))
+ {
+ x = XVECEXP (XEXP (x, 0), 0, 0);
+ if (GET_MODE (orig_x) != GET_MODE (x) && MEM_P (orig_x))
+ {
+ x = simplify_gen_subreg (GET_MODE (orig_x), x,
+ GET_MODE (x), 0);
+ if (x == NULL_RTX)
+ return orig_x;
+ }
+ return x;
+ }
+
+ if (ix86_cmodel != CM_MEDIUM_PIC && ix86_cmodel != CM_LARGE_PIC)
+ return ix86_delegitimize_tls_address (orig_x);
+
+ /* Fall thru into the code shared with -m32 for -mcmodel=large -fpic
+ and -mcmodel=medium -fpic. */
+ }
+
+ if (GET_CODE (x) != PLUS
+ || GET_CODE (XEXP (x, 1)) != CONST)
+ return ix86_delegitimize_tls_address (orig_x);
+
+ if (ix86_pic_register_p (XEXP (x, 0)))
+ /* %ebx + GOT/GOTOFF */
+ ;
+ else if (GET_CODE (XEXP (x, 0)) == PLUS)
+ {
+ /* %ebx + %reg * scale + GOT/GOTOFF */
+ reg_addend = XEXP (x, 0);
+ if (ix86_pic_register_p (XEXP (reg_addend, 0)))
+ reg_addend = XEXP (reg_addend, 1);
+ else if (ix86_pic_register_p (XEXP (reg_addend, 1)))
+ reg_addend = XEXP (reg_addend, 0);
+ else
+ {
+ reg_addend = NULL_RTX;
+ addend = XEXP (x, 0);
+ }
+ }
+ else
+ addend = XEXP (x, 0);
+
+ x = XEXP (XEXP (x, 1), 0);
+ if (GET_CODE (x) == PLUS
+ && CONST_INT_P (XEXP (x, 1)))
+ {
+ const_addend = XEXP (x, 1);
+ x = XEXP (x, 0);
+ }
+
+ if (GET_CODE (x) == UNSPEC
+ && ((XINT (x, 1) == UNSPEC_GOT && MEM_P (orig_x) && !addend)
+ || (XINT (x, 1) == UNSPEC_GOTOFF && !MEM_P (orig_x))
+ || (XINT (x, 1) == UNSPEC_PLTOFF && ix86_cmodel == CM_LARGE_PIC
+ && !MEM_P (orig_x) && !addend)))
+ result = XVECEXP (x, 0, 0);
+
+ if (!TARGET_64BIT && TARGET_MACHO && darwin_local_data_pic (x)
+ && !MEM_P (orig_x))
+ result = XVECEXP (x, 0, 0);
+
+ if (! result)
+ return ix86_delegitimize_tls_address (orig_x);
+
+ if (const_addend)
+ result = gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, result, const_addend));
+ if (reg_addend)
+ result = gen_rtx_PLUS (Pmode, reg_addend, result);
+ if (addend)
+ {
+ /* If the rest of original X doesn't involve the PIC register, add
+ addend and subtract pic_offset_table_rtx. This can happen e.g.
+ for code like:
+ leal (%ebx, %ecx, 4), %ecx
+ ...
+ movl foo@GOTOFF(%ecx), %edx
+ in which case we return (%ecx - %ebx) + foo. */
+ if (pic_offset_table_rtx)
+ result = gen_rtx_PLUS (Pmode, gen_rtx_MINUS (Pmode, copy_rtx (addend),
+ pic_offset_table_rtx),
+ result);
+ else
+ return orig_x;
+ }
+ if (GET_MODE (orig_x) != Pmode && MEM_P (orig_x))
+ {
+ result = simplify_gen_subreg (GET_MODE (orig_x), result, Pmode, 0);
+ if (result == NULL_RTX)
+ return orig_x;
+ }
+ return result;
+}
+
+/* If X is a machine specific address (i.e. a symbol or label being
+ referenced as a displacement from the GOT implemented using an
+ UNSPEC), then return the base term. Otherwise return X. */
+
+rtx
+ix86_find_base_term (rtx x)
+{
+ rtx term;
+
+ if (TARGET_64BIT)
+ {
+ if (GET_CODE (x) != CONST)
+ return x;
+ term = XEXP (x, 0);
+ if (GET_CODE (term) == PLUS
+ && (CONST_INT_P (XEXP (term, 1))
+ || GET_CODE (XEXP (term, 1)) == CONST_DOUBLE))
+ term = XEXP (term, 0);
+ if (GET_CODE (term) != UNSPEC
+ || (XINT (term, 1) != UNSPEC_GOTPCREL
+ && XINT (term, 1) != UNSPEC_PCREL))
+ return x;
+
+ return XVECEXP (term, 0, 0);
+ }
+
+ return ix86_delegitimize_address (x);
+}
+
+static void
+put_condition_code (enum rtx_code code, enum machine_mode mode, bool reverse,
+ bool fp, FILE *file)
+{
+ const char *suffix;
+
+ if (mode == CCFPmode || mode == CCFPUmode)
+ {
+ code = ix86_fp_compare_code_to_integer (code);
+ mode = CCmode;
+ }
+ if (reverse)
+ code = reverse_condition (code);
+
+ switch (code)
+ {
+ case EQ:
+ switch (mode)
+ {
+ case CCAmode:
+ suffix = "a";
+ break;
+
+ case CCCmode:
+ suffix = "c";
+ break;
+
+ case CCOmode:
+ suffix = "o";
+ break;
+
+ case CCSmode:
+ suffix = "s";
+ break;
+
+ default:
+ suffix = "e";
+ }
+ break;
+ case NE:
+ switch (mode)
+ {
+ case CCAmode:
+ suffix = "na";
+ break;
+
+ case CCCmode:
+ suffix = "nc";
+ break;
+
+ case CCOmode:
+ suffix = "no";
+ break;
+
+ case CCSmode:
+ suffix = "ns";
+ break;
+
+ default:
+ suffix = "ne";
+ }
+ break;
+ case GT:
+ gcc_assert (mode == CCmode || mode == CCNOmode || mode == CCGCmode);
+ suffix = "g";
+ break;
+ case GTU:
+ /* ??? Use "nbe" instead of "a" for fcmov lossage on some assemblers.
+ Those same assemblers have the same but opposite lossage on cmov. */
+ if (mode == CCmode)
+ suffix = fp ? "nbe" : "a";
+ else
+ gcc_unreachable ();
+ break;
+ case LT:
+ switch (mode)
+ {
+ case CCNOmode:
+ case CCGOCmode:
+ suffix = "s";
+ break;
+
+ case CCmode:
+ case CCGCmode:
+ suffix = "l";
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ case LTU:
+ if (mode == CCmode)
+ suffix = "b";
+ else if (mode == CCCmode)
+ suffix = "c";
+ else
+ gcc_unreachable ();
+ break;
+ case GE:
+ switch (mode)
+ {
+ case CCNOmode:
+ case CCGOCmode:
+ suffix = "ns";
+ break;
+
+ case CCmode:
+ case CCGCmode:
+ suffix = "ge";
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ case GEU:
+ if (mode == CCmode)
+ suffix = fp ? "nb" : "ae";
+ else if (mode == CCCmode)
+ suffix = "nc";
+ else
+ gcc_unreachable ();
+ break;
+ case LE:
+ gcc_assert (mode == CCmode || mode == CCGCmode || mode == CCNOmode);
+ suffix = "le";
+ break;
+ case LEU:
+ if (mode == CCmode)
+ suffix = "be";
+ else
+ gcc_unreachable ();
+ break;
+ case UNORDERED:
+ suffix = fp ? "u" : "p";
+ break;
+ case ORDERED:
+ suffix = fp ? "nu" : "np";
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ fputs (suffix, file);
+}
+
+/* Print the name of register X to FILE based on its machine mode and number.
+ If CODE is 'w', pretend the mode is HImode.
+ If CODE is 'b', pretend the mode is QImode.
+ If CODE is 'k', pretend the mode is SImode.
+ If CODE is 'q', pretend the mode is DImode.
+ If CODE is 'x', pretend the mode is V4SFmode.
+ If CODE is 't', pretend the mode is V8SFmode.
+ If CODE is 'g', pretend the mode is V16SFmode.
+ If CODE is 'h', pretend the reg is the 'high' byte register.
+ If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.
+ If CODE is 'd', duplicate the operand for AVX instruction.
+ */
+
+void
+print_reg (rtx x, int code, FILE *file)
+{
+ const char *reg;
+ unsigned int regno;
+ bool duplicated = code == 'd' && TARGET_AVX;
+
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('%', file);
+
+ if (x == pc_rtx)
+ {
+ gcc_assert (TARGET_64BIT);
+ fputs ("rip", file);
+ return;
+ }
+
+ regno = true_regnum (x);
+ gcc_assert (regno != ARG_POINTER_REGNUM
+ && regno != FRAME_POINTER_REGNUM
+ && regno != FLAGS_REG
+ && regno != FPSR_REG
+ && regno != FPCR_REG);
+
+ if (code == 'w' || MMX_REG_P (x))
+ code = 2;
+ else if (code == 'b')
+ code = 1;
+ else if (code == 'k')
+ code = 4;
+ else if (code == 'q')
+ code = 8;
+ else if (code == 'y')
+ code = 3;
+ else if (code == 'h')
+ code = 0;
+ else if (code == 'x')
+ code = 16;
+ else if (code == 't')
+ code = 32;
+ else if (code == 'g')
+ code = 64;
+ else
+ code = GET_MODE_SIZE (GET_MODE (x));
+
+ /* Irritatingly, AMD extended registers use different naming convention
+ from the normal registers: "r%d[bwd]" */
+ if (REX_INT_REGNO_P (regno))
+ {
+ gcc_assert (TARGET_64BIT);
+ putc ('r', file);
+ fprint_ul (file, regno - FIRST_REX_INT_REG + 8);
+ switch (code)
+ {
+ case 0:
+ error ("extended registers have no high halves");
+ break;
+ case 1:
+ putc ('b', file);
+ break;
+ case 2:
+ putc ('w', file);
+ break;
+ case 4:
+ putc ('d', file);
+ break;
+ case 8:
+ /* no suffix */
+ break;
+ default:
+ error ("unsupported operand size for extended register");
+ break;
+ }
+ return;
+ }
+
+ reg = NULL;
+ switch (code)
+ {
+ case 3:
+ if (STACK_TOP_P (x))
+ {
+ reg = "st(0)";
+ break;
+ }
+ /* FALLTHRU */
+ case 8:
+ case 4:
+ case 12:
+ if (! ANY_FP_REG_P (x))
+ putc (code == 8 && TARGET_64BIT ? 'r' : 'e', file);
+ /* FALLTHRU */
+ case 16:
+ case 2:
+ normal:
+ reg = hi_reg_name[regno];
+ break;
+ case 1:
+ if (regno >= ARRAY_SIZE (qi_reg_name))
+ goto normal;
+ reg = qi_reg_name[regno];
+ break;
+ case 0:
+ if (regno >= ARRAY_SIZE (qi_high_reg_name))
+ goto normal;
+ reg = qi_high_reg_name[regno];
+ break;
+ case 32:
+ if (SSE_REG_P (x))
+ {
+ gcc_assert (!duplicated);
+ putc ('y', file);
+ fputs (hi_reg_name[regno] + 1, file);
+ return;
+ }
+ case 64:
+ if (SSE_REG_P (x))
+ {
+ gcc_assert (!duplicated);
+ putc ('z', file);
+ fputs (hi_reg_name[REGNO (x)] + 1, file);
+ return;
+ }
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ fputs (reg, file);
+ if (duplicated)
+ {
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ fprintf (file, ", %%%s", reg);
+ else
+ fprintf (file, ", %s", reg);
+ }
+}
+
+/* Locate some local-dynamic symbol still in use by this function
+ so that we can print its name in some tls_local_dynamic_base
+ pattern. */
+
+static int
+get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
+{
+ rtx x = *px;
+
+ if (GET_CODE (x) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
+ {
+ cfun->machine->some_ld_name = XSTR (x, 0);
+ return 1;
+ }
+
+ return 0;
+}
+
+static const char *
+get_some_local_dynamic_name (void)
+{
+ rtx insn;
+
+ if (cfun->machine->some_ld_name)
+ return cfun->machine->some_ld_name;
+
+ for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
+ if (NONDEBUG_INSN_P (insn)
+ && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
+ return cfun->machine->some_ld_name;
+
+ return NULL;
+}
+
+/* Meaning of CODE:
+ L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
+ C -- print opcode suffix for set/cmov insn.
+ c -- like C, but print reversed condition
+ F,f -- likewise, but for floating-point.
+ O -- if HAVE_AS_IX86_CMOV_SUN_SYNTAX, expand to "w.", "l." or "q.",
+ otherwise nothing
+ R -- print embeded rounding and sae.
+ r -- print only sae.
+ z -- print the opcode suffix for the size of the current operand.
+ Z -- likewise, with special suffixes for x87 instructions.
+ * -- print a star (in certain assembler syntax)
+ A -- print an absolute memory reference.
+ E -- print address with DImode register names if TARGET_64BIT.
+ w -- print the operand as if it's a "word" (HImode) even if it isn't.
+ s -- print a shift double count, followed by the assemblers argument
+ delimiter.
+ b -- print the QImode name of the register for the indicated operand.
+ %b0 would print %al if operands[0] is reg 0.
+ w -- likewise, print the HImode name of the register.
+ k -- likewise, print the SImode name of the register.
+ q -- likewise, print the DImode name of the register.
+ x -- likewise, print the V4SFmode name of the register.
+ t -- likewise, print the V8SFmode name of the register.
+ g -- likewise, print the V16SFmode name of the register.
+ h -- print the QImode name for a "high" register, either ah, bh, ch or dh.
+ y -- print "st(0)" instead of "st" as a register.
+ d -- print duplicated register operand for AVX instruction.
+ D -- print condition for SSE cmp instruction.
+ P -- if PIC, print an @PLT suffix.
+ p -- print raw symbol name.
+ X -- don't print any sort of PIC '@' suffix for a symbol.
+ & -- print some in-use local-dynamic symbol name.
+ H -- print a memory address offset by 8; used for sse high-parts
+ Y -- print condition for XOP pcom* instruction.
+ + -- print a branch hint as 'cs' or 'ds' prefix
+ ; -- print a semicolon (after prefixes due to bug in older gas).
+ ~ -- print "i" if TARGET_AVX2, "f" otherwise.
+ @ -- print a segment register of thread base pointer load
+ ^ -- print addr32 prefix if TARGET_64BIT and Pmode != word_mode
+ */
+
+void
+ix86_print_operand (FILE *file, rtx x, int code)
+{
+ if (code)
+ {
+ switch (code)
+ {
+ case 'A':
+ switch (ASSEMBLER_DIALECT)
+ {
+ case ASM_ATT:
+ putc ('*', file);
+ break;
+
+ case ASM_INTEL:
+ /* Intel syntax. For absolute addresses, registers should not
+ be surrounded by braces. */
+ if (!REG_P (x))
+ {
+ putc ('[', file);
+ ix86_print_operand (file, x, 0);
+ putc (']', file);
+ return;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ ix86_print_operand (file, x, 0);
+ return;
+
+ case 'E':
+ /* Wrap address in an UNSPEC to declare special handling. */
+ if (TARGET_64BIT)
+ x = gen_rtx_UNSPEC (DImode, gen_rtvec (1, x), UNSPEC_LEA_ADDR);
+
+ output_address (x);
+ return;
+
+ case 'L':
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('l', file);
+ return;
+
+ case 'W':
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('w', file);
+ return;
+
+ case 'B':
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('b', file);
+ return;
+
+ case 'Q':
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('l', file);
+ return;
+
+ case 'S':
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('s', file);
+ return;
+
+ case 'T':
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('t', file);
+ return;
+
+ case 'O':
+#ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX
+ if (ASSEMBLER_DIALECT != ASM_ATT)
+ return;
+
+ switch (GET_MODE_SIZE (GET_MODE (x)))
+ {
+ case 2:
+ putc ('w', file);
+ break;
+
+ case 4:
+ putc ('l', file);
+ break;
+
+ case 8:
+ putc ('q', file);
+ break;
+
+ default:
+ output_operand_lossage
+ ("invalid operand size for operand code 'O'");
+ return;
+ }
+
+ putc ('.', file);
+#endif
+ return;
+
+ case 'z':
+ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
+ {
+ /* Opcodes don't get size suffixes if using Intel opcodes. */
+ if (ASSEMBLER_DIALECT == ASM_INTEL)
+ return;
+
+ switch (GET_MODE_SIZE (GET_MODE (x)))
+ {
+ case 1:
+ putc ('b', file);
+ return;
+
+ case 2:
+ putc ('w', file);
+ return;
+
+ case 4:
+ putc ('l', file);
+ return;
+
+ case 8:
+ putc ('q', file);
+ return;
+
+ default:
+ output_operand_lossage
+ ("invalid operand size for operand code 'z'");
+ return;
+ }
+ }
+
+ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
+ warning
+ (0, "non-integer operand used with operand code 'z'");
+ /* FALLTHRU */
+
+ case 'Z':
+ /* 387 opcodes don't get size suffixes if using Intel opcodes. */
+ if (ASSEMBLER_DIALECT == ASM_INTEL)
+ return;
+
+ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
+ {
+ switch (GET_MODE_SIZE (GET_MODE (x)))
+ {
+ case 2:
+#ifdef HAVE_AS_IX86_FILDS
+ putc ('s', file);
+#endif
+ return;
+
+ case 4:
+ putc ('l', file);
+ return;
+
+ case 8:
+#ifdef HAVE_AS_IX86_FILDQ
+ putc ('q', file);
+#else
+ fputs ("ll", file);
+#endif
+ return;
+
+ default:
+ break;
+ }
+ }
+ else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
+ {
+ /* 387 opcodes don't get size suffixes
+ if the operands are registers. */
+ if (STACK_REG_P (x))
+ return;
+
+ switch (GET_MODE_SIZE (GET_MODE (x)))
+ {
+ case 4:
+ putc ('s', file);
+ return;
+
+ case 8:
+ putc ('l', file);
+ return;
+
+ case 12:
+ case 16:
+ putc ('t', file);
+ return;
+
+ default:
+ break;
+ }
+ }
+ else
+ {
+ output_operand_lossage
+ ("invalid operand type used with operand code 'Z'");
+ return;
+ }
+
+ output_operand_lossage
+ ("invalid operand size for operand code 'Z'");
+ return;
+
+ case 'd':
+ case 'b':
+ case 'w':
+ case 'k':
+ case 'q':
+ case 'h':
+ case 't':
+ case 'g':
+ case 'y':
+ case 'x':
+ case 'X':
+ case 'P':
+ case 'p':
+ break;
+
+ case 's':
+ if (CONST_INT_P (x) || ! SHIFT_DOUBLE_OMITS_COUNT)
+ {
+ ix86_print_operand (file, x, 0);
+ fputs (", ", file);
+ }
+ return;
+
+ case 'Y':
+ switch (GET_CODE (x))
+ {
+ case NE:
+ fputs ("neq", file);
+ break;
+ case EQ:
+ fputs ("eq", file);
+ break;
+ case GE:
+ case GEU:
+ fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "ge" : "unlt", file);
+ break;
+ case GT:
+ case GTU:
+ fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "gt" : "unle", file);
+ break;
+ case LE:
+ case LEU:
+ fputs ("le", file);
+ break;
+ case LT:
+ case LTU:
+ fputs ("lt", file);
+ break;
+ case UNORDERED:
+ fputs ("unord", file);
+ break;
+ case ORDERED:
+ fputs ("ord", file);
+ break;
+ case UNEQ:
+ fputs ("ueq", file);
+ break;
+ case UNGE:
+ fputs ("nlt", file);
+ break;
+ case UNGT:
+ fputs ("nle", file);
+ break;
+ case UNLE:
+ fputs ("ule", file);
+ break;
+ case UNLT:
+ fputs ("ult", file);
+ break;
+ case LTGT:
+ fputs ("une", file);
+ break;
+ default:
+ output_operand_lossage ("operand is not a condition code, "
+ "invalid operand code 'Y'");
+ return;
+ }
+ return;
+
+ case 'D':
+ /* Little bit of braindamage here. The SSE compare instructions
+ does use completely different names for the comparisons that the
+ fp conditional moves. */
+ switch (GET_CODE (x))
+ {
+ case UNEQ:
+ if (TARGET_AVX)
+ {
+ fputs ("eq_us", file);
+ break;
+ }
+ case EQ:
+ fputs ("eq", file);
+ break;
+ case UNLT:
+ if (TARGET_AVX)
+ {
+ fputs ("nge", file);
+ break;
+ }
+ case LT:
+ fputs ("lt", file);
+ break;
+ case UNLE:
+ if (TARGET_AVX)
+ {
+ fputs ("ngt", file);
+ break;
+ }
+ case LE:
+ fputs ("le", file);
+ break;
+ case UNORDERED:
+ fputs ("unord", file);
+ break;
+ case LTGT:
+ if (TARGET_AVX)
+ {
+ fputs ("neq_oq", file);
+ break;
+ }
+ case NE:
+ fputs ("neq", file);
+ break;
+ case GE:
+ if (TARGET_AVX)
+ {
+ fputs ("ge", file);
+ break;
+ }
+ case UNGE:
+ fputs ("nlt", file);
+ break;
+ case GT:
+ if (TARGET_AVX)
+ {
+ fputs ("gt", file);
+ break;
+ }
+ case UNGT:
+ fputs ("nle", file);
+ break;
+ case ORDERED:
+ fputs ("ord", file);
+ break;
+ default:
+ output_operand_lossage ("operand is not a condition code, "
+ "invalid operand code 'D'");
+ return;
+ }
+ return;
+
+ case 'F':
+ case 'f':
+#ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('.', file);
+#endif
+
+ case 'C':
+ case 'c':
+ if (!COMPARISON_P (x))
+ {
+ output_operand_lossage ("operand is not a condition code, "
+ "invalid operand code '%c'", code);
+ return;
+ }
+ put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)),
+ code == 'c' || code == 'f',
+ code == 'F' || code == 'f',
+ file);
+ return;
+
+ case 'H':
+ if (!offsettable_memref_p (x))
+ {
+ output_operand_lossage ("operand is not an offsettable memory "
+ "reference, invalid operand code 'H'");
+ return;
+ }
+ /* It doesn't actually matter what mode we use here, as we're
+ only going to use this for printing. */
+ x = adjust_address_nv (x, DImode, 8);
+ /* Output 'qword ptr' for intel assembler dialect. */
+ if (ASSEMBLER_DIALECT == ASM_INTEL)
+ code = 'q';
+ break;
+
+ case 'K':
+ gcc_assert (CONST_INT_P (x));
+
+ if (INTVAL (x) & IX86_HLE_ACQUIRE)
+#ifdef HAVE_AS_IX86_HLE
+ fputs ("xacquire ", file);
+#else
+ fputs ("\n" ASM_BYTE "0xf2\n\t", file);
+#endif
+ else if (INTVAL (x) & IX86_HLE_RELEASE)
+#ifdef HAVE_AS_IX86_HLE
+ fputs ("xrelease ", file);
+#else
+ fputs ("\n" ASM_BYTE "0xf3\n\t", file);
+#endif
+ /* We do not want to print value of the operand. */
+ return;
+
+ case 'N':
+ if (x == const0_rtx || x == CONST0_RTX (GET_MODE (x)))
+ fputs ("{z}", file);
+ return;
+
+ case 'r':
+ gcc_assert (CONST_INT_P (x));
+ gcc_assert (INTVAL (x) == ROUND_SAE);
+
+ if (ASSEMBLER_DIALECT == ASM_INTEL)
+ fputs (", ", file);
+
+ fputs ("{sae}", file);
+
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ fputs (", ", file);
+
+ return;
+
+ case 'R':
+ gcc_assert (CONST_INT_P (x));
+
+ if (ASSEMBLER_DIALECT == ASM_INTEL)
+ fputs (", ", file);
+
+ switch (INTVAL (x))
+ {
+ case ROUND_NEAREST_INT | ROUND_SAE:
+ fputs ("{rn-sae}", file);
+ break;
+ case ROUND_NEG_INF | ROUND_SAE:
+ fputs ("{rd-sae}", file);
+ break;
+ case ROUND_POS_INF | ROUND_SAE:
+ fputs ("{ru-sae}", file);
+ break;
+ case ROUND_ZERO | ROUND_SAE:
+ fputs ("{rz-sae}", file);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ fputs (", ", file);
+
+ return;
+
+ case '*':
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('*', file);
+ return;
+
+ case '&':
+ {
+ const char *name = get_some_local_dynamic_name ();
+ if (name == NULL)
+ output_operand_lossage ("'%%&' used without any "
+ "local dynamic TLS references");
+ else
+ assemble_name (file, name);
+ return;
+ }
+
+ case '+':
+ {
+ rtx x;
+
+ if (!optimize
+ || optimize_function_for_size_p (cfun)
+ || !TARGET_BRANCH_PREDICTION_HINTS)
+ return;
+
+ x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
+ if (x)
+ {
+ int pred_val = XINT (x, 0);
+
+ if (pred_val < REG_BR_PROB_BASE * 45 / 100
+ || pred_val > REG_BR_PROB_BASE * 55 / 100)
+ {
+ bool taken = pred_val > REG_BR_PROB_BASE / 2;
+ bool cputaken
+ = final_forward_branch_p (current_output_insn) == 0;
+
+ /* Emit hints only in the case default branch prediction
+ heuristics would fail. */
+ if (taken != cputaken)
+ {
+ /* We use 3e (DS) prefix for taken branches and
+ 2e (CS) prefix for not taken branches. */
+ if (taken)
+ fputs ("ds ; ", file);
+ else
+ fputs ("cs ; ", file);
+ }
+ }
+ }
+ return;
+ }
+
+ case ';':
+#ifndef HAVE_AS_IX86_REP_LOCK_PREFIX
+ putc (';', file);
+#endif
+ return;
+
+ case '@':
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('%', file);
+
+ /* The kernel uses a different segment register for performance
+ reasons; a system call would not have to trash the userspace
+ segment register, which would be expensive. */
+ if (TARGET_64BIT && ix86_cmodel != CM_KERNEL)
+ fputs ("fs", file);
+ else
+ fputs ("gs", file);
+ return;
+
+ case '~':
+ putc (TARGET_AVX2 ? 'i' : 'f', file);
+ return;
+
+ case '^':
+ if (TARGET_64BIT && Pmode != word_mode)
+ fputs ("addr32 ", file);
+ return;
+
+ default:
+ output_operand_lossage ("invalid operand code '%c'", code);
+ }
+ }
+
+ if (REG_P (x))
+ print_reg (x, code, file);
+
+ else if (MEM_P (x))
+ {
+ /* No `byte ptr' prefix for call instructions or BLKmode operands. */
+ if (ASSEMBLER_DIALECT == ASM_INTEL && code != 'X' && code != 'P'
+ && GET_MODE (x) != BLKmode)
+ {
+ const char * size;
+ switch (GET_MODE_SIZE (GET_MODE (x)))
+ {
+ case 1: size = "BYTE"; break;
+ case 2: size = "WORD"; break;
+ case 4: size = "DWORD"; break;
+ case 8: size = "QWORD"; break;
+ case 12: size = "TBYTE"; break;
+ case 16:
+ if (GET_MODE (x) == XFmode)
+ size = "TBYTE";
+ else
+ size = "XMMWORD";
+ break;
+ case 32: size = "YMMWORD"; break;
+ case 64: size = "ZMMWORD"; break;
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Check for explicit size override (codes 'b', 'w', 'k',
+ 'q' and 'x') */
+ if (code == 'b')
+ size = "BYTE";
+ else if (code == 'w')
+ size = "WORD";
+ else if (code == 'k')
+ size = "DWORD";
+ else if (code == 'q')
+ size = "QWORD";
+ else if (code == 'x')
+ size = "XMMWORD";
+
+ fputs (size, file);
+ fputs (" PTR ", file);
+ }
+
+ x = XEXP (x, 0);
+ /* Avoid (%rip) for call operands. */
+ if (CONSTANT_ADDRESS_P (x) && code == 'P'
+ && !CONST_INT_P (x))
+ output_addr_const (file, x);
+ else if (this_is_asm_operands && ! address_operand (x, VOIDmode))
+ output_operand_lossage ("invalid constraints for operand");
+ else
+ output_address (x);
+ }
+
+ else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode)
+ {
+ REAL_VALUE_TYPE r;
+ long l;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, x);
+ REAL_VALUE_TO_TARGET_SINGLE (r, l);
+
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('$', file);
+ /* Sign extend 32bit SFmode immediate to 8 bytes. */
+ if (code == 'q')
+ fprintf (file, "0x%08" HOST_LONG_LONG_FORMAT "x",
+ (unsigned long long) (int) l);
+ else
+ fprintf (file, "0x%08x", (unsigned int) l);
+ }
+
+ else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
+ {
+ REAL_VALUE_TYPE r;
+ long l[2];
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, x);
+ REAL_VALUE_TO_TARGET_DOUBLE (r, l);
+
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('$', file);
+ fprintf (file, "0x%lx%08lx", l[1] & 0xffffffff, l[0] & 0xffffffff);
+ }
+
+ /* These float cases don't actually occur as immediate operands. */
+ else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode)
+ {
+ char dstr[30];
+
+ real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1);
+ fputs (dstr, file);
+ }
+
+ else
+ {
+ /* We have patterns that allow zero sets of memory, for instance.
+ In 64-bit mode, we should probably support all 8-byte vectors,
+ since we can in fact encode that into an immediate. */
+ if (GET_CODE (x) == CONST_VECTOR)
+ {
+ gcc_assert (x == CONST0_RTX (GET_MODE (x)));
+ x = const0_rtx;
+ }
+
+ if (code != 'P' && code != 'p')
+ {
+ if (CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE)
+ {
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('$', file);
+ }
+ else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF
+ || GET_CODE (x) == LABEL_REF)
+ {
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('$', file);
+ else
+ fputs ("OFFSET FLAT:", file);
+ }
+ }
+ if (CONST_INT_P (x))
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
+ else if (flag_pic || MACHOPIC_INDIRECT)
+ output_pic_addr_const (file, x, code);
+ else
+ output_addr_const (file, x);
+ }
+}
+
+static bool
+ix86_print_operand_punct_valid_p (unsigned char code)
+{
+ return (code == '@' || code == '*' || code == '+' || code == '&'
+ || code == ';' || code == '~' || code == '^');
+}
+
+/* Print a memory operand whose address is ADDR. */
+
+static void
+ix86_print_operand_address (FILE *file, rtx addr)
+{
+ struct ix86_address parts;
+ rtx base, index, disp;
+ int scale;
+ int ok;
+ bool vsib = false;
+ int code = 0;
+
+ if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_VSIBADDR)
+ {
+ ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts);
+ gcc_assert (parts.index == NULL_RTX);
+ parts.index = XVECEXP (addr, 0, 1);
+ parts.scale = INTVAL (XVECEXP (addr, 0, 2));
+ addr = XVECEXP (addr, 0, 0);
+ vsib = true;
+ }
+ else if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_LEA_ADDR)
+ {
+ gcc_assert (TARGET_64BIT);
+ ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts);
+ code = 'q';
+ }
+ else
+ ok = ix86_decompose_address (addr, &parts);
+
+ gcc_assert (ok);
+
+ base = parts.base;
+ index = parts.index;
+ disp = parts.disp;
+ scale = parts.scale;
+
+ switch (parts.seg)
+ {
+ case SEG_DEFAULT:
+ break;
+ case SEG_FS:
+ case SEG_GS:
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ putc ('%', file);
+ fputs ((parts.seg == SEG_FS ? "fs:" : "gs:"), file);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Use one byte shorter RIP relative addressing for 64bit mode. */
+ if (TARGET_64BIT && !base && !index)
+ {
+ rtx symbol = disp;
+
+ if (GET_CODE (disp) == CONST
+ && GET_CODE (XEXP (disp, 0)) == PLUS
+ && CONST_INT_P (XEXP (XEXP (disp, 0), 1)))
+ symbol = XEXP (XEXP (disp, 0), 0);
+
+ if (GET_CODE (symbol) == LABEL_REF
+ || (GET_CODE (symbol) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (symbol) == 0))
+ base = pc_rtx;
+ }
+ if (!base && !index)
+ {
+ /* Displacement only requires special attention. */
+
+ if (CONST_INT_P (disp))
+ {
+ if (ASSEMBLER_DIALECT == ASM_INTEL && parts.seg == SEG_DEFAULT)
+ fputs ("ds:", file);
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (disp));
+ }
+ else if (flag_pic)
+ output_pic_addr_const (file, disp, 0);
+ else
+ output_addr_const (file, disp);
+ }
+ else
+ {
+ /* Print SImode register names to force addr32 prefix. */
+ if (SImode_address_operand (addr, VOIDmode))
+ {
+#ifdef ENABLE_CHECKING
+ gcc_assert (TARGET_64BIT);
+ switch (GET_CODE (addr))
+ {
+ case SUBREG:
+ gcc_assert (GET_MODE (addr) == SImode);
+ gcc_assert (GET_MODE (SUBREG_REG (addr)) == DImode);
+ break;
+ case ZERO_EXTEND:
+ case AND:
+ gcc_assert (GET_MODE (addr) == DImode);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+#endif
+ gcc_assert (!code);
+ code = 'k';
+ }
+ else if (code == 0
+ && TARGET_X32
+ && disp
+ && CONST_INT_P (disp)
+ && INTVAL (disp) < -16*1024*1024)
+ {
+ /* X32 runs in 64-bit mode, where displacement, DISP, in
+ address DISP(%r64), is encoded as 32-bit immediate sign-
+ extended from 32-bit to 64-bit. For -0x40000300(%r64),
+ address is %r64 + 0xffffffffbffffd00. When %r64 <
+ 0x40000300, like 0x37ffe064, address is 0xfffffffff7ffdd64,
+ which is invalid for x32. The correct address is %r64
+ - 0x40000300 == 0xf7ffdd64. To properly encode
+ -0x40000300(%r64) for x32, we zero-extend negative
+ displacement by forcing addr32 prefix which truncates
+ 0xfffffffff7ffdd64 to 0xf7ffdd64. In theory, we should
+ zero-extend all negative displacements, including -1(%rsp).
+ However, for small negative displacements, sign-extension
+ won't cause overflow. We only zero-extend negative
+ displacements if they < -16*1024*1024, which is also used
+ to check legitimate address displacements for PIC. */
+ code = 'k';
+ }
+
+ if (ASSEMBLER_DIALECT == ASM_ATT)
+ {
+ if (disp)
+ {
+ if (flag_pic)
+ output_pic_addr_const (file, disp, 0);
+ else if (GET_CODE (disp) == LABEL_REF)
+ output_asm_label (disp);
+ else
+ output_addr_const (file, disp);
+ }
+
+ putc ('(', file);
+ if (base)
+ print_reg (base, code, file);
+ if (index)
+ {
+ putc (',', file);
+ print_reg (index, vsib ? 0 : code, file);
+ if (scale != 1 || vsib)
+ fprintf (file, ",%d", scale);
+ }
+ putc (')', file);
+ }
+ else
+ {
+ rtx offset = NULL_RTX;
+
+ if (disp)
+ {
+ /* Pull out the offset of a symbol; print any symbol itself. */
+ if (GET_CODE (disp) == CONST
+ && GET_CODE (XEXP (disp, 0)) == PLUS
+ && CONST_INT_P (XEXP (XEXP (disp, 0), 1)))
+ {
+ offset = XEXP (XEXP (disp, 0), 1);
+ disp = gen_rtx_CONST (VOIDmode,
+ XEXP (XEXP (disp, 0), 0));
+ }
+
+ if (flag_pic)
+ output_pic_addr_const (file, disp, 0);
+ else if (GET_CODE (disp) == LABEL_REF)
+ output_asm_label (disp);
+ else if (CONST_INT_P (disp))
+ offset = disp;
+ else
+ output_addr_const (file, disp);
+ }
+
+ putc ('[', file);
+ if (base)
+ {
+ print_reg (base, code, file);
+ if (offset)
+ {
+ if (INTVAL (offset) >= 0)
+ putc ('+', file);
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset));
+ }
+ }
+ else if (offset)
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset));
+ else
+ putc ('0', file);
+
+ if (index)
+ {
+ putc ('+', file);
+ print_reg (index, vsib ? 0 : code, file);
+ if (scale != 1 || vsib)
+ fprintf (file, "*%d", scale);
+ }
+ putc (']', file);
+ }
+ }
+}
+
+/* Implementation of TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
+
+static bool
+i386_asm_output_addr_const_extra (FILE *file, rtx x)
+{
+ rtx op;
+
+ if (GET_CODE (x) != UNSPEC)
+ return false;
+
+ op = XVECEXP (x, 0, 0);
+ switch (XINT (x, 1))
+ {
+ case UNSPEC_GOTTPOFF:
+ output_addr_const (file, op);
+ /* FIXME: This might be @TPOFF in Sun ld. */
+ fputs ("@gottpoff", file);
+ break;
+ case UNSPEC_TPOFF:
+ output_addr_const (file, op);
+ fputs ("@tpoff", file);
+ break;
+ case UNSPEC_NTPOFF:
+ output_addr_const (file, op);
+ if (TARGET_64BIT)
+ fputs ("@tpoff", file);
+ else
+ fputs ("@ntpoff", file);
+ break;
+ case UNSPEC_DTPOFF:
+ output_addr_const (file, op);
+ fputs ("@dtpoff", file);
+ break;
+ case UNSPEC_GOTNTPOFF:
+ output_addr_const (file, op);
+ if (TARGET_64BIT)
+ fputs (ASSEMBLER_DIALECT == ASM_ATT ?
+ "@gottpoff(%rip)" : "@gottpoff[rip]", file);
+ else
+ fputs ("@gotntpoff", file);
+ break;
+ case UNSPEC_INDNTPOFF:
+ output_addr_const (file, op);
+ fputs ("@indntpoff", file);
+ break;
+#if TARGET_MACHO
+ case UNSPEC_MACHOPIC_OFFSET:
+ output_addr_const (file, op);
+ putc ('-', file);
+ machopic_output_function_base_name (file);
+ break;
+#endif
+
+ case UNSPEC_STACK_CHECK:
+ {
+ int offset;
+
+ gcc_assert (flag_split_stack);
+
+#ifdef TARGET_THREAD_SPLIT_STACK_OFFSET
+ offset = TARGET_THREAD_SPLIT_STACK_OFFSET;
+#else
+ gcc_unreachable ();
+#endif
+
+ fprintf (file, "%s:%d", TARGET_64BIT ? "%fs" : "%gs", offset);
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+/* Split one or more double-mode RTL references into pairs of half-mode
+ references. The RTL can be REG, offsettable MEM, integer constant, or
+ CONST_DOUBLE. "operands" is a pointer to an array of double-mode RTLs to
+ split and "num" is its length. lo_half and hi_half are output arrays
+ that parallel "operands". */
+
+void
+split_double_mode (enum machine_mode mode, rtx operands[],
+ int num, rtx lo_half[], rtx hi_half[])
+{
+ enum machine_mode half_mode;
+ unsigned int byte;
+
+ switch (mode)
+ {
+ case TImode:
+ half_mode = DImode;
+ break;
+ case DImode:
+ half_mode = SImode;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ byte = GET_MODE_SIZE (half_mode);
+
+ while (num--)
+ {
+ rtx op = operands[num];
+
+ /* simplify_subreg refuse to split volatile memory addresses,
+ but we still have to handle it. */
+ if (MEM_P (op))
+ {
+ lo_half[num] = adjust_address (op, half_mode, 0);
+ hi_half[num] = adjust_address (op, half_mode, byte);
+ }
+ else
+ {
+ lo_half[num] = simplify_gen_subreg (half_mode, op,
+ GET_MODE (op) == VOIDmode
+ ? mode : GET_MODE (op), 0);
+ hi_half[num] = simplify_gen_subreg (half_mode, op,
+ GET_MODE (op) == VOIDmode
+ ? mode : GET_MODE (op), byte);
+ }
+ }
+}
+
+/* Output code to perform a 387 binary operation in INSN, one of PLUS,
+ MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3]
+ is the expression of the binary operation. The output may either be
+ emitted here, or returned to the caller, like all output_* functions.
+
+ There is no guarantee that the operands are the same mode, as they
+ might be within FLOAT or FLOAT_EXTEND expressions. */
+
+#ifndef SYSV386_COMPAT
+/* Set to 1 for compatibility with brain-damaged assemblers. No-one
+ wants to fix the assemblers because that causes incompatibility
+ with gcc. No-one wants to fix gcc because that causes
+ incompatibility with assemblers... You can use the option of
+ -DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */
+#define SYSV386_COMPAT 1
+#endif
+
+const char *
+output_387_binary_op (rtx insn, rtx *operands)
+{
+ static char buf[40];
+ const char *p;
+ const char *ssep;
+ int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]) || SSE_REG_P (operands[2]);
+
+#ifdef ENABLE_CHECKING
+ /* Even if we do not want to check the inputs, this documents input
+ constraints. Which helps in understanding the following code. */
+ if (STACK_REG_P (operands[0])
+ && ((REG_P (operands[1])
+ && REGNO (operands[0]) == REGNO (operands[1])
+ && (STACK_REG_P (operands[2]) || MEM_P (operands[2])))
+ || (REG_P (operands[2])
+ && REGNO (operands[0]) == REGNO (operands[2])
+ && (STACK_REG_P (operands[1]) || MEM_P (operands[1]))))
+ && (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2])))
+ ; /* ok */
+ else
+ gcc_assert (is_sse);
+#endif
+
+ switch (GET_CODE (operands[3]))
+ {
+ case PLUS:
+ if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
+ || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
+ p = "fiadd";
+ else
+ p = "fadd";
+ ssep = "vadd";
+ break;
+
+ case MINUS:
+ if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
+ || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
+ p = "fisub";
+ else
+ p = "fsub";
+ ssep = "vsub";
+ break;
+
+ case MULT:
+ if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
+ || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
+ p = "fimul";
+ else
+ p = "fmul";
+ ssep = "vmul";
+ break;
+
+ case DIV:
+ if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
+ || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
+ p = "fidiv";
+ else
+ p = "fdiv";
+ ssep = "vdiv";
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (is_sse)
+ {
+ if (TARGET_AVX)
+ {
+ strcpy (buf, ssep);
+ if (GET_MODE (operands[0]) == SFmode)
+ strcat (buf, "ss\t{%2, %1, %0|%0, %1, %2}");
+ else
+ strcat (buf, "sd\t{%2, %1, %0|%0, %1, %2}");
+ }
+ else
+ {
+ strcpy (buf, ssep + 1);
+ if (GET_MODE (operands[0]) == SFmode)
+ strcat (buf, "ss\t{%2, %0|%0, %2}");
+ else
+ strcat (buf, "sd\t{%2, %0|%0, %2}");
+ }
+ return buf;
+ }
+ strcpy (buf, p);
+
+ switch (GET_CODE (operands[3]))
+ {
+ case MULT:
+ case PLUS:
+ if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]))
+ {
+ rtx temp = operands[2];
+ operands[2] = operands[1];
+ operands[1] = temp;
+ }
+
+ /* know operands[0] == operands[1]. */
+
+ if (MEM_P (operands[2]))
+ {
+ p = "%Z2\t%2";
+ break;
+ }
+
+ if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
+ {
+ if (STACK_TOP_P (operands[0]))
+ /* How is it that we are storing to a dead operand[2]?
+ Well, presumably operands[1] is dead too. We can't
+ store the result to st(0) as st(0) gets popped on this
+ instruction. Instead store to operands[2] (which I
+ think has to be st(1)). st(1) will be popped later.
+ gcc <= 2.8.1 didn't have this check and generated
+ assembly code that the Unixware assembler rejected. */
+ p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */
+ else
+ p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */
+ break;
+ }
+
+ if (STACK_TOP_P (operands[0]))
+ p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */
+ else
+ p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */
+ break;
+
+ case MINUS:
+ case DIV:
+ if (MEM_P (operands[1]))
+ {
+ p = "r%Z1\t%1";
+ break;
+ }
+
+ if (MEM_P (operands[2]))
+ {
+ p = "%Z2\t%2";
+ break;
+ }
+
+ if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
+ {
+#if SYSV386_COMPAT
+ /* The SystemV/386 SVR3.2 assembler, and probably all AT&T
+ derived assemblers, confusingly reverse the direction of
+ the operation for fsub{r} and fdiv{r} when the
+ destination register is not st(0). The Intel assembler
+ doesn't have this brain damage. Read !SYSV386_COMPAT to
+ figure out what the hardware really does. */
+ if (STACK_TOP_P (operands[0]))
+ p = "{p\t%0, %2|rp\t%2, %0}";
+ else
+ p = "{rp\t%2, %0|p\t%0, %2}";
+#else
+ if (STACK_TOP_P (operands[0]))
+ /* As above for fmul/fadd, we can't store to st(0). */
+ p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */
+ else
+ p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */
+#endif
+ break;
+ }
+
+ if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
+ {
+#if SYSV386_COMPAT
+ if (STACK_TOP_P (operands[0]))
+ p = "{rp\t%0, %1|p\t%1, %0}";
+ else
+ p = "{p\t%1, %0|rp\t%0, %1}";
+#else
+ if (STACK_TOP_P (operands[0]))
+ p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */
+ else
+ p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */
+#endif
+ break;
+ }
+
+ if (STACK_TOP_P (operands[0]))
+ {
+ if (STACK_TOP_P (operands[1]))
+ p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */
+ else
+ p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */
+ break;
+ }
+ else if (STACK_TOP_P (operands[1]))
+ {
+#if SYSV386_COMPAT
+ p = "{\t%1, %0|r\t%0, %1}";
+#else
+ p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */
+#endif
+ }
+ else
+ {
+#if SYSV386_COMPAT
+ p = "{r\t%2, %0|\t%0, %2}";
+#else
+ p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */
+#endif
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ strcat (buf, p);
+ return buf;
+}
+
+/* Check if a 256bit AVX register is referenced inside of EXP. */
+
+static int
+ix86_check_avx256_register (rtx *pexp, void *data ATTRIBUTE_UNUSED)
+{
+ rtx exp = *pexp;
+
+ if (GET_CODE (exp) == SUBREG)
+ exp = SUBREG_REG (exp);
+
+ if (REG_P (exp)
+ && VALID_AVX256_REG_OR_OI_MODE (GET_MODE (exp)))
+ return 1;
+
+ return 0;
+}
+
+/* Return needed mode for entity in optimize_mode_switching pass. */
+
+static int
+ix86_avx_u128_mode_needed (rtx insn)
+{
+ if (CALL_P (insn))
+ {
+ rtx link;
+
+ /* Needed mode is set to AVX_U128_CLEAN if there are
+ no 256bit modes used in function arguments. */
+ for (link = CALL_INSN_FUNCTION_USAGE (insn);
+ link;
+ link = XEXP (link, 1))
+ {
+ if (GET_CODE (XEXP (link, 0)) == USE)
+ {
+ rtx arg = XEXP (XEXP (link, 0), 0);
+
+ if (ix86_check_avx256_register (&arg, NULL))
+ return AVX_U128_DIRTY;
+ }
+ }
+
+ return AVX_U128_CLEAN;
+ }
+
+ /* Require DIRTY mode if a 256bit AVX register is referenced. Hardware
+ changes state only when a 256bit register is written to, but we need
+ to prevent the compiler from moving optimal insertion point above
+ eventual read from 256bit register. */
+ if (for_each_rtx (&PATTERN (insn), ix86_check_avx256_register, NULL))
+ return AVX_U128_DIRTY;
+
+ return AVX_U128_ANY;
+}
+
+/* Return mode that i387 must be switched into
+ prior to the execution of insn. */
+
+static int
+ix86_i387_mode_needed (int entity, rtx insn)
+{
+ enum attr_i387_cw mode;
+
+ /* The mode UNINITIALIZED is used to store control word after a
+ function call or ASM pattern. The mode ANY specify that function
+ has no requirements on the control word and make no changes in the
+ bits we are interested in. */
+
+ if (CALL_P (insn)
+ || (NONJUMP_INSN_P (insn)
+ && (asm_noperands (PATTERN (insn)) >= 0
+ || GET_CODE (PATTERN (insn)) == ASM_INPUT)))
+ return I387_CW_UNINITIALIZED;
+
+ if (recog_memoized (insn) < 0)
+ return I387_CW_ANY;
+
+ mode = get_attr_i387_cw (insn);
+
+ switch (entity)
+ {
+ case I387_TRUNC:
+ if (mode == I387_CW_TRUNC)
+ return mode;
+ break;
+
+ case I387_FLOOR:
+ if (mode == I387_CW_FLOOR)
+ return mode;
+ break;
+
+ case I387_CEIL:
+ if (mode == I387_CW_CEIL)
+ return mode;
+ break;
+
+ case I387_MASK_PM:
+ if (mode == I387_CW_MASK_PM)
+ return mode;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return I387_CW_ANY;
+}
+
+/* Return mode that entity must be switched into
+ prior to the execution of insn. */
+
+int
+ix86_mode_needed (int entity, rtx insn)
+{
+ switch (entity)
+ {
+ case AVX_U128:
+ return ix86_avx_u128_mode_needed (insn);
+ case I387_TRUNC:
+ case I387_FLOOR:
+ case I387_CEIL:
+ case I387_MASK_PM:
+ return ix86_i387_mode_needed (entity, insn);
+ default:
+ gcc_unreachable ();
+ }
+ return 0;
+}
+
+/* Check if a 256bit AVX register is referenced in stores. */
+
+static void
+ix86_check_avx256_stores (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data)
+ {
+ if (ix86_check_avx256_register (&dest, NULL))
+ {
+ bool *used = (bool *) data;
+ *used = true;
+ }
+ }
+
+/* Calculate mode of upper 128bit AVX registers after the insn. */
+
+static int
+ix86_avx_u128_mode_after (int mode, rtx insn)
+{
+ rtx pat = PATTERN (insn);
+
+ if (vzeroupper_operation (pat, VOIDmode)
+ || vzeroall_operation (pat, VOIDmode))
+ return AVX_U128_CLEAN;
+
+ /* We know that state is clean after CALL insn if there are no
+ 256bit registers used in the function return register. */
+ if (CALL_P (insn))
+ {
+ bool avx_reg256_found = false;
+ note_stores (pat, ix86_check_avx256_stores, &avx_reg256_found);
+
+ return avx_reg256_found ? AVX_U128_DIRTY : AVX_U128_CLEAN;
+ }
+
+ /* Otherwise, return current mode. Remember that if insn
+ references AVX 256bit registers, the mode was already changed
+ to DIRTY from MODE_NEEDED. */
+ return mode;
+}
+
+/* Return the mode that an insn results in. */
+
+int
+ix86_mode_after (int entity, int mode, rtx insn)
+{
+ switch (entity)
+ {
+ case AVX_U128:
+ return ix86_avx_u128_mode_after (mode, insn);
+ case I387_TRUNC:
+ case I387_FLOOR:
+ case I387_CEIL:
+ case I387_MASK_PM:
+ return mode;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+static int
+ix86_avx_u128_mode_entry (void)
+{
+ tree arg;
+
+ /* Entry mode is set to AVX_U128_DIRTY if there are
+ 256bit modes used in function arguments. */
+ for (arg = DECL_ARGUMENTS (current_function_decl); arg;
+ arg = TREE_CHAIN (arg))
+ {
+ rtx incoming = DECL_INCOMING_RTL (arg);
+
+ if (incoming && ix86_check_avx256_register (&incoming, NULL))
+ return AVX_U128_DIRTY;
+ }
+
+ return AVX_U128_CLEAN;
+}
+
+/* Return a mode that ENTITY is assumed to be
+ switched to at function entry. */
+
+int
+ix86_mode_entry (int entity)
+{
+ switch (entity)
+ {
+ case AVX_U128:
+ return ix86_avx_u128_mode_entry ();
+ case I387_TRUNC:
+ case I387_FLOOR:
+ case I387_CEIL:
+ case I387_MASK_PM:
+ return I387_CW_ANY;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+static int
+ix86_avx_u128_mode_exit (void)
+{
+ rtx reg = crtl->return_rtx;
+
+ /* Exit mode is set to AVX_U128_DIRTY if there are
+ 256bit modes used in the function return register. */
+ if (reg && ix86_check_avx256_register (&reg, NULL))
+ return AVX_U128_DIRTY;
+
+ return AVX_U128_CLEAN;
+}
+
+/* Return a mode that ENTITY is assumed to be
+ switched to at function exit. */
+
+int
+ix86_mode_exit (int entity)
+{
+ switch (entity)
+ {
+ case AVX_U128:
+ return ix86_avx_u128_mode_exit ();
+ case I387_TRUNC:
+ case I387_FLOOR:
+ case I387_CEIL:
+ case I387_MASK_PM:
+ return I387_CW_ANY;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Output code to initialize control word copies used by trunc?f?i and
+ rounding patterns. CURRENT_MODE is set to current control word,
+ while NEW_MODE is set to new control word. */
+
+static void
+emit_i387_cw_initialization (int mode)
+{
+ rtx stored_mode = assign_386_stack_local (HImode, SLOT_CW_STORED);
+ rtx new_mode;
+
+ enum ix86_stack_slot slot;
+
+ rtx reg = gen_reg_rtx (HImode);
+
+ emit_insn (gen_x86_fnstcw_1 (stored_mode));
+ emit_move_insn (reg, copy_rtx (stored_mode));
+
+ if (TARGET_64BIT || TARGET_PARTIAL_REG_STALL
+ || optimize_insn_for_size_p ())
+ {
+ switch (mode)
+ {
+ case I387_CW_TRUNC:
+ /* round toward zero (truncate) */
+ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0c00)));
+ slot = SLOT_CW_TRUNC;
+ break;
+
+ case I387_CW_FLOOR:
+ /* round down toward -oo */
+ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00)));
+ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0400)));
+ slot = SLOT_CW_FLOOR;
+ break;
+
+ case I387_CW_CEIL:
+ /* round up toward +oo */
+ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00)));
+ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0800)));
+ slot = SLOT_CW_CEIL;
+ break;
+
+ case I387_CW_MASK_PM:
+ /* mask precision exception for nearbyint() */
+ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020)));
+ slot = SLOT_CW_MASK_PM;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ else
+ {
+ switch (mode)
+ {
+ case I387_CW_TRUNC:
+ /* round toward zero (truncate) */
+ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0xc)));
+ slot = SLOT_CW_TRUNC;
+ break;
+
+ case I387_CW_FLOOR:
+ /* round down toward -oo */
+ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x4)));
+ slot = SLOT_CW_FLOOR;
+ break;
+
+ case I387_CW_CEIL:
+ /* round up toward +oo */
+ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x8)));
+ slot = SLOT_CW_CEIL;
+ break;
+
+ case I387_CW_MASK_PM:
+ /* mask precision exception for nearbyint() */
+ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020)));
+ slot = SLOT_CW_MASK_PM;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ gcc_assert (slot < MAX_386_STACK_LOCALS);
+
+ new_mode = assign_386_stack_local (HImode, slot);
+ emit_move_insn (new_mode, reg);
+}
+
+/* Emit vzeroupper. */
+
+void
+ix86_avx_emit_vzeroupper (HARD_REG_SET regs_live)
+{
+ int i;
+
+ /* Cancel automatic vzeroupper insertion if there are
+ live call-saved SSE registers at the insertion point. */
+
+ for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++)
+ if (TEST_HARD_REG_BIT (regs_live, i) && !call_used_regs[i])
+ return;
+
+ if (TARGET_64BIT)
+ for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)
+ if (TEST_HARD_REG_BIT (regs_live, i) && !call_used_regs[i])
+ return;
+
+ emit_insn (gen_avx_vzeroupper ());
+}
+
+/* Generate one or more insns to set ENTITY to MODE. */
+
+void
+ix86_emit_mode_set (int entity, int mode, HARD_REG_SET regs_live)
+{
+ switch (entity)
+ {
+ case AVX_U128:
+ if (mode == AVX_U128_CLEAN)
+ ix86_avx_emit_vzeroupper (regs_live);
+ break;
+ case I387_TRUNC:
+ case I387_FLOOR:
+ case I387_CEIL:
+ case I387_MASK_PM:
+ if (mode != I387_CW_ANY
+ && mode != I387_CW_UNINITIALIZED)
+ emit_i387_cw_initialization (mode);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Output code for INSN to convert a float to a signed int. OPERANDS
+ are the insn operands. The output may be [HSD]Imode and the input
+ operand may be [SDX]Fmode. */
+
+const char *
+output_fix_trunc (rtx insn, rtx *operands, bool fisttp)
+{
+ int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
+ int dimode_p = GET_MODE (operands[0]) == DImode;
+ int round_mode = get_attr_i387_cw (insn);
+
+ /* Jump through a hoop or two for DImode, since the hardware has no
+ non-popping instruction. We used to do this a different way, but
+ that was somewhat fragile and broke with post-reload splitters. */
+ if ((dimode_p || fisttp) && !stack_top_dies)
+ output_asm_insn ("fld\t%y1", operands);
+
+ gcc_assert (STACK_TOP_P (operands[1]));
+ gcc_assert (MEM_P (operands[0]));
+ gcc_assert (GET_MODE (operands[1]) != TFmode);
+
+ if (fisttp)
+ output_asm_insn ("fisttp%Z0\t%0", operands);
+ else
+ {
+ if (round_mode != I387_CW_ANY)
+ output_asm_insn ("fldcw\t%3", operands);
+ if (stack_top_dies || dimode_p)
+ output_asm_insn ("fistp%Z0\t%0", operands);
+ else
+ output_asm_insn ("fist%Z0\t%0", operands);
+ if (round_mode != I387_CW_ANY)
+ output_asm_insn ("fldcw\t%2", operands);
+ }
+
+ return "";
+}
+
+/* Output code for x87 ffreep insn. The OPNO argument, which may only
+ have the values zero or one, indicates the ffreep insn's operand
+ from the OPERANDS array. */
+
+static const char *
+output_387_ffreep (rtx *operands ATTRIBUTE_UNUSED, int opno)
+{
+ if (TARGET_USE_FFREEP)
+#ifdef HAVE_AS_IX86_FFREEP
+ return opno ? "ffreep\t%y1" : "ffreep\t%y0";
+#else
+ {
+ static char retval[32];
+ int regno = REGNO (operands[opno]);
+
+ gcc_assert (STACK_REGNO_P (regno));
+
+ regno -= FIRST_STACK_REG;
+
+ snprintf (retval, sizeof (retval), ASM_SHORT "0xc%ddf", regno);
+ return retval;
+ }
+#endif
+
+ return opno ? "fstp\t%y1" : "fstp\t%y0";
+}
+
+
+/* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi
+ should be used. UNORDERED_P is true when fucom should be used. */
+
+const char *
+output_fp_compare (rtx insn, rtx *operands, bool eflags_p, bool unordered_p)
+{
+ int stack_top_dies;
+ rtx cmp_op0, cmp_op1;
+ int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]);
+
+ if (eflags_p)
+ {
+ cmp_op0 = operands[0];
+ cmp_op1 = operands[1];
+ }
+ else
+ {
+ cmp_op0 = operands[1];
+ cmp_op1 = operands[2];
+ }
+
+ if (is_sse)
+ {
+ if (GET_MODE (operands[0]) == SFmode)
+ if (unordered_p)
+ return "%vucomiss\t{%1, %0|%0, %1}";
+ else
+ return "%vcomiss\t{%1, %0|%0, %1}";
+ else
+ if (unordered_p)
+ return "%vucomisd\t{%1, %0|%0, %1}";
+ else
+ return "%vcomisd\t{%1, %0|%0, %1}";
+ }
+
+ gcc_assert (STACK_TOP_P (cmp_op0));
+
+ stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
+
+ if (cmp_op1 == CONST0_RTX (GET_MODE (cmp_op1)))
+ {
+ if (stack_top_dies)
+ {
+ output_asm_insn ("ftst\n\tfnstsw\t%0", operands);
+ return output_387_ffreep (operands, 1);
+ }
+ else
+ return "ftst\n\tfnstsw\t%0";
+ }
+
+ if (STACK_REG_P (cmp_op1)
+ && stack_top_dies
+ && find_regno_note (insn, REG_DEAD, REGNO (cmp_op1))
+ && REGNO (cmp_op1) != FIRST_STACK_REG)
+ {
+ /* If both the top of the 387 stack dies, and the other operand
+ is also a stack register that dies, then this must be a
+ `fcompp' float compare */
+
+ if (eflags_p)
+ {
+ /* There is no double popping fcomi variant. Fortunately,
+ eflags is immune from the fstp's cc clobbering. */
+ if (unordered_p)
+ output_asm_insn ("fucomip\t{%y1, %0|%0, %y1}", operands);
+ else
+ output_asm_insn ("fcomip\t{%y1, %0|%0, %y1}", operands);
+ return output_387_ffreep (operands, 0);
+ }
+ else
+ {
+ if (unordered_p)
+ return "fucompp\n\tfnstsw\t%0";
+ else
+ return "fcompp\n\tfnstsw\t%0";
+ }
+ }
+ else
+ {
+ /* Encoded here as eflags_p | intmode | unordered_p | stack_top_dies. */
+
+ static const char * const alt[16] =
+ {
+ "fcom%Z2\t%y2\n\tfnstsw\t%0",
+ "fcomp%Z2\t%y2\n\tfnstsw\t%0",
+ "fucom%Z2\t%y2\n\tfnstsw\t%0",
+ "fucomp%Z2\t%y2\n\tfnstsw\t%0",
+
+ "ficom%Z2\t%y2\n\tfnstsw\t%0",
+ "ficomp%Z2\t%y2\n\tfnstsw\t%0",
+ NULL,
+ NULL,
+
+ "fcomi\t{%y1, %0|%0, %y1}",
+ "fcomip\t{%y1, %0|%0, %y1}",
+ "fucomi\t{%y1, %0|%0, %y1}",
+ "fucomip\t{%y1, %0|%0, %y1}",
+
+ NULL,
+ NULL,
+ NULL,
+ NULL
+ };
+
+ int mask;
+ const char *ret;
+
+ mask = eflags_p << 3;
+ mask |= (GET_MODE_CLASS (GET_MODE (cmp_op1)) == MODE_INT) << 2;
+ mask |= unordered_p << 1;
+ mask |= stack_top_dies;
+
+ gcc_assert (mask < 16);
+ ret = alt[mask];
+ gcc_assert (ret);
+
+ return ret;
+ }
+}
+
+void
+ix86_output_addr_vec_elt (FILE *file, int value)
+{
+ const char *directive = ASM_LONG;
+
+#ifdef ASM_QUAD
+ if (TARGET_LP64)
+ directive = ASM_QUAD;
+#else
+ gcc_assert (!TARGET_64BIT);
+#endif
+
+ fprintf (file, "%s%s%d\n", directive, LPREFIX, value);
+}
+
+void
+ix86_output_addr_diff_elt (FILE *file, int value, int rel)
+{
+ const char *directive = ASM_LONG;
+
+#ifdef ASM_QUAD
+ if (TARGET_64BIT && CASE_VECTOR_MODE == DImode)
+ directive = ASM_QUAD;
+#else
+ gcc_assert (!TARGET_64BIT);
+#endif
+ /* We can't use @GOTOFF for text labels on VxWorks; see gotoff_operand. */
+ if (TARGET_64BIT || TARGET_VXWORKS_RTP)
+ fprintf (file, "%s%s%d-%s%d\n",
+ directive, LPREFIX, value, LPREFIX, rel);
+ else if (HAVE_AS_GOTOFF_IN_DATA)
+ fprintf (file, ASM_LONG "%s%d@GOTOFF\n", LPREFIX, value);
+#if TARGET_MACHO
+ else if (TARGET_MACHO)
+ {
+ fprintf (file, ASM_LONG "%s%d-", LPREFIX, value);
+ machopic_output_function_base_name (file);
+ putc ('\n', file);
+ }
+#endif
+ else
+ asm_fprintf (file, ASM_LONG "%U%s+[.-%s%d]\n",
+ GOT_SYMBOL_NAME, LPREFIX, value);
+}
+
+/* Generate either "mov $0, reg" or "xor reg, reg", as appropriate
+ for the target. */
+
+void
+ix86_expand_clear (rtx dest)
+{
+ rtx tmp;
+
+ /* We play register width games, which are only valid after reload. */
+ gcc_assert (reload_completed);
+
+ /* Avoid HImode and its attendant prefix byte. */
+ if (GET_MODE_SIZE (GET_MODE (dest)) < 4)
+ dest = gen_rtx_REG (SImode, REGNO (dest));
+ tmp = gen_rtx_SET (VOIDmode, dest, const0_rtx);
+
+ /* This predicate should match that for movsi_xor and movdi_xor_rex64. */
+ if (!TARGET_USE_MOV0 || optimize_insn_for_speed_p ())
+ {
+ rtx clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG));
+ tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob));
+ }
+
+ emit_insn (tmp);
+}
+
+/* X is an unchanging MEM. If it is a constant pool reference, return
+ the constant pool rtx, else NULL. */
+
+rtx
+maybe_get_pool_constant (rtx x)
+{
+ x = ix86_delegitimize_address (XEXP (x, 0));
+
+ if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
+ return get_pool_constant (x);
+
+ return NULL_RTX;
+}
+
+void
+ix86_expand_move (enum machine_mode mode, rtx operands[])
+{
+ rtx op0, op1;
+ enum tls_model model;
+
+ op0 = operands[0];
+ op1 = operands[1];
+
+ if (GET_CODE (op1) == SYMBOL_REF)
+ {
+ rtx tmp;
+
+ model = SYMBOL_REF_TLS_MODEL (op1);
+ if (model)
+ {
+ op1 = legitimize_tls_address (op1, model, true);
+ op1 = force_operand (op1, op0);
+ if (op1 == op0)
+ return;
+ op1 = convert_to_mode (mode, op1, 1);
+ }
+ else if ((tmp = legitimize_pe_coff_symbol (op1, false)) != NULL_RTX)
+ op1 = tmp;
+ }
+ else if (GET_CODE (op1) == CONST
+ && GET_CODE (XEXP (op1, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SYMBOL_REF)
+ {
+ rtx addend = XEXP (XEXP (op1, 0), 1);
+ rtx symbol = XEXP (XEXP (op1, 0), 0);
+ rtx tmp;
+
+ model = SYMBOL_REF_TLS_MODEL (symbol);
+ if (model)
+ tmp = legitimize_tls_address (symbol, model, true);
+ else
+ tmp = legitimize_pe_coff_symbol (symbol, true);
+
+ if (tmp)
+ {
+ tmp = force_operand (tmp, NULL);
+ tmp = expand_simple_binop (Pmode, PLUS, tmp, addend,
+ op0, 1, OPTAB_DIRECT);
+ if (tmp == op0)
+ return;
+ op1 = convert_to_mode (mode, tmp, 1);
+ }
+ }
+
+ if ((flag_pic || MACHOPIC_INDIRECT)
+ && symbolic_operand (op1, mode))
+ {
+ if (TARGET_MACHO && !TARGET_64BIT)
+ {
+#if TARGET_MACHO
+ /* dynamic-no-pic */
+ if (MACHOPIC_INDIRECT)
+ {
+ rtx temp = ((reload_in_progress
+ || ((op0 && REG_P (op0))
+ && mode == Pmode))
+ ? op0 : gen_reg_rtx (Pmode));
+ op1 = machopic_indirect_data_reference (op1, temp);
+ if (MACHOPIC_PURE)
+ op1 = machopic_legitimize_pic_address (op1, mode,
+ temp == op1 ? 0 : temp);
+ }
+ if (op0 != op1 && GET_CODE (op0) != MEM)
+ {
+ rtx insn = gen_rtx_SET (VOIDmode, op0, op1);
+ emit_insn (insn);
+ return;
+ }
+ if (GET_CODE (op0) == MEM)
+ op1 = force_reg (Pmode, op1);
+ else
+ {
+ rtx temp = op0;
+ if (GET_CODE (temp) != REG)
+ temp = gen_reg_rtx (Pmode);
+ temp = legitimize_pic_address (op1, temp);
+ if (temp == op0)
+ return;
+ op1 = temp;
+ }
+ /* dynamic-no-pic */
+#endif
+ }
+ else
+ {
+ if (MEM_P (op0))
+ op1 = force_reg (mode, op1);
+ else if (!(TARGET_64BIT && x86_64_movabs_operand (op1, DImode)))
+ {
+ rtx reg = can_create_pseudo_p () ? NULL_RTX : op0;
+ op1 = legitimize_pic_address (op1, reg);
+ if (op0 == op1)
+ return;
+ op1 = convert_to_mode (mode, op1, 1);
+ }
+ }
+ }
+ else
+ {
+ if (MEM_P (op0)
+ && (PUSH_ROUNDING (GET_MODE_SIZE (mode)) != GET_MODE_SIZE (mode)
+ || !push_operand (op0, mode))
+ && MEM_P (op1))
+ op1 = force_reg (mode, op1);
+
+ if (push_operand (op0, mode)
+ && ! general_no_elim_operand (op1, mode))
+ op1 = copy_to_mode_reg (mode, op1);
+
+ /* Force large constants in 64bit compilation into register
+ to get them CSEed. */
+ if (can_create_pseudo_p ()
+ && (mode == DImode) && TARGET_64BIT
+ && immediate_operand (op1, mode)
+ && !x86_64_zext_immediate_operand (op1, VOIDmode)
+ && !register_operand (op0, mode)
+ && optimize)
+ op1 = copy_to_mode_reg (mode, op1);
+
+ if (can_create_pseudo_p ()
+ && FLOAT_MODE_P (mode)
+ && GET_CODE (op1) == CONST_DOUBLE)
+ {
+ /* If we are loading a floating point constant to a register,
+ force the value to memory now, since we'll get better code
+ out the back end. */
+
+ op1 = validize_mem (force_const_mem (mode, op1));
+ if (!register_operand (op0, mode))
+ {
+ rtx temp = gen_reg_rtx (mode);
+ emit_insn (gen_rtx_SET (VOIDmode, temp, op1));
+ emit_move_insn (op0, temp);
+ return;
+ }
+ }
+ }
+
+ emit_insn (gen_rtx_SET (VOIDmode, op0, op1));
+}
+
+void
+ix86_expand_vector_move (enum machine_mode mode, rtx operands[])
+{
+ rtx op0 = operands[0], op1 = operands[1];
+ unsigned int align = GET_MODE_ALIGNMENT (mode);
+
+ if (push_operand (op0, VOIDmode))
+ op0 = emit_move_resolve_push (mode, op0);
+
+ /* Force constants other than zero into memory. We do not know how
+ the instructions used to build constants modify the upper 64 bits
+ of the register, once we have that information we may be able
+ to handle some of them more efficiently. */
+ if (can_create_pseudo_p ()
+ && register_operand (op0, mode)
+ && (CONSTANT_P (op1)
+ || (GET_CODE (op1) == SUBREG
+ && CONSTANT_P (SUBREG_REG (op1))))
+ && !standard_sse_constant_p (op1))
+ op1 = validize_mem (force_const_mem (mode, op1));
+
+ /* We need to check memory alignment for SSE mode since attribute
+ can make operands unaligned. */
+ if (can_create_pseudo_p ()
+ && SSE_REG_MODE_P (mode)
+ && ((MEM_P (op0) && (MEM_ALIGN (op0) < align))
+ || (MEM_P (op1) && (MEM_ALIGN (op1) < align))))
+ {
+ rtx tmp[2];
+
+ /* ix86_expand_vector_move_misalign() does not like constants ... */
+ if (CONSTANT_P (op1)
+ || (GET_CODE (op1) == SUBREG
+ && CONSTANT_P (SUBREG_REG (op1))))
+ op1 = validize_mem (force_const_mem (mode, op1));
+
+ /* ... nor both arguments in memory. */
+ if (!register_operand (op0, mode)
+ && !register_operand (op1, mode))
+ op1 = force_reg (mode, op1);
+
+ tmp[0] = op0; tmp[1] = op1;
+ ix86_expand_vector_move_misalign (mode, tmp);
+ return;
+ }
+
+ /* Make operand1 a register if it isn't already. */
+ if (can_create_pseudo_p ()
+ && !register_operand (op0, mode)
+ && !register_operand (op1, mode))
+ {
+ emit_move_insn (op0, force_reg (GET_MODE (op0), op1));
+ return;
+ }
+
+ emit_insn (gen_rtx_SET (VOIDmode, op0, op1));
+}
+
+/* Split 32-byte AVX unaligned load and store if needed. */
+
+static void
+ix86_avx256_split_vector_move_misalign (rtx op0, rtx op1)
+{
+ rtx m;
+ rtx (*extract) (rtx, rtx, rtx);
+ rtx (*load_unaligned) (rtx, rtx);
+ rtx (*store_unaligned) (rtx, rtx);
+ enum machine_mode mode;
+
+ switch (GET_MODE (op0))
+ {
+ default:
+ gcc_unreachable ();
+ case V32QImode:
+ extract = gen_avx_vextractf128v32qi;
+ load_unaligned = gen_avx_loaddquv32qi;
+ store_unaligned = gen_avx_storedquv32qi;
+ mode = V16QImode;
+ break;
+ case V8SFmode:
+ extract = gen_avx_vextractf128v8sf;
+ load_unaligned = gen_avx_loadups256;
+ store_unaligned = gen_avx_storeups256;
+ mode = V4SFmode;
+ break;
+ case V4DFmode:
+ extract = gen_avx_vextractf128v4df;
+ load_unaligned = gen_avx_loadupd256;
+ store_unaligned = gen_avx_storeupd256;
+ mode = V2DFmode;
+ break;
+ }
+
+ if (MEM_P (op1))
+ {
+ if (TARGET_AVX256_SPLIT_UNALIGNED_LOAD)
+ {
+ rtx r = gen_reg_rtx (mode);
+ m = adjust_address (op1, mode, 0);
+ emit_move_insn (r, m);
+ m = adjust_address (op1, mode, 16);
+ r = gen_rtx_VEC_CONCAT (GET_MODE (op0), r, m);
+ emit_move_insn (op0, r);
+ }
+ /* Normal *mov<mode>_internal pattern will handle
+ unaligned loads just fine if misaligned_operand
+ is true, and without the UNSPEC it can be combined
+ with arithmetic instructions. */
+ else if (misaligned_operand (op1, GET_MODE (op1)))
+ emit_insn (gen_rtx_SET (VOIDmode, op0, op1));
+ else
+ emit_insn (load_unaligned (op0, op1));
+ }
+ else if (MEM_P (op0))
+ {
+ if (TARGET_AVX256_SPLIT_UNALIGNED_STORE)
+ {
+ m = adjust_address (op0, mode, 0);
+ emit_insn (extract (m, op1, const0_rtx));
+ m = adjust_address (op0, mode, 16);
+ emit_insn (extract (m, op1, const1_rtx));
+ }
+ else
+ emit_insn (store_unaligned (op0, op1));
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Implement the movmisalign patterns for SSE. Non-SSE modes go
+ straight to ix86_expand_vector_move. */
+/* Code generation for scalar reg-reg moves of single and double precision data:
+ if (x86_sse_partial_reg_dependency == true | x86_sse_split_regs == true)
+ movaps reg, reg
+ else
+ movss reg, reg
+ if (x86_sse_partial_reg_dependency == true)
+ movapd reg, reg
+ else
+ movsd reg, reg
+
+ Code generation for scalar loads of double precision data:
+ if (x86_sse_split_regs == true)
+ movlpd mem, reg (gas syntax)
+ else
+ movsd mem, reg
+
+ Code generation for unaligned packed loads of single precision data
+ (x86_sse_unaligned_move_optimal overrides x86_sse_partial_reg_dependency):
+ if (x86_sse_unaligned_move_optimal)
+ movups mem, reg
+
+ if (x86_sse_partial_reg_dependency == true)
+ {
+ xorps reg, reg
+ movlps mem, reg
+ movhps mem+8, reg
+ }
+ else
+ {
+ movlps mem, reg
+ movhps mem+8, reg
+ }
+
+ Code generation for unaligned packed loads of double precision data
+ (x86_sse_unaligned_move_optimal overrides x86_sse_split_regs):
+ if (x86_sse_unaligned_move_optimal)
+ movupd mem, reg
+
+ if (x86_sse_split_regs == true)
+ {
+ movlpd mem, reg
+ movhpd mem+8, reg
+ }
+ else
+ {
+ movsd mem, reg
+ movhpd mem+8, reg
+ }
+ */
+
+void
+ix86_expand_vector_move_misalign (enum machine_mode mode, rtx operands[])
+{
+ rtx op0, op1, orig_op0 = NULL_RTX, m;
+ rtx (*load_unaligned) (rtx, rtx);
+ rtx (*store_unaligned) (rtx, rtx);
+
+ op0 = operands[0];
+ op1 = operands[1];
+
+ if (GET_MODE_SIZE (mode) == 64)
+ {
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_VECTOR_INT:
+ case MODE_INT:
+ if (GET_MODE (op0) != V16SImode)
+ {
+ if (!MEM_P (op0))
+ {
+ orig_op0 = op0;
+ op0 = gen_reg_rtx (V16SImode);
+ }
+ else
+ op0 = gen_lowpart (V16SImode, op0);
+ }
+ op1 = gen_lowpart (V16SImode, op1);
+ /* FALLTHRU */
+
+ case MODE_VECTOR_FLOAT:
+ switch (GET_MODE (op0))
+ {
+ default:
+ gcc_unreachable ();
+ case V16SImode:
+ load_unaligned = gen_avx512f_loaddquv16si;
+ store_unaligned = gen_avx512f_storedquv16si;
+ break;
+ case V16SFmode:
+ load_unaligned = gen_avx512f_loadups512;
+ store_unaligned = gen_avx512f_storeups512;
+ break;
+ case V8DFmode:
+ load_unaligned = gen_avx512f_loadupd512;
+ store_unaligned = gen_avx512f_storeupd512;
+ break;
+ }
+
+ if (MEM_P (op1))
+ emit_insn (load_unaligned (op0, op1));
+ else if (MEM_P (op0))
+ emit_insn (store_unaligned (op0, op1));
+ else
+ gcc_unreachable ();
+ if (orig_op0)
+ emit_move_insn (orig_op0, gen_lowpart (GET_MODE (orig_op0), op0));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return;
+ }
+
+ if (TARGET_AVX
+ && GET_MODE_SIZE (mode) == 32)
+ {
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_VECTOR_INT:
+ case MODE_INT:
+ if (GET_MODE (op0) != V32QImode)
+ {
+ if (!MEM_P (op0))
+ {
+ orig_op0 = op0;
+ op0 = gen_reg_rtx (V32QImode);
+ }
+ else
+ op0 = gen_lowpart (V32QImode, op0);
+ }
+ op1 = gen_lowpart (V32QImode, op1);
+ /* FALLTHRU */
+
+ case MODE_VECTOR_FLOAT:
+ ix86_avx256_split_vector_move_misalign (op0, op1);
+ if (orig_op0)
+ emit_move_insn (orig_op0, gen_lowpart (GET_MODE (orig_op0), op0));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return;
+ }
+
+ if (MEM_P (op1))
+ {
+ /* Normal *mov<mode>_internal pattern will handle
+ unaligned loads just fine if misaligned_operand
+ is true, and without the UNSPEC it can be combined
+ with arithmetic instructions. */
+ if (TARGET_AVX
+ && (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
+ || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
+ && misaligned_operand (op1, GET_MODE (op1)))
+ emit_insn (gen_rtx_SET (VOIDmode, op0, op1));
+ /* ??? If we have typed data, then it would appear that using
+ movdqu is the only way to get unaligned data loaded with
+ integer type. */
+ else if (TARGET_SSE2 && GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
+ {
+ if (GET_MODE (op0) != V16QImode)
+ {
+ orig_op0 = op0;
+ op0 = gen_reg_rtx (V16QImode);
+ }
+ op1 = gen_lowpart (V16QImode, op1);
+ /* We will eventually emit movups based on insn attributes. */
+ emit_insn (gen_sse2_loaddquv16qi (op0, op1));
+ if (orig_op0)
+ emit_move_insn (orig_op0, gen_lowpart (GET_MODE (orig_op0), op0));
+ }
+ else if (TARGET_SSE2 && mode == V2DFmode)
+ {
+ rtx zero;
+
+ if (TARGET_AVX
+ || TARGET_SSE_UNALIGNED_LOAD_OPTIMAL
+ || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL
+ || optimize_insn_for_size_p ())
+ {
+ /* We will eventually emit movups based on insn attributes. */
+ emit_insn (gen_sse2_loadupd (op0, op1));
+ return;
+ }
+
+ /* When SSE registers are split into halves, we can avoid
+ writing to the top half twice. */
+ if (TARGET_SSE_SPLIT_REGS)
+ {
+ emit_clobber (op0);
+ zero = op0;
+ }
+ else
+ {
+ /* ??? Not sure about the best option for the Intel chips.
+ The following would seem to satisfy; the register is
+ entirely cleared, breaking the dependency chain. We
+ then store to the upper half, with a dependency depth
+ of one. A rumor has it that Intel recommends two movsd
+ followed by an unpacklpd, but this is unconfirmed. And
+ given that the dependency depth of the unpacklpd would
+ still be one, I'm not sure why this would be better. */
+ zero = CONST0_RTX (V2DFmode);
+ }
+
+ m = adjust_address (op1, DFmode, 0);
+ emit_insn (gen_sse2_loadlpd (op0, zero, m));
+ m = adjust_address (op1, DFmode, 8);
+ emit_insn (gen_sse2_loadhpd (op0, op0, m));
+ }
+ else
+ {
+ rtx t;
+
+ if (TARGET_AVX
+ || TARGET_SSE_UNALIGNED_LOAD_OPTIMAL
+ || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL
+ || optimize_insn_for_size_p ())
+ {
+ if (GET_MODE (op0) != V4SFmode)
+ {
+ orig_op0 = op0;
+ op0 = gen_reg_rtx (V4SFmode);
+ }
+ op1 = gen_lowpart (V4SFmode, op1);
+ emit_insn (gen_sse_loadups (op0, op1));
+ if (orig_op0)
+ emit_move_insn (orig_op0,
+ gen_lowpart (GET_MODE (orig_op0), op0));
+ return;
+ }
+
+ if (mode != V4SFmode)
+ t = gen_reg_rtx (V4SFmode);
+ else
+ t = op0;
+
+ if (TARGET_SSE_PARTIAL_REG_DEPENDENCY)
+ emit_move_insn (t, CONST0_RTX (V4SFmode));
+ else
+ emit_clobber (t);
+
+ m = adjust_address (op1, V2SFmode, 0);
+ emit_insn (gen_sse_loadlps (t, t, m));
+ m = adjust_address (op1, V2SFmode, 8);
+ emit_insn (gen_sse_loadhps (t, t, m));
+ if (mode != V4SFmode)
+ emit_move_insn (op0, gen_lowpart (mode, t));
+ }
+ }
+ else if (MEM_P (op0))
+ {
+ if (TARGET_SSE2 && GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
+ {
+ op0 = gen_lowpart (V16QImode, op0);
+ op1 = gen_lowpart (V16QImode, op1);
+ /* We will eventually emit movups based on insn attributes. */
+ emit_insn (gen_sse2_storedquv16qi (op0, op1));
+ }
+ else if (TARGET_SSE2 && mode == V2DFmode)
+ {
+ if (TARGET_AVX
+ || TARGET_SSE_UNALIGNED_STORE_OPTIMAL
+ || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL
+ || optimize_insn_for_size_p ())
+ /* We will eventually emit movups based on insn attributes. */
+ emit_insn (gen_sse2_storeupd (op0, op1));
+ else
+ {
+ m = adjust_address (op0, DFmode, 0);
+ emit_insn (gen_sse2_storelpd (m, op1));
+ m = adjust_address (op0, DFmode, 8);
+ emit_insn (gen_sse2_storehpd (m, op1));
+ }
+ }
+ else
+ {
+ if (mode != V4SFmode)
+ op1 = gen_lowpart (V4SFmode, op1);
+
+ if (TARGET_AVX
+ || TARGET_SSE_UNALIGNED_STORE_OPTIMAL
+ || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL
+ || optimize_insn_for_size_p ())
+ {
+ op0 = gen_lowpart (V4SFmode, op0);
+ emit_insn (gen_sse_storeups (op0, op1));
+ }
+ else
+ {
+ m = adjust_address (op0, V2SFmode, 0);
+ emit_insn (gen_sse_storelps (m, op1));
+ m = adjust_address (op0, V2SFmode, 8);
+ emit_insn (gen_sse_storehps (m, op1));
+ }
+ }
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Helper function of ix86_fixup_binary_operands to canonicalize
+ operand order. Returns true if the operands should be swapped. */
+
+static bool
+ix86_swap_binary_operands_p (enum rtx_code code, enum machine_mode mode,
+ rtx operands[])
+{
+ rtx dst = operands[0];
+ rtx src1 = operands[1];
+ rtx src2 = operands[2];
+
+ /* If the operation is not commutative, we can't do anything. */
+ if (GET_RTX_CLASS (code) != RTX_COMM_ARITH)
+ return false;
+
+ /* Highest priority is that src1 should match dst. */
+ if (rtx_equal_p (dst, src1))
+ return false;
+ if (rtx_equal_p (dst, src2))
+ return true;
+
+ /* Next highest priority is that immediate constants come second. */
+ if (immediate_operand (src2, mode))
+ return false;
+ if (immediate_operand (src1, mode))
+ return true;
+
+ /* Lowest priority is that memory references should come second. */
+ if (MEM_P (src2))
+ return false;
+ if (MEM_P (src1))
+ return true;
+
+ return false;
+}
+
+
+/* Fix up OPERANDS to satisfy ix86_binary_operator_ok. Return the
+ destination to use for the operation. If different from the true
+ destination in operands[0], a copy operation will be required. */
+
+rtx
+ix86_fixup_binary_operands (enum rtx_code code, enum machine_mode mode,
+ rtx operands[])
+{
+ rtx dst = operands[0];
+ rtx src1 = operands[1];
+ rtx src2 = operands[2];
+
+ /* Canonicalize operand order. */
+ if (ix86_swap_binary_operands_p (code, mode, operands))
+ {
+ rtx temp;
+
+ /* It is invalid to swap operands of different modes. */
+ gcc_assert (GET_MODE (src1) == GET_MODE (src2));
+
+ temp = src1;
+ src1 = src2;
+ src2 = temp;
+ }
+
+ /* Both source operands cannot be in memory. */
+ if (MEM_P (src1) && MEM_P (src2))
+ {
+ /* Optimization: Only read from memory once. */
+ if (rtx_equal_p (src1, src2))
+ {
+ src2 = force_reg (mode, src2);
+ src1 = src2;
+ }
+ else if (rtx_equal_p (dst, src1))
+ src2 = force_reg (mode, src2);
+ else
+ src1 = force_reg (mode, src1);
+ }
+
+ /* If the destination is memory, and we do not have matching source
+ operands, do things in registers. */
+ if (MEM_P (dst) && !rtx_equal_p (dst, src1))
+ dst = gen_reg_rtx (mode);
+
+ /* Source 1 cannot be a constant. */
+ if (CONSTANT_P (src1))
+ src1 = force_reg (mode, src1);
+
+ /* Source 1 cannot be a non-matching memory. */
+ if (MEM_P (src1) && !rtx_equal_p (dst, src1))
+ src1 = force_reg (mode, src1);
+
+ /* Improve address combine. */
+ if (code == PLUS
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && MEM_P (src2))
+ src2 = force_reg (mode, src2);
+
+ operands[1] = src1;
+ operands[2] = src2;
+ return dst;
+}
+
+/* Similarly, but assume that the destination has already been
+ set up properly. */
+
+void
+ix86_fixup_binary_operands_no_copy (enum rtx_code code,
+ enum machine_mode mode, rtx operands[])
+{
+ rtx dst = ix86_fixup_binary_operands (code, mode, operands);
+ gcc_assert (dst == operands[0]);
+}
+
+/* Attempt to expand a binary operator. Make the expansion closer to the
+ actual machine, then just general_operand, which will allow 3 separate
+ memory references (one output, two input) in a single insn. */
+
+void
+ix86_expand_binary_operator (enum rtx_code code, enum machine_mode mode,
+ rtx operands[])
+{
+ rtx src1, src2, dst, op, clob;
+
+ dst = ix86_fixup_binary_operands (code, mode, operands);
+ src1 = operands[1];
+ src2 = operands[2];
+
+ /* Emit the instruction. */
+
+ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, src1, src2));
+ if (reload_in_progress)
+ {
+ /* Reload doesn't know about the flags register, and doesn't know that
+ it doesn't want to clobber it. We can only do this with PLUS. */
+ gcc_assert (code == PLUS);
+ emit_insn (op);
+ }
+ else if (reload_completed
+ && code == PLUS
+ && !rtx_equal_p (dst, src1))
+ {
+ /* This is going to be an LEA; avoid splitting it later. */
+ emit_insn (op);
+ }
+ else
+ {
+ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG));
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
+ }
+
+ /* Fix up the destination if needed. */
+ if (dst != operands[0])
+ emit_move_insn (operands[0], dst);
+}
+
+/* Expand vector logical operation CODE (AND, IOR, XOR) in MODE with
+ the given OPERANDS. */
+
+void
+ix86_expand_vector_logical_operator (enum rtx_code code, enum machine_mode mode,
+ rtx operands[])
+{
+ rtx op1 = NULL_RTX, op2 = NULL_RTX;
+ if (GET_CODE (operands[1]) == SUBREG)
+ {
+ op1 = operands[1];
+ op2 = operands[2];
+ }
+ else if (GET_CODE (operands[2]) == SUBREG)
+ {
+ op1 = operands[2];
+ op2 = operands[1];
+ }
+ /* Optimize (__m128i) d | (__m128i) e and similar code
+ when d and e are float vectors into float vector logical
+ insn. In C/C++ without using intrinsics there is no other way
+ to express vector logical operation on float vectors than
+ to cast them temporarily to integer vectors. */
+ if (op1
+ && !TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL
+ && ((GET_CODE (op2) == SUBREG || GET_CODE (op2) == CONST_VECTOR))
+ && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op1))) == MODE_VECTOR_FLOAT
+ && GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))) == GET_MODE_SIZE (mode)
+ && SUBREG_BYTE (op1) == 0
+ && (GET_CODE (op2) == CONST_VECTOR
+ || (GET_MODE (SUBREG_REG (op1)) == GET_MODE (SUBREG_REG (op2))
+ && SUBREG_BYTE (op2) == 0))
+ && can_create_pseudo_p ())
+ {
+ rtx dst;
+ switch (GET_MODE (SUBREG_REG (op1)))
+ {
+ case V4SFmode:
+ case V8SFmode:
+ case V2DFmode:
+ case V4DFmode:
+ dst = gen_reg_rtx (GET_MODE (SUBREG_REG (op1)));
+ if (GET_CODE (op2) == CONST_VECTOR)
+ {
+ op2 = gen_lowpart (GET_MODE (dst), op2);
+ op2 = force_reg (GET_MODE (dst), op2);
+ }
+ else
+ {
+ op1 = operands[1];
+ op2 = SUBREG_REG (operands[2]);
+ if (!nonimmediate_operand (op2, GET_MODE (dst)))
+ op2 = force_reg (GET_MODE (dst), op2);
+ }
+ op1 = SUBREG_REG (op1);
+ if (!nonimmediate_operand (op1, GET_MODE (dst)))
+ op1 = force_reg (GET_MODE (dst), op1);
+ emit_insn (gen_rtx_SET (VOIDmode, dst,
+ gen_rtx_fmt_ee (code, GET_MODE (dst),
+ op1, op2)));
+ emit_move_insn (operands[0], gen_lowpart (mode, dst));
+ return;
+ default:
+ break;
+ }
+ }
+ if (!nonimmediate_operand (operands[1], mode))
+ operands[1] = force_reg (mode, operands[1]);
+ if (!nonimmediate_operand (operands[2], mode))
+ operands[2] = force_reg (mode, operands[2]);
+ ix86_fixup_binary_operands_no_copy (code, mode, operands);
+ emit_insn (gen_rtx_SET (VOIDmode, operands[0],
+ gen_rtx_fmt_ee (code, mode, operands[1],
+ operands[2])));
+}
+
+/* Return TRUE or FALSE depending on whether the binary operator meets the
+ appropriate constraints. */
+
+bool
+ix86_binary_operator_ok (enum rtx_code code, enum machine_mode mode,
+ rtx operands[3])
+{
+ rtx dst = operands[0];
+ rtx src1 = operands[1];
+ rtx src2 = operands[2];
+
+ /* Both source operands cannot be in memory. */
+ if (MEM_P (src1) && MEM_P (src2))
+ return false;
+
+ /* Canonicalize operand order for commutative operators. */
+ if (ix86_swap_binary_operands_p (code, mode, operands))
+ {
+ rtx temp = src1;
+ src1 = src2;
+ src2 = temp;
+ }
+
+ /* If the destination is memory, we must have a matching source operand. */
+ if (MEM_P (dst) && !rtx_equal_p (dst, src1))
+ return false;
+
+ /* Source 1 cannot be a constant. */
+ if (CONSTANT_P (src1))
+ return false;
+
+ /* Source 1 cannot be a non-matching memory. */
+ if (MEM_P (src1) && !rtx_equal_p (dst, src1))
+ /* Support "andhi/andsi/anddi" as a zero-extending move. */
+ return (code == AND
+ && (mode == HImode
+ || mode == SImode
+ || (TARGET_64BIT && mode == DImode))
+ && satisfies_constraint_L (src2));
+
+ return true;
+}
+
+/* Attempt to expand a unary operator. Make the expansion closer to the
+ actual machine, then just general_operand, which will allow 2 separate
+ memory references (one output, one input) in a single insn. */
+
+void
+ix86_expand_unary_operator (enum rtx_code code, enum machine_mode mode,
+ rtx operands[])
+{
+ int matching_memory;
+ rtx src, dst, op, clob;
+
+ dst = operands[0];
+ src = operands[1];
+
+ /* If the destination is memory, and we do not have matching source
+ operands, do things in registers. */
+ matching_memory = 0;
+ if (MEM_P (dst))
+ {
+ if (rtx_equal_p (dst, src))
+ matching_memory = 1;
+ else
+ dst = gen_reg_rtx (mode);
+ }
+
+ /* When source operand is memory, destination must match. */
+ if (MEM_P (src) && !matching_memory)
+ src = force_reg (mode, src);
+
+ /* Emit the instruction. */
+
+ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_e (code, mode, src));
+ if (reload_in_progress || code == NOT)
+ {
+ /* Reload doesn't know about the flags register, and doesn't know that
+ it doesn't want to clobber it. */
+ gcc_assert (code == NOT);
+ emit_insn (op);
+ }
+ else
+ {
+ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG));
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
+ }
+
+ /* Fix up the destination if needed. */
+ if (dst != operands[0])
+ emit_move_insn (operands[0], dst);
+}
+
+/* Split 32bit/64bit divmod with 8bit unsigned divmod if dividend and
+ divisor are within the range [0-255]. */
+
+void
+ix86_split_idivmod (enum machine_mode mode, rtx operands[],
+ bool signed_p)
+{
+ rtx end_label, qimode_label;
+ rtx insn, div, mod;
+ rtx scratch, tmp0, tmp1, tmp2;
+ rtx (*gen_divmod4_1) (rtx, rtx, rtx, rtx);
+ rtx (*gen_zero_extend) (rtx, rtx);
+ rtx (*gen_test_ccno_1) (rtx, rtx);
+
+ switch (mode)
+ {
+ case SImode:
+ gen_divmod4_1 = signed_p ? gen_divmodsi4_1 : gen_udivmodsi4_1;
+ gen_test_ccno_1 = gen_testsi_ccno_1;
+ gen_zero_extend = gen_zero_extendqisi2;
+ break;
+ case DImode:
+ gen_divmod4_1 = signed_p ? gen_divmoddi4_1 : gen_udivmoddi4_1;
+ gen_test_ccno_1 = gen_testdi_ccno_1;
+ gen_zero_extend = gen_zero_extendqidi2;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ end_label = gen_label_rtx ();
+ qimode_label = gen_label_rtx ();
+
+ scratch = gen_reg_rtx (mode);
+
+ /* Use 8bit unsigned divimod if dividend and divisor are within
+ the range [0-255]. */
+ emit_move_insn (scratch, operands[2]);
+ scratch = expand_simple_binop (mode, IOR, scratch, operands[3],
+ scratch, 1, OPTAB_DIRECT);
+ emit_insn (gen_test_ccno_1 (scratch, GEN_INT (-0x100)));
+ tmp0 = gen_rtx_REG (CCNOmode, FLAGS_REG);
+ tmp0 = gen_rtx_EQ (VOIDmode, tmp0, const0_rtx);
+ tmp0 = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp0,
+ gen_rtx_LABEL_REF (VOIDmode, qimode_label),
+ pc_rtx);
+ insn = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp0));
+ predict_jump (REG_BR_PROB_BASE * 50 / 100);
+ JUMP_LABEL (insn) = qimode_label;
+
+ /* Generate original signed/unsigned divimod. */
+ div = gen_divmod4_1 (operands[0], operands[1],
+ operands[2], operands[3]);
+ emit_insn (div);
+
+ /* Branch to the end. */
+ emit_jump_insn (gen_jump (end_label));
+ emit_barrier ();
+
+ /* Generate 8bit unsigned divide. */
+ emit_label (qimode_label);
+ /* Don't use operands[0] for result of 8bit divide since not all
+ registers support QImode ZERO_EXTRACT. */
+ tmp0 = simplify_gen_subreg (HImode, scratch, mode, 0);
+ tmp1 = simplify_gen_subreg (HImode, operands[2], mode, 0);
+ tmp2 = simplify_gen_subreg (QImode, operands[3], mode, 0);
+ emit_insn (gen_udivmodhiqi3 (tmp0, tmp1, tmp2));
+
+ if (signed_p)
+ {
+ div = gen_rtx_DIV (SImode, operands[2], operands[3]);
+ mod = gen_rtx_MOD (SImode, operands[2], operands[3]);
+ }
+ else
+ {
+ div = gen_rtx_UDIV (SImode, operands[2], operands[3]);
+ mod = gen_rtx_UMOD (SImode, operands[2], operands[3]);
+ }
+
+ /* Extract remainder from AH. */
+ tmp1 = gen_rtx_ZERO_EXTRACT (mode, tmp0, GEN_INT (8), GEN_INT (8));
+ if (REG_P (operands[1]))
+ insn = emit_move_insn (operands[1], tmp1);
+ else
+ {
+ /* Need a new scratch register since the old one has result
+ of 8bit divide. */
+ scratch = gen_reg_rtx (mode);
+ emit_move_insn (scratch, tmp1);
+ insn = emit_move_insn (operands[1], scratch);
+ }
+ set_unique_reg_note (insn, REG_EQUAL, mod);
+
+ /* Zero extend quotient from AL. */
+ tmp1 = gen_lowpart (QImode, tmp0);
+ insn = emit_insn (gen_zero_extend (operands[0], tmp1));
+ set_unique_reg_note (insn, REG_EQUAL, div);
+
+ emit_label (end_label);
+}
+
+/* Whether it is OK to emit CFI directives when emitting asm code. */
+
+bool
+ix86_emit_cfi ()
+{
+ return dwarf2out_do_cfi_asm ();
+}
+
+#define LEA_MAX_STALL (3)
+#define LEA_SEARCH_THRESHOLD (LEA_MAX_STALL << 1)
+
+/* Increase given DISTANCE in half-cycles according to
+ dependencies between PREV and NEXT instructions.
+ Add 1 half-cycle if there is no dependency and
+ go to next cycle if there is some dependecy. */
+
+static unsigned int
+increase_distance (rtx prev, rtx next, unsigned int distance)
+{
+ df_ref *use_rec;
+ df_ref *def_rec;
+
+ if (!prev || !next)
+ return distance + (distance & 1) + 2;
+
+ if (!DF_INSN_USES (next) || !DF_INSN_DEFS (prev))
+ return distance + 1;
+
+ for (use_rec = DF_INSN_USES (next); *use_rec; use_rec++)
+ for (def_rec = DF_INSN_DEFS (prev); *def_rec; def_rec++)
+ if (!DF_REF_IS_ARTIFICIAL (*def_rec)
+ && DF_REF_REGNO (*use_rec) == DF_REF_REGNO (*def_rec))
+ return distance + (distance & 1) + 2;
+
+ return distance + 1;
+}
+
+/* Function checks if instruction INSN defines register number
+ REGNO1 or REGNO2. */
+
+static bool
+insn_defines_reg (unsigned int regno1, unsigned int regno2,
+ rtx insn)
+{
+ df_ref *def_rec;
+
+ for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
+ if (DF_REF_REG_DEF_P (*def_rec)
+ && !DF_REF_IS_ARTIFICIAL (*def_rec)
+ && (regno1 == DF_REF_REGNO (*def_rec)
+ || regno2 == DF_REF_REGNO (*def_rec)))
+ {
+ return true;
+ }
+
+ return false;
+}
+
+/* Function checks if instruction INSN uses register number
+ REGNO as a part of address expression. */
+
+static bool
+insn_uses_reg_mem (unsigned int regno, rtx insn)
+{
+ df_ref *use_rec;
+
+ for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
+ if (DF_REF_REG_MEM_P (*use_rec) && regno == DF_REF_REGNO (*use_rec))
+ return true;
+
+ return false;
+}
+
+/* Search backward for non-agu definition of register number REGNO1
+ or register number REGNO2 in basic block starting from instruction
+ START up to head of basic block or instruction INSN.
+
+ Function puts true value into *FOUND var if definition was found
+ and false otherwise.
+
+ Distance in half-cycles between START and found instruction or head
+ of BB is added to DISTANCE and returned. */
+
+static int
+distance_non_agu_define_in_bb (unsigned int regno1, unsigned int regno2,
+ rtx insn, int distance,
+ rtx start, bool *found)
+{
+ basic_block bb = start ? BLOCK_FOR_INSN (start) : NULL;
+ rtx prev = start;
+ rtx next = NULL;
+
+ *found = false;
+
+ while (prev
+ && prev != insn
+ && distance < LEA_SEARCH_THRESHOLD)
+ {
+ if (NONDEBUG_INSN_P (prev) && NONJUMP_INSN_P (prev))
+ {
+ distance = increase_distance (prev, next, distance);
+ if (insn_defines_reg (regno1, regno2, prev))
+ {
+ if (recog_memoized (prev) < 0
+ || get_attr_type (prev) != TYPE_LEA)
+ {
+ *found = true;
+ return distance;
+ }
+ }
+
+ next = prev;
+ }
+ if (prev == BB_HEAD (bb))
+ break;
+
+ prev = PREV_INSN (prev);
+ }
+
+ return distance;
+}
+
+/* Search backward for non-agu definition of register number REGNO1
+ or register number REGNO2 in INSN's basic block until
+ 1. Pass LEA_SEARCH_THRESHOLD instructions, or
+ 2. Reach neighbour BBs boundary, or
+ 3. Reach agu definition.
+ Returns the distance between the non-agu definition point and INSN.
+ If no definition point, returns -1. */
+
+static int
+distance_non_agu_define (unsigned int regno1, unsigned int regno2,
+ rtx insn)
+{
+ basic_block bb = BLOCK_FOR_INSN (insn);
+ int distance = 0;
+ bool found = false;
+
+ if (insn != BB_HEAD (bb))
+ distance = distance_non_agu_define_in_bb (regno1, regno2, insn,
+ distance, PREV_INSN (insn),
+ &found);
+
+ if (!found && distance < LEA_SEARCH_THRESHOLD)
+ {
+ edge e;
+ edge_iterator ei;
+ bool simple_loop = false;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (e->src == bb)
+ {
+ simple_loop = true;
+ break;
+ }
+
+ if (simple_loop)
+ distance = distance_non_agu_define_in_bb (regno1, regno2,
+ insn, distance,
+ BB_END (bb), &found);
+ else
+ {
+ int shortest_dist = -1;
+ bool found_in_bb = false;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ int bb_dist
+ = distance_non_agu_define_in_bb (regno1, regno2,
+ insn, distance,
+ BB_END (e->src),
+ &found_in_bb);
+ if (found_in_bb)
+ {
+ if (shortest_dist < 0)
+ shortest_dist = bb_dist;
+ else if (bb_dist > 0)
+ shortest_dist = MIN (bb_dist, shortest_dist);
+
+ found = true;
+ }
+ }
+
+ distance = shortest_dist;
+ }
+ }
+
+ /* get_attr_type may modify recog data. We want to make sure
+ that recog data is valid for instruction INSN, on which
+ distance_non_agu_define is called. INSN is unchanged here. */
+ extract_insn_cached (insn);
+
+ if (!found)
+ return -1;
+
+ return distance >> 1;
+}
+
+/* Return the distance in half-cycles between INSN and the next
+ insn that uses register number REGNO in memory address added
+ to DISTANCE. Return -1 if REGNO0 is set.
+
+ Put true value into *FOUND if register usage was found and
+ false otherwise.
+ Put true value into *REDEFINED if register redefinition was
+ found and false otherwise. */
+
+static int
+distance_agu_use_in_bb (unsigned int regno,
+ rtx insn, int distance, rtx start,
+ bool *found, bool *redefined)
+{
+ basic_block bb = NULL;
+ rtx next = start;
+ rtx prev = NULL;
+
+ *found = false;
+ *redefined = false;
+
+ if (start != NULL_RTX)
+ {
+ bb = BLOCK_FOR_INSN (start);
+ if (start != BB_HEAD (bb))
+ /* If insn and start belong to the same bb, set prev to insn,
+ so the call to increase_distance will increase the distance
+ between insns by 1. */
+ prev = insn;
+ }
+
+ while (next
+ && next != insn
+ && distance < LEA_SEARCH_THRESHOLD)
+ {
+ if (NONDEBUG_INSN_P (next) && NONJUMP_INSN_P (next))
+ {
+ distance = increase_distance(prev, next, distance);
+ if (insn_uses_reg_mem (regno, next))
+ {
+ /* Return DISTANCE if OP0 is used in memory
+ address in NEXT. */
+ *found = true;
+ return distance;
+ }
+
+ if (insn_defines_reg (regno, INVALID_REGNUM, next))
+ {
+ /* Return -1 if OP0 is set in NEXT. */
+ *redefined = true;
+ return -1;
+ }
+
+ prev = next;
+ }
+
+ if (next == BB_END (bb))
+ break;
+
+ next = NEXT_INSN (next);
+ }
+
+ return distance;
+}
+
+/* Return the distance between INSN and the next insn that uses
+ register number REGNO0 in memory address. Return -1 if no such
+ a use is found within LEA_SEARCH_THRESHOLD or REGNO0 is set. */
+
+static int
+distance_agu_use (unsigned int regno0, rtx insn)
+{
+ basic_block bb = BLOCK_FOR_INSN (insn);
+ int distance = 0;
+ bool found = false;
+ bool redefined = false;
+
+ if (insn != BB_END (bb))
+ distance = distance_agu_use_in_bb (regno0, insn, distance,
+ NEXT_INSN (insn),
+ &found, &redefined);
+
+ if (!found && !redefined && distance < LEA_SEARCH_THRESHOLD)
+ {
+ edge e;
+ edge_iterator ei;
+ bool simple_loop = false;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->dest == bb)
+ {
+ simple_loop = true;
+ break;
+ }
+
+ if (simple_loop)
+ distance = distance_agu_use_in_bb (regno0, insn,
+ distance, BB_HEAD (bb),
+ &found, &redefined);
+ else
+ {
+ int shortest_dist = -1;
+ bool found_in_bb = false;
+ bool redefined_in_bb = false;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ int bb_dist
+ = distance_agu_use_in_bb (regno0, insn,
+ distance, BB_HEAD (e->dest),
+ &found_in_bb, &redefined_in_bb);
+ if (found_in_bb)
+ {
+ if (shortest_dist < 0)
+ shortest_dist = bb_dist;
+ else if (bb_dist > 0)
+ shortest_dist = MIN (bb_dist, shortest_dist);
+
+ found = true;
+ }
+ }
+
+ distance = shortest_dist;
+ }
+ }
+
+ if (!found || redefined)
+ return -1;
+
+ return distance >> 1;
+}
+
+/* Define this macro to tune LEA priority vs ADD, it take effect when
+ there is a dilemma of choicing LEA or ADD
+ Negative value: ADD is more preferred than LEA
+ Zero: Netrual
+ Positive value: LEA is more preferred than ADD*/
+#define IX86_LEA_PRIORITY 0
+
+/* Return true if usage of lea INSN has performance advantage
+ over a sequence of instructions. Instructions sequence has
+ SPLIT_COST cycles higher latency than lea latency. */
+
+static bool
+ix86_lea_outperforms (rtx insn, unsigned int regno0, unsigned int regno1,
+ unsigned int regno2, int split_cost, bool has_scale)
+{
+ int dist_define, dist_use;
+
+ /* For Silvermont if using a 2-source or 3-source LEA for
+ non-destructive destination purposes, or due to wanting
+ ability to use SCALE, the use of LEA is justified. */
+ if (TARGET_SILVERMONT || TARGET_INTEL)
+ {
+ if (has_scale)
+ return true;
+ if (split_cost < 1)
+ return false;
+ if (regno0 == regno1 || regno0 == regno2)
+ return false;
+ return true;
+ }
+
+ dist_define = distance_non_agu_define (regno1, regno2, insn);
+ dist_use = distance_agu_use (regno0, insn);
+
+ if (dist_define < 0 || dist_define >= LEA_MAX_STALL)
+ {
+ /* If there is no non AGU operand definition, no AGU
+ operand usage and split cost is 0 then both lea
+ and non lea variants have same priority. Currently
+ we prefer lea for 64 bit code and non lea on 32 bit
+ code. */
+ if (dist_use < 0 && split_cost == 0)
+ return TARGET_64BIT || IX86_LEA_PRIORITY;
+ else
+ return true;
+ }
+
+ /* With longer definitions distance lea is more preferable.
+ Here we change it to take into account splitting cost and
+ lea priority. */
+ dist_define += split_cost + IX86_LEA_PRIORITY;
+
+ /* If there is no use in memory addess then we just check
+ that split cost exceeds AGU stall. */
+ if (dist_use < 0)
+ return dist_define > LEA_MAX_STALL;
+
+ /* If this insn has both backward non-agu dependence and forward
+ agu dependence, the one with short distance takes effect. */
+ return dist_define >= dist_use;
+}
+
+/* Return true if it is legal to clobber flags by INSN and
+ false otherwise. */
+
+static bool
+ix86_ok_to_clobber_flags (rtx insn)
+{
+ basic_block bb = BLOCK_FOR_INSN (insn);
+ df_ref *use;
+ bitmap live;
+
+ while (insn)
+ {
+ if (NONDEBUG_INSN_P (insn))
+ {
+ for (use = DF_INSN_USES (insn); *use; use++)
+ if (DF_REF_REG_USE_P (*use) && DF_REF_REGNO (*use) == FLAGS_REG)
+ return false;
+
+ if (insn_defines_reg (FLAGS_REG, INVALID_REGNUM, insn))
+ return true;
+ }
+
+ if (insn == BB_END (bb))
+ break;
+
+ insn = NEXT_INSN (insn);
+ }
+
+ live = df_get_live_out(bb);
+ return !REGNO_REG_SET_P (live, FLAGS_REG);
+}
+
+/* Return true if we need to split op0 = op1 + op2 into a sequence of
+ move and add to avoid AGU stalls. */
+
+bool
+ix86_avoid_lea_for_add (rtx insn, rtx operands[])
+{
+ unsigned int regno0, regno1, regno2;
+
+ /* Check if we need to optimize. */
+ if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun))
+ return false;
+
+ /* Check it is correct to split here. */
+ if (!ix86_ok_to_clobber_flags(insn))
+ return false;
+
+ regno0 = true_regnum (operands[0]);
+ regno1 = true_regnum (operands[1]);
+ regno2 = true_regnum (operands[2]);
+
+ /* We need to split only adds with non destructive
+ destination operand. */
+ if (regno0 == regno1 || regno0 == regno2)
+ return false;
+ else
+ return !ix86_lea_outperforms (insn, regno0, regno1, regno2, 1, false);
+}
+
+/* Return true if we should emit lea instruction instead of mov
+ instruction. */
+
+bool
+ix86_use_lea_for_mov (rtx insn, rtx operands[])
+{
+ unsigned int regno0, regno1;
+
+ /* Check if we need to optimize. */
+ if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun))
+ return false;
+
+ /* Use lea for reg to reg moves only. */
+ if (!REG_P (operands[0]) || !REG_P (operands[1]))
+ return false;
+
+ regno0 = true_regnum (operands[0]);
+ regno1 = true_regnum (operands[1]);
+
+ return ix86_lea_outperforms (insn, regno0, regno1, INVALID_REGNUM, 0, false);
+}
+
+/* Return true if we need to split lea into a sequence of
+ instructions to avoid AGU stalls. */
+
+bool
+ix86_avoid_lea_for_addr (rtx insn, rtx operands[])
+{
+ unsigned int regno0, regno1, regno2;
+ int split_cost;
+ struct ix86_address parts;
+ int ok;
+
+ /* Check we need to optimize. */
+ if (!TARGET_AVOID_LEA_FOR_ADDR || optimize_function_for_size_p (cfun))
+ return false;
+
+ /* The "at least two components" test below might not catch simple
+ move or zero extension insns if parts.base is non-NULL and parts.disp
+ is const0_rtx as the only components in the address, e.g. if the
+ register is %rbp or %r13. As this test is much cheaper and moves or
+ zero extensions are the common case, do this check first. */
+ if (REG_P (operands[1])
+ || (SImode_address_operand (operands[1], VOIDmode)
+ && REG_P (XEXP (operands[1], 0))))
+ return false;
+
+ /* Check if it is OK to split here. */
+ if (!ix86_ok_to_clobber_flags (insn))
+ return false;
+
+ ok = ix86_decompose_address (operands[1], &parts);
+ gcc_assert (ok);
+
+ /* There should be at least two components in the address. */
+ if ((parts.base != NULL_RTX) + (parts.index != NULL_RTX)
+ + (parts.disp != NULL_RTX) + (parts.scale > 1) < 2)
+ return false;
+
+ /* We should not split into add if non legitimate pic
+ operand is used as displacement. */
+ if (parts.disp && flag_pic && !LEGITIMATE_PIC_OPERAND_P (parts.disp))
+ return false;
+
+ regno0 = true_regnum (operands[0]) ;
+ regno1 = INVALID_REGNUM;
+ regno2 = INVALID_REGNUM;
+
+ if (parts.base)
+ regno1 = true_regnum (parts.base);
+ if (parts.index)
+ regno2 = true_regnum (parts.index);
+
+ split_cost = 0;
+
+ /* Compute how many cycles we will add to execution time
+ if split lea into a sequence of instructions. */
+ if (parts.base || parts.index)
+ {
+ /* Have to use mov instruction if non desctructive
+ destination form is used. */
+ if (regno1 != regno0 && regno2 != regno0)
+ split_cost += 1;
+
+ /* Have to add index to base if both exist. */
+ if (parts.base && parts.index)
+ split_cost += 1;
+
+ /* Have to use shift and adds if scale is 2 or greater. */
+ if (parts.scale > 1)
+ {
+ if (regno0 != regno1)
+ split_cost += 1;
+ else if (regno2 == regno0)
+ split_cost += 4;
+ else
+ split_cost += parts.scale;
+ }
+
+ /* Have to use add instruction with immediate if
+ disp is non zero. */
+ if (parts.disp && parts.disp != const0_rtx)
+ split_cost += 1;
+
+ /* Subtract the price of lea. */
+ split_cost -= 1;
+ }
+
+ return !ix86_lea_outperforms (insn, regno0, regno1, regno2, split_cost,
+ parts.scale > 1);
+}
+
+/* Emit x86 binary operand CODE in mode MODE, where the first operand
+ matches destination. RTX includes clobber of FLAGS_REG. */
+
+static void
+ix86_emit_binop (enum rtx_code code, enum machine_mode mode,
+ rtx dst, rtx src)
+{
+ rtx op, clob;
+
+ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, dst, src));
+ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG));
+
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
+}
+
+/* Return true if regno1 def is nearest to the insn. */
+
+static bool
+find_nearest_reg_def (rtx insn, int regno1, int regno2)
+{
+ rtx prev = insn;
+ rtx start = BB_HEAD (BLOCK_FOR_INSN (insn));
+
+ if (insn == start)
+ return false;
+ while (prev && prev != start)
+ {
+ if (!INSN_P (prev) || !NONDEBUG_INSN_P (prev))
+ {
+ prev = PREV_INSN (prev);
+ continue;
+ }
+ if (insn_defines_reg (regno1, INVALID_REGNUM, prev))
+ return true;
+ else if (insn_defines_reg (regno2, INVALID_REGNUM, prev))
+ return false;
+ prev = PREV_INSN (prev);
+ }
+
+ /* None of the regs is defined in the bb. */
+ return false;
+}
+
+/* Split lea instructions into a sequence of instructions
+ which are executed on ALU to avoid AGU stalls.
+ It is assumed that it is allowed to clobber flags register
+ at lea position. */
+
+void
+ix86_split_lea_for_addr (rtx insn, rtx operands[], enum machine_mode mode)
+{
+ unsigned int regno0, regno1, regno2;
+ struct ix86_address parts;
+ rtx target, tmp;
+ int ok, adds;
+
+ ok = ix86_decompose_address (operands[1], &parts);
+ gcc_assert (ok);
+
+ target = gen_lowpart (mode, operands[0]);
+
+ regno0 = true_regnum (target);
+ regno1 = INVALID_REGNUM;
+ regno2 = INVALID_REGNUM;
+
+ if (parts.base)
+ {
+ parts.base = gen_lowpart (mode, parts.base);
+ regno1 = true_regnum (parts.base);
+ }
+
+ if (parts.index)
+ {
+ parts.index = gen_lowpart (mode, parts.index);
+ regno2 = true_regnum (parts.index);
+ }
+
+ if (parts.disp)
+ parts.disp = gen_lowpart (mode, parts.disp);
+
+ if (parts.scale > 1)
+ {
+ /* Case r1 = r1 + ... */
+ if (regno1 == regno0)
+ {
+ /* If we have a case r1 = r1 + C * r2 then we
+ should use multiplication which is very
+ expensive. Assume cost model is wrong if we
+ have such case here. */
+ gcc_assert (regno2 != regno0);
+
+ for (adds = parts.scale; adds > 0; adds--)
+ ix86_emit_binop (PLUS, mode, target, parts.index);
+ }
+ else
+ {
+ /* r1 = r2 + r3 * C case. Need to move r3 into r1. */
+ if (regno0 != regno2)
+ emit_insn (gen_rtx_SET (VOIDmode, target, parts.index));
+
+ /* Use shift for scaling. */
+ ix86_emit_binop (ASHIFT, mode, target,
+ GEN_INT (exact_log2 (parts.scale)));
+
+ if (parts.base)
+ ix86_emit_binop (PLUS, mode, target, parts.base);
+
+ if (parts.disp && parts.disp != const0_rtx)
+ ix86_emit_binop (PLUS, mode, target, parts.disp);
+ }
+ }
+ else if (!parts.base && !parts.index)
+ {
+ gcc_assert(parts.disp);
+ emit_insn (gen_rtx_SET (VOIDmode, target, parts.disp));
+ }
+ else
+ {
+ if (!parts.base)
+ {
+ if (regno0 != regno2)
+ emit_insn (gen_rtx_SET (VOIDmode, target, parts.index));
+ }
+ else if (!parts.index)
+ {
+ if (regno0 != regno1)
+ emit_insn (gen_rtx_SET (VOIDmode, target, parts.base));
+ }
+ else
+ {
+ if (regno0 == regno1)
+ tmp = parts.index;
+ else if (regno0 == regno2)
+ tmp = parts.base;
+ else
+ {
+ rtx tmp1;
+
+ /* Find better operand for SET instruction, depending
+ on which definition is farther from the insn. */
+ if (find_nearest_reg_def (insn, regno1, regno2))
+ tmp = parts.index, tmp1 = parts.base;
+ else
+ tmp = parts.base, tmp1 = parts.index;
+
+ emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
+
+ if (parts.disp && parts.disp != const0_rtx)
+ ix86_emit_binop (PLUS, mode, target, parts.disp);
+
+ ix86_emit_binop (PLUS, mode, target, tmp1);
+ return;
+ }
+
+ ix86_emit_binop (PLUS, mode, target, tmp);
+ }
+
+ if (parts.disp && parts.disp != const0_rtx)
+ ix86_emit_binop (PLUS, mode, target, parts.disp);
+ }
+}
+
+/* Return true if it is ok to optimize an ADD operation to LEA
+ operation to avoid flag register consumation. For most processors,
+ ADD is faster than LEA. For the processors like BONNELL, if the
+ destination register of LEA holds an actual address which will be
+ used soon, LEA is better and otherwise ADD is better. */
+
+bool
+ix86_lea_for_add_ok (rtx insn, rtx operands[])
+{
+ unsigned int regno0 = true_regnum (operands[0]);
+ unsigned int regno1 = true_regnum (operands[1]);
+ unsigned int regno2 = true_regnum (operands[2]);
+
+ /* If a = b + c, (a!=b && a!=c), must use lea form. */
+ if (regno0 != regno1 && regno0 != regno2)
+ return true;
+
+ if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun))
+ return false;
+
+ return ix86_lea_outperforms (insn, regno0, regno1, regno2, 0, false);
+}
+
+/* Return true if destination reg of SET_BODY is shift count of
+ USE_BODY. */
+
+static bool
+ix86_dep_by_shift_count_body (const_rtx set_body, const_rtx use_body)
+{
+ rtx set_dest;
+ rtx shift_rtx;
+ int i;
+
+ /* Retrieve destination of SET_BODY. */
+ switch (GET_CODE (set_body))
+ {
+ case SET:
+ set_dest = SET_DEST (set_body);
+ if (!set_dest || !REG_P (set_dest))
+ return false;
+ break;
+ case PARALLEL:
+ for (i = XVECLEN (set_body, 0) - 1; i >= 0; i--)
+ if (ix86_dep_by_shift_count_body (XVECEXP (set_body, 0, i),
+ use_body))
+ return true;
+ default:
+ return false;
+ break;
+ }
+
+ /* Retrieve shift count of USE_BODY. */
+ switch (GET_CODE (use_body))
+ {
+ case SET:
+ shift_rtx = XEXP (use_body, 1);
+ break;
+ case PARALLEL:
+ for (i = XVECLEN (use_body, 0) - 1; i >= 0; i--)
+ if (ix86_dep_by_shift_count_body (set_body,
+ XVECEXP (use_body, 0, i)))
+ return true;
+ default:
+ return false;
+ break;
+ }
+
+ if (shift_rtx
+ && (GET_CODE (shift_rtx) == ASHIFT
+ || GET_CODE (shift_rtx) == LSHIFTRT
+ || GET_CODE (shift_rtx) == ASHIFTRT
+ || GET_CODE (shift_rtx) == ROTATE
+ || GET_CODE (shift_rtx) == ROTATERT))
+ {
+ rtx shift_count = XEXP (shift_rtx, 1);
+
+ /* Return true if shift count is dest of SET_BODY. */
+ if (REG_P (shift_count))
+ {
+ /* Add check since it can be invoked before register
+ allocation in pre-reload schedule. */
+ if (reload_completed
+ && true_regnum (set_dest) == true_regnum (shift_count))
+ return true;
+ else if (REGNO(set_dest) == REGNO(shift_count))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Return true if destination reg of SET_INSN is shift count of
+ USE_INSN. */
+
+bool
+ix86_dep_by_shift_count (const_rtx set_insn, const_rtx use_insn)
+{
+ return ix86_dep_by_shift_count_body (PATTERN (set_insn),
+ PATTERN (use_insn));
+}
+
+/* Return TRUE or FALSE depending on whether the unary operator meets the
+ appropriate constraints. */
+
+bool
+ix86_unary_operator_ok (enum rtx_code code ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ rtx operands[2])
+{
+ /* If one of operands is memory, source and destination must match. */
+ if ((MEM_P (operands[0])
+ || MEM_P (operands[1]))
+ && ! rtx_equal_p (operands[0], operands[1]))
+ return false;
+ return true;
+}
+
+/* Return TRUE if the operands to a vec_interleave_{high,low}v2df
+ are ok, keeping in mind the possible movddup alternative. */
+
+bool
+ix86_vec_interleave_v2df_operator_ok (rtx operands[3], bool high)
+{
+ if (MEM_P (operands[0]))
+ return rtx_equal_p (operands[0], operands[1 + high]);
+ if (MEM_P (operands[1]) && MEM_P (operands[2]))
+ return TARGET_SSE3 && rtx_equal_p (operands[1], operands[2]);
+ return true;
+}
+
+/* Post-reload splitter for converting an SF or DFmode value in an
+ SSE register into an unsigned SImode. */
+
+void
+ix86_split_convert_uns_si_sse (rtx operands[])
+{
+ enum machine_mode vecmode;
+ rtx value, large, zero_or_two31, input, two31, x;
+
+ large = operands[1];
+ zero_or_two31 = operands[2];
+ input = operands[3];
+ two31 = operands[4];
+ vecmode = GET_MODE (large);
+ value = gen_rtx_REG (vecmode, REGNO (operands[0]));
+
+ /* Load up the value into the low element. We must ensure that the other
+ elements are valid floats -- zero is the easiest such value. */
+ if (MEM_P (input))
+ {
+ if (vecmode == V4SFmode)
+ emit_insn (gen_vec_setv4sf_0 (value, CONST0_RTX (V4SFmode), input));
+ else
+ emit_insn (gen_sse2_loadlpd (value, CONST0_RTX (V2DFmode), input));
+ }
+ else
+ {
+ input = gen_rtx_REG (vecmode, REGNO (input));
+ emit_move_insn (value, CONST0_RTX (vecmode));
+ if (vecmode == V4SFmode)
+ emit_insn (gen_sse_movss (value, value, input));
+ else
+ emit_insn (gen_sse2_movsd (value, value, input));
+ }
+
+ emit_move_insn (large, two31);
+ emit_move_insn (zero_or_two31, MEM_P (two31) ? large : two31);
+
+ x = gen_rtx_fmt_ee (LE, vecmode, large, value);
+ emit_insn (gen_rtx_SET (VOIDmode, large, x));
+
+ x = gen_rtx_AND (vecmode, zero_or_two31, large);
+ emit_insn (gen_rtx_SET (VOIDmode, zero_or_two31, x));
+
+ x = gen_rtx_MINUS (vecmode, value, zero_or_two31);
+ emit_insn (gen_rtx_SET (VOIDmode, value, x));
+
+ large = gen_rtx_REG (V4SImode, REGNO (large));
+ emit_insn (gen_ashlv4si3 (large, large, GEN_INT (31)));
+
+ x = gen_rtx_REG (V4SImode, REGNO (value));
+ if (vecmode == V4SFmode)
+ emit_insn (gen_fix_truncv4sfv4si2 (x, value));
+ else
+ emit_insn (gen_sse2_cvttpd2dq (x, value));
+ value = x;
+
+ emit_insn (gen_xorv4si3 (value, value, large));
+}
+
+/* Convert an unsigned DImode value into a DFmode, using only SSE.
+ Expects the 64-bit DImode to be supplied in a pair of integral
+ registers. Requires SSE2; will use SSE3 if available. For x86_32,
+ -mfpmath=sse, !optimize_size only. */
+
+void
+ix86_expand_convert_uns_didf_sse (rtx target, rtx input)
+{
+ REAL_VALUE_TYPE bias_lo_rvt, bias_hi_rvt;
+ rtx int_xmm, fp_xmm;
+ rtx biases, exponents;
+ rtx x;
+
+ int_xmm = gen_reg_rtx (V4SImode);
+ if (TARGET_INTER_UNIT_MOVES_TO_VEC)
+ emit_insn (gen_movdi_to_sse (int_xmm, input));
+ else if (TARGET_SSE_SPLIT_REGS)
+ {
+ emit_clobber (int_xmm);
+ emit_move_insn (gen_lowpart (DImode, int_xmm), input);
+ }
+ else
+ {
+ x = gen_reg_rtx (V2DImode);
+ ix86_expand_vector_init_one_nonzero (false, V2DImode, x, input, 0);
+ emit_move_insn (int_xmm, gen_lowpart (V4SImode, x));
+ }
+
+ x = gen_rtx_CONST_VECTOR (V4SImode,
+ gen_rtvec (4, GEN_INT (0x43300000UL),
+ GEN_INT (0x45300000UL),
+ const0_rtx, const0_rtx));
+ exponents = validize_mem (force_const_mem (V4SImode, x));
+
+ /* int_xmm = {0x45300000UL, fp_xmm/hi, 0x43300000, fp_xmm/lo } */
+ emit_insn (gen_vec_interleave_lowv4si (int_xmm, int_xmm, exponents));
+
+ /* Concatenating (juxtaposing) (0x43300000UL ## fp_value_low_xmm)
+ yields a valid DF value equal to (0x1.0p52 + double(fp_value_lo_xmm)).
+ Similarly (0x45300000UL ## fp_value_hi_xmm) yields
+ (0x1.0p84 + double(fp_value_hi_xmm)).
+ Note these exponents differ by 32. */
+
+ fp_xmm = copy_to_mode_reg (V2DFmode, gen_lowpart (V2DFmode, int_xmm));
+
+ /* Subtract off those 0x1.0p52 and 0x1.0p84 biases, to produce values
+ in [0,2**32-1] and [0]+[2**32,2**64-1] respectively. */
+ real_ldexp (&bias_lo_rvt, &dconst1, 52);
+ real_ldexp (&bias_hi_rvt, &dconst1, 84);
+ biases = const_double_from_real_value (bias_lo_rvt, DFmode);
+ x = const_double_from_real_value (bias_hi_rvt, DFmode);
+ biases = gen_rtx_CONST_VECTOR (V2DFmode, gen_rtvec (2, biases, x));
+ biases = validize_mem (force_const_mem (V2DFmode, biases));
+ emit_insn (gen_subv2df3 (fp_xmm, fp_xmm, biases));
+
+ /* Add the upper and lower DFmode values together. */
+ if (TARGET_SSE3)
+ emit_insn (gen_sse3_haddv2df3 (fp_xmm, fp_xmm, fp_xmm));
+ else
+ {
+ x = copy_to_mode_reg (V2DFmode, fp_xmm);
+ emit_insn (gen_vec_interleave_highv2df (fp_xmm, fp_xmm, fp_xmm));
+ emit_insn (gen_addv2df3 (fp_xmm, fp_xmm, x));
+ }
+
+ ix86_expand_vector_extract (false, target, fp_xmm, 0);
+}
+
+/* Not used, but eases macroization of patterns. */
+void
+ix86_expand_convert_uns_sixf_sse (rtx target ATTRIBUTE_UNUSED,
+ rtx input ATTRIBUTE_UNUSED)
+{
+ gcc_unreachable ();
+}
+
+/* Convert an unsigned SImode value into a DFmode. Only currently used
+ for SSE, but applicable anywhere. */
+
+void
+ix86_expand_convert_uns_sidf_sse (rtx target, rtx input)
+{
+ REAL_VALUE_TYPE TWO31r;
+ rtx x, fp;
+
+ x = expand_simple_binop (SImode, PLUS, input, GEN_INT (-2147483647 - 1),
+ NULL, 1, OPTAB_DIRECT);
+
+ fp = gen_reg_rtx (DFmode);
+ emit_insn (gen_floatsidf2 (fp, x));
+
+ real_ldexp (&TWO31r, &dconst1, 31);
+ x = const_double_from_real_value (TWO31r, DFmode);
+
+ x = expand_simple_binop (DFmode, PLUS, fp, x, target, 0, OPTAB_DIRECT);
+ if (x != target)
+ emit_move_insn (target, x);
+}
+
+/* Convert a signed DImode value into a DFmode. Only used for SSE in
+ 32-bit mode; otherwise we have a direct convert instruction. */
+
+void
+ix86_expand_convert_sign_didf_sse (rtx target, rtx input)
+{
+ REAL_VALUE_TYPE TWO32r;
+ rtx fp_lo, fp_hi, x;
+
+ fp_lo = gen_reg_rtx (DFmode);
+ fp_hi = gen_reg_rtx (DFmode);
+
+ emit_insn (gen_floatsidf2 (fp_hi, gen_highpart (SImode, input)));
+
+ real_ldexp (&TWO32r, &dconst1, 32);
+ x = const_double_from_real_value (TWO32r, DFmode);
+ fp_hi = expand_simple_binop (DFmode, MULT, fp_hi, x, fp_hi, 0, OPTAB_DIRECT);
+
+ ix86_expand_convert_uns_sidf_sse (fp_lo, gen_lowpart (SImode, input));
+
+ x = expand_simple_binop (DFmode, PLUS, fp_hi, fp_lo, target,
+ 0, OPTAB_DIRECT);
+ if (x != target)
+ emit_move_insn (target, x);
+}
+
+/* Convert an unsigned SImode value into a SFmode, using only SSE.
+ For x86_32, -mfpmath=sse, !optimize_size only. */
+void
+ix86_expand_convert_uns_sisf_sse (rtx target, rtx input)
+{
+ REAL_VALUE_TYPE ONE16r;
+ rtx fp_hi, fp_lo, int_hi, int_lo, x;
+
+ real_ldexp (&ONE16r, &dconst1, 16);
+ x = const_double_from_real_value (ONE16r, SFmode);
+ int_lo = expand_simple_binop (SImode, AND, input, GEN_INT(0xffff),
+ NULL, 0, OPTAB_DIRECT);
+ int_hi = expand_simple_binop (SImode, LSHIFTRT, input, GEN_INT(16),
+ NULL, 0, OPTAB_DIRECT);
+ fp_hi = gen_reg_rtx (SFmode);
+ fp_lo = gen_reg_rtx (SFmode);
+ emit_insn (gen_floatsisf2 (fp_hi, int_hi));
+ emit_insn (gen_floatsisf2 (fp_lo, int_lo));
+ fp_hi = expand_simple_binop (SFmode, MULT, fp_hi, x, fp_hi,
+ 0, OPTAB_DIRECT);
+ fp_hi = expand_simple_binop (SFmode, PLUS, fp_hi, fp_lo, target,
+ 0, OPTAB_DIRECT);
+ if (!rtx_equal_p (target, fp_hi))
+ emit_move_insn (target, fp_hi);
+}
+
+/* floatunsv{4,8}siv{4,8}sf2 expander. Expand code to convert
+ a vector of unsigned ints VAL to vector of floats TARGET. */
+
+void
+ix86_expand_vector_convert_uns_vsivsf (rtx target, rtx val)
+{
+ rtx tmp[8];
+ REAL_VALUE_TYPE TWO16r;
+ enum machine_mode intmode = GET_MODE (val);
+ enum machine_mode fltmode = GET_MODE (target);
+ rtx (*cvt) (rtx, rtx);
+
+ if (intmode == V4SImode)
+ cvt = gen_floatv4siv4sf2;
+ else
+ cvt = gen_floatv8siv8sf2;
+ tmp[0] = ix86_build_const_vector (intmode, 1, GEN_INT (0xffff));
+ tmp[0] = force_reg (intmode, tmp[0]);
+ tmp[1] = expand_simple_binop (intmode, AND, val, tmp[0], NULL_RTX, 1,
+ OPTAB_DIRECT);
+ tmp[2] = expand_simple_binop (intmode, LSHIFTRT, val, GEN_INT (16),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ tmp[3] = gen_reg_rtx (fltmode);
+ emit_insn (cvt (tmp[3], tmp[1]));
+ tmp[4] = gen_reg_rtx (fltmode);
+ emit_insn (cvt (tmp[4], tmp[2]));
+ real_ldexp (&TWO16r, &dconst1, 16);
+ tmp[5] = const_double_from_real_value (TWO16r, SFmode);
+ tmp[5] = force_reg (fltmode, ix86_build_const_vector (fltmode, 1, tmp[5]));
+ tmp[6] = expand_simple_binop (fltmode, MULT, tmp[4], tmp[5], NULL_RTX, 1,
+ OPTAB_DIRECT);
+ tmp[7] = expand_simple_binop (fltmode, PLUS, tmp[3], tmp[6], target, 1,
+ OPTAB_DIRECT);
+ if (tmp[7] != target)
+ emit_move_insn (target, tmp[7]);
+}
+
+/* Adjust a V*SFmode/V*DFmode value VAL so that *sfix_trunc* resp. fix_trunc*
+ pattern can be used on it instead of *ufix_trunc* resp. fixuns_trunc*.
+ This is done by doing just signed conversion if < 0x1p31, and otherwise by
+ subtracting 0x1p31 first and xoring in 0x80000000 from *XORP afterwards. */
+
+rtx
+ix86_expand_adjust_ufix_to_sfix_si (rtx val, rtx *xorp)
+{
+ REAL_VALUE_TYPE TWO31r;
+ rtx two31r, tmp[4];
+ enum machine_mode mode = GET_MODE (val);
+ enum machine_mode scalarmode = GET_MODE_INNER (mode);
+ enum machine_mode intmode = GET_MODE_SIZE (mode) == 32 ? V8SImode : V4SImode;
+ rtx (*cmp) (rtx, rtx, rtx, rtx);
+ int i;
+
+ for (i = 0; i < 3; i++)
+ tmp[i] = gen_reg_rtx (mode);
+ real_ldexp (&TWO31r, &dconst1, 31);
+ two31r = const_double_from_real_value (TWO31r, scalarmode);
+ two31r = ix86_build_const_vector (mode, 1, two31r);
+ two31r = force_reg (mode, two31r);
+ switch (mode)
+ {
+ case V8SFmode: cmp = gen_avx_maskcmpv8sf3; break;
+ case V4SFmode: cmp = gen_sse_maskcmpv4sf3; break;
+ case V4DFmode: cmp = gen_avx_maskcmpv4df3; break;
+ case V2DFmode: cmp = gen_sse2_maskcmpv2df3; break;
+ default: gcc_unreachable ();
+ }
+ tmp[3] = gen_rtx_LE (mode, two31r, val);
+ emit_insn (cmp (tmp[0], two31r, val, tmp[3]));
+ tmp[1] = expand_simple_binop (mode, AND, tmp[0], two31r, tmp[1],
+ 0, OPTAB_DIRECT);
+ if (intmode == V4SImode || TARGET_AVX2)
+ *xorp = expand_simple_binop (intmode, ASHIFT,
+ gen_lowpart (intmode, tmp[0]),
+ GEN_INT (31), NULL_RTX, 0,
+ OPTAB_DIRECT);
+ else
+ {
+ rtx two31 = GEN_INT ((unsigned HOST_WIDE_INT) 1 << 31);
+ two31 = ix86_build_const_vector (intmode, 1, two31);
+ *xorp = expand_simple_binop (intmode, AND,
+ gen_lowpart (intmode, tmp[0]),
+ two31, NULL_RTX, 0,
+ OPTAB_DIRECT);
+ }
+ return expand_simple_binop (mode, MINUS, val, tmp[1], tmp[2],
+ 0, OPTAB_DIRECT);
+}
+
+/* A subroutine of ix86_build_signbit_mask. If VECT is true,
+ then replicate the value for all elements of the vector
+ register. */
+
+rtx
+ix86_build_const_vector (enum machine_mode mode, bool vect, rtx value)
+{
+ int i, n_elt;
+ rtvec v;
+ enum machine_mode scalar_mode;
+
+ switch (mode)
+ {
+ case V64QImode:
+ case V32QImode:
+ case V16QImode:
+ case V32HImode:
+ case V16HImode:
+ case V8HImode:
+ case V16SImode:
+ case V8SImode:
+ case V4SImode:
+ case V8DImode:
+ case V4DImode:
+ case V2DImode:
+ gcc_assert (vect);
+ case V16SFmode:
+ case V8SFmode:
+ case V4SFmode:
+ case V8DFmode:
+ case V4DFmode:
+ case V2DFmode:
+ n_elt = GET_MODE_NUNITS (mode);
+ v = rtvec_alloc (n_elt);
+ scalar_mode = GET_MODE_INNER (mode);
+
+ RTVEC_ELT (v, 0) = value;
+
+ for (i = 1; i < n_elt; ++i)
+ RTVEC_ELT (v, i) = vect ? value : CONST0_RTX (scalar_mode);
+
+ return gen_rtx_CONST_VECTOR (mode, v);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* A subroutine of ix86_expand_fp_absneg_operator, copysign expanders
+ and ix86_expand_int_vcond. Create a mask for the sign bit in MODE
+ for an SSE register. If VECT is true, then replicate the mask for
+ all elements of the vector register. If INVERT is true, then create
+ a mask excluding the sign bit. */
+
+rtx
+ix86_build_signbit_mask (enum machine_mode mode, bool vect, bool invert)
+{
+ enum machine_mode vec_mode, imode;
+ HOST_WIDE_INT hi, lo;
+ int shift = 63;
+ rtx v;
+ rtx mask;
+
+ /* Find the sign bit, sign extended to 2*HWI. */
+ switch (mode)
+ {
+ case V16SImode:
+ case V16SFmode:
+ case V8SImode:
+ case V4SImode:
+ case V8SFmode:
+ case V4SFmode:
+ vec_mode = mode;
+ mode = GET_MODE_INNER (mode);
+ imode = SImode;
+ lo = 0x80000000, hi = lo < 0;
+ break;
+
+ case V8DImode:
+ case V4DImode:
+ case V2DImode:
+ case V8DFmode:
+ case V4DFmode:
+ case V2DFmode:
+ vec_mode = mode;
+ mode = GET_MODE_INNER (mode);
+ imode = DImode;
+ if (HOST_BITS_PER_WIDE_INT >= 64)
+ lo = (HOST_WIDE_INT)1 << shift, hi = -1;
+ else
+ lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT);
+ break;
+
+ case TImode:
+ case TFmode:
+ vec_mode = VOIDmode;
+ if (HOST_BITS_PER_WIDE_INT >= 64)
+ {
+ imode = TImode;
+ lo = 0, hi = (HOST_WIDE_INT)1 << shift;
+ }
+ else
+ {
+ rtvec vec;
+
+ imode = DImode;
+ lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT);
+
+ if (invert)
+ {
+ lo = ~lo, hi = ~hi;
+ v = constm1_rtx;
+ }
+ else
+ v = const0_rtx;
+
+ mask = immed_double_const (lo, hi, imode);
+
+ vec = gen_rtvec (2, v, mask);
+ v = gen_rtx_CONST_VECTOR (V2DImode, vec);
+ v = copy_to_mode_reg (mode, gen_lowpart (mode, v));
+
+ return v;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (invert)
+ lo = ~lo, hi = ~hi;
+
+ /* Force this value into the low part of a fp vector constant. */
+ mask = immed_double_const (lo, hi, imode);
+ mask = gen_lowpart (mode, mask);
+
+ if (vec_mode == VOIDmode)
+ return force_reg (mode, mask);
+
+ v = ix86_build_const_vector (vec_mode, vect, mask);
+ return force_reg (vec_mode, v);
+}
+
+/* Generate code for floating point ABS or NEG. */
+
+void
+ix86_expand_fp_absneg_operator (enum rtx_code code, enum machine_mode mode,
+ rtx operands[])
+{
+ rtx mask, set, dst, src;
+ bool use_sse = false;
+ bool vector_mode = VECTOR_MODE_P (mode);
+ enum machine_mode vmode = mode;
+
+ if (vector_mode)
+ use_sse = true;
+ else if (mode == TFmode)
+ use_sse = true;
+ else if (TARGET_SSE_MATH)
+ {
+ use_sse = SSE_FLOAT_MODE_P (mode);
+ if (mode == SFmode)
+ vmode = V4SFmode;
+ else if (mode == DFmode)
+ vmode = V2DFmode;
+ }
+
+ /* NEG and ABS performed with SSE use bitwise mask operations.
+ Create the appropriate mask now. */
+ if (use_sse)
+ mask = ix86_build_signbit_mask (vmode, vector_mode, code == ABS);
+ else
+ mask = NULL_RTX;
+
+ dst = operands[0];
+ src = operands[1];
+
+ set = gen_rtx_fmt_e (code, mode, src);
+ set = gen_rtx_SET (VOIDmode, dst, set);
+
+ if (mask)
+ {
+ rtx use, clob;
+ rtvec par;
+
+ use = gen_rtx_USE (VOIDmode, mask);
+ if (vector_mode)
+ par = gen_rtvec (2, set, use);
+ else
+ {
+ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG));
+ par = gen_rtvec (3, set, use, clob);
+ }
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, par));
+ }
+ else
+ emit_insn (set);
+}
+
+/* Expand a copysign operation. Special case operand 0 being a constant. */
+
+void
+ix86_expand_copysign (rtx operands[])
+{
+ enum machine_mode mode, vmode;
+ rtx dest, op0, op1, mask, nmask;
+
+ dest = operands[0];
+ op0 = operands[1];
+ op1 = operands[2];
+
+ mode = GET_MODE (dest);
+
+ if (mode == SFmode)
+ vmode = V4SFmode;
+ else if (mode == DFmode)
+ vmode = V2DFmode;
+ else
+ vmode = mode;
+
+ if (GET_CODE (op0) == CONST_DOUBLE)
+ {
+ rtx (*copysign_insn)(rtx, rtx, rtx, rtx);
+
+ if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
+ op0 = simplify_unary_operation (ABS, mode, op0, mode);
+
+ if (mode == SFmode || mode == DFmode)
+ {
+ if (op0 == CONST0_RTX (mode))
+ op0 = CONST0_RTX (vmode);
+ else
+ {
+ rtx v = ix86_build_const_vector (vmode, false, op0);
+
+ op0 = force_reg (vmode, v);
+ }
+ }
+ else if (op0 != CONST0_RTX (mode))
+ op0 = force_reg (mode, op0);
+
+ mask = ix86_build_signbit_mask (vmode, 0, 0);
+
+ if (mode == SFmode)
+ copysign_insn = gen_copysignsf3_const;
+ else if (mode == DFmode)
+ copysign_insn = gen_copysigndf3_const;
+ else
+ copysign_insn = gen_copysigntf3_const;
+
+ emit_insn (copysign_insn (dest, op0, op1, mask));
+ }
+ else
+ {
+ rtx (*copysign_insn)(rtx, rtx, rtx, rtx, rtx, rtx);
+
+ nmask = ix86_build_signbit_mask (vmode, 0, 1);
+ mask = ix86_build_signbit_mask (vmode, 0, 0);
+
+ if (mode == SFmode)
+ copysign_insn = gen_copysignsf3_var;
+ else if (mode == DFmode)
+ copysign_insn = gen_copysigndf3_var;
+ else
+ copysign_insn = gen_copysigntf3_var;
+
+ emit_insn (copysign_insn (dest, NULL_RTX, op0, op1, nmask, mask));
+ }
+}
+
+/* Deconstruct a copysign operation into bit masks. Operand 0 is known to
+ be a constant, and so has already been expanded into a vector constant. */
+
+void
+ix86_split_copysign_const (rtx operands[])
+{
+ enum machine_mode mode, vmode;
+ rtx dest, op0, mask, x;
+
+ dest = operands[0];
+ op0 = operands[1];
+ mask = operands[3];
+
+ mode = GET_MODE (dest);
+ vmode = GET_MODE (mask);
+
+ dest = simplify_gen_subreg (vmode, dest, mode, 0);
+ x = gen_rtx_AND (vmode, dest, mask);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+
+ if (op0 != CONST0_RTX (vmode))
+ {
+ x = gen_rtx_IOR (vmode, dest, op0);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+ }
+}
+
+/* Deconstruct a copysign operation into bit masks. Operand 0 is variable,
+ so we have to do two masks. */
+
+void
+ix86_split_copysign_var (rtx operands[])
+{
+ enum machine_mode mode, vmode;
+ rtx dest, scratch, op0, op1, mask, nmask, x;
+
+ dest = operands[0];
+ scratch = operands[1];
+ op0 = operands[2];
+ op1 = operands[3];
+ nmask = operands[4];
+ mask = operands[5];
+
+ mode = GET_MODE (dest);
+ vmode = GET_MODE (mask);
+
+ if (rtx_equal_p (op0, op1))
+ {
+ /* Shouldn't happen often (it's useless, obviously), but when it does
+ we'd generate incorrect code if we continue below. */
+ emit_move_insn (dest, op0);
+ return;
+ }
+
+ if (REG_P (mask) && REGNO (dest) == REGNO (mask)) /* alternative 0 */
+ {
+ gcc_assert (REGNO (op1) == REGNO (scratch));
+
+ x = gen_rtx_AND (vmode, scratch, mask);
+ emit_insn (gen_rtx_SET (VOIDmode, scratch, x));
+
+ dest = mask;
+ op0 = simplify_gen_subreg (vmode, op0, mode, 0);
+ x = gen_rtx_NOT (vmode, dest);
+ x = gen_rtx_AND (vmode, x, op0);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+ }
+ else
+ {
+ if (REGNO (op1) == REGNO (scratch)) /* alternative 1,3 */
+ {
+ x = gen_rtx_AND (vmode, scratch, mask);
+ }
+ else /* alternative 2,4 */
+ {
+ gcc_assert (REGNO (mask) == REGNO (scratch));
+ op1 = simplify_gen_subreg (vmode, op1, mode, 0);
+ x = gen_rtx_AND (vmode, scratch, op1);
+ }
+ emit_insn (gen_rtx_SET (VOIDmode, scratch, x));
+
+ if (REGNO (op0) == REGNO (dest)) /* alternative 1,2 */
+ {
+ dest = simplify_gen_subreg (vmode, op0, mode, 0);
+ x = gen_rtx_AND (vmode, dest, nmask);
+ }
+ else /* alternative 3,4 */
+ {
+ gcc_assert (REGNO (nmask) == REGNO (dest));
+ dest = nmask;
+ op0 = simplify_gen_subreg (vmode, op0, mode, 0);
+ x = gen_rtx_AND (vmode, dest, op0);
+ }
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+ }
+
+ x = gen_rtx_IOR (vmode, dest, scratch);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+}
+
+/* Return TRUE or FALSE depending on whether the first SET in INSN
+ has source and destination with matching CC modes, and that the
+ CC mode is at least as constrained as REQ_MODE. */
+
+bool
+ix86_match_ccmode (rtx insn, enum machine_mode req_mode)
+{
+ rtx set;
+ enum machine_mode set_mode;
+
+ set = PATTERN (insn);
+ if (GET_CODE (set) == PARALLEL)
+ set = XVECEXP (set, 0, 0);
+ gcc_assert (GET_CODE (set) == SET);
+ gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE);
+
+ set_mode = GET_MODE (SET_DEST (set));
+ switch (set_mode)
+ {
+ case CCNOmode:
+ if (req_mode != CCNOmode
+ && (req_mode != CCmode
+ || XEXP (SET_SRC (set), 1) != const0_rtx))
+ return false;
+ break;
+ case CCmode:
+ if (req_mode == CCGCmode)
+ return false;
+ /* FALLTHRU */
+ case CCGCmode:
+ if (req_mode == CCGOCmode || req_mode == CCNOmode)
+ return false;
+ /* FALLTHRU */
+ case CCGOCmode:
+ if (req_mode == CCZmode)
+ return false;
+ /* FALLTHRU */
+ case CCZmode:
+ break;
+
+ case CCAmode:
+ case CCCmode:
+ case CCOmode:
+ case CCSmode:
+ if (set_mode != req_mode)
+ return false;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return GET_MODE (SET_SRC (set)) == set_mode;
+}
+
+/* Generate insn patterns to do an integer compare of OPERANDS. */
+
+static rtx
+ix86_expand_int_compare (enum rtx_code code, rtx op0, rtx op1)
+{
+ enum machine_mode cmpmode;
+ rtx tmp, flags;
+
+ cmpmode = SELECT_CC_MODE (code, op0, op1);
+ flags = gen_rtx_REG (cmpmode, FLAGS_REG);
+
+ /* This is very simple, but making the interface the same as in the
+ FP case makes the rest of the code easier. */
+ tmp = gen_rtx_COMPARE (cmpmode, op0, op1);
+ emit_insn (gen_rtx_SET (VOIDmode, flags, tmp));
+
+ /* Return the test that should be put into the flags user, i.e.
+ the bcc, scc, or cmov instruction. */
+ return gen_rtx_fmt_ee (code, VOIDmode, flags, const0_rtx);
+}
+
+/* Figure out whether to use ordered or unordered fp comparisons.
+ Return the appropriate mode to use. */
+
+enum machine_mode
+ix86_fp_compare_mode (enum rtx_code code ATTRIBUTE_UNUSED)
+{
+ /* ??? In order to make all comparisons reversible, we do all comparisons
+ non-trapping when compiling for IEEE. Once gcc is able to distinguish
+ all forms trapping and nontrapping comparisons, we can make inequality
+ comparisons trapping again, since it results in better code when using
+ FCOM based compares. */
+ return TARGET_IEEE_FP ? CCFPUmode : CCFPmode;
+}
+
+enum machine_mode
+ix86_cc_mode (enum rtx_code code, rtx op0, rtx op1)
+{
+ enum machine_mode mode = GET_MODE (op0);
+
+ if (SCALAR_FLOAT_MODE_P (mode))
+ {
+ gcc_assert (!DECIMAL_FLOAT_MODE_P (mode));
+ return ix86_fp_compare_mode (code);
+ }
+
+ switch (code)
+ {
+ /* Only zero flag is needed. */
+ case EQ: /* ZF=0 */
+ case NE: /* ZF!=0 */
+ return CCZmode;
+ /* Codes needing carry flag. */
+ case GEU: /* CF=0 */
+ case LTU: /* CF=1 */
+ /* Detect overflow checks. They need just the carry flag. */
+ if (GET_CODE (op0) == PLUS
+ && rtx_equal_p (op1, XEXP (op0, 0)))
+ return CCCmode;
+ else
+ return CCmode;
+ case GTU: /* CF=0 & ZF=0 */
+ case LEU: /* CF=1 | ZF=1 */
+ return CCmode;
+ /* Codes possibly doable only with sign flag when
+ comparing against zero. */
+ case GE: /* SF=OF or SF=0 */
+ case LT: /* SF<>OF or SF=1 */
+ if (op1 == const0_rtx)
+ return CCGOCmode;
+ else
+ /* For other cases Carry flag is not required. */
+ return CCGCmode;
+ /* Codes doable only with sign flag when comparing
+ against zero, but we miss jump instruction for it
+ so we need to use relational tests against overflow
+ that thus needs to be zero. */
+ case GT: /* ZF=0 & SF=OF */
+ case LE: /* ZF=1 | SF<>OF */
+ if (op1 == const0_rtx)
+ return CCNOmode;
+ else
+ return CCGCmode;
+ /* strcmp pattern do (use flags) and combine may ask us for proper
+ mode. */
+ case USE:
+ return CCmode;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return the fixed registers used for condition codes. */
+
+static bool
+ix86_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
+{
+ *p1 = FLAGS_REG;
+ *p2 = FPSR_REG;
+ return true;
+}
+
+/* If two condition code modes are compatible, return a condition code
+ mode which is compatible with both. Otherwise, return
+ VOIDmode. */
+
+static enum machine_mode
+ix86_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2)
+{
+ if (m1 == m2)
+ return m1;
+
+ if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC)
+ return VOIDmode;
+
+ if ((m1 == CCGCmode && m2 == CCGOCmode)
+ || (m1 == CCGOCmode && m2 == CCGCmode))
+ return CCGCmode;
+
+ if (m1 == CCZmode && (m2 == CCGCmode || m2 == CCGOCmode))
+ return m2;
+ else if (m2 == CCZmode && (m1 == CCGCmode || m1 == CCGOCmode))
+ return m1;
+
+ switch (m1)
+ {
+ default:
+ gcc_unreachable ();
+
+ case CCmode:
+ case CCGCmode:
+ case CCGOCmode:
+ case CCNOmode:
+ case CCAmode:
+ case CCCmode:
+ case CCOmode:
+ case CCSmode:
+ case CCZmode:
+ switch (m2)
+ {
+ default:
+ return VOIDmode;
+
+ case CCmode:
+ case CCGCmode:
+ case CCGOCmode:
+ case CCNOmode:
+ case CCAmode:
+ case CCCmode:
+ case CCOmode:
+ case CCSmode:
+ case CCZmode:
+ return CCmode;
+ }
+
+ case CCFPmode:
+ case CCFPUmode:
+ /* These are only compatible with themselves, which we already
+ checked above. */
+ return VOIDmode;
+ }
+}
+
+
+/* Return a comparison we can do and that it is equivalent to
+ swap_condition (code) apart possibly from orderedness.
+ But, never change orderedness if TARGET_IEEE_FP, returning
+ UNKNOWN in that case if necessary. */
+
+static enum rtx_code
+ix86_fp_swap_condition (enum rtx_code code)
+{
+ switch (code)
+ {
+ case GT: /* GTU - CF=0 & ZF=0 */
+ return TARGET_IEEE_FP ? UNKNOWN : UNLT;
+ case GE: /* GEU - CF=0 */
+ return TARGET_IEEE_FP ? UNKNOWN : UNLE;
+ case UNLT: /* LTU - CF=1 */
+ return TARGET_IEEE_FP ? UNKNOWN : GT;
+ case UNLE: /* LEU - CF=1 | ZF=1 */
+ return TARGET_IEEE_FP ? UNKNOWN : GE;
+ default:
+ return swap_condition (code);
+ }
+}
+
+/* Return cost of comparison CODE using the best strategy for performance.
+ All following functions do use number of instructions as a cost metrics.
+ In future this should be tweaked to compute bytes for optimize_size and
+ take into account performance of various instructions on various CPUs. */
+
+static int
+ix86_fp_comparison_cost (enum rtx_code code)
+{
+ int arith_cost;
+
+ /* The cost of code using bit-twiddling on %ah. */
+ switch (code)
+ {
+ case UNLE:
+ case UNLT:
+ case LTGT:
+ case GT:
+ case GE:
+ case UNORDERED:
+ case ORDERED:
+ case UNEQ:
+ arith_cost = 4;
+ break;
+ case LT:
+ case NE:
+ case EQ:
+ case UNGE:
+ arith_cost = TARGET_IEEE_FP ? 5 : 4;
+ break;
+ case LE:
+ case UNGT:
+ arith_cost = TARGET_IEEE_FP ? 6 : 4;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ switch (ix86_fp_comparison_strategy (code))
+ {
+ case IX86_FPCMP_COMI:
+ return arith_cost > 4 ? 3 : 2;
+ case IX86_FPCMP_SAHF:
+ return arith_cost > 4 ? 4 : 3;
+ default:
+ return arith_cost;
+ }
+}
+
+/* Return strategy to use for floating-point. We assume that fcomi is always
+ preferrable where available, since that is also true when looking at size
+ (2 bytes, vs. 3 for fnstsw+sahf and at least 5 for fnstsw+test). */
+
+enum ix86_fpcmp_strategy
+ix86_fp_comparison_strategy (enum rtx_code code ATTRIBUTE_UNUSED)
+{
+ /* Do fcomi/sahf based test when profitable. */
+
+ if (TARGET_CMOVE)
+ return IX86_FPCMP_COMI;
+
+ if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_insn_for_size_p ()))
+ return IX86_FPCMP_SAHF;
+
+ return IX86_FPCMP_ARITH;
+}
+
+/* Swap, force into registers, or otherwise massage the two operands
+ to a fp comparison. The operands are updated in place; the new
+ comparison code is returned. */
+
+static enum rtx_code
+ix86_prepare_fp_compare_args (enum rtx_code code, rtx *pop0, rtx *pop1)
+{
+ enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code);
+ rtx op0 = *pop0, op1 = *pop1;
+ enum machine_mode op_mode = GET_MODE (op0);
+ int is_sse = TARGET_SSE_MATH && SSE_FLOAT_MODE_P (op_mode);
+
+ /* All of the unordered compare instructions only work on registers.
+ The same is true of the fcomi compare instructions. The XFmode
+ compare instructions require registers except when comparing
+ against zero or when converting operand 1 from fixed point to
+ floating point. */
+
+ if (!is_sse
+ && (fpcmp_mode == CCFPUmode
+ || (op_mode == XFmode
+ && ! (standard_80387_constant_p (op0) == 1
+ || standard_80387_constant_p (op1) == 1)
+ && GET_CODE (op1) != FLOAT)
+ || ix86_fp_comparison_strategy (code) == IX86_FPCMP_COMI))
+ {
+ op0 = force_reg (op_mode, op0);
+ op1 = force_reg (op_mode, op1);
+ }
+ else
+ {
+ /* %%% We only allow op1 in memory; op0 must be st(0). So swap
+ things around if they appear profitable, otherwise force op0
+ into a register. */
+
+ if (standard_80387_constant_p (op0) == 0
+ || (MEM_P (op0)
+ && ! (standard_80387_constant_p (op1) == 0
+ || MEM_P (op1))))
+ {
+ enum rtx_code new_code = ix86_fp_swap_condition (code);
+ if (new_code != UNKNOWN)
+ {
+ rtx tmp;
+ tmp = op0, op0 = op1, op1 = tmp;
+ code = new_code;
+ }
+ }
+
+ if (!REG_P (op0))
+ op0 = force_reg (op_mode, op0);
+
+ if (CONSTANT_P (op1))
+ {
+ int tmp = standard_80387_constant_p (op1);
+ if (tmp == 0)
+ op1 = validize_mem (force_const_mem (op_mode, op1));
+ else if (tmp == 1)
+ {
+ if (TARGET_CMOVE)
+ op1 = force_reg (op_mode, op1);
+ }
+ else
+ op1 = force_reg (op_mode, op1);
+ }
+ }
+
+ /* Try to rearrange the comparison to make it cheaper. */
+ if (ix86_fp_comparison_cost (code)
+ > ix86_fp_comparison_cost (swap_condition (code))
+ && (REG_P (op1) || can_create_pseudo_p ()))
+ {
+ rtx tmp;
+ tmp = op0, op0 = op1, op1 = tmp;
+ code = swap_condition (code);
+ if (!REG_P (op0))
+ op0 = force_reg (op_mode, op0);
+ }
+
+ *pop0 = op0;
+ *pop1 = op1;
+ return code;
+}
+
+/* Convert comparison codes we use to represent FP comparison to integer
+ code that will result in proper branch. Return UNKNOWN if no such code
+ is available. */
+
+enum rtx_code
+ix86_fp_compare_code_to_integer (enum rtx_code code)
+{
+ switch (code)
+ {
+ case GT:
+ return GTU;
+ case GE:
+ return GEU;
+ case ORDERED:
+ case UNORDERED:
+ return code;
+ break;
+ case UNEQ:
+ return EQ;
+ break;
+ case UNLT:
+ return LTU;
+ break;
+ case UNLE:
+ return LEU;
+ break;
+ case LTGT:
+ return NE;
+ break;
+ default:
+ return UNKNOWN;
+ }
+}
+
+/* Generate insn patterns to do a floating point compare of OPERANDS. */
+
+static rtx
+ix86_expand_fp_compare (enum rtx_code code, rtx op0, rtx op1, rtx scratch)
+{
+ enum machine_mode fpcmp_mode, intcmp_mode;
+ rtx tmp, tmp2;
+
+ fpcmp_mode = ix86_fp_compare_mode (code);
+ code = ix86_prepare_fp_compare_args (code, &op0, &op1);
+
+ /* Do fcomi/sahf based test when profitable. */
+ switch (ix86_fp_comparison_strategy (code))
+ {
+ case IX86_FPCMP_COMI:
+ intcmp_mode = fpcmp_mode;
+ tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1);
+ tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG),
+ tmp);
+ emit_insn (tmp);
+ break;
+
+ case IX86_FPCMP_SAHF:
+ intcmp_mode = fpcmp_mode;
+ tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1);
+ tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG),
+ tmp);
+
+ if (!scratch)
+ scratch = gen_reg_rtx (HImode);
+ tmp2 = gen_rtx_CLOBBER (VOIDmode, scratch);
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, tmp2)));
+ break;
+
+ case IX86_FPCMP_ARITH:
+ /* Sadness wrt reg-stack pops killing fpsr -- gotta get fnstsw first. */
+ tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1);
+ tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), UNSPEC_FNSTSW);
+ if (!scratch)
+ scratch = gen_reg_rtx (HImode);
+ emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2));
+
+ /* In the unordered case, we have to check C2 for NaN's, which
+ doesn't happen to work out to anything nice combination-wise.
+ So do some bit twiddling on the value we've got in AH to come
+ up with an appropriate set of condition codes. */
+
+ intcmp_mode = CCNOmode;
+ switch (code)
+ {
+ case GT:
+ case UNGT:
+ if (code == GT || !TARGET_IEEE_FP)
+ {
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45)));
+ code = EQ;
+ }
+ else
+ {
+ emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
+ emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx));
+ emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x44)));
+ intcmp_mode = CCmode;
+ code = GEU;
+ }
+ break;
+ case LT:
+ case UNLT:
+ if (code == LT && TARGET_IEEE_FP)
+ {
+ emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
+ emit_insn (gen_cmpqi_ext_3 (scratch, const1_rtx));
+ intcmp_mode = CCmode;
+ code = EQ;
+ }
+ else
+ {
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, const1_rtx));
+ code = NE;
+ }
+ break;
+ case GE:
+ case UNGE:
+ if (code == GE || !TARGET_IEEE_FP)
+ {
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x05)));
+ code = EQ;
+ }
+ else
+ {
+ emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
+ emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, const1_rtx));
+ code = NE;
+ }
+ break;
+ case LE:
+ case UNLE:
+ if (code == LE && TARGET_IEEE_FP)
+ {
+ emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
+ emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx));
+ emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40)));
+ intcmp_mode = CCmode;
+ code = LTU;
+ }
+ else
+ {
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45)));
+ code = NE;
+ }
+ break;
+ case EQ:
+ case UNEQ:
+ if (code == EQ && TARGET_IEEE_FP)
+ {
+ emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
+ emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40)));
+ intcmp_mode = CCmode;
+ code = EQ;
+ }
+ else
+ {
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40)));
+ code = NE;
+ }
+ break;
+ case NE:
+ case LTGT:
+ if (code == NE && TARGET_IEEE_FP)
+ {
+ emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
+ emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch,
+ GEN_INT (0x40)));
+ code = NE;
+ }
+ else
+ {
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40)));
+ code = EQ;
+ }
+ break;
+
+ case UNORDERED:
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04)));
+ code = NE;
+ break;
+ case ORDERED:
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04)));
+ code = EQ;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+
+ /* Return the test that should be put into the flags user, i.e.
+ the bcc, scc, or cmov instruction. */
+ return gen_rtx_fmt_ee (code, VOIDmode,
+ gen_rtx_REG (intcmp_mode, FLAGS_REG),
+ const0_rtx);
+}
+
+static rtx
+ix86_expand_compare (enum rtx_code code, rtx op0, rtx op1)
+{
+ rtx ret;
+
+ if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
+ ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
+
+ else if (SCALAR_FLOAT_MODE_P (GET_MODE (op0)))
+ {
+ gcc_assert (!DECIMAL_FLOAT_MODE_P (GET_MODE (op0)));
+ ret = ix86_expand_fp_compare (code, op0, op1, NULL_RTX);
+ }
+ else
+ ret = ix86_expand_int_compare (code, op0, op1);
+
+ return ret;
+}
+
+void
+ix86_expand_branch (enum rtx_code code, rtx op0, rtx op1, rtx label)
+{
+ enum machine_mode mode = GET_MODE (op0);
+ rtx tmp;
+
+ switch (mode)
+ {
+ case SFmode:
+ case DFmode:
+ case XFmode:
+ case QImode:
+ case HImode:
+ case SImode:
+ simple:
+ tmp = ix86_expand_compare (code, op0, op1);
+ tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
+ gen_rtx_LABEL_REF (VOIDmode, label),
+ pc_rtx);
+ emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
+ return;
+
+ case DImode:
+ if (TARGET_64BIT)
+ goto simple;
+ case TImode:
+ /* Expand DImode branch into multiple compare+branch. */
+ {
+ rtx lo[2], hi[2], label2;
+ enum rtx_code code1, code2, code3;
+ enum machine_mode submode;
+
+ if (CONSTANT_P (op0) && !CONSTANT_P (op1))
+ {
+ tmp = op0, op0 = op1, op1 = tmp;
+ code = swap_condition (code);
+ }
+
+ split_double_mode (mode, &op0, 1, lo+0, hi+0);
+ split_double_mode (mode, &op1, 1, lo+1, hi+1);
+
+ submode = mode == DImode ? SImode : DImode;
+
+ /* When comparing for equality, we can use (hi0^hi1)|(lo0^lo1) to
+ avoid two branches. This costs one extra insn, so disable when
+ optimizing for size. */
+
+ if ((code == EQ || code == NE)
+ && (!optimize_insn_for_size_p ()
+ || hi[1] == const0_rtx || lo[1] == const0_rtx))
+ {
+ rtx xor0, xor1;
+
+ xor1 = hi[0];
+ if (hi[1] != const0_rtx)
+ xor1 = expand_binop (submode, xor_optab, xor1, hi[1],
+ NULL_RTX, 0, OPTAB_WIDEN);
+
+ xor0 = lo[0];
+ if (lo[1] != const0_rtx)
+ xor0 = expand_binop (submode, xor_optab, xor0, lo[1],
+ NULL_RTX, 0, OPTAB_WIDEN);
+
+ tmp = expand_binop (submode, ior_optab, xor1, xor0,
+ NULL_RTX, 0, OPTAB_WIDEN);
+
+ ix86_expand_branch (code, tmp, const0_rtx, label);
+ return;
+ }
+
+ /* Otherwise, if we are doing less-than or greater-or-equal-than,
+ op1 is a constant and the low word is zero, then we can just
+ examine the high word. Similarly for low word -1 and
+ less-or-equal-than or greater-than. */
+
+ if (CONST_INT_P (hi[1]))
+ switch (code)
+ {
+ case LT: case LTU: case GE: case GEU:
+ if (lo[1] == const0_rtx)
+ {
+ ix86_expand_branch (code, hi[0], hi[1], label);
+ return;
+ }
+ break;
+ case LE: case LEU: case GT: case GTU:
+ if (lo[1] == constm1_rtx)
+ {
+ ix86_expand_branch (code, hi[0], hi[1], label);
+ return;
+ }
+ break;
+ default:
+ break;
+ }
+
+ /* Otherwise, we need two or three jumps. */
+
+ label2 = gen_label_rtx ();
+
+ code1 = code;
+ code2 = swap_condition (code);
+ code3 = unsigned_condition (code);
+
+ switch (code)
+ {
+ case LT: case GT: case LTU: case GTU:
+ break;
+
+ case LE: code1 = LT; code2 = GT; break;
+ case GE: code1 = GT; code2 = LT; break;
+ case LEU: code1 = LTU; code2 = GTU; break;
+ case GEU: code1 = GTU; code2 = LTU; break;
+
+ case EQ: code1 = UNKNOWN; code2 = NE; break;
+ case NE: code2 = UNKNOWN; break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /*
+ * a < b =>
+ * if (hi(a) < hi(b)) goto true;
+ * if (hi(a) > hi(b)) goto false;
+ * if (lo(a) < lo(b)) goto true;
+ * false:
+ */
+
+ if (code1 != UNKNOWN)
+ ix86_expand_branch (code1, hi[0], hi[1], label);
+ if (code2 != UNKNOWN)
+ ix86_expand_branch (code2, hi[0], hi[1], label2);
+
+ ix86_expand_branch (code3, lo[0], lo[1], label);
+
+ if (code2 != UNKNOWN)
+ emit_label (label2);
+ return;
+ }
+
+ default:
+ gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC);
+ goto simple;
+ }
+}
+
+/* Split branch based on floating point condition. */
+void
+ix86_split_fp_branch (enum rtx_code code, rtx op1, rtx op2,
+ rtx target1, rtx target2, rtx tmp)
+{
+ rtx condition;
+ rtx i;
+
+ if (target2 != pc_rtx)
+ {
+ rtx tmp = target2;
+ code = reverse_condition_maybe_unordered (code);
+ target2 = target1;
+ target1 = tmp;
+ }
+
+ condition = ix86_expand_fp_compare (code, op1, op2,
+ tmp);
+
+ i = emit_jump_insn (gen_rtx_SET
+ (VOIDmode, pc_rtx,
+ gen_rtx_IF_THEN_ELSE (VOIDmode,
+ condition, target1, target2)));
+ if (split_branch_probability >= 0)
+ add_int_reg_note (i, REG_BR_PROB, split_branch_probability);
+}
+
+void
+ix86_expand_setcc (rtx dest, enum rtx_code code, rtx op0, rtx op1)
+{
+ rtx ret;
+
+ gcc_assert (GET_MODE (dest) == QImode);
+
+ ret = ix86_expand_compare (code, op0, op1);
+ PUT_MODE (ret, QImode);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, ret));
+}
+
+/* Expand comparison setting or clearing carry flag. Return true when
+ successful and set pop for the operation. */
+static bool
+ix86_expand_carry_flag_compare (enum rtx_code code, rtx op0, rtx op1, rtx *pop)
+{
+ enum machine_mode mode =
+ GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
+
+ /* Do not handle double-mode compares that go through special path. */
+ if (mode == (TARGET_64BIT ? TImode : DImode))
+ return false;
+
+ if (SCALAR_FLOAT_MODE_P (mode))
+ {
+ rtx compare_op, compare_seq;
+
+ gcc_assert (!DECIMAL_FLOAT_MODE_P (mode));
+
+ /* Shortcut: following common codes never translate
+ into carry flag compares. */
+ if (code == EQ || code == NE || code == UNEQ || code == LTGT
+ || code == ORDERED || code == UNORDERED)
+ return false;
+
+ /* These comparisons require zero flag; swap operands so they won't. */
+ if ((code == GT || code == UNLE || code == LE || code == UNGT)
+ && !TARGET_IEEE_FP)
+ {
+ rtx tmp = op0;
+ op0 = op1;
+ op1 = tmp;
+ code = swap_condition (code);
+ }
+
+ /* Try to expand the comparison and verify that we end up with
+ carry flag based comparison. This fails to be true only when
+ we decide to expand comparison using arithmetic that is not
+ too common scenario. */
+ start_sequence ();
+ compare_op = ix86_expand_fp_compare (code, op0, op1, NULL_RTX);
+ compare_seq = get_insns ();
+ end_sequence ();
+
+ if (GET_MODE (XEXP (compare_op, 0)) == CCFPmode
+ || GET_MODE (XEXP (compare_op, 0)) == CCFPUmode)
+ code = ix86_fp_compare_code_to_integer (GET_CODE (compare_op));
+ else
+ code = GET_CODE (compare_op);
+
+ if (code != LTU && code != GEU)
+ return false;
+
+ emit_insn (compare_seq);
+ *pop = compare_op;
+ return true;
+ }
+
+ if (!INTEGRAL_MODE_P (mode))
+ return false;
+
+ switch (code)
+ {
+ case LTU:
+ case GEU:
+ break;
+
+ /* Convert a==0 into (unsigned)a<1. */
+ case EQ:
+ case NE:
+ if (op1 != const0_rtx)
+ return false;
+ op1 = const1_rtx;
+ code = (code == EQ ? LTU : GEU);
+ break;
+
+ /* Convert a>b into b<a or a>=b-1. */
+ case GTU:
+ case LEU:
+ if (CONST_INT_P (op1))
+ {
+ op1 = gen_int_mode (INTVAL (op1) + 1, GET_MODE (op0));
+ /* Bail out on overflow. We still can swap operands but that
+ would force loading of the constant into register. */
+ if (op1 == const0_rtx
+ || !x86_64_immediate_operand (op1, GET_MODE (op1)))
+ return false;
+ code = (code == GTU ? GEU : LTU);
+ }
+ else
+ {
+ rtx tmp = op1;
+ op1 = op0;
+ op0 = tmp;
+ code = (code == GTU ? LTU : GEU);
+ }
+ break;
+
+ /* Convert a>=0 into (unsigned)a<0x80000000. */
+ case LT:
+ case GE:
+ if (mode == DImode || op1 != const0_rtx)
+ return false;
+ op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode);
+ code = (code == LT ? GEU : LTU);
+ break;
+ case LE:
+ case GT:
+ if (mode == DImode || op1 != constm1_rtx)
+ return false;
+ op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode);
+ code = (code == LE ? GEU : LTU);
+ break;
+
+ default:
+ return false;
+ }
+ /* Swapping operands may cause constant to appear as first operand. */
+ if (!nonimmediate_operand (op0, VOIDmode))
+ {
+ if (!can_create_pseudo_p ())
+ return false;
+ op0 = force_reg (mode, op0);
+ }
+ *pop = ix86_expand_compare (code, op0, op1);
+ gcc_assert (GET_CODE (*pop) == LTU || GET_CODE (*pop) == GEU);
+ return true;
+}
+
+bool
+ix86_expand_int_movcc (rtx operands[])
+{
+ enum rtx_code code = GET_CODE (operands[1]), compare_code;
+ rtx compare_seq, compare_op;
+ enum machine_mode mode = GET_MODE (operands[0]);
+ bool sign_bit_compare_p = false;
+ rtx op0 = XEXP (operands[1], 0);
+ rtx op1 = XEXP (operands[1], 1);
+
+ if (GET_MODE (op0) == TImode
+ || (GET_MODE (op0) == DImode
+ && !TARGET_64BIT))
+ return false;
+
+ start_sequence ();
+ compare_op = ix86_expand_compare (code, op0, op1);
+ compare_seq = get_insns ();
+ end_sequence ();
+
+ compare_code = GET_CODE (compare_op);
+
+ if ((op1 == const0_rtx && (code == GE || code == LT))
+ || (op1 == constm1_rtx && (code == GT || code == LE)))
+ sign_bit_compare_p = true;
+
+ /* Don't attempt mode expansion here -- if we had to expand 5 or 6
+ HImode insns, we'd be swallowed in word prefix ops. */
+
+ if ((mode != HImode || TARGET_FAST_PREFIX)
+ && (mode != (TARGET_64BIT ? TImode : DImode))
+ && CONST_INT_P (operands[2])
+ && CONST_INT_P (operands[3]))
+ {
+ rtx out = operands[0];
+ HOST_WIDE_INT ct = INTVAL (operands[2]);
+ HOST_WIDE_INT cf = INTVAL (operands[3]);
+ HOST_WIDE_INT diff;
+
+ diff = ct - cf;
+ /* Sign bit compares are better done using shifts than we do by using
+ sbb. */
+ if (sign_bit_compare_p
+ || ix86_expand_carry_flag_compare (code, op0, op1, &compare_op))
+ {
+ /* Detect overlap between destination and compare sources. */
+ rtx tmp = out;
+
+ if (!sign_bit_compare_p)
+ {
+ rtx flags;
+ bool fpcmp = false;
+
+ compare_code = GET_CODE (compare_op);
+
+ flags = XEXP (compare_op, 0);
+
+ if (GET_MODE (flags) == CCFPmode
+ || GET_MODE (flags) == CCFPUmode)
+ {
+ fpcmp = true;
+ compare_code
+ = ix86_fp_compare_code_to_integer (compare_code);
+ }
+
+ /* To simplify rest of code, restrict to the GEU case. */
+ if (compare_code == LTU)
+ {
+ HOST_WIDE_INT tmp = ct;
+ ct = cf;
+ cf = tmp;
+ compare_code = reverse_condition (compare_code);
+ code = reverse_condition (code);
+ }
+ else
+ {
+ if (fpcmp)
+ PUT_CODE (compare_op,
+ reverse_condition_maybe_unordered
+ (GET_CODE (compare_op)));
+ else
+ PUT_CODE (compare_op,
+ reverse_condition (GET_CODE (compare_op)));
+ }
+ diff = ct - cf;
+
+ if (reg_overlap_mentioned_p (out, op0)
+ || reg_overlap_mentioned_p (out, op1))
+ tmp = gen_reg_rtx (mode);
+
+ if (mode == DImode)
+ emit_insn (gen_x86_movdicc_0_m1 (tmp, flags, compare_op));
+ else
+ emit_insn (gen_x86_movsicc_0_m1 (gen_lowpart (SImode, tmp),
+ flags, compare_op));
+ }
+ else
+ {
+ if (code == GT || code == GE)
+ code = reverse_condition (code);
+ else
+ {
+ HOST_WIDE_INT tmp = ct;
+ ct = cf;
+ cf = tmp;
+ diff = ct - cf;
+ }
+ tmp = emit_store_flag (tmp, code, op0, op1, VOIDmode, 0, -1);
+ }
+
+ if (diff == 1)
+ {
+ /*
+ * cmpl op0,op1
+ * sbbl dest,dest
+ * [addl dest, ct]
+ *
+ * Size 5 - 8.
+ */
+ if (ct)
+ tmp = expand_simple_binop (mode, PLUS,
+ tmp, GEN_INT (ct),
+ copy_rtx (tmp), 1, OPTAB_DIRECT);
+ }
+ else if (cf == -1)
+ {
+ /*
+ * cmpl op0,op1
+ * sbbl dest,dest
+ * orl $ct, dest
+ *
+ * Size 8.
+ */
+ tmp = expand_simple_binop (mode, IOR,
+ tmp, GEN_INT (ct),
+ copy_rtx (tmp), 1, OPTAB_DIRECT);
+ }
+ else if (diff == -1 && ct)
+ {
+ /*
+ * cmpl op0,op1
+ * sbbl dest,dest
+ * notl dest
+ * [addl dest, cf]
+ *
+ * Size 8 - 11.
+ */
+ tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1);
+ if (cf)
+ tmp = expand_simple_binop (mode, PLUS,
+ copy_rtx (tmp), GEN_INT (cf),
+ copy_rtx (tmp), 1, OPTAB_DIRECT);
+ }
+ else
+ {
+ /*
+ * cmpl op0,op1
+ * sbbl dest,dest
+ * [notl dest]
+ * andl cf - ct, dest
+ * [addl dest, ct]
+ *
+ * Size 8 - 11.
+ */
+
+ if (cf == 0)
+ {
+ cf = ct;
+ ct = 0;
+ tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1);
+ }
+
+ tmp = expand_simple_binop (mode, AND,
+ copy_rtx (tmp),
+ gen_int_mode (cf - ct, mode),
+ copy_rtx (tmp), 1, OPTAB_DIRECT);
+ if (ct)
+ tmp = expand_simple_binop (mode, PLUS,
+ copy_rtx (tmp), GEN_INT (ct),
+ copy_rtx (tmp), 1, OPTAB_DIRECT);
+ }
+
+ if (!rtx_equal_p (tmp, out))
+ emit_move_insn (copy_rtx (out), copy_rtx (tmp));
+
+ return true;
+ }
+
+ if (diff < 0)
+ {
+ enum machine_mode cmp_mode = GET_MODE (op0);
+
+ HOST_WIDE_INT tmp;
+ tmp = ct, ct = cf, cf = tmp;
+ diff = -diff;
+
+ if (SCALAR_FLOAT_MODE_P (cmp_mode))
+ {
+ gcc_assert (!DECIMAL_FLOAT_MODE_P (cmp_mode));
+
+ /* We may be reversing unordered compare to normal compare, that
+ is not valid in general (we may convert non-trapping condition
+ to trapping one), however on i386 we currently emit all
+ comparisons unordered. */
+ compare_code = reverse_condition_maybe_unordered (compare_code);
+ code = reverse_condition_maybe_unordered (code);
+ }
+ else
+ {
+ compare_code = reverse_condition (compare_code);
+ code = reverse_condition (code);
+ }
+ }
+
+ compare_code = UNKNOWN;
+ if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
+ && CONST_INT_P (op1))
+ {
+ if (op1 == const0_rtx
+ && (code == LT || code == GE))
+ compare_code = code;
+ else if (op1 == constm1_rtx)
+ {
+ if (code == LE)
+ compare_code = LT;
+ else if (code == GT)
+ compare_code = GE;
+ }
+ }
+
+ /* Optimize dest = (op0 < 0) ? -1 : cf. */
+ if (compare_code != UNKNOWN
+ && GET_MODE (op0) == GET_MODE (out)
+ && (cf == -1 || ct == -1))
+ {
+ /* If lea code below could be used, only optimize
+ if it results in a 2 insn sequence. */
+
+ if (! (diff == 1 || diff == 2 || diff == 4 || diff == 8
+ || diff == 3 || diff == 5 || diff == 9)
+ || (compare_code == LT && ct == -1)
+ || (compare_code == GE && cf == -1))
+ {
+ /*
+ * notl op1 (if necessary)
+ * sarl $31, op1
+ * orl cf, op1
+ */
+ if (ct != -1)
+ {
+ cf = ct;
+ ct = -1;
+ code = reverse_condition (code);
+ }
+
+ out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, -1);
+
+ out = expand_simple_binop (mode, IOR,
+ out, GEN_INT (cf),
+ out, 1, OPTAB_DIRECT);
+ if (out != operands[0])
+ emit_move_insn (operands[0], out);
+
+ return true;
+ }
+ }
+
+
+ if ((diff == 1 || diff == 2 || diff == 4 || diff == 8
+ || diff == 3 || diff == 5 || diff == 9)
+ && ((mode != QImode && mode != HImode) || !TARGET_PARTIAL_REG_STALL)
+ && (mode != DImode
+ || x86_64_immediate_operand (GEN_INT (cf), VOIDmode)))
+ {
+ /*
+ * xorl dest,dest
+ * cmpl op1,op2
+ * setcc dest
+ * lea cf(dest*(ct-cf)),dest
+ *
+ * Size 14.
+ *
+ * This also catches the degenerate setcc-only case.
+ */
+
+ rtx tmp;
+ int nops;
+
+ out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, 1);
+
+ nops = 0;
+ /* On x86_64 the lea instruction operates on Pmode, so we need
+ to get arithmetics done in proper mode to match. */
+ if (diff == 1)
+ tmp = copy_rtx (out);
+ else
+ {
+ rtx out1;
+ out1 = copy_rtx (out);
+ tmp = gen_rtx_MULT (mode, out1, GEN_INT (diff & ~1));
+ nops++;
+ if (diff & 1)
+ {
+ tmp = gen_rtx_PLUS (mode, tmp, out1);
+ nops++;
+ }
+ }
+ if (cf != 0)
+ {
+ tmp = gen_rtx_PLUS (mode, tmp, GEN_INT (cf));
+ nops++;
+ }
+ if (!rtx_equal_p (tmp, out))
+ {
+ if (nops == 1)
+ out = force_operand (tmp, copy_rtx (out));
+ else
+ emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (out), copy_rtx (tmp)));
+ }
+ if (!rtx_equal_p (out, operands[0]))
+ emit_move_insn (operands[0], copy_rtx (out));
+
+ return true;
+ }
+
+ /*
+ * General case: Jumpful:
+ * xorl dest,dest cmpl op1, op2
+ * cmpl op1, op2 movl ct, dest
+ * setcc dest jcc 1f
+ * decl dest movl cf, dest
+ * andl (cf-ct),dest 1:
+ * addl ct,dest
+ *
+ * Size 20. Size 14.
+ *
+ * This is reasonably steep, but branch mispredict costs are
+ * high on modern cpus, so consider failing only if optimizing
+ * for space.
+ */
+
+ if ((!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL))
+ && BRANCH_COST (optimize_insn_for_speed_p (),
+ false) >= 2)
+ {
+ if (cf == 0)
+ {
+ enum machine_mode cmp_mode = GET_MODE (op0);
+
+ cf = ct;
+ ct = 0;
+
+ if (SCALAR_FLOAT_MODE_P (cmp_mode))
+ {
+ gcc_assert (!DECIMAL_FLOAT_MODE_P (cmp_mode));
+
+ /* We may be reversing unordered compare to normal compare,
+ that is not valid in general (we may convert non-trapping
+ condition to trapping one), however on i386 we currently
+ emit all comparisons unordered. */
+ code = reverse_condition_maybe_unordered (code);
+ }
+ else
+ {
+ code = reverse_condition (code);
+ if (compare_code != UNKNOWN)
+ compare_code = reverse_condition (compare_code);
+ }
+ }
+
+ if (compare_code != UNKNOWN)
+ {
+ /* notl op1 (if needed)
+ sarl $31, op1
+ andl (cf-ct), op1
+ addl ct, op1
+
+ For x < 0 (resp. x <= -1) there will be no notl,
+ so if possible swap the constants to get rid of the
+ complement.
+ True/false will be -1/0 while code below (store flag
+ followed by decrement) is 0/-1, so the constants need
+ to be exchanged once more. */
+
+ if (compare_code == GE || !cf)
+ {
+ code = reverse_condition (code);
+ compare_code = LT;
+ }
+ else
+ {
+ HOST_WIDE_INT tmp = cf;
+ cf = ct;
+ ct = tmp;
+ }
+
+ out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, -1);
+ }
+ else
+ {
+ out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, 1);
+
+ out = expand_simple_binop (mode, PLUS, copy_rtx (out),
+ constm1_rtx,
+ copy_rtx (out), 1, OPTAB_DIRECT);
+ }
+
+ out = expand_simple_binop (mode, AND, copy_rtx (out),
+ gen_int_mode (cf - ct, mode),
+ copy_rtx (out), 1, OPTAB_DIRECT);
+ if (ct)
+ out = expand_simple_binop (mode, PLUS, copy_rtx (out), GEN_INT (ct),
+ copy_rtx (out), 1, OPTAB_DIRECT);
+ if (!rtx_equal_p (out, operands[0]))
+ emit_move_insn (operands[0], copy_rtx (out));
+
+ return true;
+ }
+ }
+
+ if (!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL))
+ {
+ /* Try a few things more with specific constants and a variable. */
+
+ optab op;
+ rtx var, orig_out, out, tmp;
+
+ if (BRANCH_COST (optimize_insn_for_speed_p (), false) <= 2)
+ return false;
+
+ /* If one of the two operands is an interesting constant, load a
+ constant with the above and mask it in with a logical operation. */
+
+ if (CONST_INT_P (operands[2]))
+ {
+ var = operands[3];
+ if (INTVAL (operands[2]) == 0 && operands[3] != constm1_rtx)
+ operands[3] = constm1_rtx, op = and_optab;
+ else if (INTVAL (operands[2]) == -1 && operands[3] != const0_rtx)
+ operands[3] = const0_rtx, op = ior_optab;
+ else
+ return false;
+ }
+ else if (CONST_INT_P (operands[3]))
+ {
+ var = operands[2];
+ if (INTVAL (operands[3]) == 0 && operands[2] != constm1_rtx)
+ operands[2] = constm1_rtx, op = and_optab;
+ else if (INTVAL (operands[3]) == -1 && operands[3] != const0_rtx)
+ operands[2] = const0_rtx, op = ior_optab;
+ else
+ return false;
+ }
+ else
+ return false;
+
+ orig_out = operands[0];
+ tmp = gen_reg_rtx (mode);
+ operands[0] = tmp;
+
+ /* Recurse to get the constant loaded. */
+ if (ix86_expand_int_movcc (operands) == 0)
+ return false;
+
+ /* Mask in the interesting variable. */
+ out = expand_binop (mode, op, var, tmp, orig_out, 0,
+ OPTAB_WIDEN);
+ if (!rtx_equal_p (out, orig_out))
+ emit_move_insn (copy_rtx (orig_out), copy_rtx (out));
+
+ return true;
+ }
+
+ /*
+ * For comparison with above,
+ *
+ * movl cf,dest
+ * movl ct,tmp
+ * cmpl op1,op2
+ * cmovcc tmp,dest
+ *
+ * Size 15.
+ */
+
+ if (! nonimmediate_operand (operands[2], mode))
+ operands[2] = force_reg (mode, operands[2]);
+ if (! nonimmediate_operand (operands[3], mode))
+ operands[3] = force_reg (mode, operands[3]);
+
+ if (! register_operand (operands[2], VOIDmode)
+ && (mode == QImode
+ || ! register_operand (operands[3], VOIDmode)))
+ operands[2] = force_reg (mode, operands[2]);
+
+ if (mode == QImode
+ && ! register_operand (operands[3], VOIDmode))
+ operands[3] = force_reg (mode, operands[3]);
+
+ emit_insn (compare_seq);
+ emit_insn (gen_rtx_SET (VOIDmode, operands[0],
+ gen_rtx_IF_THEN_ELSE (mode,
+ compare_op, operands[2],
+ operands[3])));
+ return true;
+}
+
+/* Swap, force into registers, or otherwise massage the two operands
+ to an sse comparison with a mask result. Thus we differ a bit from
+ ix86_prepare_fp_compare_args which expects to produce a flags result.
+
+ The DEST operand exists to help determine whether to commute commutative
+ operators. The POP0/POP1 operands are updated in place. The new
+ comparison code is returned, or UNKNOWN if not implementable. */
+
+static enum rtx_code
+ix86_prepare_sse_fp_compare_args (rtx dest, enum rtx_code code,
+ rtx *pop0, rtx *pop1)
+{
+ rtx tmp;
+
+ switch (code)
+ {
+ case LTGT:
+ case UNEQ:
+ /* AVX supports all the needed comparisons. */
+ if (TARGET_AVX)
+ break;
+ /* We have no LTGT as an operator. We could implement it with
+ NE & ORDERED, but this requires an extra temporary. It's
+ not clear that it's worth it. */
+ return UNKNOWN;
+
+ case LT:
+ case LE:
+ case UNGT:
+ case UNGE:
+ /* These are supported directly. */
+ break;
+
+ case EQ:
+ case NE:
+ case UNORDERED:
+ case ORDERED:
+ /* AVX has 3 operand comparisons, no need to swap anything. */
+ if (TARGET_AVX)
+ break;
+ /* For commutative operators, try to canonicalize the destination
+ operand to be first in the comparison - this helps reload to
+ avoid extra moves. */
+ if (!dest || !rtx_equal_p (dest, *pop1))
+ break;
+ /* FALLTHRU */
+
+ case GE:
+ case GT:
+ case UNLE:
+ case UNLT:
+ /* These are not supported directly before AVX, and furthermore
+ ix86_expand_sse_fp_minmax only optimizes LT/UNGE. Swap the
+ comparison operands to transform into something that is
+ supported. */
+ tmp = *pop0;
+ *pop0 = *pop1;
+ *pop1 = tmp;
+ code = swap_condition (code);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return code;
+}
+
+/* Detect conditional moves that exactly match min/max operational
+ semantics. Note that this is IEEE safe, as long as we don't
+ interchange the operands.
+
+ Returns FALSE if this conditional move doesn't match a MIN/MAX,
+ and TRUE if the operation is successful and instructions are emitted. */
+
+static bool
+ix86_expand_sse_fp_minmax (rtx dest, enum rtx_code code, rtx cmp_op0,
+ rtx cmp_op1, rtx if_true, rtx if_false)
+{
+ enum machine_mode mode;
+ bool is_min;
+ rtx tmp;
+
+ if (code == LT)
+ ;
+ else if (code == UNGE)
+ {
+ tmp = if_true;
+ if_true = if_false;
+ if_false = tmp;
+ }
+ else
+ return false;
+
+ if (rtx_equal_p (cmp_op0, if_true) && rtx_equal_p (cmp_op1, if_false))
+ is_min = true;
+ else if (rtx_equal_p (cmp_op1, if_true) && rtx_equal_p (cmp_op0, if_false))
+ is_min = false;
+ else
+ return false;
+
+ mode = GET_MODE (dest);
+
+ /* We want to check HONOR_NANS and HONOR_SIGNED_ZEROS here,
+ but MODE may be a vector mode and thus not appropriate. */
+ if (!flag_finite_math_only || !flag_unsafe_math_optimizations)
+ {
+ int u = is_min ? UNSPEC_IEEE_MIN : UNSPEC_IEEE_MAX;
+ rtvec v;
+
+ if_true = force_reg (mode, if_true);
+ v = gen_rtvec (2, if_true, if_false);
+ tmp = gen_rtx_UNSPEC (mode, v, u);
+ }
+ else
+ {
+ code = is_min ? SMIN : SMAX;
+ tmp = gen_rtx_fmt_ee (code, mode, if_true, if_false);
+ }
+
+ emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
+ return true;
+}
+
+/* Expand an sse vector comparison. Return the register with the result. */
+
+static rtx
+ix86_expand_sse_cmp (rtx dest, enum rtx_code code, rtx cmp_op0, rtx cmp_op1,
+ rtx op_true, rtx op_false)
+{
+ enum machine_mode mode = GET_MODE (dest);
+ enum machine_mode cmp_ops_mode = GET_MODE (cmp_op0);
+
+ /* In general case result of comparison can differ from operands' type. */
+ enum machine_mode cmp_mode;
+
+ /* In AVX512F the result of comparison is an integer mask. */
+ bool maskcmp = false;
+ rtx x;
+
+ if (GET_MODE_SIZE (cmp_ops_mode) == 64)
+ {
+ cmp_mode = mode_for_size (GET_MODE_NUNITS (cmp_ops_mode), MODE_INT, 0);
+ gcc_assert (cmp_mode != BLKmode);
+
+ maskcmp = true;
+ }
+ else
+ cmp_mode = cmp_ops_mode;
+
+
+ cmp_op0 = force_reg (cmp_ops_mode, cmp_op0);
+ if (!nonimmediate_operand (cmp_op1, cmp_ops_mode))
+ cmp_op1 = force_reg (cmp_ops_mode, cmp_op1);
+
+ if (optimize
+ || reg_overlap_mentioned_p (dest, op_true)
+ || reg_overlap_mentioned_p (dest, op_false))
+ dest = gen_reg_rtx (maskcmp ? cmp_mode : mode);
+
+ /* Compare patterns for int modes are unspec in AVX512F only. */
+ if (maskcmp && (code == GT || code == EQ))
+ {
+ rtx (*gen)(rtx, rtx, rtx);
+
+ switch (cmp_ops_mode)
+ {
+ case V16SImode:
+ gen = code == GT ? gen_avx512f_gtv16si3 : gen_avx512f_eqv16si3_1;
+ break;
+ case V8DImode:
+ gen = code == GT ? gen_avx512f_gtv8di3 : gen_avx512f_eqv8di3_1;
+ break;
+ default:
+ gen = NULL;
+ }
+
+ if (gen)
+ {
+ emit_insn (gen (dest, cmp_op0, cmp_op1));
+ return dest;
+ }
+ }
+ x = gen_rtx_fmt_ee (code, cmp_mode, cmp_op0, cmp_op1);
+
+ if (cmp_mode != mode && !maskcmp)
+ {
+ x = force_reg (cmp_ops_mode, x);
+ convert_move (dest, x, false);
+ }
+ else
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+
+ return dest;
+}
+
+/* Expand DEST = CMP ? OP_TRUE : OP_FALSE into a sequence of logical
+ operations. This is used for both scalar and vector conditional moves. */
+
+static void
+ix86_expand_sse_movcc (rtx dest, rtx cmp, rtx op_true, rtx op_false)
+{
+ enum machine_mode mode = GET_MODE (dest);
+ enum machine_mode cmpmode = GET_MODE (cmp);
+
+ /* In AVX512F the result of comparison is an integer mask. */
+ bool maskcmp = (mode != cmpmode && TARGET_AVX512F);
+
+ rtx t2, t3, x;
+
+ if (vector_all_ones_operand (op_true, mode)
+ && rtx_equal_p (op_false, CONST0_RTX (mode))
+ && !maskcmp)
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, dest, cmp));
+ }
+ else if (op_false == CONST0_RTX (mode)
+ && !maskcmp)
+ {
+ op_true = force_reg (mode, op_true);
+ x = gen_rtx_AND (mode, cmp, op_true);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+ }
+ else if (op_true == CONST0_RTX (mode)
+ && !maskcmp)
+ {
+ op_false = force_reg (mode, op_false);
+ x = gen_rtx_NOT (mode, cmp);
+ x = gen_rtx_AND (mode, x, op_false);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+ }
+ else if (INTEGRAL_MODE_P (mode) && op_true == CONSTM1_RTX (mode)
+ && !maskcmp)
+ {
+ op_false = force_reg (mode, op_false);
+ x = gen_rtx_IOR (mode, cmp, op_false);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+ }
+ else if (TARGET_XOP
+ && !maskcmp)
+ {
+ op_true = force_reg (mode, op_true);
+
+ if (!nonimmediate_operand (op_false, mode))
+ op_false = force_reg (mode, op_false);
+
+ emit_insn (gen_rtx_SET (mode, dest,
+ gen_rtx_IF_THEN_ELSE (mode, cmp,
+ op_true,
+ op_false)));
+ }
+ else
+ {
+ rtx (*gen) (rtx, rtx, rtx, rtx) = NULL;
+ rtx d = dest;
+
+ if (!nonimmediate_operand (op_true, mode))
+ op_true = force_reg (mode, op_true);
+
+ op_false = force_reg (mode, op_false);
+
+ switch (mode)
+ {
+ case V4SFmode:
+ if (TARGET_SSE4_1)
+ gen = gen_sse4_1_blendvps;
+ break;
+ case V2DFmode:
+ if (TARGET_SSE4_1)
+ gen = gen_sse4_1_blendvpd;
+ break;
+ case V16QImode:
+ case V8HImode:
+ case V4SImode:
+ case V2DImode:
+ if (TARGET_SSE4_1)
+ {
+ gen = gen_sse4_1_pblendvb;
+ if (mode != V16QImode)
+ d = gen_reg_rtx (V16QImode);
+ op_false = gen_lowpart (V16QImode, op_false);
+ op_true = gen_lowpart (V16QImode, op_true);
+ cmp = gen_lowpart (V16QImode, cmp);
+ }
+ break;
+ case V8SFmode:
+ if (TARGET_AVX)
+ gen = gen_avx_blendvps256;
+ break;
+ case V4DFmode:
+ if (TARGET_AVX)
+ gen = gen_avx_blendvpd256;
+ break;
+ case V32QImode:
+ case V16HImode:
+ case V8SImode:
+ case V4DImode:
+ if (TARGET_AVX2)
+ {
+ gen = gen_avx2_pblendvb;
+ if (mode != V32QImode)
+ d = gen_reg_rtx (V32QImode);
+ op_false = gen_lowpart (V32QImode, op_false);
+ op_true = gen_lowpart (V32QImode, op_true);
+ cmp = gen_lowpart (V32QImode, cmp);
+ }
+ break;
+
+ case V16SImode:
+ gen = gen_avx512f_blendmv16si;
+ break;
+ case V8DImode:
+ gen = gen_avx512f_blendmv8di;
+ break;
+ case V8DFmode:
+ gen = gen_avx512f_blendmv8df;
+ break;
+ case V16SFmode:
+ gen = gen_avx512f_blendmv16sf;
+ break;
+
+ default:
+ break;
+ }
+
+ if (gen != NULL)
+ {
+ emit_insn (gen (d, op_false, op_true, cmp));
+ if (d != dest)
+ emit_move_insn (dest, gen_lowpart (GET_MODE (dest), d));
+ }
+ else
+ {
+ op_true = force_reg (mode, op_true);
+
+ t2 = gen_reg_rtx (mode);
+ if (optimize)
+ t3 = gen_reg_rtx (mode);
+ else
+ t3 = dest;
+
+ x = gen_rtx_AND (mode, op_true, cmp);
+ emit_insn (gen_rtx_SET (VOIDmode, t2, x));
+
+ x = gen_rtx_NOT (mode, cmp);
+ x = gen_rtx_AND (mode, x, op_false);
+ emit_insn (gen_rtx_SET (VOIDmode, t3, x));
+
+ x = gen_rtx_IOR (mode, t3, t2);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, x));
+ }
+ }
+}
+
+/* Expand a floating-point conditional move. Return true if successful. */
+
+bool
+ix86_expand_fp_movcc (rtx operands[])
+{
+ enum machine_mode mode = GET_MODE (operands[0]);
+ enum rtx_code code = GET_CODE (operands[1]);
+ rtx tmp, compare_op;
+ rtx op0 = XEXP (operands[1], 0);
+ rtx op1 = XEXP (operands[1], 1);
+
+ if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode))
+ {
+ enum machine_mode cmode;
+
+ /* Since we've no cmove for sse registers, don't force bad register
+ allocation just to gain access to it. Deny movcc when the
+ comparison mode doesn't match the move mode. */
+ cmode = GET_MODE (op0);
+ if (cmode == VOIDmode)
+ cmode = GET_MODE (op1);
+ if (cmode != mode)
+ return false;
+
+ code = ix86_prepare_sse_fp_compare_args (operands[0], code, &op0, &op1);
+ if (code == UNKNOWN)
+ return false;
+
+ if (ix86_expand_sse_fp_minmax (operands[0], code, op0, op1,
+ operands[2], operands[3]))
+ return true;
+
+ tmp = ix86_expand_sse_cmp (operands[0], code, op0, op1,
+ operands[2], operands[3]);
+ ix86_expand_sse_movcc (operands[0], tmp, operands[2], operands[3]);
+ return true;
+ }
+
+ if (GET_MODE (op0) == TImode
+ || (GET_MODE (op0) == DImode
+ && !TARGET_64BIT))
+ return false;
+
+ /* The floating point conditional move instructions don't directly
+ support conditions resulting from a signed integer comparison. */
+
+ compare_op = ix86_expand_compare (code, op0, op1);
+ if (!fcmov_comparison_operator (compare_op, VOIDmode))
+ {
+ tmp = gen_reg_rtx (QImode);
+ ix86_expand_setcc (tmp, code, op0, op1);
+
+ compare_op = ix86_expand_compare (NE, tmp, const0_rtx);
+ }
+
+ emit_insn (gen_rtx_SET (VOIDmode, operands[0],
+ gen_rtx_IF_THEN_ELSE (mode, compare_op,
+ operands[2], operands[3])));
+
+ return true;
+}
+
+/* Expand a floating-point vector conditional move; a vcond operation
+ rather than a movcc operation. */
+
+bool
+ix86_expand_fp_vcond (rtx operands[])
+{
+ enum rtx_code code = GET_CODE (operands[3]);
+ rtx cmp;
+
+ code = ix86_prepare_sse_fp_compare_args (operands[0], code,
+ &operands[4], &operands[5]);
+ if (code == UNKNOWN)
+ {
+ rtx temp;
+ switch (GET_CODE (operands[3]))
+ {
+ case LTGT:
+ temp = ix86_expand_sse_cmp (operands[0], ORDERED, operands[4],
+ operands[5], operands[0], operands[0]);
+ cmp = ix86_expand_sse_cmp (operands[0], NE, operands[4],
+ operands[5], operands[1], operands[2]);
+ code = AND;
+ break;
+ case UNEQ:
+ temp = ix86_expand_sse_cmp (operands[0], UNORDERED, operands[4],
+ operands[5], operands[0], operands[0]);
+ cmp = ix86_expand_sse_cmp (operands[0], EQ, operands[4],
+ operands[5], operands[1], operands[2]);
+ code = IOR;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ cmp = expand_simple_binop (GET_MODE (cmp), code, temp, cmp, cmp, 1,
+ OPTAB_DIRECT);
+ ix86_expand_sse_movcc (operands[0], cmp, operands[1], operands[2]);
+ return true;
+ }
+
+ if (ix86_expand_sse_fp_minmax (operands[0], code, operands[4],
+ operands[5], operands[1], operands[2]))
+ return true;
+
+ cmp = ix86_expand_sse_cmp (operands[0], code, operands[4], operands[5],
+ operands[1], operands[2]);
+ ix86_expand_sse_movcc (operands[0], cmp, operands[1], operands[2]);
+ return true;
+}
+
+/* Expand a signed/unsigned integral vector conditional move. */
+
+bool
+ix86_expand_int_vcond (rtx operands[])
+{
+ enum machine_mode data_mode = GET_MODE (operands[0]);
+ enum machine_mode mode = GET_MODE (operands[4]);
+ enum rtx_code code = GET_CODE (operands[3]);
+ bool negate = false;
+ rtx x, cop0, cop1;
+
+ cop0 = operands[4];
+ cop1 = operands[5];
+
+ /* Try to optimize x < 0 ? -1 : 0 into (signed) x >> 31
+ and x < 0 ? 1 : 0 into (unsigned) x >> 31. */
+ if ((code == LT || code == GE)
+ && data_mode == mode
+ && cop1 == CONST0_RTX (mode)
+ && operands[1 + (code == LT)] == CONST0_RTX (data_mode)
+ && GET_MODE_SIZE (GET_MODE_INNER (data_mode)) > 1
+ && GET_MODE_SIZE (GET_MODE_INNER (data_mode)) <= 8
+ && (GET_MODE_SIZE (data_mode) == 16
+ || (TARGET_AVX2 && GET_MODE_SIZE (data_mode) == 32)))
+ {
+ rtx negop = operands[2 - (code == LT)];
+ int shift = GET_MODE_BITSIZE (GET_MODE_INNER (data_mode)) - 1;
+ if (negop == CONST1_RTX (data_mode))
+ {
+ rtx res = expand_simple_binop (mode, LSHIFTRT, cop0, GEN_INT (shift),
+ operands[0], 1, OPTAB_DIRECT);
+ if (res != operands[0])
+ emit_move_insn (operands[0], res);
+ return true;
+ }
+ else if (GET_MODE_INNER (data_mode) != DImode
+ && vector_all_ones_operand (negop, data_mode))
+ {
+ rtx res = expand_simple_binop (mode, ASHIFTRT, cop0, GEN_INT (shift),
+ operands[0], 0, OPTAB_DIRECT);
+ if (res != operands[0])
+ emit_move_insn (operands[0], res);
+ return true;
+ }
+ }
+
+ if (!nonimmediate_operand (cop1, mode))
+ cop1 = force_reg (mode, cop1);
+ if (!general_operand (operands[1], data_mode))
+ operands[1] = force_reg (data_mode, operands[1]);
+ if (!general_operand (operands[2], data_mode))
+ operands[2] = force_reg (data_mode, operands[2]);
+
+ /* XOP supports all of the comparisons on all 128-bit vector int types. */
+ if (TARGET_XOP
+ && (mode == V16QImode || mode == V8HImode
+ || mode == V4SImode || mode == V2DImode))
+ ;
+ else
+ {
+ /* Canonicalize the comparison to EQ, GT, GTU. */
+ switch (code)
+ {
+ case EQ:
+ case GT:
+ case GTU:
+ break;
+
+ case NE:
+ case LE:
+ case LEU:
+ code = reverse_condition (code);
+ negate = true;
+ break;
+
+ case GE:
+ case GEU:
+ code = reverse_condition (code);
+ negate = true;
+ /* FALLTHRU */
+
+ case LT:
+ case LTU:
+ code = swap_condition (code);
+ x = cop0, cop0 = cop1, cop1 = x;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Only SSE4.1/SSE4.2 supports V2DImode. */
+ if (mode == V2DImode)
+ {
+ switch (code)
+ {
+ case EQ:
+ /* SSE4.1 supports EQ. */
+ if (!TARGET_SSE4_1)
+ return false;
+ break;
+
+ case GT:
+ case GTU:
+ /* SSE4.2 supports GT/GTU. */
+ if (!TARGET_SSE4_2)
+ return false;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* Unsigned parallel compare is not supported by the hardware.
+ Play some tricks to turn this into a signed comparison
+ against 0. */
+ if (code == GTU)
+ {
+ cop0 = force_reg (mode, cop0);
+
+ switch (mode)
+ {
+ case V16SImode:
+ case V8DImode:
+ case V8SImode:
+ case V4DImode:
+ case V4SImode:
+ case V2DImode:
+ {
+ rtx t1, t2, mask;
+ rtx (*gen_sub3) (rtx, rtx, rtx);
+
+ switch (mode)
+ {
+ case V16SImode: gen_sub3 = gen_subv16si3; break;
+ case V8DImode: gen_sub3 = gen_subv8di3; break;
+ case V8SImode: gen_sub3 = gen_subv8si3; break;
+ case V4DImode: gen_sub3 = gen_subv4di3; break;
+ case V4SImode: gen_sub3 = gen_subv4si3; break;
+ case V2DImode: gen_sub3 = gen_subv2di3; break;
+ default:
+ gcc_unreachable ();
+ }
+ /* Subtract (-(INT MAX) - 1) from both operands to make
+ them signed. */
+ mask = ix86_build_signbit_mask (mode, true, false);
+ t1 = gen_reg_rtx (mode);
+ emit_insn (gen_sub3 (t1, cop0, mask));
+
+ t2 = gen_reg_rtx (mode);
+ emit_insn (gen_sub3 (t2, cop1, mask));
+
+ cop0 = t1;
+ cop1 = t2;
+ code = GT;
+ }
+ break;
+
+ case V32QImode:
+ case V16HImode:
+ case V16QImode:
+ case V8HImode:
+ /* Perform a parallel unsigned saturating subtraction. */
+ x = gen_reg_rtx (mode);
+ emit_insn (gen_rtx_SET (VOIDmode, x,
+ gen_rtx_US_MINUS (mode, cop0, cop1)));
+
+ cop0 = x;
+ cop1 = CONST0_RTX (mode);
+ code = EQ;
+ negate = !negate;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ }
+
+ /* Allow the comparison to be done in one mode, but the movcc to
+ happen in another mode. */
+ if (data_mode == mode)
+ {
+ x = ix86_expand_sse_cmp (operands[0], code, cop0, cop1,
+ operands[1+negate], operands[2-negate]);
+ }
+ else
+ {
+ gcc_assert (GET_MODE_SIZE (data_mode) == GET_MODE_SIZE (mode));
+ x = ix86_expand_sse_cmp (gen_reg_rtx (mode), code, cop0, cop1,
+ operands[1+negate], operands[2-negate]);
+ if (GET_MODE (x) == mode)
+ x = gen_lowpart (data_mode, x);
+ }
+
+ ix86_expand_sse_movcc (operands[0], x, operands[1+negate],
+ operands[2-negate]);
+ return true;
+}
+
+static bool
+ix86_expand_vec_perm_vpermi2 (rtx target, rtx op0, rtx mask, rtx op1)
+{
+ enum machine_mode mode = GET_MODE (op0);
+ switch (mode)
+ {
+ case V16SImode:
+ emit_insn (gen_avx512f_vpermi2varv16si3 (target, op0,
+ force_reg (V16SImode, mask),
+ op1));
+ return true;
+ case V16SFmode:
+ emit_insn (gen_avx512f_vpermi2varv16sf3 (target, op0,
+ force_reg (V16SImode, mask),
+ op1));
+ return true;
+ case V8DImode:
+ emit_insn (gen_avx512f_vpermi2varv8di3 (target, op0,
+ force_reg (V8DImode, mask), op1));
+ return true;
+ case V8DFmode:
+ emit_insn (gen_avx512f_vpermi2varv8df3 (target, op0,
+ force_reg (V8DImode, mask), op1));
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Expand a variable vector permutation. */
+
+void
+ix86_expand_vec_perm (rtx operands[])
+{
+ rtx target = operands[0];
+ rtx op0 = operands[1];
+ rtx op1 = operands[2];
+ rtx mask = operands[3];
+ rtx t1, t2, t3, t4, t5, t6, t7, t8, vt, vt2, vec[32];
+ enum machine_mode mode = GET_MODE (op0);
+ enum machine_mode maskmode = GET_MODE (mask);
+ int w, e, i;
+ bool one_operand_shuffle = rtx_equal_p (op0, op1);
+
+ /* Number of elements in the vector. */
+ w = GET_MODE_NUNITS (mode);
+ e = GET_MODE_UNIT_SIZE (mode);
+ gcc_assert (w <= 64);
+
+ if (ix86_expand_vec_perm_vpermi2 (target, op0, mask, op1))
+ return;
+
+ if (TARGET_AVX2)
+ {
+ if (mode == V4DImode || mode == V4DFmode || mode == V16HImode)
+ {
+ /* Unfortunately, the VPERMQ and VPERMPD instructions only support
+ an constant shuffle operand. With a tiny bit of effort we can
+ use VPERMD instead. A re-interpretation stall for V4DFmode is
+ unfortunate but there's no avoiding it.
+ Similarly for V16HImode we don't have instructions for variable
+ shuffling, while for V32QImode we can use after preparing suitable
+ masks vpshufb; vpshufb; vpermq; vpor. */
+
+ if (mode == V16HImode)
+ {
+ maskmode = mode = V32QImode;
+ w = 32;
+ e = 1;
+ }
+ else
+ {
+ maskmode = mode = V8SImode;
+ w = 8;
+ e = 4;
+ }
+ t1 = gen_reg_rtx (maskmode);
+
+ /* Replicate the low bits of the V4DImode mask into V8SImode:
+ mask = { A B C D }
+ t1 = { A A B B C C D D }. */
+ for (i = 0; i < w / 2; ++i)
+ vec[i*2 + 1] = vec[i*2] = GEN_INT (i * 2);
+ vt = gen_rtx_CONST_VECTOR (maskmode, gen_rtvec_v (w, vec));
+ vt = force_reg (maskmode, vt);
+ mask = gen_lowpart (maskmode, mask);
+ if (maskmode == V8SImode)
+ emit_insn (gen_avx2_permvarv8si (t1, mask, vt));
+ else
+ emit_insn (gen_avx2_pshufbv32qi3 (t1, mask, vt));
+
+ /* Multiply the shuffle indicies by two. */
+ t1 = expand_simple_binop (maskmode, PLUS, t1, t1, t1, 1,
+ OPTAB_DIRECT);
+
+ /* Add one to the odd shuffle indicies:
+ t1 = { A*2, A*2+1, B*2, B*2+1, ... }. */
+ for (i = 0; i < w / 2; ++i)
+ {
+ vec[i * 2] = const0_rtx;
+ vec[i * 2 + 1] = const1_rtx;
+ }
+ vt = gen_rtx_CONST_VECTOR (maskmode, gen_rtvec_v (w, vec));
+ vt = validize_mem (force_const_mem (maskmode, vt));
+ t1 = expand_simple_binop (maskmode, PLUS, t1, vt, t1, 1,
+ OPTAB_DIRECT);
+
+ /* Continue as if V8SImode (resp. V32QImode) was used initially. */
+ operands[3] = mask = t1;
+ target = gen_reg_rtx (mode);
+ op0 = gen_lowpart (mode, op0);
+ op1 = gen_lowpart (mode, op1);
+ }
+
+ switch (mode)
+ {
+ case V8SImode:
+ /* The VPERMD and VPERMPS instructions already properly ignore
+ the high bits of the shuffle elements. No need for us to
+ perform an AND ourselves. */
+ if (one_operand_shuffle)
+ {
+ emit_insn (gen_avx2_permvarv8si (target, op0, mask));
+ if (target != operands[0])
+ emit_move_insn (operands[0],
+ gen_lowpart (GET_MODE (operands[0]), target));
+ }
+ else
+ {
+ t1 = gen_reg_rtx (V8SImode);
+ t2 = gen_reg_rtx (V8SImode);
+ emit_insn (gen_avx2_permvarv8si (t1, op0, mask));
+ emit_insn (gen_avx2_permvarv8si (t2, op1, mask));
+ goto merge_two;
+ }
+ return;
+
+ case V8SFmode:
+ mask = gen_lowpart (V8SImode, mask);
+ if (one_operand_shuffle)
+ emit_insn (gen_avx2_permvarv8sf (target, op0, mask));
+ else
+ {
+ t1 = gen_reg_rtx (V8SFmode);
+ t2 = gen_reg_rtx (V8SFmode);
+ emit_insn (gen_avx2_permvarv8sf (t1, op0, mask));
+ emit_insn (gen_avx2_permvarv8sf (t2, op1, mask));
+ goto merge_two;
+ }
+ return;
+
+ case V4SImode:
+ /* By combining the two 128-bit input vectors into one 256-bit
+ input vector, we can use VPERMD and VPERMPS for the full
+ two-operand shuffle. */
+ t1 = gen_reg_rtx (V8SImode);
+ t2 = gen_reg_rtx (V8SImode);
+ emit_insn (gen_avx_vec_concatv8si (t1, op0, op1));
+ emit_insn (gen_avx_vec_concatv8si (t2, mask, mask));
+ emit_insn (gen_avx2_permvarv8si (t1, t1, t2));
+ emit_insn (gen_avx_vextractf128v8si (target, t1, const0_rtx));
+ return;
+
+ case V4SFmode:
+ t1 = gen_reg_rtx (V8SFmode);
+ t2 = gen_reg_rtx (V8SImode);
+ mask = gen_lowpart (V4SImode, mask);
+ emit_insn (gen_avx_vec_concatv8sf (t1, op0, op1));
+ emit_insn (gen_avx_vec_concatv8si (t2, mask, mask));
+ emit_insn (gen_avx2_permvarv8sf (t1, t1, t2));
+ emit_insn (gen_avx_vextractf128v8sf (target, t1, const0_rtx));
+ return;
+
+ case V32QImode:
+ t1 = gen_reg_rtx (V32QImode);
+ t2 = gen_reg_rtx (V32QImode);
+ t3 = gen_reg_rtx (V32QImode);
+ vt2 = GEN_INT (128);
+ for (i = 0; i < 32; i++)
+ vec[i] = vt2;
+ vt = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, vec));
+ vt = force_reg (V32QImode, vt);
+ for (i = 0; i < 32; i++)
+ vec[i] = i < 16 ? vt2 : const0_rtx;
+ vt2 = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, vec));
+ vt2 = force_reg (V32QImode, vt2);
+ /* From mask create two adjusted masks, which contain the same
+ bits as mask in the low 7 bits of each vector element.
+ The first mask will have the most significant bit clear
+ if it requests element from the same 128-bit lane
+ and MSB set if it requests element from the other 128-bit lane.
+ The second mask will have the opposite values of the MSB,
+ and additionally will have its 128-bit lanes swapped.
+ E.g. { 07 12 1e 09 ... | 17 19 05 1f ... } mask vector will have
+ t1 { 07 92 9e 09 ... | 17 19 85 1f ... } and
+ t3 { 97 99 05 9f ... | 87 12 1e 89 ... } where each ...
+ stands for other 12 bytes. */
+ /* The bit whether element is from the same lane or the other
+ lane is bit 4, so shift it up by 3 to the MSB position. */
+ t5 = gen_reg_rtx (V4DImode);
+ emit_insn (gen_ashlv4di3 (t5, gen_lowpart (V4DImode, mask),
+ GEN_INT (3)));
+ /* Clear MSB bits from the mask just in case it had them set. */
+ emit_insn (gen_avx2_andnotv32qi3 (t2, vt, mask));
+ /* After this t1 will have MSB set for elements from other lane. */
+ emit_insn (gen_xorv32qi3 (t1, gen_lowpart (V32QImode, t5), vt2));
+ /* Clear bits other than MSB. */
+ emit_insn (gen_andv32qi3 (t1, t1, vt));
+ /* Or in the lower bits from mask into t3. */
+ emit_insn (gen_iorv32qi3 (t3, t1, t2));
+ /* And invert MSB bits in t1, so MSB is set for elements from the same
+ lane. */
+ emit_insn (gen_xorv32qi3 (t1, t1, vt));
+ /* Swap 128-bit lanes in t3. */
+ t6 = gen_reg_rtx (V4DImode);
+ emit_insn (gen_avx2_permv4di_1 (t6, gen_lowpart (V4DImode, t3),
+ const2_rtx, GEN_INT (3),
+ const0_rtx, const1_rtx));
+ /* And or in the lower bits from mask into t1. */
+ emit_insn (gen_iorv32qi3 (t1, t1, t2));
+ if (one_operand_shuffle)
+ {
+ /* Each of these shuffles will put 0s in places where
+ element from the other 128-bit lane is needed, otherwise
+ will shuffle in the requested value. */
+ emit_insn (gen_avx2_pshufbv32qi3 (t3, op0,
+ gen_lowpart (V32QImode, t6)));
+ emit_insn (gen_avx2_pshufbv32qi3 (t1, op0, t1));
+ /* For t3 the 128-bit lanes are swapped again. */
+ t7 = gen_reg_rtx (V4DImode);
+ emit_insn (gen_avx2_permv4di_1 (t7, gen_lowpart (V4DImode, t3),
+ const2_rtx, GEN_INT (3),
+ const0_rtx, const1_rtx));
+ /* And oring both together leads to the result. */
+ emit_insn (gen_iorv32qi3 (target, t1,
+ gen_lowpart (V32QImode, t7)));
+ if (target != operands[0])
+ emit_move_insn (operands[0],
+ gen_lowpart (GET_MODE (operands[0]), target));
+ return;
+ }
+
+ t4 = gen_reg_rtx (V32QImode);
+ /* Similarly to the above one_operand_shuffle code,
+ just for repeated twice for each operand. merge_two:
+ code will merge the two results together. */
+ emit_insn (gen_avx2_pshufbv32qi3 (t4, op0,
+ gen_lowpart (V32QImode, t6)));
+ emit_insn (gen_avx2_pshufbv32qi3 (t3, op1,
+ gen_lowpart (V32QImode, t6)));
+ emit_insn (gen_avx2_pshufbv32qi3 (t2, op0, t1));
+ emit_insn (gen_avx2_pshufbv32qi3 (t1, op1, t1));
+ t7 = gen_reg_rtx (V4DImode);
+ emit_insn (gen_avx2_permv4di_1 (t7, gen_lowpart (V4DImode, t4),
+ const2_rtx, GEN_INT (3),
+ const0_rtx, const1_rtx));
+ t8 = gen_reg_rtx (V4DImode);
+ emit_insn (gen_avx2_permv4di_1 (t8, gen_lowpart (V4DImode, t3),
+ const2_rtx, GEN_INT (3),
+ const0_rtx, const1_rtx));
+ emit_insn (gen_iorv32qi3 (t4, t2, gen_lowpart (V32QImode, t7)));
+ emit_insn (gen_iorv32qi3 (t3, t1, gen_lowpart (V32QImode, t8)));
+ t1 = t4;
+ t2 = t3;
+ goto merge_two;
+
+ default:
+ gcc_assert (GET_MODE_SIZE (mode) <= 16);
+ break;
+ }
+ }
+
+ if (TARGET_XOP)
+ {
+ /* The XOP VPPERM insn supports three inputs. By ignoring the
+ one_operand_shuffle special case, we avoid creating another
+ set of constant vectors in memory. */
+ one_operand_shuffle = false;
+
+ /* mask = mask & {2*w-1, ...} */
+ vt = GEN_INT (2*w - 1);
+ }
+ else
+ {
+ /* mask = mask & {w-1, ...} */
+ vt = GEN_INT (w - 1);
+ }
+
+ for (i = 0; i < w; i++)
+ vec[i] = vt;
+ vt = gen_rtx_CONST_VECTOR (maskmode, gen_rtvec_v (w, vec));
+ mask = expand_simple_binop (maskmode, AND, mask, vt,
+ NULL_RTX, 0, OPTAB_DIRECT);
+
+ /* For non-QImode operations, convert the word permutation control
+ into a byte permutation control. */
+ if (mode != V16QImode)
+ {
+ mask = expand_simple_binop (maskmode, ASHIFT, mask,
+ GEN_INT (exact_log2 (e)),
+ NULL_RTX, 0, OPTAB_DIRECT);
+
+ /* Convert mask to vector of chars. */
+ mask = force_reg (V16QImode, gen_lowpart (V16QImode, mask));
+
+ /* Replicate each of the input bytes into byte positions:
+ (v2di) --> {0,0,0,0,0,0,0,0, 8,8,8,8,8,8,8,8}
+ (v4si) --> {0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12}
+ (v8hi) --> {0,0, 2,2, 4,4, 6,6, ...}. */
+ for (i = 0; i < 16; ++i)
+ vec[i] = GEN_INT (i/e * e);
+ vt = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, vec));
+ vt = validize_mem (force_const_mem (V16QImode, vt));
+ if (TARGET_XOP)
+ emit_insn (gen_xop_pperm (mask, mask, mask, vt));
+ else
+ emit_insn (gen_ssse3_pshufbv16qi3 (mask, mask, vt));
+
+ /* Convert it into the byte positions by doing
+ mask = mask + {0,1,..,16/w, 0,1,..,16/w, ...} */
+ for (i = 0; i < 16; ++i)
+ vec[i] = GEN_INT (i % e);
+ vt = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, vec));
+ vt = validize_mem (force_const_mem (V16QImode, vt));
+ emit_insn (gen_addv16qi3 (mask, mask, vt));
+ }
+
+ /* The actual shuffle operations all operate on V16QImode. */
+ op0 = gen_lowpart (V16QImode, op0);
+ op1 = gen_lowpart (V16QImode, op1);
+
+ if (TARGET_XOP)
+ {
+ if (GET_MODE (target) != V16QImode)
+ target = gen_reg_rtx (V16QImode);
+ emit_insn (gen_xop_pperm (target, op0, op1, mask));
+ if (target != operands[0])
+ emit_move_insn (operands[0],
+ gen_lowpart (GET_MODE (operands[0]), target));
+ }
+ else if (one_operand_shuffle)
+ {
+ if (GET_MODE (target) != V16QImode)
+ target = gen_reg_rtx (V16QImode);
+ emit_insn (gen_ssse3_pshufbv16qi3 (target, op0, mask));
+ if (target != operands[0])
+ emit_move_insn (operands[0],
+ gen_lowpart (GET_MODE (operands[0]), target));
+ }
+ else
+ {
+ rtx xops[6];
+ bool ok;
+
+ /* Shuffle the two input vectors independently. */
+ t1 = gen_reg_rtx (V16QImode);
+ t2 = gen_reg_rtx (V16QImode);
+ emit_insn (gen_ssse3_pshufbv16qi3 (t1, op0, mask));
+ emit_insn (gen_ssse3_pshufbv16qi3 (t2, op1, mask));
+
+ merge_two:
+ /* Then merge them together. The key is whether any given control
+ element contained a bit set that indicates the second word. */
+ mask = operands[3];
+ vt = GEN_INT (w);
+ if (maskmode == V2DImode && !TARGET_SSE4_1)
+ {
+ /* Without SSE4.1, we don't have V2DImode EQ. Perform one
+ more shuffle to convert the V2DI input mask into a V4SI
+ input mask. At which point the masking that expand_int_vcond
+ will work as desired. */
+ rtx t3 = gen_reg_rtx (V4SImode);
+ emit_insn (gen_sse2_pshufd_1 (t3, gen_lowpart (V4SImode, mask),
+ const0_rtx, const0_rtx,
+ const2_rtx, const2_rtx));
+ mask = t3;
+ maskmode = V4SImode;
+ e = w = 4;
+ }
+
+ for (i = 0; i < w; i++)
+ vec[i] = vt;
+ vt = gen_rtx_CONST_VECTOR (maskmode, gen_rtvec_v (w, vec));
+ vt = force_reg (maskmode, vt);
+ mask = expand_simple_binop (maskmode, AND, mask, vt,
+ NULL_RTX, 0, OPTAB_DIRECT);
+
+ if (GET_MODE (target) != mode)
+ target = gen_reg_rtx (mode);
+ xops[0] = target;
+ xops[1] = gen_lowpart (mode, t2);
+ xops[2] = gen_lowpart (mode, t1);
+ xops[3] = gen_rtx_EQ (maskmode, mask, vt);
+ xops[4] = mask;
+ xops[5] = vt;
+ ok = ix86_expand_int_vcond (xops);
+ gcc_assert (ok);
+ if (target != operands[0])
+ emit_move_insn (operands[0],
+ gen_lowpart (GET_MODE (operands[0]), target));
+ }
+}
+
+/* Unpack OP[1] into the next wider integer vector type. UNSIGNED_P is
+ true if we should do zero extension, else sign extension. HIGH_P is
+ true if we want the N/2 high elements, else the low elements. */
+
+void
+ix86_expand_sse_unpack (rtx dest, rtx src, bool unsigned_p, bool high_p)
+{
+ enum machine_mode imode = GET_MODE (src);
+ rtx tmp;
+
+ if (TARGET_SSE4_1)
+ {
+ rtx (*unpack)(rtx, rtx);
+ rtx (*extract)(rtx, rtx) = NULL;
+ enum machine_mode halfmode = BLKmode;
+
+ switch (imode)
+ {
+ case V32QImode:
+ if (unsigned_p)
+ unpack = gen_avx2_zero_extendv16qiv16hi2;
+ else
+ unpack = gen_avx2_sign_extendv16qiv16hi2;
+ halfmode = V16QImode;
+ extract
+ = high_p ? gen_vec_extract_hi_v32qi : gen_vec_extract_lo_v32qi;
+ break;
+ case V32HImode:
+ if (unsigned_p)
+ unpack = gen_avx512f_zero_extendv16hiv16si2;
+ else
+ unpack = gen_avx512f_sign_extendv16hiv16si2;
+ halfmode = V16HImode;
+ extract
+ = high_p ? gen_vec_extract_hi_v32hi : gen_vec_extract_lo_v32hi;
+ break;
+ case V16HImode:
+ if (unsigned_p)
+ unpack = gen_avx2_zero_extendv8hiv8si2;
+ else
+ unpack = gen_avx2_sign_extendv8hiv8si2;
+ halfmode = V8HImode;
+ extract
+ = high_p ? gen_vec_extract_hi_v16hi : gen_vec_extract_lo_v16hi;
+ break;
+ case V16SImode:
+ if (unsigned_p)
+ unpack = gen_avx512f_zero_extendv8siv8di2;
+ else
+ unpack = gen_avx512f_sign_extendv8siv8di2;
+ halfmode = V8SImode;
+ extract
+ = high_p ? gen_vec_extract_hi_v16si : gen_vec_extract_lo_v16si;
+ break;
+ case V8SImode:
+ if (unsigned_p)
+ unpack = gen_avx2_zero_extendv4siv4di2;
+ else
+ unpack = gen_avx2_sign_extendv4siv4di2;
+ halfmode = V4SImode;
+ extract
+ = high_p ? gen_vec_extract_hi_v8si : gen_vec_extract_lo_v8si;
+ break;
+ case V16QImode:
+ if (unsigned_p)
+ unpack = gen_sse4_1_zero_extendv8qiv8hi2;
+ else
+ unpack = gen_sse4_1_sign_extendv8qiv8hi2;
+ break;
+ case V8HImode:
+ if (unsigned_p)
+ unpack = gen_sse4_1_zero_extendv4hiv4si2;
+ else
+ unpack = gen_sse4_1_sign_extendv4hiv4si2;
+ break;
+ case V4SImode:
+ if (unsigned_p)
+ unpack = gen_sse4_1_zero_extendv2siv2di2;
+ else
+ unpack = gen_sse4_1_sign_extendv2siv2di2;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (GET_MODE_SIZE (imode) >= 32)
+ {
+ tmp = gen_reg_rtx (halfmode);
+ emit_insn (extract (tmp, src));
+ }
+ else if (high_p)
+ {
+ /* Shift higher 8 bytes to lower 8 bytes. */
+ tmp = gen_reg_rtx (V1TImode);
+ emit_insn (gen_sse2_lshrv1ti3 (tmp, gen_lowpart (V1TImode, src),
+ GEN_INT (64)));
+ tmp = gen_lowpart (imode, tmp);
+ }
+ else
+ tmp = src;
+
+ emit_insn (unpack (dest, tmp));
+ }
+ else
+ {
+ rtx (*unpack)(rtx, rtx, rtx);
+
+ switch (imode)
+ {
+ case V16QImode:
+ if (high_p)
+ unpack = gen_vec_interleave_highv16qi;
+ else
+ unpack = gen_vec_interleave_lowv16qi;
+ break;
+ case V8HImode:
+ if (high_p)
+ unpack = gen_vec_interleave_highv8hi;
+ else
+ unpack = gen_vec_interleave_lowv8hi;
+ break;
+ case V4SImode:
+ if (high_p)
+ unpack = gen_vec_interleave_highv4si;
+ else
+ unpack = gen_vec_interleave_lowv4si;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (unsigned_p)
+ tmp = force_reg (imode, CONST0_RTX (imode));
+ else
+ tmp = ix86_expand_sse_cmp (gen_reg_rtx (imode), GT, CONST0_RTX (imode),
+ src, pc_rtx, pc_rtx);
+
+ rtx tmp2 = gen_reg_rtx (imode);
+ emit_insn (unpack (tmp2, src, tmp));
+ emit_move_insn (dest, gen_lowpart (GET_MODE (dest), tmp2));
+ }
+}
+
+/* Expand conditional increment or decrement using adb/sbb instructions.
+ The default case using setcc followed by the conditional move can be
+ done by generic code. */
+bool
+ix86_expand_int_addcc (rtx operands[])
+{
+ enum rtx_code code = GET_CODE (operands[1]);
+ rtx flags;
+ rtx (*insn)(rtx, rtx, rtx, rtx, rtx);
+ rtx compare_op;
+ rtx val = const0_rtx;
+ bool fpcmp = false;
+ enum machine_mode mode;
+ rtx op0 = XEXP (operands[1], 0);
+ rtx op1 = XEXP (operands[1], 1);
+
+ if (operands[3] != const1_rtx
+ && operands[3] != constm1_rtx)
+ return false;
+ if (!ix86_expand_carry_flag_compare (code, op0, op1, &compare_op))
+ return false;
+ code = GET_CODE (compare_op);
+
+ flags = XEXP (compare_op, 0);
+
+ if (GET_MODE (flags) == CCFPmode
+ || GET_MODE (flags) == CCFPUmode)
+ {
+ fpcmp = true;
+ code = ix86_fp_compare_code_to_integer (code);
+ }
+
+ if (code != LTU)
+ {
+ val = constm1_rtx;
+ if (fpcmp)
+ PUT_CODE (compare_op,
+ reverse_condition_maybe_unordered
+ (GET_CODE (compare_op)));
+ else
+ PUT_CODE (compare_op, reverse_condition (GET_CODE (compare_op)));
+ }
+
+ mode = GET_MODE (operands[0]);
+
+ /* Construct either adc or sbb insn. */
+ if ((code == LTU) == (operands[3] == constm1_rtx))
+ {
+ switch (mode)
+ {
+ case QImode:
+ insn = gen_subqi3_carry;
+ break;
+ case HImode:
+ insn = gen_subhi3_carry;
+ break;
+ case SImode:
+ insn = gen_subsi3_carry;
+ break;
+ case DImode:
+ insn = gen_subdi3_carry;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+ else
+ {
+ switch (mode)
+ {
+ case QImode:
+ insn = gen_addqi3_carry;
+ break;
+ case HImode:
+ insn = gen_addhi3_carry;
+ break;
+ case SImode:
+ insn = gen_addsi3_carry;
+ break;
+ case DImode:
+ insn = gen_adddi3_carry;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+ emit_insn (insn (operands[0], operands[2], val, flags, compare_op));
+
+ return true;
+}
+
+
+/* Split operands 0 and 1 into half-mode parts. Similar to split_double_mode,
+ but works for floating pointer parameters and nonoffsetable memories.
+ For pushes, it returns just stack offsets; the values will be saved
+ in the right order. Maximally three parts are generated. */
+
+static int
+ix86_split_to_parts (rtx operand, rtx *parts, enum machine_mode mode)
+{
+ int size;
+
+ if (!TARGET_64BIT)
+ size = mode==XFmode ? 3 : GET_MODE_SIZE (mode) / 4;
+ else
+ size = (GET_MODE_SIZE (mode) + 4) / 8;
+
+ gcc_assert (!REG_P (operand) || !MMX_REGNO_P (REGNO (operand)));
+ gcc_assert (size >= 2 && size <= 4);
+
+ /* Optimize constant pool reference to immediates. This is used by fp
+ moves, that force all constants to memory to allow combining. */
+ if (MEM_P (operand) && MEM_READONLY_P (operand))
+ {
+ rtx tmp = maybe_get_pool_constant (operand);
+ if (tmp)
+ operand = tmp;
+ }
+
+ if (MEM_P (operand) && !offsettable_memref_p (operand))
+ {
+ /* The only non-offsetable memories we handle are pushes. */
+ int ok = push_operand (operand, VOIDmode);
+
+ gcc_assert (ok);
+
+ operand = copy_rtx (operand);
+ PUT_MODE (operand, word_mode);
+ parts[0] = parts[1] = parts[2] = parts[3] = operand;
+ return size;
+ }
+
+ if (GET_CODE (operand) == CONST_VECTOR)
+ {
+ enum machine_mode imode = int_mode_for_mode (mode);
+ /* Caution: if we looked through a constant pool memory above,
+ the operand may actually have a different mode now. That's
+ ok, since we want to pun this all the way back to an integer. */
+ operand = simplify_subreg (imode, operand, GET_MODE (operand), 0);
+ gcc_assert (operand != NULL);
+ mode = imode;
+ }
+
+ if (!TARGET_64BIT)
+ {
+ if (mode == DImode)
+ split_double_mode (mode, &operand, 1, &parts[0], &parts[1]);
+ else
+ {
+ int i;
+
+ if (REG_P (operand))
+ {
+ gcc_assert (reload_completed);
+ for (i = 0; i < size; i++)
+ parts[i] = gen_rtx_REG (SImode, REGNO (operand) + i);
+ }
+ else if (offsettable_memref_p (operand))
+ {
+ operand = adjust_address (operand, SImode, 0);
+ parts[0] = operand;
+ for (i = 1; i < size; i++)
+ parts[i] = adjust_address (operand, SImode, 4 * i);
+ }
+ else if (GET_CODE (operand) == CONST_DOUBLE)
+ {
+ REAL_VALUE_TYPE r;
+ long l[4];
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, operand);
+ switch (mode)
+ {
+ case TFmode:
+ real_to_target (l, &r, mode);
+ parts[3] = gen_int_mode (l[3], SImode);
+ parts[2] = gen_int_mode (l[2], SImode);
+ break;
+ case XFmode:
+ /* We can't use REAL_VALUE_TO_TARGET_LONG_DOUBLE since
+ long double may not be 80-bit. */
+ real_to_target (l, &r, mode);
+ parts[2] = gen_int_mode (l[2], SImode);
+ break;
+ case DFmode:
+ REAL_VALUE_TO_TARGET_DOUBLE (r, l);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ parts[1] = gen_int_mode (l[1], SImode);
+ parts[0] = gen_int_mode (l[0], SImode);
+ }
+ else
+ gcc_unreachable ();
+ }
+ }
+ else
+ {
+ if (mode == TImode)
+ split_double_mode (mode, &operand, 1, &parts[0], &parts[1]);
+ if (mode == XFmode || mode == TFmode)
+ {
+ enum machine_mode upper_mode = mode==XFmode ? SImode : DImode;
+ if (REG_P (operand))
+ {
+ gcc_assert (reload_completed);
+ parts[0] = gen_rtx_REG (DImode, REGNO (operand) + 0);
+ parts[1] = gen_rtx_REG (upper_mode, REGNO (operand) + 1);
+ }
+ else if (offsettable_memref_p (operand))
+ {
+ operand = adjust_address (operand, DImode, 0);
+ parts[0] = operand;
+ parts[1] = adjust_address (operand, upper_mode, 8);
+ }
+ else if (GET_CODE (operand) == CONST_DOUBLE)
+ {
+ REAL_VALUE_TYPE r;
+ long l[4];
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, operand);
+ real_to_target (l, &r, mode);
+
+ /* Do not use shift by 32 to avoid warning on 32bit systems. */
+ if (HOST_BITS_PER_WIDE_INT >= 64)
+ parts[0]
+ = gen_int_mode
+ ((l[0] & (((HOST_WIDE_INT) 2 << 31) - 1))
+ + ((((HOST_WIDE_INT) l[1]) << 31) << 1),
+ DImode);
+ else
+ parts[0] = immed_double_const (l[0], l[1], DImode);
+
+ if (upper_mode == SImode)
+ parts[1] = gen_int_mode (l[2], SImode);
+ else if (HOST_BITS_PER_WIDE_INT >= 64)
+ parts[1]
+ = gen_int_mode
+ ((l[2] & (((HOST_WIDE_INT) 2 << 31) - 1))
+ + ((((HOST_WIDE_INT) l[3]) << 31) << 1),
+ DImode);
+ else
+ parts[1] = immed_double_const (l[2], l[3], DImode);
+ }
+ else
+ gcc_unreachable ();
+ }
+ }
+
+ return size;
+}
+
+/* Emit insns to perform a move or push of DI, DF, XF, and TF values.
+ Return false when normal moves are needed; true when all required
+ insns have been emitted. Operands 2-4 contain the input values
+ int the correct order; operands 5-7 contain the output values. */
+
+void
+ix86_split_long_move (rtx operands[])
+{
+ rtx part[2][4];
+ int nparts, i, j;
+ int push = 0;
+ int collisions = 0;
+ enum machine_mode mode = GET_MODE (operands[0]);
+ bool collisionparts[4];
+
+ /* The DFmode expanders may ask us to move double.
+ For 64bit target this is single move. By hiding the fact
+ here we simplify i386.md splitters. */
+ if (TARGET_64BIT && GET_MODE_SIZE (GET_MODE (operands[0])) == 8)
+ {
+ /* Optimize constant pool reference to immediates. This is used by
+ fp moves, that force all constants to memory to allow combining. */
+
+ if (MEM_P (operands[1])
+ && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0)))
+ operands[1] = get_pool_constant (XEXP (operands[1], 0));
+ if (push_operand (operands[0], VOIDmode))
+ {
+ operands[0] = copy_rtx (operands[0]);
+ PUT_MODE (operands[0], word_mode);
+ }
+ else
+ operands[0] = gen_lowpart (DImode, operands[0]);
+ operands[1] = gen_lowpart (DImode, operands[1]);
+ emit_move_insn (operands[0], operands[1]);
+ return;
+ }
+
+ /* The only non-offsettable memory we handle is push. */
+ if (push_operand (operands[0], VOIDmode))
+ push = 1;
+ else
+ gcc_assert (!MEM_P (operands[0])
+ || offsettable_memref_p (operands[0]));
+
+ nparts = ix86_split_to_parts (operands[1], part[1], GET_MODE (operands[0]));
+ ix86_split_to_parts (operands[0], part[0], GET_MODE (operands[0]));
+
+ /* When emitting push, take care for source operands on the stack. */
+ if (push && MEM_P (operands[1])
+ && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
+ {
+ rtx src_base = XEXP (part[1][nparts - 1], 0);
+
+ /* Compensate for the stack decrement by 4. */
+ if (!TARGET_64BIT && nparts == 3
+ && mode == XFmode && TARGET_128BIT_LONG_DOUBLE)
+ src_base = plus_constant (Pmode, src_base, 4);
+
+ /* src_base refers to the stack pointer and is
+ automatically decreased by emitted push. */
+ for (i = 0; i < nparts; i++)
+ part[1][i] = change_address (part[1][i],
+ GET_MODE (part[1][i]), src_base);
+ }
+
+ /* We need to do copy in the right order in case an address register
+ of the source overlaps the destination. */
+ if (REG_P (part[0][0]) && MEM_P (part[1][0]))
+ {
+ rtx tmp;
+
+ for (i = 0; i < nparts; i++)
+ {
+ collisionparts[i]
+ = reg_overlap_mentioned_p (part[0][i], XEXP (part[1][0], 0));
+ if (collisionparts[i])
+ collisions++;
+ }
+
+ /* Collision in the middle part can be handled by reordering. */
+ if (collisions == 1 && nparts == 3 && collisionparts [1])
+ {
+ tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp;
+ tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp;
+ }
+ else if (collisions == 1
+ && nparts == 4
+ && (collisionparts [1] || collisionparts [2]))
+ {
+ if (collisionparts [1])
+ {
+ tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp;
+ tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp;
+ }
+ else
+ {
+ tmp = part[0][2]; part[0][2] = part[0][3]; part[0][3] = tmp;
+ tmp = part[1][2]; part[1][2] = part[1][3]; part[1][3] = tmp;
+ }
+ }
+
+ /* If there are more collisions, we can't handle it by reordering.
+ Do an lea to the last part and use only one colliding move. */
+ else if (collisions > 1)
+ {
+ rtx base;
+
+ collisions = 1;
+
+ base = part[0][nparts - 1];
+
+ /* Handle the case when the last part isn't valid for lea.
+ Happens in 64-bit mode storing the 12-byte XFmode. */
+ if (GET_MODE (base) != Pmode)
+ base = gen_rtx_REG (Pmode, REGNO (base));
+
+ emit_insn (gen_rtx_SET (VOIDmode, base, XEXP (part[1][0], 0)));
+ part[1][0] = replace_equiv_address (part[1][0], base);
+ for (i = 1; i < nparts; i++)
+ {
+ tmp = plus_constant (Pmode, base, UNITS_PER_WORD * i);
+ part[1][i] = replace_equiv_address (part[1][i], tmp);
+ }
+ }
+ }
+
+ if (push)
+ {
+ if (!TARGET_64BIT)
+ {
+ if (nparts == 3)
+ {
+ if (TARGET_128BIT_LONG_DOUBLE && mode == XFmode)
+ emit_insn (ix86_gen_add3 (stack_pointer_rtx,
+ stack_pointer_rtx, GEN_INT (-4)));
+ emit_move_insn (part[0][2], part[1][2]);
+ }
+ else if (nparts == 4)
+ {
+ emit_move_insn (part[0][3], part[1][3]);
+ emit_move_insn (part[0][2], part[1][2]);
+ }
+ }
+ else
+ {
+ /* In 64bit mode we don't have 32bit push available. In case this is
+ register, it is OK - we will just use larger counterpart. We also
+ retype memory - these comes from attempt to avoid REX prefix on
+ moving of second half of TFmode value. */
+ if (GET_MODE (part[1][1]) == SImode)
+ {
+ switch (GET_CODE (part[1][1]))
+ {
+ case MEM:
+ part[1][1] = adjust_address (part[1][1], DImode, 0);
+ break;
+
+ case REG:
+ part[1][1] = gen_rtx_REG (DImode, REGNO (part[1][1]));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (GET_MODE (part[1][0]) == SImode)
+ part[1][0] = part[1][1];
+ }
+ }
+ emit_move_insn (part[0][1], part[1][1]);
+ emit_move_insn (part[0][0], part[1][0]);
+ return;
+ }
+
+ /* Choose correct order to not overwrite the source before it is copied. */
+ if ((REG_P (part[0][0])
+ && REG_P (part[1][1])
+ && (REGNO (part[0][0]) == REGNO (part[1][1])
+ || (nparts == 3
+ && REGNO (part[0][0]) == REGNO (part[1][2]))
+ || (nparts == 4
+ && REGNO (part[0][0]) == REGNO (part[1][3]))))
+ || (collisions > 0
+ && reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0))))
+ {
+ for (i = 0, j = nparts - 1; i < nparts; i++, j--)
+ {
+ operands[2 + i] = part[0][j];
+ operands[6 + i] = part[1][j];
+ }
+ }
+ else
+ {
+ for (i = 0; i < nparts; i++)
+ {
+ operands[2 + i] = part[0][i];
+ operands[6 + i] = part[1][i];
+ }
+ }
+
+ /* If optimizing for size, attempt to locally unCSE nonzero constants. */
+ if (optimize_insn_for_size_p ())
+ {
+ for (j = 0; j < nparts - 1; j++)
+ if (CONST_INT_P (operands[6 + j])
+ && operands[6 + j] != const0_rtx
+ && REG_P (operands[2 + j]))
+ for (i = j; i < nparts - 1; i++)
+ if (CONST_INT_P (operands[7 + i])
+ && INTVAL (operands[7 + i]) == INTVAL (operands[6 + j]))
+ operands[7 + i] = operands[2 + j];
+ }
+
+ for (i = 0; i < nparts; i++)
+ emit_move_insn (operands[2 + i], operands[6 + i]);
+
+ return;
+}
+
+/* Helper function of ix86_split_ashl used to generate an SImode/DImode
+ left shift by a constant, either using a single shift or
+ a sequence of add instructions. */
+
+static void
+ix86_expand_ashl_const (rtx operand, int count, enum machine_mode mode)
+{
+ rtx (*insn)(rtx, rtx, rtx);
+
+ if (count == 1
+ || (count * ix86_cost->add <= ix86_cost->shift_const
+ && !optimize_insn_for_size_p ()))
+ {
+ insn = mode == DImode ? gen_addsi3 : gen_adddi3;
+ while (count-- > 0)
+ emit_insn (insn (operand, operand, operand));
+ }
+ else
+ {
+ insn = mode == DImode ? gen_ashlsi3 : gen_ashldi3;
+ emit_insn (insn (operand, operand, GEN_INT (count)));
+ }
+}
+
+void
+ix86_split_ashl (rtx *operands, rtx scratch, enum machine_mode mode)
+{
+ rtx (*gen_ashl3)(rtx, rtx, rtx);
+ rtx (*gen_shld)(rtx, rtx, rtx);
+ int half_width = GET_MODE_BITSIZE (mode) >> 1;
+
+ rtx low[2], high[2];
+ int count;
+
+ if (CONST_INT_P (operands[2]))
+ {
+ split_double_mode (mode, operands, 2, low, high);
+ count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1);
+
+ if (count >= half_width)
+ {
+ emit_move_insn (high[0], low[1]);
+ emit_move_insn (low[0], const0_rtx);
+
+ if (count > half_width)
+ ix86_expand_ashl_const (high[0], count - half_width, mode);
+ }
+ else
+ {
+ gen_shld = mode == DImode ? gen_x86_shld : gen_x86_64_shld;
+
+ if (!rtx_equal_p (operands[0], operands[1]))
+ emit_move_insn (operands[0], operands[1]);
+
+ emit_insn (gen_shld (high[0], low[0], GEN_INT (count)));
+ ix86_expand_ashl_const (low[0], count, mode);
+ }
+ return;
+ }
+
+ split_double_mode (mode, operands, 1, low, high);
+
+ gen_ashl3 = mode == DImode ? gen_ashlsi3 : gen_ashldi3;
+
+ if (operands[1] == const1_rtx)
+ {
+ /* Assuming we've chosen a QImode capable registers, then 1 << N
+ can be done with two 32/64-bit shifts, no branches, no cmoves. */
+ if (ANY_QI_REG_P (low[0]) && ANY_QI_REG_P (high[0]))
+ {
+ rtx s, d, flags = gen_rtx_REG (CCZmode, FLAGS_REG);
+
+ ix86_expand_clear (low[0]);
+ ix86_expand_clear (high[0]);
+ emit_insn (gen_testqi_ccz_1 (operands[2], GEN_INT (half_width)));
+
+ d = gen_lowpart (QImode, low[0]);
+ d = gen_rtx_STRICT_LOW_PART (VOIDmode, d);
+ s = gen_rtx_EQ (QImode, flags, const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, d, s));
+
+ d = gen_lowpart (QImode, high[0]);
+ d = gen_rtx_STRICT_LOW_PART (VOIDmode, d);
+ s = gen_rtx_NE (QImode, flags, const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, d, s));
+ }
+
+ /* Otherwise, we can get the same results by manually performing
+ a bit extract operation on bit 5/6, and then performing the two
+ shifts. The two methods of getting 0/1 into low/high are exactly
+ the same size. Avoiding the shift in the bit extract case helps
+ pentium4 a bit; no one else seems to care much either way. */
+ else
+ {
+ enum machine_mode half_mode;
+ rtx (*gen_lshr3)(rtx, rtx, rtx);
+ rtx (*gen_and3)(rtx, rtx, rtx);
+ rtx (*gen_xor3)(rtx, rtx, rtx);
+ HOST_WIDE_INT bits;
+ rtx x;
+
+ if (mode == DImode)
+ {
+ half_mode = SImode;
+ gen_lshr3 = gen_lshrsi3;
+ gen_and3 = gen_andsi3;
+ gen_xor3 = gen_xorsi3;
+ bits = 5;
+ }
+ else
+ {
+ half_mode = DImode;
+ gen_lshr3 = gen_lshrdi3;
+ gen_and3 = gen_anddi3;
+ gen_xor3 = gen_xordi3;
+ bits = 6;
+ }
+
+ if (TARGET_PARTIAL_REG_STALL && !optimize_insn_for_size_p ())
+ x = gen_rtx_ZERO_EXTEND (half_mode, operands[2]);
+ else
+ x = gen_lowpart (half_mode, operands[2]);
+ emit_insn (gen_rtx_SET (VOIDmode, high[0], x));
+
+ emit_insn (gen_lshr3 (high[0], high[0], GEN_INT (bits)));
+ emit_insn (gen_and3 (high[0], high[0], const1_rtx));
+ emit_move_insn (low[0], high[0]);
+ emit_insn (gen_xor3 (low[0], low[0], const1_rtx));
+ }
+
+ emit_insn (gen_ashl3 (low[0], low[0], operands[2]));
+ emit_insn (gen_ashl3 (high[0], high[0], operands[2]));
+ return;
+ }
+
+ if (operands[1] == constm1_rtx)
+ {
+ /* For -1 << N, we can avoid the shld instruction, because we
+ know that we're shifting 0...31/63 ones into a -1. */
+ emit_move_insn (low[0], constm1_rtx);
+ if (optimize_insn_for_size_p ())
+ emit_move_insn (high[0], low[0]);
+ else
+ emit_move_insn (high[0], constm1_rtx);
+ }
+ else
+ {
+ gen_shld = mode == DImode ? gen_x86_shld : gen_x86_64_shld;
+
+ if (!rtx_equal_p (operands[0], operands[1]))
+ emit_move_insn (operands[0], operands[1]);
+
+ split_double_mode (mode, operands, 1, low, high);
+ emit_insn (gen_shld (high[0], low[0], operands[2]));
+ }
+
+ emit_insn (gen_ashl3 (low[0], low[0], operands[2]));
+
+ if (TARGET_CMOVE && scratch)
+ {
+ rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx)
+ = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1;
+
+ ix86_expand_clear (scratch);
+ emit_insn (gen_x86_shift_adj_1 (high[0], low[0], operands[2], scratch));
+ }
+ else
+ {
+ rtx (*gen_x86_shift_adj_2)(rtx, rtx, rtx)
+ = mode == DImode ? gen_x86_shiftsi_adj_2 : gen_x86_shiftdi_adj_2;
+
+ emit_insn (gen_x86_shift_adj_2 (high[0], low[0], operands[2]));
+ }
+}
+
+void
+ix86_split_ashr (rtx *operands, rtx scratch, enum machine_mode mode)
+{
+ rtx (*gen_ashr3)(rtx, rtx, rtx)
+ = mode == DImode ? gen_ashrsi3 : gen_ashrdi3;
+ rtx (*gen_shrd)(rtx, rtx, rtx);
+ int half_width = GET_MODE_BITSIZE (mode) >> 1;
+
+ rtx low[2], high[2];
+ int count;
+
+ if (CONST_INT_P (operands[2]))
+ {
+ split_double_mode (mode, operands, 2, low, high);
+ count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1);
+
+ if (count == GET_MODE_BITSIZE (mode) - 1)
+ {
+ emit_move_insn (high[0], high[1]);
+ emit_insn (gen_ashr3 (high[0], high[0],
+ GEN_INT (half_width - 1)));
+ emit_move_insn (low[0], high[0]);
+
+ }
+ else if (count >= half_width)
+ {
+ emit_move_insn (low[0], high[1]);
+ emit_move_insn (high[0], low[0]);
+ emit_insn (gen_ashr3 (high[0], high[0],
+ GEN_INT (half_width - 1)));
+
+ if (count > half_width)
+ emit_insn (gen_ashr3 (low[0], low[0],
+ GEN_INT (count - half_width)));
+ }
+ else
+ {
+ gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd;
+
+ if (!rtx_equal_p (operands[0], operands[1]))
+ emit_move_insn (operands[0], operands[1]);
+
+ emit_insn (gen_shrd (low[0], high[0], GEN_INT (count)));
+ emit_insn (gen_ashr3 (high[0], high[0], GEN_INT (count)));
+ }
+ }
+ else
+ {
+ gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd;
+
+ if (!rtx_equal_p (operands[0], operands[1]))
+ emit_move_insn (operands[0], operands[1]);
+
+ split_double_mode (mode, operands, 1, low, high);
+
+ emit_insn (gen_shrd (low[0], high[0], operands[2]));
+ emit_insn (gen_ashr3 (high[0], high[0], operands[2]));
+
+ if (TARGET_CMOVE && scratch)
+ {
+ rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx)
+ = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1;
+
+ emit_move_insn (scratch, high[0]);
+ emit_insn (gen_ashr3 (scratch, scratch,
+ GEN_INT (half_width - 1)));
+ emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2],
+ scratch));
+ }
+ else
+ {
+ rtx (*gen_x86_shift_adj_3)(rtx, rtx, rtx)
+ = mode == DImode ? gen_x86_shiftsi_adj_3 : gen_x86_shiftdi_adj_3;
+
+ emit_insn (gen_x86_shift_adj_3 (low[0], high[0], operands[2]));
+ }
+ }
+}
+
+void
+ix86_split_lshr (rtx *operands, rtx scratch, enum machine_mode mode)
+{
+ rtx (*gen_lshr3)(rtx, rtx, rtx)
+ = mode == DImode ? gen_lshrsi3 : gen_lshrdi3;
+ rtx (*gen_shrd)(rtx, rtx, rtx);
+ int half_width = GET_MODE_BITSIZE (mode) >> 1;
+
+ rtx low[2], high[2];
+ int count;
+
+ if (CONST_INT_P (operands[2]))
+ {
+ split_double_mode (mode, operands, 2, low, high);
+ count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1);
+
+ if (count >= half_width)
+ {
+ emit_move_insn (low[0], high[1]);
+ ix86_expand_clear (high[0]);
+
+ if (count > half_width)
+ emit_insn (gen_lshr3 (low[0], low[0],
+ GEN_INT (count - half_width)));
+ }
+ else
+ {
+ gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd;
+
+ if (!rtx_equal_p (operands[0], operands[1]))
+ emit_move_insn (operands[0], operands[1]);
+
+ emit_insn (gen_shrd (low[0], high[0], GEN_INT (count)));
+ emit_insn (gen_lshr3 (high[0], high[0], GEN_INT (count)));
+ }
+ }
+ else
+ {
+ gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd;
+
+ if (!rtx_equal_p (operands[0], operands[1]))
+ emit_move_insn (operands[0], operands[1]);
+
+ split_double_mode (mode, operands, 1, low, high);
+
+ emit_insn (gen_shrd (low[0], high[0], operands[2]));
+ emit_insn (gen_lshr3 (high[0], high[0], operands[2]));
+
+ if (TARGET_CMOVE && scratch)
+ {
+ rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx)
+ = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1;
+
+ ix86_expand_clear (scratch);
+ emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2],
+ scratch));
+ }
+ else
+ {
+ rtx (*gen_x86_shift_adj_2)(rtx, rtx, rtx)
+ = mode == DImode ? gen_x86_shiftsi_adj_2 : gen_x86_shiftdi_adj_2;
+
+ emit_insn (gen_x86_shift_adj_2 (low[0], high[0], operands[2]));
+ }
+ }
+}
+
+/* Predict just emitted jump instruction to be taken with probability PROB. */
+static void
+predict_jump (int prob)
+{
+ rtx insn = get_last_insn ();
+ gcc_assert (JUMP_P (insn));
+ add_int_reg_note (insn, REG_BR_PROB, prob);
+}
+
+/* Helper function for the string operations below. Dest VARIABLE whether
+ it is aligned to VALUE bytes. If true, jump to the label. */
+static rtx
+ix86_expand_aligntest (rtx variable, int value, bool epilogue)
+{
+ rtx label = gen_label_rtx ();
+ rtx tmpcount = gen_reg_rtx (GET_MODE (variable));
+ if (GET_MODE (variable) == DImode)
+ emit_insn (gen_anddi3 (tmpcount, variable, GEN_INT (value)));
+ else
+ emit_insn (gen_andsi3 (tmpcount, variable, GEN_INT (value)));
+ emit_cmp_and_jump_insns (tmpcount, const0_rtx, EQ, 0, GET_MODE (variable),
+ 1, label);
+ if (epilogue)
+ predict_jump (REG_BR_PROB_BASE * 50 / 100);
+ else
+ predict_jump (REG_BR_PROB_BASE * 90 / 100);
+ return label;
+}
+
+/* Adjust COUNTER by the VALUE. */
+static void
+ix86_adjust_counter (rtx countreg, HOST_WIDE_INT value)
+{
+ rtx (*gen_add)(rtx, rtx, rtx)
+ = GET_MODE (countreg) == DImode ? gen_adddi3 : gen_addsi3;
+
+ emit_insn (gen_add (countreg, countreg, GEN_INT (-value)));
+}
+
+/* Zero extend possibly SImode EXP to Pmode register. */
+rtx
+ix86_zero_extend_to_Pmode (rtx exp)
+{
+ return force_reg (Pmode, convert_to_mode (Pmode, exp, 1));
+}
+
+/* Divide COUNTREG by SCALE. */
+static rtx
+scale_counter (rtx countreg, int scale)
+{
+ rtx sc;
+
+ if (scale == 1)
+ return countreg;
+ if (CONST_INT_P (countreg))
+ return GEN_INT (INTVAL (countreg) / scale);
+ gcc_assert (REG_P (countreg));
+
+ sc = expand_simple_binop (GET_MODE (countreg), LSHIFTRT, countreg,
+ GEN_INT (exact_log2 (scale)),
+ NULL, 1, OPTAB_DIRECT);
+ return sc;
+}
+
+/* Return mode for the memcpy/memset loop counter. Prefer SImode over
+ DImode for constant loop counts. */
+
+static enum machine_mode
+counter_mode (rtx count_exp)
+{
+ if (GET_MODE (count_exp) != VOIDmode)
+ return GET_MODE (count_exp);
+ if (!CONST_INT_P (count_exp))
+ return Pmode;
+ if (TARGET_64BIT && (INTVAL (count_exp) & ~0xffffffff))
+ return DImode;
+ return SImode;
+}
+
+/* Copy the address to a Pmode register. This is used for x32 to
+ truncate DImode TLS address to a SImode register. */
+
+static rtx
+ix86_copy_addr_to_reg (rtx addr)
+{
+ if (GET_MODE (addr) == Pmode)
+ return copy_addr_to_reg (addr);
+ else
+ {
+ gcc_assert (GET_MODE (addr) == DImode && Pmode == SImode);
+ return gen_rtx_SUBREG (SImode, copy_to_mode_reg (DImode, addr), 0);
+ }
+}
+
+/* When ISSETMEM is FALSE, output simple loop to move memory pointer to SRCPTR
+ to DESTPTR via chunks of MODE unrolled UNROLL times, overall size is COUNT
+ specified in bytes. When ISSETMEM is TRUE, output the equivalent loop to set
+ memory by VALUE (supposed to be in MODE).
+
+ The size is rounded down to whole number of chunk size moved at once.
+ SRCMEM and DESTMEM provide MEMrtx to feed proper aliasing info. */
+
+
+static void
+expand_set_or_movmem_via_loop (rtx destmem, rtx srcmem,
+ rtx destptr, rtx srcptr, rtx value,
+ rtx count, enum machine_mode mode, int unroll,
+ int expected_size, bool issetmem)
+{
+ rtx out_label, top_label, iter, tmp;
+ enum machine_mode iter_mode = counter_mode (count);
+ int piece_size_n = GET_MODE_SIZE (mode) * unroll;
+ rtx piece_size = GEN_INT (piece_size_n);
+ rtx piece_size_mask = GEN_INT (~((GET_MODE_SIZE (mode) * unroll) - 1));
+ rtx size;
+ int i;
+
+ top_label = gen_label_rtx ();
+ out_label = gen_label_rtx ();
+ iter = gen_reg_rtx (iter_mode);
+
+ size = expand_simple_binop (iter_mode, AND, count, piece_size_mask,
+ NULL, 1, OPTAB_DIRECT);
+ /* Those two should combine. */
+ if (piece_size == const1_rtx)
+ {
+ emit_cmp_and_jump_insns (size, const0_rtx, EQ, NULL_RTX, iter_mode,
+ true, out_label);
+ predict_jump (REG_BR_PROB_BASE * 10 / 100);
+ }
+ emit_move_insn (iter, const0_rtx);
+
+ emit_label (top_label);
+
+ tmp = convert_modes (Pmode, iter_mode, iter, true);
+
+ /* This assert could be relaxed - in this case we'll need to compute
+ smallest power of two, containing in PIECE_SIZE_N and pass it to
+ offset_address. */
+ gcc_assert ((piece_size_n & (piece_size_n - 1)) == 0);
+ destmem = offset_address (destmem, tmp, piece_size_n);
+ destmem = adjust_address (destmem, mode, 0);
+
+ if (!issetmem)
+ {
+ srcmem = offset_address (srcmem, copy_rtx (tmp), piece_size_n);
+ srcmem = adjust_address (srcmem, mode, 0);
+
+ /* When unrolling for chips that reorder memory reads and writes,
+ we can save registers by using single temporary.
+ Also using 4 temporaries is overkill in 32bit mode. */
+ if (!TARGET_64BIT && 0)
+ {
+ for (i = 0; i < unroll; i++)
+ {
+ if (i)
+ {
+ destmem =
+ adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode));
+ srcmem =
+ adjust_address (copy_rtx (srcmem), mode, GET_MODE_SIZE (mode));
+ }
+ emit_move_insn (destmem, srcmem);
+ }
+ }
+ else
+ {
+ rtx tmpreg[4];
+ gcc_assert (unroll <= 4);
+ for (i = 0; i < unroll; i++)
+ {
+ tmpreg[i] = gen_reg_rtx (mode);
+ if (i)
+ {
+ srcmem =
+ adjust_address (copy_rtx (srcmem), mode, GET_MODE_SIZE (mode));
+ }
+ emit_move_insn (tmpreg[i], srcmem);
+ }
+ for (i = 0; i < unroll; i++)
+ {
+ if (i)
+ {
+ destmem =
+ adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode));
+ }
+ emit_move_insn (destmem, tmpreg[i]);
+ }
+ }
+ }
+ else
+ for (i = 0; i < unroll; i++)
+ {
+ if (i)
+ destmem =
+ adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode));
+ emit_move_insn (destmem, value);
+ }
+
+ tmp = expand_simple_binop (iter_mode, PLUS, iter, piece_size, iter,
+ true, OPTAB_LIB_WIDEN);
+ if (tmp != iter)
+ emit_move_insn (iter, tmp);
+
+ emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
+ true, top_label);
+ if (expected_size != -1)
+ {
+ expected_size /= GET_MODE_SIZE (mode) * unroll;
+ if (expected_size == 0)
+ predict_jump (0);
+ else if (expected_size > REG_BR_PROB_BASE)
+ predict_jump (REG_BR_PROB_BASE - 1);
+ else
+ predict_jump (REG_BR_PROB_BASE - (REG_BR_PROB_BASE + expected_size / 2) / expected_size);
+ }
+ else
+ predict_jump (REG_BR_PROB_BASE * 80 / 100);
+ iter = ix86_zero_extend_to_Pmode (iter);
+ tmp = expand_simple_binop (Pmode, PLUS, destptr, iter, destptr,
+ true, OPTAB_LIB_WIDEN);
+ if (tmp != destptr)
+ emit_move_insn (destptr, tmp);
+ if (!issetmem)
+ {
+ tmp = expand_simple_binop (Pmode, PLUS, srcptr, iter, srcptr,
+ true, OPTAB_LIB_WIDEN);
+ if (tmp != srcptr)
+ emit_move_insn (srcptr, tmp);
+ }
+ emit_label (out_label);
+}
+
+/* Output "rep; mov" or "rep; stos" instruction depending on ISSETMEM argument.
+ When ISSETMEM is true, arguments SRCMEM and SRCPTR are ignored.
+ When ISSETMEM is false, arguments VALUE and ORIG_VALUE are ignored.
+ For setmem case, VALUE is a promoted to a wider size ORIG_VALUE.
+ ORIG_VALUE is the original value passed to memset to fill the memory with.
+ Other arguments have same meaning as for previous function. */
+
+static void
+expand_set_or_movmem_via_rep (rtx destmem, rtx srcmem,
+ rtx destptr, rtx srcptr, rtx value, rtx orig_value,
+ rtx count,
+ enum machine_mode mode, bool issetmem)
+{
+ rtx destexp;
+ rtx srcexp;
+ rtx countreg;
+ HOST_WIDE_INT rounded_count;
+
+ /* If possible, it is shorter to use rep movs.
+ TODO: Maybe it is better to move this logic to decide_alg. */
+ if (mode == QImode && CONST_INT_P (count) && !(INTVAL (count) & 3)
+ && (!issetmem || orig_value == const0_rtx))
+ mode = SImode;
+
+ if (destptr != XEXP (destmem, 0) || GET_MODE (destmem) != BLKmode)
+ destmem = adjust_automodify_address_nv (destmem, BLKmode, destptr, 0);
+
+ countreg = ix86_zero_extend_to_Pmode (scale_counter (count,
+ GET_MODE_SIZE (mode)));
+ if (mode != QImode)
+ {
+ destexp = gen_rtx_ASHIFT (Pmode, countreg,
+ GEN_INT (exact_log2 (GET_MODE_SIZE (mode))));
+ destexp = gen_rtx_PLUS (Pmode, destexp, destptr);
+ }
+ else
+ destexp = gen_rtx_PLUS (Pmode, destptr, countreg);
+ if ((!issetmem || orig_value == const0_rtx) && CONST_INT_P (count))
+ {
+ rounded_count = (INTVAL (count)
+ & ~((HOST_WIDE_INT) GET_MODE_SIZE (mode) - 1));
+ destmem = shallow_copy_rtx (destmem);
+ set_mem_size (destmem, rounded_count);
+ }
+ else if (MEM_SIZE_KNOWN_P (destmem))
+ clear_mem_size (destmem);
+
+ if (issetmem)
+ {
+ value = force_reg (mode, gen_lowpart (mode, value));
+ emit_insn (gen_rep_stos (destptr, countreg, destmem, value, destexp));
+ }
+ else
+ {
+ if (srcptr != XEXP (srcmem, 0) || GET_MODE (srcmem) != BLKmode)
+ srcmem = adjust_automodify_address_nv (srcmem, BLKmode, srcptr, 0);
+ if (mode != QImode)
+ {
+ srcexp = gen_rtx_ASHIFT (Pmode, countreg,
+ GEN_INT (exact_log2 (GET_MODE_SIZE (mode))));
+ srcexp = gen_rtx_PLUS (Pmode, srcexp, srcptr);
+ }
+ else
+ srcexp = gen_rtx_PLUS (Pmode, srcptr, countreg);
+ if (CONST_INT_P (count))
+ {
+ rounded_count = (INTVAL (count)
+ & ~((HOST_WIDE_INT) GET_MODE_SIZE (mode) - 1));
+ srcmem = shallow_copy_rtx (srcmem);
+ set_mem_size (srcmem, rounded_count);
+ }
+ else
+ {
+ if (MEM_SIZE_KNOWN_P (srcmem))
+ clear_mem_size (srcmem);
+ }
+ emit_insn (gen_rep_mov (destptr, destmem, srcptr, srcmem, countreg,
+ destexp, srcexp));
+ }
+}
+
+/* This function emits moves to copy SIZE_TO_MOVE bytes from SRCMEM to
+ DESTMEM.
+ SRC is passed by pointer to be updated on return.
+ Return value is updated DST. */
+static rtx
+emit_memmov (rtx destmem, rtx *srcmem, rtx destptr, rtx srcptr,
+ HOST_WIDE_INT size_to_move)
+{
+ rtx dst = destmem, src = *srcmem, adjust, tempreg;
+ enum insn_code code;
+ enum machine_mode move_mode;
+ int piece_size, i;
+
+ /* Find the widest mode in which we could perform moves.
+ Start with the biggest power of 2 less than SIZE_TO_MOVE and half
+ it until move of such size is supported. */
+ piece_size = 1 << floor_log2 (size_to_move);
+ move_mode = mode_for_size (piece_size * BITS_PER_UNIT, MODE_INT, 0);
+ code = optab_handler (mov_optab, move_mode);
+ while (code == CODE_FOR_nothing && piece_size > 1)
+ {
+ piece_size >>= 1;
+ move_mode = mode_for_size (piece_size * BITS_PER_UNIT, MODE_INT, 0);
+ code = optab_handler (mov_optab, move_mode);
+ }
+
+ /* Find the corresponding vector mode with the same size as MOVE_MODE.
+ MOVE_MODE is an integer mode at the moment (SI, DI, TI, etc.). */
+ if (GET_MODE_SIZE (move_mode) > GET_MODE_SIZE (word_mode))
+ {
+ int nunits = GET_MODE_SIZE (move_mode) / GET_MODE_SIZE (word_mode);
+ move_mode = mode_for_vector (word_mode, nunits);
+ code = optab_handler (mov_optab, move_mode);
+ if (code == CODE_FOR_nothing)
+ {
+ move_mode = word_mode;
+ piece_size = GET_MODE_SIZE (move_mode);
+ code = optab_handler (mov_optab, move_mode);
+ }
+ }
+ gcc_assert (code != CODE_FOR_nothing);
+
+ dst = adjust_automodify_address_nv (dst, move_mode, destptr, 0);
+ src = adjust_automodify_address_nv (src, move_mode, srcptr, 0);
+
+ /* Emit moves. We'll need SIZE_TO_MOVE/PIECE_SIZES moves. */
+ gcc_assert (size_to_move % piece_size == 0);
+ adjust = GEN_INT (piece_size);
+ for (i = 0; i < size_to_move; i += piece_size)
+ {
+ /* We move from memory to memory, so we'll need to do it via
+ a temporary register. */
+ tempreg = gen_reg_rtx (move_mode);
+ emit_insn (GEN_FCN (code) (tempreg, src));
+ emit_insn (GEN_FCN (code) (dst, tempreg));
+
+ emit_move_insn (destptr,
+ gen_rtx_PLUS (Pmode, copy_rtx (destptr), adjust));
+ emit_move_insn (srcptr,
+ gen_rtx_PLUS (Pmode, copy_rtx (srcptr), adjust));
+
+ dst = adjust_automodify_address_nv (dst, move_mode, destptr,
+ piece_size);
+ src = adjust_automodify_address_nv (src, move_mode, srcptr,
+ piece_size);
+ }
+
+ /* Update DST and SRC rtx. */
+ *srcmem = src;
+ return dst;
+}
+
+/* Output code to copy at most count & (max_size - 1) bytes from SRC to DEST. */
+static void
+expand_movmem_epilogue (rtx destmem, rtx srcmem,
+ rtx destptr, rtx srcptr, rtx count, int max_size)
+{
+ rtx src, dest;
+ if (CONST_INT_P (count))
+ {
+ HOST_WIDE_INT countval = INTVAL (count);
+ HOST_WIDE_INT epilogue_size = countval % max_size;
+ int i;
+
+ /* For now MAX_SIZE should be a power of 2. This assert could be
+ relaxed, but it'll require a bit more complicated epilogue
+ expanding. */
+ gcc_assert ((max_size & (max_size - 1)) == 0);
+ for (i = max_size; i >= 1; i >>= 1)
+ {
+ if (epilogue_size & i)
+ destmem = emit_memmov (destmem, &srcmem, destptr, srcptr, i);
+ }
+ return;
+ }
+ if (max_size > 8)
+ {
+ count = expand_simple_binop (GET_MODE (count), AND, count, GEN_INT (max_size - 1),
+ count, 1, OPTAB_DIRECT);
+ expand_set_or_movmem_via_loop (destmem, srcmem, destptr, srcptr, NULL,
+ count, QImode, 1, 4, false);
+ return;
+ }
+
+ /* When there are stringops, we can cheaply increase dest and src pointers.
+ Otherwise we save code size by maintaining offset (zero is readily
+ available from preceding rep operation) and using x86 addressing modes.
+ */
+ if (TARGET_SINGLE_STRINGOP)
+ {
+ if (max_size > 4)
+ {
+ rtx label = ix86_expand_aligntest (count, 4, true);
+ src = change_address (srcmem, SImode, srcptr);
+ dest = change_address (destmem, SImode, destptr);
+ emit_insn (gen_strmov (destptr, dest, srcptr, src));
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ if (max_size > 2)
+ {
+ rtx label = ix86_expand_aligntest (count, 2, true);
+ src = change_address (srcmem, HImode, srcptr);
+ dest = change_address (destmem, HImode, destptr);
+ emit_insn (gen_strmov (destptr, dest, srcptr, src));
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ if (max_size > 1)
+ {
+ rtx label = ix86_expand_aligntest (count, 1, true);
+ src = change_address (srcmem, QImode, srcptr);
+ dest = change_address (destmem, QImode, destptr);
+ emit_insn (gen_strmov (destptr, dest, srcptr, src));
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ }
+ else
+ {
+ rtx offset = force_reg (Pmode, const0_rtx);
+ rtx tmp;
+
+ if (max_size > 4)
+ {
+ rtx label = ix86_expand_aligntest (count, 4, true);
+ src = change_address (srcmem, SImode, srcptr);
+ dest = change_address (destmem, SImode, destptr);
+ emit_move_insn (dest, src);
+ tmp = expand_simple_binop (Pmode, PLUS, offset, GEN_INT (4), NULL,
+ true, OPTAB_LIB_WIDEN);
+ if (tmp != offset)
+ emit_move_insn (offset, tmp);
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ if (max_size > 2)
+ {
+ rtx label = ix86_expand_aligntest (count, 2, true);
+ tmp = gen_rtx_PLUS (Pmode, srcptr, offset);
+ src = change_address (srcmem, HImode, tmp);
+ tmp = gen_rtx_PLUS (Pmode, destptr, offset);
+ dest = change_address (destmem, HImode, tmp);
+ emit_move_insn (dest, src);
+ tmp = expand_simple_binop (Pmode, PLUS, offset, GEN_INT (2), tmp,
+ true, OPTAB_LIB_WIDEN);
+ if (tmp != offset)
+ emit_move_insn (offset, tmp);
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ if (max_size > 1)
+ {
+ rtx label = ix86_expand_aligntest (count, 1, true);
+ tmp = gen_rtx_PLUS (Pmode, srcptr, offset);
+ src = change_address (srcmem, QImode, tmp);
+ tmp = gen_rtx_PLUS (Pmode, destptr, offset);
+ dest = change_address (destmem, QImode, tmp);
+ emit_move_insn (dest, src);
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ }
+}
+
+/* This function emits moves to fill SIZE_TO_MOVE bytes starting from DESTMEM
+ with value PROMOTED_VAL.
+ SRC is passed by pointer to be updated on return.
+ Return value is updated DST. */
+static rtx
+emit_memset (rtx destmem, rtx destptr, rtx promoted_val,
+ HOST_WIDE_INT size_to_move)
+{
+ rtx dst = destmem, adjust;
+ enum insn_code code;
+ enum machine_mode move_mode;
+ int piece_size, i;
+
+ /* Find the widest mode in which we could perform moves.
+ Start with the biggest power of 2 less than SIZE_TO_MOVE and half
+ it until move of such size is supported. */
+ move_mode = GET_MODE (promoted_val);
+ if (move_mode == VOIDmode)
+ move_mode = QImode;
+ if (size_to_move < GET_MODE_SIZE (move_mode))
+ {
+ move_mode = mode_for_size (size_to_move * BITS_PER_UNIT, MODE_INT, 0);
+ promoted_val = gen_lowpart (move_mode, promoted_val);
+ }
+ piece_size = GET_MODE_SIZE (move_mode);
+ code = optab_handler (mov_optab, move_mode);
+ gcc_assert (code != CODE_FOR_nothing && promoted_val != NULL_RTX);
+
+ dst = adjust_automodify_address_nv (dst, move_mode, destptr, 0);
+
+ /* Emit moves. We'll need SIZE_TO_MOVE/PIECE_SIZES moves. */
+ gcc_assert (size_to_move % piece_size == 0);
+ adjust = GEN_INT (piece_size);
+ for (i = 0; i < size_to_move; i += piece_size)
+ {
+ if (piece_size <= GET_MODE_SIZE (word_mode))
+ {
+ emit_insn (gen_strset (destptr, dst, promoted_val));
+ dst = adjust_automodify_address_nv (dst, move_mode, destptr,
+ piece_size);
+ continue;
+ }
+
+ emit_insn (GEN_FCN (code) (dst, promoted_val));
+
+ emit_move_insn (destptr,
+ gen_rtx_PLUS (Pmode, copy_rtx (destptr), adjust));
+
+ dst = adjust_automodify_address_nv (dst, move_mode, destptr,
+ piece_size);
+ }
+
+ /* Update DST rtx. */
+ return dst;
+}
+/* Output code to set at most count & (max_size - 1) bytes starting by DEST. */
+static void
+expand_setmem_epilogue_via_loop (rtx destmem, rtx destptr, rtx value,
+ rtx count, int max_size)
+{
+ count =
+ expand_simple_binop (counter_mode (count), AND, count,
+ GEN_INT (max_size - 1), count, 1, OPTAB_DIRECT);
+ expand_set_or_movmem_via_loop (destmem, NULL, destptr, NULL,
+ gen_lowpart (QImode, value), count, QImode,
+ 1, max_size / 2, true);
+}
+
+/* Output code to set at most count & (max_size - 1) bytes starting by DEST. */
+static void
+expand_setmem_epilogue (rtx destmem, rtx destptr, rtx value, rtx vec_value,
+ rtx count, int max_size)
+{
+ rtx dest;
+
+ if (CONST_INT_P (count))
+ {
+ HOST_WIDE_INT countval = INTVAL (count);
+ HOST_WIDE_INT epilogue_size = countval % max_size;
+ int i;
+
+ /* For now MAX_SIZE should be a power of 2. This assert could be
+ relaxed, but it'll require a bit more complicated epilogue
+ expanding. */
+ gcc_assert ((max_size & (max_size - 1)) == 0);
+ for (i = max_size; i >= 1; i >>= 1)
+ {
+ if (epilogue_size & i)
+ {
+ if (vec_value && i > GET_MODE_SIZE (GET_MODE (value)))
+ destmem = emit_memset (destmem, destptr, vec_value, i);
+ else
+ destmem = emit_memset (destmem, destptr, value, i);
+ }
+ }
+ return;
+ }
+ if (max_size > 32)
+ {
+ expand_setmem_epilogue_via_loop (destmem, destptr, value, count, max_size);
+ return;
+ }
+ if (max_size > 16)
+ {
+ rtx label = ix86_expand_aligntest (count, 16, true);
+ if (TARGET_64BIT)
+ {
+ dest = change_address (destmem, DImode, destptr);
+ emit_insn (gen_strset (destptr, dest, value));
+ dest = adjust_automodify_address_nv (dest, DImode, destptr, 8);
+ emit_insn (gen_strset (destptr, dest, value));
+ }
+ else
+ {
+ dest = change_address (destmem, SImode, destptr);
+ emit_insn (gen_strset (destptr, dest, value));
+ dest = adjust_automodify_address_nv (dest, SImode, destptr, 4);
+ emit_insn (gen_strset (destptr, dest, value));
+ dest = adjust_automodify_address_nv (dest, SImode, destptr, 8);
+ emit_insn (gen_strset (destptr, dest, value));
+ dest = adjust_automodify_address_nv (dest, SImode, destptr, 12);
+ emit_insn (gen_strset (destptr, dest, value));
+ }
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ if (max_size > 8)
+ {
+ rtx label = ix86_expand_aligntest (count, 8, true);
+ if (TARGET_64BIT)
+ {
+ dest = change_address (destmem, DImode, destptr);
+ emit_insn (gen_strset (destptr, dest, value));
+ }
+ else
+ {
+ dest = change_address (destmem, SImode, destptr);
+ emit_insn (gen_strset (destptr, dest, value));
+ dest = adjust_automodify_address_nv (dest, SImode, destptr, 4);
+ emit_insn (gen_strset (destptr, dest, value));
+ }
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ if (max_size > 4)
+ {
+ rtx label = ix86_expand_aligntest (count, 4, true);
+ dest = change_address (destmem, SImode, destptr);
+ emit_insn (gen_strset (destptr, dest, gen_lowpart (SImode, value)));
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ if (max_size > 2)
+ {
+ rtx label = ix86_expand_aligntest (count, 2, true);
+ dest = change_address (destmem, HImode, destptr);
+ emit_insn (gen_strset (destptr, dest, gen_lowpart (HImode, value)));
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+ if (max_size > 1)
+ {
+ rtx label = ix86_expand_aligntest (count, 1, true);
+ dest = change_address (destmem, QImode, destptr);
+ emit_insn (gen_strset (destptr, dest, gen_lowpart (QImode, value)));
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+}
+
+/* Depending on ISSETMEM, copy enough from SRCMEM to DESTMEM or set enough to
+ DESTMEM to align it to DESIRED_ALIGNMENT. Original alignment is ALIGN.
+ Depending on ISSETMEM, either arguments SRCMEM/SRCPTR or VALUE/VEC_VALUE are
+ ignored.
+ Return value is updated DESTMEM. */
+static rtx
+expand_set_or_movmem_prologue (rtx destmem, rtx srcmem,
+ rtx destptr, rtx srcptr, rtx value,
+ rtx vec_value, rtx count, int align,
+ int desired_alignment, bool issetmem)
+{
+ int i;
+ for (i = 1; i < desired_alignment; i <<= 1)
+ {
+ if (align <= i)
+ {
+ rtx label = ix86_expand_aligntest (destptr, i, false);
+ if (issetmem)
+ {
+ if (vec_value && i > GET_MODE_SIZE (GET_MODE (value)))
+ destmem = emit_memset (destmem, destptr, vec_value, i);
+ else
+ destmem = emit_memset (destmem, destptr, value, i);
+ }
+ else
+ destmem = emit_memmov (destmem, &srcmem, destptr, srcptr, i);
+ ix86_adjust_counter (count, i);
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ set_mem_align (destmem, i * 2 * BITS_PER_UNIT);
+ }
+ }
+ return destmem;
+}
+
+/* Test if COUNT&SIZE is nonzero and if so, expand movme
+ or setmem sequence that is valid for SIZE..2*SIZE-1 bytes
+ and jump to DONE_LABEL. */
+static void
+expand_small_movmem_or_setmem (rtx destmem, rtx srcmem,
+ rtx destptr, rtx srcptr,
+ rtx value, rtx vec_value,
+ rtx count, int size,
+ rtx done_label, bool issetmem)
+{
+ rtx label = ix86_expand_aligntest (count, size, false);
+ enum machine_mode mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 1);
+ rtx modesize;
+ int n;
+
+ /* If we do not have vector value to copy, we must reduce size. */
+ if (issetmem)
+ {
+ if (!vec_value)
+ {
+ if (GET_MODE (value) == VOIDmode && size > 8)
+ mode = Pmode;
+ else if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (value)))
+ mode = GET_MODE (value);
+ }
+ else
+ mode = GET_MODE (vec_value), value = vec_value;
+ }
+ else
+ {
+ /* Choose appropriate vector mode. */
+ if (size >= 32)
+ mode = TARGET_AVX ? V32QImode : TARGET_SSE ? V16QImode : DImode;
+ else if (size >= 16)
+ mode = TARGET_SSE ? V16QImode : DImode;
+ srcmem = change_address (srcmem, mode, srcptr);
+ }
+ destmem = change_address (destmem, mode, destptr);
+ modesize = GEN_INT (GET_MODE_SIZE (mode));
+ gcc_assert (GET_MODE_SIZE (mode) <= size);
+ for (n = 0; n * GET_MODE_SIZE (mode) < size; n++)
+ {
+ if (issetmem)
+ emit_move_insn (destmem, gen_lowpart (mode, value));
+ else
+ {
+ emit_move_insn (destmem, srcmem);
+ srcmem = offset_address (srcmem, modesize, GET_MODE_SIZE (mode));
+ }
+ destmem = offset_address (destmem, modesize, GET_MODE_SIZE (mode));
+ }
+
+ destmem = offset_address (destmem, count, 1);
+ destmem = offset_address (destmem, GEN_INT (-2 * size),
+ GET_MODE_SIZE (mode));
+ if (!issetmem)
+ {
+ srcmem = offset_address (srcmem, count, 1);
+ srcmem = offset_address (srcmem, GEN_INT (-2 * size),
+ GET_MODE_SIZE (mode));
+ }
+ for (n = 0; n * GET_MODE_SIZE (mode) < size; n++)
+ {
+ if (issetmem)
+ emit_move_insn (destmem, gen_lowpart (mode, value));
+ else
+ {
+ emit_move_insn (destmem, srcmem);
+ srcmem = offset_address (srcmem, modesize, GET_MODE_SIZE (mode));
+ }
+ destmem = offset_address (destmem, modesize, GET_MODE_SIZE (mode));
+ }
+ emit_jump_insn (gen_jump (done_label));
+ emit_barrier ();
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+}
+
+/* Handle small memcpy (up to SIZE that is supposed to be small power of 2.
+ and get ready for the main memcpy loop by copying iniital DESIRED_ALIGN-ALIGN
+ bytes and last SIZE bytes adjusitng DESTPTR/SRCPTR/COUNT in a way we can
+ proceed with an loop copying SIZE bytes at once. Do moves in MODE.
+ DONE_LABEL is a label after the whole copying sequence. The label is created
+ on demand if *DONE_LABEL is NULL.
+ MIN_SIZE is minimal size of block copied. This value gets adjusted for new
+ bounds after the initial copies.
+
+ DESTMEM/SRCMEM are memory expressions pointing to the copies block,
+ DESTPTR/SRCPTR are pointers to the block. DYNAMIC_CHECK indicate whether
+ we will dispatch to a library call for large blocks.
+
+ In pseudocode we do:
+
+ if (COUNT < SIZE)
+ {
+ Assume that SIZE is 4. Bigger sizes are handled analogously
+ if (COUNT & 4)
+ {
+ copy 4 bytes from SRCPTR to DESTPTR
+ copy 4 bytes from SRCPTR + COUNT - 4 to DESTPTR + COUNT - 4
+ goto done_label
+ }
+ if (!COUNT)
+ goto done_label;
+ copy 1 byte from SRCPTR to DESTPTR
+ if (COUNT & 2)
+ {
+ copy 2 bytes from SRCPTR to DESTPTR
+ copy 2 bytes from SRCPTR + COUNT - 2 to DESTPTR + COUNT - 2
+ }
+ }
+ else
+ {
+ copy at least DESIRED_ALIGN-ALIGN bytes from SRCPTR to DESTPTR
+ copy SIZE bytes from SRCPTR + COUNT - SIZE to DESTPTR + COUNT -SIZE
+
+ OLD_DESPTR = DESTPTR;
+ Align DESTPTR up to DESIRED_ALIGN
+ SRCPTR += DESTPTR - OLD_DESTPTR
+ COUNT -= DEST_PTR - OLD_DESTPTR
+ if (DYNAMIC_CHECK)
+ Round COUNT down to multiple of SIZE
+ << optional caller supplied zero size guard is here >>
+ << optional caller suppplied dynamic check is here >>
+ << caller supplied main copy loop is here >>
+ }
+ done_label:
+ */
+static void
+expand_set_or_movmem_prologue_epilogue_by_misaligned_moves (rtx destmem, rtx srcmem,
+ rtx *destptr, rtx *srcptr,
+ enum machine_mode mode,
+ rtx value, rtx vec_value,
+ rtx *count,
+ rtx *done_label,
+ int size,
+ int desired_align,
+ int align,
+ unsigned HOST_WIDE_INT *min_size,
+ bool dynamic_check,
+ bool issetmem)
+{
+ rtx loop_label = NULL, label;
+ int n;
+ rtx modesize;
+ int prolog_size = 0;
+ rtx mode_value;
+
+ /* Chose proper value to copy. */
+ if (issetmem && VECTOR_MODE_P (mode))
+ mode_value = vec_value;
+ else
+ mode_value = value;
+ gcc_assert (GET_MODE_SIZE (mode) <= size);
+
+ /* See if block is big or small, handle small blocks. */
+ if (!CONST_INT_P (*count) && *min_size < (unsigned HOST_WIDE_INT)size)
+ {
+ int size2 = size;
+ loop_label = gen_label_rtx ();
+
+ if (!*done_label)
+ *done_label = gen_label_rtx ();
+
+ emit_cmp_and_jump_insns (*count, GEN_INT (size2), GE, 0, GET_MODE (*count),
+ 1, loop_label);
+ size2 >>= 1;
+
+ /* Handle sizes > 3. */
+ for (;size2 > 2; size2 >>= 1)
+ expand_small_movmem_or_setmem (destmem, srcmem,
+ *destptr, *srcptr,
+ value, vec_value,
+ *count,
+ size2, *done_label, issetmem);
+ /* Nothing to copy? Jump to DONE_LABEL if so */
+ emit_cmp_and_jump_insns (*count, const0_rtx, EQ, 0, GET_MODE (*count),
+ 1, *done_label);
+
+ /* Do a byte copy. */
+ destmem = change_address (destmem, QImode, *destptr);
+ if (issetmem)
+ emit_move_insn (destmem, gen_lowpart (QImode, value));
+ else
+ {
+ srcmem = change_address (srcmem, QImode, *srcptr);
+ emit_move_insn (destmem, srcmem);
+ }
+
+ /* Handle sizes 2 and 3. */
+ label = ix86_expand_aligntest (*count, 2, false);
+ destmem = change_address (destmem, HImode, *destptr);
+ destmem = offset_address (destmem, *count, 1);
+ destmem = offset_address (destmem, GEN_INT (-2), 2);
+ if (issetmem)
+ emit_move_insn (destmem, gen_lowpart (HImode, value));
+ else
+ {
+ srcmem = change_address (srcmem, HImode, *srcptr);
+ srcmem = offset_address (srcmem, *count, 1);
+ srcmem = offset_address (srcmem, GEN_INT (-2), 2);
+ emit_move_insn (destmem, srcmem);
+ }
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ emit_jump_insn (gen_jump (*done_label));
+ emit_barrier ();
+ }
+ else
+ gcc_assert (*min_size >= (unsigned HOST_WIDE_INT)size
+ || UINTVAL (*count) >= (unsigned HOST_WIDE_INT)size);
+
+ /* Start memcpy for COUNT >= SIZE. */
+ if (loop_label)
+ {
+ emit_label (loop_label);
+ LABEL_NUSES (loop_label) = 1;
+ }
+
+ /* Copy first desired_align bytes. */
+ if (!issetmem)
+ srcmem = change_address (srcmem, mode, *srcptr);
+ destmem = change_address (destmem, mode, *destptr);
+ modesize = GEN_INT (GET_MODE_SIZE (mode));
+ for (n = 0; prolog_size < desired_align - align; n++)
+ {
+ if (issetmem)
+ emit_move_insn (destmem, mode_value);
+ else
+ {
+ emit_move_insn (destmem, srcmem);
+ srcmem = offset_address (srcmem, modesize, GET_MODE_SIZE (mode));
+ }
+ destmem = offset_address (destmem, modesize, GET_MODE_SIZE (mode));
+ prolog_size += GET_MODE_SIZE (mode);
+ }
+
+
+ /* Copy last SIZE bytes. */
+ destmem = offset_address (destmem, *count, 1);
+ destmem = offset_address (destmem,
+ GEN_INT (-size - prolog_size),
+ 1);
+ if (issetmem)
+ emit_move_insn (destmem, mode_value);
+ else
+ {
+ srcmem = offset_address (srcmem, *count, 1);
+ srcmem = offset_address (srcmem,
+ GEN_INT (-size - prolog_size),
+ 1);
+ emit_move_insn (destmem, srcmem);
+ }
+ for (n = 1; n * GET_MODE_SIZE (mode) < size; n++)
+ {
+ destmem = offset_address (destmem, modesize, 1);
+ if (issetmem)
+ emit_move_insn (destmem, mode_value);
+ else
+ {
+ srcmem = offset_address (srcmem, modesize, 1);
+ emit_move_insn (destmem, srcmem);
+ }
+ }
+
+ /* Align destination. */
+ if (desired_align > 1 && desired_align > align)
+ {
+ rtx saveddest = *destptr;
+
+ gcc_assert (desired_align <= size);
+ /* Align destptr up, place it to new register. */
+ *destptr = expand_simple_binop (GET_MODE (*destptr), PLUS, *destptr,
+ GEN_INT (prolog_size),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ *destptr = expand_simple_binop (GET_MODE (*destptr), AND, *destptr,
+ GEN_INT (-desired_align),
+ *destptr, 1, OPTAB_DIRECT);
+ /* See how many bytes we skipped. */
+ saveddest = expand_simple_binop (GET_MODE (*destptr), MINUS, saveddest,
+ *destptr,
+ saveddest, 1, OPTAB_DIRECT);
+ /* Adjust srcptr and count. */
+ if (!issetmem)
+ *srcptr = expand_simple_binop (GET_MODE (*srcptr), MINUS, *srcptr, saveddest,
+ *srcptr, 1, OPTAB_DIRECT);
+ *count = expand_simple_binop (GET_MODE (*count), PLUS, *count,
+ saveddest, *count, 1, OPTAB_DIRECT);
+ /* We copied at most size + prolog_size. */
+ if (*min_size > (unsigned HOST_WIDE_INT)(size + prolog_size))
+ *min_size = (*min_size - size) & ~(unsigned HOST_WIDE_INT)(size - 1);
+ else
+ *min_size = 0;
+
+ /* Our loops always round down the bock size, but for dispatch to library
+ we need precise value. */
+ if (dynamic_check)
+ *count = expand_simple_binop (GET_MODE (*count), AND, *count,
+ GEN_INT (-size), *count, 1, OPTAB_DIRECT);
+ }
+ else
+ {
+ gcc_assert (prolog_size == 0);
+ /* Decrease count, so we won't end up copying last word twice. */
+ if (!CONST_INT_P (*count))
+ *count = expand_simple_binop (GET_MODE (*count), PLUS, *count,
+ constm1_rtx, *count, 1, OPTAB_DIRECT);
+ else
+ *count = GEN_INT ((UINTVAL (*count) - 1) & ~(unsigned HOST_WIDE_INT)(size - 1));
+ if (*min_size)
+ *min_size = (*min_size - 1) & ~(unsigned HOST_WIDE_INT)(size - 1);
+ }
+}
+
+
+/* This function is like the previous one, except here we know how many bytes
+ need to be copied. That allows us to update alignment not only of DST, which
+ is returned, but also of SRC, which is passed as a pointer for that
+ reason. */
+static rtx
+expand_set_or_movmem_constant_prologue (rtx dst, rtx *srcp, rtx destreg,
+ rtx srcreg, rtx value, rtx vec_value,
+ int desired_align, int align_bytes,
+ bool issetmem)
+{
+ rtx src = NULL;
+ rtx orig_dst = dst;
+ rtx orig_src = NULL;
+ int piece_size = 1;
+ int copied_bytes = 0;
+
+ if (!issetmem)
+ {
+ gcc_assert (srcp != NULL);
+ src = *srcp;
+ orig_src = src;
+ }
+
+ for (piece_size = 1;
+ piece_size <= desired_align && copied_bytes < align_bytes;
+ piece_size <<= 1)
+ {
+ if (align_bytes & piece_size)
+ {
+ if (issetmem)
+ {
+ if (vec_value && piece_size > GET_MODE_SIZE (GET_MODE (value)))
+ dst = emit_memset (dst, destreg, vec_value, piece_size);
+ else
+ dst = emit_memset (dst, destreg, value, piece_size);
+ }
+ else
+ dst = emit_memmov (dst, &src, destreg, srcreg, piece_size);
+ copied_bytes += piece_size;
+ }
+ }
+ if (MEM_ALIGN (dst) < (unsigned int) desired_align * BITS_PER_UNIT)
+ set_mem_align (dst, desired_align * BITS_PER_UNIT);
+ if (MEM_SIZE_KNOWN_P (orig_dst))
+ set_mem_size (dst, MEM_SIZE (orig_dst) - align_bytes);
+
+ if (!issetmem)
+ {
+ int src_align_bytes = get_mem_align_offset (src, desired_align
+ * BITS_PER_UNIT);
+ if (src_align_bytes >= 0)
+ src_align_bytes = desired_align - src_align_bytes;
+ if (src_align_bytes >= 0)
+ {
+ unsigned int src_align;
+ for (src_align = desired_align; src_align >= 2; src_align >>= 1)
+ {
+ if ((src_align_bytes & (src_align - 1))
+ == (align_bytes & (src_align - 1)))
+ break;
+ }
+ if (src_align > (unsigned int) desired_align)
+ src_align = desired_align;
+ if (MEM_ALIGN (src) < src_align * BITS_PER_UNIT)
+ set_mem_align (src, src_align * BITS_PER_UNIT);
+ }
+ if (MEM_SIZE_KNOWN_P (orig_src))
+ set_mem_size (src, MEM_SIZE (orig_src) - align_bytes);
+ *srcp = src;
+ }
+
+ return dst;
+}
+
+/* Return true if ALG can be used in current context.
+ Assume we expand memset if MEMSET is true. */
+static bool
+alg_usable_p (enum stringop_alg alg, bool memset)
+{
+ if (alg == no_stringop)
+ return false;
+ if (alg == vector_loop)
+ return TARGET_SSE || TARGET_AVX;
+ /* Algorithms using the rep prefix want at least edi and ecx;
+ additionally, memset wants eax and memcpy wants esi. Don't
+ consider such algorithms if the user has appropriated those
+ registers for their own purposes. */
+ if (alg == rep_prefix_1_byte
+ || alg == rep_prefix_4_byte
+ || alg == rep_prefix_8_byte)
+ return !(fixed_regs[CX_REG] || fixed_regs[DI_REG]
+ || (memset ? fixed_regs[AX_REG] : fixed_regs[SI_REG]));
+ return true;
+}
+
+/* Given COUNT and EXPECTED_SIZE, decide on codegen of string operation. */
+static enum stringop_alg
+decide_alg (HOST_WIDE_INT count, HOST_WIDE_INT expected_size,
+ unsigned HOST_WIDE_INT min_size, unsigned HOST_WIDE_INT max_size,
+ bool memset, bool zero_memset, int *dynamic_check, bool *noalign)
+{
+ const struct stringop_algs * algs;
+ bool optimize_for_speed;
+ int max = -1;
+ const struct processor_costs *cost;
+ int i;
+ bool any_alg_usable_p = false;
+
+ *noalign = false;
+ *dynamic_check = -1;
+
+ /* Even if the string operation call is cold, we still might spend a lot
+ of time processing large blocks. */
+ if (optimize_function_for_size_p (cfun)
+ || (optimize_insn_for_size_p ()
+ && (max_size < 256
+ || (expected_size != -1 && expected_size < 256))))
+ optimize_for_speed = false;
+ else
+ optimize_for_speed = true;
+
+ cost = optimize_for_speed ? ix86_cost : &ix86_size_cost;
+ if (memset)
+ algs = &cost->memset[TARGET_64BIT != 0];
+ else
+ algs = &cost->memcpy[TARGET_64BIT != 0];
+
+ /* See maximal size for user defined algorithm. */
+ for (i = 0; i < MAX_STRINGOP_ALGS; i++)
+ {
+ enum stringop_alg candidate = algs->size[i].alg;
+ bool usable = alg_usable_p (candidate, memset);
+ any_alg_usable_p |= usable;
+
+ if (candidate != libcall && candidate && usable)
+ max = algs->size[i].max;
+ }
+
+ /* If expected size is not known but max size is small enough
+ so inline version is a win, set expected size into
+ the range. */
+ if (max > 1 && (unsigned HOST_WIDE_INT) max >= max_size
+ && expected_size == -1)
+ expected_size = min_size / 2 + max_size / 2;
+
+ /* If user specified the algorithm, honnor it if possible. */
+ if (ix86_stringop_alg != no_stringop
+ && alg_usable_p (ix86_stringop_alg, memset))
+ return ix86_stringop_alg;
+ /* rep; movq or rep; movl is the smallest variant. */
+ else if (!optimize_for_speed)
+ {
+ *noalign = true;
+ if (!count || (count & 3) || (memset && !zero_memset))
+ return alg_usable_p (rep_prefix_1_byte, memset)
+ ? rep_prefix_1_byte : loop_1_byte;
+ else
+ return alg_usable_p (rep_prefix_4_byte, memset)
+ ? rep_prefix_4_byte : loop;
+ }
+ /* Very tiny blocks are best handled via the loop, REP is expensive to
+ setup. */
+ else if (expected_size != -1 && expected_size < 4)
+ return loop_1_byte;
+ else if (expected_size != -1)
+ {
+ enum stringop_alg alg = libcall;
+ bool alg_noalign = false;
+ for (i = 0; i < MAX_STRINGOP_ALGS; i++)
+ {
+ /* We get here if the algorithms that were not libcall-based
+ were rep-prefix based and we are unable to use rep prefixes
+ based on global register usage. Break out of the loop and
+ use the heuristic below. */
+ if (algs->size[i].max == 0)
+ break;
+ if (algs->size[i].max >= expected_size || algs->size[i].max == -1)
+ {
+ enum stringop_alg candidate = algs->size[i].alg;
+
+ if (candidate != libcall && alg_usable_p (candidate, memset))
+ {
+ alg = candidate;
+ alg_noalign = algs->size[i].noalign;
+ }
+ /* Honor TARGET_INLINE_ALL_STRINGOPS by picking
+ last non-libcall inline algorithm. */
+ if (TARGET_INLINE_ALL_STRINGOPS)
+ {
+ /* When the current size is best to be copied by a libcall,
+ but we are still forced to inline, run the heuristic below
+ that will pick code for medium sized blocks. */
+ if (alg != libcall)
+ {
+ *noalign = alg_noalign;
+ return alg;
+ }
+ break;
+ }
+ else if (alg_usable_p (candidate, memset))
+ {
+ *noalign = algs->size[i].noalign;
+ return candidate;
+ }
+ }
+ }
+ }
+ /* When asked to inline the call anyway, try to pick meaningful choice.
+ We look for maximal size of block that is faster to copy by hand and
+ take blocks of at most of that size guessing that average size will
+ be roughly half of the block.
+
+ If this turns out to be bad, we might simply specify the preferred
+ choice in ix86_costs. */
+ if ((TARGET_INLINE_ALL_STRINGOPS || TARGET_INLINE_STRINGOPS_DYNAMICALLY)
+ && (algs->unknown_size == libcall
+ || !alg_usable_p (algs->unknown_size, memset)))
+ {
+ enum stringop_alg alg;
+
+ /* If there aren't any usable algorithms, then recursing on
+ smaller sizes isn't going to find anything. Just return the
+ simple byte-at-a-time copy loop. */
+ if (!any_alg_usable_p)
+ {
+ /* Pick something reasonable. */
+ if (TARGET_INLINE_STRINGOPS_DYNAMICALLY)
+ *dynamic_check = 128;
+ return loop_1_byte;
+ }
+ if (max == -1)
+ max = 4096;
+ alg = decide_alg (count, max / 2, min_size, max_size, memset,
+ zero_memset, dynamic_check, noalign);
+ gcc_assert (*dynamic_check == -1);
+ gcc_assert (alg != libcall);
+ if (TARGET_INLINE_STRINGOPS_DYNAMICALLY)
+ *dynamic_check = max;
+ return alg;
+ }
+ return (alg_usable_p (algs->unknown_size, memset)
+ ? algs->unknown_size : libcall);
+}
+
+/* Decide on alignment. We know that the operand is already aligned to ALIGN
+ (ALIGN can be based on profile feedback and thus it is not 100% guaranteed). */
+static int
+decide_alignment (int align,
+ enum stringop_alg alg,
+ int expected_size,
+ enum machine_mode move_mode)
+{
+ int desired_align = 0;
+
+ gcc_assert (alg != no_stringop);
+
+ if (alg == libcall)
+ return 0;
+ if (move_mode == VOIDmode)
+ return 0;
+
+ desired_align = GET_MODE_SIZE (move_mode);
+ /* PentiumPro has special logic triggering for 8 byte aligned blocks.
+ copying whole cacheline at once. */
+ if (TARGET_PENTIUMPRO
+ && (alg == rep_prefix_4_byte || alg == rep_prefix_1_byte))
+ desired_align = 8;
+
+ if (optimize_size)
+ desired_align = 1;
+ if (desired_align < align)
+ desired_align = align;
+ if (expected_size != -1 && expected_size < 4)
+ desired_align = align;
+
+ return desired_align;
+}
+
+
+/* Helper function for memcpy. For QImode value 0xXY produce
+ 0xXYXYXYXY of wide specified by MODE. This is essentially
+ a * 0x10101010, but we can do slightly better than
+ synth_mult by unwinding the sequence by hand on CPUs with
+ slow multiply. */
+static rtx
+promote_duplicated_reg (enum machine_mode mode, rtx val)
+{
+ enum machine_mode valmode = GET_MODE (val);
+ rtx tmp;
+ int nops = mode == DImode ? 3 : 2;
+
+ gcc_assert (mode == SImode || mode == DImode || val == const0_rtx);
+ if (val == const0_rtx)
+ return copy_to_mode_reg (mode, CONST0_RTX (mode));
+ if (CONST_INT_P (val))
+ {
+ HOST_WIDE_INT v = INTVAL (val) & 255;
+
+ v |= v << 8;
+ v |= v << 16;
+ if (mode == DImode)
+ v |= (v << 16) << 16;
+ return copy_to_mode_reg (mode, gen_int_mode (v, mode));
+ }
+
+ if (valmode == VOIDmode)
+ valmode = QImode;
+ if (valmode != QImode)
+ val = gen_lowpart (QImode, val);
+ if (mode == QImode)
+ return val;
+ if (!TARGET_PARTIAL_REG_STALL)
+ nops--;
+ if (ix86_cost->mult_init[mode == DImode ? 3 : 2]
+ + ix86_cost->mult_bit * (mode == DImode ? 8 : 4)
+ <= (ix86_cost->shift_const + ix86_cost->add) * nops
+ + (COSTS_N_INSNS (TARGET_PARTIAL_REG_STALL == 0)))
+ {
+ rtx reg = convert_modes (mode, QImode, val, true);
+ tmp = promote_duplicated_reg (mode, const1_rtx);
+ return expand_simple_binop (mode, MULT, reg, tmp, NULL, 1,
+ OPTAB_DIRECT);
+ }
+ else
+ {
+ rtx reg = convert_modes (mode, QImode, val, true);
+
+ if (!TARGET_PARTIAL_REG_STALL)
+ if (mode == SImode)
+ emit_insn (gen_movsi_insv_1 (reg, reg));
+ else
+ emit_insn (gen_movdi_insv_1 (reg, reg));
+ else
+ {
+ tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (8),
+ NULL, 1, OPTAB_DIRECT);
+ reg =
+ expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT);
+ }
+ tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (16),
+ NULL, 1, OPTAB_DIRECT);
+ reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT);
+ if (mode == SImode)
+ return reg;
+ tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (32),
+ NULL, 1, OPTAB_DIRECT);
+ reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT);
+ return reg;
+ }
+}
+
+/* Duplicate value VAL using promote_duplicated_reg into maximal size that will
+ be needed by main loop copying SIZE_NEEDED chunks and prologue getting
+ alignment from ALIGN to DESIRED_ALIGN. */
+static rtx
+promote_duplicated_reg_to_size (rtx val, int size_needed, int desired_align,
+ int align)
+{
+ rtx promoted_val;
+
+ if (TARGET_64BIT
+ && (size_needed > 4 || (desired_align > align && desired_align > 4)))
+ promoted_val = promote_duplicated_reg (DImode, val);
+ else if (size_needed > 2 || (desired_align > align && desired_align > 2))
+ promoted_val = promote_duplicated_reg (SImode, val);
+ else if (size_needed > 1 || (desired_align > align && desired_align > 1))
+ promoted_val = promote_duplicated_reg (HImode, val);
+ else
+ promoted_val = val;
+
+ return promoted_val;
+}
+
+/* Expand string move (memcpy) ot store (memset) operation. Use i386 string
+ operations when profitable. The code depends upon architecture, block size
+ and alignment, but always has one of the following overall structures:
+
+ Aligned move sequence:
+
+ 1) Prologue guard: Conditional that jumps up to epilogues for small
+ blocks that can be handled by epilogue alone. This is faster
+ but also needed for correctness, since prologue assume the block
+ is larger than the desired alignment.
+
+ Optional dynamic check for size and libcall for large
+ blocks is emitted here too, with -minline-stringops-dynamically.
+
+ 2) Prologue: copy first few bytes in order to get destination
+ aligned to DESIRED_ALIGN. It is emitted only when ALIGN is less
+ than DESIRED_ALIGN and up to DESIRED_ALIGN - ALIGN bytes can be
+ copied. We emit either a jump tree on power of two sized
+ blocks, or a byte loop.
+
+ 3) Main body: the copying loop itself, copying in SIZE_NEEDED chunks
+ with specified algorithm.
+
+ 4) Epilogue: code copying tail of the block that is too small to be
+ handled by main body (or up to size guarded by prologue guard).
+
+ Misaligned move sequence
+
+ 1) missaligned move prologue/epilogue containing:
+ a) Prologue handling small memory blocks and jumping to done_label
+ (skipped if blocks are known to be large enough)
+ b) Signle move copying first DESIRED_ALIGN-ALIGN bytes if alignment is
+ needed by single possibly misaligned move
+ (skipped if alignment is not needed)
+ c) Copy of last SIZE_NEEDED bytes by possibly misaligned moves
+
+ 2) Zero size guard dispatching to done_label, if needed
+
+ 3) dispatch to library call, if needed,
+
+ 3) Main body: the copying loop itself, copying in SIZE_NEEDED chunks
+ with specified algorithm. */
+bool
+ix86_expand_set_or_movmem (rtx dst, rtx src, rtx count_exp, rtx val_exp,
+ rtx align_exp, rtx expected_align_exp,
+ rtx expected_size_exp, rtx min_size_exp,
+ rtx max_size_exp, rtx probable_max_size_exp,
+ bool issetmem)
+{
+ rtx destreg;
+ rtx srcreg = NULL;
+ rtx label = NULL;
+ rtx tmp;
+ rtx jump_around_label = NULL;
+ HOST_WIDE_INT align = 1;
+ unsigned HOST_WIDE_INT count = 0;
+ HOST_WIDE_INT expected_size = -1;
+ int size_needed = 0, epilogue_size_needed;
+ int desired_align = 0, align_bytes = 0;
+ enum stringop_alg alg;
+ rtx promoted_val = NULL;
+ rtx vec_promoted_val = NULL;
+ bool force_loopy_epilogue = false;
+ int dynamic_check;
+ bool need_zero_guard = false;
+ bool noalign;
+ enum machine_mode move_mode = VOIDmode;
+ int unroll_factor = 1;
+ /* TODO: Once value ranges are available, fill in proper data. */
+ unsigned HOST_WIDE_INT min_size = 0;
+ unsigned HOST_WIDE_INT max_size = -1;
+ unsigned HOST_WIDE_INT probable_max_size = -1;
+ bool misaligned_prologue_used = false;
+
+ if (CONST_INT_P (align_exp))
+ align = INTVAL (align_exp);
+ /* i386 can do misaligned access on reasonably increased cost. */
+ if (CONST_INT_P (expected_align_exp)
+ && INTVAL (expected_align_exp) > align)
+ align = INTVAL (expected_align_exp);
+ /* ALIGN is the minimum of destination and source alignment, but we care here
+ just about destination alignment. */
+ else if (!issetmem
+ && MEM_ALIGN (dst) > (unsigned HOST_WIDE_INT) align * BITS_PER_UNIT)
+ align = MEM_ALIGN (dst) / BITS_PER_UNIT;
+
+ if (CONST_INT_P (count_exp))
+ min_size = max_size = probable_max_size = count = expected_size
+ = INTVAL (count_exp);
+ else
+ {
+ if (min_size_exp)
+ min_size = INTVAL (min_size_exp);
+ if (max_size_exp)
+ max_size = INTVAL (max_size_exp);
+ if (probable_max_size_exp)
+ probable_max_size = INTVAL (probable_max_size_exp);
+ if (CONST_INT_P (expected_size_exp) && count == 0)
+ expected_size = INTVAL (expected_size_exp);
+ }
+
+ /* Make sure we don't need to care about overflow later on. */
+ if (count > ((unsigned HOST_WIDE_INT) 1 << 30))
+ return false;
+
+ /* Step 0: Decide on preferred algorithm, desired alignment and
+ size of chunks to be copied by main loop. */
+ alg = decide_alg (count, expected_size, min_size, probable_max_size,
+ issetmem,
+ issetmem && val_exp == const0_rtx,
+ &dynamic_check, &noalign);
+ if (alg == libcall)
+ return false;
+ gcc_assert (alg != no_stringop);
+
+ /* For now vector-version of memset is generated only for memory zeroing, as
+ creating of promoted vector value is very cheap in this case. */
+ if (issetmem && alg == vector_loop && val_exp != const0_rtx)
+ alg = unrolled_loop;
+
+ if (!count)
+ count_exp = copy_to_mode_reg (GET_MODE (count_exp), count_exp);
+ destreg = ix86_copy_addr_to_reg (XEXP (dst, 0));
+ if (!issetmem)
+ srcreg = ix86_copy_addr_to_reg (XEXP (src, 0));
+
+ unroll_factor = 1;
+ move_mode = word_mode;
+ switch (alg)
+ {
+ case libcall:
+ case no_stringop:
+ case last_alg:
+ gcc_unreachable ();
+ case loop_1_byte:
+ need_zero_guard = true;
+ move_mode = QImode;
+ break;
+ case loop:
+ need_zero_guard = true;
+ break;
+ case unrolled_loop:
+ need_zero_guard = true;
+ unroll_factor = (TARGET_64BIT ? 4 : 2);
+ break;
+ case vector_loop:
+ need_zero_guard = true;
+ unroll_factor = 4;
+ /* Find the widest supported mode. */
+ move_mode = word_mode;
+ while (optab_handler (mov_optab, GET_MODE_WIDER_MODE (move_mode))
+ != CODE_FOR_nothing)
+ move_mode = GET_MODE_WIDER_MODE (move_mode);
+
+ /* Find the corresponding vector mode with the same size as MOVE_MODE.
+ MOVE_MODE is an integer mode at the moment (SI, DI, TI, etc.). */
+ if (GET_MODE_SIZE (move_mode) > GET_MODE_SIZE (word_mode))
+ {
+ int nunits = GET_MODE_SIZE (move_mode) / GET_MODE_SIZE (word_mode);
+ move_mode = mode_for_vector (word_mode, nunits);
+ if (optab_handler (mov_optab, move_mode) == CODE_FOR_nothing)
+ move_mode = word_mode;
+ }
+ gcc_assert (optab_handler (mov_optab, move_mode) != CODE_FOR_nothing);
+ break;
+ case rep_prefix_8_byte:
+ move_mode = DImode;
+ break;
+ case rep_prefix_4_byte:
+ move_mode = SImode;
+ break;
+ case rep_prefix_1_byte:
+ move_mode = QImode;
+ break;
+ }
+ size_needed = GET_MODE_SIZE (move_mode) * unroll_factor;
+ epilogue_size_needed = size_needed;
+
+ desired_align = decide_alignment (align, alg, expected_size, move_mode);
+ if (!TARGET_ALIGN_STRINGOPS || noalign)
+ align = desired_align;
+
+ /* Step 1: Prologue guard. */
+
+ /* Alignment code needs count to be in register. */
+ if (CONST_INT_P (count_exp) && desired_align > align)
+ {
+ if (INTVAL (count_exp) > desired_align
+ && INTVAL (count_exp) > size_needed)
+ {
+ align_bytes
+ = get_mem_align_offset (dst, desired_align * BITS_PER_UNIT);
+ if (align_bytes <= 0)
+ align_bytes = 0;
+ else
+ align_bytes = desired_align - align_bytes;
+ }
+ if (align_bytes == 0)
+ count_exp = force_reg (counter_mode (count_exp), count_exp);
+ }
+ gcc_assert (desired_align >= 1 && align >= 1);
+
+ /* Misaligned move sequences handle both prologue and epilogue at once.
+ Default code generation results in a smaller code for large alignments
+ and also avoids redundant job when sizes are known precisely. */
+ misaligned_prologue_used
+ = (TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES
+ && MAX (desired_align, epilogue_size_needed) <= 32
+ && desired_align <= epilogue_size_needed
+ && ((desired_align > align && !align_bytes)
+ || (!count && epilogue_size_needed > 1)));
+
+ /* Do the cheap promotion to allow better CSE across the
+ main loop and epilogue (ie one load of the big constant in the
+ front of all code.
+ For now the misaligned move sequences do not have fast path
+ without broadcasting. */
+ if (issetmem && ((CONST_INT_P (val_exp) || misaligned_prologue_used)))
+ {
+ if (alg == vector_loop)
+ {
+ gcc_assert (val_exp == const0_rtx);
+ vec_promoted_val = promote_duplicated_reg (move_mode, val_exp);
+ promoted_val = promote_duplicated_reg_to_size (val_exp,
+ GET_MODE_SIZE (word_mode),
+ desired_align, align);
+ }
+ else
+ {
+ promoted_val = promote_duplicated_reg_to_size (val_exp, size_needed,
+ desired_align, align);
+ }
+ }
+ /* Misaligned move sequences handles both prologues and epilogues at once.
+ Default code generation results in smaller code for large alignments and
+ also avoids redundant job when sizes are known precisely. */
+ if (misaligned_prologue_used)
+ {
+ /* Misaligned move prologue handled small blocks by itself. */
+ expand_set_or_movmem_prologue_epilogue_by_misaligned_moves
+ (dst, src, &destreg, &srcreg,
+ move_mode, promoted_val, vec_promoted_val,
+ &count_exp,
+ &jump_around_label,
+ desired_align < align
+ ? MAX (desired_align, epilogue_size_needed) : epilogue_size_needed,
+ desired_align, align, &min_size, dynamic_check, issetmem);
+ if (!issetmem)
+ src = change_address (src, BLKmode, srcreg);
+ dst = change_address (dst, BLKmode, destreg);
+ set_mem_align (dst, desired_align * BITS_PER_UNIT);
+ epilogue_size_needed = 0;
+ if (need_zero_guard && !min_size)
+ {
+ /* It is possible that we copied enough so the main loop will not
+ execute. */
+ gcc_assert (size_needed > 1);
+ if (jump_around_label == NULL_RTX)
+ jump_around_label = gen_label_rtx ();
+ emit_cmp_and_jump_insns (count_exp,
+ GEN_INT (size_needed),
+ LTU, 0, counter_mode (count_exp), 1, jump_around_label);
+ if (expected_size == -1
+ || expected_size < (desired_align - align) / 2 + size_needed)
+ predict_jump (REG_BR_PROB_BASE * 20 / 100);
+ else
+ predict_jump (REG_BR_PROB_BASE * 60 / 100);
+ }
+ }
+ /* Ensure that alignment prologue won't copy past end of block. */
+ else if (size_needed > 1 || (desired_align > 1 && desired_align > align))
+ {
+ epilogue_size_needed = MAX (size_needed - 1, desired_align - align);
+ /* Epilogue always copies COUNT_EXP & EPILOGUE_SIZE_NEEDED bytes.
+ Make sure it is power of 2. */
+ epilogue_size_needed = 1 << (floor_log2 (epilogue_size_needed) + 1);
+
+ /* To improve performance of small blocks, we jump around the VAL
+ promoting mode. This mean that if the promoted VAL is not constant,
+ we might not use it in the epilogue and have to use byte
+ loop variant. */
+ if (issetmem && epilogue_size_needed > 2 && !promoted_val)
+ force_loopy_epilogue = true;
+ if ((count && count < (unsigned HOST_WIDE_INT) epilogue_size_needed)
+ || max_size < (unsigned HOST_WIDE_INT) epilogue_size_needed)
+ {
+ /* If main algorithm works on QImode, no epilogue is needed.
+ For small sizes just don't align anything. */
+ if (size_needed == 1)
+ desired_align = align;
+ else
+ goto epilogue;
+ }
+ else if (!count
+ && min_size < (unsigned HOST_WIDE_INT) epilogue_size_needed)
+ {
+ label = gen_label_rtx ();
+ emit_cmp_and_jump_insns (count_exp,
+ GEN_INT (epilogue_size_needed),
+ LTU, 0, counter_mode (count_exp), 1, label);
+ if (expected_size == -1 || expected_size < epilogue_size_needed)
+ predict_jump (REG_BR_PROB_BASE * 60 / 100);
+ else
+ predict_jump (REG_BR_PROB_BASE * 20 / 100);
+ }
+ }
+
+ /* Emit code to decide on runtime whether library call or inline should be
+ used. */
+ if (dynamic_check != -1)
+ {
+ if (!issetmem && CONST_INT_P (count_exp))
+ {
+ if (UINTVAL (count_exp) >= (unsigned HOST_WIDE_INT)dynamic_check)
+ {
+ emit_block_move_via_libcall (dst, src, count_exp, false);
+ count_exp = const0_rtx;
+ goto epilogue;
+ }
+ }
+ else
+ {
+ rtx hot_label = gen_label_rtx ();
+ if (jump_around_label == NULL_RTX)
+ jump_around_label = gen_label_rtx ();
+ emit_cmp_and_jump_insns (count_exp, GEN_INT (dynamic_check - 1),
+ LEU, 0, GET_MODE (count_exp), 1, hot_label);
+ predict_jump (REG_BR_PROB_BASE * 90 / 100);
+ if (issetmem)
+ set_storage_via_libcall (dst, count_exp, val_exp, false);
+ else
+ emit_block_move_via_libcall (dst, src, count_exp, false);
+ emit_jump (jump_around_label);
+ emit_label (hot_label);
+ }
+ }
+
+ /* Step 2: Alignment prologue. */
+ /* Do the expensive promotion once we branched off the small blocks. */
+ if (issetmem && !promoted_val)
+ promoted_val = promote_duplicated_reg_to_size (val_exp, size_needed,
+ desired_align, align);
+
+ if (desired_align > align && !misaligned_prologue_used)
+ {
+ if (align_bytes == 0)
+ {
+ /* Except for the first move in prologue, we no longer know
+ constant offset in aliasing info. It don't seems to worth
+ the pain to maintain it for the first move, so throw away
+ the info early. */
+ dst = change_address (dst, BLKmode, destreg);
+ if (!issetmem)
+ src = change_address (src, BLKmode, srcreg);
+ dst = expand_set_or_movmem_prologue (dst, src, destreg, srcreg,
+ promoted_val, vec_promoted_val,
+ count_exp, align, desired_align,
+ issetmem);
+ /* At most desired_align - align bytes are copied. */
+ if (min_size < (unsigned)(desired_align - align))
+ min_size = 0;
+ else
+ min_size -= desired_align - align;
+ }
+ else
+ {
+ /* If we know how many bytes need to be stored before dst is
+ sufficiently aligned, maintain aliasing info accurately. */
+ dst = expand_set_or_movmem_constant_prologue (dst, &src, destreg,
+ srcreg,
+ promoted_val,
+ vec_promoted_val,
+ desired_align,
+ align_bytes,
+ issetmem);
+
+ count_exp = plus_constant (counter_mode (count_exp),
+ count_exp, -align_bytes);
+ count -= align_bytes;
+ min_size -= align_bytes;
+ max_size -= align_bytes;
+ }
+ if (need_zero_guard
+ && !min_size
+ && (count < (unsigned HOST_WIDE_INT) size_needed
+ || (align_bytes == 0
+ && count < ((unsigned HOST_WIDE_INT) size_needed
+ + desired_align - align))))
+ {
+ /* It is possible that we copied enough so the main loop will not
+ execute. */
+ gcc_assert (size_needed > 1);
+ if (label == NULL_RTX)
+ label = gen_label_rtx ();
+ emit_cmp_and_jump_insns (count_exp,
+ GEN_INT (size_needed),
+ LTU, 0, counter_mode (count_exp), 1, label);
+ if (expected_size == -1
+ || expected_size < (desired_align - align) / 2 + size_needed)
+ predict_jump (REG_BR_PROB_BASE * 20 / 100);
+ else
+ predict_jump (REG_BR_PROB_BASE * 60 / 100);
+ }
+ }
+ if (label && size_needed == 1)
+ {
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ label = NULL;
+ epilogue_size_needed = 1;
+ if (issetmem)
+ promoted_val = val_exp;
+ }
+ else if (label == NULL_RTX && !misaligned_prologue_used)
+ epilogue_size_needed = size_needed;
+
+ /* Step 3: Main loop. */
+
+ switch (alg)
+ {
+ case libcall:
+ case no_stringop:
+ case last_alg:
+ gcc_unreachable ();
+ case loop_1_byte:
+ case loop:
+ case unrolled_loop:
+ expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, promoted_val,
+ count_exp, move_mode, unroll_factor,
+ expected_size, issetmem);
+ break;
+ case vector_loop:
+ expand_set_or_movmem_via_loop (dst, src, destreg, srcreg,
+ vec_promoted_val, count_exp, move_mode,
+ unroll_factor, expected_size, issetmem);
+ break;
+ case rep_prefix_8_byte:
+ case rep_prefix_4_byte:
+ case rep_prefix_1_byte:
+ expand_set_or_movmem_via_rep (dst, src, destreg, srcreg, promoted_val,
+ val_exp, count_exp, move_mode, issetmem);
+ break;
+ }
+ /* Adjust properly the offset of src and dest memory for aliasing. */
+ if (CONST_INT_P (count_exp))
+ {
+ if (!issetmem)
+ src = adjust_automodify_address_nv (src, BLKmode, srcreg,
+ (count / size_needed) * size_needed);
+ dst = adjust_automodify_address_nv (dst, BLKmode, destreg,
+ (count / size_needed) * size_needed);
+ }
+ else
+ {
+ if (!issetmem)
+ src = change_address (src, BLKmode, srcreg);
+ dst = change_address (dst, BLKmode, destreg);
+ }
+
+ /* Step 4: Epilogue to copy the remaining bytes. */
+ epilogue:
+ if (label)
+ {
+ /* When the main loop is done, COUNT_EXP might hold original count,
+ while we want to copy only COUNT_EXP & SIZE_NEEDED bytes.
+ Epilogue code will actually copy COUNT_EXP & EPILOGUE_SIZE_NEEDED
+ bytes. Compensate if needed. */
+
+ if (size_needed < epilogue_size_needed)
+ {
+ tmp =
+ expand_simple_binop (counter_mode (count_exp), AND, count_exp,
+ GEN_INT (size_needed - 1), count_exp, 1,
+ OPTAB_DIRECT);
+ if (tmp != count_exp)
+ emit_move_insn (count_exp, tmp);
+ }
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+ }
+
+ if (count_exp != const0_rtx && epilogue_size_needed > 1)
+ {
+ if (force_loopy_epilogue)
+ expand_setmem_epilogue_via_loop (dst, destreg, val_exp, count_exp,
+ epilogue_size_needed);
+ else
+ {
+ if (issetmem)
+ expand_setmem_epilogue (dst, destreg, promoted_val,
+ vec_promoted_val, count_exp,
+ epilogue_size_needed);
+ else
+ expand_movmem_epilogue (dst, src, destreg, srcreg, count_exp,
+ epilogue_size_needed);
+ }
+ }
+ if (jump_around_label)
+ emit_label (jump_around_label);
+ return true;
+}
+
+
+/* Expand the appropriate insns for doing strlen if not just doing
+ repnz; scasb
+
+ out = result, initialized with the start address
+ align_rtx = alignment of the address.
+ scratch = scratch register, initialized with the startaddress when
+ not aligned, otherwise undefined
+
+ This is just the body. It needs the initializations mentioned above and
+ some address computing at the end. These things are done in i386.md. */
+
+static void
+ix86_expand_strlensi_unroll_1 (rtx out, rtx src, rtx align_rtx)
+{
+ int align;
+ rtx tmp;
+ rtx align_2_label = NULL_RTX;
+ rtx align_3_label = NULL_RTX;
+ rtx align_4_label = gen_label_rtx ();
+ rtx end_0_label = gen_label_rtx ();
+ rtx mem;
+ rtx tmpreg = gen_reg_rtx (SImode);
+ rtx scratch = gen_reg_rtx (SImode);
+ rtx cmp;
+
+ align = 0;
+ if (CONST_INT_P (align_rtx))
+ align = INTVAL (align_rtx);
+
+ /* Loop to check 1..3 bytes for null to get an aligned pointer. */
+
+ /* Is there a known alignment and is it less than 4? */
+ if (align < 4)
+ {
+ rtx scratch1 = gen_reg_rtx (Pmode);
+ emit_move_insn (scratch1, out);
+ /* Is there a known alignment and is it not 2? */
+ if (align != 2)
+ {
+ align_3_label = gen_label_rtx (); /* Label when aligned to 3-byte */
+ align_2_label = gen_label_rtx (); /* Label when aligned to 2-byte */
+
+ /* Leave just the 3 lower bits. */
+ align_rtx = expand_binop (Pmode, and_optab, scratch1, GEN_INT (3),
+ NULL_RTX, 0, OPTAB_WIDEN);
+
+ emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL,
+ Pmode, 1, align_4_label);
+ emit_cmp_and_jump_insns (align_rtx, const2_rtx, EQ, NULL,
+ Pmode, 1, align_2_label);
+ emit_cmp_and_jump_insns (align_rtx, const2_rtx, GTU, NULL,
+ Pmode, 1, align_3_label);
+ }
+ else
+ {
+ /* Since the alignment is 2, we have to check 2 or 0 bytes;
+ check if is aligned to 4 - byte. */
+
+ align_rtx = expand_binop (Pmode, and_optab, scratch1, const2_rtx,
+ NULL_RTX, 0, OPTAB_WIDEN);
+
+ emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL,
+ Pmode, 1, align_4_label);
+ }
+
+ mem = change_address (src, QImode, out);
+
+ /* Now compare the bytes. */
+
+ /* Compare the first n unaligned byte on a byte per byte basis. */
+ emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL,
+ QImode, 1, end_0_label);
+
+ /* Increment the address. */
+ emit_insn (ix86_gen_add3 (out, out, const1_rtx));
+
+ /* Not needed with an alignment of 2 */
+ if (align != 2)
+ {
+ emit_label (align_2_label);
+
+ emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1,
+ end_0_label);
+
+ emit_insn (ix86_gen_add3 (out, out, const1_rtx));
+
+ emit_label (align_3_label);
+ }
+
+ emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1,
+ end_0_label);
+
+ emit_insn (ix86_gen_add3 (out, out, const1_rtx));
+ }
+
+ /* Generate loop to check 4 bytes at a time. It is not a good idea to
+ align this loop. It gives only huge programs, but does not help to
+ speed up. */
+ emit_label (align_4_label);
+
+ mem = change_address (src, SImode, out);
+ emit_move_insn (scratch, mem);
+ emit_insn (ix86_gen_add3 (out, out, GEN_INT (4)));
+
+ /* This formula yields a nonzero result iff one of the bytes is zero.
+ This saves three branches inside loop and many cycles. */
+
+ emit_insn (gen_addsi3 (tmpreg, scratch, GEN_INT (-0x01010101)));
+ emit_insn (gen_one_cmplsi2 (scratch, scratch));
+ emit_insn (gen_andsi3 (tmpreg, tmpreg, scratch));
+ emit_insn (gen_andsi3 (tmpreg, tmpreg,
+ gen_int_mode (0x80808080, SImode)));
+ emit_cmp_and_jump_insns (tmpreg, const0_rtx, EQ, 0, SImode, 1,
+ align_4_label);
+
+ if (TARGET_CMOVE)
+ {
+ rtx reg = gen_reg_rtx (SImode);
+ rtx reg2 = gen_reg_rtx (Pmode);
+ emit_move_insn (reg, tmpreg);
+ emit_insn (gen_lshrsi3 (reg, reg, GEN_INT (16)));
+
+ /* If zero is not in the first two bytes, move two bytes forward. */
+ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080)));
+ tmp = gen_rtx_REG (CCNOmode, FLAGS_REG);
+ tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, tmpreg,
+ gen_rtx_IF_THEN_ELSE (SImode, tmp,
+ reg,
+ tmpreg)));
+ /* Emit lea manually to avoid clobbering of flags. */
+ emit_insn (gen_rtx_SET (SImode, reg2,
+ gen_rtx_PLUS (Pmode, out, const2_rtx)));
+
+ tmp = gen_rtx_REG (CCNOmode, FLAGS_REG);
+ tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, out,
+ gen_rtx_IF_THEN_ELSE (Pmode, tmp,
+ reg2,
+ out)));
+ }
+ else
+ {
+ rtx end_2_label = gen_label_rtx ();
+ /* Is zero in the first two bytes? */
+
+ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080)));
+ tmp = gen_rtx_REG (CCNOmode, FLAGS_REG);
+ tmp = gen_rtx_NE (VOIDmode, tmp, const0_rtx);
+ tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
+ gen_rtx_LABEL_REF (VOIDmode, end_2_label),
+ pc_rtx);
+ tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
+ JUMP_LABEL (tmp) = end_2_label;
+
+ /* Not in the first two. Move two bytes forward. */
+ emit_insn (gen_lshrsi3 (tmpreg, tmpreg, GEN_INT (16)));
+ emit_insn (ix86_gen_add3 (out, out, const2_rtx));
+
+ emit_label (end_2_label);
+
+ }
+
+ /* Avoid branch in fixing the byte. */
+ tmpreg = gen_lowpart (QImode, tmpreg);
+ emit_insn (gen_addqi3_cc (tmpreg, tmpreg, tmpreg));
+ tmp = gen_rtx_REG (CCmode, FLAGS_REG);
+ cmp = gen_rtx_LTU (VOIDmode, tmp, const0_rtx);
+ emit_insn (ix86_gen_sub3_carry (out, out, GEN_INT (3), tmp, cmp));
+
+ emit_label (end_0_label);
+}
+
+/* Expand strlen. */
+
+bool
+ix86_expand_strlen (rtx out, rtx src, rtx eoschar, rtx align)
+{
+ rtx addr, scratch1, scratch2, scratch3, scratch4;
+
+ /* The generic case of strlen expander is long. Avoid it's
+ expanding unless TARGET_INLINE_ALL_STRINGOPS. */
+
+ if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1
+ && !TARGET_INLINE_ALL_STRINGOPS
+ && !optimize_insn_for_size_p ()
+ && (!CONST_INT_P (align) || INTVAL (align) < 4))
+ return false;
+
+ addr = force_reg (Pmode, XEXP (src, 0));
+ scratch1 = gen_reg_rtx (Pmode);
+
+ if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1
+ && !optimize_insn_for_size_p ())
+ {
+ /* Well it seems that some optimizer does not combine a call like
+ foo(strlen(bar), strlen(bar));
+ when the move and the subtraction is done here. It does calculate
+ the length just once when these instructions are done inside of
+ output_strlen_unroll(). But I think since &bar[strlen(bar)] is
+ often used and I use one fewer register for the lifetime of
+ output_strlen_unroll() this is better. */
+
+ emit_move_insn (out, addr);
+
+ ix86_expand_strlensi_unroll_1 (out, src, align);
+
+ /* strlensi_unroll_1 returns the address of the zero at the end of
+ the string, like memchr(), so compute the length by subtracting
+ the start address. */
+ emit_insn (ix86_gen_sub3 (out, out, addr));
+ }
+ else
+ {
+ rtx unspec;
+
+ /* Can't use this if the user has appropriated eax, ecx, or edi. */
+ if (fixed_regs[AX_REG] || fixed_regs[CX_REG] || fixed_regs[DI_REG])
+ return false;
+
+ scratch2 = gen_reg_rtx (Pmode);
+ scratch3 = gen_reg_rtx (Pmode);
+ scratch4 = force_reg (Pmode, constm1_rtx);
+
+ emit_move_insn (scratch3, addr);
+ eoschar = force_reg (QImode, eoschar);
+
+ src = replace_equiv_address_nv (src, scratch3);
+
+ /* If .md starts supporting :P, this can be done in .md. */
+ unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (4, src, eoschar, align,
+ scratch4), UNSPEC_SCAS);
+ emit_insn (gen_strlenqi_1 (scratch1, scratch3, unspec));
+ emit_insn (ix86_gen_one_cmpl2 (scratch2, scratch1));
+ emit_insn (ix86_gen_add3 (out, scratch2, constm1_rtx));
+ }
+ return true;
+}
+
+/* For given symbol (function) construct code to compute address of it's PLT
+ entry in large x86-64 PIC model. */
+static rtx
+construct_plt_address (rtx symbol)
+{
+ rtx tmp, unspec;
+
+ gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
+ gcc_assert (ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF);
+ gcc_assert (Pmode == DImode);
+
+ tmp = gen_reg_rtx (Pmode);
+ unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, symbol), UNSPEC_PLTOFF);
+
+ emit_move_insn (tmp, gen_rtx_CONST (Pmode, unspec));
+ emit_insn (ix86_gen_add3 (tmp, tmp, pic_offset_table_rtx));
+ return tmp;
+}
+
+rtx
+ix86_expand_call (rtx retval, rtx fnaddr, rtx callarg1,
+ rtx callarg2,
+ rtx pop, bool sibcall)
+{
+ unsigned int const cregs_size
+ = ARRAY_SIZE (x86_64_ms_sysv_extra_clobbered_registers);
+ rtx vec[3 + cregs_size];
+ rtx use = NULL, call;
+ unsigned int vec_len = 0;
+
+ if (pop == const0_rtx)
+ pop = NULL;
+ gcc_assert (!TARGET_64BIT || !pop);
+
+ if (TARGET_MACHO && !TARGET_64BIT)
+ {
+#if TARGET_MACHO
+ if (flag_pic && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF)
+ fnaddr = machopic_indirect_call_target (fnaddr);
+#endif
+ }
+ else
+ {
+ /* Static functions and indirect calls don't need the pic register. */
+ if (flag_pic
+ && (!TARGET_64BIT
+ || (ix86_cmodel == CM_LARGE_PIC
+ && DEFAULT_ABI != MS_ABI))
+ && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF
+ && ! SYMBOL_REF_LOCAL_P (XEXP (fnaddr, 0)))
+ use_reg (&use, pic_offset_table_rtx);
+ }
+
+ if (TARGET_64BIT && INTVAL (callarg2) >= 0)
+ {
+ rtx al = gen_rtx_REG (QImode, AX_REG);
+ emit_move_insn (al, callarg2);
+ use_reg (&use, al);
+ }
+
+ if (ix86_cmodel == CM_LARGE_PIC
+ && !TARGET_PECOFF
+ && MEM_P (fnaddr)
+ && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF
+ && !local_symbolic_operand (XEXP (fnaddr, 0), VOIDmode))
+ fnaddr = gen_rtx_MEM (QImode, construct_plt_address (XEXP (fnaddr, 0)));
+ else if (sibcall
+ ? !sibcall_insn_operand (XEXP (fnaddr, 0), word_mode)
+ : !call_insn_operand (XEXP (fnaddr, 0), word_mode))
+ {
+ fnaddr = convert_to_mode (word_mode, XEXP (fnaddr, 0), 1);
+ fnaddr = gen_rtx_MEM (QImode, copy_to_mode_reg (word_mode, fnaddr));
+ }
+
+ call = gen_rtx_CALL (VOIDmode, fnaddr, callarg1);
+ if (retval)
+ call = gen_rtx_SET (VOIDmode, retval, call);
+ vec[vec_len++] = call;
+
+ if (pop)
+ {
+ pop = gen_rtx_PLUS (Pmode, stack_pointer_rtx, pop);
+ pop = gen_rtx_SET (VOIDmode, stack_pointer_rtx, pop);
+ vec[vec_len++] = pop;
+ }
+
+ if (TARGET_64BIT_MS_ABI
+ && (!callarg2 || INTVAL (callarg2) != -2))
+ {
+ unsigned i;
+
+ vec[vec_len++] = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, const0_rtx),
+ UNSPEC_MS_TO_SYSV_CALL);
+
+ for (i = 0; i < cregs_size; i++)
+ {
+ int regno = x86_64_ms_sysv_extra_clobbered_registers[i];
+ enum machine_mode mode = SSE_REGNO_P (regno) ? TImode : DImode;
+
+ vec[vec_len++]
+ = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno));
+ }
+ }
+
+ if (vec_len > 1)
+ call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (vec_len, vec));
+ call = emit_call_insn (call);
+ if (use)
+ CALL_INSN_FUNCTION_USAGE (call) = use;
+
+ return call;
+}
+
+/* Output the assembly for a call instruction. */
+
+const char *
+ix86_output_call_insn (rtx insn, rtx call_op)
+{
+ bool direct_p = constant_call_address_operand (call_op, VOIDmode);
+ bool seh_nop_p = false;
+ const char *xasm;
+
+ if (SIBLING_CALL_P (insn))
+ {
+ if (direct_p)
+ xasm = "jmp\t%P0";
+ /* SEH epilogue detection requires the indirect branch case
+ to include REX.W. */
+ else if (TARGET_SEH)
+ xasm = "rex.W jmp %A0";
+ else
+ xasm = "jmp\t%A0";
+
+ output_asm_insn (xasm, &call_op);
+ return "";
+ }
+
+ /* SEH unwinding can require an extra nop to be emitted in several
+ circumstances. Determine if we have one of those. */
+ if (TARGET_SEH)
+ {
+ rtx i;
+
+ for (i = NEXT_INSN (insn); i ; i = NEXT_INSN (i))
+ {
+ /* If we get to another real insn, we don't need the nop. */
+ if (INSN_P (i))
+ break;
+
+ /* If we get to the epilogue note, prevent a catch region from
+ being adjacent to the standard epilogue sequence. If non-
+ call-exceptions, we'll have done this during epilogue emission. */
+ if (NOTE_P (i) && NOTE_KIND (i) == NOTE_INSN_EPILOGUE_BEG
+ && !flag_non_call_exceptions
+ && !can_throw_internal (insn))
+ {
+ seh_nop_p = true;
+ break;
+ }
+ }
+
+ /* If we didn't find a real insn following the call, prevent the
+ unwinder from looking into the next function. */
+ if (i == NULL)
+ seh_nop_p = true;
+ }
+
+ if (direct_p)
+ xasm = "call\t%P0";
+ else
+ xasm = "call\t%A0";
+
+ output_asm_insn (xasm, &call_op);
+
+ if (seh_nop_p)
+ return "nop";
+
+ return "";
+}
+
+/* Clear stack slot assignments remembered from previous functions.
+ This is called from INIT_EXPANDERS once before RTL is emitted for each
+ function. */
+
+static struct machine_function *
+ix86_init_machine_status (void)
+{
+ struct machine_function *f;
+
+ f = ggc_alloc_cleared_machine_function ();
+ f->use_fast_prologue_epilogue_nregs = -1;
+ f->call_abi = ix86_abi;
+
+ return f;
+}
+
+/* Return a MEM corresponding to a stack slot with mode MODE.
+ Allocate a new slot if necessary.
+
+ The RTL for a function can have several slots available: N is
+ which slot to use. */
+
+rtx
+assign_386_stack_local (enum machine_mode mode, enum ix86_stack_slot n)
+{
+ struct stack_local_entry *s;
+
+ gcc_assert (n < MAX_386_STACK_LOCALS);
+
+ for (s = ix86_stack_locals; s; s = s->next)
+ if (s->mode == mode && s->n == n)
+ return validize_mem (copy_rtx (s->rtl));
+
+ s = ggc_alloc_stack_local_entry ();
+ s->n = n;
+ s->mode = mode;
+ s->rtl = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
+
+ s->next = ix86_stack_locals;
+ ix86_stack_locals = s;
+ return validize_mem (s->rtl);
+}
+
+static void
+ix86_instantiate_decls (void)
+{
+ struct stack_local_entry *s;
+
+ for (s = ix86_stack_locals; s; s = s->next)
+ if (s->rtl != NULL_RTX)
+ instantiate_decl_rtl (s->rtl);
+}
+
+/* Check whether x86 address PARTS is a pc-relative address. */
+
+static bool
+rip_relative_addr_p (struct ix86_address *parts)
+{
+ rtx base, index, disp;
+
+ base = parts->base;
+ index = parts->index;
+ disp = parts->disp;
+
+ if (disp && !base && !index)
+ {
+ if (TARGET_64BIT)
+ {
+ rtx symbol = disp;
+
+ if (GET_CODE (disp) == CONST)
+ symbol = XEXP (disp, 0);
+ if (GET_CODE (symbol) == PLUS
+ && CONST_INT_P (XEXP (symbol, 1)))
+ symbol = XEXP (symbol, 0);
+
+ if (GET_CODE (symbol) == LABEL_REF
+ || (GET_CODE (symbol) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (symbol) == 0)
+ || (GET_CODE (symbol) == UNSPEC
+ && (XINT (symbol, 1) == UNSPEC_GOTPCREL
+ || XINT (symbol, 1) == UNSPEC_PCREL
+ || XINT (symbol, 1) == UNSPEC_GOTNTPOFF)))
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Calculate the length of the memory address in the instruction encoding.
+ Includes addr32 prefix, does not include the one-byte modrm, opcode,
+ or other prefixes. We never generate addr32 prefix for LEA insn. */
+
+int
+memory_address_length (rtx addr, bool lea)
+{
+ struct ix86_address parts;
+ rtx base, index, disp;
+ int len;
+ int ok;
+
+ if (GET_CODE (addr) == PRE_DEC
+ || GET_CODE (addr) == POST_INC
+ || GET_CODE (addr) == PRE_MODIFY
+ || GET_CODE (addr) == POST_MODIFY)
+ return 0;
+
+ ok = ix86_decompose_address (addr, &parts);
+ gcc_assert (ok);
+
+ len = (parts.seg == SEG_DEFAULT) ? 0 : 1;
+
+ /* If this is not LEA instruction, add the length of addr32 prefix. */
+ if (TARGET_64BIT && !lea
+ && (SImode_address_operand (addr, VOIDmode)
+ || (parts.base && GET_MODE (parts.base) == SImode)
+ || (parts.index && GET_MODE (parts.index) == SImode)))
+ len++;
+
+ base = parts.base;
+ index = parts.index;
+ disp = parts.disp;
+
+ if (base && GET_CODE (base) == SUBREG)
+ base = SUBREG_REG (base);
+ if (index && GET_CODE (index) == SUBREG)
+ index = SUBREG_REG (index);
+
+ gcc_assert (base == NULL_RTX || REG_P (base));
+ gcc_assert (index == NULL_RTX || REG_P (index));
+
+ /* Rule of thumb:
+ - esp as the base always wants an index,
+ - ebp as the base always wants a displacement,
+ - r12 as the base always wants an index,
+ - r13 as the base always wants a displacement. */
+
+ /* Register Indirect. */
+ if (base && !index && !disp)
+ {
+ /* esp (for its index) and ebp (for its displacement) need
+ the two-byte modrm form. Similarly for r12 and r13 in 64-bit
+ code. */
+ if (base == arg_pointer_rtx
+ || base == frame_pointer_rtx
+ || REGNO (base) == SP_REG
+ || REGNO (base) == BP_REG
+ || REGNO (base) == R12_REG
+ || REGNO (base) == R13_REG)
+ len++;
+ }
+
+ /* Direct Addressing. In 64-bit mode mod 00 r/m 5
+ is not disp32, but disp32(%rip), so for disp32
+ SIB byte is needed, unless print_operand_address
+ optimizes it into disp32(%rip) or (%rip) is implied
+ by UNSPEC. */
+ else if (disp && !base && !index)
+ {
+ len += 4;
+ if (rip_relative_addr_p (&parts))
+ len++;
+ }
+ else
+ {
+ /* Find the length of the displacement constant. */
+ if (disp)
+ {
+ if (base && satisfies_constraint_K (disp))
+ len += 1;
+ else
+ len += 4;
+ }
+ /* ebp always wants a displacement. Similarly r13. */
+ else if (base && (REGNO (base) == BP_REG || REGNO (base) == R13_REG))
+ len++;
+
+ /* An index requires the two-byte modrm form.... */
+ if (index
+ /* ...like esp (or r12), which always wants an index. */
+ || base == arg_pointer_rtx
+ || base == frame_pointer_rtx
+ || (base && (REGNO (base) == SP_REG || REGNO (base) == R12_REG)))
+ len++;
+ }
+
+ return len;
+}
+
+/* Compute default value for "length_immediate" attribute. When SHORTFORM
+ is set, expect that insn have 8bit immediate alternative. */
+int
+ix86_attr_length_immediate_default (rtx insn, bool shortform)
+{
+ int len = 0;
+ int i;
+ extract_insn_cached (insn);
+ for (i = recog_data.n_operands - 1; i >= 0; --i)
+ if (CONSTANT_P (recog_data.operand[i]))
+ {
+ enum attr_mode mode = get_attr_mode (insn);
+
+ gcc_assert (!len);
+ if (shortform && CONST_INT_P (recog_data.operand[i]))
+ {
+ HOST_WIDE_INT ival = INTVAL (recog_data.operand[i]);
+ switch (mode)
+ {
+ case MODE_QI:
+ len = 1;
+ continue;
+ case MODE_HI:
+ ival = trunc_int_for_mode (ival, HImode);
+ break;
+ case MODE_SI:
+ ival = trunc_int_for_mode (ival, SImode);
+ break;
+ default:
+ break;
+ }
+ if (IN_RANGE (ival, -128, 127))
+ {
+ len = 1;
+ continue;
+ }
+ }
+ switch (mode)
+ {
+ case MODE_QI:
+ len = 1;
+ break;
+ case MODE_HI:
+ len = 2;
+ break;
+ case MODE_SI:
+ len = 4;
+ break;
+ /* Immediates for DImode instructions are encoded
+ as 32bit sign extended values. */
+ case MODE_DI:
+ len = 4;
+ break;
+ default:
+ fatal_insn ("unknown insn mode", insn);
+ }
+ }
+ return len;
+}
+
+/* Compute default value for "length_address" attribute. */
+int
+ix86_attr_length_address_default (rtx insn)
+{
+ int i;
+
+ if (get_attr_type (insn) == TYPE_LEA)
+ {
+ rtx set = PATTERN (insn), addr;
+
+ if (GET_CODE (set) == PARALLEL)
+ set = XVECEXP (set, 0, 0);
+
+ gcc_assert (GET_CODE (set) == SET);
+
+ addr = SET_SRC (set);
+
+ return memory_address_length (addr, true);
+ }
+
+ extract_insn_cached (insn);
+ for (i = recog_data.n_operands - 1; i >= 0; --i)
+ if (MEM_P (recog_data.operand[i]))
+ {
+ constrain_operands_cached (reload_completed);
+ if (which_alternative != -1)
+ {
+ const char *constraints = recog_data.constraints[i];
+ int alt = which_alternative;
+
+ while (*constraints == '=' || *constraints == '+')
+ constraints++;
+ while (alt-- > 0)
+ while (*constraints++ != ',')
+ ;
+ /* Skip ignored operands. */
+ if (*constraints == 'X')
+ continue;
+ }
+ return memory_address_length (XEXP (recog_data.operand[i], 0), false);
+ }
+ return 0;
+}
+
+/* Compute default value for "length_vex" attribute. It includes
+ 2 or 3 byte VEX prefix and 1 opcode byte. */
+
+int
+ix86_attr_length_vex_default (rtx insn, bool has_0f_opcode, bool has_vex_w)
+{
+ int i;
+
+ /* Only 0f opcode can use 2 byte VEX prefix and VEX W bit uses 3
+ byte VEX prefix. */
+ if (!has_0f_opcode || has_vex_w)
+ return 3 + 1;
+
+ /* We can always use 2 byte VEX prefix in 32bit. */
+ if (!TARGET_64BIT)
+ return 2 + 1;
+
+ extract_insn_cached (insn);
+
+ for (i = recog_data.n_operands - 1; i >= 0; --i)
+ if (REG_P (recog_data.operand[i]))
+ {
+ /* REX.W bit uses 3 byte VEX prefix. */
+ if (GET_MODE (recog_data.operand[i]) == DImode
+ && GENERAL_REG_P (recog_data.operand[i]))
+ return 3 + 1;
+ }
+ else
+ {
+ /* REX.X or REX.B bits use 3 byte VEX prefix. */
+ if (MEM_P (recog_data.operand[i])
+ && x86_extended_reg_mentioned_p (recog_data.operand[i]))
+ return 3 + 1;
+ }
+
+ return 2 + 1;
+}
+
+/* Return the maximum number of instructions a cpu can issue. */
+
+static int
+ix86_issue_rate (void)
+{
+ switch (ix86_tune)
+ {
+ case PROCESSOR_PENTIUM:
+ case PROCESSOR_BONNELL:
+ case PROCESSOR_SILVERMONT:
+ case PROCESSOR_INTEL:
+ case PROCESSOR_K6:
+ case PROCESSOR_BTVER2:
+ case PROCESSOR_PENTIUM4:
+ case PROCESSOR_NOCONA:
+ return 2;
+
+ case PROCESSOR_PENTIUMPRO:
+ case PROCESSOR_ATHLON:
+ case PROCESSOR_K8:
+ case PROCESSOR_AMDFAM10:
+ case PROCESSOR_GENERIC:
+ case PROCESSOR_BTVER1:
+ return 3;
+
+ case PROCESSOR_BDVER1:
+ case PROCESSOR_BDVER2:
+ case PROCESSOR_BDVER3:
+ case PROCESSOR_BDVER4:
+ case PROCESSOR_CORE2:
+ case PROCESSOR_NEHALEM:
+ case PROCESSOR_SANDYBRIDGE:
+ case PROCESSOR_HASWELL:
+ return 4;
+
+ default:
+ return 1;
+ }
+}
+
+/* A subroutine of ix86_adjust_cost -- return TRUE iff INSN reads flags set
+ by DEP_INSN and nothing set by DEP_INSN. */
+
+static bool
+ix86_flags_dependent (rtx insn, rtx dep_insn, enum attr_type insn_type)
+{
+ rtx set, set2;
+
+ /* Simplify the test for uninteresting insns. */
+ if (insn_type != TYPE_SETCC
+ && insn_type != TYPE_ICMOV
+ && insn_type != TYPE_FCMOV
+ && insn_type != TYPE_IBR)
+ return false;
+
+ if ((set = single_set (dep_insn)) != 0)
+ {
+ set = SET_DEST (set);
+ set2 = NULL_RTX;
+ }
+ else if (GET_CODE (PATTERN (dep_insn)) == PARALLEL
+ && XVECLEN (PATTERN (dep_insn), 0) == 2
+ && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 0)) == SET
+ && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 1)) == SET)
+ {
+ set = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0));
+ set2 = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0));
+ }
+ else
+ return false;
+
+ if (!REG_P (set) || REGNO (set) != FLAGS_REG)
+ return false;
+
+ /* This test is true if the dependent insn reads the flags but
+ not any other potentially set register. */
+ if (!reg_overlap_mentioned_p (set, PATTERN (insn)))
+ return false;
+
+ if (set2 && reg_overlap_mentioned_p (set2, PATTERN (insn)))
+ return false;
+
+ return true;
+}
+
+/* Return true iff USE_INSN has a memory address with operands set by
+ SET_INSN. */
+
+bool
+ix86_agi_dependent (rtx set_insn, rtx use_insn)
+{
+ int i;
+ extract_insn_cached (use_insn);
+ for (i = recog_data.n_operands - 1; i >= 0; --i)
+ if (MEM_P (recog_data.operand[i]))
+ {
+ rtx addr = XEXP (recog_data.operand[i], 0);
+ return modified_in_p (addr, set_insn) != 0;
+ }
+ return false;
+}
+
+/* Helper function for exact_store_load_dependency.
+ Return true if addr is found in insn. */
+static bool
+exact_dependency_1 (rtx addr, rtx insn)
+{
+ enum rtx_code code;
+ const char *format_ptr;
+ int i, j;
+
+ code = GET_CODE (insn);
+ switch (code)
+ {
+ case MEM:
+ if (rtx_equal_p (addr, insn))
+ return true;
+ break;
+ case REG:
+ CASE_CONST_ANY:
+ case SYMBOL_REF:
+ case CODE_LABEL:
+ case PC:
+ case CC0:
+ case EXPR_LIST:
+ return false;
+ default:
+ break;
+ }
+
+ format_ptr = GET_RTX_FORMAT (code);
+ for (i = 0; i < GET_RTX_LENGTH (code); i++)
+ {
+ switch (*format_ptr++)
+ {
+ case 'e':
+ if (exact_dependency_1 (addr, XEXP (insn, i)))
+ return true;
+ break;
+ case 'E':
+ for (j = 0; j < XVECLEN (insn, i); j++)
+ if (exact_dependency_1 (addr, XVECEXP (insn, i, j)))
+ return true;
+ break;
+ }
+ }
+ return false;
+}
+
+/* Return true if there exists exact dependency for store & load, i.e.
+ the same memory address is used in them. */
+static bool
+exact_store_load_dependency (rtx store, rtx load)
+{
+ rtx set1, set2;
+
+ set1 = single_set (store);
+ if (!set1)
+ return false;
+ if (!MEM_P (SET_DEST (set1)))
+ return false;
+ set2 = single_set (load);
+ if (!set2)
+ return false;
+ if (exact_dependency_1 (SET_DEST (set1), SET_SRC (set2)))
+ return true;
+ return false;
+}
+
+static int
+ix86_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
+{
+ enum attr_type insn_type, dep_insn_type;
+ enum attr_memory memory;
+ rtx set, set2;
+ int dep_insn_code_number;
+
+ /* Anti and output dependencies have zero cost on all CPUs. */
+ if (REG_NOTE_KIND (link) != 0)
+ return 0;
+
+ dep_insn_code_number = recog_memoized (dep_insn);
+
+ /* If we can't recognize the insns, we can't really do anything. */
+ if (dep_insn_code_number < 0 || recog_memoized (insn) < 0)
+ return cost;
+
+ insn_type = get_attr_type (insn);
+ dep_insn_type = get_attr_type (dep_insn);
+
+ switch (ix86_tune)
+ {
+ case PROCESSOR_PENTIUM:
+ /* Address Generation Interlock adds a cycle of latency. */
+ if (insn_type == TYPE_LEA)
+ {
+ rtx addr = PATTERN (insn);
+
+ if (GET_CODE (addr) == PARALLEL)
+ addr = XVECEXP (addr, 0, 0);
+
+ gcc_assert (GET_CODE (addr) == SET);
+
+ addr = SET_SRC (addr);
+ if (modified_in_p (addr, dep_insn))
+ cost += 1;
+ }
+ else if (ix86_agi_dependent (dep_insn, insn))
+ cost += 1;
+
+ /* ??? Compares pair with jump/setcc. */
+ if (ix86_flags_dependent (insn, dep_insn, insn_type))
+ cost = 0;
+
+ /* Floating point stores require value to be ready one cycle earlier. */
+ if (insn_type == TYPE_FMOV
+ && get_attr_memory (insn) == MEMORY_STORE
+ && !ix86_agi_dependent (dep_insn, insn))
+ cost += 1;
+ break;
+
+ case PROCESSOR_PENTIUMPRO:
+ /* INT->FP conversion is expensive. */
+ if (get_attr_fp_int_src (dep_insn))
+ cost += 5;
+
+ /* There is one cycle extra latency between an FP op and a store. */
+ if (insn_type == TYPE_FMOV
+ && (set = single_set (dep_insn)) != NULL_RTX
+ && (set2 = single_set (insn)) != NULL_RTX
+ && rtx_equal_p (SET_DEST (set), SET_SRC (set2))
+ && MEM_P (SET_DEST (set2)))
+ cost += 1;
+
+ memory = get_attr_memory (insn);
+
+ /* Show ability of reorder buffer to hide latency of load by executing
+ in parallel with previous instruction in case
+ previous instruction is not needed to compute the address. */
+ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH)
+ && !ix86_agi_dependent (dep_insn, insn))
+ {
+ /* Claim moves to take one cycle, as core can issue one load
+ at time and the next load can start cycle later. */
+ if (dep_insn_type == TYPE_IMOV
+ || dep_insn_type == TYPE_FMOV)
+ cost = 1;
+ else if (cost > 1)
+ cost--;
+ }
+ break;
+
+ case PROCESSOR_K6:
+ /* The esp dependency is resolved before
+ the instruction is really finished. */
+ if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP)
+ && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP))
+ return 1;
+
+ /* INT->FP conversion is expensive. */
+ if (get_attr_fp_int_src (dep_insn))
+ cost += 5;
+
+ memory = get_attr_memory (insn);
+
+ /* Show ability of reorder buffer to hide latency of load by executing
+ in parallel with previous instruction in case
+ previous instruction is not needed to compute the address. */
+ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH)
+ && !ix86_agi_dependent (dep_insn, insn))
+ {
+ /* Claim moves to take one cycle, as core can issue one load
+ at time and the next load can start cycle later. */
+ if (dep_insn_type == TYPE_IMOV
+ || dep_insn_type == TYPE_FMOV)
+ cost = 1;
+ else if (cost > 2)
+ cost -= 2;
+ else
+ cost = 1;
+ }
+ break;
+
+ case PROCESSOR_AMDFAM10:
+ case PROCESSOR_BDVER1:
+ case PROCESSOR_BDVER2:
+ case PROCESSOR_BDVER3:
+ case PROCESSOR_BDVER4:
+ case PROCESSOR_BTVER1:
+ case PROCESSOR_BTVER2:
+ case PROCESSOR_GENERIC:
+ /* Stack engine allows to execute push&pop instructions in parall. */
+ if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP)
+ && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP))
+ return 0;
+ /* FALLTHRU */
+
+ case PROCESSOR_ATHLON:
+ case PROCESSOR_K8:
+ memory = get_attr_memory (insn);
+
+ /* Show ability of reorder buffer to hide latency of load by executing
+ in parallel with previous instruction in case
+ previous instruction is not needed to compute the address. */
+ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH)
+ && !ix86_agi_dependent (dep_insn, insn))
+ {
+ enum attr_unit unit = get_attr_unit (insn);
+ int loadcost = 3;
+
+ /* Because of the difference between the length of integer and
+ floating unit pipeline preparation stages, the memory operands
+ for floating point are cheaper.
+
+ ??? For Athlon it the difference is most probably 2. */
+ if (unit == UNIT_INTEGER || unit == UNIT_UNKNOWN)
+ loadcost = 3;
+ else
+ loadcost = TARGET_ATHLON ? 2 : 0;
+
+ if (cost >= loadcost)
+ cost -= loadcost;
+ else
+ cost = 0;
+ }
+ break;
+
+ case PROCESSOR_CORE2:
+ case PROCESSOR_NEHALEM:
+ case PROCESSOR_SANDYBRIDGE:
+ case PROCESSOR_HASWELL:
+ /* Stack engine allows to execute push&pop instructions in parall. */
+ if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP)
+ && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP))
+ return 0;
+
+ memory = get_attr_memory (insn);
+
+ /* Show ability of reorder buffer to hide latency of load by executing
+ in parallel with previous instruction in case
+ previous instruction is not needed to compute the address. */
+ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH)
+ && !ix86_agi_dependent (dep_insn, insn))
+ {
+ if (cost >= 4)
+ cost -= 4;
+ else
+ cost = 0;
+ }
+ break;
+
+ case PROCESSOR_SILVERMONT:
+ case PROCESSOR_INTEL:
+ if (!reload_completed)
+ return cost;
+
+ /* Increase cost of integer loads. */
+ memory = get_attr_memory (dep_insn);
+ if (memory == MEMORY_LOAD || memory == MEMORY_BOTH)
+ {
+ enum attr_unit unit = get_attr_unit (dep_insn);
+ if (unit == UNIT_INTEGER && cost == 1)
+ {
+ if (memory == MEMORY_LOAD)
+ cost = 3;
+ else
+ {
+ /* Increase cost of ld/st for short int types only
+ because of store forwarding issue. */
+ rtx set = single_set (dep_insn);
+ if (set && (GET_MODE (SET_DEST (set)) == QImode
+ || GET_MODE (SET_DEST (set)) == HImode))
+ {
+ /* Increase cost of store/load insn if exact
+ dependence exists and it is load insn. */
+ enum attr_memory insn_memory = get_attr_memory (insn);
+ if (insn_memory == MEMORY_LOAD
+ && exact_store_load_dependency (dep_insn, insn))
+ cost = 3;
+ }
+ }
+ }
+ }
+
+ default:
+ break;
+ }
+
+ return cost;
+}
+
+/* How many alternative schedules to try. This should be as wide as the
+ scheduling freedom in the DFA, but no wider. Making this value too
+ large results extra work for the scheduler. */
+
+static int
+ia32_multipass_dfa_lookahead (void)
+{
+ switch (ix86_tune)
+ {
+ case PROCESSOR_PENTIUM:
+ return 2;
+
+ case PROCESSOR_PENTIUMPRO:
+ case PROCESSOR_K6:
+ return 1;
+
+ case PROCESSOR_BDVER1:
+ case PROCESSOR_BDVER2:
+ case PROCESSOR_BDVER3:
+ case PROCESSOR_BDVER4:
+ /* We use lookahead value 4 for BD both before and after reload
+ schedules. Plan is to have value 8 included for O3. */
+ return 4;
+
+ case PROCESSOR_CORE2:
+ case PROCESSOR_NEHALEM:
+ case PROCESSOR_SANDYBRIDGE:
+ case PROCESSOR_HASWELL:
+ case PROCESSOR_BONNELL:
+ case PROCESSOR_SILVERMONT:
+ case PROCESSOR_INTEL:
+ /* Generally, we want haifa-sched:max_issue() to look ahead as far
+ as many instructions can be executed on a cycle, i.e.,
+ issue_rate. I wonder why tuning for many CPUs does not do this. */
+ if (reload_completed)
+ return ix86_issue_rate ();
+ /* Don't use lookahead for pre-reload schedule to save compile time. */
+ return 0;
+
+ default:
+ return 0;
+ }
+}
+
+/* Return true if target platform supports macro-fusion. */
+
+static bool
+ix86_macro_fusion_p ()
+{
+ return TARGET_FUSE_CMP_AND_BRANCH;
+}
+
+/* Check whether current microarchitecture support macro fusion
+ for insn pair "CONDGEN + CONDJMP". Refer to
+ "Intel Architectures Optimization Reference Manual". */
+
+static bool
+ix86_macro_fusion_pair_p (rtx condgen, rtx condjmp)
+{
+ rtx src, dest;
+ rtx single_set = single_set (condgen);
+ enum rtx_code ccode;
+ rtx compare_set = NULL_RTX, test_if, cond;
+ rtx alu_set = NULL_RTX, addr = NULL_RTX;
+
+ if (get_attr_type (condgen) != TYPE_TEST
+ && get_attr_type (condgen) != TYPE_ICMP
+ && get_attr_type (condgen) != TYPE_INCDEC
+ && get_attr_type (condgen) != TYPE_ALU)
+ return false;
+
+ if (single_set == NULL_RTX
+ && !TARGET_FUSE_ALU_AND_BRANCH)
+ return false;
+
+ if (single_set != NULL_RTX)
+ compare_set = single_set;
+ else
+ {
+ int i;
+ rtx pat = PATTERN (condgen);
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
+ {
+ rtx set_src = SET_SRC (XVECEXP (pat, 0, i));
+ if (GET_CODE (set_src) == COMPARE)
+ compare_set = XVECEXP (pat, 0, i);
+ else
+ alu_set = XVECEXP (pat, 0, i);
+ }
+ }
+ if (compare_set == NULL_RTX)
+ return false;
+ src = SET_SRC (compare_set);
+ if (GET_CODE (src) != COMPARE)
+ return false;
+
+ /* Macro-fusion for cmp/test MEM-IMM + conditional jmp is not
+ supported. */
+ if ((MEM_P (XEXP (src, 0))
+ && CONST_INT_P (XEXP (src, 1)))
+ || (MEM_P (XEXP (src, 1))
+ && CONST_INT_P (XEXP (src, 0))))
+ return false;
+
+ /* No fusion for RIP-relative address. */
+ if (MEM_P (XEXP (src, 0)))
+ addr = XEXP (XEXP (src, 0), 0);
+ else if (MEM_P (XEXP (src, 1)))
+ addr = XEXP (XEXP (src, 1), 0);
+
+ if (addr) {
+ ix86_address parts;
+ int ok = ix86_decompose_address (addr, &parts);
+ gcc_assert (ok);
+
+ if (rip_relative_addr_p (&parts))
+ return false;
+ }
+
+ test_if = SET_SRC (pc_set (condjmp));
+ cond = XEXP (test_if, 0);
+ ccode = GET_CODE (cond);
+ /* Check whether conditional jump use Sign or Overflow Flags. */
+ if (!TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS
+ && (ccode == GE
+ || ccode == GT
+ || ccode == LE
+ || ccode == LT))
+ return false;
+
+ /* Return true for TYPE_TEST and TYPE_ICMP. */
+ if (get_attr_type (condgen) == TYPE_TEST
+ || get_attr_type (condgen) == TYPE_ICMP)
+ return true;
+
+ /* The following is the case that macro-fusion for alu + jmp. */
+ if (!TARGET_FUSE_ALU_AND_BRANCH || !alu_set)
+ return false;
+
+ /* No fusion for alu op with memory destination operand. */
+ dest = SET_DEST (alu_set);
+ if (MEM_P (dest))
+ return false;
+
+ /* Macro-fusion for inc/dec + unsigned conditional jump is not
+ supported. */
+ if (get_attr_type (condgen) == TYPE_INCDEC
+ && (ccode == GEU
+ || ccode == GTU
+ || ccode == LEU
+ || ccode == LTU))
+ return false;
+
+ return true;
+}
+
+/* Try to reorder ready list to take advantage of Atom pipelined IMUL
+ execution. It is applied if
+ (1) IMUL instruction is on the top of list;
+ (2) There exists the only producer of independent IMUL instruction in
+ ready list.
+ Return index of IMUL producer if it was found and -1 otherwise. */
+static int
+do_reorder_for_imul (rtx *ready, int n_ready)
+{
+ rtx insn, set, insn1, insn2;
+ sd_iterator_def sd_it;
+ dep_t dep;
+ int index = -1;
+ int i;
+
+ if (!TARGET_BONNELL)
+ return index;
+
+ /* Check that IMUL instruction is on the top of ready list. */
+ insn = ready[n_ready - 1];
+ set = single_set (insn);
+ if (!set)
+ return index;
+ if (!(GET_CODE (SET_SRC (set)) == MULT
+ && GET_MODE (SET_SRC (set)) == SImode))
+ return index;
+
+ /* Search for producer of independent IMUL instruction. */
+ for (i = n_ready - 2; i >= 0; i--)
+ {
+ insn = ready[i];
+ if (!NONDEBUG_INSN_P (insn))
+ continue;
+ /* Skip IMUL instruction. */
+ insn2 = PATTERN (insn);
+ if (GET_CODE (insn2) == PARALLEL)
+ insn2 = XVECEXP (insn2, 0, 0);
+ if (GET_CODE (insn2) == SET
+ && GET_CODE (SET_SRC (insn2)) == MULT
+ && GET_MODE (SET_SRC (insn2)) == SImode)
+ continue;
+
+ FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
+ {
+ rtx con;
+ con = DEP_CON (dep);
+ if (!NONDEBUG_INSN_P (con))
+ continue;
+ insn1 = PATTERN (con);
+ if (GET_CODE (insn1) == PARALLEL)
+ insn1 = XVECEXP (insn1, 0, 0);
+
+ if (GET_CODE (insn1) == SET
+ && GET_CODE (SET_SRC (insn1)) == MULT
+ && GET_MODE (SET_SRC (insn1)) == SImode)
+ {
+ sd_iterator_def sd_it1;
+ dep_t dep1;
+ /* Check if there is no other dependee for IMUL. */
+ index = i;
+ FOR_EACH_DEP (con, SD_LIST_BACK, sd_it1, dep1)
+ {
+ rtx pro;
+ pro = DEP_PRO (dep1);
+ if (!NONDEBUG_INSN_P (pro))
+ continue;
+ if (pro != insn)
+ index = -1;
+ }
+ if (index >= 0)
+ break;
+ }
+ }
+ if (index >= 0)
+ break;
+ }
+ return index;
+}
+
+/* Try to find the best candidate on the top of ready list if two insns
+ have the same priority - candidate is best if its dependees were
+ scheduled earlier. Applied for Silvermont only.
+ Return true if top 2 insns must be interchanged. */
+static bool
+swap_top_of_ready_list (rtx *ready, int n_ready)
+{
+ rtx top = ready[n_ready - 1];
+ rtx next = ready[n_ready - 2];
+ rtx set;
+ sd_iterator_def sd_it;
+ dep_t dep;
+ int clock1 = -1;
+ int clock2 = -1;
+ #define INSN_TICK(INSN) (HID (INSN)->tick)
+
+ if (!TARGET_SILVERMONT && !TARGET_INTEL)
+ return false;
+
+ if (!NONDEBUG_INSN_P (top))
+ return false;
+ if (!NONJUMP_INSN_P (top))
+ return false;
+ if (!NONDEBUG_INSN_P (next))
+ return false;
+ if (!NONJUMP_INSN_P (next))
+ return false;
+ set = single_set (top);
+ if (!set)
+ return false;
+ set = single_set (next);
+ if (!set)
+ return false;
+
+ if (INSN_PRIORITY_KNOWN (top) && INSN_PRIORITY_KNOWN (next))
+ {
+ if (INSN_PRIORITY (top) != INSN_PRIORITY (next))
+ return false;
+ /* Determine winner more precise. */
+ FOR_EACH_DEP (top, SD_LIST_RES_BACK, sd_it, dep)
+ {
+ rtx pro;
+ pro = DEP_PRO (dep);
+ if (!NONDEBUG_INSN_P (pro))
+ continue;
+ if (INSN_TICK (pro) > clock1)
+ clock1 = INSN_TICK (pro);
+ }
+ FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
+ {
+ rtx pro;
+ pro = DEP_PRO (dep);
+ if (!NONDEBUG_INSN_P (pro))
+ continue;
+ if (INSN_TICK (pro) > clock2)
+ clock2 = INSN_TICK (pro);
+ }
+
+ if (clock1 == clock2)
+ {
+ /* Determine winner - load must win. */
+ enum attr_memory memory1, memory2;
+ memory1 = get_attr_memory (top);
+ memory2 = get_attr_memory (next);
+ if (memory2 == MEMORY_LOAD && memory1 != MEMORY_LOAD)
+ return true;
+ }
+ return (bool) (clock2 < clock1);
+ }
+ return false;
+ #undef INSN_TICK
+}
+
+/* Perform possible reodering of ready list for Atom/Silvermont only.
+ Return issue rate. */
+static int
+ix86_sched_reorder (FILE *dump, int sched_verbose, rtx *ready, int *pn_ready,
+ int clock_var)
+{
+ int issue_rate = -1;
+ int n_ready = *pn_ready;
+ int i;
+ rtx insn;
+ int index = -1;
+
+ /* Set up issue rate. */
+ issue_rate = ix86_issue_rate ();
+
+ /* Do reodering for BONNELL/SILVERMONT only. */
+ if (!TARGET_BONNELL && !TARGET_SILVERMONT && !TARGET_INTEL)
+ return issue_rate;
+
+ /* Nothing to do if ready list contains only 1 instruction. */
+ if (n_ready <= 1)
+ return issue_rate;
+
+ /* Do reodering for post-reload scheduler only. */
+ if (!reload_completed)
+ return issue_rate;
+
+ if ((index = do_reorder_for_imul (ready, n_ready)) >= 0)
+ {
+ if (sched_verbose > 1)
+ fprintf (dump, ";;\tatom sched_reorder: put %d insn on top\n",
+ INSN_UID (ready[index]));
+
+ /* Put IMUL producer (ready[index]) at the top of ready list. */
+ insn = ready[index];
+ for (i = index; i < n_ready - 1; i++)
+ ready[i] = ready[i + 1];
+ ready[n_ready - 1] = insn;
+ return issue_rate;
+ }
+ if (clock_var != 0 && swap_top_of_ready_list (ready, n_ready))
+ {
+ if (sched_verbose > 1)
+ fprintf (dump, ";;\tslm sched_reorder: swap %d and %d insns\n",
+ INSN_UID (ready[n_ready - 1]), INSN_UID (ready[n_ready - 2]));
+ /* Swap 2 top elements of ready list. */
+ insn = ready[n_ready - 1];
+ ready[n_ready - 1] = ready[n_ready - 2];
+ ready[n_ready - 2] = insn;
+ }
+ return issue_rate;
+}
+
+static bool
+ix86_class_likely_spilled_p (reg_class_t);
+
+/* Returns true if lhs of insn is HW function argument register and set up
+ is_spilled to true if it is likely spilled HW register. */
+static bool
+insn_is_function_arg (rtx insn, bool* is_spilled)
+{
+ rtx dst;
+
+ if (!NONDEBUG_INSN_P (insn))
+ return false;
+ /* Call instructions are not movable, ignore it. */
+ if (CALL_P (insn))
+ return false;
+ insn = PATTERN (insn);
+ if (GET_CODE (insn) == PARALLEL)
+ insn = XVECEXP (insn, 0, 0);
+ if (GET_CODE (insn) != SET)
+ return false;
+ dst = SET_DEST (insn);
+ if (REG_P (dst) && HARD_REGISTER_P (dst)
+ && ix86_function_arg_regno_p (REGNO (dst)))
+ {
+ /* Is it likely spilled HW register? */
+ if (!TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dst))
+ && ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dst))))
+ *is_spilled = true;
+ return true;
+ }
+ return false;
+}
+
+/* Add output dependencies for chain of function adjacent arguments if only
+ there is a move to likely spilled HW register. Return first argument
+ if at least one dependence was added or NULL otherwise. */
+static rtx
+add_parameter_dependencies (rtx call, rtx head)
+{
+ rtx insn;
+ rtx last = call;
+ rtx first_arg = NULL;
+ bool is_spilled = false;
+
+ head = PREV_INSN (head);
+
+ /* Find nearest to call argument passing instruction. */
+ while (true)
+ {
+ last = PREV_INSN (last);
+ if (last == head)
+ return NULL;
+ if (!NONDEBUG_INSN_P (last))
+ continue;
+ if (insn_is_function_arg (last, &is_spilled))
+ break;
+ return NULL;
+ }
+
+ first_arg = last;
+ while (true)
+ {
+ insn = PREV_INSN (last);
+ if (!INSN_P (insn))
+ break;
+ if (insn == head)
+ break;
+ if (!NONDEBUG_INSN_P (insn))
+ {
+ last = insn;
+ continue;
+ }
+ if (insn_is_function_arg (insn, &is_spilled))
+ {
+ /* Add output depdendence between two function arguments if chain
+ of output arguments contains likely spilled HW registers. */
+ if (is_spilled)
+ add_dependence (first_arg, insn, REG_DEP_OUTPUT);
+ first_arg = last = insn;
+ }
+ else
+ break;
+ }
+ if (!is_spilled)
+ return NULL;
+ return first_arg;
+}
+
+/* Add output or anti dependency from insn to first_arg to restrict its code
+ motion. */
+static void
+avoid_func_arg_motion (rtx first_arg, rtx insn)
+{
+ rtx set;
+ rtx tmp;
+
+ set = single_set (insn);
+ if (!set)
+ return;
+ tmp = SET_DEST (set);
+ if (REG_P (tmp))
+ {
+ /* Add output dependency to the first function argument. */
+ add_dependence (first_arg, insn, REG_DEP_OUTPUT);
+ return;
+ }
+ /* Add anti dependency. */
+ add_dependence (first_arg, insn, REG_DEP_ANTI);
+}
+
+/* Avoid cross block motion of function argument through adding dependency
+ from the first non-jump instruction in bb. */
+static void
+add_dependee_for_func_arg (rtx arg, basic_block bb)
+{
+ rtx insn = BB_END (bb);
+
+ while (insn)
+ {
+ if (NONDEBUG_INSN_P (insn) && NONJUMP_INSN_P (insn))
+ {
+ rtx set = single_set (insn);
+ if (set)
+ {
+ avoid_func_arg_motion (arg, insn);
+ return;
+ }
+ }
+ if (insn == BB_HEAD (bb))
+ return;
+ insn = PREV_INSN (insn);
+ }
+}
+
+/* Hook for pre-reload schedule - avoid motion of function arguments
+ passed in likely spilled HW registers. */
+static void
+ix86_dependencies_evaluation_hook (rtx head, rtx tail)
+{
+ rtx insn;
+ rtx first_arg = NULL;
+ if (reload_completed)
+ return;
+ while (head != tail && DEBUG_INSN_P (head))
+ head = NEXT_INSN (head);
+ for (insn = tail; insn != head; insn = PREV_INSN (insn))
+ if (INSN_P (insn) && CALL_P (insn))
+ {
+ first_arg = add_parameter_dependencies (insn, head);
+ if (first_arg)
+ {
+ /* Add dependee for first argument to predecessors if only
+ region contains more than one block. */
+ basic_block bb = BLOCK_FOR_INSN (insn);
+ int rgn = CONTAINING_RGN (bb->index);
+ int nr_blks = RGN_NR_BLOCKS (rgn);
+ /* Skip trivial regions and region head blocks that can have
+ predecessors outside of region. */
+ if (nr_blks > 1 && BLOCK_TO_BB (bb->index) != 0)
+ {
+ edge e;
+ edge_iterator ei;
+ /* Assume that region is SCC, i.e. all immediate predecessors
+ of non-head block are in the same region. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ /* Avoid creating of loop-carried dependencies through
+ using topological odering in region. */
+ if (BLOCK_TO_BB (bb->index) > BLOCK_TO_BB (e->src->index))
+ add_dependee_for_func_arg (first_arg, e->src);
+ }
+ }
+ insn = first_arg;
+ if (insn == head)
+ break;
+ }
+ }
+ else if (first_arg)
+ avoid_func_arg_motion (first_arg, insn);
+}
+
+/* Hook for pre-reload schedule - set priority of moves from likely spilled
+ HW registers to maximum, to schedule them at soon as possible. These are
+ moves from function argument registers at the top of the function entry
+ and moves from function return value registers after call. */
+static int
+ix86_adjust_priority (rtx insn, int priority)
+{
+ rtx set;
+
+ if (reload_completed)
+ return priority;
+
+ if (!NONDEBUG_INSN_P (insn))
+ return priority;
+
+ set = single_set (insn);
+ if (set)
+ {
+ rtx tmp = SET_SRC (set);
+ if (REG_P (tmp)
+ && HARD_REGISTER_P (tmp)
+ && !TEST_HARD_REG_BIT (fixed_reg_set, REGNO (tmp))
+ && ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (tmp))))
+ return current_sched_info->sched_max_insns_priority;
+ }
+
+ return priority;
+}
+
+/* Model decoder of Core 2/i7.
+ Below hooks for multipass scheduling (see haifa-sched.c:max_issue)
+ track the instruction fetch block boundaries and make sure that long
+ (9+ bytes) instructions are assigned to D0. */
+
+/* Maximum length of an insn that can be handled by
+ a secondary decoder unit. '8' for Core 2/i7. */
+static int core2i7_secondary_decoder_max_insn_size;
+
+/* Ifetch block size, i.e., number of bytes decoder reads per cycle.
+ '16' for Core 2/i7. */
+static int core2i7_ifetch_block_size;
+
+/* Maximum number of instructions decoder can handle per cycle.
+ '6' for Core 2/i7. */
+static int core2i7_ifetch_block_max_insns;
+
+typedef struct ix86_first_cycle_multipass_data_ *
+ ix86_first_cycle_multipass_data_t;
+typedef const struct ix86_first_cycle_multipass_data_ *
+ const_ix86_first_cycle_multipass_data_t;
+
+/* A variable to store target state across calls to max_issue within
+ one cycle. */
+static struct ix86_first_cycle_multipass_data_ _ix86_first_cycle_multipass_data,
+ *ix86_first_cycle_multipass_data = &_ix86_first_cycle_multipass_data;
+
+/* Initialize DATA. */
+static void
+core2i7_first_cycle_multipass_init (void *_data)
+{
+ ix86_first_cycle_multipass_data_t data
+ = (ix86_first_cycle_multipass_data_t) _data;
+
+ data->ifetch_block_len = 0;
+ data->ifetch_block_n_insns = 0;
+ data->ready_try_change = NULL;
+ data->ready_try_change_size = 0;
+}
+
+/* Advancing the cycle; reset ifetch block counts. */
+static void
+core2i7_dfa_post_advance_cycle (void)
+{
+ ix86_first_cycle_multipass_data_t data = ix86_first_cycle_multipass_data;
+
+ gcc_assert (data->ifetch_block_n_insns <= core2i7_ifetch_block_max_insns);
+
+ data->ifetch_block_len = 0;
+ data->ifetch_block_n_insns = 0;
+}
+
+static int min_insn_size (rtx);
+
+/* Filter out insns from ready_try that the core will not be able to issue
+ on current cycle due to decoder. */
+static void
+core2i7_first_cycle_multipass_filter_ready_try
+(const_ix86_first_cycle_multipass_data_t data,
+ char *ready_try, int n_ready, bool first_cycle_insn_p)
+{
+ while (n_ready--)
+ {
+ rtx insn;
+ int insn_size;
+
+ if (ready_try[n_ready])
+ continue;
+
+ insn = get_ready_element (n_ready);
+ insn_size = min_insn_size (insn);
+
+ if (/* If this is a too long an insn for a secondary decoder ... */
+ (!first_cycle_insn_p
+ && insn_size > core2i7_secondary_decoder_max_insn_size)
+ /* ... or it would not fit into the ifetch block ... */
+ || data->ifetch_block_len + insn_size > core2i7_ifetch_block_size
+ /* ... or the decoder is full already ... */
+ || data->ifetch_block_n_insns + 1 > core2i7_ifetch_block_max_insns)
+ /* ... mask the insn out. */
+ {
+ ready_try[n_ready] = 1;
+
+ if (data->ready_try_change)
+ bitmap_set_bit (data->ready_try_change, n_ready);
+ }
+ }
+}
+
+/* Prepare for a new round of multipass lookahead scheduling. */
+static void
+core2i7_first_cycle_multipass_begin (void *_data, char *ready_try, int n_ready,
+ bool first_cycle_insn_p)
+{
+ ix86_first_cycle_multipass_data_t data
+ = (ix86_first_cycle_multipass_data_t) _data;
+ const_ix86_first_cycle_multipass_data_t prev_data
+ = ix86_first_cycle_multipass_data;
+
+ /* Restore the state from the end of the previous round. */
+ data->ifetch_block_len = prev_data->ifetch_block_len;
+ data->ifetch_block_n_insns = prev_data->ifetch_block_n_insns;
+
+ /* Filter instructions that cannot be issued on current cycle due to
+ decoder restrictions. */
+ core2i7_first_cycle_multipass_filter_ready_try (data, ready_try, n_ready,
+ first_cycle_insn_p);
+}
+
+/* INSN is being issued in current solution. Account for its impact on
+ the decoder model. */
+static void
+core2i7_first_cycle_multipass_issue (void *_data, char *ready_try, int n_ready,
+ rtx insn, const void *_prev_data)
+{
+ ix86_first_cycle_multipass_data_t data
+ = (ix86_first_cycle_multipass_data_t) _data;
+ const_ix86_first_cycle_multipass_data_t prev_data
+ = (const_ix86_first_cycle_multipass_data_t) _prev_data;
+
+ int insn_size = min_insn_size (insn);
+
+ data->ifetch_block_len = prev_data->ifetch_block_len + insn_size;
+ data->ifetch_block_n_insns = prev_data->ifetch_block_n_insns + 1;
+ gcc_assert (data->ifetch_block_len <= core2i7_ifetch_block_size
+ && data->ifetch_block_n_insns <= core2i7_ifetch_block_max_insns);
+
+ /* Allocate or resize the bitmap for storing INSN's effect on ready_try. */
+ if (!data->ready_try_change)
+ {
+ data->ready_try_change = sbitmap_alloc (n_ready);
+ data->ready_try_change_size = n_ready;
+ }
+ else if (data->ready_try_change_size < n_ready)
+ {
+ data->ready_try_change = sbitmap_resize (data->ready_try_change,
+ n_ready, 0);
+ data->ready_try_change_size = n_ready;
+ }
+ bitmap_clear (data->ready_try_change);
+
+ /* Filter out insns from ready_try that the core will not be able to issue
+ on current cycle due to decoder. */
+ core2i7_first_cycle_multipass_filter_ready_try (data, ready_try, n_ready,
+ false);
+}
+
+/* Revert the effect on ready_try. */
+static void
+core2i7_first_cycle_multipass_backtrack (const void *_data,
+ char *ready_try,
+ int n_ready ATTRIBUTE_UNUSED)
+{
+ const_ix86_first_cycle_multipass_data_t data
+ = (const_ix86_first_cycle_multipass_data_t) _data;
+ unsigned int i = 0;
+ sbitmap_iterator sbi;
+
+ gcc_assert (bitmap_last_set_bit (data->ready_try_change) < n_ready);
+ EXECUTE_IF_SET_IN_BITMAP (data->ready_try_change, 0, i, sbi)
+ {
+ ready_try[i] = 0;
+ }
+}
+
+/* Save the result of multipass lookahead scheduling for the next round. */
+static void
+core2i7_first_cycle_multipass_end (const void *_data)
+{
+ const_ix86_first_cycle_multipass_data_t data
+ = (const_ix86_first_cycle_multipass_data_t) _data;
+ ix86_first_cycle_multipass_data_t next_data
+ = ix86_first_cycle_multipass_data;
+
+ if (data != NULL)
+ {
+ next_data->ifetch_block_len = data->ifetch_block_len;
+ next_data->ifetch_block_n_insns = data->ifetch_block_n_insns;
+ }
+}
+
+/* Deallocate target data. */
+static void
+core2i7_first_cycle_multipass_fini (void *_data)
+{
+ ix86_first_cycle_multipass_data_t data
+ = (ix86_first_cycle_multipass_data_t) _data;
+
+ if (data->ready_try_change)
+ {
+ sbitmap_free (data->ready_try_change);
+ data->ready_try_change = NULL;
+ data->ready_try_change_size = 0;
+ }
+}
+
+/* Prepare for scheduling pass. */
+static void
+ix86_sched_init_global (FILE *dump ATTRIBUTE_UNUSED,
+ int verbose ATTRIBUTE_UNUSED,
+ int max_uid ATTRIBUTE_UNUSED)
+{
+ /* Install scheduling hooks for current CPU. Some of these hooks are used
+ in time-critical parts of the scheduler, so we only set them up when
+ they are actually used. */
+ switch (ix86_tune)
+ {
+ case PROCESSOR_CORE2:
+ case PROCESSOR_NEHALEM:
+ case PROCESSOR_SANDYBRIDGE:
+ case PROCESSOR_HASWELL:
+ /* Do not perform multipass scheduling for pre-reload schedule
+ to save compile time. */
+ if (reload_completed)
+ {
+ targetm.sched.dfa_post_advance_cycle
+ = core2i7_dfa_post_advance_cycle;
+ targetm.sched.first_cycle_multipass_init
+ = core2i7_first_cycle_multipass_init;
+ targetm.sched.first_cycle_multipass_begin
+ = core2i7_first_cycle_multipass_begin;
+ targetm.sched.first_cycle_multipass_issue
+ = core2i7_first_cycle_multipass_issue;
+ targetm.sched.first_cycle_multipass_backtrack
+ = core2i7_first_cycle_multipass_backtrack;
+ targetm.sched.first_cycle_multipass_end
+ = core2i7_first_cycle_multipass_end;
+ targetm.sched.first_cycle_multipass_fini
+ = core2i7_first_cycle_multipass_fini;
+
+ /* Set decoder parameters. */
+ core2i7_secondary_decoder_max_insn_size = 8;
+ core2i7_ifetch_block_size = 16;
+ core2i7_ifetch_block_max_insns = 6;
+ break;
+ }
+ /* ... Fall through ... */
+ default:
+ targetm.sched.dfa_post_advance_cycle = NULL;
+ targetm.sched.first_cycle_multipass_init = NULL;
+ targetm.sched.first_cycle_multipass_begin = NULL;
+ targetm.sched.first_cycle_multipass_issue = NULL;
+ targetm.sched.first_cycle_multipass_backtrack = NULL;
+ targetm.sched.first_cycle_multipass_end = NULL;
+ targetm.sched.first_cycle_multipass_fini = NULL;
+ break;
+ }
+}
+
+
+/* Compute the alignment given to a constant that is being placed in memory.
+ EXP is the constant and ALIGN is the alignment that the object would
+ ordinarily have.
+ The value of this function is used instead of that alignment to align
+ the object. */
+
+int
+ix86_constant_alignment (tree exp, int align)
+{
+ if (TREE_CODE (exp) == REAL_CST || TREE_CODE (exp) == VECTOR_CST
+ || TREE_CODE (exp) == INTEGER_CST)
+ {
+ if (TYPE_MODE (TREE_TYPE (exp)) == DFmode && align < 64)
+ return 64;
+ else if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (exp))) && align < 128)
+ return 128;
+ }
+ else if (!optimize_size && TREE_CODE (exp) == STRING_CST
+ && TREE_STRING_LENGTH (exp) >= 31 && align < BITS_PER_WORD)
+ return BITS_PER_WORD;
+
+ return align;
+}
+
+/* Compute the alignment for a static variable.
+ TYPE is the data type, and ALIGN is the alignment that
+ the object would ordinarily have. The value of this function is used
+ instead of that alignment to align the object. */
+
+int
+ix86_data_alignment (tree type, int align, bool opt)
+{
+ /* GCC 4.8 and earlier used to incorrectly assume this alignment even
+ for symbols from other compilation units or symbols that don't need
+ to bind locally. In order to preserve some ABI compatibility with
+ those compilers, ensure we don't decrease alignment from what we
+ used to assume. */
+
+ int max_align_compat
+ = optimize_size ? BITS_PER_WORD : MIN (256, MAX_OFILE_ALIGNMENT);
+
+ /* A data structure, equal or greater than the size of a cache line
+ (64 bytes in the Pentium 4 and other recent Intel processors, including
+ processors based on Intel Core microarchitecture) should be aligned
+ so that its base address is a multiple of a cache line size. */
+
+ int max_align
+ = MIN ((unsigned) ix86_tune_cost->prefetch_block * 8, MAX_OFILE_ALIGNMENT);
+
+ if (max_align < BITS_PER_WORD)
+ max_align = BITS_PER_WORD;
+
+ if (opt
+ && AGGREGATE_TYPE_P (type)
+ && TYPE_SIZE (type)
+ && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
+ {
+ if ((TREE_INT_CST_LOW (TYPE_SIZE (type)) >= (unsigned) max_align_compat
+ || TREE_INT_CST_HIGH (TYPE_SIZE (type)))
+ && align < max_align_compat)
+ align = max_align_compat;
+ if ((TREE_INT_CST_LOW (TYPE_SIZE (type)) >= (unsigned) max_align
+ || TREE_INT_CST_HIGH (TYPE_SIZE (type)))
+ && align < max_align)
+ align = max_align;
+ }
+
+ /* x86-64 ABI requires arrays greater than 16 bytes to be aligned
+ to 16byte boundary. */
+ if (TARGET_64BIT)
+ {
+ if ((opt ? AGGREGATE_TYPE_P (type) : TREE_CODE (type) == ARRAY_TYPE)
+ && TYPE_SIZE (type)
+ && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
+ && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 128
+ || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128)
+ return 128;
+ }
+
+ if (!opt)
+ return align;
+
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64)
+ return 64;
+ if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128)
+ return 128;
+ }
+ else if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+
+ if (TYPE_MODE (type) == DCmode && align < 64)
+ return 64;
+ if ((TYPE_MODE (type) == XCmode
+ || TYPE_MODE (type) == TCmode) && align < 128)
+ return 128;
+ }
+ else if ((TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE)
+ && TYPE_FIELDS (type))
+ {
+ if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64)
+ return 64;
+ if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128)
+ return 128;
+ }
+ else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE
+ || TREE_CODE (type) == INTEGER_TYPE)
+ {
+ if (TYPE_MODE (type) == DFmode && align < 64)
+ return 64;
+ if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128)
+ return 128;
+ }
+
+ return align;
+}
+
+/* Compute the alignment for a local variable or a stack slot. EXP is
+ the data type or decl itself, MODE is the widest mode available and
+ ALIGN is the alignment that the object would ordinarily have. The
+ value of this macro is used instead of that alignment to align the
+ object. */
+
+unsigned int
+ix86_local_alignment (tree exp, enum machine_mode mode,
+ unsigned int align)
+{
+ tree type, decl;
+
+ if (exp && DECL_P (exp))
+ {
+ type = TREE_TYPE (exp);
+ decl = exp;
+ }
+ else
+ {
+ type = exp;
+ decl = NULL;
+ }
+
+ /* Don't do dynamic stack realignment for long long objects with
+ -mpreferred-stack-boundary=2. */
+ if (!TARGET_64BIT
+ && align == 64
+ && ix86_preferred_stack_boundary < 64
+ && (mode == DImode || (type && TYPE_MODE (type) == DImode))
+ && (!type || !TYPE_USER_ALIGN (type))
+ && (!decl || !DECL_USER_ALIGN (decl)))
+ align = 32;
+
+ /* If TYPE is NULL, we are allocating a stack slot for caller-save
+ register in MODE. We will return the largest alignment of XF
+ and DF. */
+ if (!type)
+ {
+ if (mode == XFmode && align < GET_MODE_ALIGNMENT (DFmode))
+ align = GET_MODE_ALIGNMENT (DFmode);
+ return align;
+ }
+
+ /* x86-64 ABI requires arrays greater than 16 bytes to be aligned
+ to 16byte boundary. Exact wording is:
+
+ An array uses the same alignment as its elements, except that a local or
+ global array variable of length at least 16 bytes or
+ a C99 variable-length array variable always has alignment of at least 16 bytes.
+
+ This was added to allow use of aligned SSE instructions at arrays. This
+ rule is meant for static storage (where compiler can not do the analysis
+ by itself). We follow it for automatic variables only when convenient.
+ We fully control everything in the function compiled and functions from
+ other unit can not rely on the alignment.
+
+ Exclude va_list type. It is the common case of local array where
+ we can not benefit from the alignment.
+
+ TODO: Probably one should optimize for size only when var is not escaping. */
+ if (TARGET_64BIT && optimize_function_for_speed_p (cfun)
+ && TARGET_SSE)
+ {
+ if (AGGREGATE_TYPE_P (type)
+ && (va_list_type_node == NULL_TREE
+ || (TYPE_MAIN_VARIANT (type)
+ != TYPE_MAIN_VARIANT (va_list_type_node)))
+ && TYPE_SIZE (type)
+ && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
+ && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 16
+ || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128)
+ return 128;
+ }
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64)
+ return 64;
+ if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128)
+ return 128;
+ }
+ else if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+ if (TYPE_MODE (type) == DCmode && align < 64)
+ return 64;
+ if ((TYPE_MODE (type) == XCmode
+ || TYPE_MODE (type) == TCmode) && align < 128)
+ return 128;
+ }
+ else if ((TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE)
+ && TYPE_FIELDS (type))
+ {
+ if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64)
+ return 64;
+ if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128)
+ return 128;
+ }
+ else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE
+ || TREE_CODE (type) == INTEGER_TYPE)
+ {
+
+ if (TYPE_MODE (type) == DFmode && align < 64)
+ return 64;
+ if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128)
+ return 128;
+ }
+ return align;
+}
+
+/* Compute the minimum required alignment for dynamic stack realignment
+ purposes for a local variable, parameter or a stack slot. EXP is
+ the data type or decl itself, MODE is its mode and ALIGN is the
+ alignment that the object would ordinarily have. */
+
+unsigned int
+ix86_minimum_alignment (tree exp, enum machine_mode mode,
+ unsigned int align)
+{
+ tree type, decl;
+
+ if (exp && DECL_P (exp))
+ {
+ type = TREE_TYPE (exp);
+ decl = exp;
+ }
+ else
+ {
+ type = exp;
+ decl = NULL;
+ }
+
+ if (TARGET_64BIT || align != 64 || ix86_preferred_stack_boundary >= 64)
+ return align;
+
+ /* Don't do dynamic stack realignment for long long objects with
+ -mpreferred-stack-boundary=2. */
+ if ((mode == DImode || (type && TYPE_MODE (type) == DImode))
+ && (!type || !TYPE_USER_ALIGN (type))
+ && (!decl || !DECL_USER_ALIGN (decl)))
+ return 32;
+
+ return align;
+}
+
+/* Find a location for the static chain incoming to a nested function.
+ This is a register, unless all free registers are used by arguments. */
+
+static rtx
+ix86_static_chain (const_tree fndecl, bool incoming_p)
+{
+ unsigned regno;
+
+ if (!DECL_STATIC_CHAIN (fndecl))
+ return NULL;
+
+ if (TARGET_64BIT)
+ {
+ /* We always use R10 in 64-bit mode. */
+ regno = R10_REG;
+ }
+ else
+ {
+ tree fntype;
+ unsigned int ccvt;
+
+ /* By default in 32-bit mode we use ECX to pass the static chain. */
+ regno = CX_REG;
+
+ fntype = TREE_TYPE (fndecl);
+ ccvt = ix86_get_callcvt (fntype);
+ if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
+ {
+ /* Fastcall functions use ecx/edx for arguments, which leaves
+ us with EAX for the static chain.
+ Thiscall functions use ecx for arguments, which also
+ leaves us with EAX for the static chain. */
+ regno = AX_REG;
+ }
+ else if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
+ {
+ /* Thiscall functions use ecx for arguments, which leaves
+ us with EAX and EDX for the static chain.
+ We are using for abi-compatibility EAX. */
+ regno = AX_REG;
+ }
+ else if (ix86_function_regparm (fntype, fndecl) == 3)
+ {
+ /* For regparm 3, we have no free call-clobbered registers in
+ which to store the static chain. In order to implement this,
+ we have the trampoline push the static chain to the stack.
+ However, we can't push a value below the return address when
+ we call the nested function directly, so we have to use an
+ alternate entry point. For this we use ESI, and have the
+ alternate entry point push ESI, so that things appear the
+ same once we're executing the nested function. */
+ if (incoming_p)
+ {
+ if (fndecl == current_function_decl)
+ ix86_static_chain_on_stack = true;
+ return gen_frame_mem (SImode,
+ plus_constant (Pmode,
+ arg_pointer_rtx, -8));
+ }
+ regno = SI_REG;
+ }
+ }
+
+ return gen_rtx_REG (Pmode, regno);
+}
+
+/* Emit RTL insns to initialize the variable parts of a trampoline.
+ FNDECL is the decl of the target address; M_TRAMP is a MEM for
+ the trampoline, and CHAIN_VALUE is an RTX for the static chain
+ to be passed to the target function. */
+
+static void
+ix86_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
+{
+ rtx mem, fnaddr;
+ int opcode;
+ int offset = 0;
+
+ fnaddr = XEXP (DECL_RTL (fndecl), 0);
+
+ if (TARGET_64BIT)
+ {
+ int size;
+
+ /* Load the function address to r11. Try to load address using
+ the shorter movl instead of movabs. We may want to support
+ movq for kernel mode, but kernel does not use trampolines at
+ the moment. FNADDR is a 32bit address and may not be in
+ DImode when ptr_mode == SImode. Always use movl in this
+ case. */
+ if (ptr_mode == SImode
+ || x86_64_zext_immediate_operand (fnaddr, VOIDmode))
+ {
+ fnaddr = copy_addr_to_reg (fnaddr);
+
+ mem = adjust_address (m_tramp, HImode, offset);
+ emit_move_insn (mem, gen_int_mode (0xbb41, HImode));
+
+ mem = adjust_address (m_tramp, SImode, offset + 2);
+ emit_move_insn (mem, gen_lowpart (SImode, fnaddr));
+ offset += 6;
+ }
+ else
+ {
+ mem = adjust_address (m_tramp, HImode, offset);
+ emit_move_insn (mem, gen_int_mode (0xbb49, HImode));
+
+ mem = adjust_address (m_tramp, DImode, offset + 2);
+ emit_move_insn (mem, fnaddr);
+ offset += 10;
+ }
+
+ /* Load static chain using movabs to r10. Use the shorter movl
+ instead of movabs when ptr_mode == SImode. */
+ if (ptr_mode == SImode)
+ {
+ opcode = 0xba41;
+ size = 6;
+ }
+ else
+ {
+ opcode = 0xba49;
+ size = 10;
+ }
+
+ mem = adjust_address (m_tramp, HImode, offset);
+ emit_move_insn (mem, gen_int_mode (opcode, HImode));
+
+ mem = adjust_address (m_tramp, ptr_mode, offset + 2);
+ emit_move_insn (mem, chain_value);
+ offset += size;
+
+ /* Jump to r11; the last (unused) byte is a nop, only there to
+ pad the write out to a single 32-bit store. */
+ mem = adjust_address (m_tramp, SImode, offset);
+ emit_move_insn (mem, gen_int_mode (0x90e3ff49, SImode));
+ offset += 4;
+ }
+ else
+ {
+ rtx disp, chain;
+
+ /* Depending on the static chain location, either load a register
+ with a constant, or push the constant to the stack. All of the
+ instructions are the same size. */
+ chain = ix86_static_chain (fndecl, true);
+ if (REG_P (chain))
+ {
+ switch (REGNO (chain))
+ {
+ case AX_REG:
+ opcode = 0xb8; break;
+ case CX_REG:
+ opcode = 0xb9; break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+ else
+ opcode = 0x68;
+
+ mem = adjust_address (m_tramp, QImode, offset);
+ emit_move_insn (mem, gen_int_mode (opcode, QImode));
+
+ mem = adjust_address (m_tramp, SImode, offset + 1);
+ emit_move_insn (mem, chain_value);
+ offset += 5;
+
+ mem = adjust_address (m_tramp, QImode, offset);
+ emit_move_insn (mem, gen_int_mode (0xe9, QImode));
+
+ mem = adjust_address (m_tramp, SImode, offset + 1);
+
+ /* Compute offset from the end of the jmp to the target function.
+ In the case in which the trampoline stores the static chain on
+ the stack, we need to skip the first insn which pushes the
+ (call-saved) register static chain; this push is 1 byte. */
+ offset += 5;
+ disp = expand_binop (SImode, sub_optab, fnaddr,
+ plus_constant (Pmode, XEXP (m_tramp, 0),
+ offset - (MEM_P (chain) ? 1 : 0)),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ emit_move_insn (mem, disp);
+ }
+
+ gcc_assert (offset <= TRAMPOLINE_SIZE);
+
+#ifdef HAVE_ENABLE_EXECUTE_STACK
+#ifdef CHECK_EXECUTE_STACK_ENABLED
+ if (CHECK_EXECUTE_STACK_ENABLED)
+#endif
+ emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"),
+ LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode);
+#endif
+}
+
+/* The following file contains several enumerations and data structures
+ built from the definitions in i386-builtin-types.def. */
+
+#include "i386-builtin-types.inc"
+
+/* Table for the ix86 builtin non-function types. */
+static GTY(()) tree ix86_builtin_type_tab[(int) IX86_BT_LAST_CPTR + 1];
+
+/* Retrieve an element from the above table, building some of
+ the types lazily. */
+
+static tree
+ix86_get_builtin_type (enum ix86_builtin_type tcode)
+{
+ unsigned int index;
+ tree type, itype;
+
+ gcc_assert ((unsigned)tcode < ARRAY_SIZE(ix86_builtin_type_tab));
+
+ type = ix86_builtin_type_tab[(int) tcode];
+ if (type != NULL)
+ return type;
+
+ gcc_assert (tcode > IX86_BT_LAST_PRIM);
+ if (tcode <= IX86_BT_LAST_VECT)
+ {
+ enum machine_mode mode;
+
+ index = tcode - IX86_BT_LAST_PRIM - 1;
+ itype = ix86_get_builtin_type (ix86_builtin_type_vect_base[index]);
+ mode = ix86_builtin_type_vect_mode[index];
+
+ type = build_vector_type_for_mode (itype, mode);
+ }
+ else
+ {
+ int quals;
+
+ index = tcode - IX86_BT_LAST_VECT - 1;
+ if (tcode <= IX86_BT_LAST_PTR)
+ quals = TYPE_UNQUALIFIED;
+ else
+ quals = TYPE_QUAL_CONST;
+
+ itype = ix86_get_builtin_type (ix86_builtin_type_ptr_base[index]);
+ if (quals != TYPE_UNQUALIFIED)
+ itype = build_qualified_type (itype, quals);
+
+ type = build_pointer_type (itype);
+ }
+
+ ix86_builtin_type_tab[(int) tcode] = type;
+ return type;
+}
+
+/* Table for the ix86 builtin function types. */
+static GTY(()) tree ix86_builtin_func_type_tab[(int) IX86_BT_LAST_ALIAS + 1];
+
+/* Retrieve an element from the above table, building some of
+ the types lazily. */
+
+static tree
+ix86_get_builtin_func_type (enum ix86_builtin_func_type tcode)
+{
+ tree type;
+
+ gcc_assert ((unsigned)tcode < ARRAY_SIZE (ix86_builtin_func_type_tab));
+
+ type = ix86_builtin_func_type_tab[(int) tcode];
+ if (type != NULL)
+ return type;
+
+ if (tcode <= IX86_BT_LAST_FUNC)
+ {
+ unsigned start = ix86_builtin_func_start[(int) tcode];
+ unsigned after = ix86_builtin_func_start[(int) tcode + 1];
+ tree rtype, atype, args = void_list_node;
+ unsigned i;
+
+ rtype = ix86_get_builtin_type (ix86_builtin_func_args[start]);
+ for (i = after - 1; i > start; --i)
+ {
+ atype = ix86_get_builtin_type (ix86_builtin_func_args[i]);
+ args = tree_cons (NULL, atype, args);
+ }
+
+ type = build_function_type (rtype, args);
+ }
+ else
+ {
+ unsigned index = tcode - IX86_BT_LAST_FUNC - 1;
+ enum ix86_builtin_func_type icode;
+
+ icode = ix86_builtin_func_alias_base[index];
+ type = ix86_get_builtin_func_type (icode);
+ }
+
+ ix86_builtin_func_type_tab[(int) tcode] = type;
+ return type;
+}
+
+
+/* Codes for all the SSE/MMX builtins. */
+enum ix86_builtins
+{
+ IX86_BUILTIN_ADDPS,
+ IX86_BUILTIN_ADDSS,
+ IX86_BUILTIN_DIVPS,
+ IX86_BUILTIN_DIVSS,
+ IX86_BUILTIN_MULPS,
+ IX86_BUILTIN_MULSS,
+ IX86_BUILTIN_SUBPS,
+ IX86_BUILTIN_SUBSS,
+
+ IX86_BUILTIN_CMPEQPS,
+ IX86_BUILTIN_CMPLTPS,
+ IX86_BUILTIN_CMPLEPS,
+ IX86_BUILTIN_CMPGTPS,
+ IX86_BUILTIN_CMPGEPS,
+ IX86_BUILTIN_CMPNEQPS,
+ IX86_BUILTIN_CMPNLTPS,
+ IX86_BUILTIN_CMPNLEPS,
+ IX86_BUILTIN_CMPNGTPS,
+ IX86_BUILTIN_CMPNGEPS,
+ IX86_BUILTIN_CMPORDPS,
+ IX86_BUILTIN_CMPUNORDPS,
+ IX86_BUILTIN_CMPEQSS,
+ IX86_BUILTIN_CMPLTSS,
+ IX86_BUILTIN_CMPLESS,
+ IX86_BUILTIN_CMPNEQSS,
+ IX86_BUILTIN_CMPNLTSS,
+ IX86_BUILTIN_CMPNLESS,
+ IX86_BUILTIN_CMPORDSS,
+ IX86_BUILTIN_CMPUNORDSS,
+
+ IX86_BUILTIN_COMIEQSS,
+ IX86_BUILTIN_COMILTSS,
+ IX86_BUILTIN_COMILESS,
+ IX86_BUILTIN_COMIGTSS,
+ IX86_BUILTIN_COMIGESS,
+ IX86_BUILTIN_COMINEQSS,
+ IX86_BUILTIN_UCOMIEQSS,
+ IX86_BUILTIN_UCOMILTSS,
+ IX86_BUILTIN_UCOMILESS,
+ IX86_BUILTIN_UCOMIGTSS,
+ IX86_BUILTIN_UCOMIGESS,
+ IX86_BUILTIN_UCOMINEQSS,
+
+ IX86_BUILTIN_CVTPI2PS,
+ IX86_BUILTIN_CVTPS2PI,
+ IX86_BUILTIN_CVTSI2SS,
+ IX86_BUILTIN_CVTSI642SS,
+ IX86_BUILTIN_CVTSS2SI,
+ IX86_BUILTIN_CVTSS2SI64,
+ IX86_BUILTIN_CVTTPS2PI,
+ IX86_BUILTIN_CVTTSS2SI,
+ IX86_BUILTIN_CVTTSS2SI64,
+
+ IX86_BUILTIN_MAXPS,
+ IX86_BUILTIN_MAXSS,
+ IX86_BUILTIN_MINPS,
+ IX86_BUILTIN_MINSS,
+
+ IX86_BUILTIN_LOADUPS,
+ IX86_BUILTIN_STOREUPS,
+ IX86_BUILTIN_MOVSS,
+
+ IX86_BUILTIN_MOVHLPS,
+ IX86_BUILTIN_MOVLHPS,
+ IX86_BUILTIN_LOADHPS,
+ IX86_BUILTIN_LOADLPS,
+ IX86_BUILTIN_STOREHPS,
+ IX86_BUILTIN_STORELPS,
+
+ IX86_BUILTIN_MASKMOVQ,
+ IX86_BUILTIN_MOVMSKPS,
+ IX86_BUILTIN_PMOVMSKB,
+
+ IX86_BUILTIN_MOVNTPS,
+ IX86_BUILTIN_MOVNTQ,
+
+ IX86_BUILTIN_LOADDQU,
+ IX86_BUILTIN_STOREDQU,
+
+ IX86_BUILTIN_PACKSSWB,
+ IX86_BUILTIN_PACKSSDW,
+ IX86_BUILTIN_PACKUSWB,
+
+ IX86_BUILTIN_PADDB,
+ IX86_BUILTIN_PADDW,
+ IX86_BUILTIN_PADDD,
+ IX86_BUILTIN_PADDQ,
+ IX86_BUILTIN_PADDSB,
+ IX86_BUILTIN_PADDSW,
+ IX86_BUILTIN_PADDUSB,
+ IX86_BUILTIN_PADDUSW,
+ IX86_BUILTIN_PSUBB,
+ IX86_BUILTIN_PSUBW,
+ IX86_BUILTIN_PSUBD,
+ IX86_BUILTIN_PSUBQ,
+ IX86_BUILTIN_PSUBSB,
+ IX86_BUILTIN_PSUBSW,
+ IX86_BUILTIN_PSUBUSB,
+ IX86_BUILTIN_PSUBUSW,
+
+ IX86_BUILTIN_PAND,
+ IX86_BUILTIN_PANDN,
+ IX86_BUILTIN_POR,
+ IX86_BUILTIN_PXOR,
+
+ IX86_BUILTIN_PAVGB,
+ IX86_BUILTIN_PAVGW,
+
+ IX86_BUILTIN_PCMPEQB,
+ IX86_BUILTIN_PCMPEQW,
+ IX86_BUILTIN_PCMPEQD,
+ IX86_BUILTIN_PCMPGTB,
+ IX86_BUILTIN_PCMPGTW,
+ IX86_BUILTIN_PCMPGTD,
+
+ IX86_BUILTIN_PMADDWD,
+
+ IX86_BUILTIN_PMAXSW,
+ IX86_BUILTIN_PMAXUB,
+ IX86_BUILTIN_PMINSW,
+ IX86_BUILTIN_PMINUB,
+
+ IX86_BUILTIN_PMULHUW,
+ IX86_BUILTIN_PMULHW,
+ IX86_BUILTIN_PMULLW,
+
+ IX86_BUILTIN_PSADBW,
+ IX86_BUILTIN_PSHUFW,
+
+ IX86_BUILTIN_PSLLW,
+ IX86_BUILTIN_PSLLD,
+ IX86_BUILTIN_PSLLQ,
+ IX86_BUILTIN_PSRAW,
+ IX86_BUILTIN_PSRAD,
+ IX86_BUILTIN_PSRLW,
+ IX86_BUILTIN_PSRLD,
+ IX86_BUILTIN_PSRLQ,
+ IX86_BUILTIN_PSLLWI,
+ IX86_BUILTIN_PSLLDI,
+ IX86_BUILTIN_PSLLQI,
+ IX86_BUILTIN_PSRAWI,
+ IX86_BUILTIN_PSRADI,
+ IX86_BUILTIN_PSRLWI,
+ IX86_BUILTIN_PSRLDI,
+ IX86_BUILTIN_PSRLQI,
+
+ IX86_BUILTIN_PUNPCKHBW,
+ IX86_BUILTIN_PUNPCKHWD,
+ IX86_BUILTIN_PUNPCKHDQ,
+ IX86_BUILTIN_PUNPCKLBW,
+ IX86_BUILTIN_PUNPCKLWD,
+ IX86_BUILTIN_PUNPCKLDQ,
+
+ IX86_BUILTIN_SHUFPS,
+
+ IX86_BUILTIN_RCPPS,
+ IX86_BUILTIN_RCPSS,
+ IX86_BUILTIN_RSQRTPS,
+ IX86_BUILTIN_RSQRTPS_NR,
+ IX86_BUILTIN_RSQRTSS,
+ IX86_BUILTIN_RSQRTF,
+ IX86_BUILTIN_SQRTPS,
+ IX86_BUILTIN_SQRTPS_NR,
+ IX86_BUILTIN_SQRTSS,
+
+ IX86_BUILTIN_UNPCKHPS,
+ IX86_BUILTIN_UNPCKLPS,
+
+ IX86_BUILTIN_ANDPS,
+ IX86_BUILTIN_ANDNPS,
+ IX86_BUILTIN_ORPS,
+ IX86_BUILTIN_XORPS,
+
+ IX86_BUILTIN_EMMS,
+ IX86_BUILTIN_LDMXCSR,
+ IX86_BUILTIN_STMXCSR,
+ IX86_BUILTIN_SFENCE,
+
+ IX86_BUILTIN_FXSAVE,
+ IX86_BUILTIN_FXRSTOR,
+ IX86_BUILTIN_FXSAVE64,
+ IX86_BUILTIN_FXRSTOR64,
+
+ IX86_BUILTIN_XSAVE,
+ IX86_BUILTIN_XRSTOR,
+ IX86_BUILTIN_XSAVE64,
+ IX86_BUILTIN_XRSTOR64,
+
+ IX86_BUILTIN_XSAVEOPT,
+ IX86_BUILTIN_XSAVEOPT64,
+
+ /* 3DNow! Original */
+ IX86_BUILTIN_FEMMS,
+ IX86_BUILTIN_PAVGUSB,
+ IX86_BUILTIN_PF2ID,
+ IX86_BUILTIN_PFACC,
+ IX86_BUILTIN_PFADD,
+ IX86_BUILTIN_PFCMPEQ,
+ IX86_BUILTIN_PFCMPGE,
+ IX86_BUILTIN_PFCMPGT,
+ IX86_BUILTIN_PFMAX,
+ IX86_BUILTIN_PFMIN,
+ IX86_BUILTIN_PFMUL,
+ IX86_BUILTIN_PFRCP,
+ IX86_BUILTIN_PFRCPIT1,
+ IX86_BUILTIN_PFRCPIT2,
+ IX86_BUILTIN_PFRSQIT1,
+ IX86_BUILTIN_PFRSQRT,
+ IX86_BUILTIN_PFSUB,
+ IX86_BUILTIN_PFSUBR,
+ IX86_BUILTIN_PI2FD,
+ IX86_BUILTIN_PMULHRW,
+
+ /* 3DNow! Athlon Extensions */
+ IX86_BUILTIN_PF2IW,
+ IX86_BUILTIN_PFNACC,
+ IX86_BUILTIN_PFPNACC,
+ IX86_BUILTIN_PI2FW,
+ IX86_BUILTIN_PSWAPDSI,
+ IX86_BUILTIN_PSWAPDSF,
+
+ /* SSE2 */
+ IX86_BUILTIN_ADDPD,
+ IX86_BUILTIN_ADDSD,
+ IX86_BUILTIN_DIVPD,
+ IX86_BUILTIN_DIVSD,
+ IX86_BUILTIN_MULPD,
+ IX86_BUILTIN_MULSD,
+ IX86_BUILTIN_SUBPD,
+ IX86_BUILTIN_SUBSD,
+
+ IX86_BUILTIN_CMPEQPD,
+ IX86_BUILTIN_CMPLTPD,
+ IX86_BUILTIN_CMPLEPD,
+ IX86_BUILTIN_CMPGTPD,
+ IX86_BUILTIN_CMPGEPD,
+ IX86_BUILTIN_CMPNEQPD,
+ IX86_BUILTIN_CMPNLTPD,
+ IX86_BUILTIN_CMPNLEPD,
+ IX86_BUILTIN_CMPNGTPD,
+ IX86_BUILTIN_CMPNGEPD,
+ IX86_BUILTIN_CMPORDPD,
+ IX86_BUILTIN_CMPUNORDPD,
+ IX86_BUILTIN_CMPEQSD,
+ IX86_BUILTIN_CMPLTSD,
+ IX86_BUILTIN_CMPLESD,
+ IX86_BUILTIN_CMPNEQSD,
+ IX86_BUILTIN_CMPNLTSD,
+ IX86_BUILTIN_CMPNLESD,
+ IX86_BUILTIN_CMPORDSD,
+ IX86_BUILTIN_CMPUNORDSD,
+
+ IX86_BUILTIN_COMIEQSD,
+ IX86_BUILTIN_COMILTSD,
+ IX86_BUILTIN_COMILESD,
+ IX86_BUILTIN_COMIGTSD,
+ IX86_BUILTIN_COMIGESD,
+ IX86_BUILTIN_COMINEQSD,
+ IX86_BUILTIN_UCOMIEQSD,
+ IX86_BUILTIN_UCOMILTSD,
+ IX86_BUILTIN_UCOMILESD,
+ IX86_BUILTIN_UCOMIGTSD,
+ IX86_BUILTIN_UCOMIGESD,
+ IX86_BUILTIN_UCOMINEQSD,
+
+ IX86_BUILTIN_MAXPD,
+ IX86_BUILTIN_MAXSD,
+ IX86_BUILTIN_MINPD,
+ IX86_BUILTIN_MINSD,
+
+ IX86_BUILTIN_ANDPD,
+ IX86_BUILTIN_ANDNPD,
+ IX86_BUILTIN_ORPD,
+ IX86_BUILTIN_XORPD,
+
+ IX86_BUILTIN_SQRTPD,
+ IX86_BUILTIN_SQRTSD,
+
+ IX86_BUILTIN_UNPCKHPD,
+ IX86_BUILTIN_UNPCKLPD,
+
+ IX86_BUILTIN_SHUFPD,
+
+ IX86_BUILTIN_LOADUPD,
+ IX86_BUILTIN_STOREUPD,
+ IX86_BUILTIN_MOVSD,
+
+ IX86_BUILTIN_LOADHPD,
+ IX86_BUILTIN_LOADLPD,
+
+ IX86_BUILTIN_CVTDQ2PD,
+ IX86_BUILTIN_CVTDQ2PS,
+
+ IX86_BUILTIN_CVTPD2DQ,
+ IX86_BUILTIN_CVTPD2PI,
+ IX86_BUILTIN_CVTPD2PS,
+ IX86_BUILTIN_CVTTPD2DQ,
+ IX86_BUILTIN_CVTTPD2PI,
+
+ IX86_BUILTIN_CVTPI2PD,
+ IX86_BUILTIN_CVTSI2SD,
+ IX86_BUILTIN_CVTSI642SD,
+
+ IX86_BUILTIN_CVTSD2SI,
+ IX86_BUILTIN_CVTSD2SI64,
+ IX86_BUILTIN_CVTSD2SS,
+ IX86_BUILTIN_CVTSS2SD,
+ IX86_BUILTIN_CVTTSD2SI,
+ IX86_BUILTIN_CVTTSD2SI64,
+
+ IX86_BUILTIN_CVTPS2DQ,
+ IX86_BUILTIN_CVTPS2PD,
+ IX86_BUILTIN_CVTTPS2DQ,
+
+ IX86_BUILTIN_MOVNTI,
+ IX86_BUILTIN_MOVNTI64,
+ IX86_BUILTIN_MOVNTPD,
+ IX86_BUILTIN_MOVNTDQ,
+
+ IX86_BUILTIN_MOVQ128,
+
+ /* SSE2 MMX */
+ IX86_BUILTIN_MASKMOVDQU,
+ IX86_BUILTIN_MOVMSKPD,
+ IX86_BUILTIN_PMOVMSKB128,
+
+ IX86_BUILTIN_PACKSSWB128,
+ IX86_BUILTIN_PACKSSDW128,
+ IX86_BUILTIN_PACKUSWB128,
+
+ IX86_BUILTIN_PADDB128,
+ IX86_BUILTIN_PADDW128,
+ IX86_BUILTIN_PADDD128,
+ IX86_BUILTIN_PADDQ128,
+ IX86_BUILTIN_PADDSB128,
+ IX86_BUILTIN_PADDSW128,
+ IX86_BUILTIN_PADDUSB128,
+ IX86_BUILTIN_PADDUSW128,
+ IX86_BUILTIN_PSUBB128,
+ IX86_BUILTIN_PSUBW128,
+ IX86_BUILTIN_PSUBD128,
+ IX86_BUILTIN_PSUBQ128,
+ IX86_BUILTIN_PSUBSB128,
+ IX86_BUILTIN_PSUBSW128,
+ IX86_BUILTIN_PSUBUSB128,
+ IX86_BUILTIN_PSUBUSW128,
+
+ IX86_BUILTIN_PAND128,
+ IX86_BUILTIN_PANDN128,
+ IX86_BUILTIN_POR128,
+ IX86_BUILTIN_PXOR128,
+
+ IX86_BUILTIN_PAVGB128,
+ IX86_BUILTIN_PAVGW128,
+
+ IX86_BUILTIN_PCMPEQB128,
+ IX86_BUILTIN_PCMPEQW128,
+ IX86_BUILTIN_PCMPEQD128,
+ IX86_BUILTIN_PCMPGTB128,
+ IX86_BUILTIN_PCMPGTW128,
+ IX86_BUILTIN_PCMPGTD128,
+
+ IX86_BUILTIN_PMADDWD128,
+
+ IX86_BUILTIN_PMAXSW128,
+ IX86_BUILTIN_PMAXUB128,
+ IX86_BUILTIN_PMINSW128,
+ IX86_BUILTIN_PMINUB128,
+
+ IX86_BUILTIN_PMULUDQ,
+ IX86_BUILTIN_PMULUDQ128,
+ IX86_BUILTIN_PMULHUW128,
+ IX86_BUILTIN_PMULHW128,
+ IX86_BUILTIN_PMULLW128,
+
+ IX86_BUILTIN_PSADBW128,
+ IX86_BUILTIN_PSHUFHW,
+ IX86_BUILTIN_PSHUFLW,
+ IX86_BUILTIN_PSHUFD,
+
+ IX86_BUILTIN_PSLLDQI128,
+ IX86_BUILTIN_PSLLWI128,
+ IX86_BUILTIN_PSLLDI128,
+ IX86_BUILTIN_PSLLQI128,
+ IX86_BUILTIN_PSRAWI128,
+ IX86_BUILTIN_PSRADI128,
+ IX86_BUILTIN_PSRLDQI128,
+ IX86_BUILTIN_PSRLWI128,
+ IX86_BUILTIN_PSRLDI128,
+ IX86_BUILTIN_PSRLQI128,
+
+ IX86_BUILTIN_PSLLDQ128,
+ IX86_BUILTIN_PSLLW128,
+ IX86_BUILTIN_PSLLD128,
+ IX86_BUILTIN_PSLLQ128,
+ IX86_BUILTIN_PSRAW128,
+ IX86_BUILTIN_PSRAD128,
+ IX86_BUILTIN_PSRLW128,
+ IX86_BUILTIN_PSRLD128,
+ IX86_BUILTIN_PSRLQ128,
+
+ IX86_BUILTIN_PUNPCKHBW128,
+ IX86_BUILTIN_PUNPCKHWD128,
+ IX86_BUILTIN_PUNPCKHDQ128,
+ IX86_BUILTIN_PUNPCKHQDQ128,
+ IX86_BUILTIN_PUNPCKLBW128,
+ IX86_BUILTIN_PUNPCKLWD128,
+ IX86_BUILTIN_PUNPCKLDQ128,
+ IX86_BUILTIN_PUNPCKLQDQ128,
+
+ IX86_BUILTIN_CLFLUSH,
+ IX86_BUILTIN_MFENCE,
+ IX86_BUILTIN_LFENCE,
+ IX86_BUILTIN_PAUSE,
+
+ IX86_BUILTIN_FNSTENV,
+ IX86_BUILTIN_FLDENV,
+ IX86_BUILTIN_FNSTSW,
+ IX86_BUILTIN_FNCLEX,
+
+ IX86_BUILTIN_BSRSI,
+ IX86_BUILTIN_BSRDI,
+ IX86_BUILTIN_RDPMC,
+ IX86_BUILTIN_RDTSC,
+ IX86_BUILTIN_RDTSCP,
+ IX86_BUILTIN_ROLQI,
+ IX86_BUILTIN_ROLHI,
+ IX86_BUILTIN_RORQI,
+ IX86_BUILTIN_RORHI,
+
+ /* SSE3. */
+ IX86_BUILTIN_ADDSUBPS,
+ IX86_BUILTIN_HADDPS,
+ IX86_BUILTIN_HSUBPS,
+ IX86_BUILTIN_MOVSHDUP,
+ IX86_BUILTIN_MOVSLDUP,
+ IX86_BUILTIN_ADDSUBPD,
+ IX86_BUILTIN_HADDPD,
+ IX86_BUILTIN_HSUBPD,
+ IX86_BUILTIN_LDDQU,
+
+ IX86_BUILTIN_MONITOR,
+ IX86_BUILTIN_MWAIT,
+
+ /* SSSE3. */
+ IX86_BUILTIN_PHADDW,
+ IX86_BUILTIN_PHADDD,
+ IX86_BUILTIN_PHADDSW,
+ IX86_BUILTIN_PHSUBW,
+ IX86_BUILTIN_PHSUBD,
+ IX86_BUILTIN_PHSUBSW,
+ IX86_BUILTIN_PMADDUBSW,
+ IX86_BUILTIN_PMULHRSW,
+ IX86_BUILTIN_PSHUFB,
+ IX86_BUILTIN_PSIGNB,
+ IX86_BUILTIN_PSIGNW,
+ IX86_BUILTIN_PSIGND,
+ IX86_BUILTIN_PALIGNR,
+ IX86_BUILTIN_PABSB,
+ IX86_BUILTIN_PABSW,
+ IX86_BUILTIN_PABSD,
+
+ IX86_BUILTIN_PHADDW128,
+ IX86_BUILTIN_PHADDD128,
+ IX86_BUILTIN_PHADDSW128,
+ IX86_BUILTIN_PHSUBW128,
+ IX86_BUILTIN_PHSUBD128,
+ IX86_BUILTIN_PHSUBSW128,
+ IX86_BUILTIN_PMADDUBSW128,
+ IX86_BUILTIN_PMULHRSW128,
+ IX86_BUILTIN_PSHUFB128,
+ IX86_BUILTIN_PSIGNB128,
+ IX86_BUILTIN_PSIGNW128,
+ IX86_BUILTIN_PSIGND128,
+ IX86_BUILTIN_PALIGNR128,
+ IX86_BUILTIN_PABSB128,
+ IX86_BUILTIN_PABSW128,
+ IX86_BUILTIN_PABSD128,
+
+ /* AMDFAM10 - SSE4A New Instructions. */
+ IX86_BUILTIN_MOVNTSD,
+ IX86_BUILTIN_MOVNTSS,
+ IX86_BUILTIN_EXTRQI,
+ IX86_BUILTIN_EXTRQ,
+ IX86_BUILTIN_INSERTQI,
+ IX86_BUILTIN_INSERTQ,
+
+ /* SSE4.1. */
+ IX86_BUILTIN_BLENDPD,
+ IX86_BUILTIN_BLENDPS,
+ IX86_BUILTIN_BLENDVPD,
+ IX86_BUILTIN_BLENDVPS,
+ IX86_BUILTIN_PBLENDVB128,
+ IX86_BUILTIN_PBLENDW128,
+
+ IX86_BUILTIN_DPPD,
+ IX86_BUILTIN_DPPS,
+
+ IX86_BUILTIN_INSERTPS128,
+
+ IX86_BUILTIN_MOVNTDQA,
+ IX86_BUILTIN_MPSADBW128,
+ IX86_BUILTIN_PACKUSDW128,
+ IX86_BUILTIN_PCMPEQQ,
+ IX86_BUILTIN_PHMINPOSUW128,
+
+ IX86_BUILTIN_PMAXSB128,
+ IX86_BUILTIN_PMAXSD128,
+ IX86_BUILTIN_PMAXUD128,
+ IX86_BUILTIN_PMAXUW128,
+
+ IX86_BUILTIN_PMINSB128,
+ IX86_BUILTIN_PMINSD128,
+ IX86_BUILTIN_PMINUD128,
+ IX86_BUILTIN_PMINUW128,
+
+ IX86_BUILTIN_PMOVSXBW128,
+ IX86_BUILTIN_PMOVSXBD128,
+ IX86_BUILTIN_PMOVSXBQ128,
+ IX86_BUILTIN_PMOVSXWD128,
+ IX86_BUILTIN_PMOVSXWQ128,
+ IX86_BUILTIN_PMOVSXDQ128,
+
+ IX86_BUILTIN_PMOVZXBW128,
+ IX86_BUILTIN_PMOVZXBD128,
+ IX86_BUILTIN_PMOVZXBQ128,
+ IX86_BUILTIN_PMOVZXWD128,
+ IX86_BUILTIN_PMOVZXWQ128,
+ IX86_BUILTIN_PMOVZXDQ128,
+
+ IX86_BUILTIN_PMULDQ128,
+ IX86_BUILTIN_PMULLD128,
+
+ IX86_BUILTIN_ROUNDSD,
+ IX86_BUILTIN_ROUNDSS,
+
+ IX86_BUILTIN_ROUNDPD,
+ IX86_BUILTIN_ROUNDPS,
+
+ IX86_BUILTIN_FLOORPD,
+ IX86_BUILTIN_CEILPD,
+ IX86_BUILTIN_TRUNCPD,
+ IX86_BUILTIN_RINTPD,
+ IX86_BUILTIN_ROUNDPD_AZ,
+
+ IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX,
+ IX86_BUILTIN_CEILPD_VEC_PACK_SFIX,
+ IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX,
+
+ IX86_BUILTIN_FLOORPS,
+ IX86_BUILTIN_CEILPS,
+ IX86_BUILTIN_TRUNCPS,
+ IX86_BUILTIN_RINTPS,
+ IX86_BUILTIN_ROUNDPS_AZ,
+
+ IX86_BUILTIN_FLOORPS_SFIX,
+ IX86_BUILTIN_CEILPS_SFIX,
+ IX86_BUILTIN_ROUNDPS_AZ_SFIX,
+
+ IX86_BUILTIN_PTESTZ,
+ IX86_BUILTIN_PTESTC,
+ IX86_BUILTIN_PTESTNZC,
+
+ IX86_BUILTIN_VEC_INIT_V2SI,
+ IX86_BUILTIN_VEC_INIT_V4HI,
+ IX86_BUILTIN_VEC_INIT_V8QI,
+ IX86_BUILTIN_VEC_EXT_V2DF,
+ IX86_BUILTIN_VEC_EXT_V2DI,
+ IX86_BUILTIN_VEC_EXT_V4SF,
+ IX86_BUILTIN_VEC_EXT_V4SI,
+ IX86_BUILTIN_VEC_EXT_V8HI,
+ IX86_BUILTIN_VEC_EXT_V2SI,
+ IX86_BUILTIN_VEC_EXT_V4HI,
+ IX86_BUILTIN_VEC_EXT_V16QI,
+ IX86_BUILTIN_VEC_SET_V2DI,
+ IX86_BUILTIN_VEC_SET_V4SF,
+ IX86_BUILTIN_VEC_SET_V4SI,
+ IX86_BUILTIN_VEC_SET_V8HI,
+ IX86_BUILTIN_VEC_SET_V4HI,
+ IX86_BUILTIN_VEC_SET_V16QI,
+
+ IX86_BUILTIN_VEC_PACK_SFIX,
+ IX86_BUILTIN_VEC_PACK_SFIX256,
+
+ /* SSE4.2. */
+ IX86_BUILTIN_CRC32QI,
+ IX86_BUILTIN_CRC32HI,
+ IX86_BUILTIN_CRC32SI,
+ IX86_BUILTIN_CRC32DI,
+
+ IX86_BUILTIN_PCMPESTRI128,
+ IX86_BUILTIN_PCMPESTRM128,
+ IX86_BUILTIN_PCMPESTRA128,
+ IX86_BUILTIN_PCMPESTRC128,
+ IX86_BUILTIN_PCMPESTRO128,
+ IX86_BUILTIN_PCMPESTRS128,
+ IX86_BUILTIN_PCMPESTRZ128,
+ IX86_BUILTIN_PCMPISTRI128,
+ IX86_BUILTIN_PCMPISTRM128,
+ IX86_BUILTIN_PCMPISTRA128,
+ IX86_BUILTIN_PCMPISTRC128,
+ IX86_BUILTIN_PCMPISTRO128,
+ IX86_BUILTIN_PCMPISTRS128,
+ IX86_BUILTIN_PCMPISTRZ128,
+
+ IX86_BUILTIN_PCMPGTQ,
+
+ /* AES instructions */
+ IX86_BUILTIN_AESENC128,
+ IX86_BUILTIN_AESENCLAST128,
+ IX86_BUILTIN_AESDEC128,
+ IX86_BUILTIN_AESDECLAST128,
+ IX86_BUILTIN_AESIMC128,
+ IX86_BUILTIN_AESKEYGENASSIST128,
+
+ /* PCLMUL instruction */
+ IX86_BUILTIN_PCLMULQDQ128,
+
+ /* AVX */
+ IX86_BUILTIN_ADDPD256,
+ IX86_BUILTIN_ADDPS256,
+ IX86_BUILTIN_ADDSUBPD256,
+ IX86_BUILTIN_ADDSUBPS256,
+ IX86_BUILTIN_ANDPD256,
+ IX86_BUILTIN_ANDPS256,
+ IX86_BUILTIN_ANDNPD256,
+ IX86_BUILTIN_ANDNPS256,
+ IX86_BUILTIN_BLENDPD256,
+ IX86_BUILTIN_BLENDPS256,
+ IX86_BUILTIN_BLENDVPD256,
+ IX86_BUILTIN_BLENDVPS256,
+ IX86_BUILTIN_DIVPD256,
+ IX86_BUILTIN_DIVPS256,
+ IX86_BUILTIN_DPPS256,
+ IX86_BUILTIN_HADDPD256,
+ IX86_BUILTIN_HADDPS256,
+ IX86_BUILTIN_HSUBPD256,
+ IX86_BUILTIN_HSUBPS256,
+ IX86_BUILTIN_MAXPD256,
+ IX86_BUILTIN_MAXPS256,
+ IX86_BUILTIN_MINPD256,
+ IX86_BUILTIN_MINPS256,
+ IX86_BUILTIN_MULPD256,
+ IX86_BUILTIN_MULPS256,
+ IX86_BUILTIN_ORPD256,
+ IX86_BUILTIN_ORPS256,
+ IX86_BUILTIN_SHUFPD256,
+ IX86_BUILTIN_SHUFPS256,
+ IX86_BUILTIN_SUBPD256,
+ IX86_BUILTIN_SUBPS256,
+ IX86_BUILTIN_XORPD256,
+ IX86_BUILTIN_XORPS256,
+ IX86_BUILTIN_CMPSD,
+ IX86_BUILTIN_CMPSS,
+ IX86_BUILTIN_CMPPD,
+ IX86_BUILTIN_CMPPS,
+ IX86_BUILTIN_CMPPD256,
+ IX86_BUILTIN_CMPPS256,
+ IX86_BUILTIN_CVTDQ2PD256,
+ IX86_BUILTIN_CVTDQ2PS256,
+ IX86_BUILTIN_CVTPD2PS256,
+ IX86_BUILTIN_CVTPS2DQ256,
+ IX86_BUILTIN_CVTPS2PD256,
+ IX86_BUILTIN_CVTTPD2DQ256,
+ IX86_BUILTIN_CVTPD2DQ256,
+ IX86_BUILTIN_CVTTPS2DQ256,
+ IX86_BUILTIN_EXTRACTF128PD256,
+ IX86_BUILTIN_EXTRACTF128PS256,
+ IX86_BUILTIN_EXTRACTF128SI256,
+ IX86_BUILTIN_VZEROALL,
+ IX86_BUILTIN_VZEROUPPER,
+ IX86_BUILTIN_VPERMILVARPD,
+ IX86_BUILTIN_VPERMILVARPS,
+ IX86_BUILTIN_VPERMILVARPD256,
+ IX86_BUILTIN_VPERMILVARPS256,
+ IX86_BUILTIN_VPERMILPD,
+ IX86_BUILTIN_VPERMILPS,
+ IX86_BUILTIN_VPERMILPD256,
+ IX86_BUILTIN_VPERMILPS256,
+ IX86_BUILTIN_VPERMIL2PD,
+ IX86_BUILTIN_VPERMIL2PS,
+ IX86_BUILTIN_VPERMIL2PD256,
+ IX86_BUILTIN_VPERMIL2PS256,
+ IX86_BUILTIN_VPERM2F128PD256,
+ IX86_BUILTIN_VPERM2F128PS256,
+ IX86_BUILTIN_VPERM2F128SI256,
+ IX86_BUILTIN_VBROADCASTSS,
+ IX86_BUILTIN_VBROADCASTSD256,
+ IX86_BUILTIN_VBROADCASTSS256,
+ IX86_BUILTIN_VBROADCASTPD256,
+ IX86_BUILTIN_VBROADCASTPS256,
+ IX86_BUILTIN_VINSERTF128PD256,
+ IX86_BUILTIN_VINSERTF128PS256,
+ IX86_BUILTIN_VINSERTF128SI256,
+ IX86_BUILTIN_LOADUPD256,
+ IX86_BUILTIN_LOADUPS256,
+ IX86_BUILTIN_STOREUPD256,
+ IX86_BUILTIN_STOREUPS256,
+ IX86_BUILTIN_LDDQU256,
+ IX86_BUILTIN_MOVNTDQ256,
+ IX86_BUILTIN_MOVNTPD256,
+ IX86_BUILTIN_MOVNTPS256,
+ IX86_BUILTIN_LOADDQU256,
+ IX86_BUILTIN_STOREDQU256,
+ IX86_BUILTIN_MASKLOADPD,
+ IX86_BUILTIN_MASKLOADPS,
+ IX86_BUILTIN_MASKSTOREPD,
+ IX86_BUILTIN_MASKSTOREPS,
+ IX86_BUILTIN_MASKLOADPD256,
+ IX86_BUILTIN_MASKLOADPS256,
+ IX86_BUILTIN_MASKSTOREPD256,
+ IX86_BUILTIN_MASKSTOREPS256,
+ IX86_BUILTIN_MOVSHDUP256,
+ IX86_BUILTIN_MOVSLDUP256,
+ IX86_BUILTIN_MOVDDUP256,
+
+ IX86_BUILTIN_SQRTPD256,
+ IX86_BUILTIN_SQRTPS256,
+ IX86_BUILTIN_SQRTPS_NR256,
+ IX86_BUILTIN_RSQRTPS256,
+ IX86_BUILTIN_RSQRTPS_NR256,
+
+ IX86_BUILTIN_RCPPS256,
+
+ IX86_BUILTIN_ROUNDPD256,
+ IX86_BUILTIN_ROUNDPS256,
+
+ IX86_BUILTIN_FLOORPD256,
+ IX86_BUILTIN_CEILPD256,
+ IX86_BUILTIN_TRUNCPD256,
+ IX86_BUILTIN_RINTPD256,
+ IX86_BUILTIN_ROUNDPD_AZ256,
+
+ IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX256,
+ IX86_BUILTIN_CEILPD_VEC_PACK_SFIX256,
+ IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX256,
+
+ IX86_BUILTIN_FLOORPS256,
+ IX86_BUILTIN_CEILPS256,
+ IX86_BUILTIN_TRUNCPS256,
+ IX86_BUILTIN_RINTPS256,
+ IX86_BUILTIN_ROUNDPS_AZ256,
+
+ IX86_BUILTIN_FLOORPS_SFIX256,
+ IX86_BUILTIN_CEILPS_SFIX256,
+ IX86_BUILTIN_ROUNDPS_AZ_SFIX256,
+
+ IX86_BUILTIN_UNPCKHPD256,
+ IX86_BUILTIN_UNPCKLPD256,
+ IX86_BUILTIN_UNPCKHPS256,
+ IX86_BUILTIN_UNPCKLPS256,
+
+ IX86_BUILTIN_SI256_SI,
+ IX86_BUILTIN_PS256_PS,
+ IX86_BUILTIN_PD256_PD,
+ IX86_BUILTIN_SI_SI256,
+ IX86_BUILTIN_PS_PS256,
+ IX86_BUILTIN_PD_PD256,
+
+ IX86_BUILTIN_VTESTZPD,
+ IX86_BUILTIN_VTESTCPD,
+ IX86_BUILTIN_VTESTNZCPD,
+ IX86_BUILTIN_VTESTZPS,
+ IX86_BUILTIN_VTESTCPS,
+ IX86_BUILTIN_VTESTNZCPS,
+ IX86_BUILTIN_VTESTZPD256,
+ IX86_BUILTIN_VTESTCPD256,
+ IX86_BUILTIN_VTESTNZCPD256,
+ IX86_BUILTIN_VTESTZPS256,
+ IX86_BUILTIN_VTESTCPS256,
+ IX86_BUILTIN_VTESTNZCPS256,
+ IX86_BUILTIN_PTESTZ256,
+ IX86_BUILTIN_PTESTC256,
+ IX86_BUILTIN_PTESTNZC256,
+
+ IX86_BUILTIN_MOVMSKPD256,
+ IX86_BUILTIN_MOVMSKPS256,
+
+ /* AVX2 */
+ IX86_BUILTIN_MPSADBW256,
+ IX86_BUILTIN_PABSB256,
+ IX86_BUILTIN_PABSW256,
+ IX86_BUILTIN_PABSD256,
+ IX86_BUILTIN_PACKSSDW256,
+ IX86_BUILTIN_PACKSSWB256,
+ IX86_BUILTIN_PACKUSDW256,
+ IX86_BUILTIN_PACKUSWB256,
+ IX86_BUILTIN_PADDB256,
+ IX86_BUILTIN_PADDW256,
+ IX86_BUILTIN_PADDD256,
+ IX86_BUILTIN_PADDQ256,
+ IX86_BUILTIN_PADDSB256,
+ IX86_BUILTIN_PADDSW256,
+ IX86_BUILTIN_PADDUSB256,
+ IX86_BUILTIN_PADDUSW256,
+ IX86_BUILTIN_PALIGNR256,
+ IX86_BUILTIN_AND256I,
+ IX86_BUILTIN_ANDNOT256I,
+ IX86_BUILTIN_PAVGB256,
+ IX86_BUILTIN_PAVGW256,
+ IX86_BUILTIN_PBLENDVB256,
+ IX86_BUILTIN_PBLENDVW256,
+ IX86_BUILTIN_PCMPEQB256,
+ IX86_BUILTIN_PCMPEQW256,
+ IX86_BUILTIN_PCMPEQD256,
+ IX86_BUILTIN_PCMPEQQ256,
+ IX86_BUILTIN_PCMPGTB256,
+ IX86_BUILTIN_PCMPGTW256,
+ IX86_BUILTIN_PCMPGTD256,
+ IX86_BUILTIN_PCMPGTQ256,
+ IX86_BUILTIN_PHADDW256,
+ IX86_BUILTIN_PHADDD256,
+ IX86_BUILTIN_PHADDSW256,
+ IX86_BUILTIN_PHSUBW256,
+ IX86_BUILTIN_PHSUBD256,
+ IX86_BUILTIN_PHSUBSW256,
+ IX86_BUILTIN_PMADDUBSW256,
+ IX86_BUILTIN_PMADDWD256,
+ IX86_BUILTIN_PMAXSB256,
+ IX86_BUILTIN_PMAXSW256,
+ IX86_BUILTIN_PMAXSD256,
+ IX86_BUILTIN_PMAXUB256,
+ IX86_BUILTIN_PMAXUW256,
+ IX86_BUILTIN_PMAXUD256,
+ IX86_BUILTIN_PMINSB256,
+ IX86_BUILTIN_PMINSW256,
+ IX86_BUILTIN_PMINSD256,
+ IX86_BUILTIN_PMINUB256,
+ IX86_BUILTIN_PMINUW256,
+ IX86_BUILTIN_PMINUD256,
+ IX86_BUILTIN_PMOVMSKB256,
+ IX86_BUILTIN_PMOVSXBW256,
+ IX86_BUILTIN_PMOVSXBD256,
+ IX86_BUILTIN_PMOVSXBQ256,
+ IX86_BUILTIN_PMOVSXWD256,
+ IX86_BUILTIN_PMOVSXWQ256,
+ IX86_BUILTIN_PMOVSXDQ256,
+ IX86_BUILTIN_PMOVZXBW256,
+ IX86_BUILTIN_PMOVZXBD256,
+ IX86_BUILTIN_PMOVZXBQ256,
+ IX86_BUILTIN_PMOVZXWD256,
+ IX86_BUILTIN_PMOVZXWQ256,
+ IX86_BUILTIN_PMOVZXDQ256,
+ IX86_BUILTIN_PMULDQ256,
+ IX86_BUILTIN_PMULHRSW256,
+ IX86_BUILTIN_PMULHUW256,
+ IX86_BUILTIN_PMULHW256,
+ IX86_BUILTIN_PMULLW256,
+ IX86_BUILTIN_PMULLD256,
+ IX86_BUILTIN_PMULUDQ256,
+ IX86_BUILTIN_POR256,
+ IX86_BUILTIN_PSADBW256,
+ IX86_BUILTIN_PSHUFB256,
+ IX86_BUILTIN_PSHUFD256,
+ IX86_BUILTIN_PSHUFHW256,
+ IX86_BUILTIN_PSHUFLW256,
+ IX86_BUILTIN_PSIGNB256,
+ IX86_BUILTIN_PSIGNW256,
+ IX86_BUILTIN_PSIGND256,
+ IX86_BUILTIN_PSLLDQI256,
+ IX86_BUILTIN_PSLLWI256,
+ IX86_BUILTIN_PSLLW256,
+ IX86_BUILTIN_PSLLDI256,
+ IX86_BUILTIN_PSLLD256,
+ IX86_BUILTIN_PSLLQI256,
+ IX86_BUILTIN_PSLLQ256,
+ IX86_BUILTIN_PSRAWI256,
+ IX86_BUILTIN_PSRAW256,
+ IX86_BUILTIN_PSRADI256,
+ IX86_BUILTIN_PSRAD256,
+ IX86_BUILTIN_PSRLDQI256,
+ IX86_BUILTIN_PSRLWI256,
+ IX86_BUILTIN_PSRLW256,
+ IX86_BUILTIN_PSRLDI256,
+ IX86_BUILTIN_PSRLD256,
+ IX86_BUILTIN_PSRLQI256,
+ IX86_BUILTIN_PSRLQ256,
+ IX86_BUILTIN_PSUBB256,
+ IX86_BUILTIN_PSUBW256,
+ IX86_BUILTIN_PSUBD256,
+ IX86_BUILTIN_PSUBQ256,
+ IX86_BUILTIN_PSUBSB256,
+ IX86_BUILTIN_PSUBSW256,
+ IX86_BUILTIN_PSUBUSB256,
+ IX86_BUILTIN_PSUBUSW256,
+ IX86_BUILTIN_PUNPCKHBW256,
+ IX86_BUILTIN_PUNPCKHWD256,
+ IX86_BUILTIN_PUNPCKHDQ256,
+ IX86_BUILTIN_PUNPCKHQDQ256,
+ IX86_BUILTIN_PUNPCKLBW256,
+ IX86_BUILTIN_PUNPCKLWD256,
+ IX86_BUILTIN_PUNPCKLDQ256,
+ IX86_BUILTIN_PUNPCKLQDQ256,
+ IX86_BUILTIN_PXOR256,
+ IX86_BUILTIN_MOVNTDQA256,
+ IX86_BUILTIN_VBROADCASTSS_PS,
+ IX86_BUILTIN_VBROADCASTSS_PS256,
+ IX86_BUILTIN_VBROADCASTSD_PD256,
+ IX86_BUILTIN_VBROADCASTSI256,
+ IX86_BUILTIN_PBLENDD256,
+ IX86_BUILTIN_PBLENDD128,
+ IX86_BUILTIN_PBROADCASTB256,
+ IX86_BUILTIN_PBROADCASTW256,
+ IX86_BUILTIN_PBROADCASTD256,
+ IX86_BUILTIN_PBROADCASTQ256,
+ IX86_BUILTIN_PBROADCASTB128,
+ IX86_BUILTIN_PBROADCASTW128,
+ IX86_BUILTIN_PBROADCASTD128,
+ IX86_BUILTIN_PBROADCASTQ128,
+ IX86_BUILTIN_VPERMVARSI256,
+ IX86_BUILTIN_VPERMDF256,
+ IX86_BUILTIN_VPERMVARSF256,
+ IX86_BUILTIN_VPERMDI256,
+ IX86_BUILTIN_VPERMTI256,
+ IX86_BUILTIN_VEXTRACT128I256,
+ IX86_BUILTIN_VINSERT128I256,
+ IX86_BUILTIN_MASKLOADD,
+ IX86_BUILTIN_MASKLOADQ,
+ IX86_BUILTIN_MASKLOADD256,
+ IX86_BUILTIN_MASKLOADQ256,
+ IX86_BUILTIN_MASKSTORED,
+ IX86_BUILTIN_MASKSTOREQ,
+ IX86_BUILTIN_MASKSTORED256,
+ IX86_BUILTIN_MASKSTOREQ256,
+ IX86_BUILTIN_PSLLVV4DI,
+ IX86_BUILTIN_PSLLVV2DI,
+ IX86_BUILTIN_PSLLVV8SI,
+ IX86_BUILTIN_PSLLVV4SI,
+ IX86_BUILTIN_PSRAVV8SI,
+ IX86_BUILTIN_PSRAVV4SI,
+ IX86_BUILTIN_PSRLVV4DI,
+ IX86_BUILTIN_PSRLVV2DI,
+ IX86_BUILTIN_PSRLVV8SI,
+ IX86_BUILTIN_PSRLVV4SI,
+
+ IX86_BUILTIN_GATHERSIV2DF,
+ IX86_BUILTIN_GATHERSIV4DF,
+ IX86_BUILTIN_GATHERDIV2DF,
+ IX86_BUILTIN_GATHERDIV4DF,
+ IX86_BUILTIN_GATHERSIV4SF,
+ IX86_BUILTIN_GATHERSIV8SF,
+ IX86_BUILTIN_GATHERDIV4SF,
+ IX86_BUILTIN_GATHERDIV8SF,
+ IX86_BUILTIN_GATHERSIV2DI,
+ IX86_BUILTIN_GATHERSIV4DI,
+ IX86_BUILTIN_GATHERDIV2DI,
+ IX86_BUILTIN_GATHERDIV4DI,
+ IX86_BUILTIN_GATHERSIV4SI,
+ IX86_BUILTIN_GATHERSIV8SI,
+ IX86_BUILTIN_GATHERDIV4SI,
+ IX86_BUILTIN_GATHERDIV8SI,
+
+ /* AVX512F */
+ IX86_BUILTIN_ADDPD512,
+ IX86_BUILTIN_ADDPS512,
+ IX86_BUILTIN_ADDSD_ROUND,
+ IX86_BUILTIN_ADDSS_ROUND,
+ IX86_BUILTIN_ALIGND512,
+ IX86_BUILTIN_ALIGNQ512,
+ IX86_BUILTIN_BLENDMD512,
+ IX86_BUILTIN_BLENDMPD512,
+ IX86_BUILTIN_BLENDMPS512,
+ IX86_BUILTIN_BLENDMQ512,
+ IX86_BUILTIN_BROADCASTF32X4_512,
+ IX86_BUILTIN_BROADCASTF64X4_512,
+ IX86_BUILTIN_BROADCASTI32X4_512,
+ IX86_BUILTIN_BROADCASTI64X4_512,
+ IX86_BUILTIN_BROADCASTSD512,
+ IX86_BUILTIN_BROADCASTSS512,
+ IX86_BUILTIN_CMPD512,
+ IX86_BUILTIN_CMPPD512,
+ IX86_BUILTIN_CMPPS512,
+ IX86_BUILTIN_CMPQ512,
+ IX86_BUILTIN_CMPSD_MASK,
+ IX86_BUILTIN_CMPSS_MASK,
+ IX86_BUILTIN_COMIDF,
+ IX86_BUILTIN_COMISF,
+ IX86_BUILTIN_COMPRESSPD512,
+ IX86_BUILTIN_COMPRESSPDSTORE512,
+ IX86_BUILTIN_COMPRESSPS512,
+ IX86_BUILTIN_COMPRESSPSSTORE512,
+ IX86_BUILTIN_CVTDQ2PD512,
+ IX86_BUILTIN_CVTDQ2PS512,
+ IX86_BUILTIN_CVTPD2DQ512,
+ IX86_BUILTIN_CVTPD2PS512,
+ IX86_BUILTIN_CVTPD2UDQ512,
+ IX86_BUILTIN_CVTPH2PS512,
+ IX86_BUILTIN_CVTPS2DQ512,
+ IX86_BUILTIN_CVTPS2PD512,
+ IX86_BUILTIN_CVTPS2PH512,
+ IX86_BUILTIN_CVTPS2UDQ512,
+ IX86_BUILTIN_CVTSD2SS_ROUND,
+ IX86_BUILTIN_CVTSI2SD64,
+ IX86_BUILTIN_CVTSI2SS32,
+ IX86_BUILTIN_CVTSI2SS64,
+ IX86_BUILTIN_CVTSS2SD_ROUND,
+ IX86_BUILTIN_CVTTPD2DQ512,
+ IX86_BUILTIN_CVTTPD2UDQ512,
+ IX86_BUILTIN_CVTTPS2DQ512,
+ IX86_BUILTIN_CVTTPS2UDQ512,
+ IX86_BUILTIN_CVTUDQ2PD512,
+ IX86_BUILTIN_CVTUDQ2PS512,
+ IX86_BUILTIN_CVTUSI2SD32,
+ IX86_BUILTIN_CVTUSI2SD64,
+ IX86_BUILTIN_CVTUSI2SS32,
+ IX86_BUILTIN_CVTUSI2SS64,
+ IX86_BUILTIN_DIVPD512,
+ IX86_BUILTIN_DIVPS512,
+ IX86_BUILTIN_DIVSD_ROUND,
+ IX86_BUILTIN_DIVSS_ROUND,
+ IX86_BUILTIN_EXPANDPD512,
+ IX86_BUILTIN_EXPANDPD512Z,
+ IX86_BUILTIN_EXPANDPDLOAD512,
+ IX86_BUILTIN_EXPANDPDLOAD512Z,
+ IX86_BUILTIN_EXPANDPS512,
+ IX86_BUILTIN_EXPANDPS512Z,
+ IX86_BUILTIN_EXPANDPSLOAD512,
+ IX86_BUILTIN_EXPANDPSLOAD512Z,
+ IX86_BUILTIN_EXTRACTF32X4,
+ IX86_BUILTIN_EXTRACTF64X4,
+ IX86_BUILTIN_EXTRACTI32X4,
+ IX86_BUILTIN_EXTRACTI64X4,
+ IX86_BUILTIN_FIXUPIMMPD512_MASK,
+ IX86_BUILTIN_FIXUPIMMPD512_MASKZ,
+ IX86_BUILTIN_FIXUPIMMPS512_MASK,
+ IX86_BUILTIN_FIXUPIMMPS512_MASKZ,
+ IX86_BUILTIN_FIXUPIMMSD128_MASK,
+ IX86_BUILTIN_FIXUPIMMSD128_MASKZ,
+ IX86_BUILTIN_FIXUPIMMSS128_MASK,
+ IX86_BUILTIN_FIXUPIMMSS128_MASKZ,
+ IX86_BUILTIN_GETEXPPD512,
+ IX86_BUILTIN_GETEXPPS512,
+ IX86_BUILTIN_GETEXPSD128,
+ IX86_BUILTIN_GETEXPSS128,
+ IX86_BUILTIN_GETMANTPD512,
+ IX86_BUILTIN_GETMANTPS512,
+ IX86_BUILTIN_GETMANTSD128,
+ IX86_BUILTIN_GETMANTSS128,
+ IX86_BUILTIN_INSERTF32X4,
+ IX86_BUILTIN_INSERTF64X4,
+ IX86_BUILTIN_INSERTI32X4,
+ IX86_BUILTIN_INSERTI64X4,
+ IX86_BUILTIN_LOADAPD512,
+ IX86_BUILTIN_LOADAPS512,
+ IX86_BUILTIN_LOADDQUDI512,
+ IX86_BUILTIN_LOADDQUSI512,
+ IX86_BUILTIN_LOADUPD512,
+ IX86_BUILTIN_LOADUPS512,
+ IX86_BUILTIN_MAXPD512,
+ IX86_BUILTIN_MAXPS512,
+ IX86_BUILTIN_MAXSD_ROUND,
+ IX86_BUILTIN_MAXSS_ROUND,
+ IX86_BUILTIN_MINPD512,
+ IX86_BUILTIN_MINPS512,
+ IX86_BUILTIN_MINSD_ROUND,
+ IX86_BUILTIN_MINSS_ROUND,
+ IX86_BUILTIN_MOVAPD512,
+ IX86_BUILTIN_MOVAPS512,
+ IX86_BUILTIN_MOVDDUP512,
+ IX86_BUILTIN_MOVDQA32LOAD512,
+ IX86_BUILTIN_MOVDQA32STORE512,
+ IX86_BUILTIN_MOVDQA32_512,
+ IX86_BUILTIN_MOVDQA64LOAD512,
+ IX86_BUILTIN_MOVDQA64STORE512,
+ IX86_BUILTIN_MOVDQA64_512,
+ IX86_BUILTIN_MOVNTDQ512,
+ IX86_BUILTIN_MOVNTDQA512,
+ IX86_BUILTIN_MOVNTPD512,
+ IX86_BUILTIN_MOVNTPS512,
+ IX86_BUILTIN_MOVSHDUP512,
+ IX86_BUILTIN_MOVSLDUP512,
+ IX86_BUILTIN_MULPD512,
+ IX86_BUILTIN_MULPS512,
+ IX86_BUILTIN_MULSD_ROUND,
+ IX86_BUILTIN_MULSS_ROUND,
+ IX86_BUILTIN_PABSD512,
+ IX86_BUILTIN_PABSQ512,
+ IX86_BUILTIN_PADDD512,
+ IX86_BUILTIN_PADDQ512,
+ IX86_BUILTIN_PANDD512,
+ IX86_BUILTIN_PANDND512,
+ IX86_BUILTIN_PANDNQ512,
+ IX86_BUILTIN_PANDQ512,
+ IX86_BUILTIN_PBROADCASTD512,
+ IX86_BUILTIN_PBROADCASTD512_GPR,
+ IX86_BUILTIN_PBROADCASTMB512,
+ IX86_BUILTIN_PBROADCASTMW512,
+ IX86_BUILTIN_PBROADCASTQ512,
+ IX86_BUILTIN_PBROADCASTQ512_GPR,
+ IX86_BUILTIN_PBROADCASTQ512_MEM,
+ IX86_BUILTIN_PCMPEQD512_MASK,
+ IX86_BUILTIN_PCMPEQQ512_MASK,
+ IX86_BUILTIN_PCMPGTD512_MASK,
+ IX86_BUILTIN_PCMPGTQ512_MASK,
+ IX86_BUILTIN_PCOMPRESSD512,
+ IX86_BUILTIN_PCOMPRESSDSTORE512,
+ IX86_BUILTIN_PCOMPRESSQ512,
+ IX86_BUILTIN_PCOMPRESSQSTORE512,
+ IX86_BUILTIN_PEXPANDD512,
+ IX86_BUILTIN_PEXPANDD512Z,
+ IX86_BUILTIN_PEXPANDDLOAD512,
+ IX86_BUILTIN_PEXPANDDLOAD512Z,
+ IX86_BUILTIN_PEXPANDQ512,
+ IX86_BUILTIN_PEXPANDQ512Z,
+ IX86_BUILTIN_PEXPANDQLOAD512,
+ IX86_BUILTIN_PEXPANDQLOAD512Z,
+ IX86_BUILTIN_PMAXSD512,
+ IX86_BUILTIN_PMAXSQ512,
+ IX86_BUILTIN_PMAXUD512,
+ IX86_BUILTIN_PMAXUQ512,
+ IX86_BUILTIN_PMINSD512,
+ IX86_BUILTIN_PMINSQ512,
+ IX86_BUILTIN_PMINUD512,
+ IX86_BUILTIN_PMINUQ512,
+ IX86_BUILTIN_PMOVDB512,
+ IX86_BUILTIN_PMOVDB512_MEM,
+ IX86_BUILTIN_PMOVDW512,
+ IX86_BUILTIN_PMOVDW512_MEM,
+ IX86_BUILTIN_PMOVQB512,
+ IX86_BUILTIN_PMOVQB512_MEM,
+ IX86_BUILTIN_PMOVQD512,
+ IX86_BUILTIN_PMOVQD512_MEM,
+ IX86_BUILTIN_PMOVQW512,
+ IX86_BUILTIN_PMOVQW512_MEM,
+ IX86_BUILTIN_PMOVSDB512,
+ IX86_BUILTIN_PMOVSDB512_MEM,
+ IX86_BUILTIN_PMOVSDW512,
+ IX86_BUILTIN_PMOVSDW512_MEM,
+ IX86_BUILTIN_PMOVSQB512,
+ IX86_BUILTIN_PMOVSQB512_MEM,
+ IX86_BUILTIN_PMOVSQD512,
+ IX86_BUILTIN_PMOVSQD512_MEM,
+ IX86_BUILTIN_PMOVSQW512,
+ IX86_BUILTIN_PMOVSQW512_MEM,
+ IX86_BUILTIN_PMOVSXBD512,
+ IX86_BUILTIN_PMOVSXBQ512,
+ IX86_BUILTIN_PMOVSXDQ512,
+ IX86_BUILTIN_PMOVSXWD512,
+ IX86_BUILTIN_PMOVSXWQ512,
+ IX86_BUILTIN_PMOVUSDB512,
+ IX86_BUILTIN_PMOVUSDB512_MEM,
+ IX86_BUILTIN_PMOVUSDW512,
+ IX86_BUILTIN_PMOVUSDW512_MEM,
+ IX86_BUILTIN_PMOVUSQB512,
+ IX86_BUILTIN_PMOVUSQB512_MEM,
+ IX86_BUILTIN_PMOVUSQD512,
+ IX86_BUILTIN_PMOVUSQD512_MEM,
+ IX86_BUILTIN_PMOVUSQW512,
+ IX86_BUILTIN_PMOVUSQW512_MEM,
+ IX86_BUILTIN_PMOVZXBD512,
+ IX86_BUILTIN_PMOVZXBQ512,
+ IX86_BUILTIN_PMOVZXDQ512,
+ IX86_BUILTIN_PMOVZXWD512,
+ IX86_BUILTIN_PMOVZXWQ512,
+ IX86_BUILTIN_PMULDQ512,
+ IX86_BUILTIN_PMULLD512,
+ IX86_BUILTIN_PMULUDQ512,
+ IX86_BUILTIN_PORD512,
+ IX86_BUILTIN_PORQ512,
+ IX86_BUILTIN_PROLD512,
+ IX86_BUILTIN_PROLQ512,
+ IX86_BUILTIN_PROLVD512,
+ IX86_BUILTIN_PROLVQ512,
+ IX86_BUILTIN_PRORD512,
+ IX86_BUILTIN_PRORQ512,
+ IX86_BUILTIN_PRORVD512,
+ IX86_BUILTIN_PRORVQ512,
+ IX86_BUILTIN_PSHUFD512,
+ IX86_BUILTIN_PSLLD512,
+ IX86_BUILTIN_PSLLDI512,
+ IX86_BUILTIN_PSLLQ512,
+ IX86_BUILTIN_PSLLQI512,
+ IX86_BUILTIN_PSLLVV16SI,
+ IX86_BUILTIN_PSLLVV8DI,
+ IX86_BUILTIN_PSRAD512,
+ IX86_BUILTIN_PSRADI512,
+ IX86_BUILTIN_PSRAQ512,
+ IX86_BUILTIN_PSRAQI512,
+ IX86_BUILTIN_PSRAVV16SI,
+ IX86_BUILTIN_PSRAVV8DI,
+ IX86_BUILTIN_PSRLD512,
+ IX86_BUILTIN_PSRLDI512,
+ IX86_BUILTIN_PSRLQ512,
+ IX86_BUILTIN_PSRLQI512,
+ IX86_BUILTIN_PSRLVV16SI,
+ IX86_BUILTIN_PSRLVV8DI,
+ IX86_BUILTIN_PSUBD512,
+ IX86_BUILTIN_PSUBQ512,
+ IX86_BUILTIN_PTESTMD512,
+ IX86_BUILTIN_PTESTMQ512,
+ IX86_BUILTIN_PTESTNMD512,
+ IX86_BUILTIN_PTESTNMQ512,
+ IX86_BUILTIN_PUNPCKHDQ512,
+ IX86_BUILTIN_PUNPCKHQDQ512,
+ IX86_BUILTIN_PUNPCKLDQ512,
+ IX86_BUILTIN_PUNPCKLQDQ512,
+ IX86_BUILTIN_PXORD512,
+ IX86_BUILTIN_PXORQ512,
+ IX86_BUILTIN_RCP14PD512,
+ IX86_BUILTIN_RCP14PS512,
+ IX86_BUILTIN_RCP14SD,
+ IX86_BUILTIN_RCP14SS,
+ IX86_BUILTIN_RNDSCALEPD,
+ IX86_BUILTIN_RNDSCALEPS,
+ IX86_BUILTIN_RNDSCALESD,
+ IX86_BUILTIN_RNDSCALESS,
+ IX86_BUILTIN_RSQRT14PD512,
+ IX86_BUILTIN_RSQRT14PS512,
+ IX86_BUILTIN_RSQRT14SD,
+ IX86_BUILTIN_RSQRT14SS,
+ IX86_BUILTIN_SCALEFPD512,
+ IX86_BUILTIN_SCALEFPS512,
+ IX86_BUILTIN_SCALEFSD,
+ IX86_BUILTIN_SCALEFSS,
+ IX86_BUILTIN_SHUFPD512,
+ IX86_BUILTIN_SHUFPS512,
+ IX86_BUILTIN_SHUF_F32x4,
+ IX86_BUILTIN_SHUF_F64x2,
+ IX86_BUILTIN_SHUF_I32x4,
+ IX86_BUILTIN_SHUF_I64x2,
+ IX86_BUILTIN_SQRTPD512,
+ IX86_BUILTIN_SQRTPD512_MASK,
+ IX86_BUILTIN_SQRTPS512_MASK,
+ IX86_BUILTIN_SQRTPS_NR512,
+ IX86_BUILTIN_SQRTSD_ROUND,
+ IX86_BUILTIN_SQRTSS_ROUND,
+ IX86_BUILTIN_STOREAPD512,
+ IX86_BUILTIN_STOREAPS512,
+ IX86_BUILTIN_STOREDQUDI512,
+ IX86_BUILTIN_STOREDQUSI512,
+ IX86_BUILTIN_STOREUPD512,
+ IX86_BUILTIN_STOREUPS512,
+ IX86_BUILTIN_SUBPD512,
+ IX86_BUILTIN_SUBPS512,
+ IX86_BUILTIN_SUBSD_ROUND,
+ IX86_BUILTIN_SUBSS_ROUND,
+ IX86_BUILTIN_UCMPD512,
+ IX86_BUILTIN_UCMPQ512,
+ IX86_BUILTIN_UNPCKHPD512,
+ IX86_BUILTIN_UNPCKHPS512,
+ IX86_BUILTIN_UNPCKLPD512,
+ IX86_BUILTIN_UNPCKLPS512,
+ IX86_BUILTIN_VCVTSD2SI32,
+ IX86_BUILTIN_VCVTSD2SI64,
+ IX86_BUILTIN_VCVTSD2USI32,
+ IX86_BUILTIN_VCVTSD2USI64,
+ IX86_BUILTIN_VCVTSS2SI32,
+ IX86_BUILTIN_VCVTSS2SI64,
+ IX86_BUILTIN_VCVTSS2USI32,
+ IX86_BUILTIN_VCVTSS2USI64,
+ IX86_BUILTIN_VCVTTSD2SI32,
+ IX86_BUILTIN_VCVTTSD2SI64,
+ IX86_BUILTIN_VCVTTSD2USI32,
+ IX86_BUILTIN_VCVTTSD2USI64,
+ IX86_BUILTIN_VCVTTSS2SI32,
+ IX86_BUILTIN_VCVTTSS2SI64,
+ IX86_BUILTIN_VCVTTSS2USI32,
+ IX86_BUILTIN_VCVTTSS2USI64,
+ IX86_BUILTIN_VFMADDPD512_MASK,
+ IX86_BUILTIN_VFMADDPD512_MASK3,
+ IX86_BUILTIN_VFMADDPD512_MASKZ,
+ IX86_BUILTIN_VFMADDPS512_MASK,
+ IX86_BUILTIN_VFMADDPS512_MASK3,
+ IX86_BUILTIN_VFMADDPS512_MASKZ,
+ IX86_BUILTIN_VFMADDSD3_ROUND,
+ IX86_BUILTIN_VFMADDSS3_ROUND,
+ IX86_BUILTIN_VFMADDSUBPD512_MASK,
+ IX86_BUILTIN_VFMADDSUBPD512_MASK3,
+ IX86_BUILTIN_VFMADDSUBPD512_MASKZ,
+ IX86_BUILTIN_VFMADDSUBPS512_MASK,
+ IX86_BUILTIN_VFMADDSUBPS512_MASK3,
+ IX86_BUILTIN_VFMADDSUBPS512_MASKZ,
+ IX86_BUILTIN_VFMSUBADDPD512_MASK3,
+ IX86_BUILTIN_VFMSUBADDPS512_MASK3,
+ IX86_BUILTIN_VFMSUBPD512_MASK3,
+ IX86_BUILTIN_VFMSUBPS512_MASK3,
+ IX86_BUILTIN_VFMSUBSD3_MASK3,
+ IX86_BUILTIN_VFMSUBSS3_MASK3,
+ IX86_BUILTIN_VFNMADDPD512_MASK,
+ IX86_BUILTIN_VFNMADDPS512_MASK,
+ IX86_BUILTIN_VFNMSUBPD512_MASK,
+ IX86_BUILTIN_VFNMSUBPD512_MASK3,
+ IX86_BUILTIN_VFNMSUBPS512_MASK,
+ IX86_BUILTIN_VFNMSUBPS512_MASK3,
+ IX86_BUILTIN_VPCLZCNTD512,
+ IX86_BUILTIN_VPCLZCNTQ512,
+ IX86_BUILTIN_VPCONFLICTD512,
+ IX86_BUILTIN_VPCONFLICTQ512,
+ IX86_BUILTIN_VPERMDF512,
+ IX86_BUILTIN_VPERMDI512,
+ IX86_BUILTIN_VPERMI2VARD512,
+ IX86_BUILTIN_VPERMI2VARPD512,
+ IX86_BUILTIN_VPERMI2VARPS512,
+ IX86_BUILTIN_VPERMI2VARQ512,
+ IX86_BUILTIN_VPERMILPD512,
+ IX86_BUILTIN_VPERMILPS512,
+ IX86_BUILTIN_VPERMILVARPD512,
+ IX86_BUILTIN_VPERMILVARPS512,
+ IX86_BUILTIN_VPERMT2VARD512,
+ IX86_BUILTIN_VPERMT2VARD512_MASKZ,
+ IX86_BUILTIN_VPERMT2VARPD512,
+ IX86_BUILTIN_VPERMT2VARPD512_MASKZ,
+ IX86_BUILTIN_VPERMT2VARPS512,
+ IX86_BUILTIN_VPERMT2VARPS512_MASKZ,
+ IX86_BUILTIN_VPERMT2VARQ512,
+ IX86_BUILTIN_VPERMT2VARQ512_MASKZ,
+ IX86_BUILTIN_VPERMVARDF512,
+ IX86_BUILTIN_VPERMVARDI512,
+ IX86_BUILTIN_VPERMVARSF512,
+ IX86_BUILTIN_VPERMVARSI512,
+ IX86_BUILTIN_VTERNLOGD512_MASK,
+ IX86_BUILTIN_VTERNLOGD512_MASKZ,
+ IX86_BUILTIN_VTERNLOGQ512_MASK,
+ IX86_BUILTIN_VTERNLOGQ512_MASKZ,
+
+ /* Mask arithmetic operations */
+ IX86_BUILTIN_KAND16,
+ IX86_BUILTIN_KANDN16,
+ IX86_BUILTIN_KNOT16,
+ IX86_BUILTIN_KOR16,
+ IX86_BUILTIN_KORTESTC16,
+ IX86_BUILTIN_KORTESTZ16,
+ IX86_BUILTIN_KUNPCKBW,
+ IX86_BUILTIN_KXNOR16,
+ IX86_BUILTIN_KXOR16,
+ IX86_BUILTIN_KMOV16,
+
+ /* Alternate 4 and 8 element gather/scatter for the vectorizer
+ where all operands are 32-byte or 64-byte wide respectively. */
+ IX86_BUILTIN_GATHERALTSIV4DF,
+ IX86_BUILTIN_GATHERALTDIV8SF,
+ IX86_BUILTIN_GATHERALTSIV4DI,
+ IX86_BUILTIN_GATHERALTDIV8SI,
+ IX86_BUILTIN_GATHER3ALTDIV16SF,
+ IX86_BUILTIN_GATHER3ALTDIV16SI,
+ IX86_BUILTIN_GATHER3ALTSIV8DF,
+ IX86_BUILTIN_GATHER3ALTSIV8DI,
+ IX86_BUILTIN_GATHER3DIV16SF,
+ IX86_BUILTIN_GATHER3DIV16SI,
+ IX86_BUILTIN_GATHER3DIV8DF,
+ IX86_BUILTIN_GATHER3DIV8DI,
+ IX86_BUILTIN_GATHER3SIV16SF,
+ IX86_BUILTIN_GATHER3SIV16SI,
+ IX86_BUILTIN_GATHER3SIV8DF,
+ IX86_BUILTIN_GATHER3SIV8DI,
+ IX86_BUILTIN_SCATTERDIV16SF,
+ IX86_BUILTIN_SCATTERDIV16SI,
+ IX86_BUILTIN_SCATTERDIV8DF,
+ IX86_BUILTIN_SCATTERDIV8DI,
+ IX86_BUILTIN_SCATTERSIV16SF,
+ IX86_BUILTIN_SCATTERSIV16SI,
+ IX86_BUILTIN_SCATTERSIV8DF,
+ IX86_BUILTIN_SCATTERSIV8DI,
+
+ /* AVX512PF */
+ IX86_BUILTIN_GATHERPFQPD,
+ IX86_BUILTIN_GATHERPFDPS,
+ IX86_BUILTIN_GATHERPFDPD,
+ IX86_BUILTIN_GATHERPFQPS,
+ IX86_BUILTIN_SCATTERPFDPD,
+ IX86_BUILTIN_SCATTERPFDPS,
+ IX86_BUILTIN_SCATTERPFQPD,
+ IX86_BUILTIN_SCATTERPFQPS,
+
+ /* AVX-512ER */
+ IX86_BUILTIN_EXP2PD_MASK,
+ IX86_BUILTIN_EXP2PS_MASK,
+ IX86_BUILTIN_EXP2PS,
+ IX86_BUILTIN_RCP28PD,
+ IX86_BUILTIN_RCP28PS,
+ IX86_BUILTIN_RCP28SD,
+ IX86_BUILTIN_RCP28SS,
+ IX86_BUILTIN_RSQRT28PD,
+ IX86_BUILTIN_RSQRT28PS,
+ IX86_BUILTIN_RSQRT28SD,
+ IX86_BUILTIN_RSQRT28SS,
+
+ /* SHA builtins. */
+ IX86_BUILTIN_SHA1MSG1,
+ IX86_BUILTIN_SHA1MSG2,
+ IX86_BUILTIN_SHA1NEXTE,
+ IX86_BUILTIN_SHA1RNDS4,
+ IX86_BUILTIN_SHA256MSG1,
+ IX86_BUILTIN_SHA256MSG2,
+ IX86_BUILTIN_SHA256RNDS2,
+
+ /* TFmode support builtins. */
+ IX86_BUILTIN_INFQ,
+ IX86_BUILTIN_HUGE_VALQ,
+ IX86_BUILTIN_FABSQ,
+ IX86_BUILTIN_COPYSIGNQ,
+
+ /* Vectorizer support builtins. */
+ IX86_BUILTIN_CEILPD_VEC_PACK_SFIX512,
+ IX86_BUILTIN_CPYSGNPS,
+ IX86_BUILTIN_CPYSGNPD,
+ IX86_BUILTIN_CPYSGNPS256,
+ IX86_BUILTIN_CPYSGNPS512,
+ IX86_BUILTIN_CPYSGNPD256,
+ IX86_BUILTIN_CPYSGNPD512,
+ IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX512,
+ IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX512,
+
+
+ /* FMA4 instructions. */
+ IX86_BUILTIN_VFMADDSS,
+ IX86_BUILTIN_VFMADDSD,
+ IX86_BUILTIN_VFMADDPS,
+ IX86_BUILTIN_VFMADDPD,
+ IX86_BUILTIN_VFMADDPS256,
+ IX86_BUILTIN_VFMADDPD256,
+ IX86_BUILTIN_VFMADDSUBPS,
+ IX86_BUILTIN_VFMADDSUBPD,
+ IX86_BUILTIN_VFMADDSUBPS256,
+ IX86_BUILTIN_VFMADDSUBPD256,
+
+ /* FMA3 instructions. */
+ IX86_BUILTIN_VFMADDSS3,
+ IX86_BUILTIN_VFMADDSD3,
+
+ /* XOP instructions. */
+ IX86_BUILTIN_VPCMOV,
+ IX86_BUILTIN_VPCMOV_V2DI,
+ IX86_BUILTIN_VPCMOV_V4SI,
+ IX86_BUILTIN_VPCMOV_V8HI,
+ IX86_BUILTIN_VPCMOV_V16QI,
+ IX86_BUILTIN_VPCMOV_V4SF,
+ IX86_BUILTIN_VPCMOV_V2DF,
+ IX86_BUILTIN_VPCMOV256,
+ IX86_BUILTIN_VPCMOV_V4DI256,
+ IX86_BUILTIN_VPCMOV_V8SI256,
+ IX86_BUILTIN_VPCMOV_V16HI256,
+ IX86_BUILTIN_VPCMOV_V32QI256,
+ IX86_BUILTIN_VPCMOV_V8SF256,
+ IX86_BUILTIN_VPCMOV_V4DF256,
+
+ IX86_BUILTIN_VPPERM,
+
+ IX86_BUILTIN_VPMACSSWW,
+ IX86_BUILTIN_VPMACSWW,
+ IX86_BUILTIN_VPMACSSWD,
+ IX86_BUILTIN_VPMACSWD,
+ IX86_BUILTIN_VPMACSSDD,
+ IX86_BUILTIN_VPMACSDD,
+ IX86_BUILTIN_VPMACSSDQL,
+ IX86_BUILTIN_VPMACSSDQH,
+ IX86_BUILTIN_VPMACSDQL,
+ IX86_BUILTIN_VPMACSDQH,
+ IX86_BUILTIN_VPMADCSSWD,
+ IX86_BUILTIN_VPMADCSWD,
+
+ IX86_BUILTIN_VPHADDBW,
+ IX86_BUILTIN_VPHADDBD,
+ IX86_BUILTIN_VPHADDBQ,
+ IX86_BUILTIN_VPHADDWD,
+ IX86_BUILTIN_VPHADDWQ,
+ IX86_BUILTIN_VPHADDDQ,
+ IX86_BUILTIN_VPHADDUBW,
+ IX86_BUILTIN_VPHADDUBD,
+ IX86_BUILTIN_VPHADDUBQ,
+ IX86_BUILTIN_VPHADDUWD,
+ IX86_BUILTIN_VPHADDUWQ,
+ IX86_BUILTIN_VPHADDUDQ,
+ IX86_BUILTIN_VPHSUBBW,
+ IX86_BUILTIN_VPHSUBWD,
+ IX86_BUILTIN_VPHSUBDQ,
+
+ IX86_BUILTIN_VPROTB,
+ IX86_BUILTIN_VPROTW,
+ IX86_BUILTIN_VPROTD,
+ IX86_BUILTIN_VPROTQ,
+ IX86_BUILTIN_VPROTB_IMM,
+ IX86_BUILTIN_VPROTW_IMM,
+ IX86_BUILTIN_VPROTD_IMM,
+ IX86_BUILTIN_VPROTQ_IMM,
+
+ IX86_BUILTIN_VPSHLB,
+ IX86_BUILTIN_VPSHLW,
+ IX86_BUILTIN_VPSHLD,
+ IX86_BUILTIN_VPSHLQ,
+ IX86_BUILTIN_VPSHAB,
+ IX86_BUILTIN_VPSHAW,
+ IX86_BUILTIN_VPSHAD,
+ IX86_BUILTIN_VPSHAQ,
+
+ IX86_BUILTIN_VFRCZSS,
+ IX86_BUILTIN_VFRCZSD,
+ IX86_BUILTIN_VFRCZPS,
+ IX86_BUILTIN_VFRCZPD,
+ IX86_BUILTIN_VFRCZPS256,
+ IX86_BUILTIN_VFRCZPD256,
+
+ IX86_BUILTIN_VPCOMEQUB,
+ IX86_BUILTIN_VPCOMNEUB,
+ IX86_BUILTIN_VPCOMLTUB,
+ IX86_BUILTIN_VPCOMLEUB,
+ IX86_BUILTIN_VPCOMGTUB,
+ IX86_BUILTIN_VPCOMGEUB,
+ IX86_BUILTIN_VPCOMFALSEUB,
+ IX86_BUILTIN_VPCOMTRUEUB,
+
+ IX86_BUILTIN_VPCOMEQUW,
+ IX86_BUILTIN_VPCOMNEUW,
+ IX86_BUILTIN_VPCOMLTUW,
+ IX86_BUILTIN_VPCOMLEUW,
+ IX86_BUILTIN_VPCOMGTUW,
+ IX86_BUILTIN_VPCOMGEUW,
+ IX86_BUILTIN_VPCOMFALSEUW,
+ IX86_BUILTIN_VPCOMTRUEUW,
+
+ IX86_BUILTIN_VPCOMEQUD,
+ IX86_BUILTIN_VPCOMNEUD,
+ IX86_BUILTIN_VPCOMLTUD,
+ IX86_BUILTIN_VPCOMLEUD,
+ IX86_BUILTIN_VPCOMGTUD,
+ IX86_BUILTIN_VPCOMGEUD,
+ IX86_BUILTIN_VPCOMFALSEUD,
+ IX86_BUILTIN_VPCOMTRUEUD,
+
+ IX86_BUILTIN_VPCOMEQUQ,
+ IX86_BUILTIN_VPCOMNEUQ,
+ IX86_BUILTIN_VPCOMLTUQ,
+ IX86_BUILTIN_VPCOMLEUQ,
+ IX86_BUILTIN_VPCOMGTUQ,
+ IX86_BUILTIN_VPCOMGEUQ,
+ IX86_BUILTIN_VPCOMFALSEUQ,
+ IX86_BUILTIN_VPCOMTRUEUQ,
+
+ IX86_BUILTIN_VPCOMEQB,
+ IX86_BUILTIN_VPCOMNEB,
+ IX86_BUILTIN_VPCOMLTB,
+ IX86_BUILTIN_VPCOMLEB,
+ IX86_BUILTIN_VPCOMGTB,
+ IX86_BUILTIN_VPCOMGEB,
+ IX86_BUILTIN_VPCOMFALSEB,
+ IX86_BUILTIN_VPCOMTRUEB,
+
+ IX86_BUILTIN_VPCOMEQW,
+ IX86_BUILTIN_VPCOMNEW,
+ IX86_BUILTIN_VPCOMLTW,
+ IX86_BUILTIN_VPCOMLEW,
+ IX86_BUILTIN_VPCOMGTW,
+ IX86_BUILTIN_VPCOMGEW,
+ IX86_BUILTIN_VPCOMFALSEW,
+ IX86_BUILTIN_VPCOMTRUEW,
+
+ IX86_BUILTIN_VPCOMEQD,
+ IX86_BUILTIN_VPCOMNED,
+ IX86_BUILTIN_VPCOMLTD,
+ IX86_BUILTIN_VPCOMLED,
+ IX86_BUILTIN_VPCOMGTD,
+ IX86_BUILTIN_VPCOMGED,
+ IX86_BUILTIN_VPCOMFALSED,
+ IX86_BUILTIN_VPCOMTRUED,
+
+ IX86_BUILTIN_VPCOMEQQ,
+ IX86_BUILTIN_VPCOMNEQ,
+ IX86_BUILTIN_VPCOMLTQ,
+ IX86_BUILTIN_VPCOMLEQ,
+ IX86_BUILTIN_VPCOMGTQ,
+ IX86_BUILTIN_VPCOMGEQ,
+ IX86_BUILTIN_VPCOMFALSEQ,
+ IX86_BUILTIN_VPCOMTRUEQ,
+
+ /* LWP instructions. */
+ IX86_BUILTIN_LLWPCB,
+ IX86_BUILTIN_SLWPCB,
+ IX86_BUILTIN_LWPVAL32,
+ IX86_BUILTIN_LWPVAL64,
+ IX86_BUILTIN_LWPINS32,
+ IX86_BUILTIN_LWPINS64,
+
+ IX86_BUILTIN_CLZS,
+
+ /* RTM */
+ IX86_BUILTIN_XBEGIN,
+ IX86_BUILTIN_XEND,
+ IX86_BUILTIN_XABORT,
+ IX86_BUILTIN_XTEST,
+
+ /* BMI instructions. */
+ IX86_BUILTIN_BEXTR32,
+ IX86_BUILTIN_BEXTR64,
+ IX86_BUILTIN_CTZS,
+
+ /* TBM instructions. */
+ IX86_BUILTIN_BEXTRI32,
+ IX86_BUILTIN_BEXTRI64,
+
+ /* BMI2 instructions. */
+ IX86_BUILTIN_BZHI32,
+ IX86_BUILTIN_BZHI64,
+ IX86_BUILTIN_PDEP32,
+ IX86_BUILTIN_PDEP64,
+ IX86_BUILTIN_PEXT32,
+ IX86_BUILTIN_PEXT64,
+
+ /* ADX instructions. */
+ IX86_BUILTIN_ADDCARRYX32,
+ IX86_BUILTIN_ADDCARRYX64,
+
+ /* FSGSBASE instructions. */
+ IX86_BUILTIN_RDFSBASE32,
+ IX86_BUILTIN_RDFSBASE64,
+ IX86_BUILTIN_RDGSBASE32,
+ IX86_BUILTIN_RDGSBASE64,
+ IX86_BUILTIN_WRFSBASE32,
+ IX86_BUILTIN_WRFSBASE64,
+ IX86_BUILTIN_WRGSBASE32,
+ IX86_BUILTIN_WRGSBASE64,
+
+ /* RDRND instructions. */
+ IX86_BUILTIN_RDRAND16_STEP,
+ IX86_BUILTIN_RDRAND32_STEP,
+ IX86_BUILTIN_RDRAND64_STEP,
+
+ /* RDSEED instructions. */
+ IX86_BUILTIN_RDSEED16_STEP,
+ IX86_BUILTIN_RDSEED32_STEP,
+ IX86_BUILTIN_RDSEED64_STEP,
+
+ /* F16C instructions. */
+ IX86_BUILTIN_CVTPH2PS,
+ IX86_BUILTIN_CVTPH2PS256,
+ IX86_BUILTIN_CVTPS2PH,
+ IX86_BUILTIN_CVTPS2PH256,
+
+ /* CFString built-in for darwin */
+ IX86_BUILTIN_CFSTRING,
+
+ /* Builtins to get CPU type and supported features. */
+ IX86_BUILTIN_CPU_INIT,
+ IX86_BUILTIN_CPU_IS,
+ IX86_BUILTIN_CPU_SUPPORTS,
+
+ /* Read/write FLAGS register built-ins. */
+ IX86_BUILTIN_READ_FLAGS,
+ IX86_BUILTIN_WRITE_FLAGS,
+
+ IX86_BUILTIN_MAX
+};
+
+/* Table for the ix86 builtin decls. */
+static GTY(()) tree ix86_builtins[(int) IX86_BUILTIN_MAX];
+
+/* Table of all of the builtin functions that are possible with different ISA's
+ but are waiting to be built until a function is declared to use that
+ ISA. */
+struct builtin_isa {
+ const char *name; /* function name */
+ enum ix86_builtin_func_type tcode; /* type to use in the declaration */
+ HOST_WIDE_INT isa; /* isa_flags this builtin is defined for */
+ bool const_p; /* true if the declaration is constant */
+ bool set_and_not_built_p;
+};
+
+static struct builtin_isa ix86_builtins_isa[(int) IX86_BUILTIN_MAX];
+
+
+/* Add an ix86 target builtin function with CODE, NAME and TYPE. Save the MASK
+ of which isa_flags to use in the ix86_builtins_isa array. Stores the
+ function decl in the ix86_builtins array. Returns the function decl or
+ NULL_TREE, if the builtin was not added.
+
+ If the front end has a special hook for builtin functions, delay adding
+ builtin functions that aren't in the current ISA until the ISA is changed
+ with function specific optimization. Doing so, can save about 300K for the
+ default compiler. When the builtin is expanded, check at that time whether
+ it is valid.
+
+ If the front end doesn't have a special hook, record all builtins, even if
+ it isn't an instruction set in the current ISA in case the user uses
+ function specific options for a different ISA, so that we don't get scope
+ errors if a builtin is added in the middle of a function scope. */
+
+static inline tree
+def_builtin (HOST_WIDE_INT mask, const char *name,
+ enum ix86_builtin_func_type tcode,
+ enum ix86_builtins code)
+{
+ tree decl = NULL_TREE;
+
+ if (!(mask & OPTION_MASK_ISA_64BIT) || TARGET_64BIT)
+ {
+ ix86_builtins_isa[(int) code].isa = mask;
+
+ mask &= ~OPTION_MASK_ISA_64BIT;
+ if (mask == 0
+ || (mask & ix86_isa_flags) != 0
+ || (lang_hooks.builtin_function
+ == lang_hooks.builtin_function_ext_scope))
+
+ {
+ tree type = ix86_get_builtin_func_type (tcode);
+ decl = add_builtin_function (name, type, code, BUILT_IN_MD,
+ NULL, NULL_TREE);
+ ix86_builtins[(int) code] = decl;
+ ix86_builtins_isa[(int) code].set_and_not_built_p = false;
+ }
+ else
+ {
+ ix86_builtins[(int) code] = NULL_TREE;
+ ix86_builtins_isa[(int) code].tcode = tcode;
+ ix86_builtins_isa[(int) code].name = name;
+ ix86_builtins_isa[(int) code].const_p = false;
+ ix86_builtins_isa[(int) code].set_and_not_built_p = true;
+ }
+ }
+
+ return decl;
+}
+
+/* Like def_builtin, but also marks the function decl "const". */
+
+static inline tree
+def_builtin_const (HOST_WIDE_INT mask, const char *name,
+ enum ix86_builtin_func_type tcode, enum ix86_builtins code)
+{
+ tree decl = def_builtin (mask, name, tcode, code);
+ if (decl)
+ TREE_READONLY (decl) = 1;
+ else
+ ix86_builtins_isa[(int) code].const_p = true;
+
+ return decl;
+}
+
+/* Add any new builtin functions for a given ISA that may not have been
+ declared. This saves a bit of space compared to adding all of the
+ declarations to the tree, even if we didn't use them. */
+
+static void
+ix86_add_new_builtins (HOST_WIDE_INT isa)
+{
+ int i;
+
+ for (i = 0; i < (int)IX86_BUILTIN_MAX; i++)
+ {
+ if ((ix86_builtins_isa[i].isa & isa) != 0
+ && ix86_builtins_isa[i].set_and_not_built_p)
+ {
+ tree decl, type;
+
+ /* Don't define the builtin again. */
+ ix86_builtins_isa[i].set_and_not_built_p = false;
+
+ type = ix86_get_builtin_func_type (ix86_builtins_isa[i].tcode);
+ decl = add_builtin_function_ext_scope (ix86_builtins_isa[i].name,
+ type, i, BUILT_IN_MD, NULL,
+ NULL_TREE);
+
+ ix86_builtins[i] = decl;
+ if (ix86_builtins_isa[i].const_p)
+ TREE_READONLY (decl) = 1;
+ }
+ }
+}
+
+/* Bits for builtin_description.flag. */
+
+/* Set when we don't support the comparison natively, and should
+ swap_comparison in order to support it. */
+#define BUILTIN_DESC_SWAP_OPERANDS 1
+
+struct builtin_description
+{
+ const HOST_WIDE_INT mask;
+ const enum insn_code icode;
+ const char *const name;
+ const enum ix86_builtins code;
+ const enum rtx_code comparison;
+ const int flag;
+};
+
+static const struct builtin_description bdesc_comi[] =
+{
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comieq", IX86_BUILTIN_COMIEQSS, UNEQ, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comilt", IX86_BUILTIN_COMILTSS, UNLT, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comile", IX86_BUILTIN_COMILESS, UNLE, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comigt", IX86_BUILTIN_COMIGTSS, GT, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comige", IX86_BUILTIN_COMIGESS, GE, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comineq", IX86_BUILTIN_COMINEQSS, LTGT, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomieq", IX86_BUILTIN_UCOMIEQSS, UNEQ, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomilt", IX86_BUILTIN_UCOMILTSS, UNLT, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomile", IX86_BUILTIN_UCOMILESS, UNLE, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomigt", IX86_BUILTIN_UCOMIGTSS, GT, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomige", IX86_BUILTIN_UCOMIGESS, GE, 0 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomineq", IX86_BUILTIN_UCOMINEQSS, LTGT, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdeq", IX86_BUILTIN_COMIEQSD, UNEQ, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdlt", IX86_BUILTIN_COMILTSD, UNLT, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdle", IX86_BUILTIN_COMILESD, UNLE, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdgt", IX86_BUILTIN_COMIGTSD, GT, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdge", IX86_BUILTIN_COMIGESD, GE, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdneq", IX86_BUILTIN_COMINEQSD, LTGT, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdeq", IX86_BUILTIN_UCOMIEQSD, UNEQ, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdlt", IX86_BUILTIN_UCOMILTSD, UNLT, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdle", IX86_BUILTIN_UCOMILESD, UNLE, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdgt", IX86_BUILTIN_UCOMIGTSD, GT, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdge", IX86_BUILTIN_UCOMIGESD, GE, 0 },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdneq", IX86_BUILTIN_UCOMINEQSD, LTGT, 0 },
+};
+
+static const struct builtin_description bdesc_pcmpestr[] =
+{
+ /* SSE4.2 */
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestri128", IX86_BUILTIN_PCMPESTRI128, UNKNOWN, 0 },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestrm128", IX86_BUILTIN_PCMPESTRM128, UNKNOWN, 0 },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestria128", IX86_BUILTIN_PCMPESTRA128, UNKNOWN, (int) CCAmode },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestric128", IX86_BUILTIN_PCMPESTRC128, UNKNOWN, (int) CCCmode },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestrio128", IX86_BUILTIN_PCMPESTRO128, UNKNOWN, (int) CCOmode },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestris128", IX86_BUILTIN_PCMPESTRS128, UNKNOWN, (int) CCSmode },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestriz128", IX86_BUILTIN_PCMPESTRZ128, UNKNOWN, (int) CCZmode },
+};
+
+static const struct builtin_description bdesc_pcmpistr[] =
+{
+ /* SSE4.2 */
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistri128", IX86_BUILTIN_PCMPISTRI128, UNKNOWN, 0 },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistrm128", IX86_BUILTIN_PCMPISTRM128, UNKNOWN, 0 },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistria128", IX86_BUILTIN_PCMPISTRA128, UNKNOWN, (int) CCAmode },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistric128", IX86_BUILTIN_PCMPISTRC128, UNKNOWN, (int) CCCmode },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistrio128", IX86_BUILTIN_PCMPISTRO128, UNKNOWN, (int) CCOmode },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistris128", IX86_BUILTIN_PCMPISTRS128, UNKNOWN, (int) CCSmode },
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistriz128", IX86_BUILTIN_PCMPISTRZ128, UNKNOWN, (int) CCZmode },
+};
+
+/* Special builtins with variable number of arguments. */
+static const struct builtin_description bdesc_special_args[] =
+{
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_rdtsc", IX86_BUILTIN_RDTSC, UNKNOWN, (int) UINT64_FTYPE_VOID },
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_rdtscp", IX86_BUILTIN_RDTSCP, UNKNOWN, (int) UINT64_FTYPE_PUNSIGNED },
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_pause, "__builtin_ia32_pause", IX86_BUILTIN_PAUSE, UNKNOWN, (int) VOID_FTYPE_VOID },
+
+ /* 80387 (for use internally for atomic compound assignment). */
+ { 0, CODE_FOR_fnstenv, "__builtin_ia32_fnstenv", IX86_BUILTIN_FNSTENV, UNKNOWN, (int) VOID_FTYPE_PVOID },
+ { 0, CODE_FOR_fldenv, "__builtin_ia32_fldenv", IX86_BUILTIN_FLDENV, UNKNOWN, (int) VOID_FTYPE_PCVOID },
+ { 0, CODE_FOR_fnstsw, "__builtin_ia32_fnstsw", IX86_BUILTIN_FNSTSW, UNKNOWN, (int) VOID_FTYPE_PUSHORT },
+ { 0, CODE_FOR_fnclex, "__builtin_ia32_fnclex", IX86_BUILTIN_FNCLEX, UNKNOWN, (int) VOID_FTYPE_VOID },
+
+ /* MMX */
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_emms, "__builtin_ia32_emms", IX86_BUILTIN_EMMS, UNKNOWN, (int) VOID_FTYPE_VOID },
+
+ /* 3DNow! */
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_femms, "__builtin_ia32_femms", IX86_BUILTIN_FEMMS, UNKNOWN, (int) VOID_FTYPE_VOID },
+
+ /* FXSR, XSAVE and XSAVEOPT */
+ { OPTION_MASK_ISA_FXSR, CODE_FOR_nothing, "__builtin_ia32_fxsave", IX86_BUILTIN_FXSAVE, UNKNOWN, (int) VOID_FTYPE_PVOID },
+ { OPTION_MASK_ISA_FXSR, CODE_FOR_nothing, "__builtin_ia32_fxrstor", IX86_BUILTIN_FXRSTOR, UNKNOWN, (int) VOID_FTYPE_PVOID },
+ { OPTION_MASK_ISA_XSAVE, CODE_FOR_nothing, "__builtin_ia32_xsave", IX86_BUILTIN_XSAVE, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 },
+ { OPTION_MASK_ISA_XSAVE, CODE_FOR_nothing, "__builtin_ia32_xrstor", IX86_BUILTIN_XRSTOR, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 },
+ { OPTION_MASK_ISA_XSAVEOPT, CODE_FOR_nothing, "__builtin_ia32_xsaveopt", IX86_BUILTIN_XSAVEOPT, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 },
+
+ { OPTION_MASK_ISA_FXSR | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_fxsave64", IX86_BUILTIN_FXSAVE64, UNKNOWN, (int) VOID_FTYPE_PVOID },
+ { OPTION_MASK_ISA_FXSR | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_fxrstor64", IX86_BUILTIN_FXRSTOR64, UNKNOWN, (int) VOID_FTYPE_PVOID },
+ { OPTION_MASK_ISA_XSAVE | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_xsave64", IX86_BUILTIN_XSAVE64, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 },
+ { OPTION_MASK_ISA_XSAVE | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_xrstor64", IX86_BUILTIN_XRSTOR64, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 },
+ { OPTION_MASK_ISA_XSAVEOPT | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_xsaveopt64", IX86_BUILTIN_XSAVEOPT64, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 },
+
+ /* SSE */
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storeups, "__builtin_ia32_storeups", IX86_BUILTIN_STOREUPS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movntv4sf, "__builtin_ia32_movntps", IX86_BUILTIN_MOVNTPS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadups, "__builtin_ia32_loadups", IX86_BUILTIN_LOADUPS, UNKNOWN, (int) V4SF_FTYPE_PCFLOAT },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadhps_exp, "__builtin_ia32_loadhps", IX86_BUILTIN_LOADHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_PCV2SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadlps_exp, "__builtin_ia32_loadlps", IX86_BUILTIN_LOADLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_PCV2SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storehps, "__builtin_ia32_storehps", IX86_BUILTIN_STOREHPS, UNKNOWN, (int) VOID_FTYPE_PV2SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storelps, "__builtin_ia32_storelps", IX86_BUILTIN_STORELPS, UNKNOWN, (int) VOID_FTYPE_PV2SF_V4SF },
+
+ /* SSE or 3DNow!A */
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_sse_sfence, "__builtin_ia32_sfence", IX86_BUILTIN_SFENCE, UNKNOWN, (int) VOID_FTYPE_VOID },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_sse_movntq, "__builtin_ia32_movntq", IX86_BUILTIN_MOVNTQ, UNKNOWN, (int) VOID_FTYPE_PULONGLONG_ULONGLONG },
+
+ /* SSE2 */
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_lfence, "__builtin_ia32_lfence", IX86_BUILTIN_LFENCE, UNKNOWN, (int) VOID_FTYPE_VOID },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_mfence, 0, IX86_BUILTIN_MFENCE, UNKNOWN, (int) VOID_FTYPE_VOID },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_storeupd, "__builtin_ia32_storeupd", IX86_BUILTIN_STOREUPD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_storedquv16qi, "__builtin_ia32_storedqu", IX86_BUILTIN_STOREDQU, UNKNOWN, (int) VOID_FTYPE_PCHAR_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntv2df, "__builtin_ia32_movntpd", IX86_BUILTIN_MOVNTPD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntv2di, "__builtin_ia32_movntdq", IX86_BUILTIN_MOVNTDQ, UNKNOWN, (int) VOID_FTYPE_PV2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntisi, "__builtin_ia32_movnti", IX86_BUILTIN_MOVNTI, UNKNOWN, (int) VOID_FTYPE_PINT_INT },
+ { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_movntidi, "__builtin_ia32_movnti64", IX86_BUILTIN_MOVNTI64, UNKNOWN, (int) VOID_FTYPE_PLONGLONG_LONGLONG },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadupd, "__builtin_ia32_loadupd", IX86_BUILTIN_LOADUPD, UNKNOWN, (int) V2DF_FTYPE_PCDOUBLE },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loaddquv16qi, "__builtin_ia32_loaddqu", IX86_BUILTIN_LOADDQU, UNKNOWN, (int) V16QI_FTYPE_PCCHAR },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadhpd_exp, "__builtin_ia32_loadhpd", IX86_BUILTIN_LOADHPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_PCDOUBLE },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadlpd_exp, "__builtin_ia32_loadlpd", IX86_BUILTIN_LOADLPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_PCDOUBLE },
+
+ /* SSE3 */
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_lddqu, "__builtin_ia32_lddqu", IX86_BUILTIN_LDDQU, UNKNOWN, (int) V16QI_FTYPE_PCCHAR },
+
+ /* SSE4.1 */
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_movntdqa, "__builtin_ia32_movntdqa", IX86_BUILTIN_MOVNTDQA, UNKNOWN, (int) V2DI_FTYPE_PV2DI },
+
+ /* SSE4A */
+ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_vmmovntv2df, "__builtin_ia32_movntsd", IX86_BUILTIN_MOVNTSD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF },
+ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_vmmovntv4sf, "__builtin_ia32_movntss", IX86_BUILTIN_MOVNTSS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF },
+
+ /* AVX */
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vzeroall, "__builtin_ia32_vzeroall", IX86_BUILTIN_VZEROALL, UNKNOWN, (int) VOID_FTYPE_VOID },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vzeroupper, "__builtin_ia32_vzeroupper", IX86_BUILTIN_VZEROUPPER, UNKNOWN, (int) VOID_FTYPE_VOID },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv4sf, "__builtin_ia32_vbroadcastss", IX86_BUILTIN_VBROADCASTSS, UNKNOWN, (int) V4SF_FTYPE_PCFLOAT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv4df, "__builtin_ia32_vbroadcastsd256", IX86_BUILTIN_VBROADCASTSD256, UNKNOWN, (int) V4DF_FTYPE_PCDOUBLE },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv8sf, "__builtin_ia32_vbroadcastss256", IX86_BUILTIN_VBROADCASTSS256, UNKNOWN, (int) V8SF_FTYPE_PCFLOAT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vbroadcastf128_v4df, "__builtin_ia32_vbroadcastf128_pd256", IX86_BUILTIN_VBROADCASTPD256, UNKNOWN, (int) V4DF_FTYPE_PCV2DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vbroadcastf128_v8sf, "__builtin_ia32_vbroadcastf128_ps256", IX86_BUILTIN_VBROADCASTPS256, UNKNOWN, (int) V8SF_FTYPE_PCV4SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_loadupd256, "__builtin_ia32_loadupd256", IX86_BUILTIN_LOADUPD256, UNKNOWN, (int) V4DF_FTYPE_PCDOUBLE },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_loadups256, "__builtin_ia32_loadups256", IX86_BUILTIN_LOADUPS256, UNKNOWN, (int) V8SF_FTYPE_PCFLOAT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_storeupd256, "__builtin_ia32_storeupd256", IX86_BUILTIN_STOREUPD256, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_storeups256, "__builtin_ia32_storeups256", IX86_BUILTIN_STOREUPS256, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_loaddquv32qi, "__builtin_ia32_loaddqu256", IX86_BUILTIN_LOADDQU256, UNKNOWN, (int) V32QI_FTYPE_PCCHAR },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_storedquv32qi, "__builtin_ia32_storedqu256", IX86_BUILTIN_STOREDQU256, UNKNOWN, (int) VOID_FTYPE_PCHAR_V32QI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_lddqu256, "__builtin_ia32_lddqu256", IX86_BUILTIN_LDDQU256, UNKNOWN, (int) V32QI_FTYPE_PCCHAR },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv4di, "__builtin_ia32_movntdq256", IX86_BUILTIN_MOVNTDQ256, UNKNOWN, (int) VOID_FTYPE_PV4DI_V4DI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv4df, "__builtin_ia32_movntpd256", IX86_BUILTIN_MOVNTPD256, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv8sf, "__builtin_ia32_movntps256", IX86_BUILTIN_MOVNTPS256, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V8SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadpd, "__builtin_ia32_maskloadpd", IX86_BUILTIN_MASKLOADPD, UNKNOWN, (int) V2DF_FTYPE_PCV2DF_V2DI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadps, "__builtin_ia32_maskloadps", IX86_BUILTIN_MASKLOADPS, UNKNOWN, (int) V4SF_FTYPE_PCV4SF_V4SI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadpd256, "__builtin_ia32_maskloadpd256", IX86_BUILTIN_MASKLOADPD256, UNKNOWN, (int) V4DF_FTYPE_PCV4DF_V4DI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadps256, "__builtin_ia32_maskloadps256", IX86_BUILTIN_MASKLOADPS256, UNKNOWN, (int) V8SF_FTYPE_PCV8SF_V8SI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstorepd, "__builtin_ia32_maskstorepd", IX86_BUILTIN_MASKSTOREPD, UNKNOWN, (int) VOID_FTYPE_PV2DF_V2DI_V2DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstoreps, "__builtin_ia32_maskstoreps", IX86_BUILTIN_MASKSTOREPS, UNKNOWN, (int) VOID_FTYPE_PV4SF_V4SI_V4SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstorepd256, "__builtin_ia32_maskstorepd256", IX86_BUILTIN_MASKSTOREPD256, UNKNOWN, (int) VOID_FTYPE_PV4DF_V4DI_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstoreps256, "__builtin_ia32_maskstoreps256", IX86_BUILTIN_MASKSTOREPS256, UNKNOWN, (int) VOID_FTYPE_PV8SF_V8SI_V8SF },
+
+ /* AVX2 */
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_movntdqa, "__builtin_ia32_movntdqa256", IX86_BUILTIN_MOVNTDQA256, UNKNOWN, (int) V4DI_FTYPE_PV4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskloadd, "__builtin_ia32_maskloadd", IX86_BUILTIN_MASKLOADD, UNKNOWN, (int) V4SI_FTYPE_PCV4SI_V4SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskloadq, "__builtin_ia32_maskloadq", IX86_BUILTIN_MASKLOADQ, UNKNOWN, (int) V2DI_FTYPE_PCV2DI_V2DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskloadd256, "__builtin_ia32_maskloadd256", IX86_BUILTIN_MASKLOADD256, UNKNOWN, (int) V8SI_FTYPE_PCV8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskloadq256, "__builtin_ia32_maskloadq256", IX86_BUILTIN_MASKLOADQ256, UNKNOWN, (int) V4DI_FTYPE_PCV4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskstored, "__builtin_ia32_maskstored", IX86_BUILTIN_MASKSTORED, UNKNOWN, (int) VOID_FTYPE_PV4SI_V4SI_V4SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskstoreq, "__builtin_ia32_maskstoreq", IX86_BUILTIN_MASKSTOREQ, UNKNOWN, (int) VOID_FTYPE_PV2DI_V2DI_V2DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskstored256, "__builtin_ia32_maskstored256", IX86_BUILTIN_MASKSTORED256, UNKNOWN, (int) VOID_FTYPE_PV8SI_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskstoreq256, "__builtin_ia32_maskstoreq256", IX86_BUILTIN_MASKSTOREQ256, UNKNOWN, (int) VOID_FTYPE_PV4DI_V4DI_V4DI },
+
+ /* AVX512F */
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_compressstorev16sf_mask, "__builtin_ia32_compressstoresf512_mask", IX86_BUILTIN_COMPRESSPSSTORE512, UNKNOWN, (int) VOID_FTYPE_PV16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_compressstorev16si_mask, "__builtin_ia32_compressstoresi512_mask", IX86_BUILTIN_PCOMPRESSDSTORE512, UNKNOWN, (int) VOID_FTYPE_PV16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_compressstorev8df_mask, "__builtin_ia32_compressstoredf512_mask", IX86_BUILTIN_COMPRESSPDSTORE512, UNKNOWN, (int) VOID_FTYPE_PV8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_compressstorev8di_mask, "__builtin_ia32_compressstoredi512_mask", IX86_BUILTIN_PCOMPRESSQSTORE512, UNKNOWN, (int) VOID_FTYPE_PV8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv16sf_mask, "__builtin_ia32_expandloadsf512_mask", IX86_BUILTIN_EXPANDPSLOAD512, UNKNOWN, (int) V16SF_FTYPE_PCV16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv16sf_maskz, "__builtin_ia32_expandloadsf512_maskz", IX86_BUILTIN_EXPANDPSLOAD512Z, UNKNOWN, (int) V16SF_FTYPE_PCV16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv16si_mask, "__builtin_ia32_expandloadsi512_mask", IX86_BUILTIN_PEXPANDDLOAD512, UNKNOWN, (int) V16SI_FTYPE_PCV16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv16si_maskz, "__builtin_ia32_expandloadsi512_maskz", IX86_BUILTIN_PEXPANDDLOAD512Z, UNKNOWN, (int) V16SI_FTYPE_PCV16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv8df_mask, "__builtin_ia32_expandloaddf512_mask", IX86_BUILTIN_EXPANDPDLOAD512, UNKNOWN, (int) V8DF_FTYPE_PCV8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv8df_maskz, "__builtin_ia32_expandloaddf512_maskz", IX86_BUILTIN_EXPANDPDLOAD512Z, UNKNOWN, (int) V8DF_FTYPE_PCV8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv8di_mask, "__builtin_ia32_expandloaddi512_mask", IX86_BUILTIN_PEXPANDQLOAD512, UNKNOWN, (int) V8DI_FTYPE_PCV8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv8di_maskz, "__builtin_ia32_expandloaddi512_maskz", IX86_BUILTIN_PEXPANDQLOAD512Z, UNKNOWN, (int) V8DI_FTYPE_PCV8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loaddquv16si_mask, "__builtin_ia32_loaddqusi512_mask", IX86_BUILTIN_LOADDQUSI512, UNKNOWN, (int) V16SI_FTYPE_PCV16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loaddquv8di_mask, "__builtin_ia32_loaddqudi512_mask", IX86_BUILTIN_LOADDQUDI512, UNKNOWN, (int) V8DI_FTYPE_PCV8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadupd512_mask, "__builtin_ia32_loadupd512_mask", IX86_BUILTIN_LOADUPD512, UNKNOWN, (int) V8DF_FTYPE_PCV8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadups512_mask, "__builtin_ia32_loadups512_mask", IX86_BUILTIN_LOADUPS512, UNKNOWN, (int) V16SF_FTYPE_PCV16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadv16sf_mask, "__builtin_ia32_loadaps512_mask", IX86_BUILTIN_LOADAPS512, UNKNOWN, (int) V16SF_FTYPE_PCV16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadv16si_mask, "__builtin_ia32_movdqa32load512_mask", IX86_BUILTIN_MOVDQA32LOAD512, UNKNOWN, (int) V16SI_FTYPE_PCV16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadv8df_mask, "__builtin_ia32_loadapd512_mask", IX86_BUILTIN_LOADAPD512, UNKNOWN, (int) V8DF_FTYPE_PCV8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadv8di_mask, "__builtin_ia32_movdqa64load512_mask", IX86_BUILTIN_MOVDQA64LOAD512, UNKNOWN, (int) V8DI_FTYPE_PCV8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_movntv16sf, "__builtin_ia32_movntps512", IX86_BUILTIN_MOVNTPS512, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V16SF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_movntv8df, "__builtin_ia32_movntpd512", IX86_BUILTIN_MOVNTPD512, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V8DF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_movntv8di, "__builtin_ia32_movntdq512", IX86_BUILTIN_MOVNTDQ512, UNKNOWN, (int) VOID_FTYPE_PV8DI_V8DI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_movntdqa, "__builtin_ia32_movntdqa512", IX86_BUILTIN_MOVNTDQA512, UNKNOWN, (int) V8DI_FTYPE_PV8DI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_storedquv16si_mask, "__builtin_ia32_storedqusi512_mask", IX86_BUILTIN_STOREDQUSI512, UNKNOWN, (int) VOID_FTYPE_PV16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_storedquv8di_mask, "__builtin_ia32_storedqudi512_mask", IX86_BUILTIN_STOREDQUDI512, UNKNOWN, (int) VOID_FTYPE_PV8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_storeupd512_mask, "__builtin_ia32_storeupd512_mask", IX86_BUILTIN_STOREUPD512, UNKNOWN, (int) VOID_FTYPE_PV8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev8div8si2_mask_store, "__builtin_ia32_pmovusqd512mem_mask", IX86_BUILTIN_PMOVUSQD512_MEM, UNKNOWN, (int) VOID_FTYPE_PV8SI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev8div8si2_mask_store, "__builtin_ia32_pmovsqd512mem_mask", IX86_BUILTIN_PMOVSQD512_MEM, UNKNOWN, (int) VOID_FTYPE_PV8SI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev8div8si2_mask_store, "__builtin_ia32_pmovqd512mem_mask", IX86_BUILTIN_PMOVQD512_MEM, UNKNOWN, (int) VOID_FTYPE_PV8SI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev8div8hi2_mask_store, "__builtin_ia32_pmovusqw512mem_mask", IX86_BUILTIN_PMOVUSQW512_MEM, UNKNOWN, (int) VOID_FTYPE_PV8HI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev8div8hi2_mask_store, "__builtin_ia32_pmovsqw512mem_mask", IX86_BUILTIN_PMOVSQW512_MEM, UNKNOWN, (int) VOID_FTYPE_PV8HI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev8div8hi2_mask_store, "__builtin_ia32_pmovqw512mem_mask", IX86_BUILTIN_PMOVQW512_MEM, UNKNOWN, (int) VOID_FTYPE_PV8HI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev16siv16hi2_mask_store, "__builtin_ia32_pmovusdw512mem_mask", IX86_BUILTIN_PMOVUSDW512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16HI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev16siv16hi2_mask_store, "__builtin_ia32_pmovsdw512mem_mask", IX86_BUILTIN_PMOVSDW512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16HI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev16siv16hi2_mask_store, "__builtin_ia32_pmovdw512mem_mask", IX86_BUILTIN_PMOVDW512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16HI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev8div16qi2_mask_store, "__builtin_ia32_pmovqb512mem_mask", IX86_BUILTIN_PMOVQB512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16QI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev8div16qi2_mask_store, "__builtin_ia32_pmovusqb512mem_mask", IX86_BUILTIN_PMOVUSQB512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16QI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev8div16qi2_mask_store, "__builtin_ia32_pmovsqb512mem_mask", IX86_BUILTIN_PMOVSQB512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16QI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev16siv16qi2_mask_store, "__builtin_ia32_pmovusdb512mem_mask", IX86_BUILTIN_PMOVUSDB512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16QI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev16siv16qi2_mask_store, "__builtin_ia32_pmovsdb512mem_mask", IX86_BUILTIN_PMOVSDB512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16QI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev16siv16qi2_mask_store, "__builtin_ia32_pmovdb512mem_mask", IX86_BUILTIN_PMOVDB512_MEM, UNKNOWN, (int) VOID_FTYPE_PV16QI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_storeups512_mask, "__builtin_ia32_storeups512_mask", IX86_BUILTIN_STOREUPS512, UNKNOWN, (int) VOID_FTYPE_PV16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_storev16sf_mask, "__builtin_ia32_storeaps512_mask", IX86_BUILTIN_STOREAPS512, UNKNOWN, (int) VOID_FTYPE_PV16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_storev16si_mask, "__builtin_ia32_movdqa32store512_mask", IX86_BUILTIN_MOVDQA32STORE512, UNKNOWN, (int) VOID_FTYPE_PV16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_storev8df_mask, "__builtin_ia32_storeapd512_mask", IX86_BUILTIN_STOREAPD512, UNKNOWN, (int) VOID_FTYPE_PV8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_storev8di_mask, "__builtin_ia32_movdqa64store512_mask", IX86_BUILTIN_MOVDQA64STORE512, UNKNOWN, (int) VOID_FTYPE_PV8DI_V8DI_QI },
+
+ { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_llwpcb, "__builtin_ia32_llwpcb", IX86_BUILTIN_LLWPCB, UNKNOWN, (int) VOID_FTYPE_PVOID },
+ { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_slwpcb, "__builtin_ia32_slwpcb", IX86_BUILTIN_SLWPCB, UNKNOWN, (int) PVOID_FTYPE_VOID },
+ { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvalsi3, "__builtin_ia32_lwpval32", IX86_BUILTIN_LWPVAL32, UNKNOWN, (int) VOID_FTYPE_UINT_UINT_UINT },
+ { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvaldi3, "__builtin_ia32_lwpval64", IX86_BUILTIN_LWPVAL64, UNKNOWN, (int) VOID_FTYPE_UINT64_UINT_UINT },
+ { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinssi3, "__builtin_ia32_lwpins32", IX86_BUILTIN_LWPINS32, UNKNOWN, (int) UCHAR_FTYPE_UINT_UINT_UINT },
+ { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinsdi3, "__builtin_ia32_lwpins64", IX86_BUILTIN_LWPINS64, UNKNOWN, (int) UCHAR_FTYPE_UINT64_UINT_UINT },
+
+ /* FSGSBASE */
+ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdfsbasesi, "__builtin_ia32_rdfsbase32", IX86_BUILTIN_RDFSBASE32, UNKNOWN, (int) UNSIGNED_FTYPE_VOID },
+ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdfsbasedi, "__builtin_ia32_rdfsbase64", IX86_BUILTIN_RDFSBASE64, UNKNOWN, (int) UINT64_FTYPE_VOID },
+ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdgsbasesi, "__builtin_ia32_rdgsbase32", IX86_BUILTIN_RDGSBASE32, UNKNOWN, (int) UNSIGNED_FTYPE_VOID },
+ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdgsbasedi, "__builtin_ia32_rdgsbase64", IX86_BUILTIN_RDGSBASE64, UNKNOWN, (int) UINT64_FTYPE_VOID },
+ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrfsbasesi, "__builtin_ia32_wrfsbase32", IX86_BUILTIN_WRFSBASE32, UNKNOWN, (int) VOID_FTYPE_UNSIGNED },
+ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrfsbasedi, "__builtin_ia32_wrfsbase64", IX86_BUILTIN_WRFSBASE64, UNKNOWN, (int) VOID_FTYPE_UINT64 },
+ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrgsbasesi, "__builtin_ia32_wrgsbase32", IX86_BUILTIN_WRGSBASE32, UNKNOWN, (int) VOID_FTYPE_UNSIGNED },
+ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrgsbasedi, "__builtin_ia32_wrgsbase64", IX86_BUILTIN_WRGSBASE64, UNKNOWN, (int) VOID_FTYPE_UINT64 },
+
+ /* RTM */
+ { OPTION_MASK_ISA_RTM, CODE_FOR_xbegin, "__builtin_ia32_xbegin", IX86_BUILTIN_XBEGIN, UNKNOWN, (int) UNSIGNED_FTYPE_VOID },
+ { OPTION_MASK_ISA_RTM, CODE_FOR_xend, "__builtin_ia32_xend", IX86_BUILTIN_XEND, UNKNOWN, (int) VOID_FTYPE_VOID },
+ { OPTION_MASK_ISA_RTM, CODE_FOR_xtest, "__builtin_ia32_xtest", IX86_BUILTIN_XTEST, UNKNOWN, (int) INT_FTYPE_VOID },
+};
+
+/* Builtins with variable number of arguments. */
+static const struct builtin_description bdesc_args[] =
+{
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_bsr, "__builtin_ia32_bsrsi", IX86_BUILTIN_BSRSI, UNKNOWN, (int) INT_FTYPE_INT },
+ { OPTION_MASK_ISA_64BIT, CODE_FOR_bsr_rex64, "__builtin_ia32_bsrdi", IX86_BUILTIN_BSRDI, UNKNOWN, (int) INT64_FTYPE_INT64 },
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_rdpmc", IX86_BUILTIN_RDPMC, UNKNOWN, (int) UINT64_FTYPE_INT },
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotlqi3, "__builtin_ia32_rolqi", IX86_BUILTIN_ROLQI, UNKNOWN, (int) UINT8_FTYPE_UINT8_INT },
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotlhi3, "__builtin_ia32_rolhi", IX86_BUILTIN_ROLHI, UNKNOWN, (int) UINT16_FTYPE_UINT16_INT },
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotrqi3, "__builtin_ia32_rorqi", IX86_BUILTIN_RORQI, UNKNOWN, (int) UINT8_FTYPE_UINT8_INT },
+ { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotrhi3, "__builtin_ia32_rorhi", IX86_BUILTIN_RORHI, UNKNOWN, (int) UINT16_FTYPE_UINT16_INT },
+
+ /* MMX */
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv8qi3, "__builtin_ia32_paddb", IX86_BUILTIN_PADDB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv4hi3, "__builtin_ia32_paddw", IX86_BUILTIN_PADDW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv2si3, "__builtin_ia32_paddd", IX86_BUILTIN_PADDD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv8qi3, "__builtin_ia32_psubb", IX86_BUILTIN_PSUBB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv4hi3, "__builtin_ia32_psubw", IX86_BUILTIN_PSUBW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv2si3, "__builtin_ia32_psubd", IX86_BUILTIN_PSUBD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ssaddv8qi3, "__builtin_ia32_paddsb", IX86_BUILTIN_PADDSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ssaddv4hi3, "__builtin_ia32_paddsw", IX86_BUILTIN_PADDSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_sssubv8qi3, "__builtin_ia32_psubsb", IX86_BUILTIN_PSUBSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_sssubv4hi3, "__builtin_ia32_psubsw", IX86_BUILTIN_PSUBSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_usaddv8qi3, "__builtin_ia32_paddusb", IX86_BUILTIN_PADDUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_usaddv4hi3, "__builtin_ia32_paddusw", IX86_BUILTIN_PADDUSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ussubv8qi3, "__builtin_ia32_psubusb", IX86_BUILTIN_PSUBUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ussubv4hi3, "__builtin_ia32_psubusw", IX86_BUILTIN_PSUBUSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_mulv4hi3, "__builtin_ia32_pmullw", IX86_BUILTIN_PMULLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_smulv4hi3_highpart, "__builtin_ia32_pmulhw", IX86_BUILTIN_PMULHW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_andv2si3, "__builtin_ia32_pand", IX86_BUILTIN_PAND, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_andnotv2si3, "__builtin_ia32_pandn", IX86_BUILTIN_PANDN, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_iorv2si3, "__builtin_ia32_por", IX86_BUILTIN_POR, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_xorv2si3, "__builtin_ia32_pxor", IX86_BUILTIN_PXOR, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv8qi3, "__builtin_ia32_pcmpeqb", IX86_BUILTIN_PCMPEQB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv4hi3, "__builtin_ia32_pcmpeqw", IX86_BUILTIN_PCMPEQW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv2si3, "__builtin_ia32_pcmpeqd", IX86_BUILTIN_PCMPEQD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv8qi3, "__builtin_ia32_pcmpgtb", IX86_BUILTIN_PCMPGTB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv4hi3, "__builtin_ia32_pcmpgtw", IX86_BUILTIN_PCMPGTW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv2si3, "__builtin_ia32_pcmpgtd", IX86_BUILTIN_PCMPGTD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhbw, "__builtin_ia32_punpckhbw", IX86_BUILTIN_PUNPCKHBW, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhwd, "__builtin_ia32_punpckhwd", IX86_BUILTIN_PUNPCKHWD, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhdq, "__builtin_ia32_punpckhdq", IX86_BUILTIN_PUNPCKHDQ, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpcklbw, "__builtin_ia32_punpcklbw", IX86_BUILTIN_PUNPCKLBW, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpcklwd, "__builtin_ia32_punpcklwd", IX86_BUILTIN_PUNPCKLWD, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI},
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckldq, "__builtin_ia32_punpckldq", IX86_BUILTIN_PUNPCKLDQ, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI},
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packsswb, "__builtin_ia32_packsswb", IX86_BUILTIN_PACKSSWB, UNKNOWN, (int) V8QI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packssdw, "__builtin_ia32_packssdw", IX86_BUILTIN_PACKSSDW, UNKNOWN, (int) V4HI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packuswb, "__builtin_ia32_packuswb", IX86_BUILTIN_PACKUSWB, UNKNOWN, (int) V8QI_FTYPE_V4HI_V4HI },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_pmaddwd, "__builtin_ia32_pmaddwd", IX86_BUILTIN_PMADDWD, UNKNOWN, (int) V2SI_FTYPE_V4HI_V4HI },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv4hi3, "__builtin_ia32_psllwi", IX86_BUILTIN_PSLLWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv2si3, "__builtin_ia32_pslldi", IX86_BUILTIN_PSLLDI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv1di3, "__builtin_ia32_psllqi", IX86_BUILTIN_PSLLQI, UNKNOWN, (int) V1DI_FTYPE_V1DI_SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv4hi3, "__builtin_ia32_psllw", IX86_BUILTIN_PSLLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv2si3, "__builtin_ia32_pslld", IX86_BUILTIN_PSLLD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv1di3, "__builtin_ia32_psllq", IX86_BUILTIN_PSLLQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_COUNT },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv4hi3, "__builtin_ia32_psrlwi", IX86_BUILTIN_PSRLWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv2si3, "__builtin_ia32_psrldi", IX86_BUILTIN_PSRLDI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv1di3, "__builtin_ia32_psrlqi", IX86_BUILTIN_PSRLQI, UNKNOWN, (int) V1DI_FTYPE_V1DI_SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv4hi3, "__builtin_ia32_psrlw", IX86_BUILTIN_PSRLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv2si3, "__builtin_ia32_psrld", IX86_BUILTIN_PSRLD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv1di3, "__builtin_ia32_psrlq", IX86_BUILTIN_PSRLQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_COUNT },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv4hi3, "__builtin_ia32_psrawi", IX86_BUILTIN_PSRAWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv2si3, "__builtin_ia32_psradi", IX86_BUILTIN_PSRADI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv4hi3, "__builtin_ia32_psraw", IX86_BUILTIN_PSRAW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv2si3, "__builtin_ia32_psrad", IX86_BUILTIN_PSRAD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT },
+
+ /* 3DNow! */
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_pf2id, "__builtin_ia32_pf2id", IX86_BUILTIN_PF2ID, UNKNOWN, (int) V2SI_FTYPE_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_floatv2si2, "__builtin_ia32_pi2fd", IX86_BUILTIN_PI2FD, UNKNOWN, (int) V2SF_FTYPE_V2SI },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpv2sf2, "__builtin_ia32_pfrcp", IX86_BUILTIN_PFRCP, UNKNOWN, (int) V2SF_FTYPE_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rsqrtv2sf2, "__builtin_ia32_pfrsqrt", IX86_BUILTIN_PFRSQRT, UNKNOWN, (int) V2SF_FTYPE_V2SF },
+
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgusb", IX86_BUILTIN_PAVGUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_haddv2sf3, "__builtin_ia32_pfacc", IX86_BUILTIN_PFACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_addv2sf3, "__builtin_ia32_pfadd", IX86_BUILTIN_PFADD, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_eqv2sf3, "__builtin_ia32_pfcmpeq", IX86_BUILTIN_PFCMPEQ, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_gev2sf3, "__builtin_ia32_pfcmpge", IX86_BUILTIN_PFCMPGE, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_gtv2sf3, "__builtin_ia32_pfcmpgt", IX86_BUILTIN_PFCMPGT, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_smaxv2sf3, "__builtin_ia32_pfmax", IX86_BUILTIN_PFMAX, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_sminv2sf3, "__builtin_ia32_pfmin", IX86_BUILTIN_PFMIN, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_mulv2sf3, "__builtin_ia32_pfmul", IX86_BUILTIN_PFMUL, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpit1v2sf3, "__builtin_ia32_pfrcpit1", IX86_BUILTIN_PFRCPIT1, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpit2v2sf3, "__builtin_ia32_pfrcpit2", IX86_BUILTIN_PFRCPIT2, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rsqit1v2sf3, "__builtin_ia32_pfrsqit1", IX86_BUILTIN_PFRSQIT1, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_subv2sf3, "__builtin_ia32_pfsub", IX86_BUILTIN_PFSUB, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_subrv2sf3, "__builtin_ia32_pfsubr", IX86_BUILTIN_PFSUBR, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_pmulhrwv4hi3, "__builtin_ia32_pmulhrw", IX86_BUILTIN_PMULHRW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+
+ /* 3DNow!A */
+ { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pf2iw, "__builtin_ia32_pf2iw", IX86_BUILTIN_PF2IW, UNKNOWN, (int) V2SI_FTYPE_V2SF },
+ { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pi2fw, "__builtin_ia32_pi2fw", IX86_BUILTIN_PI2FW, UNKNOWN, (int) V2SF_FTYPE_V2SI },
+ { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pswapdv2si2, "__builtin_ia32_pswapdsi", IX86_BUILTIN_PSWAPDSI, UNKNOWN, (int) V2SI_FTYPE_V2SI },
+ { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pswapdv2sf2, "__builtin_ia32_pswapdsf", IX86_BUILTIN_PSWAPDSF, UNKNOWN, (int) V2SF_FTYPE_V2SF },
+ { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_hsubv2sf3, "__builtin_ia32_pfnacc", IX86_BUILTIN_PFNACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+ { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_addsubv2sf3, "__builtin_ia32_pfpnacc", IX86_BUILTIN_PFPNACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF },
+
+ /* SSE */
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movmskps, "__builtin_ia32_movmskps", IX86_BUILTIN_MOVMSKPS, UNKNOWN, (int) INT_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_sqrtv4sf2, "__builtin_ia32_sqrtps", IX86_BUILTIN_SQRTPS, UNKNOWN, (int) V4SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sqrtv4sf2, "__builtin_ia32_sqrtps_nr", IX86_BUILTIN_SQRTPS_NR, UNKNOWN, (int) V4SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_rsqrtv4sf2, "__builtin_ia32_rsqrtps", IX86_BUILTIN_RSQRTPS, UNKNOWN, (int) V4SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_rsqrtv4sf2, "__builtin_ia32_rsqrtps_nr", IX86_BUILTIN_RSQRTPS_NR, UNKNOWN, (int) V4SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_rcpv4sf2, "__builtin_ia32_rcpps", IX86_BUILTIN_RCPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtps2pi, "__builtin_ia32_cvtps2pi", IX86_BUILTIN_CVTPS2PI, UNKNOWN, (int) V2SI_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtss2si, "__builtin_ia32_cvtss2si", IX86_BUILTIN_CVTSS2SI, UNKNOWN, (int) INT_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtss2siq, "__builtin_ia32_cvtss2si64", IX86_BUILTIN_CVTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvttps2pi, "__builtin_ia32_cvttps2pi", IX86_BUILTIN_CVTTPS2PI, UNKNOWN, (int) V2SI_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvttss2si, "__builtin_ia32_cvttss2si", IX86_BUILTIN_CVTTSS2SI, UNKNOWN, (int) INT_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvttss2siq, "__builtin_ia32_cvttss2si64", IX86_BUILTIN_CVTTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_shufps, "__builtin_ia32_shufps", IX86_BUILTIN_SHUFPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_addv4sf3, "__builtin_ia32_addps", IX86_BUILTIN_ADDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_subv4sf3, "__builtin_ia32_subps", IX86_BUILTIN_SUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_mulv4sf3, "__builtin_ia32_mulps", IX86_BUILTIN_MULPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_divv4sf3, "__builtin_ia32_divps", IX86_BUILTIN_DIVPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmaddv4sf3, "__builtin_ia32_addss", IX86_BUILTIN_ADDSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsubv4sf3, "__builtin_ia32_subss", IX86_BUILTIN_SUBSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmulv4sf3, "__builtin_ia32_mulss", IX86_BUILTIN_MULSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmdivv4sf3, "__builtin_ia32_divss", IX86_BUILTIN_DIVSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpeqps", IX86_BUILTIN_CMPEQPS, EQ, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpltps", IX86_BUILTIN_CMPLTPS, LT, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpleps", IX86_BUILTIN_CMPLEPS, LE, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgtps", IX86_BUILTIN_CMPGTPS, LT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgeps", IX86_BUILTIN_CMPGEPS, LE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpunordps", IX86_BUILTIN_CMPUNORDPS, UNORDERED, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpneqps", IX86_BUILTIN_CMPNEQPS, NE, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnltps", IX86_BUILTIN_CMPNLTPS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnleps", IX86_BUILTIN_CMPNLEPS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngtps", IX86_BUILTIN_CMPNGTPS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngeps", IX86_BUILTIN_CMPNGEPS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP},
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpordps", IX86_BUILTIN_CMPORDPS, ORDERED, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpeqss", IX86_BUILTIN_CMPEQSS, EQ, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpltss", IX86_BUILTIN_CMPLTSS, LT, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpless", IX86_BUILTIN_CMPLESS, LE, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpunordss", IX86_BUILTIN_CMPUNORDSS, UNORDERED, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpneqss", IX86_BUILTIN_CMPNEQSS, NE, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnltss", IX86_BUILTIN_CMPNLTSS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnless", IX86_BUILTIN_CMPNLESS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpordss", IX86_BUILTIN_CMPORDSS, ORDERED, (int) V4SF_FTYPE_V4SF_V4SF },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sminv4sf3, "__builtin_ia32_minps", IX86_BUILTIN_MINPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_smaxv4sf3, "__builtin_ia32_maxps", IX86_BUILTIN_MAXPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsminv4sf3, "__builtin_ia32_minss", IX86_BUILTIN_MINSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsmaxv4sf3, "__builtin_ia32_maxss", IX86_BUILTIN_MAXSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_andv4sf3, "__builtin_ia32_andps", IX86_BUILTIN_ANDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_andnotv4sf3, "__builtin_ia32_andnps", IX86_BUILTIN_ANDNPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_iorv4sf3, "__builtin_ia32_orps", IX86_BUILTIN_ORPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_xorv4sf3, "__builtin_ia32_xorps", IX86_BUILTIN_XORPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_copysignv4sf3, "__builtin_ia32_copysignps", IX86_BUILTIN_CPYSGNPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movss, "__builtin_ia32_movss", IX86_BUILTIN_MOVSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movhlps_exp, "__builtin_ia32_movhlps", IX86_BUILTIN_MOVHLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movlhps_exp, "__builtin_ia32_movlhps", IX86_BUILTIN_MOVLHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_vec_interleave_highv4sf, "__builtin_ia32_unpckhps", IX86_BUILTIN_UNPCKHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_vec_interleave_lowv4sf, "__builtin_ia32_unpcklps", IX86_BUILTIN_UNPCKLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtpi2ps, "__builtin_ia32_cvtpi2ps", IX86_BUILTIN_CVTPI2PS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2SI },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtsi2ss, "__builtin_ia32_cvtsi2ss", IX86_BUILTIN_CVTSI2SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_SI },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtsi2ssq, "__builtin_ia32_cvtsi642ss", IX86_BUILTIN_CVTSI642SS, UNKNOWN, V4SF_FTYPE_V4SF_DI },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_rsqrtsf2, "__builtin_ia32_rsqrtf", IX86_BUILTIN_RSQRTF, UNKNOWN, (int) FLOAT_FTYPE_FLOAT },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsqrtv4sf2, "__builtin_ia32_sqrtss", IX86_BUILTIN_SQRTSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmrsqrtv4sf2, "__builtin_ia32_rsqrtss", IX86_BUILTIN_RSQRTSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmrcpv4sf2, "__builtin_ia32_rcpss", IX86_BUILTIN_RCPSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_abstf2, 0, IX86_BUILTIN_FABSQ, UNKNOWN, (int) FLOAT128_FTYPE_FLOAT128 },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_copysigntf3, 0, IX86_BUILTIN_COPYSIGNQ, UNKNOWN, (int) FLOAT128_FTYPE_FLOAT128_FLOAT128 },
+
+ /* SSE MMX or 3Dnow!A */
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgb", IX86_BUILTIN_PAVGB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uavgv4hi3, "__builtin_ia32_pavgw", IX86_BUILTIN_PAVGW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_umulv4hi3_highpart, "__builtin_ia32_pmulhuw", IX86_BUILTIN_PMULHUW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_umaxv8qi3, "__builtin_ia32_pmaxub", IX86_BUILTIN_PMAXUB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_smaxv4hi3, "__builtin_ia32_pmaxsw", IX86_BUILTIN_PMAXSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uminv8qi3, "__builtin_ia32_pminub", IX86_BUILTIN_PMINUB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_sminv4hi3, "__builtin_ia32_pminsw", IX86_BUILTIN_PMINSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_psadbw, "__builtin_ia32_psadbw", IX86_BUILTIN_PSADBW, UNKNOWN, (int) V1DI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pmovmskb, "__builtin_ia32_pmovmskb", IX86_BUILTIN_PMOVMSKB, UNKNOWN, (int) INT_FTYPE_V8QI },
+
+ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pshufw, "__builtin_ia32_pshufw", IX86_BUILTIN_PSHUFW, UNKNOWN, (int) V4HI_FTYPE_V4HI_INT },
+
+ /* SSE2 */
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_shufpd, "__builtin_ia32_shufpd", IX86_BUILTIN_SHUFPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movmskpd, "__builtin_ia32_movmskpd", IX86_BUILTIN_MOVMSKPD, UNKNOWN, (int) INT_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pmovmskb, "__builtin_ia32_pmovmskb128", IX86_BUILTIN_PMOVMSKB128, UNKNOWN, (int) INT_FTYPE_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sqrtv2df2, "__builtin_ia32_sqrtpd", IX86_BUILTIN_SQRTPD, UNKNOWN, (int) V2DF_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtdq2pd, "__builtin_ia32_cvtdq2pd", IX86_BUILTIN_CVTDQ2PD, UNKNOWN, (int) V2DF_FTYPE_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_floatv4siv4sf2, "__builtin_ia32_cvtdq2ps", IX86_BUILTIN_CVTDQ2PS, UNKNOWN, (int) V4SF_FTYPE_V4SI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2dq, "__builtin_ia32_cvtpd2dq", IX86_BUILTIN_CVTPD2DQ, UNKNOWN, (int) V4SI_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2pi, "__builtin_ia32_cvtpd2pi", IX86_BUILTIN_CVTPD2PI, UNKNOWN, (int) V2SI_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2ps, "__builtin_ia32_cvtpd2ps", IX86_BUILTIN_CVTPD2PS, UNKNOWN, (int) V4SF_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttpd2dq, "__builtin_ia32_cvttpd2dq", IX86_BUILTIN_CVTTPD2DQ, UNKNOWN, (int) V4SI_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttpd2pi, "__builtin_ia32_cvttpd2pi", IX86_BUILTIN_CVTTPD2PI, UNKNOWN, (int) V2SI_FTYPE_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpi2pd, "__builtin_ia32_cvtpi2pd", IX86_BUILTIN_CVTPI2PD, UNKNOWN, (int) V2DF_FTYPE_V2SI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsd2si, "__builtin_ia32_cvtsd2si", IX86_BUILTIN_CVTSD2SI, UNKNOWN, (int) INT_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttsd2si, "__builtin_ia32_cvttsd2si", IX86_BUILTIN_CVTTSD2SI, UNKNOWN, (int) INT_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsd2siq, "__builtin_ia32_cvtsd2si64", IX86_BUILTIN_CVTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF },
+ { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvttsd2siq, "__builtin_ia32_cvttsd2si64", IX86_BUILTIN_CVTTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_fix_notruncv4sfv4si, "__builtin_ia32_cvtps2dq", IX86_BUILTIN_CVTPS2DQ, UNKNOWN, (int) V4SI_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtps2pd, "__builtin_ia32_cvtps2pd", IX86_BUILTIN_CVTPS2PD, UNKNOWN, (int) V2DF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_fix_truncv4sfv4si2, "__builtin_ia32_cvttps2dq", IX86_BUILTIN_CVTTPS2DQ, UNKNOWN, (int) V4SI_FTYPE_V4SF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_addv2df3, "__builtin_ia32_addpd", IX86_BUILTIN_ADDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_subv2df3, "__builtin_ia32_subpd", IX86_BUILTIN_SUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_mulv2df3, "__builtin_ia32_mulpd", IX86_BUILTIN_MULPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_divv2df3, "__builtin_ia32_divpd", IX86_BUILTIN_DIVPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmaddv2df3, "__builtin_ia32_addsd", IX86_BUILTIN_ADDSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsubv2df3, "__builtin_ia32_subsd", IX86_BUILTIN_SUBSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmulv2df3, "__builtin_ia32_mulsd", IX86_BUILTIN_MULSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmdivv2df3, "__builtin_ia32_divsd", IX86_BUILTIN_DIVSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpeqpd", IX86_BUILTIN_CMPEQPD, EQ, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpltpd", IX86_BUILTIN_CMPLTPD, LT, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmplepd", IX86_BUILTIN_CMPLEPD, LE, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgtpd", IX86_BUILTIN_CMPGTPD, LT, (int) V2DF_FTYPE_V2DF_V2DF_SWAP },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgepd", IX86_BUILTIN_CMPGEPD, LE, (int) V2DF_FTYPE_V2DF_V2DF_SWAP},
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpunordpd", IX86_BUILTIN_CMPUNORDPD, UNORDERED, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpneqpd", IX86_BUILTIN_CMPNEQPD, NE, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnltpd", IX86_BUILTIN_CMPNLTPD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnlepd", IX86_BUILTIN_CMPNLEPD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngtpd", IX86_BUILTIN_CMPNGTPD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF_SWAP },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngepd", IX86_BUILTIN_CMPNGEPD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF_SWAP },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpordpd", IX86_BUILTIN_CMPORDPD, ORDERED, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpeqsd", IX86_BUILTIN_CMPEQSD, EQ, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpltsd", IX86_BUILTIN_CMPLTSD, LT, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmplesd", IX86_BUILTIN_CMPLESD, LE, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpunordsd", IX86_BUILTIN_CMPUNORDSD, UNORDERED, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpneqsd", IX86_BUILTIN_CMPNEQSD, NE, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnltsd", IX86_BUILTIN_CMPNLTSD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnlesd", IX86_BUILTIN_CMPNLESD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpordsd", IX86_BUILTIN_CMPORDSD, ORDERED, (int) V2DF_FTYPE_V2DF_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sminv2df3, "__builtin_ia32_minpd", IX86_BUILTIN_MINPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_smaxv2df3, "__builtin_ia32_maxpd", IX86_BUILTIN_MAXPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsminv2df3, "__builtin_ia32_minsd", IX86_BUILTIN_MINSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsmaxv2df3, "__builtin_ia32_maxsd", IX86_BUILTIN_MAXSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_andv2df3, "__builtin_ia32_andpd", IX86_BUILTIN_ANDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_andnotv2df3, "__builtin_ia32_andnpd", IX86_BUILTIN_ANDNPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_iorv2df3, "__builtin_ia32_orpd", IX86_BUILTIN_ORPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_xorv2df3, "__builtin_ia32_xorpd", IX86_BUILTIN_XORPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_copysignv2df3, "__builtin_ia32_copysignpd", IX86_BUILTIN_CPYSGNPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movsd, "__builtin_ia32_movsd", IX86_BUILTIN_MOVSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv2df, "__builtin_ia32_unpckhpd", IX86_BUILTIN_UNPCKHPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv2df, "__builtin_ia32_unpcklpd", IX86_BUILTIN_UNPCKLPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_pack_sfix_v2df, "__builtin_ia32_vec_pack_sfix", IX86_BUILTIN_VEC_PACK_SFIX, UNKNOWN, (int) V4SI_FTYPE_V2DF_V2DF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_addv16qi3, "__builtin_ia32_paddb128", IX86_BUILTIN_PADDB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_addv8hi3, "__builtin_ia32_paddw128", IX86_BUILTIN_PADDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_addv4si3, "__builtin_ia32_paddd128", IX86_BUILTIN_PADDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_addv2di3, "__builtin_ia32_paddq128", IX86_BUILTIN_PADDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_subv16qi3, "__builtin_ia32_psubb128", IX86_BUILTIN_PSUBB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_subv8hi3, "__builtin_ia32_psubw128", IX86_BUILTIN_PSUBW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_subv4si3, "__builtin_ia32_psubd128", IX86_BUILTIN_PSUBD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_subv2di3, "__builtin_ia32_psubq128", IX86_BUILTIN_PSUBQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ssaddv16qi3, "__builtin_ia32_paddsb128", IX86_BUILTIN_PADDSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ssaddv8hi3, "__builtin_ia32_paddsw128", IX86_BUILTIN_PADDSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_sssubv16qi3, "__builtin_ia32_psubsb128", IX86_BUILTIN_PSUBSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_sssubv8hi3, "__builtin_ia32_psubsw128", IX86_BUILTIN_PSUBSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_usaddv16qi3, "__builtin_ia32_paddusb128", IX86_BUILTIN_PADDUSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_usaddv8hi3, "__builtin_ia32_paddusw128", IX86_BUILTIN_PADDUSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ussubv16qi3, "__builtin_ia32_psubusb128", IX86_BUILTIN_PSUBUSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ussubv8hi3, "__builtin_ia32_psubusw128", IX86_BUILTIN_PSUBUSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_mulv8hi3, "__builtin_ia32_pmullw128", IX86_BUILTIN_PMULLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_smulv8hi3_highpart, "__builtin_ia32_pmulhw128", IX86_BUILTIN_PMULHW128, UNKNOWN,(int) V8HI_FTYPE_V8HI_V8HI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_andv2di3, "__builtin_ia32_pand128", IX86_BUILTIN_PAND128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_andnotv2di3, "__builtin_ia32_pandn128", IX86_BUILTIN_PANDN128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_iorv2di3, "__builtin_ia32_por128", IX86_BUILTIN_POR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_xorv2di3, "__builtin_ia32_pxor128", IX86_BUILTIN_PXOR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_uavgv16qi3, "__builtin_ia32_pavgb128", IX86_BUILTIN_PAVGB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_uavgv8hi3, "__builtin_ia32_pavgw128", IX86_BUILTIN_PAVGW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv16qi3, "__builtin_ia32_pcmpeqb128", IX86_BUILTIN_PCMPEQB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv8hi3, "__builtin_ia32_pcmpeqw128", IX86_BUILTIN_PCMPEQW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv4si3, "__builtin_ia32_pcmpeqd128", IX86_BUILTIN_PCMPEQD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv16qi3, "__builtin_ia32_pcmpgtb128", IX86_BUILTIN_PCMPGTB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv8hi3, "__builtin_ia32_pcmpgtw128", IX86_BUILTIN_PCMPGTW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv4si3, "__builtin_ia32_pcmpgtd128", IX86_BUILTIN_PCMPGTD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_umaxv16qi3, "__builtin_ia32_pmaxub128", IX86_BUILTIN_PMAXUB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_smaxv8hi3, "__builtin_ia32_pmaxsw128", IX86_BUILTIN_PMAXSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_uminv16qi3, "__builtin_ia32_pminub128", IX86_BUILTIN_PMINUB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sminv8hi3, "__builtin_ia32_pminsw128", IX86_BUILTIN_PMINSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv16qi, "__builtin_ia32_punpckhbw128", IX86_BUILTIN_PUNPCKHBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv8hi, "__builtin_ia32_punpckhwd128", IX86_BUILTIN_PUNPCKHWD128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv4si, "__builtin_ia32_punpckhdq128", IX86_BUILTIN_PUNPCKHDQ128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv2di, "__builtin_ia32_punpckhqdq128", IX86_BUILTIN_PUNPCKHQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv16qi, "__builtin_ia32_punpcklbw128", IX86_BUILTIN_PUNPCKLBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv8hi, "__builtin_ia32_punpcklwd128", IX86_BUILTIN_PUNPCKLWD128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv4si, "__builtin_ia32_punpckldq128", IX86_BUILTIN_PUNPCKLDQ128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv2di, "__builtin_ia32_punpcklqdq128", IX86_BUILTIN_PUNPCKLQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packsswb, "__builtin_ia32_packsswb128", IX86_BUILTIN_PACKSSWB128, UNKNOWN, (int) V16QI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packssdw, "__builtin_ia32_packssdw128", IX86_BUILTIN_PACKSSDW128, UNKNOWN, (int) V8HI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packuswb, "__builtin_ia32_packuswb128", IX86_BUILTIN_PACKUSWB128, UNKNOWN, (int) V16QI_FTYPE_V8HI_V8HI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_umulv8hi3_highpart, "__builtin_ia32_pmulhuw128", IX86_BUILTIN_PMULHUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_psadbw, "__builtin_ia32_psadbw128", IX86_BUILTIN_PSADBW128, UNKNOWN, (int) V2DI_FTYPE_V16QI_V16QI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_umulv1siv1di3, "__builtin_ia32_pmuludq", IX86_BUILTIN_PMULUDQ, UNKNOWN, (int) V1DI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_widen_umult_even_v4si, "__builtin_ia32_pmuludq128", IX86_BUILTIN_PMULUDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI_V4SI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pmaddwd, "__builtin_ia32_pmaddwd128", IX86_BUILTIN_PMADDWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI_V8HI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsi2sd, "__builtin_ia32_cvtsi2sd", IX86_BUILTIN_CVTSI2SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_SI },
+ { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsi2sdq, "__builtin_ia32_cvtsi642sd", IX86_BUILTIN_CVTSI642SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsd2ss, "__builtin_ia32_cvtsd2ss", IX86_BUILTIN_CVTSD2SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2DF },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtss2sd, "__builtin_ia32_cvtss2sd", IX86_BUILTIN_CVTSS2SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V4SF },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ashlv1ti3, "__builtin_ia32_pslldqi128", IX86_BUILTIN_PSLLDQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT_CONVERT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv8hi3, "__builtin_ia32_psllwi128", IX86_BUILTIN_PSLLWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv4si3, "__builtin_ia32_pslldi128", IX86_BUILTIN_PSLLDI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv2di3, "__builtin_ia32_psllqi128", IX86_BUILTIN_PSLLQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv8hi3, "__builtin_ia32_psllw128", IX86_BUILTIN_PSLLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv4si3, "__builtin_ia32_pslld128", IX86_BUILTIN_PSLLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv2di3, "__builtin_ia32_psllq128", IX86_BUILTIN_PSLLQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_COUNT },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_lshrv1ti3, "__builtin_ia32_psrldqi128", IX86_BUILTIN_PSRLDQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT_CONVERT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv8hi3, "__builtin_ia32_psrlwi128", IX86_BUILTIN_PSRLWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv4si3, "__builtin_ia32_psrldi128", IX86_BUILTIN_PSRLDI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv2di3, "__builtin_ia32_psrlqi128", IX86_BUILTIN_PSRLQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv8hi3, "__builtin_ia32_psrlw128", IX86_BUILTIN_PSRLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv4si3, "__builtin_ia32_psrld128", IX86_BUILTIN_PSRLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv2di3, "__builtin_ia32_psrlq128", IX86_BUILTIN_PSRLQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_COUNT },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv8hi3, "__builtin_ia32_psrawi128", IX86_BUILTIN_PSRAWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv4si3, "__builtin_ia32_psradi128", IX86_BUILTIN_PSRADI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv8hi3, "__builtin_ia32_psraw128", IX86_BUILTIN_PSRAW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv4si3, "__builtin_ia32_psrad128", IX86_BUILTIN_PSRAD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshufd, "__builtin_ia32_pshufd", IX86_BUILTIN_PSHUFD, UNKNOWN, (int) V4SI_FTYPE_V4SI_INT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshuflw, "__builtin_ia32_pshuflw", IX86_BUILTIN_PSHUFLW, UNKNOWN, (int) V8HI_FTYPE_V8HI_INT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshufhw, "__builtin_ia32_pshufhw", IX86_BUILTIN_PSHUFHW, UNKNOWN, (int) V8HI_FTYPE_V8HI_INT },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsqrtv2df2, "__builtin_ia32_sqrtsd", IX86_BUILTIN_SQRTSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_VEC_MERGE },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_sse2_movq128, "__builtin_ia32_movq128", IX86_BUILTIN_MOVQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI },
+
+ /* SSE2 MMX */
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_mmx_addv1di3, "__builtin_ia32_paddq", IX86_BUILTIN_PADDQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_mmx_subv1di3, "__builtin_ia32_psubq", IX86_BUILTIN_PSUBQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI },
+
+ /* SSE3 */
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_movshdup, "__builtin_ia32_movshdup", IX86_BUILTIN_MOVSHDUP, UNKNOWN, (int) V4SF_FTYPE_V4SF},
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_movsldup, "__builtin_ia32_movsldup", IX86_BUILTIN_MOVSLDUP, UNKNOWN, (int) V4SF_FTYPE_V4SF },
+
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_addsubv4sf3, "__builtin_ia32_addsubps", IX86_BUILTIN_ADDSUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_addsubv2df3, "__builtin_ia32_addsubpd", IX86_BUILTIN_ADDSUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_haddv4sf3, "__builtin_ia32_haddps", IX86_BUILTIN_HADDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_haddv2df3, "__builtin_ia32_haddpd", IX86_BUILTIN_HADDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_hsubv4sf3, "__builtin_ia32_hsubps", IX86_BUILTIN_HSUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_hsubv2df3, "__builtin_ia32_hsubpd", IX86_BUILTIN_HSUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+
+ /* SSSE3 */
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv16qi2, "__builtin_ia32_pabsb128", IX86_BUILTIN_PABSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv8qi2, "__builtin_ia32_pabsb", IX86_BUILTIN_PABSB, UNKNOWN, (int) V8QI_FTYPE_V8QI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv8hi2, "__builtin_ia32_pabsw128", IX86_BUILTIN_PABSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv4hi2, "__builtin_ia32_pabsw", IX86_BUILTIN_PABSW, UNKNOWN, (int) V4HI_FTYPE_V4HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv4si2, "__builtin_ia32_pabsd128", IX86_BUILTIN_PABSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv2si2, "__builtin_ia32_pabsd", IX86_BUILTIN_PABSD, UNKNOWN, (int) V2SI_FTYPE_V2SI },
+
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddwv8hi3, "__builtin_ia32_phaddw128", IX86_BUILTIN_PHADDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddwv4hi3, "__builtin_ia32_phaddw", IX86_BUILTIN_PHADDW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phadddv4si3, "__builtin_ia32_phaddd128", IX86_BUILTIN_PHADDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phadddv2si3, "__builtin_ia32_phaddd", IX86_BUILTIN_PHADDD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddswv8hi3, "__builtin_ia32_phaddsw128", IX86_BUILTIN_PHADDSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddswv4hi3, "__builtin_ia32_phaddsw", IX86_BUILTIN_PHADDSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubwv8hi3, "__builtin_ia32_phsubw128", IX86_BUILTIN_PHSUBW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubwv4hi3, "__builtin_ia32_phsubw", IX86_BUILTIN_PHSUBW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubdv4si3, "__builtin_ia32_phsubd128", IX86_BUILTIN_PHSUBD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubdv2si3, "__builtin_ia32_phsubd", IX86_BUILTIN_PHSUBD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubswv8hi3, "__builtin_ia32_phsubsw128", IX86_BUILTIN_PHSUBSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubswv4hi3, "__builtin_ia32_phsubsw", IX86_BUILTIN_PHSUBSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmaddubsw128, "__builtin_ia32_pmaddubsw128", IX86_BUILTIN_PMADDUBSW128, UNKNOWN, (int) V8HI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmaddubsw, "__builtin_ia32_pmaddubsw", IX86_BUILTIN_PMADDUBSW, UNKNOWN, (int) V4HI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmulhrswv8hi3, "__builtin_ia32_pmulhrsw128", IX86_BUILTIN_PMULHRSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmulhrswv4hi3, "__builtin_ia32_pmulhrsw", IX86_BUILTIN_PMULHRSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pshufbv16qi3, "__builtin_ia32_pshufb128", IX86_BUILTIN_PSHUFB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pshufbv8qi3, "__builtin_ia32_pshufb", IX86_BUILTIN_PSHUFB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv16qi3, "__builtin_ia32_psignb128", IX86_BUILTIN_PSIGNB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv8qi3, "__builtin_ia32_psignb", IX86_BUILTIN_PSIGNB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv8hi3, "__builtin_ia32_psignw128", IX86_BUILTIN_PSIGNW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv4hi3, "__builtin_ia32_psignw", IX86_BUILTIN_PSIGNW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv4si3, "__builtin_ia32_psignd128", IX86_BUILTIN_PSIGND128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv2si3, "__builtin_ia32_psignd", IX86_BUILTIN_PSIGND, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI },
+
+ /* SSSE3. */
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_palignrti, "__builtin_ia32_palignr128", IX86_BUILTIN_PALIGNR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_INT_CONVERT },
+ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_palignrdi, "__builtin_ia32_palignr", IX86_BUILTIN_PALIGNR, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_INT_CONVERT },
+
+ /* SSE4.1 */
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendpd, "__builtin_ia32_blendpd", IX86_BUILTIN_BLENDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendps, "__builtin_ia32_blendps", IX86_BUILTIN_BLENDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendvpd, "__builtin_ia32_blendvpd", IX86_BUILTIN_BLENDVPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DF },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendvps, "__builtin_ia32_blendvps", IX86_BUILTIN_BLENDVPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SF },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_dppd, "__builtin_ia32_dppd", IX86_BUILTIN_DPPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_dpps, "__builtin_ia32_dpps", IX86_BUILTIN_DPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_insertps, "__builtin_ia32_insertps128", IX86_BUILTIN_INSERTPS128, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_mpsadbw, "__builtin_ia32_mpsadbw128", IX86_BUILTIN_MPSADBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_INT },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_pblendvb, "__builtin_ia32_pblendvb128", IX86_BUILTIN_PBLENDVB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_pblendw, "__builtin_ia32_pblendw128", IX86_BUILTIN_PBLENDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_INT },
+
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv8qiv8hi2, "__builtin_ia32_pmovsxbw128", IX86_BUILTIN_PMOVSXBW128, UNKNOWN, (int) V8HI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv4qiv4si2, "__builtin_ia32_pmovsxbd128", IX86_BUILTIN_PMOVSXBD128, UNKNOWN, (int) V4SI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2qiv2di2, "__builtin_ia32_pmovsxbq128", IX86_BUILTIN_PMOVSXBQ128, UNKNOWN, (int) V2DI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv4hiv4si2, "__builtin_ia32_pmovsxwd128", IX86_BUILTIN_PMOVSXWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2hiv2di2, "__builtin_ia32_pmovsxwq128", IX86_BUILTIN_PMOVSXWQ128, UNKNOWN, (int) V2DI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2siv2di2, "__builtin_ia32_pmovsxdq128", IX86_BUILTIN_PMOVSXDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv8qiv8hi2, "__builtin_ia32_pmovzxbw128", IX86_BUILTIN_PMOVZXBW128, UNKNOWN, (int) V8HI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv4qiv4si2, "__builtin_ia32_pmovzxbd128", IX86_BUILTIN_PMOVZXBD128, UNKNOWN, (int) V4SI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2qiv2di2, "__builtin_ia32_pmovzxbq128", IX86_BUILTIN_PMOVZXBQ128, UNKNOWN, (int) V2DI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv4hiv4si2, "__builtin_ia32_pmovzxwd128", IX86_BUILTIN_PMOVZXWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2hiv2di2, "__builtin_ia32_pmovzxwq128", IX86_BUILTIN_PMOVZXWQ128, UNKNOWN, (int) V2DI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2siv2di2, "__builtin_ia32_pmovzxdq128", IX86_BUILTIN_PMOVZXDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_phminposuw, "__builtin_ia32_phminposuw128", IX86_BUILTIN_PHMINPOSUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI },
+
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_packusdw, "__builtin_ia32_packusdw128", IX86_BUILTIN_PACKUSDW128, UNKNOWN, (int) V8HI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_eqv2di3, "__builtin_ia32_pcmpeqq", IX86_BUILTIN_PCMPEQQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_smaxv16qi3, "__builtin_ia32_pmaxsb128", IX86_BUILTIN_PMAXSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_smaxv4si3, "__builtin_ia32_pmaxsd128", IX86_BUILTIN_PMAXSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_umaxv4si3, "__builtin_ia32_pmaxud128", IX86_BUILTIN_PMAXUD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_umaxv8hi3, "__builtin_ia32_pmaxuw128", IX86_BUILTIN_PMAXUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sminv16qi3, "__builtin_ia32_pminsb128", IX86_BUILTIN_PMINSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sminv4si3, "__builtin_ia32_pminsd128", IX86_BUILTIN_PMINSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_uminv4si3, "__builtin_ia32_pminud128", IX86_BUILTIN_PMINUD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_uminv8hi3, "__builtin_ia32_pminuw128", IX86_BUILTIN_PMINUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_mulv2siv2di3, "__builtin_ia32_pmuldq128", IX86_BUILTIN_PMULDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_mulv4si3, "__builtin_ia32_pmulld128", IX86_BUILTIN_PMULLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+
+ /* SSE4.1 */
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_roundpd", IX86_BUILTIN_ROUNDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_roundps", IX86_BUILTIN_ROUNDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundsd, "__builtin_ia32_roundsd", IX86_BUILTIN_ROUNDSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundss, "__builtin_ia32_roundss", IX86_BUILTIN_ROUNDSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_floorpd", IX86_BUILTIN_FLOORPD, (enum rtx_code) ROUND_FLOOR, (int) V2DF_FTYPE_V2DF_ROUND },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_ceilpd", IX86_BUILTIN_CEILPD, (enum rtx_code) ROUND_CEIL, (int) V2DF_FTYPE_V2DF_ROUND },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_truncpd", IX86_BUILTIN_TRUNCPD, (enum rtx_code) ROUND_TRUNC, (int) V2DF_FTYPE_V2DF_ROUND },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_rintpd", IX86_BUILTIN_RINTPD, (enum rtx_code) ROUND_MXCSR, (int) V2DF_FTYPE_V2DF_ROUND },
+
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd_vec_pack_sfix, "__builtin_ia32_floorpd_vec_pack_sfix", IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX, (enum rtx_code) ROUND_FLOOR, (int) V4SI_FTYPE_V2DF_V2DF_ROUND },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd_vec_pack_sfix, "__builtin_ia32_ceilpd_vec_pack_sfix", IX86_BUILTIN_CEILPD_VEC_PACK_SFIX, (enum rtx_code) ROUND_CEIL, (int) V4SI_FTYPE_V2DF_V2DF_ROUND },
+
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_roundv2df2, "__builtin_ia32_roundpd_az", IX86_BUILTIN_ROUNDPD_AZ, UNKNOWN, (int) V2DF_FTYPE_V2DF },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_roundv2df2_vec_pack_sfix, "__builtin_ia32_roundpd_az_vec_pack_sfix", IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX, UNKNOWN, (int) V4SI_FTYPE_V2DF_V2DF },
+
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_floorps", IX86_BUILTIN_FLOORPS, (enum rtx_code) ROUND_FLOOR, (int) V4SF_FTYPE_V4SF_ROUND },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_ceilps", IX86_BUILTIN_CEILPS, (enum rtx_code) ROUND_CEIL, (int) V4SF_FTYPE_V4SF_ROUND },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_truncps", IX86_BUILTIN_TRUNCPS, (enum rtx_code) ROUND_TRUNC, (int) V4SF_FTYPE_V4SF_ROUND },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_rintps", IX86_BUILTIN_RINTPS, (enum rtx_code) ROUND_MXCSR, (int) V4SF_FTYPE_V4SF_ROUND },
+
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps_sfix, "__builtin_ia32_floorps_sfix", IX86_BUILTIN_FLOORPS_SFIX, (enum rtx_code) ROUND_FLOOR, (int) V4SI_FTYPE_V4SF_ROUND },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps_sfix, "__builtin_ia32_ceilps_sfix", IX86_BUILTIN_CEILPS_SFIX, (enum rtx_code) ROUND_CEIL, (int) V4SI_FTYPE_V4SF_ROUND },
+
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_roundv4sf2, "__builtin_ia32_roundps_az", IX86_BUILTIN_ROUNDPS_AZ, UNKNOWN, (int) V4SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_roundv4sf2_sfix, "__builtin_ia32_roundps_az_sfix", IX86_BUILTIN_ROUNDPS_AZ_SFIX, UNKNOWN, (int) V4SI_FTYPE_V4SF },
+
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestz128", IX86_BUILTIN_PTESTZ, EQ, (int) INT_FTYPE_V2DI_V2DI_PTEST },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestc128", IX86_BUILTIN_PTESTC, LTU, (int) INT_FTYPE_V2DI_V2DI_PTEST },
+ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestnzc128", IX86_BUILTIN_PTESTNZC, GTU, (int) INT_FTYPE_V2DI_V2DI_PTEST },
+
+ /* SSE4.2 */
+ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_gtv2di3, "__builtin_ia32_pcmpgtq", IX86_BUILTIN_PCMPGTQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32qi, "__builtin_ia32_crc32qi", IX86_BUILTIN_CRC32QI, UNKNOWN, (int) UINT_FTYPE_UINT_UCHAR },
+ { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32hi, "__builtin_ia32_crc32hi", IX86_BUILTIN_CRC32HI, UNKNOWN, (int) UINT_FTYPE_UINT_USHORT },
+ { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32si, "__builtin_ia32_crc32si", IX86_BUILTIN_CRC32SI, UNKNOWN, (int) UINT_FTYPE_UINT_UINT },
+ { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse4_2_crc32di, "__builtin_ia32_crc32di", IX86_BUILTIN_CRC32DI, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 },
+
+ /* SSE4A */
+ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_extrqi, "__builtin_ia32_extrqi", IX86_BUILTIN_EXTRQI, UNKNOWN, (int) V2DI_FTYPE_V2DI_UINT_UINT },
+ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_extrq, "__builtin_ia32_extrq", IX86_BUILTIN_EXTRQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V16QI },
+ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_insertqi, "__builtin_ia32_insertqi", IX86_BUILTIN_INSERTQI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_UINT_UINT },
+ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_insertq, "__builtin_ia32_insertq", IX86_BUILTIN_INSERTQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+
+ /* AES */
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_aeskeygenassist, 0, IX86_BUILTIN_AESKEYGENASSIST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_aesimc, 0, IX86_BUILTIN_AESIMC128, UNKNOWN, (int) V2DI_FTYPE_V2DI },
+
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_aesenc, 0, IX86_BUILTIN_AESENC128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_aesenclast, 0, IX86_BUILTIN_AESENCLAST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_aesdec, 0, IX86_BUILTIN_AESDEC128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_aesdeclast, 0, IX86_BUILTIN_AESDECLAST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+
+ /* PCLMUL */
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_pclmulqdq, 0, IX86_BUILTIN_PCLMULQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_INT },
+
+ /* AVX */
+ { OPTION_MASK_ISA_AVX, CODE_FOR_addv4df3, "__builtin_ia32_addpd256", IX86_BUILTIN_ADDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_addv8sf3, "__builtin_ia32_addps256", IX86_BUILTIN_ADDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_addsubv4df3, "__builtin_ia32_addsubpd256", IX86_BUILTIN_ADDSUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_addsubv8sf3, "__builtin_ia32_addsubps256", IX86_BUILTIN_ADDSUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_andv4df3, "__builtin_ia32_andpd256", IX86_BUILTIN_ANDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_andv8sf3, "__builtin_ia32_andps256", IX86_BUILTIN_ANDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_andnotv4df3, "__builtin_ia32_andnpd256", IX86_BUILTIN_ANDNPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_andnotv8sf3, "__builtin_ia32_andnps256", IX86_BUILTIN_ANDNPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_divv4df3, "__builtin_ia32_divpd256", IX86_BUILTIN_DIVPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_divv8sf3, "__builtin_ia32_divps256", IX86_BUILTIN_DIVPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_haddv4df3, "__builtin_ia32_haddpd256", IX86_BUILTIN_HADDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_hsubv8sf3, "__builtin_ia32_hsubps256", IX86_BUILTIN_HSUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_hsubv4df3, "__builtin_ia32_hsubpd256", IX86_BUILTIN_HSUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_haddv8sf3, "__builtin_ia32_haddps256", IX86_BUILTIN_HADDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_smaxv4df3, "__builtin_ia32_maxpd256", IX86_BUILTIN_MAXPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_smaxv8sf3, "__builtin_ia32_maxps256", IX86_BUILTIN_MAXPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_sminv4df3, "__builtin_ia32_minpd256", IX86_BUILTIN_MINPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_sminv8sf3, "__builtin_ia32_minps256", IX86_BUILTIN_MINPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_mulv4df3, "__builtin_ia32_mulpd256", IX86_BUILTIN_MULPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_mulv8sf3, "__builtin_ia32_mulps256", IX86_BUILTIN_MULPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_iorv4df3, "__builtin_ia32_orpd256", IX86_BUILTIN_ORPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_iorv8sf3, "__builtin_ia32_orps256", IX86_BUILTIN_ORPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_subv4df3, "__builtin_ia32_subpd256", IX86_BUILTIN_SUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_subv8sf3, "__builtin_ia32_subps256", IX86_BUILTIN_SUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_xorv4df3, "__builtin_ia32_xorpd256", IX86_BUILTIN_XORPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_xorv8sf3, "__builtin_ia32_xorps256", IX86_BUILTIN_XORPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv2df3, "__builtin_ia32_vpermilvarpd", IX86_BUILTIN_VPERMILVARPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv4sf3, "__builtin_ia32_vpermilvarps", IX86_BUILTIN_VPERMILVARPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv4df3, "__builtin_ia32_vpermilvarpd256", IX86_BUILTIN_VPERMILVARPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv8sf3, "__builtin_ia32_vpermilvarps256", IX86_BUILTIN_VPERMILVARPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SI },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendpd256, "__builtin_ia32_blendpd256", IX86_BUILTIN_BLENDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendps256, "__builtin_ia32_blendps256", IX86_BUILTIN_BLENDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendvpd256, "__builtin_ia32_blendvpd256", IX86_BUILTIN_BLENDVPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendvps256, "__builtin_ia32_blendvps256", IX86_BUILTIN_BLENDVPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_dpps256, "__builtin_ia32_dpps256", IX86_BUILTIN_DPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_shufpd256, "__builtin_ia32_shufpd256", IX86_BUILTIN_SHUFPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_shufps256, "__builtin_ia32_shufps256", IX86_BUILTIN_SHUFPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vmcmpv2df3, "__builtin_ia32_cmpsd", IX86_BUILTIN_CMPSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vmcmpv4sf3, "__builtin_ia32_cmpss", IX86_BUILTIN_CMPSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpv2df3, "__builtin_ia32_cmppd", IX86_BUILTIN_CMPPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpv4sf3, "__builtin_ia32_cmpps", IX86_BUILTIN_CMPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpv4df3, "__builtin_ia32_cmppd256", IX86_BUILTIN_CMPPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpv8sf3, "__builtin_ia32_cmpps256", IX86_BUILTIN_CMPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v4df, "__builtin_ia32_vextractf128_pd256", IX86_BUILTIN_EXTRACTF128PD256, UNKNOWN, (int) V2DF_FTYPE_V4DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v8sf, "__builtin_ia32_vextractf128_ps256", IX86_BUILTIN_EXTRACTF128PS256, UNKNOWN, (int) V4SF_FTYPE_V8SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v8si, "__builtin_ia32_vextractf128_si256", IX86_BUILTIN_EXTRACTF128SI256, UNKNOWN, (int) V4SI_FTYPE_V8SI_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_floatv4siv4df2, "__builtin_ia32_cvtdq2pd256", IX86_BUILTIN_CVTDQ2PD256, UNKNOWN, (int) V4DF_FTYPE_V4SI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_floatv8siv8sf2, "__builtin_ia32_cvtdq2ps256", IX86_BUILTIN_CVTDQ2PS256, UNKNOWN, (int) V8SF_FTYPE_V8SI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtpd2ps256, "__builtin_ia32_cvtpd2ps256", IX86_BUILTIN_CVTPD2PS256, UNKNOWN, (int) V4SF_FTYPE_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_fix_notruncv8sfv8si, "__builtin_ia32_cvtps2dq256", IX86_BUILTIN_CVTPS2DQ256, UNKNOWN, (int) V8SI_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtps2pd256, "__builtin_ia32_cvtps2pd256", IX86_BUILTIN_CVTPS2PD256, UNKNOWN, (int) V4DF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_fix_truncv4dfv4si2, "__builtin_ia32_cvttpd2dq256", IX86_BUILTIN_CVTTPD2DQ256, UNKNOWN, (int) V4SI_FTYPE_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtpd2dq256, "__builtin_ia32_cvtpd2dq256", IX86_BUILTIN_CVTPD2DQ256, UNKNOWN, (int) V4SI_FTYPE_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_fix_truncv8sfv8si2, "__builtin_ia32_cvttps2dq256", IX86_BUILTIN_CVTTPS2DQ256, UNKNOWN, (int) V8SI_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v4df3, "__builtin_ia32_vperm2f128_pd256", IX86_BUILTIN_VPERM2F128PD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v8sf3, "__builtin_ia32_vperm2f128_ps256", IX86_BUILTIN_VPERM2F128PS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v8si3, "__builtin_ia32_vperm2f128_si256", IX86_BUILTIN_VPERM2F128SI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv2df, "__builtin_ia32_vpermilpd", IX86_BUILTIN_VPERMILPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv4sf, "__builtin_ia32_vpermilps", IX86_BUILTIN_VPERMILPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv4df, "__builtin_ia32_vpermilpd256", IX86_BUILTIN_VPERMILPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv8sf, "__builtin_ia32_vpermilps256", IX86_BUILTIN_VPERMILPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v4df, "__builtin_ia32_vinsertf128_pd256", IX86_BUILTIN_VINSERTF128PD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v8sf, "__builtin_ia32_vinsertf128_ps256", IX86_BUILTIN_VINSERTF128PS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v8si, "__builtin_ia32_vinsertf128_si256", IX86_BUILTIN_VINSERTF128SI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_INT },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movshdup256, "__builtin_ia32_movshdup256", IX86_BUILTIN_MOVSHDUP256, UNKNOWN, (int) V8SF_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movsldup256, "__builtin_ia32_movsldup256", IX86_BUILTIN_MOVSLDUP256, UNKNOWN, (int) V8SF_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movddup256, "__builtin_ia32_movddup256", IX86_BUILTIN_MOVDDUP256, UNKNOWN, (int) V4DF_FTYPE_V4DF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_sqrtv4df2, "__builtin_ia32_sqrtpd256", IX86_BUILTIN_SQRTPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_sqrtv8sf2, "__builtin_ia32_sqrtps256", IX86_BUILTIN_SQRTPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_sqrtv8sf2, "__builtin_ia32_sqrtps_nr256", IX86_BUILTIN_SQRTPS_NR256, UNKNOWN, (int) V8SF_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_rsqrtv8sf2, "__builtin_ia32_rsqrtps256", IX86_BUILTIN_RSQRTPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_rsqrtv8sf2, "__builtin_ia32_rsqrtps_nr256", IX86_BUILTIN_RSQRTPS_NR256, UNKNOWN, (int) V8SF_FTYPE_V8SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_rcpv8sf2, "__builtin_ia32_rcpps256", IX86_BUILTIN_RCPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_roundpd256", IX86_BUILTIN_ROUNDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_roundps256", IX86_BUILTIN_ROUNDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_INT },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_floorpd256", IX86_BUILTIN_FLOORPD256, (enum rtx_code) ROUND_FLOOR, (int) V4DF_FTYPE_V4DF_ROUND },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_ceilpd256", IX86_BUILTIN_CEILPD256, (enum rtx_code) ROUND_CEIL, (int) V4DF_FTYPE_V4DF_ROUND },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_truncpd256", IX86_BUILTIN_TRUNCPD256, (enum rtx_code) ROUND_TRUNC, (int) V4DF_FTYPE_V4DF_ROUND },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_rintpd256", IX86_BUILTIN_RINTPD256, (enum rtx_code) ROUND_MXCSR, (int) V4DF_FTYPE_V4DF_ROUND },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_roundv4df2, "__builtin_ia32_roundpd_az256", IX86_BUILTIN_ROUNDPD_AZ256, UNKNOWN, (int) V4DF_FTYPE_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_roundv4df2_vec_pack_sfix, "__builtin_ia32_roundpd_az_vec_pack_sfix256", IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX256, UNKNOWN, (int) V8SI_FTYPE_V4DF_V4DF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd_vec_pack_sfix256, "__builtin_ia32_floorpd_vec_pack_sfix256", IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX256, (enum rtx_code) ROUND_FLOOR, (int) V8SI_FTYPE_V4DF_V4DF_ROUND },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd_vec_pack_sfix256, "__builtin_ia32_ceilpd_vec_pack_sfix256", IX86_BUILTIN_CEILPD_VEC_PACK_SFIX256, (enum rtx_code) ROUND_CEIL, (int) V8SI_FTYPE_V4DF_V4DF_ROUND },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_floorps256", IX86_BUILTIN_FLOORPS256, (enum rtx_code) ROUND_FLOOR, (int) V8SF_FTYPE_V8SF_ROUND },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_ceilps256", IX86_BUILTIN_CEILPS256, (enum rtx_code) ROUND_CEIL, (int) V8SF_FTYPE_V8SF_ROUND },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_truncps256", IX86_BUILTIN_TRUNCPS256, (enum rtx_code) ROUND_TRUNC, (int) V8SF_FTYPE_V8SF_ROUND },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_rintps256", IX86_BUILTIN_RINTPS256, (enum rtx_code) ROUND_MXCSR, (int) V8SF_FTYPE_V8SF_ROUND },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps_sfix256, "__builtin_ia32_floorps_sfix256", IX86_BUILTIN_FLOORPS_SFIX256, (enum rtx_code) ROUND_FLOOR, (int) V8SI_FTYPE_V8SF_ROUND },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps_sfix256, "__builtin_ia32_ceilps_sfix256", IX86_BUILTIN_CEILPS_SFIX256, (enum rtx_code) ROUND_CEIL, (int) V8SI_FTYPE_V8SF_ROUND },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_roundv8sf2, "__builtin_ia32_roundps_az256", IX86_BUILTIN_ROUNDPS_AZ256, UNKNOWN, (int) V8SF_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_roundv8sf2_sfix, "__builtin_ia32_roundps_az_sfix256", IX86_BUILTIN_ROUNDPS_AZ_SFIX256, UNKNOWN, (int) V8SI_FTYPE_V8SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpckhpd256, "__builtin_ia32_unpckhpd256", IX86_BUILTIN_UNPCKHPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpcklpd256, "__builtin_ia32_unpcklpd256", IX86_BUILTIN_UNPCKLPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpckhps256, "__builtin_ia32_unpckhps256", IX86_BUILTIN_UNPCKHPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpcklps256, "__builtin_ia32_unpcklps256", IX86_BUILTIN_UNPCKLPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_si256_si, "__builtin_ia32_si256_si", IX86_BUILTIN_SI256_SI, UNKNOWN, (int) V8SI_FTYPE_V4SI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ps256_ps, "__builtin_ia32_ps256_ps", IX86_BUILTIN_PS256_PS, UNKNOWN, (int) V8SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_pd256_pd, "__builtin_ia32_pd256_pd", IX86_BUILTIN_PD256_PD, UNKNOWN, (int) V4DF_FTYPE_V2DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v8si, "__builtin_ia32_si_si256", IX86_BUILTIN_SI_SI256, UNKNOWN, (int) V4SI_FTYPE_V8SI },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v8sf, "__builtin_ia32_ps_ps256", IX86_BUILTIN_PS_PS256, UNKNOWN, (int) V4SF_FTYPE_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v4df, "__builtin_ia32_pd_pd256", IX86_BUILTIN_PD_PD256, UNKNOWN, (int) V2DF_FTYPE_V4DF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestzpd", IX86_BUILTIN_VTESTZPD, EQ, (int) INT_FTYPE_V2DF_V2DF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestcpd", IX86_BUILTIN_VTESTCPD, LTU, (int) INT_FTYPE_V2DF_V2DF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestnzcpd", IX86_BUILTIN_VTESTNZCPD, GTU, (int) INT_FTYPE_V2DF_V2DF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestzps", IX86_BUILTIN_VTESTZPS, EQ, (int) INT_FTYPE_V4SF_V4SF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestcps", IX86_BUILTIN_VTESTCPS, LTU, (int) INT_FTYPE_V4SF_V4SF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestnzcps", IX86_BUILTIN_VTESTNZCPS, GTU, (int) INT_FTYPE_V4SF_V4SF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestzpd256", IX86_BUILTIN_VTESTZPD256, EQ, (int) INT_FTYPE_V4DF_V4DF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestcpd256", IX86_BUILTIN_VTESTCPD256, LTU, (int) INT_FTYPE_V4DF_V4DF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestnzcpd256", IX86_BUILTIN_VTESTNZCPD256, GTU, (int) INT_FTYPE_V4DF_V4DF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestzps256", IX86_BUILTIN_VTESTZPS256, EQ, (int) INT_FTYPE_V8SF_V8SF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestcps256", IX86_BUILTIN_VTESTCPS256, LTU, (int) INT_FTYPE_V8SF_V8SF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestnzcps256", IX86_BUILTIN_VTESTNZCPS256, GTU, (int) INT_FTYPE_V8SF_V8SF_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestz256", IX86_BUILTIN_PTESTZ256, EQ, (int) INT_FTYPE_V4DI_V4DI_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestc256", IX86_BUILTIN_PTESTC256, LTU, (int) INT_FTYPE_V4DI_V4DI_PTEST },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestnzc256", IX86_BUILTIN_PTESTNZC256, GTU, (int) INT_FTYPE_V4DI_V4DI_PTEST },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movmskpd256, "__builtin_ia32_movmskpd256", IX86_BUILTIN_MOVMSKPD256, UNKNOWN, (int) INT_FTYPE_V4DF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movmskps256, "__builtin_ia32_movmskps256", IX86_BUILTIN_MOVMSKPS256, UNKNOWN, (int) INT_FTYPE_V8SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_copysignv8sf3, "__builtin_ia32_copysignps256", IX86_BUILTIN_CPYSGNPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_copysignv4df3, "__builtin_ia32_copysignpd256", IX86_BUILTIN_CPYSGNPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_vec_pack_sfix_v4df, "__builtin_ia32_vec_pack_sfix256 ", IX86_BUILTIN_VEC_PACK_SFIX256, UNKNOWN, (int) V8SI_FTYPE_V4DF_V4DF },
+
+ /* AVX2 */
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_mpsadbw, "__builtin_ia32_mpsadbw256", IX86_BUILTIN_MPSADBW256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_absv32qi2, "__builtin_ia32_pabsb256", IX86_BUILTIN_PABSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_absv16hi2, "__builtin_ia32_pabsw256", IX86_BUILTIN_PABSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_absv8si2, "__builtin_ia32_pabsd256", IX86_BUILTIN_PABSD256, UNKNOWN, (int) V8SI_FTYPE_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_packssdw, "__builtin_ia32_packssdw256", IX86_BUILTIN_PACKSSDW256, UNKNOWN, (int) V16HI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_packsswb, "__builtin_ia32_packsswb256", IX86_BUILTIN_PACKSSWB256, UNKNOWN, (int) V32QI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_packusdw, "__builtin_ia32_packusdw256", IX86_BUILTIN_PACKUSDW256, UNKNOWN, (int) V16HI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_packuswb, "__builtin_ia32_packuswb256", IX86_BUILTIN_PACKUSWB256, UNKNOWN, (int) V32QI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_addv32qi3, "__builtin_ia32_paddb256", IX86_BUILTIN_PADDB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_addv16hi3, "__builtin_ia32_paddw256", IX86_BUILTIN_PADDW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_addv8si3, "__builtin_ia32_paddd256", IX86_BUILTIN_PADDD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_addv4di3, "__builtin_ia32_paddq256", IX86_BUILTIN_PADDQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ssaddv32qi3, "__builtin_ia32_paddsb256", IX86_BUILTIN_PADDSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ssaddv16hi3, "__builtin_ia32_paddsw256", IX86_BUILTIN_PADDSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_usaddv32qi3, "__builtin_ia32_paddusb256", IX86_BUILTIN_PADDUSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_usaddv16hi3, "__builtin_ia32_paddusw256", IX86_BUILTIN_PADDUSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_palignrv2ti, "__builtin_ia32_palignr256", IX86_BUILTIN_PALIGNR256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI_INT_CONVERT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_andv4di3, "__builtin_ia32_andsi256", IX86_BUILTIN_AND256I, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_andnotv4di3, "__builtin_ia32_andnotsi256", IX86_BUILTIN_ANDNOT256I, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_uavgv32qi3, "__builtin_ia32_pavgb256", IX86_BUILTIN_PAVGB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_uavgv16hi3, "__builtin_ia32_pavgw256", IX86_BUILTIN_PAVGW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pblendvb, "__builtin_ia32_pblendvb256", IX86_BUILTIN_PBLENDVB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pblendw, "__builtin_ia32_pblendw256", IX86_BUILTIN_PBLENDVW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_eqv32qi3, "__builtin_ia32_pcmpeqb256", IX86_BUILTIN_PCMPEQB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_eqv16hi3, "__builtin_ia32_pcmpeqw256", IX86_BUILTIN_PCMPEQW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_eqv8si3, "__builtin_ia32_pcmpeqd256", IX86_BUILTIN_PCMPEQD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_eqv4di3, "__builtin_ia32_pcmpeqq256", IX86_BUILTIN_PCMPEQQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_gtv32qi3, "__builtin_ia32_pcmpgtb256", IX86_BUILTIN_PCMPGTB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_gtv16hi3, "__builtin_ia32_pcmpgtw256", IX86_BUILTIN_PCMPGTW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_gtv8si3, "__builtin_ia32_pcmpgtd256", IX86_BUILTIN_PCMPGTD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_gtv4di3, "__builtin_ia32_pcmpgtq256", IX86_BUILTIN_PCMPGTQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phaddwv16hi3, "__builtin_ia32_phaddw256", IX86_BUILTIN_PHADDW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phadddv8si3, "__builtin_ia32_phaddd256", IX86_BUILTIN_PHADDD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phaddswv16hi3, "__builtin_ia32_phaddsw256", IX86_BUILTIN_PHADDSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phsubwv16hi3, "__builtin_ia32_phsubw256", IX86_BUILTIN_PHSUBW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phsubdv8si3, "__builtin_ia32_phsubd256", IX86_BUILTIN_PHSUBD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phsubswv16hi3, "__builtin_ia32_phsubsw256", IX86_BUILTIN_PHSUBSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pmaddubsw256, "__builtin_ia32_pmaddubsw256", IX86_BUILTIN_PMADDUBSW256, UNKNOWN, (int) V16HI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pmaddwd, "__builtin_ia32_pmaddwd256", IX86_BUILTIN_PMADDWD256, UNKNOWN, (int) V8SI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_smaxv32qi3, "__builtin_ia32_pmaxsb256", IX86_BUILTIN_PMAXSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_smaxv16hi3, "__builtin_ia32_pmaxsw256", IX86_BUILTIN_PMAXSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_smaxv8si3 , "__builtin_ia32_pmaxsd256", IX86_BUILTIN_PMAXSD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_umaxv32qi3, "__builtin_ia32_pmaxub256", IX86_BUILTIN_PMAXUB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_umaxv16hi3, "__builtin_ia32_pmaxuw256", IX86_BUILTIN_PMAXUW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_umaxv8si3 , "__builtin_ia32_pmaxud256", IX86_BUILTIN_PMAXUD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_sminv32qi3, "__builtin_ia32_pminsb256", IX86_BUILTIN_PMINSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_sminv16hi3, "__builtin_ia32_pminsw256", IX86_BUILTIN_PMINSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_sminv8si3 , "__builtin_ia32_pminsd256", IX86_BUILTIN_PMINSD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_uminv32qi3, "__builtin_ia32_pminub256", IX86_BUILTIN_PMINUB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_uminv16hi3, "__builtin_ia32_pminuw256", IX86_BUILTIN_PMINUW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_uminv8si3 , "__builtin_ia32_pminud256", IX86_BUILTIN_PMINUD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pmovmskb, "__builtin_ia32_pmovmskb256", IX86_BUILTIN_PMOVMSKB256, UNKNOWN, (int) INT_FTYPE_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv16qiv16hi2, "__builtin_ia32_pmovsxbw256", IX86_BUILTIN_PMOVSXBW256, UNKNOWN, (int) V16HI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv8qiv8si2 , "__builtin_ia32_pmovsxbd256", IX86_BUILTIN_PMOVSXBD256, UNKNOWN, (int) V8SI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv4qiv4di2 , "__builtin_ia32_pmovsxbq256", IX86_BUILTIN_PMOVSXBQ256, UNKNOWN, (int) V4DI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv8hiv8si2 , "__builtin_ia32_pmovsxwd256", IX86_BUILTIN_PMOVSXWD256, UNKNOWN, (int) V8SI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv4hiv4di2 , "__builtin_ia32_pmovsxwq256", IX86_BUILTIN_PMOVSXWQ256, UNKNOWN, (int) V4DI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv4siv4di2 , "__builtin_ia32_pmovsxdq256", IX86_BUILTIN_PMOVSXDQ256, UNKNOWN, (int) V4DI_FTYPE_V4SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv16qiv16hi2, "__builtin_ia32_pmovzxbw256", IX86_BUILTIN_PMOVZXBW256, UNKNOWN, (int) V16HI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv8qiv8si2 , "__builtin_ia32_pmovzxbd256", IX86_BUILTIN_PMOVZXBD256, UNKNOWN, (int) V8SI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv4qiv4di2 , "__builtin_ia32_pmovzxbq256", IX86_BUILTIN_PMOVZXBQ256, UNKNOWN, (int) V4DI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv8hiv8si2 , "__builtin_ia32_pmovzxwd256", IX86_BUILTIN_PMOVZXWD256, UNKNOWN, (int) V8SI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv4hiv4di2 , "__builtin_ia32_pmovzxwq256", IX86_BUILTIN_PMOVZXWQ256, UNKNOWN, (int) V4DI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv4siv4di2 , "__builtin_ia32_pmovzxdq256", IX86_BUILTIN_PMOVZXDQ256, UNKNOWN, (int) V4DI_FTYPE_V4SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_vec_widen_smult_even_v8si, "__builtin_ia32_pmuldq256", IX86_BUILTIN_PMULDQ256, UNKNOWN, (int) V4DI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pmulhrswv16hi3 , "__builtin_ia32_pmulhrsw256", IX86_BUILTIN_PMULHRSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_umulv16hi3_highpart, "__builtin_ia32_pmulhuw256" , IX86_BUILTIN_PMULHUW256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_smulv16hi3_highpart, "__builtin_ia32_pmulhw256" , IX86_BUILTIN_PMULHW256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_mulv16hi3, "__builtin_ia32_pmullw256" , IX86_BUILTIN_PMULLW256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_mulv8si3, "__builtin_ia32_pmulld256" , IX86_BUILTIN_PMULLD256 , UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_vec_widen_umult_even_v8si, "__builtin_ia32_pmuludq256", IX86_BUILTIN_PMULUDQ256, UNKNOWN, (int) V4DI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_iorv4di3, "__builtin_ia32_por256", IX86_BUILTIN_POR256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_psadbw, "__builtin_ia32_psadbw256", IX86_BUILTIN_PSADBW256, UNKNOWN, (int) V16HI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pshufbv32qi3, "__builtin_ia32_pshufb256", IX86_BUILTIN_PSHUFB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pshufdv3, "__builtin_ia32_pshufd256", IX86_BUILTIN_PSHUFD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pshufhwv3, "__builtin_ia32_pshufhw256", IX86_BUILTIN_PSHUFHW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pshuflwv3, "__builtin_ia32_pshuflw256", IX86_BUILTIN_PSHUFLW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_psignv32qi3, "__builtin_ia32_psignb256", IX86_BUILTIN_PSIGNB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_psignv16hi3, "__builtin_ia32_psignw256", IX86_BUILTIN_PSIGNW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_psignv8si3 , "__builtin_ia32_psignd256", IX86_BUILTIN_PSIGND256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlv2ti3, "__builtin_ia32_pslldqi256", IX86_BUILTIN_PSLLDQI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT_CONVERT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv16hi3, "__builtin_ia32_psllwi256", IX86_BUILTIN_PSLLWI256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv16hi3, "__builtin_ia32_psllw256", IX86_BUILTIN_PSLLW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V8HI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv8si3, "__builtin_ia32_pslldi256", IX86_BUILTIN_PSLLDI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv8si3, "__builtin_ia32_pslld256", IX86_BUILTIN_PSLLD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv4di3, "__builtin_ia32_psllqi256", IX86_BUILTIN_PSLLQI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv4di3, "__builtin_ia32_psllq256", IX86_BUILTIN_PSLLQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V2DI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashrv16hi3, "__builtin_ia32_psrawi256", IX86_BUILTIN_PSRAWI256, UNKNOWN, (int) V16HI_FTYPE_V16HI_SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashrv16hi3, "__builtin_ia32_psraw256", IX86_BUILTIN_PSRAW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V8HI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashrv8si3, "__builtin_ia32_psradi256", IX86_BUILTIN_PSRADI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_ashrv8si3, "__builtin_ia32_psrad256", IX86_BUILTIN_PSRAD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrv2ti3, "__builtin_ia32_psrldqi256", IX86_BUILTIN_PSRLDQI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT_CONVERT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv16hi3, "__builtin_ia32_psrlwi256", IX86_BUILTIN_PSRLWI256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv16hi3, "__builtin_ia32_psrlw256", IX86_BUILTIN_PSRLW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V8HI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv8si3, "__builtin_ia32_psrldi256", IX86_BUILTIN_PSRLDI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv8si3, "__builtin_ia32_psrld256", IX86_BUILTIN_PSRLD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv4di3, "__builtin_ia32_psrlqi256", IX86_BUILTIN_PSRLQI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv4di3, "__builtin_ia32_psrlq256", IX86_BUILTIN_PSRLQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V2DI_COUNT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_subv32qi3, "__builtin_ia32_psubb256", IX86_BUILTIN_PSUBB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_subv16hi3, "__builtin_ia32_psubw256", IX86_BUILTIN_PSUBW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_subv8si3, "__builtin_ia32_psubd256", IX86_BUILTIN_PSUBD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_subv4di3, "__builtin_ia32_psubq256", IX86_BUILTIN_PSUBQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sssubv32qi3, "__builtin_ia32_psubsb256", IX86_BUILTIN_PSUBSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sssubv16hi3, "__builtin_ia32_psubsw256", IX86_BUILTIN_PSUBSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ussubv32qi3, "__builtin_ia32_psubusb256", IX86_BUILTIN_PSUBUSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ussubv16hi3, "__builtin_ia32_psubusw256", IX86_BUILTIN_PSUBUSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_highv32qi, "__builtin_ia32_punpckhbw256", IX86_BUILTIN_PUNPCKHBW256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_highv16hi, "__builtin_ia32_punpckhwd256", IX86_BUILTIN_PUNPCKHWD256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_highv8si, "__builtin_ia32_punpckhdq256", IX86_BUILTIN_PUNPCKHDQ256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_highv4di, "__builtin_ia32_punpckhqdq256", IX86_BUILTIN_PUNPCKHQDQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_lowv32qi, "__builtin_ia32_punpcklbw256", IX86_BUILTIN_PUNPCKLBW256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_lowv16hi, "__builtin_ia32_punpcklwd256", IX86_BUILTIN_PUNPCKLWD256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_lowv8si, "__builtin_ia32_punpckldq256", IX86_BUILTIN_PUNPCKLDQ256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_lowv4di, "__builtin_ia32_punpcklqdq256", IX86_BUILTIN_PUNPCKLQDQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_xorv4di3, "__builtin_ia32_pxor256", IX86_BUILTIN_PXOR256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_vec_dupv4sf, "__builtin_ia32_vbroadcastss_ps", IX86_BUILTIN_VBROADCASTSS_PS, UNKNOWN, (int) V4SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_vec_dupv8sf, "__builtin_ia32_vbroadcastss_ps256", IX86_BUILTIN_VBROADCASTSS_PS256, UNKNOWN, (int) V8SF_FTYPE_V4SF },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_vec_dupv4df, "__builtin_ia32_vbroadcastsd_pd256", IX86_BUILTIN_VBROADCASTSD_PD256, UNKNOWN, (int) V4DF_FTYPE_V2DF },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_vbroadcasti128_v4di, "__builtin_ia32_vbroadcastsi256", IX86_BUILTIN_VBROADCASTSI256, UNKNOWN, (int) V4DI_FTYPE_V2DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pblenddv4si, "__builtin_ia32_pblendd128", IX86_BUILTIN_PBLENDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pblenddv8si, "__builtin_ia32_pblendd256", IX86_BUILTIN_PBLENDD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv32qi, "__builtin_ia32_pbroadcastb256", IX86_BUILTIN_PBROADCASTB256, UNKNOWN, (int) V32QI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv16hi, "__builtin_ia32_pbroadcastw256", IX86_BUILTIN_PBROADCASTW256, UNKNOWN, (int) V16HI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv8si, "__builtin_ia32_pbroadcastd256", IX86_BUILTIN_PBROADCASTD256, UNKNOWN, (int) V8SI_FTYPE_V4SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv4di, "__builtin_ia32_pbroadcastq256", IX86_BUILTIN_PBROADCASTQ256, UNKNOWN, (int) V4DI_FTYPE_V2DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv16qi, "__builtin_ia32_pbroadcastb128", IX86_BUILTIN_PBROADCASTB128, UNKNOWN, (int) V16QI_FTYPE_V16QI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv8hi, "__builtin_ia32_pbroadcastw128", IX86_BUILTIN_PBROADCASTW128, UNKNOWN, (int) V8HI_FTYPE_V8HI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv4si, "__builtin_ia32_pbroadcastd128", IX86_BUILTIN_PBROADCASTD128, UNKNOWN, (int) V4SI_FTYPE_V4SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv2di, "__builtin_ia32_pbroadcastq128", IX86_BUILTIN_PBROADCASTQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permvarv8si, "__builtin_ia32_permvarsi256", IX86_BUILTIN_VPERMVARSI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permvarv8sf, "__builtin_ia32_permvarsf256", IX86_BUILTIN_VPERMVARSF256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permv4df, "__builtin_ia32_permdf256", IX86_BUILTIN_VPERMDF256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permv4di, "__builtin_ia32_permdi256", IX86_BUILTIN_VPERMDI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permv2ti, "__builtin_ia32_permti256", IX86_BUILTIN_VPERMTI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_extracti128, "__builtin_ia32_extract128i256", IX86_BUILTIN_VEXTRACT128I256, UNKNOWN, (int) V2DI_FTYPE_V4DI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_inserti128, "__builtin_ia32_insert128i256", IX86_BUILTIN_VINSERT128I256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V2DI_INT },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlvv4di, "__builtin_ia32_psllv4di", IX86_BUILTIN_PSLLVV4DI, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlvv2di, "__builtin_ia32_psllv2di", IX86_BUILTIN_PSLLVV2DI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlvv8si, "__builtin_ia32_psllv8si", IX86_BUILTIN_PSLLVV8SI, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlvv4si, "__builtin_ia32_psllv4si", IX86_BUILTIN_PSLLVV4SI, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashrvv8si, "__builtin_ia32_psrav8si", IX86_BUILTIN_PSRAVV8SI, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashrvv4si, "__builtin_ia32_psrav4si", IX86_BUILTIN_PSRAVV4SI, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrvv4di, "__builtin_ia32_psrlv4di", IX86_BUILTIN_PSRLVV4DI, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrvv2di, "__builtin_ia32_psrlv2di", IX86_BUILTIN_PSRLVV2DI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrvv8si, "__builtin_ia32_psrlv8si", IX86_BUILTIN_PSRLVV8SI, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI },
+ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrvv4si, "__builtin_ia32_psrlv4si", IX86_BUILTIN_PSRLVV4SI, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+
+ { OPTION_MASK_ISA_LZCNT, CODE_FOR_clzhi2_lzcnt, "__builtin_clzs", IX86_BUILTIN_CLZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 },
+
+ /* BMI */
+ { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_si, "__builtin_ia32_bextr_u32", IX86_BUILTIN_BEXTR32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT },
+ { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_di, "__builtin_ia32_bextr_u64", IX86_BUILTIN_BEXTR64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 },
+ { OPTION_MASK_ISA_BMI, CODE_FOR_ctzhi2, "__builtin_ctzs", IX86_BUILTIN_CTZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 },
+
+ /* TBM */
+ { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_si, "__builtin_ia32_bextri_u32", IX86_BUILTIN_BEXTRI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT },
+ { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_di, "__builtin_ia32_bextri_u64", IX86_BUILTIN_BEXTRI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 },
+
+ /* F16C */
+ { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtph2ps, "__builtin_ia32_vcvtph2ps", IX86_BUILTIN_CVTPH2PS, UNKNOWN, (int) V4SF_FTYPE_V8HI },
+ { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtph2ps256, "__builtin_ia32_vcvtph2ps256", IX86_BUILTIN_CVTPH2PS256, UNKNOWN, (int) V8SF_FTYPE_V8HI },
+ { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtps2ph, "__builtin_ia32_vcvtps2ph", IX86_BUILTIN_CVTPS2PH, UNKNOWN, (int) V8HI_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtps2ph256, "__builtin_ia32_vcvtps2ph256", IX86_BUILTIN_CVTPS2PH256, UNKNOWN, (int) V8HI_FTYPE_V8SF_INT },
+
+ /* BMI2 */
+ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_bzhi_si3, "__builtin_ia32_bzhi_si", IX86_BUILTIN_BZHI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT },
+ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_bzhi_di3, "__builtin_ia32_bzhi_di", IX86_BUILTIN_BZHI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 },
+ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pdep_si3, "__builtin_ia32_pdep_si", IX86_BUILTIN_PDEP32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT },
+ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pdep_di3, "__builtin_ia32_pdep_di", IX86_BUILTIN_PDEP64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 },
+ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pext_si3, "__builtin_ia32_pext_si", IX86_BUILTIN_PEXT32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT },
+ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pext_di3, "__builtin_ia32_pext_di", IX86_BUILTIN_PEXT64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 },
+
+ /* AVX512F */
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_alignv16si_mask, "__builtin_ia32_alignd512_mask", IX86_BUILTIN_ALIGND512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_alignv8di_mask, "__builtin_ia32_alignq512_mask", IX86_BUILTIN_ALIGNQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_blendmv16si, "__builtin_ia32_blendmd_512_mask", IX86_BUILTIN_BLENDMD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_blendmv8df, "__builtin_ia32_blendmpd_512_mask", IX86_BUILTIN_BLENDMPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_blendmv16sf, "__builtin_ia32_blendmps_512_mask", IX86_BUILTIN_BLENDMPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_blendmv8di, "__builtin_ia32_blendmq_512_mask", IX86_BUILTIN_BLENDMQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_broadcastv16sf_mask, "__builtin_ia32_broadcastf32x4_512", IX86_BUILTIN_BROADCASTF32X4_512, UNKNOWN, (int) V16SF_FTYPE_V4SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_broadcastv8df_mask, "__builtin_ia32_broadcastf64x4_512", IX86_BUILTIN_BROADCASTF64X4_512, UNKNOWN, (int) V8DF_FTYPE_V4DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_broadcastv16si_mask, "__builtin_ia32_broadcasti32x4_512", IX86_BUILTIN_BROADCASTI32X4_512, UNKNOWN, (int) V16SI_FTYPE_V4SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_broadcastv8di_mask, "__builtin_ia32_broadcasti64x4_512", IX86_BUILTIN_BROADCASTI64X4_512, UNKNOWN, (int) V8DI_FTYPE_V4DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vec_dupv8df_mask, "__builtin_ia32_broadcastsd512", IX86_BUILTIN_BROADCASTSD512, UNKNOWN, (int) V8DF_FTYPE_V2DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vec_dupv16sf_mask, "__builtin_ia32_broadcastss512", IX86_BUILTIN_BROADCASTSS512, UNKNOWN, (int) V16SF_FTYPE_V4SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_cmpv16si3_mask, "__builtin_ia32_cmpd512_mask", IX86_BUILTIN_CMPD512, UNKNOWN, (int) HI_FTYPE_V16SI_V16SI_INT_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_cmpv8di3_mask, "__builtin_ia32_cmpq512_mask", IX86_BUILTIN_CMPQ512, UNKNOWN, (int) QI_FTYPE_V8DI_V8DI_INT_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_compressv8df_mask, "__builtin_ia32_compressdf512_mask", IX86_BUILTIN_COMPRESSPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_compressv16sf_mask, "__builtin_ia32_compresssf512_mask", IX86_BUILTIN_COMPRESSPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_floatv8siv8df2_mask, "__builtin_ia32_cvtdq2pd512_mask", IX86_BUILTIN_CVTDQ2PD512, UNKNOWN, (int) V8DF_FTYPE_V8SI_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vcvtps2ph512_mask, "__builtin_ia32_vcvtps2ph512_mask", IX86_BUILTIN_CVTPS2PH512, UNKNOWN, (int) V16HI_FTYPE_V16SF_INT_V16HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ufloatv8siv8df_mask, "__builtin_ia32_cvtudq2pd512_mask", IX86_BUILTIN_CVTUDQ2PD512, UNKNOWN, (int) V8DF_FTYPE_V8SI_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_cvtusi2sd32, "__builtin_ia32_cvtusi2sd32", IX86_BUILTIN_CVTUSI2SD32, UNKNOWN, (int) V2DF_FTYPE_V2DF_UINT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv8df_mask, "__builtin_ia32_expanddf512_mask", IX86_BUILTIN_EXPANDPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv8df_maskz, "__builtin_ia32_expanddf512_maskz", IX86_BUILTIN_EXPANDPD512Z, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv16sf_mask, "__builtin_ia32_expandsf512_mask", IX86_BUILTIN_EXPANDPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv16sf_maskz, "__builtin_ia32_expandsf512_maskz", IX86_BUILTIN_EXPANDPS512Z, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vextractf32x4_mask, "__builtin_ia32_extractf32x4_mask", IX86_BUILTIN_EXTRACTF32X4, UNKNOWN, (int) V4SF_FTYPE_V16SF_INT_V4SF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vextractf64x4_mask, "__builtin_ia32_extractf64x4_mask", IX86_BUILTIN_EXTRACTF64X4, UNKNOWN, (int) V4DF_FTYPE_V8DF_INT_V4DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vextracti32x4_mask, "__builtin_ia32_extracti32x4_mask", IX86_BUILTIN_EXTRACTI32X4, UNKNOWN, (int) V4SI_FTYPE_V16SI_INT_V4SI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vextracti64x4_mask, "__builtin_ia32_extracti64x4_mask", IX86_BUILTIN_EXTRACTI64X4, UNKNOWN, (int) V4DI_FTYPE_V8DI_INT_V4DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vinsertf32x4_mask, "__builtin_ia32_insertf32x4_mask", IX86_BUILTIN_INSERTF32X4, UNKNOWN, (int) V16SF_FTYPE_V16SF_V4SF_INT_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vinsertf64x4_mask, "__builtin_ia32_insertf64x4_mask", IX86_BUILTIN_INSERTF64X4, UNKNOWN, (int) V8DF_FTYPE_V8DF_V4DF_INT_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vinserti32x4_mask, "__builtin_ia32_inserti32x4_mask", IX86_BUILTIN_INSERTI32X4, UNKNOWN, (int) V16SI_FTYPE_V16SI_V4SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vinserti64x4_mask, "__builtin_ia32_inserti64x4_mask", IX86_BUILTIN_INSERTI64X4, UNKNOWN, (int) V8DI_FTYPE_V8DI_V4DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadv8df_mask, "__builtin_ia32_movapd512_mask", IX86_BUILTIN_MOVAPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadv16sf_mask, "__builtin_ia32_movaps512_mask", IX86_BUILTIN_MOVAPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_movddup512_mask, "__builtin_ia32_movddup512_mask", IX86_BUILTIN_MOVDDUP512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadv16si_mask, "__builtin_ia32_movdqa32_512_mask", IX86_BUILTIN_MOVDQA32_512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_loadv8di_mask, "__builtin_ia32_movdqa64_512_mask", IX86_BUILTIN_MOVDQA64_512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_movshdup512_mask, "__builtin_ia32_movshdup512_mask", IX86_BUILTIN_MOVSHDUP512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_movsldup512_mask, "__builtin_ia32_movsldup512_mask", IX86_BUILTIN_MOVSLDUP512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_absv16si2_mask, "__builtin_ia32_pabsd512_mask", IX86_BUILTIN_PABSD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_absv8di2_mask, "__builtin_ia32_pabsq512_mask", IX86_BUILTIN_PABSQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_addv16si3_mask, "__builtin_ia32_paddd512_mask", IX86_BUILTIN_PADDD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_addv8di3_mask, "__builtin_ia32_paddq512_mask", IX86_BUILTIN_PADDQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_andv16si3_mask, "__builtin_ia32_pandd512_mask", IX86_BUILTIN_PANDD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_andnotv16si3_mask, "__builtin_ia32_pandnd512_mask", IX86_BUILTIN_PANDND512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_andnotv8di3_mask, "__builtin_ia32_pandnq512_mask", IX86_BUILTIN_PANDNQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_andv8di3_mask, "__builtin_ia32_pandq512_mask", IX86_BUILTIN_PANDQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vec_dupv16si_mask, "__builtin_ia32_pbroadcastd512", IX86_BUILTIN_PBROADCASTD512, UNKNOWN, (int) V16SI_FTYPE_V4SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vec_dup_gprv16si_mask, "__builtin_ia32_pbroadcastd512_gpr_mask", IX86_BUILTIN_PBROADCASTD512_GPR, UNKNOWN, (int) V16SI_FTYPE_SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512CD, CODE_FOR_avx512cd_maskb_vec_dupv8di, "__builtin_ia32_broadcastmb512", IX86_BUILTIN_PBROADCASTMB512, UNKNOWN, (int) V8DI_FTYPE_QI },
+ { OPTION_MASK_ISA_AVX512CD, CODE_FOR_avx512cd_maskw_vec_dupv16si, "__builtin_ia32_broadcastmw512", IX86_BUILTIN_PBROADCASTMW512, UNKNOWN, (int) V16SI_FTYPE_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vec_dupv8di_mask, "__builtin_ia32_pbroadcastq512", IX86_BUILTIN_PBROADCASTQ512, UNKNOWN, (int) V8DI_FTYPE_V2DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_avx512f_vec_dup_gprv8di_mask, "__builtin_ia32_pbroadcastq512_gpr_mask", IX86_BUILTIN_PBROADCASTQ512_GPR, UNKNOWN, (int) V8DI_FTYPE_DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F & ~OPTION_MASK_ISA_64BIT, CODE_FOR_avx512f_vec_dup_memv8di_mask, "__builtin_ia32_pbroadcastq512_mem_mask", IX86_BUILTIN_PBROADCASTQ512_MEM, UNKNOWN, (int) V8DI_FTYPE_DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_eqv16si3_mask, "__builtin_ia32_pcmpeqd512_mask", IX86_BUILTIN_PCMPEQD512_MASK, UNKNOWN, (int) HI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_eqv8di3_mask, "__builtin_ia32_pcmpeqq512_mask", IX86_BUILTIN_PCMPEQQ512_MASK, UNKNOWN, (int) QI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_gtv16si3_mask, "__builtin_ia32_pcmpgtd512_mask", IX86_BUILTIN_PCMPGTD512_MASK, UNKNOWN, (int) HI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_gtv8di3_mask, "__builtin_ia32_pcmpgtq512_mask", IX86_BUILTIN_PCMPGTQ512_MASK, UNKNOWN, (int) QI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_compressv16si_mask, "__builtin_ia32_compresssi512_mask", IX86_BUILTIN_PCOMPRESSD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_compressv8di_mask, "__builtin_ia32_compressdi512_mask", IX86_BUILTIN_PCOMPRESSQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv16si_mask, "__builtin_ia32_expandsi512_mask", IX86_BUILTIN_PEXPANDD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv16si_maskz, "__builtin_ia32_expandsi512_maskz", IX86_BUILTIN_PEXPANDD512Z, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv8di_mask, "__builtin_ia32_expanddi512_mask", IX86_BUILTIN_PEXPANDQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_expandv8di_maskz, "__builtin_ia32_expanddi512_maskz", IX86_BUILTIN_PEXPANDQ512Z, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_smaxv16si3_mask, "__builtin_ia32_pmaxsd512_mask", IX86_BUILTIN_PMAXSD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_smaxv8di3_mask, "__builtin_ia32_pmaxsq512_mask", IX86_BUILTIN_PMAXSQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_umaxv16si3_mask, "__builtin_ia32_pmaxud512_mask", IX86_BUILTIN_PMAXUD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_umaxv8di3_mask, "__builtin_ia32_pmaxuq512_mask", IX86_BUILTIN_PMAXUQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sminv16si3_mask, "__builtin_ia32_pminsd512_mask", IX86_BUILTIN_PMINSD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sminv8di3_mask, "__builtin_ia32_pminsq512_mask", IX86_BUILTIN_PMINSQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_uminv16si3_mask, "__builtin_ia32_pminud512_mask", IX86_BUILTIN_PMINUD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_uminv8di3_mask, "__builtin_ia32_pminuq512_mask", IX86_BUILTIN_PMINUQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev16siv16qi2_mask, "__builtin_ia32_pmovdb512_mask", IX86_BUILTIN_PMOVDB512, UNKNOWN, (int) V16QI_FTYPE_V16SI_V16QI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev16siv16hi2_mask, "__builtin_ia32_pmovdw512_mask", IX86_BUILTIN_PMOVDW512, UNKNOWN, (int) V16HI_FTYPE_V16SI_V16HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev8div16qi2_mask, "__builtin_ia32_pmovqb512_mask", IX86_BUILTIN_PMOVQB512, UNKNOWN, (int) V16QI_FTYPE_V8DI_V16QI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev8div8si2_mask, "__builtin_ia32_pmovqd512_mask", IX86_BUILTIN_PMOVQD512, UNKNOWN, (int) V8SI_FTYPE_V8DI_V8SI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_truncatev8div8hi2_mask, "__builtin_ia32_pmovqw512_mask", IX86_BUILTIN_PMOVQW512, UNKNOWN, (int) V8HI_FTYPE_V8DI_V8HI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev16siv16qi2_mask, "__builtin_ia32_pmovsdb512_mask", IX86_BUILTIN_PMOVSDB512, UNKNOWN, (int) V16QI_FTYPE_V16SI_V16QI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev16siv16hi2_mask, "__builtin_ia32_pmovsdw512_mask", IX86_BUILTIN_PMOVSDW512, UNKNOWN, (int) V16HI_FTYPE_V16SI_V16HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev8div16qi2_mask, "__builtin_ia32_pmovsqb512_mask", IX86_BUILTIN_PMOVSQB512, UNKNOWN, (int) V16QI_FTYPE_V8DI_V16QI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev8div8si2_mask, "__builtin_ia32_pmovsqd512_mask", IX86_BUILTIN_PMOVSQD512, UNKNOWN, (int) V8SI_FTYPE_V8DI_V8SI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ss_truncatev8div8hi2_mask, "__builtin_ia32_pmovsqw512_mask", IX86_BUILTIN_PMOVSQW512, UNKNOWN, (int) V8HI_FTYPE_V8DI_V8HI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sign_extendv16qiv16si2_mask, "__builtin_ia32_pmovsxbd512_mask", IX86_BUILTIN_PMOVSXBD512, UNKNOWN, (int) V16SI_FTYPE_V16QI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sign_extendv8qiv8di2_mask, "__builtin_ia32_pmovsxbq512_mask", IX86_BUILTIN_PMOVSXBQ512, UNKNOWN, (int) V8DI_FTYPE_V16QI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sign_extendv8siv8di2_mask, "__builtin_ia32_pmovsxdq512_mask", IX86_BUILTIN_PMOVSXDQ512, UNKNOWN, (int) V8DI_FTYPE_V8SI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sign_extendv16hiv16si2_mask, "__builtin_ia32_pmovsxwd512_mask", IX86_BUILTIN_PMOVSXWD512, UNKNOWN, (int) V16SI_FTYPE_V16HI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sign_extendv8hiv8di2_mask, "__builtin_ia32_pmovsxwq512_mask", IX86_BUILTIN_PMOVSXWQ512, UNKNOWN, (int) V8DI_FTYPE_V8HI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev16siv16qi2_mask, "__builtin_ia32_pmovusdb512_mask", IX86_BUILTIN_PMOVUSDB512, UNKNOWN, (int) V16QI_FTYPE_V16SI_V16QI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev16siv16hi2_mask, "__builtin_ia32_pmovusdw512_mask", IX86_BUILTIN_PMOVUSDW512, UNKNOWN, (int) V16HI_FTYPE_V16SI_V16HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev8div16qi2_mask, "__builtin_ia32_pmovusqb512_mask", IX86_BUILTIN_PMOVUSQB512, UNKNOWN, (int) V16QI_FTYPE_V8DI_V16QI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev8div8si2_mask, "__builtin_ia32_pmovusqd512_mask", IX86_BUILTIN_PMOVUSQD512, UNKNOWN, (int) V8SI_FTYPE_V8DI_V8SI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_us_truncatev8div8hi2_mask, "__builtin_ia32_pmovusqw512_mask", IX86_BUILTIN_PMOVUSQW512, UNKNOWN, (int) V8HI_FTYPE_V8DI_V8HI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_zero_extendv16qiv16si2_mask, "__builtin_ia32_pmovzxbd512_mask", IX86_BUILTIN_PMOVZXBD512, UNKNOWN, (int) V16SI_FTYPE_V16QI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_zero_extendv8qiv8di2_mask, "__builtin_ia32_pmovzxbq512_mask", IX86_BUILTIN_PMOVZXBQ512, UNKNOWN, (int) V8DI_FTYPE_V16QI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_zero_extendv8siv8di2_mask, "__builtin_ia32_pmovzxdq512_mask", IX86_BUILTIN_PMOVZXDQ512, UNKNOWN, (int) V8DI_FTYPE_V8SI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_zero_extendv16hiv16si2_mask, "__builtin_ia32_pmovzxwd512_mask", IX86_BUILTIN_PMOVZXWD512, UNKNOWN, (int) V16SI_FTYPE_V16HI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_zero_extendv8hiv8di2_mask, "__builtin_ia32_pmovzxwq512_mask", IX86_BUILTIN_PMOVZXWQ512, UNKNOWN, (int) V8DI_FTYPE_V8HI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_vec_widen_smult_even_v16si_mask, "__builtin_ia32_pmuldq512_mask", IX86_BUILTIN_PMULDQ512, UNKNOWN, (int) V8DI_FTYPE_V16SI_V16SI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_mulv16si3_mask, "__builtin_ia32_pmulld512_mask" , IX86_BUILTIN_PMULLD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_vec_widen_umult_even_v16si_mask, "__builtin_ia32_pmuludq512_mask", IX86_BUILTIN_PMULUDQ512, UNKNOWN, (int) V8DI_FTYPE_V16SI_V16SI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_iorv16si3_mask, "__builtin_ia32_pord512_mask", IX86_BUILTIN_PORD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_iorv8di3_mask, "__builtin_ia32_porq512_mask", IX86_BUILTIN_PORQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rolv16si_mask, "__builtin_ia32_prold512_mask", IX86_BUILTIN_PROLD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rolv8di_mask, "__builtin_ia32_prolq512_mask", IX86_BUILTIN_PROLQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rolvv16si_mask, "__builtin_ia32_prolvd512_mask", IX86_BUILTIN_PROLVD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rolvv8di_mask, "__builtin_ia32_prolvq512_mask", IX86_BUILTIN_PROLVQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rorv16si_mask, "__builtin_ia32_prord512_mask", IX86_BUILTIN_PRORD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rorv8di_mask, "__builtin_ia32_prorq512_mask", IX86_BUILTIN_PRORQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rorvv16si_mask, "__builtin_ia32_prorvd512_mask", IX86_BUILTIN_PRORVD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rorvv8di_mask, "__builtin_ia32_prorvq512_mask", IX86_BUILTIN_PRORVQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_pshufdv3_mask, "__builtin_ia32_pshufd512_mask", IX86_BUILTIN_PSHUFD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ashlv16si3_mask, "__builtin_ia32_pslld512_mask", IX86_BUILTIN_PSLLD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V4SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ashlv16si3_mask, "__builtin_ia32_pslldi512_mask", IX86_BUILTIN_PSLLDI512, UNKNOWN, (int) V16SI_FTYPE_V16SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ashlv8di3_mask, "__builtin_ia32_psllq512_mask", IX86_BUILTIN_PSLLQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V2DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ashlv8di3_mask, "__builtin_ia32_psllqi512_mask", IX86_BUILTIN_PSLLQI512, UNKNOWN, (int) V8DI_FTYPE_V8DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ashlvv16si_mask, "__builtin_ia32_psllv16si_mask", IX86_BUILTIN_PSLLVV16SI, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ashlvv8di_mask, "__builtin_ia32_psllv8di_mask", IX86_BUILTIN_PSLLVV8DI, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ashrv16si3_mask, "__builtin_ia32_psrad512_mask", IX86_BUILTIN_PSRAD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V4SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ashrv16si3_mask, "__builtin_ia32_psradi512_mask", IX86_BUILTIN_PSRADI512, UNKNOWN, (int) V16SI_FTYPE_V16SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ashrv8di3_mask, "__builtin_ia32_psraq512_mask", IX86_BUILTIN_PSRAQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V2DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ashrv8di3_mask, "__builtin_ia32_psraqi512_mask", IX86_BUILTIN_PSRAQI512, UNKNOWN, (int) V8DI_FTYPE_V8DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ashrvv16si_mask, "__builtin_ia32_psrav16si_mask", IX86_BUILTIN_PSRAVV16SI, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ashrvv8di_mask, "__builtin_ia32_psrav8di_mask", IX86_BUILTIN_PSRAVV8DI, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_lshrv16si3_mask, "__builtin_ia32_psrld512_mask", IX86_BUILTIN_PSRLD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V4SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_lshrv16si3_mask, "__builtin_ia32_psrldi512_mask", IX86_BUILTIN_PSRLDI512, UNKNOWN, (int) V16SI_FTYPE_V16SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_lshrv8di3_mask, "__builtin_ia32_psrlq512_mask", IX86_BUILTIN_PSRLQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V2DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_lshrv8di3_mask, "__builtin_ia32_psrlqi512_mask", IX86_BUILTIN_PSRLQI512, UNKNOWN, (int) V8DI_FTYPE_V8DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_lshrvv16si_mask, "__builtin_ia32_psrlv16si_mask", IX86_BUILTIN_PSRLVV16SI, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_lshrvv8di_mask, "__builtin_ia32_psrlv8di_mask", IX86_BUILTIN_PSRLVV8DI, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_subv16si3_mask, "__builtin_ia32_psubd512_mask", IX86_BUILTIN_PSUBD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_subv8di3_mask, "__builtin_ia32_psubq512_mask", IX86_BUILTIN_PSUBQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_testmv16si3_mask, "__builtin_ia32_ptestmd512", IX86_BUILTIN_PTESTMD512, UNKNOWN, (int) HI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_testmv8di3_mask, "__builtin_ia32_ptestmq512", IX86_BUILTIN_PTESTMQ512, UNKNOWN, (int) QI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_testnmv16si3_mask, "__builtin_ia32_ptestnmd512", IX86_BUILTIN_PTESTNMD512, UNKNOWN, (int) HI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_testnmv8di3_mask, "__builtin_ia32_ptestnmq512", IX86_BUILTIN_PTESTNMQ512, UNKNOWN, (int) QI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_interleave_highv16si_mask, "__builtin_ia32_punpckhdq512_mask", IX86_BUILTIN_PUNPCKHDQ512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_interleave_highv8di_mask, "__builtin_ia32_punpckhqdq512_mask", IX86_BUILTIN_PUNPCKHQDQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_interleave_lowv16si_mask, "__builtin_ia32_punpckldq512_mask", IX86_BUILTIN_PUNPCKLDQ512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_interleave_lowv8di_mask, "__builtin_ia32_punpcklqdq512_mask", IX86_BUILTIN_PUNPCKLQDQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_xorv16si3_mask, "__builtin_ia32_pxord512_mask", IX86_BUILTIN_PXORD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_xorv8di3_mask, "__builtin_ia32_pxorq512_mask", IX86_BUILTIN_PXORQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_rcp14v8df_mask, "__builtin_ia32_rcp14pd512_mask", IX86_BUILTIN_RCP14PD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_rcp14v16sf_mask, "__builtin_ia32_rcp14ps512_mask", IX86_BUILTIN_RCP14PS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_srcp14v2df, "__builtin_ia32_rcp14sd", IX86_BUILTIN_RCP14SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_srcp14v4sf, "__builtin_ia32_rcp14ss", IX86_BUILTIN_RCP14SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_rsqrt14v8df_mask, "__builtin_ia32_rsqrt14pd512_mask", IX86_BUILTIN_RSQRT14PD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_rsqrt14v16sf_mask, "__builtin_ia32_rsqrt14ps512_mask", IX86_BUILTIN_RSQRT14PS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_rsqrt14v2df, "__builtin_ia32_rsqrt14sd", IX86_BUILTIN_RSQRT14SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_rsqrt14v4sf, "__builtin_ia32_rsqrt14ss", IX86_BUILTIN_RSQRT14SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_shufpd512_mask, "__builtin_ia32_shufpd512_mask", IX86_BUILTIN_SHUFPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_INT_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_shufps512_mask, "__builtin_ia32_shufps512_mask", IX86_BUILTIN_SHUFPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_INT_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_shuf_f32x4_mask, "__builtin_ia32_shuf_f32x4_mask", IX86_BUILTIN_SHUF_F32x4, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_INT_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_shuf_f64x2_mask, "__builtin_ia32_shuf_f64x2_mask", IX86_BUILTIN_SHUF_F64x2, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_INT_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_shuf_i32x4_mask, "__builtin_ia32_shuf_i32x4_mask", IX86_BUILTIN_SHUF_I32x4, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_INT_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_shuf_i64x2_mask, "__builtin_ia32_shuf_i64x2_mask", IX86_BUILTIN_SHUF_I64x2, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ucmpv16si3_mask, "__builtin_ia32_ucmpd512_mask", IX86_BUILTIN_UCMPD512, UNKNOWN, (int) HI_FTYPE_V16SI_V16SI_INT_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ucmpv8di3_mask, "__builtin_ia32_ucmpq512_mask", IX86_BUILTIN_UCMPQ512, UNKNOWN, (int) QI_FTYPE_V8DI_V8DI_INT_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_unpckhpd512_mask, "__builtin_ia32_unpckhpd512_mask", IX86_BUILTIN_UNPCKHPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_unpckhps512_mask, "__builtin_ia32_unpckhps512_mask", IX86_BUILTIN_UNPCKHPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_unpcklpd512_mask, "__builtin_ia32_unpcklpd512_mask", IX86_BUILTIN_UNPCKLPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_unpcklps512_mask, "__builtin_ia32_unpcklps512_mask", IX86_BUILTIN_UNPCKLPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512CD, CODE_FOR_clzv16si2_mask, "__builtin_ia32_vplzcntd_512_mask", IX86_BUILTIN_VPCLZCNTD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512CD, CODE_FOR_clzv8di2_mask, "__builtin_ia32_vplzcntq_512_mask", IX86_BUILTIN_VPCLZCNTQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512CD, CODE_FOR_conflictv16si_mask, "__builtin_ia32_vpconflictsi_512_mask", IX86_BUILTIN_VPCONFLICTD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512CD, CODE_FOR_conflictv8di_mask, "__builtin_ia32_vpconflictdi_512_mask", IX86_BUILTIN_VPCONFLICTQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_permv8df_mask, "__builtin_ia32_permdf512_mask", IX86_BUILTIN_VPERMDF512, UNKNOWN, (int) V8DF_FTYPE_V8DF_INT_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_permv8di_mask, "__builtin_ia32_permdi512_mask", IX86_BUILTIN_VPERMDI512, UNKNOWN, (int) V8DI_FTYPE_V8DI_INT_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermi2varv16si3_mask, "__builtin_ia32_vpermi2vard512_mask", IX86_BUILTIN_VPERMI2VARD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermi2varv8df3_mask, "__builtin_ia32_vpermi2varpd512_mask", IX86_BUILTIN_VPERMI2VARPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DI_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermi2varv16sf3_mask, "__builtin_ia32_vpermi2varps512_mask", IX86_BUILTIN_VPERMI2VARPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SI_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermi2varv8di3_mask, "__builtin_ia32_vpermi2varq512_mask", IX86_BUILTIN_VPERMI2VARQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermilv8df_mask, "__builtin_ia32_vpermilpd512_mask", IX86_BUILTIN_VPERMILPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_INT_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermilv16sf_mask, "__builtin_ia32_vpermilps512_mask", IX86_BUILTIN_VPERMILPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_INT_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermilvarv8df3_mask, "__builtin_ia32_vpermilvarpd512_mask", IX86_BUILTIN_VPERMILVARPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DI_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermilvarv16sf3_mask, "__builtin_ia32_vpermilvarps512_mask", IX86_BUILTIN_VPERMILVARPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SI_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermt2varv16si3_mask, "__builtin_ia32_vpermt2vard512_mask", IX86_BUILTIN_VPERMT2VARD512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermt2varv16si3_maskz, "__builtin_ia32_vpermt2vard512_maskz", IX86_BUILTIN_VPERMT2VARD512_MASKZ, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermt2varv8df3_mask, "__builtin_ia32_vpermt2varpd512_mask", IX86_BUILTIN_VPERMT2VARPD512, UNKNOWN, (int) V8DF_FTYPE_V8DI_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermt2varv8df3_maskz, "__builtin_ia32_vpermt2varpd512_maskz", IX86_BUILTIN_VPERMT2VARPD512_MASKZ, UNKNOWN, (int) V8DF_FTYPE_V8DI_V8DF_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermt2varv16sf3_mask, "__builtin_ia32_vpermt2varps512_mask", IX86_BUILTIN_VPERMT2VARPS512, UNKNOWN, (int) V16SF_FTYPE_V16SI_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermt2varv16sf3_maskz, "__builtin_ia32_vpermt2varps512_maskz", IX86_BUILTIN_VPERMT2VARPS512_MASKZ, UNKNOWN, (int) V16SF_FTYPE_V16SI_V16SF_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermt2varv8di3_mask, "__builtin_ia32_vpermt2varq512_mask", IX86_BUILTIN_VPERMT2VARQ512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vpermt2varv8di3_maskz, "__builtin_ia32_vpermt2varq512_maskz", IX86_BUILTIN_VPERMT2VARQ512_MASKZ, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_permvarv8df_mask, "__builtin_ia32_permvardf512_mask", IX86_BUILTIN_VPERMVARDF512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DI_V8DF_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_permvarv8di_mask, "__builtin_ia32_permvardi512_mask", IX86_BUILTIN_VPERMVARDI512, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_permvarv16sf_mask, "__builtin_ia32_permvarsf512_mask", IX86_BUILTIN_VPERMVARSF512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SI_V16SF_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_permvarv16si_mask, "__builtin_ia32_permvarsi512_mask", IX86_BUILTIN_VPERMVARSI512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vternlogv16si_mask, "__builtin_ia32_pternlogd512_mask", IX86_BUILTIN_VTERNLOGD512_MASK, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_INT_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vternlogv16si_maskz, "__builtin_ia32_pternlogd512_maskz", IX86_BUILTIN_VTERNLOGD512_MASKZ, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_V16SI_INT_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vternlogv8di_mask, "__builtin_ia32_pternlogq512_mask", IX86_BUILTIN_VTERNLOGQ512_MASK, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_INT_QI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vternlogv8di_maskz, "__builtin_ia32_pternlogq512_maskz", IX86_BUILTIN_VTERNLOGQ512_MASKZ, UNKNOWN, (int) V8DI_FTYPE_V8DI_V8DI_V8DI_INT_QI },
+
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_copysignv16sf3, "__builtin_ia32_copysignps512", IX86_BUILTIN_CPYSGNPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_copysignv8df3, "__builtin_ia32_copysignpd512", IX86_BUILTIN_CPYSGNPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sqrtv8df2, "__builtin_ia32_sqrtpd512", IX86_BUILTIN_SQRTPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sqrtv16sf2, "__builtin_ia32_sqrtps512", IX86_BUILTIN_SQRTPS_NR512, UNKNOWN, (int) V16SF_FTYPE_V16SF },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_exp2v16sf, "__builtin_ia32_exp2ps", IX86_BUILTIN_EXP2PS, UNKNOWN, (int) V16SF_FTYPE_V16SF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_roundv8df2_vec_pack_sfix, "__builtin_ia32_roundpd_az_vec_pack_sfix512", IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX512, UNKNOWN, (int) V16SI_FTYPE_V8DF_V8DF },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_roundpd_vec_pack_sfix512, "__builtin_ia32_floorpd_vec_pack_sfix512", IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX512, (enum rtx_code) ROUND_FLOOR, (int) V16SI_FTYPE_V8DF_V8DF_ROUND },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_roundpd_vec_pack_sfix512, "__builtin_ia32_ceilpd_vec_pack_sfix512", IX86_BUILTIN_CEILPD_VEC_PACK_SFIX512, (enum rtx_code) ROUND_CEIL, (int) V16SI_FTYPE_V8DF_V8DF_ROUND },
+
+ /* Mask arithmetic operations */
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_andhi3, "__builtin_ia32_kandhi", IX86_BUILTIN_KAND16, UNKNOWN, (int) HI_FTYPE_HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_kandnhi, "__builtin_ia32_kandnhi", IX86_BUILTIN_KANDN16, UNKNOWN, (int) HI_FTYPE_HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_one_cmplhi2, "__builtin_ia32_knothi", IX86_BUILTIN_KNOT16, UNKNOWN, (int) HI_FTYPE_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_iorhi3, "__builtin_ia32_korhi", IX86_BUILTIN_KOR16, UNKNOWN, (int) HI_FTYPE_HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_kortestchi, "__builtin_ia32_kortestchi", IX86_BUILTIN_KORTESTC16, UNKNOWN, (int) HI_FTYPE_HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_kortestzhi, "__builtin_ia32_kortestzhi", IX86_BUILTIN_KORTESTZ16, UNKNOWN, (int) HI_FTYPE_HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_kunpckhi, "__builtin_ia32_kunpckhi", IX86_BUILTIN_KUNPCKBW, UNKNOWN, (int) HI_FTYPE_HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_kxnorhi, "__builtin_ia32_kxnorhi", IX86_BUILTIN_KXNOR16, UNKNOWN, (int) HI_FTYPE_HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_xorhi3, "__builtin_ia32_kxorhi", IX86_BUILTIN_KXOR16, UNKNOWN, (int) HI_FTYPE_HI_HI },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_kmovw, "__builtin_ia32_kmov16", IX86_BUILTIN_KMOV16, UNKNOWN, (int) HI_FTYPE_HI },
+
+ /* SHA */
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sha1msg1, 0, IX86_BUILTIN_SHA1MSG1, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sha1msg2, 0, IX86_BUILTIN_SHA1MSG2, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sha1nexte, 0, IX86_BUILTIN_SHA1NEXTE, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sha1rnds4, 0, IX86_BUILTIN_SHA1RNDS4, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_INT },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sha256msg1, 0, IX86_BUILTIN_SHA256MSG1, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sha256msg2, 0, IX86_BUILTIN_SHA256MSG2, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI },
+ { OPTION_MASK_ISA_SSE2, CODE_FOR_sha256rnds2, 0, IX86_BUILTIN_SHA256RNDS2, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_V4SI },
+};
+
+/* Builtins with rounding support. */
+static const struct builtin_description bdesc_round_args[] =
+{
+ /* AVX512F */
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_addv8df3_mask_round, "__builtin_ia32_addpd512_mask", IX86_BUILTIN_ADDPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_addv16sf3_mask_round, "__builtin_ia32_addps512_mask", IX86_BUILTIN_ADDPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_vmaddv2df3_round, "__builtin_ia32_addsd_round", IX86_BUILTIN_ADDSD_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_vmaddv4sf3_round, "__builtin_ia32_addss_round", IX86_BUILTIN_ADDSS_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_cmpv8df3_mask_round, "__builtin_ia32_cmppd512_mask", IX86_BUILTIN_CMPPD512, UNKNOWN, (int) QI_FTYPE_V8DF_V8DF_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_cmpv16sf3_mask_round, "__builtin_ia32_cmpps512_mask", IX86_BUILTIN_CMPPS512, UNKNOWN, (int) HI_FTYPE_V16SF_V16SF_INT_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vmcmpv2df3_mask_round, "__builtin_ia32_cmpsd_mask", IX86_BUILTIN_CMPSD_MASK, UNKNOWN, (int) QI_FTYPE_V2DF_V2DF_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vmcmpv4sf3_mask_round, "__builtin_ia32_cmpss_mask", IX86_BUILTIN_CMPSS_MASK, UNKNOWN, (int) QI_FTYPE_V4SF_V4SF_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_comi_round, "__builtin_ia32_vcomisd", IX86_BUILTIN_COMIDF, UNKNOWN, (int) INT_FTYPE_V2DF_V2DF_INT_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_comi_round, "__builtin_ia32_vcomiss", IX86_BUILTIN_COMISF, UNKNOWN, (int) INT_FTYPE_V4SF_V4SF_INT_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_floatv16siv16sf2_mask_round, "__builtin_ia32_cvtdq2ps512_mask", IX86_BUILTIN_CVTDQ2PS512, UNKNOWN, (int) V16SF_FTYPE_V16SI_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_cvtpd2dq512_mask_round, "__builtin_ia32_cvtpd2dq512_mask", IX86_BUILTIN_CVTPD2DQ512, UNKNOWN, (int) V8SI_FTYPE_V8DF_V8SI_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_cvtpd2ps512_mask_round, "__builtin_ia32_cvtpd2ps512_mask", IX86_BUILTIN_CVTPD2PS512, UNKNOWN, (int) V8SF_FTYPE_V8DF_V8SF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ufix_notruncv8dfv8si_mask_round, "__builtin_ia32_cvtpd2udq512_mask", IX86_BUILTIN_CVTPD2UDQ512, UNKNOWN, (int) V8SI_FTYPE_V8DF_V8SI_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vcvtph2ps512_mask_round, "__builtin_ia32_vcvtph2ps512_mask", IX86_BUILTIN_CVTPH2PS512, UNKNOWN, (int) V16SF_FTYPE_V16HI_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fix_notruncv16sfv16si_mask_round, "__builtin_ia32_cvtps2dq512_mask", IX86_BUILTIN_CVTPS2DQ512, UNKNOWN, (int) V16SI_FTYPE_V16SF_V16SI_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_cvtps2pd512_mask_round, "__builtin_ia32_cvtps2pd512_mask", IX86_BUILTIN_CVTPS2PD512, UNKNOWN, (int) V8DF_FTYPE_V8SF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_ufix_notruncv16sfv16si_mask_round, "__builtin_ia32_cvtps2udq512_mask", IX86_BUILTIN_CVTPS2UDQ512, UNKNOWN, (int) V16SI_FTYPE_V16SF_V16SI_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_cvtsd2ss_round, "__builtin_ia32_cvtsd2ss_round", IX86_BUILTIN_CVTSD2SS_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsi2sdq_round, "__builtin_ia32_cvtsi2sd64", IX86_BUILTIN_CVTSI2SD64, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT64_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_cvtsi2ss_round, "__builtin_ia32_cvtsi2ss32", IX86_BUILTIN_CVTSI2SS32, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtsi2ssq_round, "__builtin_ia32_cvtsi2ss64", IX86_BUILTIN_CVTSI2SS64, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT64_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_cvtss2sd_round, "__builtin_ia32_cvtss2sd_round", IX86_BUILTIN_CVTSS2SD_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_fix_truncv8dfv8si2_mask_round, "__builtin_ia32_cvttpd2dq512_mask", IX86_BUILTIN_CVTTPD2DQ512, UNKNOWN, (int) V8SI_FTYPE_V8DF_V8SI_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ufix_truncv8dfv8si2_mask_round, "__builtin_ia32_cvttpd2udq512_mask", IX86_BUILTIN_CVTTPD2UDQ512, UNKNOWN, (int) V8SI_FTYPE_V8DF_V8SI_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_fix_truncv16sfv16si2_mask_round, "__builtin_ia32_cvttps2dq512_mask", IX86_BUILTIN_CVTTPS2DQ512, UNKNOWN, (int) V16SI_FTYPE_V16SF_V16SI_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ufix_truncv16sfv16si2_mask_round, "__builtin_ia32_cvttps2udq512_mask", IX86_BUILTIN_CVTTPS2UDQ512, UNKNOWN, (int) V16SI_FTYPE_V16SF_V16SI_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_ufloatv16siv16sf2_mask_round, "__builtin_ia32_cvtudq2ps512_mask", IX86_BUILTIN_CVTUDQ2PS512, UNKNOWN, (int) V16SF_FTYPE_V16SI_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_cvtusi2sd64_round, "__builtin_ia32_cvtusi2sd64", IX86_BUILTIN_CVTUSI2SD64, UNKNOWN, (int) V2DF_FTYPE_V2DF_UINT64_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_cvtusi2ss32_round, "__builtin_ia32_cvtusi2ss32", IX86_BUILTIN_CVTUSI2SS32, UNKNOWN, (int) V4SF_FTYPE_V4SF_UINT_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_cvtusi2ss64_round, "__builtin_ia32_cvtusi2ss64", IX86_BUILTIN_CVTUSI2SS64, UNKNOWN, (int) V4SF_FTYPE_V4SF_UINT64_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_divv8df3_mask_round, "__builtin_ia32_divpd512_mask", IX86_BUILTIN_DIVPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_divv16sf3_mask_round, "__builtin_ia32_divps512_mask", IX86_BUILTIN_DIVPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_vmdivv2df3_round, "__builtin_ia32_divsd_round", IX86_BUILTIN_DIVSD_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_vmdivv4sf3_round, "__builtin_ia32_divss_round", IX86_BUILTIN_DIVSS_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fixupimmv8df_mask_round, "__builtin_ia32_fixupimmpd512_mask", IX86_BUILTIN_FIXUPIMMPD512_MASK, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DI_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fixupimmv8df_maskz_round, "__builtin_ia32_fixupimmpd512_maskz", IX86_BUILTIN_FIXUPIMMPD512_MASKZ, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DI_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fixupimmv16sf_mask_round, "__builtin_ia32_fixupimmps512_mask", IX86_BUILTIN_FIXUPIMMPS512_MASK, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SI_INT_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fixupimmv16sf_maskz_round, "__builtin_ia32_fixupimmps512_maskz", IX86_BUILTIN_FIXUPIMMPS512_MASKZ, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SI_INT_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sfixupimmv2df_mask_round, "__builtin_ia32_fixupimmsd_mask", IX86_BUILTIN_FIXUPIMMSD128_MASK, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DI_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sfixupimmv2df_maskz_round, "__builtin_ia32_fixupimmsd_maskz", IX86_BUILTIN_FIXUPIMMSD128_MASKZ, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DI_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sfixupimmv4sf_mask_round, "__builtin_ia32_fixupimmss_mask", IX86_BUILTIN_FIXUPIMMSS128_MASK, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SI_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sfixupimmv4sf_maskz_round, "__builtin_ia32_fixupimmss_maskz", IX86_BUILTIN_FIXUPIMMSS128_MASKZ, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SI_INT_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_getexpv8df_mask_round, "__builtin_ia32_getexppd512_mask", IX86_BUILTIN_GETEXPPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_getexpv16sf_mask_round, "__builtin_ia32_getexpps512_mask", IX86_BUILTIN_GETEXPPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sgetexpv2df_round, "__builtin_ia32_getexpsd128_round", IX86_BUILTIN_GETEXPSD128, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sgetexpv4sf_round, "__builtin_ia32_getexpss128_round", IX86_BUILTIN_GETEXPSS128, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_getmantv8df_mask_round, "__builtin_ia32_getmantpd512_mask", IX86_BUILTIN_GETMANTPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_INT_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_getmantv16sf_mask_round, "__builtin_ia32_getmantps512_mask", IX86_BUILTIN_GETMANTPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_INT_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_getmantv2df_round, "__builtin_ia32_getmantsd_round", IX86_BUILTIN_GETMANTSD128, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_getmantv4sf_round, "__builtin_ia32_getmantss_round", IX86_BUILTIN_GETMANTSS128, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_smaxv8df3_mask_round, "__builtin_ia32_maxpd512_mask", IX86_BUILTIN_MAXPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_smaxv16sf3_mask_round, "__builtin_ia32_maxps512_mask", IX86_BUILTIN_MAXPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_vmsmaxv2df3_round, "__builtin_ia32_maxsd_round", IX86_BUILTIN_MAXSD_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_vmsmaxv4sf3_round, "__builtin_ia32_maxss_round", IX86_BUILTIN_MAXSS_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sminv8df3_mask_round, "__builtin_ia32_minpd512_mask", IX86_BUILTIN_MINPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sminv16sf3_mask_round, "__builtin_ia32_minps512_mask", IX86_BUILTIN_MINPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_vmsminv2df3_round, "__builtin_ia32_minsd_round", IX86_BUILTIN_MINSD_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_vmsminv4sf3_round, "__builtin_ia32_minss_round", IX86_BUILTIN_MINSS_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_mulv8df3_mask_round, "__builtin_ia32_mulpd512_mask", IX86_BUILTIN_MULPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_mulv16sf3_mask_round, "__builtin_ia32_mulps512_mask", IX86_BUILTIN_MULPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_vmmulv2df3_round, "__builtin_ia32_mulsd_round", IX86_BUILTIN_MULSD_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_vmmulv4sf3_round, "__builtin_ia32_mulss_round", IX86_BUILTIN_MULSS_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rndscalev8df_mask_round, "__builtin_ia32_rndscalepd_mask", IX86_BUILTIN_RNDSCALEPD, UNKNOWN, (int) V8DF_FTYPE_V8DF_INT_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rndscalev16sf_mask_round, "__builtin_ia32_rndscaleps_mask", IX86_BUILTIN_RNDSCALEPS, UNKNOWN, (int) V16SF_FTYPE_V16SF_INT_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rndscalev2df_round, "__builtin_ia32_rndscalesd_round", IX86_BUILTIN_RNDSCALESD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_rndscalev4sf_round, "__builtin_ia32_rndscaless_round", IX86_BUILTIN_RNDSCALESS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_scalefv8df_mask_round, "__builtin_ia32_scalefpd512_mask", IX86_BUILTIN_SCALEFPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_scalefv16sf_mask_round, "__builtin_ia32_scalefps512_mask", IX86_BUILTIN_SCALEFPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vmscalefv2df_round, "__builtin_ia32_scalefsd_round", IX86_BUILTIN_SCALEFSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vmscalefv4sf_round, "__builtin_ia32_scalefss_round", IX86_BUILTIN_SCALEFSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sqrtv8df2_mask_round, "__builtin_ia32_sqrtpd512_mask", IX86_BUILTIN_SQRTPD512_MASK, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_sqrtv16sf2_mask_round, "__builtin_ia32_sqrtps512_mask", IX86_BUILTIN_SQRTPS512_MASK, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_vmsqrtv2df2_round, "__builtin_ia32_sqrtsd_round", IX86_BUILTIN_SQRTSD_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_vmsqrtv4sf2_round, "__builtin_ia32_sqrtss_round", IX86_BUILTIN_SQRTSS_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_subv8df3_mask_round, "__builtin_ia32_subpd512_mask", IX86_BUILTIN_SUBPD512, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_subv16sf3_mask_round, "__builtin_ia32_subps512_mask", IX86_BUILTIN_SUBPS512, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_vmsubv2df3_round, "__builtin_ia32_subsd_round", IX86_BUILTIN_SUBSD_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_vmsubv4sf3_round, "__builtin_ia32_subss_round", IX86_BUILTIN_SUBSS_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_cvtsd2si_round, "__builtin_ia32_vcvtsd2si32", IX86_BUILTIN_VCVTSD2SI32, UNKNOWN, (int) INT_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsd2siq_round, "__builtin_ia32_vcvtsd2si64", IX86_BUILTIN_VCVTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vcvtsd2usi_round, "__builtin_ia32_vcvtsd2usi32", IX86_BUILTIN_VCVTSD2USI32, UNKNOWN, (int) UINT_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_avx512f_vcvtsd2usiq_round, "__builtin_ia32_vcvtsd2usi64", IX86_BUILTIN_VCVTSD2USI64, UNKNOWN, (int) UINT64_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_cvtss2si_round, "__builtin_ia32_vcvtss2si32", IX86_BUILTIN_VCVTSS2SI32, UNKNOWN, (int) INT_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtss2siq_round, "__builtin_ia32_vcvtss2si64", IX86_BUILTIN_VCVTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vcvtss2usi_round, "__builtin_ia32_vcvtss2usi32", IX86_BUILTIN_VCVTSS2USI32, UNKNOWN, (int) UINT_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_avx512f_vcvtss2usiq_round, "__builtin_ia32_vcvtss2usi64", IX86_BUILTIN_VCVTSS2USI64, UNKNOWN, (int) UINT64_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse2_cvttsd2si_round, "__builtin_ia32_vcvttsd2si32", IX86_BUILTIN_VCVTTSD2SI32, UNKNOWN, (int) INT_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvttsd2siq_round, "__builtin_ia32_vcvttsd2si64", IX86_BUILTIN_VCVTTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vcvttsd2usi_round, "__builtin_ia32_vcvttsd2usi32", IX86_BUILTIN_VCVTTSD2USI32, UNKNOWN, (int) UINT_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_avx512f_vcvttsd2usiq_round, "__builtin_ia32_vcvttsd2usi64", IX86_BUILTIN_VCVTTSD2USI64, UNKNOWN, (int) UINT64_FTYPE_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_sse_cvttss2si_round, "__builtin_ia32_vcvttss2si32", IX86_BUILTIN_VCVTTSS2SI32, UNKNOWN, (int) INT_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvttss2siq_round, "__builtin_ia32_vcvttss2si64", IX86_BUILTIN_VCVTTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_vcvttss2usi_round, "__builtin_ia32_vcvttss2usi32", IX86_BUILTIN_VCVTTSS2USI32, UNKNOWN, (int) UINT_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F | OPTION_MASK_ISA_64BIT, CODE_FOR_avx512f_vcvttss2usiq_round, "__builtin_ia32_vcvttss2usi64", IX86_BUILTIN_VCVTTSS2USI64, UNKNOWN, (int) UINT64_FTYPE_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmadd_v8df_mask_round, "__builtin_ia32_vfmaddpd512_mask", IX86_BUILTIN_VFMADDPD512_MASK, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmadd_v8df_mask3_round, "__builtin_ia32_vfmaddpd512_mask3", IX86_BUILTIN_VFMADDPD512_MASK3, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmadd_v8df_maskz_round, "__builtin_ia32_vfmaddpd512_maskz", IX86_BUILTIN_VFMADDPD512_MASKZ, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmadd_v16sf_mask_round, "__builtin_ia32_vfmaddps512_mask", IX86_BUILTIN_VFMADDPS512_MASK, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmadd_v16sf_mask3_round, "__builtin_ia32_vfmaddps512_mask3", IX86_BUILTIN_VFMADDPS512_MASK3, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmadd_v16sf_maskz_round, "__builtin_ia32_vfmaddps512_maskz", IX86_BUILTIN_VFMADDPS512_MASKZ, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_fmai_vmfmadd_v2df_round, "__builtin_ia32_vfmaddsd3_round", IX86_BUILTIN_VFMADDSD3_ROUND, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_fmai_vmfmadd_v4sf_round, "__builtin_ia32_vfmaddss3_round", IX86_BUILTIN_VFMADDSS3_ROUND, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmaddsub_v8df_mask_round, "__builtin_ia32_vfmaddsubpd512_mask", IX86_BUILTIN_VFMADDSUBPD512_MASK, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmaddsub_v8df_mask3_round, "__builtin_ia32_vfmaddsubpd512_mask3", IX86_BUILTIN_VFMADDSUBPD512_MASK3, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmaddsub_v8df_maskz_round, "__builtin_ia32_vfmaddsubpd512_maskz", IX86_BUILTIN_VFMADDSUBPD512_MASKZ, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmaddsub_v16sf_mask_round, "__builtin_ia32_vfmaddsubps512_mask", IX86_BUILTIN_VFMADDSUBPS512_MASK, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmaddsub_v16sf_mask3_round, "__builtin_ia32_vfmaddsubps512_mask3", IX86_BUILTIN_VFMADDSUBPS512_MASK3, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmaddsub_v16sf_maskz_round, "__builtin_ia32_vfmaddsubps512_maskz", IX86_BUILTIN_VFMADDSUBPS512_MASKZ, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmsubadd_v8df_mask3_round, "__builtin_ia32_vfmsubaddpd512_mask3", IX86_BUILTIN_VFMSUBADDPD512_MASK3, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmsubadd_v16sf_mask3_round, "__builtin_ia32_vfmsubaddps512_mask3", IX86_BUILTIN_VFMSUBADDPS512_MASK3, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmsub_v8df_mask3_round, "__builtin_ia32_vfmsubpd512_mask3", IX86_BUILTIN_VFMSUBPD512_MASK3, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fmsub_v16sf_mask3_round, "__builtin_ia32_vfmsubps512_mask3", IX86_BUILTIN_VFMSUBPS512_MASK3, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fnmadd_v8df_mask_round, "__builtin_ia32_vfnmaddpd512_mask", IX86_BUILTIN_VFNMADDPD512_MASK, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fnmadd_v16sf_mask_round, "__builtin_ia32_vfnmaddps512_mask", IX86_BUILTIN_VFNMADDPS512_MASK, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fnmsub_v8df_mask_round, "__builtin_ia32_vfnmsubpd512_mask", IX86_BUILTIN_VFNMSUBPD512_MASK, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fnmsub_v8df_mask3_round, "__builtin_ia32_vfnmsubpd512_mask3", IX86_BUILTIN_VFNMSUBPD512_MASK3, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fnmsub_v16sf_mask_round, "__builtin_ia32_vfnmsubps512_mask", IX86_BUILTIN_VFNMSUBPS512_MASK, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_fnmsub_v16sf_mask3_round, "__builtin_ia32_vfnmsubps512_mask3", IX86_BUILTIN_VFNMSUBPS512_MASK3, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT },
+
+ /* AVX512ER */
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_exp2v8df_mask_round, "__builtin_ia32_exp2pd_mask", IX86_BUILTIN_EXP2PD_MASK, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_exp2v16sf_mask_round, "__builtin_ia32_exp2ps_mask", IX86_BUILTIN_EXP2PS_MASK, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_rcp28v8df_mask_round, "__builtin_ia32_rcp28pd_mask", IX86_BUILTIN_RCP28PD, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_rcp28v16sf_mask_round, "__builtin_ia32_rcp28ps_mask", IX86_BUILTIN_RCP28PS, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_vmrcp28v2df_round, "__builtin_ia32_rcp28sd_round", IX86_BUILTIN_RCP28SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_vmrcp28v4sf_round, "__builtin_ia32_rcp28ss_round", IX86_BUILTIN_RCP28SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_rsqrt28v8df_mask_round, "__builtin_ia32_rsqrt28pd_mask", IX86_BUILTIN_RSQRT28PD, UNKNOWN, (int) V8DF_FTYPE_V8DF_V8DF_QI_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_rsqrt28v16sf_mask_round, "__builtin_ia32_rsqrt28ps_mask", IX86_BUILTIN_RSQRT28PS, UNKNOWN, (int) V16SF_FTYPE_V16SF_V16SF_HI_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_vmrsqrt28v2df_round, "__builtin_ia32_rsqrt28sd_round", IX86_BUILTIN_RSQRT28SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT },
+ { OPTION_MASK_ISA_AVX512ER, CODE_FOR_avx512er_vmrsqrt28v4sf_round, "__builtin_ia32_rsqrt28ss_round", IX86_BUILTIN_RSQRT28SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT },
+};
+
+/* FMA4 and XOP. */
+#define MULTI_ARG_4_DF2_DI_I V2DF_FTYPE_V2DF_V2DF_V2DI_INT
+#define MULTI_ARG_4_DF2_DI_I1 V4DF_FTYPE_V4DF_V4DF_V4DI_INT
+#define MULTI_ARG_4_SF2_SI_I V4SF_FTYPE_V4SF_V4SF_V4SI_INT
+#define MULTI_ARG_4_SF2_SI_I1 V8SF_FTYPE_V8SF_V8SF_V8SI_INT
+#define MULTI_ARG_3_SF V4SF_FTYPE_V4SF_V4SF_V4SF
+#define MULTI_ARG_3_DF V2DF_FTYPE_V2DF_V2DF_V2DF
+#define MULTI_ARG_3_SF2 V8SF_FTYPE_V8SF_V8SF_V8SF
+#define MULTI_ARG_3_DF2 V4DF_FTYPE_V4DF_V4DF_V4DF
+#define MULTI_ARG_3_DI V2DI_FTYPE_V2DI_V2DI_V2DI
+#define MULTI_ARG_3_SI V4SI_FTYPE_V4SI_V4SI_V4SI
+#define MULTI_ARG_3_SI_DI V4SI_FTYPE_V4SI_V4SI_V2DI
+#define MULTI_ARG_3_HI V8HI_FTYPE_V8HI_V8HI_V8HI
+#define MULTI_ARG_3_HI_SI V8HI_FTYPE_V8HI_V8HI_V4SI
+#define MULTI_ARG_3_QI V16QI_FTYPE_V16QI_V16QI_V16QI
+#define MULTI_ARG_3_DI2 V4DI_FTYPE_V4DI_V4DI_V4DI
+#define MULTI_ARG_3_SI2 V8SI_FTYPE_V8SI_V8SI_V8SI
+#define MULTI_ARG_3_HI2 V16HI_FTYPE_V16HI_V16HI_V16HI
+#define MULTI_ARG_3_QI2 V32QI_FTYPE_V32QI_V32QI_V32QI
+#define MULTI_ARG_2_SF V4SF_FTYPE_V4SF_V4SF
+#define MULTI_ARG_2_DF V2DF_FTYPE_V2DF_V2DF
+#define MULTI_ARG_2_DI V2DI_FTYPE_V2DI_V2DI
+#define MULTI_ARG_2_SI V4SI_FTYPE_V4SI_V4SI
+#define MULTI_ARG_2_HI V8HI_FTYPE_V8HI_V8HI
+#define MULTI_ARG_2_QI V16QI_FTYPE_V16QI_V16QI
+#define MULTI_ARG_2_DI_IMM V2DI_FTYPE_V2DI_SI
+#define MULTI_ARG_2_SI_IMM V4SI_FTYPE_V4SI_SI
+#define MULTI_ARG_2_HI_IMM V8HI_FTYPE_V8HI_SI
+#define MULTI_ARG_2_QI_IMM V16QI_FTYPE_V16QI_SI
+#define MULTI_ARG_2_DI_CMP V2DI_FTYPE_V2DI_V2DI_CMP
+#define MULTI_ARG_2_SI_CMP V4SI_FTYPE_V4SI_V4SI_CMP
+#define MULTI_ARG_2_HI_CMP V8HI_FTYPE_V8HI_V8HI_CMP
+#define MULTI_ARG_2_QI_CMP V16QI_FTYPE_V16QI_V16QI_CMP
+#define MULTI_ARG_2_SF_TF V4SF_FTYPE_V4SF_V4SF_TF
+#define MULTI_ARG_2_DF_TF V2DF_FTYPE_V2DF_V2DF_TF
+#define MULTI_ARG_2_DI_TF V2DI_FTYPE_V2DI_V2DI_TF
+#define MULTI_ARG_2_SI_TF V4SI_FTYPE_V4SI_V4SI_TF
+#define MULTI_ARG_2_HI_TF V8HI_FTYPE_V8HI_V8HI_TF
+#define MULTI_ARG_2_QI_TF V16QI_FTYPE_V16QI_V16QI_TF
+#define MULTI_ARG_1_SF V4SF_FTYPE_V4SF
+#define MULTI_ARG_1_DF V2DF_FTYPE_V2DF
+#define MULTI_ARG_1_SF2 V8SF_FTYPE_V8SF
+#define MULTI_ARG_1_DF2 V4DF_FTYPE_V4DF
+#define MULTI_ARG_1_DI V2DI_FTYPE_V2DI
+#define MULTI_ARG_1_SI V4SI_FTYPE_V4SI
+#define MULTI_ARG_1_HI V8HI_FTYPE_V8HI
+#define MULTI_ARG_1_QI V16QI_FTYPE_V16QI
+#define MULTI_ARG_1_SI_DI V2DI_FTYPE_V4SI
+#define MULTI_ARG_1_HI_DI V2DI_FTYPE_V8HI
+#define MULTI_ARG_1_HI_SI V4SI_FTYPE_V8HI
+#define MULTI_ARG_1_QI_DI V2DI_FTYPE_V16QI
+#define MULTI_ARG_1_QI_SI V4SI_FTYPE_V16QI
+#define MULTI_ARG_1_QI_HI V8HI_FTYPE_V16QI
+
+static const struct builtin_description bdesc_multi_arg[] =
+{
+ { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmadd_v4sf,
+ "__builtin_ia32_vfmaddss", IX86_BUILTIN_VFMADDSS,
+ UNKNOWN, (int)MULTI_ARG_3_SF },
+ { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmadd_v2df,
+ "__builtin_ia32_vfmaddsd", IX86_BUILTIN_VFMADDSD,
+ UNKNOWN, (int)MULTI_ARG_3_DF },
+
+ { OPTION_MASK_ISA_FMA, CODE_FOR_fmai_vmfmadd_v4sf,
+ "__builtin_ia32_vfmaddss3", IX86_BUILTIN_VFMADDSS3,
+ UNKNOWN, (int)MULTI_ARG_3_SF },
+ { OPTION_MASK_ISA_FMA, CODE_FOR_fmai_vmfmadd_v2df,
+ "__builtin_ia32_vfmaddsd3", IX86_BUILTIN_VFMADDSD3,
+ UNKNOWN, (int)MULTI_ARG_3_DF },
+
+ { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v4sf,
+ "__builtin_ia32_vfmaddps", IX86_BUILTIN_VFMADDPS,
+ UNKNOWN, (int)MULTI_ARG_3_SF },
+ { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v2df,
+ "__builtin_ia32_vfmaddpd", IX86_BUILTIN_VFMADDPD,
+ UNKNOWN, (int)MULTI_ARG_3_DF },
+ { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v8sf,
+ "__builtin_ia32_vfmaddps256", IX86_BUILTIN_VFMADDPS256,
+ UNKNOWN, (int)MULTI_ARG_3_SF2 },
+ { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v4df,
+ "__builtin_ia32_vfmaddpd256", IX86_BUILTIN_VFMADDPD256,
+ UNKNOWN, (int)MULTI_ARG_3_DF2 },
+
+ { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v4sf,
+ "__builtin_ia32_vfmaddsubps", IX86_BUILTIN_VFMADDSUBPS,
+ UNKNOWN, (int)MULTI_ARG_3_SF },
+ { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v2df,
+ "__builtin_ia32_vfmaddsubpd", IX86_BUILTIN_VFMADDSUBPD,
+ UNKNOWN, (int)MULTI_ARG_3_DF },
+ { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v8sf,
+ "__builtin_ia32_vfmaddsubps256", IX86_BUILTIN_VFMADDSUBPS256,
+ UNKNOWN, (int)MULTI_ARG_3_SF2 },
+ { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v4df,
+ "__builtin_ia32_vfmaddsubpd256", IX86_BUILTIN_VFMADDSUBPD256,
+ UNKNOWN, (int)MULTI_ARG_3_DF2 },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2di, "__builtin_ia32_vpcmov", IX86_BUILTIN_VPCMOV, UNKNOWN, (int)MULTI_ARG_3_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2di, "__builtin_ia32_vpcmov_v2di", IX86_BUILTIN_VPCMOV_V2DI, UNKNOWN, (int)MULTI_ARG_3_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4si, "__builtin_ia32_vpcmov_v4si", IX86_BUILTIN_VPCMOV_V4SI, UNKNOWN, (int)MULTI_ARG_3_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8hi, "__builtin_ia32_vpcmov_v8hi", IX86_BUILTIN_VPCMOV_V8HI, UNKNOWN, (int)MULTI_ARG_3_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v16qi, "__builtin_ia32_vpcmov_v16qi",IX86_BUILTIN_VPCMOV_V16QI,UNKNOWN, (int)MULTI_ARG_3_QI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2df, "__builtin_ia32_vpcmov_v2df", IX86_BUILTIN_VPCMOV_V2DF, UNKNOWN, (int)MULTI_ARG_3_DF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4sf, "__builtin_ia32_vpcmov_v4sf", IX86_BUILTIN_VPCMOV_V4SF, UNKNOWN, (int)MULTI_ARG_3_SF },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4di256, "__builtin_ia32_vpcmov256", IX86_BUILTIN_VPCMOV256, UNKNOWN, (int)MULTI_ARG_3_DI2 },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4di256, "__builtin_ia32_vpcmov_v4di256", IX86_BUILTIN_VPCMOV_V4DI256, UNKNOWN, (int)MULTI_ARG_3_DI2 },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8si256, "__builtin_ia32_vpcmov_v8si256", IX86_BUILTIN_VPCMOV_V8SI256, UNKNOWN, (int)MULTI_ARG_3_SI2 },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v16hi256, "__builtin_ia32_vpcmov_v16hi256", IX86_BUILTIN_VPCMOV_V16HI256, UNKNOWN, (int)MULTI_ARG_3_HI2 },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v32qi256, "__builtin_ia32_vpcmov_v32qi256", IX86_BUILTIN_VPCMOV_V32QI256, UNKNOWN, (int)MULTI_ARG_3_QI2 },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4df256, "__builtin_ia32_vpcmov_v4df256", IX86_BUILTIN_VPCMOV_V4DF256, UNKNOWN, (int)MULTI_ARG_3_DF2 },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8sf256, "__builtin_ia32_vpcmov_v8sf256", IX86_BUILTIN_VPCMOV_V8SF256, UNKNOWN, (int)MULTI_ARG_3_SF2 },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pperm, "__builtin_ia32_vpperm", IX86_BUILTIN_VPPERM, UNKNOWN, (int)MULTI_ARG_3_QI },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssww, "__builtin_ia32_vpmacssww", IX86_BUILTIN_VPMACSSWW, UNKNOWN, (int)MULTI_ARG_3_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsww, "__builtin_ia32_vpmacsww", IX86_BUILTIN_VPMACSWW, UNKNOWN, (int)MULTI_ARG_3_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsswd, "__builtin_ia32_vpmacsswd", IX86_BUILTIN_VPMACSSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacswd, "__builtin_ia32_vpmacswd", IX86_BUILTIN_VPMACSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdd, "__builtin_ia32_vpmacssdd", IX86_BUILTIN_VPMACSSDD, UNKNOWN, (int)MULTI_ARG_3_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdd, "__builtin_ia32_vpmacsdd", IX86_BUILTIN_VPMACSDD, UNKNOWN, (int)MULTI_ARG_3_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdql, "__builtin_ia32_vpmacssdql", IX86_BUILTIN_VPMACSSDQL, UNKNOWN, (int)MULTI_ARG_3_SI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdqh, "__builtin_ia32_vpmacssdqh", IX86_BUILTIN_VPMACSSDQH, UNKNOWN, (int)MULTI_ARG_3_SI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdql, "__builtin_ia32_vpmacsdql", IX86_BUILTIN_VPMACSDQL, UNKNOWN, (int)MULTI_ARG_3_SI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdqh, "__builtin_ia32_vpmacsdqh", IX86_BUILTIN_VPMACSDQH, UNKNOWN, (int)MULTI_ARG_3_SI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmadcsswd, "__builtin_ia32_vpmadcsswd", IX86_BUILTIN_VPMADCSSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmadcswd, "__builtin_ia32_vpmadcswd", IX86_BUILTIN_VPMADCSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv2di3, "__builtin_ia32_vprotq", IX86_BUILTIN_VPROTQ, UNKNOWN, (int)MULTI_ARG_2_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv4si3, "__builtin_ia32_vprotd", IX86_BUILTIN_VPROTD, UNKNOWN, (int)MULTI_ARG_2_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv8hi3, "__builtin_ia32_vprotw", IX86_BUILTIN_VPROTW, UNKNOWN, (int)MULTI_ARG_2_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv16qi3, "__builtin_ia32_vprotb", IX86_BUILTIN_VPROTB, UNKNOWN, (int)MULTI_ARG_2_QI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv2di3, "__builtin_ia32_vprotqi", IX86_BUILTIN_VPROTQ_IMM, UNKNOWN, (int)MULTI_ARG_2_DI_IMM },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv4si3, "__builtin_ia32_vprotdi", IX86_BUILTIN_VPROTD_IMM, UNKNOWN, (int)MULTI_ARG_2_SI_IMM },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv8hi3, "__builtin_ia32_vprotwi", IX86_BUILTIN_VPROTW_IMM, UNKNOWN, (int)MULTI_ARG_2_HI_IMM },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv16qi3, "__builtin_ia32_vprotbi", IX86_BUILTIN_VPROTB_IMM, UNKNOWN, (int)MULTI_ARG_2_QI_IMM },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shav2di3, "__builtin_ia32_vpshaq", IX86_BUILTIN_VPSHAQ, UNKNOWN, (int)MULTI_ARG_2_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shav4si3, "__builtin_ia32_vpshad", IX86_BUILTIN_VPSHAD, UNKNOWN, (int)MULTI_ARG_2_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shav8hi3, "__builtin_ia32_vpshaw", IX86_BUILTIN_VPSHAW, UNKNOWN, (int)MULTI_ARG_2_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shav16qi3, "__builtin_ia32_vpshab", IX86_BUILTIN_VPSHAB, UNKNOWN, (int)MULTI_ARG_2_QI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shlv2di3, "__builtin_ia32_vpshlq", IX86_BUILTIN_VPSHLQ, UNKNOWN, (int)MULTI_ARG_2_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shlv4si3, "__builtin_ia32_vpshld", IX86_BUILTIN_VPSHLD, UNKNOWN, (int)MULTI_ARG_2_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shlv8hi3, "__builtin_ia32_vpshlw", IX86_BUILTIN_VPSHLW, UNKNOWN, (int)MULTI_ARG_2_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shlv16qi3, "__builtin_ia32_vpshlb", IX86_BUILTIN_VPSHLB, UNKNOWN, (int)MULTI_ARG_2_QI },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vmfrczv4sf2, "__builtin_ia32_vfrczss", IX86_BUILTIN_VFRCZSS, UNKNOWN, (int)MULTI_ARG_1_SF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vmfrczv2df2, "__builtin_ia32_vfrczsd", IX86_BUILTIN_VFRCZSD, UNKNOWN, (int)MULTI_ARG_1_DF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv4sf2, "__builtin_ia32_vfrczps", IX86_BUILTIN_VFRCZPS, UNKNOWN, (int)MULTI_ARG_1_SF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv2df2, "__builtin_ia32_vfrczpd", IX86_BUILTIN_VFRCZPD, UNKNOWN, (int)MULTI_ARG_1_DF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv8sf2, "__builtin_ia32_vfrczps256", IX86_BUILTIN_VFRCZPS256, UNKNOWN, (int)MULTI_ARG_1_SF2 },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv4df2, "__builtin_ia32_vfrczpd256", IX86_BUILTIN_VFRCZPD256, UNKNOWN, (int)MULTI_ARG_1_DF2 },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbw, "__builtin_ia32_vphaddbw", IX86_BUILTIN_VPHADDBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbd, "__builtin_ia32_vphaddbd", IX86_BUILTIN_VPHADDBD, UNKNOWN, (int)MULTI_ARG_1_QI_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbq, "__builtin_ia32_vphaddbq", IX86_BUILTIN_VPHADDBQ, UNKNOWN, (int)MULTI_ARG_1_QI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddwd, "__builtin_ia32_vphaddwd", IX86_BUILTIN_VPHADDWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddwq, "__builtin_ia32_vphaddwq", IX86_BUILTIN_VPHADDWQ, UNKNOWN, (int)MULTI_ARG_1_HI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadddq, "__builtin_ia32_vphadddq", IX86_BUILTIN_VPHADDDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubw, "__builtin_ia32_vphaddubw", IX86_BUILTIN_VPHADDUBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubd, "__builtin_ia32_vphaddubd", IX86_BUILTIN_VPHADDUBD, UNKNOWN, (int)MULTI_ARG_1_QI_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubq, "__builtin_ia32_vphaddubq", IX86_BUILTIN_VPHADDUBQ, UNKNOWN, (int)MULTI_ARG_1_QI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadduwd, "__builtin_ia32_vphadduwd", IX86_BUILTIN_VPHADDUWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadduwq, "__builtin_ia32_vphadduwq", IX86_BUILTIN_VPHADDUWQ, UNKNOWN, (int)MULTI_ARG_1_HI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddudq, "__builtin_ia32_vphaddudq", IX86_BUILTIN_VPHADDUDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubbw, "__builtin_ia32_vphsubbw", IX86_BUILTIN_VPHSUBBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubwd, "__builtin_ia32_vphsubwd", IX86_BUILTIN_VPHSUBWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubdq, "__builtin_ia32_vphsubdq", IX86_BUILTIN_VPHSUBDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomeqb", IX86_BUILTIN_VPCOMEQB, EQ, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomneb", IX86_BUILTIN_VPCOMNEB, NE, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomneqb", IX86_BUILTIN_VPCOMNEB, NE, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomltb", IX86_BUILTIN_VPCOMLTB, LT, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomleb", IX86_BUILTIN_VPCOMLEB, LE, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomgtb", IX86_BUILTIN_VPCOMGTB, GT, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomgeb", IX86_BUILTIN_VPCOMGEB, GE, (int)MULTI_ARG_2_QI_CMP },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomeqw", IX86_BUILTIN_VPCOMEQW, EQ, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomnew", IX86_BUILTIN_VPCOMNEW, NE, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomneqw", IX86_BUILTIN_VPCOMNEW, NE, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomltw", IX86_BUILTIN_VPCOMLTW, LT, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomlew", IX86_BUILTIN_VPCOMLEW, LE, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomgtw", IX86_BUILTIN_VPCOMGTW, GT, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomgew", IX86_BUILTIN_VPCOMGEW, GE, (int)MULTI_ARG_2_HI_CMP },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomeqd", IX86_BUILTIN_VPCOMEQD, EQ, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomned", IX86_BUILTIN_VPCOMNED, NE, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomneqd", IX86_BUILTIN_VPCOMNED, NE, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomltd", IX86_BUILTIN_VPCOMLTD, LT, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomled", IX86_BUILTIN_VPCOMLED, LE, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomgtd", IX86_BUILTIN_VPCOMGTD, GT, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomged", IX86_BUILTIN_VPCOMGED, GE, (int)MULTI_ARG_2_SI_CMP },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomeqq", IX86_BUILTIN_VPCOMEQQ, EQ, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomneq", IX86_BUILTIN_VPCOMNEQ, NE, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomneqq", IX86_BUILTIN_VPCOMNEQ, NE, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomltq", IX86_BUILTIN_VPCOMLTQ, LT, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomleq", IX86_BUILTIN_VPCOMLEQ, LE, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomgtq", IX86_BUILTIN_VPCOMGTQ, GT, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomgeq", IX86_BUILTIN_VPCOMGEQ, GE, (int)MULTI_ARG_2_DI_CMP },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomequb", IX86_BUILTIN_VPCOMEQUB, EQ, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomneub", IX86_BUILTIN_VPCOMNEUB, NE, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomnequb", IX86_BUILTIN_VPCOMNEUB, NE, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomltub", IX86_BUILTIN_VPCOMLTUB, LTU, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomleub", IX86_BUILTIN_VPCOMLEUB, LEU, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomgtub", IX86_BUILTIN_VPCOMGTUB, GTU, (int)MULTI_ARG_2_QI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomgeub", IX86_BUILTIN_VPCOMGEUB, GEU, (int)MULTI_ARG_2_QI_CMP },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomequw", IX86_BUILTIN_VPCOMEQUW, EQ, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomneuw", IX86_BUILTIN_VPCOMNEUW, NE, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomnequw", IX86_BUILTIN_VPCOMNEUW, NE, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomltuw", IX86_BUILTIN_VPCOMLTUW, LTU, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomleuw", IX86_BUILTIN_VPCOMLEUW, LEU, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomgtuw", IX86_BUILTIN_VPCOMGTUW, GTU, (int)MULTI_ARG_2_HI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomgeuw", IX86_BUILTIN_VPCOMGEUW, GEU, (int)MULTI_ARG_2_HI_CMP },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomequd", IX86_BUILTIN_VPCOMEQUD, EQ, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomneud", IX86_BUILTIN_VPCOMNEUD, NE, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomnequd", IX86_BUILTIN_VPCOMNEUD, NE, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomltud", IX86_BUILTIN_VPCOMLTUD, LTU, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomleud", IX86_BUILTIN_VPCOMLEUD, LEU, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomgtud", IX86_BUILTIN_VPCOMGTUD, GTU, (int)MULTI_ARG_2_SI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomgeud", IX86_BUILTIN_VPCOMGEUD, GEU, (int)MULTI_ARG_2_SI_CMP },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomequq", IX86_BUILTIN_VPCOMEQUQ, EQ, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomneuq", IX86_BUILTIN_VPCOMNEUQ, NE, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomnequq", IX86_BUILTIN_VPCOMNEUQ, NE, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomltuq", IX86_BUILTIN_VPCOMLTUQ, LTU, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomleuq", IX86_BUILTIN_VPCOMLEUQ, LEU, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomgtuq", IX86_BUILTIN_VPCOMGTUQ, GTU, (int)MULTI_ARG_2_DI_CMP },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomgeuq", IX86_BUILTIN_VPCOMGEUQ, GEU, (int)MULTI_ARG_2_DI_CMP },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomfalseb", IX86_BUILTIN_VPCOMFALSEB, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_QI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomfalsew", IX86_BUILTIN_VPCOMFALSEW, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_HI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomfalsed", IX86_BUILTIN_VPCOMFALSED, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_SI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomfalseq", IX86_BUILTIN_VPCOMFALSEQ, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_DI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomfalseub",IX86_BUILTIN_VPCOMFALSEUB,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_QI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomfalseuw",IX86_BUILTIN_VPCOMFALSEUW,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_HI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomfalseud",IX86_BUILTIN_VPCOMFALSEUD,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_SI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomfalseuq",IX86_BUILTIN_VPCOMFALSEUQ,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_DI_TF },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomtrueb", IX86_BUILTIN_VPCOMTRUEB, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_QI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomtruew", IX86_BUILTIN_VPCOMTRUEW, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_HI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomtrued", IX86_BUILTIN_VPCOMTRUED, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_SI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomtrueq", IX86_BUILTIN_VPCOMTRUEQ, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_DI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomtrueub", IX86_BUILTIN_VPCOMTRUEUB, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_QI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomtrueuw", IX86_BUILTIN_VPCOMTRUEUW, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_HI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomtrueud", IX86_BUILTIN_VPCOMTRUEUD, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_SI_TF },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomtrueuq", IX86_BUILTIN_VPCOMTRUEUQ, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_DI_TF },
+
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v2df3, "__builtin_ia32_vpermil2pd", IX86_BUILTIN_VPERMIL2PD, UNKNOWN, (int)MULTI_ARG_4_DF2_DI_I },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v4sf3, "__builtin_ia32_vpermil2ps", IX86_BUILTIN_VPERMIL2PS, UNKNOWN, (int)MULTI_ARG_4_SF2_SI_I },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v4df3, "__builtin_ia32_vpermil2pd256", IX86_BUILTIN_VPERMIL2PD256, UNKNOWN, (int)MULTI_ARG_4_DF2_DI_I1 },
+ { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v8sf3, "__builtin_ia32_vpermil2ps256", IX86_BUILTIN_VPERMIL2PS256, UNKNOWN, (int)MULTI_ARG_4_SF2_SI_I1 },
+
+};
+
+/* TM vector builtins. */
+
+/* Reuse the existing x86-specific `struct builtin_description' cause
+ we're lazy. Add casts to make them fit. */
+static const struct builtin_description bdesc_tm[] =
+{
+ { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_WM64", (enum ix86_builtins) BUILT_IN_TM_STORE_M64, UNKNOWN, VOID_FTYPE_PV2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_WaRM64", (enum ix86_builtins) BUILT_IN_TM_STORE_WAR_M64, UNKNOWN, VOID_FTYPE_PV2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_WaWM64", (enum ix86_builtins) BUILT_IN_TM_STORE_WAW_M64, UNKNOWN, VOID_FTYPE_PV2SI_V2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_RM64", (enum ix86_builtins) BUILT_IN_TM_LOAD_M64, UNKNOWN, V2SI_FTYPE_PCV2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_RaRM64", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAR_M64, UNKNOWN, V2SI_FTYPE_PCV2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_RaWM64", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAW_M64, UNKNOWN, V2SI_FTYPE_PCV2SI },
+ { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_RfWM64", (enum ix86_builtins) BUILT_IN_TM_LOAD_RFW_M64, UNKNOWN, V2SI_FTYPE_PCV2SI },
+
+ { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_WM128", (enum ix86_builtins) BUILT_IN_TM_STORE_M128, UNKNOWN, VOID_FTYPE_PV4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_WaRM128", (enum ix86_builtins) BUILT_IN_TM_STORE_WAR_M128, UNKNOWN, VOID_FTYPE_PV4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_WaWM128", (enum ix86_builtins) BUILT_IN_TM_STORE_WAW_M128, UNKNOWN, VOID_FTYPE_PV4SF_V4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_RM128", (enum ix86_builtins) BUILT_IN_TM_LOAD_M128, UNKNOWN, V4SF_FTYPE_PCV4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_RaRM128", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAR_M128, UNKNOWN, V4SF_FTYPE_PCV4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_RaWM128", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAW_M128, UNKNOWN, V4SF_FTYPE_PCV4SF },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_RfWM128", (enum ix86_builtins) BUILT_IN_TM_LOAD_RFW_M128, UNKNOWN, V4SF_FTYPE_PCV4SF },
+
+ { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_WM256", (enum ix86_builtins) BUILT_IN_TM_STORE_M256, UNKNOWN, VOID_FTYPE_PV8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_WaRM256", (enum ix86_builtins) BUILT_IN_TM_STORE_WAR_M256, UNKNOWN, VOID_FTYPE_PV8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_WaWM256", (enum ix86_builtins) BUILT_IN_TM_STORE_WAW_M256, UNKNOWN, VOID_FTYPE_PV8SF_V8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_RM256", (enum ix86_builtins) BUILT_IN_TM_LOAD_M256, UNKNOWN, V8SF_FTYPE_PCV8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_RaRM256", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAR_M256, UNKNOWN, V8SF_FTYPE_PCV8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_RaWM256", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAW_M256, UNKNOWN, V8SF_FTYPE_PCV8SF },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_RfWM256", (enum ix86_builtins) BUILT_IN_TM_LOAD_RFW_M256, UNKNOWN, V8SF_FTYPE_PCV8SF },
+
+ { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_LM64", (enum ix86_builtins) BUILT_IN_TM_LOG_M64, UNKNOWN, VOID_FTYPE_PCVOID },
+ { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_LM128", (enum ix86_builtins) BUILT_IN_TM_LOG_M128, UNKNOWN, VOID_FTYPE_PCVOID },
+ { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_LM256", (enum ix86_builtins) BUILT_IN_TM_LOG_M256, UNKNOWN, VOID_FTYPE_PCVOID },
+};
+
+/* TM callbacks. */
+
+/* Return the builtin decl needed to load a vector of TYPE. */
+
+static tree
+ix86_builtin_tm_load (tree type)
+{
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ switch (tree_to_uhwi (TYPE_SIZE (type)))
+ {
+ case 64:
+ return builtin_decl_explicit (BUILT_IN_TM_LOAD_M64);
+ case 128:
+ return builtin_decl_explicit (BUILT_IN_TM_LOAD_M128);
+ case 256:
+ return builtin_decl_explicit (BUILT_IN_TM_LOAD_M256);
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Return the builtin decl needed to store a vector of TYPE. */
+
+static tree
+ix86_builtin_tm_store (tree type)
+{
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ switch (tree_to_uhwi (TYPE_SIZE (type)))
+ {
+ case 64:
+ return builtin_decl_explicit (BUILT_IN_TM_STORE_M64);
+ case 128:
+ return builtin_decl_explicit (BUILT_IN_TM_STORE_M128);
+ case 256:
+ return builtin_decl_explicit (BUILT_IN_TM_STORE_M256);
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Initialize the transactional memory vector load/store builtins. */
+
+static void
+ix86_init_tm_builtins (void)
+{
+ enum ix86_builtin_func_type ftype;
+ const struct builtin_description *d;
+ size_t i;
+ tree decl;
+ tree attrs_load, attrs_type_load, attrs_store, attrs_type_store;
+ tree attrs_log, attrs_type_log;
+
+ if (!flag_tm)
+ return;
+
+ /* If there are no builtins defined, we must be compiling in a
+ language without trans-mem support. */
+ if (!builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
+ return;
+
+ /* Use whatever attributes a normal TM load has. */
+ decl = builtin_decl_explicit (BUILT_IN_TM_LOAD_1);
+ attrs_load = DECL_ATTRIBUTES (decl);
+ attrs_type_load = TYPE_ATTRIBUTES (TREE_TYPE (decl));
+ /* Use whatever attributes a normal TM store has. */
+ decl = builtin_decl_explicit (BUILT_IN_TM_STORE_1);
+ attrs_store = DECL_ATTRIBUTES (decl);
+ attrs_type_store = TYPE_ATTRIBUTES (TREE_TYPE (decl));
+ /* Use whatever attributes a normal TM log has. */
+ decl = builtin_decl_explicit (BUILT_IN_TM_LOG);
+ attrs_log = DECL_ATTRIBUTES (decl);
+ attrs_type_log = TYPE_ATTRIBUTES (TREE_TYPE (decl));
+
+ for (i = 0, d = bdesc_tm;
+ i < ARRAY_SIZE (bdesc_tm);
+ i++, d++)
+ {
+ if ((d->mask & ix86_isa_flags) != 0
+ || (lang_hooks.builtin_function
+ == lang_hooks.builtin_function_ext_scope))
+ {
+ tree type, attrs, attrs_type;
+ enum built_in_function code = (enum built_in_function) d->code;
+
+ ftype = (enum ix86_builtin_func_type) d->flag;
+ type = ix86_get_builtin_func_type (ftype);
+
+ if (BUILTIN_TM_LOAD_P (code))
+ {
+ attrs = attrs_load;
+ attrs_type = attrs_type_load;
+ }
+ else if (BUILTIN_TM_STORE_P (code))
+ {
+ attrs = attrs_store;
+ attrs_type = attrs_type_store;
+ }
+ else
+ {
+ attrs = attrs_log;
+ attrs_type = attrs_type_log;
+ }
+ decl = add_builtin_function (d->name, type, code, BUILT_IN_NORMAL,
+ /* The builtin without the prefix for
+ calling it directly. */
+ d->name + strlen ("__builtin_"),
+ attrs);
+ /* add_builtin_function() will set the DECL_ATTRIBUTES, now
+ set the TYPE_ATTRIBUTES. */
+ decl_attributes (&TREE_TYPE (decl), attrs_type, ATTR_FLAG_BUILT_IN);
+
+ set_builtin_decl (code, decl, false);
+ }
+ }
+}
+
+/* Set up all the MMX/SSE builtins, even builtins for instructions that are not
+ in the current target ISA to allow the user to compile particular modules
+ with different target specific options that differ from the command line
+ options. */
+static void
+ix86_init_mmx_sse_builtins (void)
+{
+ const struct builtin_description * d;
+ enum ix86_builtin_func_type ftype;
+ size_t i;
+
+ /* Add all special builtins with variable number of operands. */
+ for (i = 0, d = bdesc_special_args;
+ i < ARRAY_SIZE (bdesc_special_args);
+ i++, d++)
+ {
+ if (d->name == 0)
+ continue;
+
+ ftype = (enum ix86_builtin_func_type) d->flag;
+ def_builtin (d->mask, d->name, ftype, d->code);
+ }
+
+ /* Add all builtins with variable number of operands. */
+ for (i = 0, d = bdesc_args;
+ i < ARRAY_SIZE (bdesc_args);
+ i++, d++)
+ {
+ if (d->name == 0)
+ continue;
+
+ ftype = (enum ix86_builtin_func_type) d->flag;
+ def_builtin_const (d->mask, d->name, ftype, d->code);
+ }
+
+ /* Add all builtins with rounding. */
+ for (i = 0, d = bdesc_round_args;
+ i < ARRAY_SIZE (bdesc_round_args);
+ i++, d++)
+ {
+ if (d->name == 0)
+ continue;
+
+ ftype = (enum ix86_builtin_func_type) d->flag;
+ def_builtin_const (d->mask, d->name, ftype, d->code);
+ }
+
+ /* pcmpestr[im] insns. */
+ for (i = 0, d = bdesc_pcmpestr;
+ i < ARRAY_SIZE (bdesc_pcmpestr);
+ i++, d++)
+ {
+ if (d->code == IX86_BUILTIN_PCMPESTRM128)
+ ftype = V16QI_FTYPE_V16QI_INT_V16QI_INT_INT;
+ else
+ ftype = INT_FTYPE_V16QI_INT_V16QI_INT_INT;
+ def_builtin_const (d->mask, d->name, ftype, d->code);
+ }
+
+ /* pcmpistr[im] insns. */
+ for (i = 0, d = bdesc_pcmpistr;
+ i < ARRAY_SIZE (bdesc_pcmpistr);
+ i++, d++)
+ {
+ if (d->code == IX86_BUILTIN_PCMPISTRM128)
+ ftype = V16QI_FTYPE_V16QI_V16QI_INT;
+ else
+ ftype = INT_FTYPE_V16QI_V16QI_INT;
+ def_builtin_const (d->mask, d->name, ftype, d->code);
+ }
+
+ /* comi/ucomi insns. */
+ for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++)
+ {
+ if (d->mask == OPTION_MASK_ISA_SSE2)
+ ftype = INT_FTYPE_V2DF_V2DF;
+ else
+ ftype = INT_FTYPE_V4SF_V4SF;
+ def_builtin_const (d->mask, d->name, ftype, d->code);
+ }
+
+ /* SSE */
+ def_builtin (OPTION_MASK_ISA_SSE, "__builtin_ia32_ldmxcsr",
+ VOID_FTYPE_UNSIGNED, IX86_BUILTIN_LDMXCSR);
+ def_builtin (OPTION_MASK_ISA_SSE, "__builtin_ia32_stmxcsr",
+ UNSIGNED_FTYPE_VOID, IX86_BUILTIN_STMXCSR);
+
+ /* SSE or 3DNow!A */
+ def_builtin (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A,
+ "__builtin_ia32_maskmovq", VOID_FTYPE_V8QI_V8QI_PCHAR,
+ IX86_BUILTIN_MASKMOVQ);
+
+ /* SSE2 */
+ def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_maskmovdqu",
+ VOID_FTYPE_V16QI_V16QI_PCHAR, IX86_BUILTIN_MASKMOVDQU);
+
+ def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_clflush",
+ VOID_FTYPE_PCVOID, IX86_BUILTIN_CLFLUSH);
+ x86_mfence = def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_mfence",
+ VOID_FTYPE_VOID, IX86_BUILTIN_MFENCE);
+
+ /* SSE3. */
+ def_builtin (OPTION_MASK_ISA_SSE3, "__builtin_ia32_monitor",
+ VOID_FTYPE_PCVOID_UNSIGNED_UNSIGNED, IX86_BUILTIN_MONITOR);
+ def_builtin (OPTION_MASK_ISA_SSE3, "__builtin_ia32_mwait",
+ VOID_FTYPE_UNSIGNED_UNSIGNED, IX86_BUILTIN_MWAIT);
+
+ /* AES */
+ def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesenc128",
+ V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESENC128);
+ def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesenclast128",
+ V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESENCLAST128);
+ def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesdec128",
+ V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESDEC128);
+ def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesdeclast128",
+ V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESDECLAST128);
+ def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesimc128",
+ V2DI_FTYPE_V2DI, IX86_BUILTIN_AESIMC128);
+ def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aeskeygenassist128",
+ V2DI_FTYPE_V2DI_INT, IX86_BUILTIN_AESKEYGENASSIST128);
+
+ /* PCLMUL */
+ def_builtin_const (OPTION_MASK_ISA_PCLMUL, "__builtin_ia32_pclmulqdq128",
+ V2DI_FTYPE_V2DI_V2DI_INT, IX86_BUILTIN_PCLMULQDQ128);
+
+ /* RDRND */
+ def_builtin (OPTION_MASK_ISA_RDRND, "__builtin_ia32_rdrand16_step",
+ INT_FTYPE_PUSHORT, IX86_BUILTIN_RDRAND16_STEP);
+ def_builtin (OPTION_MASK_ISA_RDRND, "__builtin_ia32_rdrand32_step",
+ INT_FTYPE_PUNSIGNED, IX86_BUILTIN_RDRAND32_STEP);
+ def_builtin (OPTION_MASK_ISA_RDRND | OPTION_MASK_ISA_64BIT,
+ "__builtin_ia32_rdrand64_step", INT_FTYPE_PULONGLONG,
+ IX86_BUILTIN_RDRAND64_STEP);
+
+ /* AVX2 */
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv2df",
+ V2DF_FTYPE_V2DF_PCDOUBLE_V4SI_V2DF_INT,
+ IX86_BUILTIN_GATHERSIV2DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv4df",
+ V4DF_FTYPE_V4DF_PCDOUBLE_V4SI_V4DF_INT,
+ IX86_BUILTIN_GATHERSIV4DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv2df",
+ V2DF_FTYPE_V2DF_PCDOUBLE_V2DI_V2DF_INT,
+ IX86_BUILTIN_GATHERDIV2DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4df",
+ V4DF_FTYPE_V4DF_PCDOUBLE_V4DI_V4DF_INT,
+ IX86_BUILTIN_GATHERDIV4DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv4sf",
+ V4SF_FTYPE_V4SF_PCFLOAT_V4SI_V4SF_INT,
+ IX86_BUILTIN_GATHERSIV4SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv8sf",
+ V8SF_FTYPE_V8SF_PCFLOAT_V8SI_V8SF_INT,
+ IX86_BUILTIN_GATHERSIV8SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4sf",
+ V4SF_FTYPE_V4SF_PCFLOAT_V2DI_V4SF_INT,
+ IX86_BUILTIN_GATHERDIV4SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4sf256",
+ V4SF_FTYPE_V4SF_PCFLOAT_V4DI_V4SF_INT,
+ IX86_BUILTIN_GATHERDIV8SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv2di",
+ V2DI_FTYPE_V2DI_PCINT64_V4SI_V2DI_INT,
+ IX86_BUILTIN_GATHERSIV2DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv4di",
+ V4DI_FTYPE_V4DI_PCINT64_V4SI_V4DI_INT,
+ IX86_BUILTIN_GATHERSIV4DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv2di",
+ V2DI_FTYPE_V2DI_PCINT64_V2DI_V2DI_INT,
+ IX86_BUILTIN_GATHERDIV2DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4di",
+ V4DI_FTYPE_V4DI_PCINT64_V4DI_V4DI_INT,
+ IX86_BUILTIN_GATHERDIV4DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv4si",
+ V4SI_FTYPE_V4SI_PCINT_V4SI_V4SI_INT,
+ IX86_BUILTIN_GATHERSIV4SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv8si",
+ V8SI_FTYPE_V8SI_PCINT_V8SI_V8SI_INT,
+ IX86_BUILTIN_GATHERSIV8SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4si",
+ V4SI_FTYPE_V4SI_PCINT_V2DI_V4SI_INT,
+ IX86_BUILTIN_GATHERDIV4SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4si256",
+ V4SI_FTYPE_V4SI_PCINT_V4DI_V4SI_INT,
+ IX86_BUILTIN_GATHERDIV8SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatheraltsiv4df ",
+ V4DF_FTYPE_V4DF_PCDOUBLE_V8SI_V4DF_INT,
+ IX86_BUILTIN_GATHERALTSIV4DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatheraltdiv4sf256 ",
+ V8SF_FTYPE_V8SF_PCFLOAT_V4DI_V8SF_INT,
+ IX86_BUILTIN_GATHERALTDIV8SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatheraltsiv4di ",
+ V4DI_FTYPE_V4DI_PCINT64_V8SI_V4DI_INT,
+ IX86_BUILTIN_GATHERALTSIV4DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatheraltdiv4si256 ",
+ V8SI_FTYPE_V8SI_PCINT_V4DI_V8SI_INT,
+ IX86_BUILTIN_GATHERALTDIV8SI);
+
+ /* AVX512F */
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gathersiv16sf",
+ V16SF_FTYPE_V16SF_PCFLOAT_V16SI_HI_INT,
+ IX86_BUILTIN_GATHER3SIV16SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gathersiv8df",
+ V8DF_FTYPE_V8DF_PCDOUBLE_V8SI_QI_INT,
+ IX86_BUILTIN_GATHER3SIV8DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gatherdiv16sf",
+ V8SF_FTYPE_V8SF_PCFLOAT_V8DI_QI_INT,
+ IX86_BUILTIN_GATHER3DIV16SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gatherdiv8df",
+ V8DF_FTYPE_V8DF_PCDOUBLE_V8DI_QI_INT,
+ IX86_BUILTIN_GATHER3DIV8DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gathersiv16si",
+ V16SI_FTYPE_V16SI_PCINT_V16SI_HI_INT,
+ IX86_BUILTIN_GATHER3SIV16SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gathersiv8di",
+ V8DI_FTYPE_V8DI_PCINT64_V8SI_QI_INT,
+ IX86_BUILTIN_GATHER3SIV8DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gatherdiv16si",
+ V8SI_FTYPE_V8SI_PCINT_V8DI_QI_INT,
+ IX86_BUILTIN_GATHER3DIV16SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gatherdiv8di",
+ V8DI_FTYPE_V8DI_PCINT64_V8DI_QI_INT,
+ IX86_BUILTIN_GATHER3DIV8DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gatheraltsiv8df ",
+ V8DF_FTYPE_V8DF_PCDOUBLE_V16SI_QI_INT,
+ IX86_BUILTIN_GATHER3ALTSIV8DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gatheraltdiv8sf ",
+ V16SF_FTYPE_V16SF_PCFLOAT_V8DI_HI_INT,
+ IX86_BUILTIN_GATHER3ALTDIV16SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gatheraltsiv8di ",
+ V8DI_FTYPE_V8DI_PCINT64_V16SI_QI_INT,
+ IX86_BUILTIN_GATHER3ALTSIV8DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_gatheraltdiv8si ",
+ V16SI_FTYPE_V16SI_PCINT_V8DI_HI_INT,
+ IX86_BUILTIN_GATHER3ALTDIV16SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_scattersiv16sf",
+ VOID_FTYPE_PFLOAT_HI_V16SI_V16SF_INT,
+ IX86_BUILTIN_SCATTERSIV16SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_scattersiv8df",
+ VOID_FTYPE_PDOUBLE_QI_V8SI_V8DF_INT,
+ IX86_BUILTIN_SCATTERSIV8DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_scatterdiv16sf",
+ VOID_FTYPE_PFLOAT_QI_V8DI_V8SF_INT,
+ IX86_BUILTIN_SCATTERDIV16SF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_scatterdiv8df",
+ VOID_FTYPE_PDOUBLE_QI_V8DI_V8DF_INT,
+ IX86_BUILTIN_SCATTERDIV8DF);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_scattersiv16si",
+ VOID_FTYPE_PINT_HI_V16SI_V16SI_INT,
+ IX86_BUILTIN_SCATTERSIV16SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_scattersiv8di",
+ VOID_FTYPE_PLONGLONG_QI_V8SI_V8DI_INT,
+ IX86_BUILTIN_SCATTERSIV8DI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_scatterdiv16si",
+ VOID_FTYPE_PINT_QI_V8DI_V8SI_INT,
+ IX86_BUILTIN_SCATTERDIV16SI);
+
+ def_builtin (OPTION_MASK_ISA_AVX512F, "__builtin_ia32_scatterdiv8di",
+ VOID_FTYPE_PLONGLONG_QI_V8DI_V8DI_INT,
+ IX86_BUILTIN_SCATTERDIV8DI);
+
+ /* AVX512PF */
+ def_builtin (OPTION_MASK_ISA_AVX512PF, "__builtin_ia32_gatherpfdpd",
+ VOID_FTYPE_QI_V8SI_PCINT64_INT_INT,
+ IX86_BUILTIN_GATHERPFDPD);
+ def_builtin (OPTION_MASK_ISA_AVX512PF, "__builtin_ia32_gatherpfdps",
+ VOID_FTYPE_HI_V16SI_PCINT_INT_INT,
+ IX86_BUILTIN_GATHERPFDPS);
+ def_builtin (OPTION_MASK_ISA_AVX512PF, "__builtin_ia32_gatherpfqpd",
+ VOID_FTYPE_QI_V8DI_PCINT64_INT_INT,
+ IX86_BUILTIN_GATHERPFQPD);
+ def_builtin (OPTION_MASK_ISA_AVX512PF, "__builtin_ia32_gatherpfqps",
+ VOID_FTYPE_QI_V8DI_PCINT_INT_INT,
+ IX86_BUILTIN_GATHERPFQPS);
+ def_builtin (OPTION_MASK_ISA_AVX512PF, "__builtin_ia32_scatterpfdpd",
+ VOID_FTYPE_QI_V8SI_PCINT64_INT_INT,
+ IX86_BUILTIN_SCATTERPFDPD);
+ def_builtin (OPTION_MASK_ISA_AVX512PF, "__builtin_ia32_scatterpfdps",
+ VOID_FTYPE_HI_V16SI_PCINT_INT_INT,
+ IX86_BUILTIN_SCATTERPFDPS);
+ def_builtin (OPTION_MASK_ISA_AVX512PF, "__builtin_ia32_scatterpfqpd",
+ VOID_FTYPE_QI_V8DI_PCINT64_INT_INT,
+ IX86_BUILTIN_SCATTERPFQPD);
+ def_builtin (OPTION_MASK_ISA_AVX512PF, "__builtin_ia32_scatterpfqps",
+ VOID_FTYPE_QI_V8DI_PCINT_INT_INT,
+ IX86_BUILTIN_SCATTERPFQPS);
+
+ /* SHA */
+ def_builtin_const (OPTION_MASK_ISA_SHA, "__builtin_ia32_sha1msg1",
+ V4SI_FTYPE_V4SI_V4SI, IX86_BUILTIN_SHA1MSG1);
+ def_builtin_const (OPTION_MASK_ISA_SHA, "__builtin_ia32_sha1msg2",
+ V4SI_FTYPE_V4SI_V4SI, IX86_BUILTIN_SHA1MSG2);
+ def_builtin_const (OPTION_MASK_ISA_SHA, "__builtin_ia32_sha1nexte",
+ V4SI_FTYPE_V4SI_V4SI, IX86_BUILTIN_SHA1NEXTE);
+ def_builtin_const (OPTION_MASK_ISA_SHA, "__builtin_ia32_sha1rnds4",
+ V4SI_FTYPE_V4SI_V4SI_INT, IX86_BUILTIN_SHA1RNDS4);
+ def_builtin_const (OPTION_MASK_ISA_SHA, "__builtin_ia32_sha256msg1",
+ V4SI_FTYPE_V4SI_V4SI, IX86_BUILTIN_SHA256MSG1);
+ def_builtin_const (OPTION_MASK_ISA_SHA, "__builtin_ia32_sha256msg2",
+ V4SI_FTYPE_V4SI_V4SI, IX86_BUILTIN_SHA256MSG2);
+ def_builtin_const (OPTION_MASK_ISA_SHA, "__builtin_ia32_sha256rnds2",
+ V4SI_FTYPE_V4SI_V4SI_V4SI, IX86_BUILTIN_SHA256RNDS2);
+
+ /* RTM. */
+ def_builtin (OPTION_MASK_ISA_RTM, "__builtin_ia32_xabort",
+ VOID_FTYPE_UNSIGNED, IX86_BUILTIN_XABORT);
+
+ /* MMX access to the vec_init patterns. */
+ def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v2si",
+ V2SI_FTYPE_INT_INT, IX86_BUILTIN_VEC_INIT_V2SI);
+
+ def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v4hi",
+ V4HI_FTYPE_HI_HI_HI_HI,
+ IX86_BUILTIN_VEC_INIT_V4HI);
+
+ def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v8qi",
+ V8QI_FTYPE_QI_QI_QI_QI_QI_QI_QI_QI,
+ IX86_BUILTIN_VEC_INIT_V8QI);
+
+ /* Access to the vec_extract patterns. */
+ def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v2df",
+ DOUBLE_FTYPE_V2DF_INT, IX86_BUILTIN_VEC_EXT_V2DF);
+ def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v2di",
+ DI_FTYPE_V2DI_INT, IX86_BUILTIN_VEC_EXT_V2DI);
+ def_builtin_const (OPTION_MASK_ISA_SSE, "__builtin_ia32_vec_ext_v4sf",
+ FLOAT_FTYPE_V4SF_INT, IX86_BUILTIN_VEC_EXT_V4SF);
+ def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v4si",
+ SI_FTYPE_V4SI_INT, IX86_BUILTIN_VEC_EXT_V4SI);
+ def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v8hi",
+ HI_FTYPE_V8HI_INT, IX86_BUILTIN_VEC_EXT_V8HI);
+
+ def_builtin_const (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A,
+ "__builtin_ia32_vec_ext_v4hi",
+ HI_FTYPE_V4HI_INT, IX86_BUILTIN_VEC_EXT_V4HI);
+
+ def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_ext_v2si",
+ SI_FTYPE_V2SI_INT, IX86_BUILTIN_VEC_EXT_V2SI);
+
+ def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v16qi",
+ QI_FTYPE_V16QI_INT, IX86_BUILTIN_VEC_EXT_V16QI);
+
+ /* Access to the vec_set patterns. */
+ def_builtin_const (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_64BIT,
+ "__builtin_ia32_vec_set_v2di",
+ V2DI_FTYPE_V2DI_DI_INT, IX86_BUILTIN_VEC_SET_V2DI);
+
+ def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v4sf",
+ V4SF_FTYPE_V4SF_FLOAT_INT, IX86_BUILTIN_VEC_SET_V4SF);
+
+ def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v4si",
+ V4SI_FTYPE_V4SI_SI_INT, IX86_BUILTIN_VEC_SET_V4SI);
+
+ def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_set_v8hi",
+ V8HI_FTYPE_V8HI_HI_INT, IX86_BUILTIN_VEC_SET_V8HI);
+
+ def_builtin_const (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A,
+ "__builtin_ia32_vec_set_v4hi",
+ V4HI_FTYPE_V4HI_HI_INT, IX86_BUILTIN_VEC_SET_V4HI);
+
+ def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v16qi",
+ V16QI_FTYPE_V16QI_QI_INT, IX86_BUILTIN_VEC_SET_V16QI);
+
+ /* RDSEED */
+ def_builtin (OPTION_MASK_ISA_RDSEED, "__builtin_ia32_rdseed_hi_step",
+ INT_FTYPE_PUSHORT, IX86_BUILTIN_RDSEED16_STEP);
+ def_builtin (OPTION_MASK_ISA_RDSEED, "__builtin_ia32_rdseed_si_step",
+ INT_FTYPE_PUNSIGNED, IX86_BUILTIN_RDSEED32_STEP);
+ def_builtin (OPTION_MASK_ISA_RDSEED | OPTION_MASK_ISA_64BIT,
+ "__builtin_ia32_rdseed_di_step",
+ INT_FTYPE_PULONGLONG, IX86_BUILTIN_RDSEED64_STEP);
+
+ /* ADCX */
+ def_builtin (0, "__builtin_ia32_addcarryx_u32",
+ UCHAR_FTYPE_UCHAR_UINT_UINT_PUNSIGNED, IX86_BUILTIN_ADDCARRYX32);
+ def_builtin (OPTION_MASK_ISA_64BIT,
+ "__builtin_ia32_addcarryx_u64",
+ UCHAR_FTYPE_UCHAR_ULONGLONG_ULONGLONG_PULONGLONG,
+ IX86_BUILTIN_ADDCARRYX64);
+
+ /* Read/write FLAGS. */
+ def_builtin (~OPTION_MASK_ISA_64BIT, "__builtin_ia32_readeflags_u32",
+ UNSIGNED_FTYPE_VOID, IX86_BUILTIN_READ_FLAGS);
+ def_builtin (OPTION_MASK_ISA_64BIT, "__builtin_ia32_readeflags_u64",
+ UINT64_FTYPE_VOID, IX86_BUILTIN_READ_FLAGS);
+ def_builtin (~OPTION_MASK_ISA_64BIT, "__builtin_ia32_writeeflags_u32",
+ VOID_FTYPE_UNSIGNED, IX86_BUILTIN_WRITE_FLAGS);
+ def_builtin (OPTION_MASK_ISA_64BIT, "__builtin_ia32_writeeflags_u64",
+ VOID_FTYPE_UINT64, IX86_BUILTIN_WRITE_FLAGS);
+
+
+ /* Add FMA4 multi-arg argument instructions */
+ for (i = 0, d = bdesc_multi_arg; i < ARRAY_SIZE (bdesc_multi_arg); i++, d++)
+ {
+ if (d->name == 0)
+ continue;
+
+ ftype = (enum ix86_builtin_func_type) d->flag;
+ def_builtin_const (d->mask, d->name, ftype, d->code);
+ }
+}
+
+/* This adds a condition to the basic_block NEW_BB in function FUNCTION_DECL
+ to return a pointer to VERSION_DECL if the outcome of the expression
+ formed by PREDICATE_CHAIN is true. This function will be called during
+ version dispatch to decide which function version to execute. It returns
+ the basic block at the end, to which more conditions can be added. */
+
+static basic_block
+add_condition_to_bb (tree function_decl, tree version_decl,
+ tree predicate_chain, basic_block new_bb)
+{
+ gimple return_stmt;
+ tree convert_expr, result_var;
+ gimple convert_stmt;
+ gimple call_cond_stmt;
+ gimple if_else_stmt;
+
+ basic_block bb1, bb2, bb3;
+ edge e12, e23;
+
+ tree cond_var, and_expr_var = NULL_TREE;
+ gimple_seq gseq;
+
+ tree predicate_decl, predicate_arg;
+
+ push_cfun (DECL_STRUCT_FUNCTION (function_decl));
+
+ gcc_assert (new_bb != NULL);
+ gseq = bb_seq (new_bb);
+
+
+ convert_expr = build1 (CONVERT_EXPR, ptr_type_node,
+ build_fold_addr_expr (version_decl));
+ result_var = create_tmp_var (ptr_type_node, NULL);
+ convert_stmt = gimple_build_assign (result_var, convert_expr);
+ return_stmt = gimple_build_return (result_var);
+
+ if (predicate_chain == NULL_TREE)
+ {
+ gimple_seq_add_stmt (&gseq, convert_stmt);
+ gimple_seq_add_stmt (&gseq, return_stmt);
+ set_bb_seq (new_bb, gseq);
+ gimple_set_bb (convert_stmt, new_bb);
+ gimple_set_bb (return_stmt, new_bb);
+ pop_cfun ();
+ return new_bb;
+ }
+
+ while (predicate_chain != NULL)
+ {
+ cond_var = create_tmp_var (integer_type_node, NULL);
+ predicate_decl = TREE_PURPOSE (predicate_chain);
+ predicate_arg = TREE_VALUE (predicate_chain);
+ call_cond_stmt = gimple_build_call (predicate_decl, 1, predicate_arg);
+ gimple_call_set_lhs (call_cond_stmt, cond_var);
+
+ gimple_set_block (call_cond_stmt, DECL_INITIAL (function_decl));
+ gimple_set_bb (call_cond_stmt, new_bb);
+ gimple_seq_add_stmt (&gseq, call_cond_stmt);
+
+ predicate_chain = TREE_CHAIN (predicate_chain);
+
+ if (and_expr_var == NULL)
+ and_expr_var = cond_var;
+ else
+ {
+ gimple assign_stmt;
+ /* Use MIN_EXPR to check if any integer is zero?.
+ and_expr_var = min_expr <cond_var, and_expr_var> */
+ assign_stmt = gimple_build_assign (and_expr_var,
+ build2 (MIN_EXPR, integer_type_node,
+ cond_var, and_expr_var));
+
+ gimple_set_block (assign_stmt, DECL_INITIAL (function_decl));
+ gimple_set_bb (assign_stmt, new_bb);
+ gimple_seq_add_stmt (&gseq, assign_stmt);
+ }
+ }
+
+ if_else_stmt = gimple_build_cond (GT_EXPR, and_expr_var,
+ integer_zero_node,
+ NULL_TREE, NULL_TREE);
+ gimple_set_block (if_else_stmt, DECL_INITIAL (function_decl));
+ gimple_set_bb (if_else_stmt, new_bb);
+ gimple_seq_add_stmt (&gseq, if_else_stmt);
+
+ gimple_seq_add_stmt (&gseq, convert_stmt);
+ gimple_seq_add_stmt (&gseq, return_stmt);
+ set_bb_seq (new_bb, gseq);
+
+ bb1 = new_bb;
+ e12 = split_block (bb1, if_else_stmt);
+ bb2 = e12->dest;
+ e12->flags &= ~EDGE_FALLTHRU;
+ e12->flags |= EDGE_TRUE_VALUE;
+
+ e23 = split_block (bb2, return_stmt);
+
+ gimple_set_bb (convert_stmt, bb2);
+ gimple_set_bb (return_stmt, bb2);
+
+ bb3 = e23->dest;
+ make_edge (bb1, bb3, EDGE_FALSE_VALUE);
+
+ remove_edge (e23);
+ make_edge (bb2, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
+
+ pop_cfun ();
+
+ return bb3;
+}
+
+/* This parses the attribute arguments to target in DECL and determines
+ the right builtin to use to match the platform specification.
+ It returns the priority value for this version decl. If PREDICATE_LIST
+ is not NULL, it stores the list of cpu features that need to be checked
+ before dispatching this function. */
+
+static unsigned int
+get_builtin_code_for_version (tree decl, tree *predicate_list)
+{
+ tree attrs;
+ struct cl_target_option cur_target;
+ tree target_node;
+ struct cl_target_option *new_target;
+ const char *arg_str = NULL;
+ const char *attrs_str = NULL;
+ char *tok_str = NULL;
+ char *token;
+
+ /* Priority of i386 features, greater value is higher priority. This is
+ used to decide the order in which function dispatch must happen. For
+ instance, a version specialized for SSE4.2 should be checked for dispatch
+ before a version for SSE3, as SSE4.2 implies SSE3. */
+ enum feature_priority
+ {
+ P_ZERO = 0,
+ P_MMX,
+ P_SSE,
+ P_SSE2,
+ P_SSE3,
+ P_SSSE3,
+ P_PROC_SSSE3,
+ P_SSE4_A,
+ P_PROC_SSE4_A,
+ P_SSE4_1,
+ P_SSE4_2,
+ P_PROC_SSE4_2,
+ P_POPCNT,
+ P_AVX,
+ P_PROC_AVX,
+ P_FMA4,
+ P_XOP,
+ P_PROC_XOP,
+ P_FMA,
+ P_PROC_FMA,
+ P_AVX2,
+ P_PROC_AVX2
+ };
+
+ enum feature_priority priority = P_ZERO;
+
+ /* These are the target attribute strings for which a dispatcher is
+ available, from fold_builtin_cpu. */
+
+ static struct _feature_list
+ {
+ const char *const name;
+ const enum feature_priority priority;
+ }
+ const feature_list[] =
+ {
+ {"mmx", P_MMX},
+ {"sse", P_SSE},
+ {"sse2", P_SSE2},
+ {"sse3", P_SSE3},
+ {"sse4a", P_SSE4_A},
+ {"ssse3", P_SSSE3},
+ {"sse4.1", P_SSE4_1},
+ {"sse4.2", P_SSE4_2},
+ {"popcnt", P_POPCNT},
+ {"avx", P_AVX},
+ {"fma4", P_FMA4},
+ {"xop", P_XOP},
+ {"fma", P_FMA},
+ {"avx2", P_AVX2}
+ };
+
+
+ static unsigned int NUM_FEATURES
+ = sizeof (feature_list) / sizeof (struct _feature_list);
+
+ unsigned int i;
+
+ tree predicate_chain = NULL_TREE;
+ tree predicate_decl, predicate_arg;
+
+ attrs = lookup_attribute ("target", DECL_ATTRIBUTES (decl));
+ gcc_assert (attrs != NULL);
+
+ attrs = TREE_VALUE (TREE_VALUE (attrs));
+
+ gcc_assert (TREE_CODE (attrs) == STRING_CST);
+ attrs_str = TREE_STRING_POINTER (attrs);
+
+ /* Return priority zero for default function. */
+ if (strcmp (attrs_str, "default") == 0)
+ return 0;
+
+ /* Handle arch= if specified. For priority, set it to be 1 more than
+ the best instruction set the processor can handle. For instance, if
+ there is a version for atom and a version for ssse3 (the highest ISA
+ priority for atom), the atom version must be checked for dispatch
+ before the ssse3 version. */
+ if (strstr (attrs_str, "arch=") != NULL)
+ {
+ cl_target_option_save (&cur_target, &global_options);
+ target_node = ix86_valid_target_attribute_tree (attrs, &global_options,
+ &global_options_set);
+
+ gcc_assert (target_node);
+ new_target = TREE_TARGET_OPTION (target_node);
+ gcc_assert (new_target);
+
+ if (new_target->arch_specified && new_target->arch > 0)
+ {
+ switch (new_target->arch)
+ {
+ case PROCESSOR_CORE2:
+ arg_str = "core2";
+ priority = P_PROC_SSSE3;
+ break;
+ case PROCESSOR_NEHALEM:
+ if (new_target->x_ix86_isa_flags & OPTION_MASK_ISA_AES)
+ arg_str = "westmere";
+ else
+ /* We translate "arch=corei7" and "arch=nehalem" to
+ "corei7" so that it will be mapped to M_INTEL_COREI7
+ as cpu type to cover all M_INTEL_COREI7_XXXs. */
+ arg_str = "corei7";
+ priority = P_PROC_SSE4_2;
+ break;
+ case PROCESSOR_SANDYBRIDGE:
+ if (new_target->x_ix86_isa_flags & OPTION_MASK_ISA_F16C)
+ arg_str = "ivybridge";
+ else
+ arg_str = "sandybridge";
+ priority = P_PROC_AVX;
+ break;
+ case PROCESSOR_HASWELL:
+ if (new_target->x_ix86_isa_flags & OPTION_MASK_ISA_ADX)
+ arg_str = "broadwell";
+ else
+ arg_str = "haswell";
+ priority = P_PROC_AVX2;
+ break;
+ case PROCESSOR_BONNELL:
+ arg_str = "bonnell";
+ priority = P_PROC_SSSE3;
+ break;
+ case PROCESSOR_SILVERMONT:
+ arg_str = "silvermont";
+ priority = P_PROC_SSE4_2;
+ break;
+ case PROCESSOR_AMDFAM10:
+ arg_str = "amdfam10h";
+ priority = P_PROC_SSE4_A;
+ break;
+ case PROCESSOR_BTVER1:
+ arg_str = "btver1";
+ priority = P_PROC_SSE4_A;
+ break;
+ case PROCESSOR_BTVER2:
+ arg_str = "btver2";
+ priority = P_PROC_AVX;
+ break;
+ case PROCESSOR_BDVER1:
+ arg_str = "bdver1";
+ priority = P_PROC_XOP;
+ break;
+ case PROCESSOR_BDVER2:
+ arg_str = "bdver2";
+ priority = P_PROC_FMA;
+ break;
+ case PROCESSOR_BDVER3:
+ arg_str = "bdver3";
+ priority = P_PROC_FMA;
+ break;
+ case PROCESSOR_BDVER4:
+ arg_str = "bdver4";
+ priority = P_PROC_AVX2;
+ break;
+ }
+ }
+
+ cl_target_option_restore (&global_options, &cur_target);
+
+ if (predicate_list && arg_str == NULL)
+ {
+ error_at (DECL_SOURCE_LOCATION (decl),
+ "No dispatcher found for the versioning attributes");
+ return 0;
+ }
+
+ if (predicate_list)
+ {
+ predicate_decl = ix86_builtins [(int) IX86_BUILTIN_CPU_IS];
+ /* For a C string literal the length includes the trailing NULL. */
+ predicate_arg = build_string_literal (strlen (arg_str) + 1, arg_str);
+ predicate_chain = tree_cons (predicate_decl, predicate_arg,
+ predicate_chain);
+ }
+ }
+
+ /* Process feature name. */
+ tok_str = (char *) xmalloc (strlen (attrs_str) + 1);
+ strcpy (tok_str, attrs_str);
+ token = strtok (tok_str, ",");
+ predicate_decl = ix86_builtins [(int) IX86_BUILTIN_CPU_SUPPORTS];
+
+ while (token != NULL)
+ {
+ /* Do not process "arch=" */
+ if (strncmp (token, "arch=", 5) == 0)
+ {
+ token = strtok (NULL, ",");
+ continue;
+ }
+ for (i = 0; i < NUM_FEATURES; ++i)
+ {
+ if (strcmp (token, feature_list[i].name) == 0)
+ {
+ if (predicate_list)
+ {
+ predicate_arg = build_string_literal (
+ strlen (feature_list[i].name) + 1,
+ feature_list[i].name);
+ predicate_chain = tree_cons (predicate_decl, predicate_arg,
+ predicate_chain);
+ }
+ /* Find the maximum priority feature. */
+ if (feature_list[i].priority > priority)
+ priority = feature_list[i].priority;
+
+ break;
+ }
+ }
+ if (predicate_list && i == NUM_FEATURES)
+ {
+ error_at (DECL_SOURCE_LOCATION (decl),
+ "No dispatcher found for %s", token);
+ return 0;
+ }
+ token = strtok (NULL, ",");
+ }
+ free (tok_str);
+
+ if (predicate_list && predicate_chain == NULL_TREE)
+ {
+ error_at (DECL_SOURCE_LOCATION (decl),
+ "No dispatcher found for the versioning attributes : %s",
+ attrs_str);
+ return 0;
+ }
+ else if (predicate_list)
+ {
+ predicate_chain = nreverse (predicate_chain);
+ *predicate_list = predicate_chain;
+ }
+
+ return priority;
+}
+
+/* This compares the priority of target features in function DECL1
+ and DECL2. It returns positive value if DECL1 is higher priority,
+ negative value if DECL2 is higher priority and 0 if they are the
+ same. */
+
+static int
+ix86_compare_version_priority (tree decl1, tree decl2)
+{
+ unsigned int priority1 = get_builtin_code_for_version (decl1, NULL);
+ unsigned int priority2 = get_builtin_code_for_version (decl2, NULL);
+
+ return (int)priority1 - (int)priority2;
+}
+
+/* V1 and V2 point to function versions with different priorities
+ based on the target ISA. This function compares their priorities. */
+
+static int
+feature_compare (const void *v1, const void *v2)
+{
+ typedef struct _function_version_info
+ {
+ tree version_decl;
+ tree predicate_chain;
+ unsigned int dispatch_priority;
+ } function_version_info;
+
+ const function_version_info c1 = *(const function_version_info *)v1;
+ const function_version_info c2 = *(const function_version_info *)v2;
+ return (c2.dispatch_priority - c1.dispatch_priority);
+}
+
+/* This function generates the dispatch function for
+ multi-versioned functions. DISPATCH_DECL is the function which will
+ contain the dispatch logic. FNDECLS are the function choices for
+ dispatch, and is a tree chain. EMPTY_BB is the basic block pointer
+ in DISPATCH_DECL in which the dispatch code is generated. */
+
+static int
+dispatch_function_versions (tree dispatch_decl,
+ void *fndecls_p,
+ basic_block *empty_bb)
+{
+ tree default_decl;
+ gimple ifunc_cpu_init_stmt;
+ gimple_seq gseq;
+ int ix;
+ tree ele;
+ vec<tree> *fndecls;
+ unsigned int num_versions = 0;
+ unsigned int actual_versions = 0;
+ unsigned int i;
+
+ struct _function_version_info
+ {
+ tree version_decl;
+ tree predicate_chain;
+ unsigned int dispatch_priority;
+ }*function_version_info;
+
+ gcc_assert (dispatch_decl != NULL
+ && fndecls_p != NULL
+ && empty_bb != NULL);
+
+ /*fndecls_p is actually a vector. */
+ fndecls = static_cast<vec<tree> *> (fndecls_p);
+
+ /* At least one more version other than the default. */
+ num_versions = fndecls->length ();
+ gcc_assert (num_versions >= 2);
+
+ function_version_info = (struct _function_version_info *)
+ XNEWVEC (struct _function_version_info, (num_versions - 1));
+
+ /* The first version in the vector is the default decl. */
+ default_decl = (*fndecls)[0];
+
+ push_cfun (DECL_STRUCT_FUNCTION (dispatch_decl));
+
+ gseq = bb_seq (*empty_bb);
+ /* Function version dispatch is via IFUNC. IFUNC resolvers fire before
+ constructors, so explicity call __builtin_cpu_init here. */
+ ifunc_cpu_init_stmt = gimple_build_call_vec (
+ ix86_builtins [(int) IX86_BUILTIN_CPU_INIT], vNULL);
+ gimple_seq_add_stmt (&gseq, ifunc_cpu_init_stmt);
+ gimple_set_bb (ifunc_cpu_init_stmt, *empty_bb);
+ set_bb_seq (*empty_bb, gseq);
+
+ pop_cfun ();
+
+
+ for (ix = 1; fndecls->iterate (ix, &ele); ++ix)
+ {
+ tree version_decl = ele;
+ tree predicate_chain = NULL_TREE;
+ unsigned int priority;
+ /* Get attribute string, parse it and find the right predicate decl.
+ The predicate function could be a lengthy combination of many
+ features, like arch-type and various isa-variants. */
+ priority = get_builtin_code_for_version (version_decl,
+ &predicate_chain);
+
+ if (predicate_chain == NULL_TREE)
+ continue;
+
+ function_version_info [actual_versions].version_decl = version_decl;
+ function_version_info [actual_versions].predicate_chain
+ = predicate_chain;
+ function_version_info [actual_versions].dispatch_priority = priority;
+ actual_versions++;
+ }
+
+ /* Sort the versions according to descending order of dispatch priority. The
+ priority is based on the ISA. This is not a perfect solution. There
+ could still be ambiguity. If more than one function version is suitable
+ to execute, which one should be dispatched? In future, allow the user
+ to specify a dispatch priority next to the version. */
+ qsort (function_version_info, actual_versions,
+ sizeof (struct _function_version_info), feature_compare);
+
+ for (i = 0; i < actual_versions; ++i)
+ *empty_bb = add_condition_to_bb (dispatch_decl,
+ function_version_info[i].version_decl,
+ function_version_info[i].predicate_chain,
+ *empty_bb);
+
+ /* dispatch default version at the end. */
+ *empty_bb = add_condition_to_bb (dispatch_decl, default_decl,
+ NULL, *empty_bb);
+
+ free (function_version_info);
+ return 0;
+}
+
+/* Comparator function to be used in qsort routine to sort attribute
+ specification strings to "target". */
+
+static int
+attr_strcmp (const void *v1, const void *v2)
+{
+ const char *c1 = *(char *const*)v1;
+ const char *c2 = *(char *const*)v2;
+ return strcmp (c1, c2);
+}
+
+/* ARGLIST is the argument to target attribute. This function tokenizes
+ the comma separated arguments, sorts them and returns a string which
+ is a unique identifier for the comma separated arguments. It also
+ replaces non-identifier characters "=,-" with "_". */
+
+static char *
+sorted_attr_string (tree arglist)
+{
+ tree arg;
+ size_t str_len_sum = 0;
+ char **args = NULL;
+ char *attr_str, *ret_str;
+ char *attr = NULL;
+ unsigned int argnum = 1;
+ unsigned int i;
+
+ for (arg = arglist; arg; arg = TREE_CHAIN (arg))
+ {
+ const char *str = TREE_STRING_POINTER (TREE_VALUE (arg));
+ size_t len = strlen (str);
+ str_len_sum += len + 1;
+ if (arg != arglist)
+ argnum++;
+ for (i = 0; i < strlen (str); i++)
+ if (str[i] == ',')
+ argnum++;
+ }
+
+ attr_str = XNEWVEC (char, str_len_sum);
+ str_len_sum = 0;
+ for (arg = arglist; arg; arg = TREE_CHAIN (arg))
+ {
+ const char *str = TREE_STRING_POINTER (TREE_VALUE (arg));
+ size_t len = strlen (str);
+ memcpy (attr_str + str_len_sum, str, len);
+ attr_str[str_len_sum + len] = TREE_CHAIN (arg) ? ',' : '\0';
+ str_len_sum += len + 1;
+ }
+
+ /* Replace "=,-" with "_". */
+ for (i = 0; i < strlen (attr_str); i++)
+ if (attr_str[i] == '=' || attr_str[i]== '-')
+ attr_str[i] = '_';
+
+ if (argnum == 1)
+ return attr_str;
+
+ args = XNEWVEC (char *, argnum);
+
+ i = 0;
+ attr = strtok (attr_str, ",");
+ while (attr != NULL)
+ {
+ args[i] = attr;
+ i++;
+ attr = strtok (NULL, ",");
+ }
+
+ qsort (args, argnum, sizeof (char *), attr_strcmp);
+
+ ret_str = XNEWVEC (char, str_len_sum);
+ str_len_sum = 0;
+ for (i = 0; i < argnum; i++)
+ {
+ size_t len = strlen (args[i]);
+ memcpy (ret_str + str_len_sum, args[i], len);
+ ret_str[str_len_sum + len] = i < argnum - 1 ? '_' : '\0';
+ str_len_sum += len + 1;
+ }
+
+ XDELETEVEC (args);
+ XDELETEVEC (attr_str);
+ return ret_str;
+}
+
+/* This function changes the assembler name for functions that are
+ versions. If DECL is a function version and has a "target"
+ attribute, it appends the attribute string to its assembler name. */
+
+static tree
+ix86_mangle_function_version_assembler_name (tree decl, tree id)
+{
+ tree version_attr;
+ const char *orig_name, *version_string;
+ char *attr_str, *assembler_name;
+
+ if (DECL_DECLARED_INLINE_P (decl)
+ && lookup_attribute ("gnu_inline",
+ DECL_ATTRIBUTES (decl)))
+ error_at (DECL_SOURCE_LOCATION (decl),
+ "Function versions cannot be marked as gnu_inline,"
+ " bodies have to be generated");
+
+ if (DECL_VIRTUAL_P (decl)
+ || DECL_VINDEX (decl))
+ sorry ("Virtual function multiversioning not supported");
+
+ version_attr = lookup_attribute ("target", DECL_ATTRIBUTES (decl));
+
+ /* target attribute string cannot be NULL. */
+ gcc_assert (version_attr != NULL_TREE);
+
+ orig_name = IDENTIFIER_POINTER (id);
+ version_string
+ = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (version_attr)));
+
+ if (strcmp (version_string, "default") == 0)
+ return id;
+
+ attr_str = sorted_attr_string (TREE_VALUE (version_attr));
+ assembler_name = XNEWVEC (char, strlen (orig_name) + strlen (attr_str) + 2);
+
+ sprintf (assembler_name, "%s.%s", orig_name, attr_str);
+
+ /* Allow assembler name to be modified if already set. */
+ if (DECL_ASSEMBLER_NAME_SET_P (decl))
+ SET_DECL_RTL (decl, NULL);
+
+ tree ret = get_identifier (assembler_name);
+ XDELETEVEC (attr_str);
+ XDELETEVEC (assembler_name);
+ return ret;
+}
+
+/* This function returns true if FN1 and FN2 are versions of the same function,
+ that is, the target strings of the function decls are different. This assumes
+ that FN1 and FN2 have the same signature. */
+
+static bool
+ix86_function_versions (tree fn1, tree fn2)
+{
+ tree attr1, attr2;
+ char *target1, *target2;
+ bool result;
+
+ if (TREE_CODE (fn1) != FUNCTION_DECL
+ || TREE_CODE (fn2) != FUNCTION_DECL)
+ return false;
+
+ attr1 = lookup_attribute ("target", DECL_ATTRIBUTES (fn1));
+ attr2 = lookup_attribute ("target", DECL_ATTRIBUTES (fn2));
+
+ /* At least one function decl should have the target attribute specified. */
+ if (attr1 == NULL_TREE && attr2 == NULL_TREE)
+ return false;
+
+ /* Diagnose missing target attribute if one of the decls is already
+ multi-versioned. */
+ if (attr1 == NULL_TREE || attr2 == NULL_TREE)
+ {
+ if (DECL_FUNCTION_VERSIONED (fn1) || DECL_FUNCTION_VERSIONED (fn2))
+ {
+ if (attr2 != NULL_TREE)
+ {
+ tree tem = fn1;
+ fn1 = fn2;
+ fn2 = tem;
+ attr1 = attr2;
+ }
+ error_at (DECL_SOURCE_LOCATION (fn2),
+ "missing %<target%> attribute for multi-versioned %D",
+ fn2);
+ inform (DECL_SOURCE_LOCATION (fn1),
+ "previous declaration of %D", fn1);
+ /* Prevent diagnosing of the same error multiple times. */
+ DECL_ATTRIBUTES (fn2)
+ = tree_cons (get_identifier ("target"),
+ copy_node (TREE_VALUE (attr1)),
+ DECL_ATTRIBUTES (fn2));
+ }
+ return false;
+ }
+
+ target1 = sorted_attr_string (TREE_VALUE (attr1));
+ target2 = sorted_attr_string (TREE_VALUE (attr2));
+
+ /* The sorted target strings must be different for fn1 and fn2
+ to be versions. */
+ if (strcmp (target1, target2) == 0)
+ result = false;
+ else
+ result = true;
+
+ XDELETEVEC (target1);
+ XDELETEVEC (target2);
+
+ return result;
+}
+
+static tree
+ix86_mangle_decl_assembler_name (tree decl, tree id)
+{
+ /* For function version, add the target suffix to the assembler name. */
+ if (TREE_CODE (decl) == FUNCTION_DECL
+ && DECL_FUNCTION_VERSIONED (decl))
+ id = ix86_mangle_function_version_assembler_name (decl, id);
+#ifdef SUBTARGET_MANGLE_DECL_ASSEMBLER_NAME
+ id = SUBTARGET_MANGLE_DECL_ASSEMBLER_NAME (decl, id);
+#endif
+
+ return id;
+}
+
+/* Return a new name by appending SUFFIX to the DECL name. If make_unique
+ is true, append the full path name of the source file. */
+
+static char *
+make_name (tree decl, const char *suffix, bool make_unique)
+{
+ char *global_var_name;
+ int name_len;
+ const char *name;
+ const char *unique_name = NULL;
+
+ name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
+
+ /* Get a unique name that can be used globally without any chances
+ of collision at link time. */
+ if (make_unique)
+ unique_name = IDENTIFIER_POINTER (get_file_function_name ("\0"));
+
+ name_len = strlen (name) + strlen (suffix) + 2;
+
+ if (make_unique)
+ name_len += strlen (unique_name) + 1;
+ global_var_name = XNEWVEC (char, name_len);
+
+ /* Use '.' to concatenate names as it is demangler friendly. */
+ if (make_unique)
+ snprintf (global_var_name, name_len, "%s.%s.%s", name, unique_name,
+ suffix);
+ else
+ snprintf (global_var_name, name_len, "%s.%s", name, suffix);
+
+ return global_var_name;
+}
+
+#if defined (ASM_OUTPUT_TYPE_DIRECTIVE)
+
+/* Make a dispatcher declaration for the multi-versioned function DECL.
+ Calls to DECL function will be replaced with calls to the dispatcher
+ by the front-end. Return the decl created. */
+
+static tree
+make_dispatcher_decl (const tree decl)
+{
+ tree func_decl;
+ char *func_name;
+ tree fn_type, func_type;
+ bool is_uniq = false;
+
+ if (TREE_PUBLIC (decl) == 0)
+ is_uniq = true;
+
+ func_name = make_name (decl, "ifunc", is_uniq);
+
+ fn_type = TREE_TYPE (decl);
+ func_type = build_function_type (TREE_TYPE (fn_type),
+ TYPE_ARG_TYPES (fn_type));
+
+ func_decl = build_fn_decl (func_name, func_type);
+ XDELETEVEC (func_name);
+ TREE_USED (func_decl) = 1;
+ DECL_CONTEXT (func_decl) = NULL_TREE;
+ DECL_INITIAL (func_decl) = error_mark_node;
+ DECL_ARTIFICIAL (func_decl) = 1;
+ /* Mark this func as external, the resolver will flip it again if
+ it gets generated. */
+ DECL_EXTERNAL (func_decl) = 1;
+ /* This will be of type IFUNCs have to be externally visible. */
+ TREE_PUBLIC (func_decl) = 1;
+
+ return func_decl;
+}
+
+#endif
+
+/* Returns true if decl is multi-versioned and DECL is the default function,
+ that is it is not tagged with target specific optimization. */
+
+static bool
+is_function_default_version (const tree decl)
+{
+ if (TREE_CODE (decl) != FUNCTION_DECL
+ || !DECL_FUNCTION_VERSIONED (decl))
+ return false;
+ tree attr = lookup_attribute ("target", DECL_ATTRIBUTES (decl));
+ gcc_assert (attr);
+ attr = TREE_VALUE (TREE_VALUE (attr));
+ return (TREE_CODE (attr) == STRING_CST
+ && strcmp (TREE_STRING_POINTER (attr), "default") == 0);
+}
+
+/* Make a dispatcher declaration for the multi-versioned function DECL.
+ Calls to DECL function will be replaced with calls to the dispatcher
+ by the front-end. Returns the decl of the dispatcher function. */
+
+static tree
+ix86_get_function_versions_dispatcher (void *decl)
+{
+ tree fn = (tree) decl;
+ struct cgraph_node *node = NULL;
+ struct cgraph_node *default_node = NULL;
+ struct cgraph_function_version_info *node_v = NULL;
+ struct cgraph_function_version_info *first_v = NULL;
+
+ tree dispatch_decl = NULL;
+
+ struct cgraph_function_version_info *default_version_info = NULL;
+
+ gcc_assert (fn != NULL && DECL_FUNCTION_VERSIONED (fn));
+
+ node = cgraph_get_node (fn);
+ gcc_assert (node != NULL);
+
+ node_v = get_cgraph_node_version (node);
+ gcc_assert (node_v != NULL);
+
+ if (node_v->dispatcher_resolver != NULL)
+ return node_v->dispatcher_resolver;
+
+ /* Find the default version and make it the first node. */
+ first_v = node_v;
+ /* Go to the beginning of the chain. */
+ while (first_v->prev != NULL)
+ first_v = first_v->prev;
+ default_version_info = first_v;
+ while (default_version_info != NULL)
+ {
+ if (is_function_default_version
+ (default_version_info->this_node->decl))
+ break;
+ default_version_info = default_version_info->next;
+ }
+
+ /* If there is no default node, just return NULL. */
+ if (default_version_info == NULL)
+ return NULL;
+
+ /* Make default info the first node. */
+ if (first_v != default_version_info)
+ {
+ default_version_info->prev->next = default_version_info->next;
+ if (default_version_info->next)
+ default_version_info->next->prev = default_version_info->prev;
+ first_v->prev = default_version_info;
+ default_version_info->next = first_v;
+ default_version_info->prev = NULL;
+ }
+
+ default_node = default_version_info->this_node;
+
+#if defined (ASM_OUTPUT_TYPE_DIRECTIVE)
+ if (targetm.has_ifunc_p ())
+ {
+ struct cgraph_function_version_info *it_v = NULL;
+ struct cgraph_node *dispatcher_node = NULL;
+ struct cgraph_function_version_info *dispatcher_version_info = NULL;
+
+ /* Right now, the dispatching is done via ifunc. */
+ dispatch_decl = make_dispatcher_decl (default_node->decl);
+
+ dispatcher_node = cgraph_get_create_node (dispatch_decl);
+ gcc_assert (dispatcher_node != NULL);
+ dispatcher_node->dispatcher_function = 1;
+ dispatcher_version_info
+ = insert_new_cgraph_node_version (dispatcher_node);
+ dispatcher_version_info->next = default_version_info;
+ dispatcher_node->definition = 1;
+
+ /* Set the dispatcher for all the versions. */
+ it_v = default_version_info;
+ while (it_v != NULL)
+ {
+ it_v->dispatcher_resolver = dispatch_decl;
+ it_v = it_v->next;
+ }
+ }
+ else
+#endif
+ {
+ error_at (DECL_SOURCE_LOCATION (default_node->decl),
+ "multiversioning needs ifunc which is not supported "
+ "on this target");
+ }
+
+ return dispatch_decl;
+}
+
+/* Makes a function attribute of the form NAME(ARG_NAME) and chains
+ it to CHAIN. */
+
+static tree
+make_attribute (const char *name, const char *arg_name, tree chain)
+{
+ tree attr_name;
+ tree attr_arg_name;
+ tree attr_args;
+ tree attr;
+
+ attr_name = get_identifier (name);
+ attr_arg_name = build_string (strlen (arg_name), arg_name);
+ attr_args = tree_cons (NULL_TREE, attr_arg_name, NULL_TREE);
+ attr = tree_cons (attr_name, attr_args, chain);
+ return attr;
+}
+
+/* Make the resolver function decl to dispatch the versions of
+ a multi-versioned function, DEFAULT_DECL. Create an
+ empty basic block in the resolver and store the pointer in
+ EMPTY_BB. Return the decl of the resolver function. */
+
+static tree
+make_resolver_func (const tree default_decl,
+ const tree dispatch_decl,
+ basic_block *empty_bb)
+{
+ char *resolver_name;
+ tree decl, type, decl_name, t;
+ bool is_uniq = false;
+
+ /* IFUNC's have to be globally visible. So, if the default_decl is
+ not, then the name of the IFUNC should be made unique. */
+ if (TREE_PUBLIC (default_decl) == 0)
+ is_uniq = true;
+
+ /* Append the filename to the resolver function if the versions are
+ not externally visible. This is because the resolver function has
+ to be externally visible for the loader to find it. So, appending
+ the filename will prevent conflicts with a resolver function from
+ another module which is based on the same version name. */
+ resolver_name = make_name (default_decl, "resolver", is_uniq);
+
+ /* The resolver function should return a (void *). */
+ type = build_function_type_list (ptr_type_node, NULL_TREE);
+
+ decl = build_fn_decl (resolver_name, type);
+ decl_name = get_identifier (resolver_name);
+ SET_DECL_ASSEMBLER_NAME (decl, decl_name);
+
+ DECL_NAME (decl) = decl_name;
+ TREE_USED (decl) = 1;
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_IGNORED_P (decl) = 0;
+ /* IFUNC resolvers have to be externally visible. */
+ TREE_PUBLIC (decl) = 1;
+ DECL_UNINLINABLE (decl) = 1;
+
+ /* Resolver is not external, body is generated. */
+ DECL_EXTERNAL (decl) = 0;
+ DECL_EXTERNAL (dispatch_decl) = 0;
+
+ DECL_CONTEXT (decl) = NULL_TREE;
+ DECL_INITIAL (decl) = make_node (BLOCK);
+ DECL_STATIC_CONSTRUCTOR (decl) = 0;
+
+ if (DECL_COMDAT_GROUP (default_decl)
+ || TREE_PUBLIC (default_decl))
+ {
+ /* In this case, each translation unit with a call to this
+ versioned function will put out a resolver. Ensure it
+ is comdat to keep just one copy. */
+ DECL_COMDAT (decl) = 1;
+ make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
+ }
+ /* Build result decl and add to function_decl. */
+ t = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, ptr_type_node);
+ DECL_ARTIFICIAL (t) = 1;
+ DECL_IGNORED_P (t) = 1;
+ DECL_RESULT (decl) = t;
+
+ gimplify_function_tree (decl);
+ push_cfun (DECL_STRUCT_FUNCTION (decl));
+ *empty_bb = init_lowered_empty_function (decl, false);
+
+ cgraph_add_new_function (decl, true);
+ cgraph_call_function_insertion_hooks (cgraph_get_create_node (decl));
+
+ pop_cfun ();
+
+ gcc_assert (dispatch_decl != NULL);
+ /* Mark dispatch_decl as "ifunc" with resolver as resolver_name. */
+ DECL_ATTRIBUTES (dispatch_decl)
+ = make_attribute ("ifunc", resolver_name, DECL_ATTRIBUTES (dispatch_decl));
+
+ /* Create the alias for dispatch to resolver here. */
+ /*cgraph_create_function_alias (dispatch_decl, decl);*/
+ cgraph_same_body_alias (NULL, dispatch_decl, decl);
+ XDELETEVEC (resolver_name);
+ return decl;
+}
+
+/* Generate the dispatching code body to dispatch multi-versioned function
+ DECL. The target hook is called to process the "target" attributes and
+ provide the code to dispatch the right function at run-time. NODE points
+ to the dispatcher decl whose body will be created. */
+
+static tree
+ix86_generate_version_dispatcher_body (void *node_p)
+{
+ tree resolver_decl;
+ basic_block empty_bb;
+ tree default_ver_decl;
+ struct cgraph_node *versn;
+ struct cgraph_node *node;
+
+ struct cgraph_function_version_info *node_version_info = NULL;
+ struct cgraph_function_version_info *versn_info = NULL;
+
+ node = (cgraph_node *)node_p;
+
+ node_version_info = get_cgraph_node_version (node);
+ gcc_assert (node->dispatcher_function
+ && node_version_info != NULL);
+
+ if (node_version_info->dispatcher_resolver)
+ return node_version_info->dispatcher_resolver;
+
+ /* The first version in the chain corresponds to the default version. */
+ default_ver_decl = node_version_info->next->this_node->decl;
+
+ /* node is going to be an alias, so remove the finalized bit. */
+ node->definition = false;
+
+ resolver_decl = make_resolver_func (default_ver_decl,
+ node->decl, &empty_bb);
+
+ node_version_info->dispatcher_resolver = resolver_decl;
+
+ push_cfun (DECL_STRUCT_FUNCTION (resolver_decl));
+
+ auto_vec<tree, 2> fn_ver_vec;
+
+ for (versn_info = node_version_info->next; versn_info;
+ versn_info = versn_info->next)
+ {
+ versn = versn_info->this_node;
+ /* Check for virtual functions here again, as by this time it should
+ have been determined if this function needs a vtable index or
+ not. This happens for methods in derived classes that override
+ virtual methods in base classes but are not explicitly marked as
+ virtual. */
+ if (DECL_VINDEX (versn->decl))
+ sorry ("Virtual function multiversioning not supported");
+
+ fn_ver_vec.safe_push (versn->decl);
+ }
+
+ dispatch_function_versions (resolver_decl, &fn_ver_vec, &empty_bb);
+ rebuild_cgraph_edges ();
+ pop_cfun ();
+ return resolver_decl;
+}
+/* This builds the processor_model struct type defined in
+ libgcc/config/i386/cpuinfo.c */
+
+static tree
+build_processor_model_struct (void)
+{
+ const char *field_name[] = {"__cpu_vendor", "__cpu_type", "__cpu_subtype",
+ "__cpu_features"};
+ tree field = NULL_TREE, field_chain = NULL_TREE;
+ int i;
+ tree type = make_node (RECORD_TYPE);
+
+ /* The first 3 fields are unsigned int. */
+ for (i = 0; i < 3; ++i)
+ {
+ field = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
+ get_identifier (field_name[i]), unsigned_type_node);
+ if (field_chain != NULL_TREE)
+ DECL_CHAIN (field) = field_chain;
+ field_chain = field;
+ }
+
+ /* The last field is an array of unsigned integers of size one. */
+ field = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
+ get_identifier (field_name[3]),
+ build_array_type (unsigned_type_node,
+ build_index_type (size_one_node)));
+ if (field_chain != NULL_TREE)
+ DECL_CHAIN (field) = field_chain;
+ field_chain = field;
+
+ finish_builtin_struct (type, "__processor_model", field_chain, NULL_TREE);
+ return type;
+}
+
+/* Returns a extern, comdat VAR_DECL of type TYPE and name NAME. */
+
+static tree
+make_var_decl (tree type, const char *name)
+{
+ tree new_decl;
+
+ new_decl = build_decl (UNKNOWN_LOCATION,
+ VAR_DECL,
+ get_identifier(name),
+ type);
+
+ DECL_EXTERNAL (new_decl) = 1;
+ TREE_STATIC (new_decl) = 1;
+ TREE_PUBLIC (new_decl) = 1;
+ DECL_INITIAL (new_decl) = 0;
+ DECL_ARTIFICIAL (new_decl) = 0;
+ DECL_PRESERVE_P (new_decl) = 1;
+
+ make_decl_one_only (new_decl, DECL_ASSEMBLER_NAME (new_decl));
+ assemble_variable (new_decl, 0, 0, 0);
+
+ return new_decl;
+}
+
+/* FNDECL is a __builtin_cpu_is or a __builtin_cpu_supports call that is folded
+ into an integer defined in libgcc/config/i386/cpuinfo.c */
+
+static tree
+fold_builtin_cpu (tree fndecl, tree *args)
+{
+ unsigned int i;
+ enum ix86_builtins fn_code = (enum ix86_builtins)
+ DECL_FUNCTION_CODE (fndecl);
+ tree param_string_cst = NULL;
+
+ /* This is the order of bit-fields in __processor_features in cpuinfo.c */
+ enum processor_features
+ {
+ F_CMOV = 0,
+ F_MMX,
+ F_POPCNT,
+ F_SSE,
+ F_SSE2,
+ F_SSE3,
+ F_SSSE3,
+ F_SSE4_1,
+ F_SSE4_2,
+ F_AVX,
+ F_AVX2,
+ F_SSE4_A,
+ F_FMA4,
+ F_XOP,
+ F_FMA,
+ F_MAX
+ };
+
+ /* These are the values for vendor types and cpu types and subtypes
+ in cpuinfo.c. Cpu types and subtypes should be subtracted by
+ the corresponding start value. */
+ enum processor_model
+ {
+ M_INTEL = 1,
+ M_AMD,
+ M_CPU_TYPE_START,
+ M_INTEL_BONNELL,
+ M_INTEL_CORE2,
+ M_INTEL_COREI7,
+ M_AMDFAM10H,
+ M_AMDFAM15H,
+ M_INTEL_SILVERMONT,
+ M_AMD_BTVER1,
+ M_AMD_BTVER2,
+ M_CPU_SUBTYPE_START,
+ M_INTEL_COREI7_NEHALEM,
+ M_INTEL_COREI7_WESTMERE,
+ M_INTEL_COREI7_SANDYBRIDGE,
+ M_AMDFAM10H_BARCELONA,
+ M_AMDFAM10H_SHANGHAI,
+ M_AMDFAM10H_ISTANBUL,
+ M_AMDFAM15H_BDVER1,
+ M_AMDFAM15H_BDVER2,
+ M_AMDFAM15H_BDVER3,
+ M_AMDFAM15H_BDVER4,
+ M_INTEL_COREI7_IVYBRIDGE,
+ M_INTEL_COREI7_HASWELL
+ };
+
+ static struct _arch_names_table
+ {
+ const char *const name;
+ const enum processor_model model;
+ }
+ const arch_names_table[] =
+ {
+ {"amd", M_AMD},
+ {"intel", M_INTEL},
+ {"atom", M_INTEL_BONNELL},
+ {"slm", M_INTEL_SILVERMONT},
+ {"core2", M_INTEL_CORE2},
+ {"corei7", M_INTEL_COREI7},
+ {"nehalem", M_INTEL_COREI7_NEHALEM},
+ {"westmere", M_INTEL_COREI7_WESTMERE},
+ {"sandybridge", M_INTEL_COREI7_SANDYBRIDGE},
+ {"ivybridge", M_INTEL_COREI7_IVYBRIDGE},
+ {"haswell", M_INTEL_COREI7_HASWELL},
+ {"bonnell", M_INTEL_BONNELL},
+ {"silvermont", M_INTEL_SILVERMONT},
+ {"amdfam10h", M_AMDFAM10H},
+ {"barcelona", M_AMDFAM10H_BARCELONA},
+ {"shanghai", M_AMDFAM10H_SHANGHAI},
+ {"istanbul", M_AMDFAM10H_ISTANBUL},
+ {"btver1", M_AMD_BTVER1},
+ {"amdfam15h", M_AMDFAM15H},
+ {"bdver1", M_AMDFAM15H_BDVER1},
+ {"bdver2", M_AMDFAM15H_BDVER2},
+ {"bdver3", M_AMDFAM15H_BDVER3},
+ {"bdver4", M_AMDFAM15H_BDVER4},
+ {"btver2", M_AMD_BTVER2},
+ };
+
+ static struct _isa_names_table
+ {
+ const char *const name;
+ const enum processor_features feature;
+ }
+ const isa_names_table[] =
+ {
+ {"cmov", F_CMOV},
+ {"mmx", F_MMX},
+ {"popcnt", F_POPCNT},
+ {"sse", F_SSE},
+ {"sse2", F_SSE2},
+ {"sse3", F_SSE3},
+ {"ssse3", F_SSSE3},
+ {"sse4a", F_SSE4_A},
+ {"sse4.1", F_SSE4_1},
+ {"sse4.2", F_SSE4_2},
+ {"avx", F_AVX},
+ {"fma4", F_FMA4},
+ {"xop", F_XOP},
+ {"fma", F_FMA},
+ {"avx2", F_AVX2}
+ };
+
+ tree __processor_model_type = build_processor_model_struct ();
+ tree __cpu_model_var = make_var_decl (__processor_model_type,
+ "__cpu_model");
+
+
+ varpool_add_new_variable (__cpu_model_var);
+
+ gcc_assert ((args != NULL) && (*args != NULL));
+
+ param_string_cst = *args;
+ while (param_string_cst
+ && TREE_CODE (param_string_cst) != STRING_CST)
+ {
+ /* *args must be a expr that can contain other EXPRS leading to a
+ STRING_CST. */
+ if (!EXPR_P (param_string_cst))
+ {
+ error ("Parameter to builtin must be a string constant or literal");
+ return integer_zero_node;
+ }
+ param_string_cst = TREE_OPERAND (EXPR_CHECK (param_string_cst), 0);
+ }
+
+ gcc_assert (param_string_cst);
+
+ if (fn_code == IX86_BUILTIN_CPU_IS)
+ {
+ tree ref;
+ tree field;
+ tree final;
+
+ unsigned int field_val = 0;
+ unsigned int NUM_ARCH_NAMES
+ = sizeof (arch_names_table) / sizeof (struct _arch_names_table);
+
+ for (i = 0; i < NUM_ARCH_NAMES; i++)
+ if (strcmp (arch_names_table[i].name,
+ TREE_STRING_POINTER (param_string_cst)) == 0)
+ break;
+
+ if (i == NUM_ARCH_NAMES)
+ {
+ error ("Parameter to builtin not valid: %s",
+ TREE_STRING_POINTER (param_string_cst));
+ return integer_zero_node;
+ }
+
+ field = TYPE_FIELDS (__processor_model_type);
+ field_val = arch_names_table[i].model;
+
+ /* CPU types are stored in the next field. */
+ if (field_val > M_CPU_TYPE_START
+ && field_val < M_CPU_SUBTYPE_START)
+ {
+ field = DECL_CHAIN (field);
+ field_val -= M_CPU_TYPE_START;
+ }
+
+ /* CPU subtypes are stored in the next field. */
+ if (field_val > M_CPU_SUBTYPE_START)
+ {
+ field = DECL_CHAIN ( DECL_CHAIN (field));
+ field_val -= M_CPU_SUBTYPE_START;
+ }
+
+ /* Get the appropriate field in __cpu_model. */
+ ref = build3 (COMPONENT_REF, TREE_TYPE (field), __cpu_model_var,
+ field, NULL_TREE);
+
+ /* Check the value. */
+ final = build2 (EQ_EXPR, unsigned_type_node, ref,
+ build_int_cstu (unsigned_type_node, field_val));
+ return build1 (CONVERT_EXPR, integer_type_node, final);
+ }
+ else if (fn_code == IX86_BUILTIN_CPU_SUPPORTS)
+ {
+ tree ref;
+ tree array_elt;
+ tree field;
+ tree final;
+
+ unsigned int field_val = 0;
+ unsigned int NUM_ISA_NAMES
+ = sizeof (isa_names_table) / sizeof (struct _isa_names_table);
+
+ for (i = 0; i < NUM_ISA_NAMES; i++)
+ if (strcmp (isa_names_table[i].name,
+ TREE_STRING_POINTER (param_string_cst)) == 0)
+ break;
+
+ if (i == NUM_ISA_NAMES)
+ {
+ error ("Parameter to builtin not valid: %s",
+ TREE_STRING_POINTER (param_string_cst));
+ return integer_zero_node;
+ }
+
+ field = TYPE_FIELDS (__processor_model_type);
+ /* Get the last field, which is __cpu_features. */
+ while (DECL_CHAIN (field))
+ field = DECL_CHAIN (field);
+
+ /* Get the appropriate field: __cpu_model.__cpu_features */
+ ref = build3 (COMPONENT_REF, TREE_TYPE (field), __cpu_model_var,
+ field, NULL_TREE);
+
+ /* Access the 0th element of __cpu_features array. */
+ array_elt = build4 (ARRAY_REF, unsigned_type_node, ref,
+ integer_zero_node, NULL_TREE, NULL_TREE);
+
+ field_val = (1 << isa_names_table[i].feature);
+ /* Return __cpu_model.__cpu_features[0] & field_val */
+ final = build2 (BIT_AND_EXPR, unsigned_type_node, array_elt,
+ build_int_cstu (unsigned_type_node, field_val));
+ return build1 (CONVERT_EXPR, integer_type_node, final);
+ }
+ gcc_unreachable ();
+}
+
+static tree
+ix86_fold_builtin (tree fndecl, int n_args,
+ tree *args, bool ignore ATTRIBUTE_UNUSED)
+{
+ if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
+ {
+ enum ix86_builtins fn_code = (enum ix86_builtins)
+ DECL_FUNCTION_CODE (fndecl);
+ if (fn_code == IX86_BUILTIN_CPU_IS
+ || fn_code == IX86_BUILTIN_CPU_SUPPORTS)
+ {
+ gcc_assert (n_args == 1);
+ return fold_builtin_cpu (fndecl, args);
+ }
+ }
+
+#ifdef SUBTARGET_FOLD_BUILTIN
+ return SUBTARGET_FOLD_BUILTIN (fndecl, n_args, args, ignore);
+#endif
+
+ return NULL_TREE;
+}
+
+/* Make builtins to detect cpu type and features supported. NAME is
+ the builtin name, CODE is the builtin code, and FTYPE is the function
+ type of the builtin. */
+
+static void
+make_cpu_type_builtin (const char* name, int code,
+ enum ix86_builtin_func_type ftype, bool is_const)
+{
+ tree decl;
+ tree type;
+
+ type = ix86_get_builtin_func_type (ftype);
+ decl = add_builtin_function (name, type, code, BUILT_IN_MD,
+ NULL, NULL_TREE);
+ gcc_assert (decl != NULL_TREE);
+ ix86_builtins[(int) code] = decl;
+ TREE_READONLY (decl) = is_const;
+}
+
+/* Make builtins to get CPU type and features supported. The created
+ builtins are :
+
+ __builtin_cpu_init (), to detect cpu type and features,
+ __builtin_cpu_is ("<CPUNAME>"), to check if cpu is of type <CPUNAME>,
+ __builtin_cpu_supports ("<FEATURE>"), to check if cpu supports <FEATURE>
+ */
+
+static void
+ix86_init_platform_type_builtins (void)
+{
+ make_cpu_type_builtin ("__builtin_cpu_init", IX86_BUILTIN_CPU_INIT,
+ INT_FTYPE_VOID, false);
+ make_cpu_type_builtin ("__builtin_cpu_is", IX86_BUILTIN_CPU_IS,
+ INT_FTYPE_PCCHAR, true);
+ make_cpu_type_builtin ("__builtin_cpu_supports", IX86_BUILTIN_CPU_SUPPORTS,
+ INT_FTYPE_PCCHAR, true);
+}
+
+/* Internal method for ix86_init_builtins. */
+
+static void
+ix86_init_builtins_va_builtins_abi (void)
+{
+ tree ms_va_ref, sysv_va_ref;
+ tree fnvoid_va_end_ms, fnvoid_va_end_sysv;
+ tree fnvoid_va_start_ms, fnvoid_va_start_sysv;
+ tree fnvoid_va_copy_ms, fnvoid_va_copy_sysv;
+ tree fnattr_ms = NULL_TREE, fnattr_sysv = NULL_TREE;
+
+ if (!TARGET_64BIT)
+ return;
+ fnattr_ms = build_tree_list (get_identifier ("ms_abi"), NULL_TREE);
+ fnattr_sysv = build_tree_list (get_identifier ("sysv_abi"), NULL_TREE);
+ ms_va_ref = build_reference_type (ms_va_list_type_node);
+ sysv_va_ref =
+ build_pointer_type (TREE_TYPE (sysv_va_list_type_node));
+
+ fnvoid_va_end_ms =
+ build_function_type_list (void_type_node, ms_va_ref, NULL_TREE);
+ fnvoid_va_start_ms =
+ build_varargs_function_type_list (void_type_node, ms_va_ref, NULL_TREE);
+ fnvoid_va_end_sysv =
+ build_function_type_list (void_type_node, sysv_va_ref, NULL_TREE);
+ fnvoid_va_start_sysv =
+ build_varargs_function_type_list (void_type_node, sysv_va_ref,
+ NULL_TREE);
+ fnvoid_va_copy_ms =
+ build_function_type_list (void_type_node, ms_va_ref, ms_va_list_type_node,
+ NULL_TREE);
+ fnvoid_va_copy_sysv =
+ build_function_type_list (void_type_node, sysv_va_ref,
+ sysv_va_ref, NULL_TREE);
+
+ add_builtin_function ("__builtin_ms_va_start", fnvoid_va_start_ms,
+ BUILT_IN_VA_START, BUILT_IN_NORMAL, NULL, fnattr_ms);
+ add_builtin_function ("__builtin_ms_va_end", fnvoid_va_end_ms,
+ BUILT_IN_VA_END, BUILT_IN_NORMAL, NULL, fnattr_ms);
+ add_builtin_function ("__builtin_ms_va_copy", fnvoid_va_copy_ms,
+ BUILT_IN_VA_COPY, BUILT_IN_NORMAL, NULL, fnattr_ms);
+ add_builtin_function ("__builtin_sysv_va_start", fnvoid_va_start_sysv,
+ BUILT_IN_VA_START, BUILT_IN_NORMAL, NULL, fnattr_sysv);
+ add_builtin_function ("__builtin_sysv_va_end", fnvoid_va_end_sysv,
+ BUILT_IN_VA_END, BUILT_IN_NORMAL, NULL, fnattr_sysv);
+ add_builtin_function ("__builtin_sysv_va_copy", fnvoid_va_copy_sysv,
+ BUILT_IN_VA_COPY, BUILT_IN_NORMAL, NULL, fnattr_sysv);
+}
+
+static void
+ix86_init_builtin_types (void)
+{
+ tree float128_type_node, float80_type_node;
+
+ /* The __float80 type. */
+ float80_type_node = long_double_type_node;
+ if (TYPE_MODE (float80_type_node) != XFmode)
+ {
+ /* The __float80 type. */
+ float80_type_node = make_node (REAL_TYPE);
+
+ TYPE_PRECISION (float80_type_node) = 80;
+ layout_type (float80_type_node);
+ }
+ lang_hooks.types.register_builtin_type (float80_type_node, "__float80");
+
+ /* The __float128 type. */
+ float128_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (float128_type_node) = 128;
+ layout_type (float128_type_node);
+ lang_hooks.types.register_builtin_type (float128_type_node, "__float128");
+
+ /* This macro is built by i386-builtin-types.awk. */
+ DEFINE_BUILTIN_PRIMITIVE_TYPES;
+}
+
+static void
+ix86_init_builtins (void)
+{
+ tree t;
+
+ ix86_init_builtin_types ();
+
+ /* Builtins to get CPU type and features. */
+ ix86_init_platform_type_builtins ();
+
+ /* TFmode support builtins. */
+ def_builtin_const (0, "__builtin_infq",
+ FLOAT128_FTYPE_VOID, IX86_BUILTIN_INFQ);
+ def_builtin_const (0, "__builtin_huge_valq",
+ FLOAT128_FTYPE_VOID, IX86_BUILTIN_HUGE_VALQ);
+
+ /* We will expand them to normal call if SSE isn't available since
+ they are used by libgcc. */
+ t = ix86_get_builtin_func_type (FLOAT128_FTYPE_FLOAT128);
+ t = add_builtin_function ("__builtin_fabsq", t, IX86_BUILTIN_FABSQ,
+ BUILT_IN_MD, "__fabstf2", NULL_TREE);
+ TREE_READONLY (t) = 1;
+ ix86_builtins[(int) IX86_BUILTIN_FABSQ] = t;
+
+ t = ix86_get_builtin_func_type (FLOAT128_FTYPE_FLOAT128_FLOAT128);
+ t = add_builtin_function ("__builtin_copysignq", t, IX86_BUILTIN_COPYSIGNQ,
+ BUILT_IN_MD, "__copysigntf3", NULL_TREE);
+ TREE_READONLY (t) = 1;
+ ix86_builtins[(int) IX86_BUILTIN_COPYSIGNQ] = t;
+
+ ix86_init_tm_builtins ();
+ ix86_init_mmx_sse_builtins ();
+
+ if (TARGET_LP64)
+ ix86_init_builtins_va_builtins_abi ();
+
+#ifdef SUBTARGET_INIT_BUILTINS
+ SUBTARGET_INIT_BUILTINS;
+#endif
+}
+
+/* Return the ix86 builtin for CODE. */
+
+static tree
+ix86_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
+{
+ if (code >= IX86_BUILTIN_MAX)
+ return error_mark_node;
+
+ return ix86_builtins[code];
+}
+
+/* Errors in the source file can cause expand_expr to return const0_rtx
+ where we expect a vector. To avoid crashing, use one of the vector
+ clear instructions. */
+static rtx
+safe_vector_operand (rtx x, enum machine_mode mode)
+{
+ if (x == const0_rtx)
+ x = CONST0_RTX (mode);
+ return x;
+}
+
+/* Subroutine of ix86_expand_builtin to take care of binop insns. */
+
+static rtx
+ix86_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree arg1 = CALL_EXPR_ARG (exp, 1);
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ enum machine_mode tmode = insn_data[icode].operand[0].mode;
+ enum machine_mode mode0 = insn_data[icode].operand[1].mode;
+ enum machine_mode mode1 = insn_data[icode].operand[2].mode;
+
+ if (VECTOR_MODE_P (mode0))
+ op0 = safe_vector_operand (op0, mode0);
+ if (VECTOR_MODE_P (mode1))
+ op1 = safe_vector_operand (op1, mode1);
+
+ if (optimize || !target
+ || GET_MODE (target) != tmode
+ || !insn_data[icode].operand[0].predicate (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ if (GET_MODE (op1) == SImode && mode1 == TImode)
+ {
+ rtx x = gen_reg_rtx (V4SImode);
+ emit_insn (gen_sse2_loadd (x, op1));
+ op1 = gen_lowpart (TImode, x);
+ }
+
+ if (!insn_data[icode].operand[1].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ if (!insn_data[icode].operand[2].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+
+ pat = GEN_FCN (icode) (target, op0, op1);
+ if (! pat)
+ return 0;
+
+ emit_insn (pat);
+
+ return target;
+}
+
+/* Subroutine of ix86_expand_builtin to take care of 2-4 argument insns. */
+
+static rtx
+ix86_expand_multi_arg_builtin (enum insn_code icode, tree exp, rtx target,
+ enum ix86_builtin_func_type m_type,
+ enum rtx_code sub_code)
+{
+ rtx pat;
+ int i;
+ int nargs;
+ bool comparison_p = false;
+ bool tf_p = false;
+ bool last_arg_constant = false;
+ int num_memory = 0;
+ struct {
+ rtx op;
+ enum machine_mode mode;
+ } args[4];
+
+ enum machine_mode tmode = insn_data[icode].operand[0].mode;
+
+ switch (m_type)
+ {
+ case MULTI_ARG_4_DF2_DI_I:
+ case MULTI_ARG_4_DF2_DI_I1:
+ case MULTI_ARG_4_SF2_SI_I:
+ case MULTI_ARG_4_SF2_SI_I1:
+ nargs = 4;
+ last_arg_constant = true;
+ break;
+
+ case MULTI_ARG_3_SF:
+ case MULTI_ARG_3_DF:
+ case MULTI_ARG_3_SF2:
+ case MULTI_ARG_3_DF2:
+ case MULTI_ARG_3_DI:
+ case MULTI_ARG_3_SI:
+ case MULTI_ARG_3_SI_DI:
+ case MULTI_ARG_3_HI:
+ case MULTI_ARG_3_HI_SI:
+ case MULTI_ARG_3_QI:
+ case MULTI_ARG_3_DI2:
+ case MULTI_ARG_3_SI2:
+ case MULTI_ARG_3_HI2:
+ case MULTI_ARG_3_QI2:
+ nargs = 3;
+ break;
+
+ case MULTI_ARG_2_SF:
+ case MULTI_ARG_2_DF:
+ case MULTI_ARG_2_DI:
+ case MULTI_ARG_2_SI:
+ case MULTI_ARG_2_HI:
+ case MULTI_ARG_2_QI:
+ nargs = 2;
+ break;
+
+ case MULTI_ARG_2_DI_IMM:
+ case MULTI_ARG_2_SI_IMM:
+ case MULTI_ARG_2_HI_IMM:
+ case MULTI_ARG_2_QI_IMM:
+ nargs = 2;
+ last_arg_constant = true;
+ break;
+
+ case MULTI_ARG_1_SF:
+ case MULTI_ARG_1_DF:
+ case MULTI_ARG_1_SF2:
+ case MULTI_ARG_1_DF2:
+ case MULTI_ARG_1_DI:
+ case MULTI_ARG_1_SI:
+ case MULTI_ARG_1_HI:
+ case MULTI_ARG_1_QI:
+ case MULTI_ARG_1_SI_DI:
+ case MULTI_ARG_1_HI_DI:
+ case MULTI_ARG_1_HI_SI:
+ case MULTI_ARG_1_QI_DI:
+ case MULTI_ARG_1_QI_SI:
+ case MULTI_ARG_1_QI_HI:
+ nargs = 1;
+ break;
+
+ case MULTI_ARG_2_DI_CMP:
+ case MULTI_ARG_2_SI_CMP:
+ case MULTI_ARG_2_HI_CMP:
+ case MULTI_ARG_2_QI_CMP:
+ nargs = 2;
+ comparison_p = true;
+ break;
+
+ case MULTI_ARG_2_SF_TF:
+ case MULTI_ARG_2_DF_TF:
+ case MULTI_ARG_2_DI_TF:
+ case MULTI_ARG_2_SI_TF:
+ case MULTI_ARG_2_HI_TF:
+ case MULTI_ARG_2_QI_TF:
+ nargs = 2;
+ tf_p = true;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (optimize || !target
+ || GET_MODE (target) != tmode
+ || !insn_data[icode].operand[0].predicate (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ gcc_assert (nargs <= 4);
+
+ for (i = 0; i < nargs; i++)
+ {
+ tree arg = CALL_EXPR_ARG (exp, i);
+ rtx op = expand_normal (arg);
+ int adjust = (comparison_p) ? 1 : 0;
+ enum machine_mode mode = insn_data[icode].operand[i+adjust+1].mode;
+
+ if (last_arg_constant && i == nargs - 1)
+ {
+ if (!insn_data[icode].operand[i + 1].predicate (op, mode))
+ {
+ enum insn_code new_icode = icode;
+ switch (icode)
+ {
+ case CODE_FOR_xop_vpermil2v2df3:
+ case CODE_FOR_xop_vpermil2v4sf3:
+ case CODE_FOR_xop_vpermil2v4df3:
+ case CODE_FOR_xop_vpermil2v8sf3:
+ error ("the last argument must be a 2-bit immediate");
+ return gen_reg_rtx (tmode);
+ case CODE_FOR_xop_rotlv2di3:
+ new_icode = CODE_FOR_rotlv2di3;
+ goto xop_rotl;
+ case CODE_FOR_xop_rotlv4si3:
+ new_icode = CODE_FOR_rotlv4si3;
+ goto xop_rotl;
+ case CODE_FOR_xop_rotlv8hi3:
+ new_icode = CODE_FOR_rotlv8hi3;
+ goto xop_rotl;
+ case CODE_FOR_xop_rotlv16qi3:
+ new_icode = CODE_FOR_rotlv16qi3;
+ xop_rotl:
+ if (CONST_INT_P (op))
+ {
+ int mask = GET_MODE_BITSIZE (GET_MODE_INNER (tmode)) - 1;
+ op = GEN_INT (INTVAL (op) & mask);
+ gcc_checking_assert
+ (insn_data[icode].operand[i + 1].predicate (op, mode));
+ }
+ else
+ {
+ gcc_checking_assert
+ (nargs == 2
+ && insn_data[new_icode].operand[0].mode == tmode
+ && insn_data[new_icode].operand[1].mode == tmode
+ && insn_data[new_icode].operand[2].mode == mode
+ && insn_data[new_icode].operand[0].predicate
+ == insn_data[icode].operand[0].predicate
+ && insn_data[new_icode].operand[1].predicate
+ == insn_data[icode].operand[1].predicate);
+ icode = new_icode;
+ goto non_constant;
+ }
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+ }
+ else
+ {
+ non_constant:
+ if (VECTOR_MODE_P (mode))
+ op = safe_vector_operand (op, mode);
+
+ /* If we aren't optimizing, only allow one memory operand to be
+ generated. */
+ if (memory_operand (op, mode))
+ num_memory++;
+
+ gcc_assert (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode);
+
+ if (optimize
+ || !insn_data[icode].operand[i+adjust+1].predicate (op, mode)
+ || num_memory > 1)
+ op = force_reg (mode, op);
+ }
+
+ args[i].op = op;
+ args[i].mode = mode;
+ }
+
+ switch (nargs)
+ {
+ case 1:
+ pat = GEN_FCN (icode) (target, args[0].op);
+ break;
+
+ case 2:
+ if (tf_p)
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op,
+ GEN_INT ((int)sub_code));
+ else if (! comparison_p)
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op);
+ else
+ {
+ rtx cmp_op = gen_rtx_fmt_ee (sub_code, GET_MODE (target),
+ args[0].op,
+ args[1].op);
+
+ pat = GEN_FCN (icode) (target, cmp_op, args[0].op, args[1].op);
+ }
+ break;
+
+ case 3:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op);
+ break;
+
+ case 4:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op, args[3].op);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (! pat)
+ return 0;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Subroutine of ix86_expand_args_builtin to take care of scalar unop
+ insns with vec_merge. */
+
+static rtx
+ix86_expand_unop_vec_merge_builtin (enum insn_code icode, tree exp,
+ rtx target)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ rtx op1, op0 = expand_normal (arg0);
+ enum machine_mode tmode = insn_data[icode].operand[0].mode;
+ enum machine_mode mode0 = insn_data[icode].operand[1].mode;
+
+ if (optimize || !target
+ || GET_MODE (target) != tmode
+ || !insn_data[icode].operand[0].predicate (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ if (VECTOR_MODE_P (mode0))
+ op0 = safe_vector_operand (op0, mode0);
+
+ if ((optimize && !register_operand (op0, mode0))
+ || !insn_data[icode].operand[1].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+
+ op1 = op0;
+ if (!insn_data[icode].operand[2].predicate (op1, mode0))
+ op1 = copy_to_mode_reg (mode0, op1);
+
+ pat = GEN_FCN (icode) (target, op0, op1);
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ return target;
+}
+
+/* Subroutine of ix86_expand_builtin to take care of comparison insns. */
+
+static rtx
+ix86_expand_sse_compare (const struct builtin_description *d,
+ tree exp, rtx target, bool swap)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree arg1 = CALL_EXPR_ARG (exp, 1);
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ rtx op2;
+ enum machine_mode tmode = insn_data[d->icode].operand[0].mode;
+ enum machine_mode mode0 = insn_data[d->icode].operand[1].mode;
+ enum machine_mode mode1 = insn_data[d->icode].operand[2].mode;
+ enum rtx_code comparison = d->comparison;
+
+ if (VECTOR_MODE_P (mode0))
+ op0 = safe_vector_operand (op0, mode0);
+ if (VECTOR_MODE_P (mode1))
+ op1 = safe_vector_operand (op1, mode1);
+
+ /* Swap operands if we have a comparison that isn't available in
+ hardware. */
+ if (swap)
+ {
+ rtx tmp = gen_reg_rtx (mode1);
+ emit_move_insn (tmp, op1);
+ op1 = op0;
+ op0 = tmp;
+ }
+
+ if (optimize || !target
+ || GET_MODE (target) != tmode
+ || !insn_data[d->icode].operand[0].predicate (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ if ((optimize && !register_operand (op0, mode0))
+ || !insn_data[d->icode].operand[1].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ if ((optimize && !register_operand (op1, mode1))
+ || !insn_data[d->icode].operand[2].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+
+ op2 = gen_rtx_fmt_ee (comparison, mode0, op0, op1);
+ pat = GEN_FCN (d->icode) (target, op0, op1, op2);
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ return target;
+}
+
+/* Subroutine of ix86_expand_builtin to take care of comi insns. */
+
+static rtx
+ix86_expand_sse_comi (const struct builtin_description *d, tree exp,
+ rtx target)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree arg1 = CALL_EXPR_ARG (exp, 1);
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ enum machine_mode mode0 = insn_data[d->icode].operand[0].mode;
+ enum machine_mode mode1 = insn_data[d->icode].operand[1].mode;
+ enum rtx_code comparison = d->comparison;
+
+ if (VECTOR_MODE_P (mode0))
+ op0 = safe_vector_operand (op0, mode0);
+ if (VECTOR_MODE_P (mode1))
+ op1 = safe_vector_operand (op1, mode1);
+
+ /* Swap operands if we have a comparison that isn't available in
+ hardware. */
+ if (d->flag & BUILTIN_DESC_SWAP_OPERANDS)
+ {
+ rtx tmp = op1;
+ op1 = op0;
+ op0 = tmp;
+ }
+
+ target = gen_reg_rtx (SImode);
+ emit_move_insn (target, const0_rtx);
+ target = gen_rtx_SUBREG (QImode, target, 0);
+
+ if ((optimize && !register_operand (op0, mode0))
+ || !insn_data[d->icode].operand[0].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ if ((optimize && !register_operand (op1, mode1))
+ || !insn_data[d->icode].operand[1].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+
+ pat = GEN_FCN (d->icode) (op0, op1);
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ emit_insn (gen_rtx_SET (VOIDmode,
+ gen_rtx_STRICT_LOW_PART (VOIDmode, target),
+ gen_rtx_fmt_ee (comparison, QImode,
+ SET_DEST (pat),
+ const0_rtx)));
+
+ return SUBREG_REG (target);
+}
+
+/* Subroutines of ix86_expand_args_builtin to take care of round insns. */
+
+static rtx
+ix86_expand_sse_round (const struct builtin_description *d, tree exp,
+ rtx target)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ rtx op1, op0 = expand_normal (arg0);
+ enum machine_mode tmode = insn_data[d->icode].operand[0].mode;
+ enum machine_mode mode0 = insn_data[d->icode].operand[1].mode;
+
+ if (optimize || target == 0
+ || GET_MODE (target) != tmode
+ || !insn_data[d->icode].operand[0].predicate (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ if (VECTOR_MODE_P (mode0))
+ op0 = safe_vector_operand (op0, mode0);
+
+ if ((optimize && !register_operand (op0, mode0))
+ || !insn_data[d->icode].operand[0].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+
+ op1 = GEN_INT (d->comparison);
+
+ pat = GEN_FCN (d->icode) (target, op0, op1);
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ return target;
+}
+
+static rtx
+ix86_expand_sse_round_vec_pack_sfix (const struct builtin_description *d,
+ tree exp, rtx target)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree arg1 = CALL_EXPR_ARG (exp, 1);
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ rtx op2;
+ enum machine_mode tmode = insn_data[d->icode].operand[0].mode;
+ enum machine_mode mode0 = insn_data[d->icode].operand[1].mode;
+ enum machine_mode mode1 = insn_data[d->icode].operand[2].mode;
+
+ if (optimize || target == 0
+ || GET_MODE (target) != tmode
+ || !insn_data[d->icode].operand[0].predicate (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ op0 = safe_vector_operand (op0, mode0);
+ op1 = safe_vector_operand (op1, mode1);
+
+ if ((optimize && !register_operand (op0, mode0))
+ || !insn_data[d->icode].operand[0].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ if ((optimize && !register_operand (op1, mode1))
+ || !insn_data[d->icode].operand[1].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+
+ op2 = GEN_INT (d->comparison);
+
+ pat = GEN_FCN (d->icode) (target, op0, op1, op2);
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ return target;
+}
+
+/* Subroutine of ix86_expand_builtin to take care of ptest insns. */
+
+static rtx
+ix86_expand_sse_ptest (const struct builtin_description *d, tree exp,
+ rtx target)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree arg1 = CALL_EXPR_ARG (exp, 1);
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ enum machine_mode mode0 = insn_data[d->icode].operand[0].mode;
+ enum machine_mode mode1 = insn_data[d->icode].operand[1].mode;
+ enum rtx_code comparison = d->comparison;
+
+ if (VECTOR_MODE_P (mode0))
+ op0 = safe_vector_operand (op0, mode0);
+ if (VECTOR_MODE_P (mode1))
+ op1 = safe_vector_operand (op1, mode1);
+
+ target = gen_reg_rtx (SImode);
+ emit_move_insn (target, const0_rtx);
+ target = gen_rtx_SUBREG (QImode, target, 0);
+
+ if ((optimize && !register_operand (op0, mode0))
+ || !insn_data[d->icode].operand[0].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ if ((optimize && !register_operand (op1, mode1))
+ || !insn_data[d->icode].operand[1].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+
+ pat = GEN_FCN (d->icode) (op0, op1);
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ emit_insn (gen_rtx_SET (VOIDmode,
+ gen_rtx_STRICT_LOW_PART (VOIDmode, target),
+ gen_rtx_fmt_ee (comparison, QImode,
+ SET_DEST (pat),
+ const0_rtx)));
+
+ return SUBREG_REG (target);
+}
+
+/* Subroutine of ix86_expand_builtin to take care of pcmpestr[im] insns. */
+
+static rtx
+ix86_expand_sse_pcmpestr (const struct builtin_description *d,
+ tree exp, rtx target)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree arg1 = CALL_EXPR_ARG (exp, 1);
+ tree arg2 = CALL_EXPR_ARG (exp, 2);
+ tree arg3 = CALL_EXPR_ARG (exp, 3);
+ tree arg4 = CALL_EXPR_ARG (exp, 4);
+ rtx scratch0, scratch1;
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ rtx op2 = expand_normal (arg2);
+ rtx op3 = expand_normal (arg3);
+ rtx op4 = expand_normal (arg4);
+ enum machine_mode tmode0, tmode1, modev2, modei3, modev4, modei5, modeimm;
+
+ tmode0 = insn_data[d->icode].operand[0].mode;
+ tmode1 = insn_data[d->icode].operand[1].mode;
+ modev2 = insn_data[d->icode].operand[2].mode;
+ modei3 = insn_data[d->icode].operand[3].mode;
+ modev4 = insn_data[d->icode].operand[4].mode;
+ modei5 = insn_data[d->icode].operand[5].mode;
+ modeimm = insn_data[d->icode].operand[6].mode;
+
+ if (VECTOR_MODE_P (modev2))
+ op0 = safe_vector_operand (op0, modev2);
+ if (VECTOR_MODE_P (modev4))
+ op2 = safe_vector_operand (op2, modev4);
+
+ if (!insn_data[d->icode].operand[2].predicate (op0, modev2))
+ op0 = copy_to_mode_reg (modev2, op0);
+ if (!insn_data[d->icode].operand[3].predicate (op1, modei3))
+ op1 = copy_to_mode_reg (modei3, op1);
+ if ((optimize && !register_operand (op2, modev4))
+ || !insn_data[d->icode].operand[4].predicate (op2, modev4))
+ op2 = copy_to_mode_reg (modev4, op2);
+ if (!insn_data[d->icode].operand[5].predicate (op3, modei5))
+ op3 = copy_to_mode_reg (modei5, op3);
+
+ if (!insn_data[d->icode].operand[6].predicate (op4, modeimm))
+ {
+ error ("the fifth argument must be an 8-bit immediate");
+ return const0_rtx;
+ }
+
+ if (d->code == IX86_BUILTIN_PCMPESTRI128)
+ {
+ if (optimize || !target
+ || GET_MODE (target) != tmode0
+ || !insn_data[d->icode].operand[0].predicate (target, tmode0))
+ target = gen_reg_rtx (tmode0);
+
+ scratch1 = gen_reg_rtx (tmode1);
+
+ pat = GEN_FCN (d->icode) (target, scratch1, op0, op1, op2, op3, op4);
+ }
+ else if (d->code == IX86_BUILTIN_PCMPESTRM128)
+ {
+ if (optimize || !target
+ || GET_MODE (target) != tmode1
+ || !insn_data[d->icode].operand[1].predicate (target, tmode1))
+ target = gen_reg_rtx (tmode1);
+
+ scratch0 = gen_reg_rtx (tmode0);
+
+ pat = GEN_FCN (d->icode) (scratch0, target, op0, op1, op2, op3, op4);
+ }
+ else
+ {
+ gcc_assert (d->flag);
+
+ scratch0 = gen_reg_rtx (tmode0);
+ scratch1 = gen_reg_rtx (tmode1);
+
+ pat = GEN_FCN (d->icode) (scratch0, scratch1, op0, op1, op2, op3, op4);
+ }
+
+ if (! pat)
+ return 0;
+
+ emit_insn (pat);
+
+ if (d->flag)
+ {
+ target = gen_reg_rtx (SImode);
+ emit_move_insn (target, const0_rtx);
+ target = gen_rtx_SUBREG (QImode, target, 0);
+
+ emit_insn
+ (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target),
+ gen_rtx_fmt_ee (EQ, QImode,
+ gen_rtx_REG ((enum machine_mode) d->flag,
+ FLAGS_REG),
+ const0_rtx)));
+ return SUBREG_REG (target);
+ }
+ else
+ return target;
+}
+
+
+/* Subroutine of ix86_expand_builtin to take care of pcmpistr[im] insns. */
+
+static rtx
+ix86_expand_sse_pcmpistr (const struct builtin_description *d,
+ tree exp, rtx target)
+{
+ rtx pat;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree arg1 = CALL_EXPR_ARG (exp, 1);
+ tree arg2 = CALL_EXPR_ARG (exp, 2);
+ rtx scratch0, scratch1;
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ rtx op2 = expand_normal (arg2);
+ enum machine_mode tmode0, tmode1, modev2, modev3, modeimm;
+
+ tmode0 = insn_data[d->icode].operand[0].mode;
+ tmode1 = insn_data[d->icode].operand[1].mode;
+ modev2 = insn_data[d->icode].operand[2].mode;
+ modev3 = insn_data[d->icode].operand[3].mode;
+ modeimm = insn_data[d->icode].operand[4].mode;
+
+ if (VECTOR_MODE_P (modev2))
+ op0 = safe_vector_operand (op0, modev2);
+ if (VECTOR_MODE_P (modev3))
+ op1 = safe_vector_operand (op1, modev3);
+
+ if (!insn_data[d->icode].operand[2].predicate (op0, modev2))
+ op0 = copy_to_mode_reg (modev2, op0);
+ if ((optimize && !register_operand (op1, modev3))
+ || !insn_data[d->icode].operand[3].predicate (op1, modev3))
+ op1 = copy_to_mode_reg (modev3, op1);
+
+ if (!insn_data[d->icode].operand[4].predicate (op2, modeimm))
+ {
+ error ("the third argument must be an 8-bit immediate");
+ return const0_rtx;
+ }
+
+ if (d->code == IX86_BUILTIN_PCMPISTRI128)
+ {
+ if (optimize || !target
+ || GET_MODE (target) != tmode0
+ || !insn_data[d->icode].operand[0].predicate (target, tmode0))
+ target = gen_reg_rtx (tmode0);
+
+ scratch1 = gen_reg_rtx (tmode1);
+
+ pat = GEN_FCN (d->icode) (target, scratch1, op0, op1, op2);
+ }
+ else if (d->code == IX86_BUILTIN_PCMPISTRM128)
+ {
+ if (optimize || !target
+ || GET_MODE (target) != tmode1
+ || !insn_data[d->icode].operand[1].predicate (target, tmode1))
+ target = gen_reg_rtx (tmode1);
+
+ scratch0 = gen_reg_rtx (tmode0);
+
+ pat = GEN_FCN (d->icode) (scratch0, target, op0, op1, op2);
+ }
+ else
+ {
+ gcc_assert (d->flag);
+
+ scratch0 = gen_reg_rtx (tmode0);
+ scratch1 = gen_reg_rtx (tmode1);
+
+ pat = GEN_FCN (d->icode) (scratch0, scratch1, op0, op1, op2);
+ }
+
+ if (! pat)
+ return 0;
+
+ emit_insn (pat);
+
+ if (d->flag)
+ {
+ target = gen_reg_rtx (SImode);
+ emit_move_insn (target, const0_rtx);
+ target = gen_rtx_SUBREG (QImode, target, 0);
+
+ emit_insn
+ (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target),
+ gen_rtx_fmt_ee (EQ, QImode,
+ gen_rtx_REG ((enum machine_mode) d->flag,
+ FLAGS_REG),
+ const0_rtx)));
+ return SUBREG_REG (target);
+ }
+ else
+ return target;
+}
+
+/* Subroutine of ix86_expand_builtin to take care of insns with
+ variable number of operands. */
+
+static rtx
+ix86_expand_args_builtin (const struct builtin_description *d,
+ tree exp, rtx target)
+{
+ rtx pat, real_target;
+ unsigned int i, nargs;
+ unsigned int nargs_constant = 0;
+ unsigned int mask_pos = 0;
+ int num_memory = 0;
+ struct
+ {
+ rtx op;
+ enum machine_mode mode;
+ } args[6];
+ bool last_arg_count = false;
+ enum insn_code icode = d->icode;
+ const struct insn_data_d *insn_p = &insn_data[icode];
+ enum machine_mode tmode = insn_p->operand[0].mode;
+ enum machine_mode rmode = VOIDmode;
+ bool swap = false;
+ enum rtx_code comparison = d->comparison;
+
+ switch ((enum ix86_builtin_func_type) d->flag)
+ {
+ case V2DF_FTYPE_V2DF_ROUND:
+ case V4DF_FTYPE_V4DF_ROUND:
+ case V4SF_FTYPE_V4SF_ROUND:
+ case V8SF_FTYPE_V8SF_ROUND:
+ case V4SI_FTYPE_V4SF_ROUND:
+ case V8SI_FTYPE_V8SF_ROUND:
+ return ix86_expand_sse_round (d, exp, target);
+ case V4SI_FTYPE_V2DF_V2DF_ROUND:
+ case V8SI_FTYPE_V4DF_V4DF_ROUND:
+ case V16SI_FTYPE_V8DF_V8DF_ROUND:
+ return ix86_expand_sse_round_vec_pack_sfix (d, exp, target);
+ case INT_FTYPE_V8SF_V8SF_PTEST:
+ case INT_FTYPE_V4DI_V4DI_PTEST:
+ case INT_FTYPE_V4DF_V4DF_PTEST:
+ case INT_FTYPE_V4SF_V4SF_PTEST:
+ case INT_FTYPE_V2DI_V2DI_PTEST:
+ case INT_FTYPE_V2DF_V2DF_PTEST:
+ return ix86_expand_sse_ptest (d, exp, target);
+ case FLOAT128_FTYPE_FLOAT128:
+ case FLOAT_FTYPE_FLOAT:
+ case INT_FTYPE_INT:
+ case UINT64_FTYPE_INT:
+ case UINT16_FTYPE_UINT16:
+ case INT64_FTYPE_INT64:
+ case INT64_FTYPE_V4SF:
+ case INT64_FTYPE_V2DF:
+ case INT_FTYPE_V16QI:
+ case INT_FTYPE_V8QI:
+ case INT_FTYPE_V8SF:
+ case INT_FTYPE_V4DF:
+ case INT_FTYPE_V4SF:
+ case INT_FTYPE_V2DF:
+ case INT_FTYPE_V32QI:
+ case V16QI_FTYPE_V16QI:
+ case V8SI_FTYPE_V8SF:
+ case V8SI_FTYPE_V4SI:
+ case V8HI_FTYPE_V8HI:
+ case V8HI_FTYPE_V16QI:
+ case V8QI_FTYPE_V8QI:
+ case V8SF_FTYPE_V8SF:
+ case V8SF_FTYPE_V8SI:
+ case V8SF_FTYPE_V4SF:
+ case V8SF_FTYPE_V8HI:
+ case V4SI_FTYPE_V4SI:
+ case V4SI_FTYPE_V16QI:
+ case V4SI_FTYPE_V4SF:
+ case V4SI_FTYPE_V8SI:
+ case V4SI_FTYPE_V8HI:
+ case V4SI_FTYPE_V4DF:
+ case V4SI_FTYPE_V2DF:
+ case V4HI_FTYPE_V4HI:
+ case V4DF_FTYPE_V4DF:
+ case V4DF_FTYPE_V4SI:
+ case V4DF_FTYPE_V4SF:
+ case V4DF_FTYPE_V2DF:
+ case V4SF_FTYPE_V4SF:
+ case V4SF_FTYPE_V4SI:
+ case V4SF_FTYPE_V8SF:
+ case V4SF_FTYPE_V4DF:
+ case V4SF_FTYPE_V8HI:
+ case V4SF_FTYPE_V2DF:
+ case V2DI_FTYPE_V2DI:
+ case V2DI_FTYPE_V16QI:
+ case V2DI_FTYPE_V8HI:
+ case V2DI_FTYPE_V4SI:
+ case V2DF_FTYPE_V2DF:
+ case V2DF_FTYPE_V4SI:
+ case V2DF_FTYPE_V4DF:
+ case V2DF_FTYPE_V4SF:
+ case V2DF_FTYPE_V2SI:
+ case V2SI_FTYPE_V2SI:
+ case V2SI_FTYPE_V4SF:
+ case V2SI_FTYPE_V2SF:
+ case V2SI_FTYPE_V2DF:
+ case V2SF_FTYPE_V2SF:
+ case V2SF_FTYPE_V2SI:
+ case V32QI_FTYPE_V32QI:
+ case V32QI_FTYPE_V16QI:
+ case V16HI_FTYPE_V16HI:
+ case V16HI_FTYPE_V8HI:
+ case V8SI_FTYPE_V8SI:
+ case V16HI_FTYPE_V16QI:
+ case V8SI_FTYPE_V16QI:
+ case V4DI_FTYPE_V16QI:
+ case V8SI_FTYPE_V8HI:
+ case V4DI_FTYPE_V8HI:
+ case V4DI_FTYPE_V4SI:
+ case V4DI_FTYPE_V2DI:
+ case HI_FTYPE_HI:
+ case UINT_FTYPE_V2DF:
+ case UINT_FTYPE_V4SF:
+ case UINT64_FTYPE_V2DF:
+ case UINT64_FTYPE_V4SF:
+ case V16QI_FTYPE_V8DI:
+ case V16HI_FTYPE_V16SI:
+ case V16SI_FTYPE_HI:
+ case V16SI_FTYPE_V16SI:
+ case V16SI_FTYPE_INT:
+ case V16SF_FTYPE_FLOAT:
+ case V16SF_FTYPE_V4SF:
+ case V16SF_FTYPE_V16SF:
+ case V8HI_FTYPE_V8DI:
+ case V8UHI_FTYPE_V8UHI:
+ case V8SI_FTYPE_V8DI:
+ case V8USI_FTYPE_V8USI:
+ case V8SF_FTYPE_V8DF:
+ case V8DI_FTYPE_QI:
+ case V8DI_FTYPE_INT64:
+ case V8DI_FTYPE_V4DI:
+ case V8DI_FTYPE_V8DI:
+ case V8DF_FTYPE_DOUBLE:
+ case V8DF_FTYPE_V4DF:
+ case V8DF_FTYPE_V8DF:
+ case V8DF_FTYPE_V8SI:
+ nargs = 1;
+ break;
+ case V4SF_FTYPE_V4SF_VEC_MERGE:
+ case V2DF_FTYPE_V2DF_VEC_MERGE:
+ return ix86_expand_unop_vec_merge_builtin (icode, exp, target);
+ case FLOAT128_FTYPE_FLOAT128_FLOAT128:
+ case V16QI_FTYPE_V16QI_V16QI:
+ case V16QI_FTYPE_V8HI_V8HI:
+ case V16SI_FTYPE_V16SI_V16SI:
+ case V16SF_FTYPE_V16SF_V16SF:
+ case V16SF_FTYPE_V16SF_V16SI:
+ case V8QI_FTYPE_V8QI_V8QI:
+ case V8QI_FTYPE_V4HI_V4HI:
+ case V8HI_FTYPE_V8HI_V8HI:
+ case V8HI_FTYPE_V16QI_V16QI:
+ case V8HI_FTYPE_V4SI_V4SI:
+ case V8SF_FTYPE_V8SF_V8SF:
+ case V8SF_FTYPE_V8SF_V8SI:
+ case V8DI_FTYPE_V8DI_V8DI:
+ case V8DF_FTYPE_V8DF_V8DF:
+ case V8DF_FTYPE_V8DF_V8DI:
+ case V4SI_FTYPE_V4SI_V4SI:
+ case V4SI_FTYPE_V8HI_V8HI:
+ case V4SI_FTYPE_V4SF_V4SF:
+ case V4SI_FTYPE_V2DF_V2DF:
+ case V4HI_FTYPE_V4HI_V4HI:
+ case V4HI_FTYPE_V8QI_V8QI:
+ case V4HI_FTYPE_V2SI_V2SI:
+ case V4DF_FTYPE_V4DF_V4DF:
+ case V4DF_FTYPE_V4DF_V4DI:
+ case V4SF_FTYPE_V4SF_V4SF:
+ case V4SF_FTYPE_V4SF_V4SI:
+ case V4SF_FTYPE_V4SF_V2SI:
+ case V4SF_FTYPE_V4SF_V2DF:
+ case V4SF_FTYPE_V4SF_UINT:
+ case V4SF_FTYPE_V4SF_UINT64:
+ case V4SF_FTYPE_V4SF_DI:
+ case V4SF_FTYPE_V4SF_SI:
+ case V2DI_FTYPE_V2DI_V2DI:
+ case V2DI_FTYPE_V16QI_V16QI:
+ case V2DI_FTYPE_V4SI_V4SI:
+ case V2UDI_FTYPE_V4USI_V4USI:
+ case V2DI_FTYPE_V2DI_V16QI:
+ case V2DI_FTYPE_V2DF_V2DF:
+ case V2SI_FTYPE_V2SI_V2SI:
+ case V2SI_FTYPE_V4HI_V4HI:
+ case V2SI_FTYPE_V2SF_V2SF:
+ case V2DF_FTYPE_V2DF_V2DF:
+ case V2DF_FTYPE_V2DF_V4SF:
+ case V2DF_FTYPE_V2DF_V2DI:
+ case V2DF_FTYPE_V2DF_DI:
+ case V2DF_FTYPE_V2DF_SI:
+ case V2DF_FTYPE_V2DF_UINT:
+ case V2DF_FTYPE_V2DF_UINT64:
+ case V2SF_FTYPE_V2SF_V2SF:
+ case V1DI_FTYPE_V1DI_V1DI:
+ case V1DI_FTYPE_V8QI_V8QI:
+ case V1DI_FTYPE_V2SI_V2SI:
+ case V32QI_FTYPE_V16HI_V16HI:
+ case V16HI_FTYPE_V8SI_V8SI:
+ case V32QI_FTYPE_V32QI_V32QI:
+ case V16HI_FTYPE_V32QI_V32QI:
+ case V16HI_FTYPE_V16HI_V16HI:
+ case V8SI_FTYPE_V4DF_V4DF:
+ case V8SI_FTYPE_V8SI_V8SI:
+ case V8SI_FTYPE_V16HI_V16HI:
+ case V4DI_FTYPE_V4DI_V4DI:
+ case V4DI_FTYPE_V8SI_V8SI:
+ case V4UDI_FTYPE_V8USI_V8USI:
+ case QI_FTYPE_V8DI_V8DI:
+ case HI_FTYPE_V16SI_V16SI:
+ if (comparison == UNKNOWN)
+ return ix86_expand_binop_builtin (icode, exp, target);
+ nargs = 2;
+ break;
+ case V4SF_FTYPE_V4SF_V4SF_SWAP:
+ case V2DF_FTYPE_V2DF_V2DF_SWAP:
+ gcc_assert (comparison != UNKNOWN);
+ nargs = 2;
+ swap = true;
+ break;
+ case V16HI_FTYPE_V16HI_V8HI_COUNT:
+ case V16HI_FTYPE_V16HI_SI_COUNT:
+ case V8SI_FTYPE_V8SI_V4SI_COUNT:
+ case V8SI_FTYPE_V8SI_SI_COUNT:
+ case V4DI_FTYPE_V4DI_V2DI_COUNT:
+ case V4DI_FTYPE_V4DI_INT_COUNT:
+ case V8HI_FTYPE_V8HI_V8HI_COUNT:
+ case V8HI_FTYPE_V8HI_SI_COUNT:
+ case V4SI_FTYPE_V4SI_V4SI_COUNT:
+ case V4SI_FTYPE_V4SI_SI_COUNT:
+ case V4HI_FTYPE_V4HI_V4HI_COUNT:
+ case V4HI_FTYPE_V4HI_SI_COUNT:
+ case V2DI_FTYPE_V2DI_V2DI_COUNT:
+ case V2DI_FTYPE_V2DI_SI_COUNT:
+ case V2SI_FTYPE_V2SI_V2SI_COUNT:
+ case V2SI_FTYPE_V2SI_SI_COUNT:
+ case V1DI_FTYPE_V1DI_V1DI_COUNT:
+ case V1DI_FTYPE_V1DI_SI_COUNT:
+ nargs = 2;
+ last_arg_count = true;
+ break;
+ case UINT64_FTYPE_UINT64_UINT64:
+ case UINT_FTYPE_UINT_UINT:
+ case UINT_FTYPE_UINT_USHORT:
+ case UINT_FTYPE_UINT_UCHAR:
+ case UINT16_FTYPE_UINT16_INT:
+ case UINT8_FTYPE_UINT8_INT:
+ case HI_FTYPE_HI_HI:
+ case V16SI_FTYPE_V8DF_V8DF:
+ nargs = 2;
+ break;
+ case V2DI_FTYPE_V2DI_INT_CONVERT:
+ nargs = 2;
+ rmode = V1TImode;
+ nargs_constant = 1;
+ break;
+ case V4DI_FTYPE_V4DI_INT_CONVERT:
+ nargs = 2;
+ rmode = V2TImode;
+ nargs_constant = 1;
+ break;
+ case V8HI_FTYPE_V8HI_INT:
+ case V8HI_FTYPE_V8SF_INT:
+ case V16HI_FTYPE_V16SF_INT:
+ case V8HI_FTYPE_V4SF_INT:
+ case V8SF_FTYPE_V8SF_INT:
+ case V4SF_FTYPE_V16SF_INT:
+ case V16SF_FTYPE_V16SF_INT:
+ case V4SI_FTYPE_V4SI_INT:
+ case V4SI_FTYPE_V8SI_INT:
+ case V4HI_FTYPE_V4HI_INT:
+ case V4DF_FTYPE_V4DF_INT:
+ case V4DF_FTYPE_V8DF_INT:
+ case V4SF_FTYPE_V4SF_INT:
+ case V4SF_FTYPE_V8SF_INT:
+ case V2DI_FTYPE_V2DI_INT:
+ case V2DF_FTYPE_V2DF_INT:
+ case V2DF_FTYPE_V4DF_INT:
+ case V16HI_FTYPE_V16HI_INT:
+ case V8SI_FTYPE_V8SI_INT:
+ case V16SI_FTYPE_V16SI_INT:
+ case V4SI_FTYPE_V16SI_INT:
+ case V4DI_FTYPE_V4DI_INT:
+ case V2DI_FTYPE_V4DI_INT:
+ case V4DI_FTYPE_V8DI_INT:
+ case HI_FTYPE_HI_INT:
+ nargs = 2;
+ nargs_constant = 1;
+ break;
+ case V16QI_FTYPE_V16QI_V16QI_V16QI:
+ case V8SF_FTYPE_V8SF_V8SF_V8SF:
+ case V4DF_FTYPE_V4DF_V4DF_V4DF:
+ case V4SF_FTYPE_V4SF_V4SF_V4SF:
+ case V2DF_FTYPE_V2DF_V2DF_V2DF:
+ case V32QI_FTYPE_V32QI_V32QI_V32QI:
+ case HI_FTYPE_V16SI_V16SI_HI:
+ case QI_FTYPE_V8DI_V8DI_QI:
+ case V16HI_FTYPE_V16SI_V16HI_HI:
+ case V16QI_FTYPE_V16SI_V16QI_HI:
+ case V16QI_FTYPE_V8DI_V16QI_QI:
+ case V16SF_FTYPE_V16SF_V16SF_HI:
+ case V16SF_FTYPE_V16SF_V16SF_V16SF:
+ case V16SF_FTYPE_V16SF_V16SI_V16SF:
+ case V16SF_FTYPE_V16SI_V16SF_HI:
+ case V16SF_FTYPE_V16SI_V16SF_V16SF:
+ case V16SF_FTYPE_V4SF_V16SF_HI:
+ case V16SI_FTYPE_SI_V16SI_HI:
+ case V16SI_FTYPE_V16HI_V16SI_HI:
+ case V16SI_FTYPE_V16QI_V16SI_HI:
+ case V16SI_FTYPE_V16SF_V16SI_HI:
+ case V16SI_FTYPE_V16SI_V16SI_HI:
+ case V16SI_FTYPE_V16SI_V16SI_V16SI:
+ case V16SI_FTYPE_V4SI_V16SI_HI:
+ case V2DI_FTYPE_V2DI_V2DI_V2DI:
+ case V4DI_FTYPE_V4DI_V4DI_V4DI:
+ case V8DF_FTYPE_V2DF_V8DF_QI:
+ case V8DF_FTYPE_V4DF_V8DF_QI:
+ case V8DF_FTYPE_V8DF_V8DF_QI:
+ case V8DF_FTYPE_V8DF_V8DF_V8DF:
+ case V8DF_FTYPE_V8DF_V8DI_V8DF:
+ case V8DF_FTYPE_V8DI_V8DF_V8DF:
+ case V8DF_FTYPE_V8SF_V8DF_QI:
+ case V8DF_FTYPE_V8SI_V8DF_QI:
+ case V8DI_FTYPE_DI_V8DI_QI:
+ case V8DI_FTYPE_V16QI_V8DI_QI:
+ case V8DI_FTYPE_V2DI_V8DI_QI:
+ case V8DI_FTYPE_V4DI_V8DI_QI:
+ case V8DI_FTYPE_V8DI_V8DI_QI:
+ case V8DI_FTYPE_V8DI_V8DI_V8DI:
+ case V8DI_FTYPE_V8HI_V8DI_QI:
+ case V8DI_FTYPE_V8SI_V8DI_QI:
+ case V8HI_FTYPE_V8DI_V8HI_QI:
+ case V8SF_FTYPE_V8DF_V8SF_QI:
+ case V8SI_FTYPE_V8DF_V8SI_QI:
+ case V8SI_FTYPE_V8DI_V8SI_QI:
+ case V4SI_FTYPE_V4SI_V4SI_V4SI:
+ nargs = 3;
+ break;
+ case V32QI_FTYPE_V32QI_V32QI_INT:
+ case V16HI_FTYPE_V16HI_V16HI_INT:
+ case V16QI_FTYPE_V16QI_V16QI_INT:
+ case V4DI_FTYPE_V4DI_V4DI_INT:
+ case V8HI_FTYPE_V8HI_V8HI_INT:
+ case V8SI_FTYPE_V8SI_V8SI_INT:
+ case V8SI_FTYPE_V8SI_V4SI_INT:
+ case V8SF_FTYPE_V8SF_V8SF_INT:
+ case V8SF_FTYPE_V8SF_V4SF_INT:
+ case V4SI_FTYPE_V4SI_V4SI_INT:
+ case V4DF_FTYPE_V4DF_V4DF_INT:
+ case V16SF_FTYPE_V16SF_V16SF_INT:
+ case V16SF_FTYPE_V16SF_V4SF_INT:
+ case V16SI_FTYPE_V16SI_V4SI_INT:
+ case V4DF_FTYPE_V4DF_V2DF_INT:
+ case V4SF_FTYPE_V4SF_V4SF_INT:
+ case V2DI_FTYPE_V2DI_V2DI_INT:
+ case V4DI_FTYPE_V4DI_V2DI_INT:
+ case V2DF_FTYPE_V2DF_V2DF_INT:
+ case QI_FTYPE_V8DI_V8DI_INT:
+ case QI_FTYPE_V8DF_V8DF_INT:
+ case QI_FTYPE_V2DF_V2DF_INT:
+ case QI_FTYPE_V4SF_V4SF_INT:
+ case HI_FTYPE_V16SI_V16SI_INT:
+ case HI_FTYPE_V16SF_V16SF_INT:
+ nargs = 3;
+ nargs_constant = 1;
+ break;
+ case V4DI_FTYPE_V4DI_V4DI_INT_CONVERT:
+ nargs = 3;
+ rmode = V4DImode;
+ nargs_constant = 1;
+ break;
+ case V2DI_FTYPE_V2DI_V2DI_INT_CONVERT:
+ nargs = 3;
+ rmode = V2DImode;
+ nargs_constant = 1;
+ break;
+ case V1DI_FTYPE_V1DI_V1DI_INT_CONVERT:
+ nargs = 3;
+ rmode = DImode;
+ nargs_constant = 1;
+ break;
+ case V2DI_FTYPE_V2DI_UINT_UINT:
+ nargs = 3;
+ nargs_constant = 2;
+ break;
+ case V16SF_FTYPE_V16SF_V16SF_V16SF_HI:
+ case V16SF_FTYPE_V16SF_V16SI_V16SF_HI:
+ case V16SF_FTYPE_V16SI_V16SF_V16SF_HI:
+ case V16SI_FTYPE_V16SI_V16SI_V16SI_HI:
+ case V16SI_FTYPE_V16SI_V4SI_V16SI_HI:
+ case V2DF_FTYPE_V2DF_V2DF_V2DF_QI:
+ case V2DF_FTYPE_V2DF_V4SF_V2DF_QI:
+ case V4SF_FTYPE_V4SF_V2DF_V4SF_QI:
+ case V4SF_FTYPE_V4SF_V4SF_V4SF_QI:
+ case V8DF_FTYPE_V8DF_V8DF_V8DF_QI:
+ case V8DF_FTYPE_V8DF_V8DI_V8DF_QI:
+ case V8DF_FTYPE_V8DI_V8DF_V8DF_QI:
+ case V8DI_FTYPE_V16SI_V16SI_V8DI_QI:
+ case V8DI_FTYPE_V8DI_SI_V8DI_V8DI:
+ case V8DI_FTYPE_V8DI_V2DI_V8DI_QI:
+ case V8DI_FTYPE_V8DI_V8DI_V8DI_QI:
+ nargs = 4;
+ break;
+ case V2DF_FTYPE_V2DF_V2DF_V2DI_INT:
+ case V4DF_FTYPE_V4DF_V4DF_V4DI_INT:
+ case V4SF_FTYPE_V4SF_V4SF_V4SI_INT:
+ case V8SF_FTYPE_V8SF_V8SF_V8SI_INT:
+ case V16SF_FTYPE_V16SF_V16SF_V16SI_INT:
+ nargs = 4;
+ nargs_constant = 1;
+ break;
+ case QI_FTYPE_V2DF_V2DF_INT_QI:
+ case QI_FTYPE_V4SF_V4SF_INT_QI:
+ nargs = 4;
+ mask_pos = 1;
+ nargs_constant = 1;
+ break;
+ case V2DI_FTYPE_V2DI_V2DI_UINT_UINT:
+ nargs = 4;
+ nargs_constant = 2;
+ break;
+ case UCHAR_FTYPE_UCHAR_UINT_UINT_PUNSIGNED:
+ case UCHAR_FTYPE_UCHAR_ULONGLONG_ULONGLONG_PULONGLONG:
+ nargs = 4;
+ break;
+ case QI_FTYPE_V8DI_V8DI_INT_QI:
+ case HI_FTYPE_V16SI_V16SI_INT_HI:
+ case QI_FTYPE_V8DF_V8DF_INT_QI:
+ case HI_FTYPE_V16SF_V16SF_INT_HI:
+ mask_pos = 1;
+ nargs = 4;
+ nargs_constant = 1;
+ break;
+ case V8DF_FTYPE_V8DF_INT_V8DF_QI:
+ case V16SF_FTYPE_V16SF_INT_V16SF_HI:
+ case V16HI_FTYPE_V16SF_INT_V16HI_HI:
+ case V16SI_FTYPE_V16SI_INT_V16SI_HI:
+ case V4SI_FTYPE_V16SI_INT_V4SI_QI:
+ case V4DI_FTYPE_V8DI_INT_V4DI_QI:
+ case V4DF_FTYPE_V8DF_INT_V4DF_QI:
+ case V4SF_FTYPE_V16SF_INT_V4SF_QI:
+ case V8DI_FTYPE_V8DI_INT_V8DI_QI:
+ nargs = 4;
+ mask_pos = 2;
+ nargs_constant = 1;
+ break;
+ case V16SF_FTYPE_V16SF_V4SF_INT_V16SF_HI:
+ case V16SI_FTYPE_V16SI_V4SI_INT_V16SI_HI:
+ case V8DF_FTYPE_V8DF_V8DF_INT_V8DF_QI:
+ case V8DI_FTYPE_V8DI_V8DI_INT_V8DI_QI:
+ case V16SF_FTYPE_V16SF_V16SF_INT_V16SF_HI:
+ case V16SI_FTYPE_V16SI_V16SI_INT_V16SI_HI:
+ case V4SF_FTYPE_V4SF_V4SF_INT_V4SF_QI:
+ case V2DF_FTYPE_V2DF_V2DF_INT_V2DF_QI:
+ case V8DF_FTYPE_V8DF_V4DF_INT_V8DF_QI:
+ case V8DI_FTYPE_V8DI_V4DI_INT_V8DI_QI:
+ nargs = 5;
+ mask_pos = 2;
+ nargs_constant = 1;
+ break;
+ case V8DI_FTYPE_V8DI_V8DI_V8DI_INT_QI:
+ case V16SF_FTYPE_V16SF_V16SF_V16SI_INT_HI:
+ case V16SI_FTYPE_V16SI_V16SI_V16SI_INT_HI:
+ case V2DF_FTYPE_V2DF_V2DF_V2DI_INT_QI:
+ case V4SF_FTYPE_V4SF_V4SF_V4SI_INT_QI:
+ nargs = 5;
+ mask_pos = 1;
+ nargs_constant = 1;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ gcc_assert (nargs <= ARRAY_SIZE (args));
+
+ if (comparison != UNKNOWN)
+ {
+ gcc_assert (nargs == 2);
+ return ix86_expand_sse_compare (d, exp, target, swap);
+ }
+
+ if (rmode == VOIDmode || rmode == tmode)
+ {
+ if (optimize
+ || target == 0
+ || GET_MODE (target) != tmode
+ || !insn_p->operand[0].predicate (target, tmode))
+ target = gen_reg_rtx (tmode);
+ real_target = target;
+ }
+ else
+ {
+ real_target = gen_reg_rtx (tmode);
+ target = simplify_gen_subreg (rmode, real_target, tmode, 0);
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ tree arg = CALL_EXPR_ARG (exp, i);
+ rtx op = expand_normal (arg);
+ enum machine_mode mode = insn_p->operand[i + 1].mode;
+ bool match = insn_p->operand[i + 1].predicate (op, mode);
+
+ if (last_arg_count && (i + 1) == nargs)
+ {
+ /* SIMD shift insns take either an 8-bit immediate or
+ register as count. But builtin functions take int as
+ count. If count doesn't match, we put it in register. */
+ if (!match)
+ {
+ op = simplify_gen_subreg (SImode, op, GET_MODE (op), 0);
+ if (!insn_p->operand[i + 1].predicate (op, mode))
+ op = copy_to_reg (op);
+ }
+ }
+ else if ((mask_pos && (nargs - i - mask_pos) == nargs_constant) ||
+ (!mask_pos && (nargs - i) <= nargs_constant))
+ {
+ if (!match)
+ switch (icode)
+ {
+ case CODE_FOR_avx2_inserti128:
+ case CODE_FOR_avx2_extracti128:
+ error ("the last argument must be an 1-bit immediate");
+ return const0_rtx;
+
+ case CODE_FOR_avx512f_cmpv8di3_mask:
+ case CODE_FOR_avx512f_cmpv16si3_mask:
+ case CODE_FOR_avx512f_ucmpv8di3_mask:
+ case CODE_FOR_avx512f_ucmpv16si3_mask:
+ error ("the last argument must be a 3-bit immediate");
+ return const0_rtx;
+
+ case CODE_FOR_sse4_1_roundsd:
+ case CODE_FOR_sse4_1_roundss:
+
+ case CODE_FOR_sse4_1_roundpd:
+ case CODE_FOR_sse4_1_roundps:
+ case CODE_FOR_avx_roundpd256:
+ case CODE_FOR_avx_roundps256:
+
+ case CODE_FOR_sse4_1_roundpd_vec_pack_sfix:
+ case CODE_FOR_sse4_1_roundps_sfix:
+ case CODE_FOR_avx_roundpd_vec_pack_sfix256:
+ case CODE_FOR_avx_roundps_sfix256:
+
+ case CODE_FOR_sse4_1_blendps:
+ case CODE_FOR_avx_blendpd256:
+ case CODE_FOR_avx_vpermilv4df:
+ case CODE_FOR_avx512f_getmantv8df_mask:
+ case CODE_FOR_avx512f_getmantv16sf_mask:
+ error ("the last argument must be a 4-bit immediate");
+ return const0_rtx;
+
+ case CODE_FOR_sha1rnds4:
+ case CODE_FOR_sse4_1_blendpd:
+ case CODE_FOR_avx_vpermilv2df:
+ case CODE_FOR_xop_vpermil2v2df3:
+ case CODE_FOR_xop_vpermil2v4sf3:
+ case CODE_FOR_xop_vpermil2v4df3:
+ case CODE_FOR_xop_vpermil2v8sf3:
+ case CODE_FOR_avx512f_vinsertf32x4_mask:
+ case CODE_FOR_avx512f_vinserti32x4_mask:
+ case CODE_FOR_avx512f_vextractf32x4_mask:
+ case CODE_FOR_avx512f_vextracti32x4_mask:
+ error ("the last argument must be a 2-bit immediate");
+ return const0_rtx;
+
+ case CODE_FOR_avx_vextractf128v4df:
+ case CODE_FOR_avx_vextractf128v8sf:
+ case CODE_FOR_avx_vextractf128v8si:
+ case CODE_FOR_avx_vinsertf128v4df:
+ case CODE_FOR_avx_vinsertf128v8sf:
+ case CODE_FOR_avx_vinsertf128v8si:
+ case CODE_FOR_avx512f_vinsertf64x4_mask:
+ case CODE_FOR_avx512f_vinserti64x4_mask:
+ case CODE_FOR_avx512f_vextractf64x4_mask:
+ case CODE_FOR_avx512f_vextracti64x4_mask:
+ error ("the last argument must be a 1-bit immediate");
+ return const0_rtx;
+
+ case CODE_FOR_avx_vmcmpv2df3:
+ case CODE_FOR_avx_vmcmpv4sf3:
+ case CODE_FOR_avx_cmpv2df3:
+ case CODE_FOR_avx_cmpv4sf3:
+ case CODE_FOR_avx_cmpv4df3:
+ case CODE_FOR_avx_cmpv8sf3:
+ case CODE_FOR_avx512f_cmpv8df3_mask:
+ case CODE_FOR_avx512f_cmpv16sf3_mask:
+ case CODE_FOR_avx512f_vmcmpv2df3_mask:
+ case CODE_FOR_avx512f_vmcmpv4sf3_mask:
+ error ("the last argument must be a 5-bit immediate");
+ return const0_rtx;
+
+ default:
+ switch (nargs_constant)
+ {
+ case 2:
+ if ((mask_pos && (nargs - i - mask_pos) == nargs_constant) ||
+ (!mask_pos && (nargs - i) == nargs_constant))
+ {
+ error ("the next to last argument must be an 8-bit immediate");
+ break;
+ }
+ case 1:
+ error ("the last argument must be an 8-bit immediate");
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ return const0_rtx;
+ }
+ }
+ else
+ {
+ if (VECTOR_MODE_P (mode))
+ op = safe_vector_operand (op, mode);
+
+ /* If we aren't optimizing, only allow one memory operand to
+ be generated. */
+ if (memory_operand (op, mode))
+ num_memory++;
+
+ if (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
+ {
+ if (optimize || !match || num_memory > 1)
+ op = copy_to_mode_reg (mode, op);
+ }
+ else
+ {
+ op = copy_to_reg (op);
+ op = simplify_gen_subreg (mode, op, GET_MODE (op), 0);
+ }
+ }
+
+ args[i].op = op;
+ args[i].mode = mode;
+ }
+
+ switch (nargs)
+ {
+ case 1:
+ pat = GEN_FCN (icode) (real_target, args[0].op);
+ break;
+ case 2:
+ pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op);
+ break;
+ case 3:
+ pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op,
+ args[2].op);
+ break;
+ case 4:
+ pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op,
+ args[2].op, args[3].op);
+ break;
+ case 5:
+ pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op,
+ args[2].op, args[3].op, args[4].op);
+ case 6:
+ pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op,
+ args[2].op, args[3].op, args[4].op,
+ args[5].op);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (! pat)
+ return 0;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Transform pattern of following layout:
+ (parallel [
+ set (A B)
+ (unspec [C] UNSPEC_EMBEDDED_ROUNDING)])
+ ])
+ into:
+ (set (A B))
+
+ Or:
+ (parallel [ A B
+ ...
+ (unspec [C] UNSPEC_EMBEDDED_ROUNDING)
+ ...
+ ])
+ into:
+ (parallel [ A B ... ]) */
+
+static rtx
+ix86_erase_embedded_rounding (rtx pat)
+{
+ if (GET_CODE (pat) == INSN)
+ pat = PATTERN (pat);
+
+ gcc_assert (GET_CODE (pat) == PARALLEL);
+
+ if (XVECLEN (pat, 0) == 2)
+ {
+ rtx p0 = XVECEXP (pat, 0, 0);
+ rtx p1 = XVECEXP (pat, 0, 1);
+
+ gcc_assert (GET_CODE (p0) == SET
+ && GET_CODE (p1) == UNSPEC
+ && XINT (p1, 1) == UNSPEC_EMBEDDED_ROUNDING);
+
+ return p0;
+ }
+ else
+ {
+ rtx *res = XALLOCAVEC (rtx, XVECLEN (pat, 0));
+ int i = 0;
+ int j = 0;
+
+ for (; i < XVECLEN (pat, 0); ++i)
+ {
+ rtx elem = XVECEXP (pat, 0, i);
+ if (GET_CODE (elem) != UNSPEC
+ || XINT (elem, 1) != UNSPEC_EMBEDDED_ROUNDING)
+ res [j++] = elem;
+ }
+
+ /* No more than 1 occurence was removed. */
+ gcc_assert (j >= XVECLEN (pat, 0) - 1);
+
+ return gen_rtx_PARALLEL (GET_MODE (pat), gen_rtvec_v (j, res));
+ }
+}
+
+/* Subroutine of ix86_expand_round_builtin to take care of comi insns
+ with rounding. */
+static rtx
+ix86_expand_sse_comi_round (const struct builtin_description *d,
+ tree exp, rtx target)
+{
+ rtx pat, set_dst;
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree arg1 = CALL_EXPR_ARG (exp, 1);
+ tree arg2 = CALL_EXPR_ARG (exp, 2);
+ tree arg3 = CALL_EXPR_ARG (exp, 3);
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ rtx op2 = expand_normal (arg2);
+ rtx op3 = expand_normal (arg3);
+ enum insn_code icode = d->icode;
+ const struct insn_data_d *insn_p = &insn_data[icode];
+ enum machine_mode mode0 = insn_p->operand[0].mode;
+ enum machine_mode mode1 = insn_p->operand[1].mode;
+ enum rtx_code comparison = UNEQ;
+ bool need_ucomi = false;
+
+ /* See avxintrin.h for values. */
+ enum rtx_code comi_comparisons[32] =
+ {
+ UNEQ, GT, GE, UNORDERED, LTGT, UNLE, UNLT, ORDERED, UNEQ, UNLT,
+ UNLE, LT, LTGT, GE, GT, LT, UNEQ, GT, GE, UNORDERED, LTGT, UNLE,
+ UNLT, ORDERED, UNEQ, UNLT, UNLE, LT, LTGT, GE, GT, LT
+ };
+ bool need_ucomi_values[32] =
+ {
+ true, false, false, true, true, false, false, true,
+ true, false, false, true, true, false, false, true,
+ false, true, true, false, false, true, true, false,
+ false, true, true, false, false, true, true, false
+ };
+
+ if (!CONST_INT_P (op2))
+ {
+ error ("the third argument must be comparison constant");
+ return const0_rtx;
+ }
+ if (INTVAL (op2) < 0 || INTVAL (op2) >= 32)
+ {
+ error ("incorect comparison mode");
+ return const0_rtx;
+ }
+
+ if (!insn_p->operand[2].predicate (op3, SImode))
+ {
+ error ("incorrect rounding operand");
+ return const0_rtx;
+ }
+
+ comparison = comi_comparisons[INTVAL (op2)];
+ need_ucomi = need_ucomi_values[INTVAL (op2)];
+
+ if (VECTOR_MODE_P (mode0))
+ op0 = safe_vector_operand (op0, mode0);
+ if (VECTOR_MODE_P (mode1))
+ op1 = safe_vector_operand (op1, mode1);
+
+ target = gen_reg_rtx (SImode);
+ emit_move_insn (target, const0_rtx);
+ target = gen_rtx_SUBREG (QImode, target, 0);
+
+ if ((optimize && !register_operand (op0, mode0))
+ || !insn_p->operand[0].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ if ((optimize && !register_operand (op1, mode1))
+ || !insn_p->operand[1].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+
+ if (need_ucomi)
+ icode = icode == CODE_FOR_sse_comi_round
+ ? CODE_FOR_sse_ucomi_round
+ : CODE_FOR_sse2_ucomi_round;
+
+ pat = GEN_FCN (icode) (op0, op1, op3);
+ if (! pat)
+ return 0;
+
+ /* Rounding operand can be either NO_ROUND or ROUND_SAE at this point. */
+ if (INTVAL (op3) == NO_ROUND)
+ {
+ pat = ix86_erase_embedded_rounding (pat);
+ if (! pat)
+ return 0;
+
+ set_dst = SET_DEST (pat);
+ }
+ else
+ {
+ gcc_assert (GET_CODE (XVECEXP (pat, 0, 0)) == SET);
+ set_dst = SET_DEST (XVECEXP (pat, 0, 0));
+ }
+
+ emit_insn (pat);
+ emit_insn (gen_rtx_SET (VOIDmode,
+ gen_rtx_STRICT_LOW_PART (VOIDmode, target),
+ gen_rtx_fmt_ee (comparison, QImode,
+ set_dst,
+ const0_rtx)));
+
+ return SUBREG_REG (target);
+}
+
+static rtx
+ix86_expand_round_builtin (const struct builtin_description *d,
+ tree exp, rtx target)
+{
+ rtx pat;
+ unsigned int i, nargs;
+ struct
+ {
+ rtx op;
+ enum machine_mode mode;
+ } args[6];
+ enum insn_code icode = d->icode;
+ const struct insn_data_d *insn_p = &insn_data[icode];
+ enum machine_mode tmode = insn_p->operand[0].mode;
+ unsigned int nargs_constant = 0;
+ unsigned int redundant_embed_rnd = 0;
+
+ switch ((enum ix86_builtin_func_type) d->flag)
+ {
+ case UINT64_FTYPE_V2DF_INT:
+ case UINT64_FTYPE_V4SF_INT:
+ case UINT_FTYPE_V2DF_INT:
+ case UINT_FTYPE_V4SF_INT:
+ case INT64_FTYPE_V2DF_INT:
+ case INT64_FTYPE_V4SF_INT:
+ case INT_FTYPE_V2DF_INT:
+ case INT_FTYPE_V4SF_INT:
+ nargs = 2;
+ break;
+ case V4SF_FTYPE_V4SF_UINT_INT:
+ case V4SF_FTYPE_V4SF_UINT64_INT:
+ case V2DF_FTYPE_V2DF_UINT64_INT:
+ case V4SF_FTYPE_V4SF_INT_INT:
+ case V4SF_FTYPE_V4SF_INT64_INT:
+ case V2DF_FTYPE_V2DF_INT64_INT:
+ case V4SF_FTYPE_V4SF_V4SF_INT:
+ case V2DF_FTYPE_V2DF_V2DF_INT:
+ case V4SF_FTYPE_V4SF_V2DF_INT:
+ case V2DF_FTYPE_V2DF_V4SF_INT:
+ nargs = 3;
+ break;
+ case V8SF_FTYPE_V8DF_V8SF_QI_INT:
+ case V8DF_FTYPE_V8DF_V8DF_QI_INT:
+ case V8SI_FTYPE_V8DF_V8SI_QI_INT:
+ case V16SF_FTYPE_V16SF_V16SF_HI_INT:
+ case V16SF_FTYPE_V16SI_V16SF_HI_INT:
+ case V16SI_FTYPE_V16SF_V16SI_HI_INT:
+ case V8DF_FTYPE_V8SF_V8DF_QI_INT:
+ case V16SF_FTYPE_V16HI_V16SF_HI_INT:
+ case V2DF_FTYPE_V2DF_V2DF_V2DF_INT:
+ case V4SF_FTYPE_V4SF_V4SF_V4SF_INT:
+ nargs = 4;
+ break;
+ case V4SF_FTYPE_V4SF_V4SF_INT_INT:
+ case V2DF_FTYPE_V2DF_V2DF_INT_INT:
+ nargs_constant = 2;
+ nargs = 4;
+ break;
+ case INT_FTYPE_V4SF_V4SF_INT_INT:
+ case INT_FTYPE_V2DF_V2DF_INT_INT:
+ return ix86_expand_sse_comi_round (d, exp, target);
+ case V8DF_FTYPE_V8DF_V8DF_V8DF_QI_INT:
+ case V16SF_FTYPE_V16SF_V16SF_V16SF_HI_INT:
+ case V2DF_FTYPE_V2DF_V2DF_V2DF_QI_INT:
+ case V2DF_FTYPE_V2DF_V4SF_V2DF_QI_INT:
+ case V4SF_FTYPE_V4SF_V4SF_V4SF_QI_INT:
+ case V4SF_FTYPE_V4SF_V2DF_V4SF_QI_INT:
+ nargs = 5;
+ break;
+ case V16SF_FTYPE_V16SF_INT_V16SF_HI_INT:
+ case V8DF_FTYPE_V8DF_INT_V8DF_QI_INT:
+ nargs_constant = 4;
+ nargs = 5;
+ break;
+ case QI_FTYPE_V8DF_V8DF_INT_QI_INT:
+ case QI_FTYPE_V2DF_V2DF_INT_QI_INT:
+ case HI_FTYPE_V16SF_V16SF_INT_HI_INT:
+ case QI_FTYPE_V4SF_V4SF_INT_QI_INT:
+ nargs_constant = 3;
+ nargs = 5;
+ break;
+ case V4SF_FTYPE_V4SF_V4SF_INT_V4SF_QI_INT:
+ case V2DF_FTYPE_V2DF_V2DF_INT_V2DF_QI_INT:
+ nargs = 6;
+ nargs_constant = 4;
+ break;
+ case V8DF_FTYPE_V8DF_V8DF_V8DI_INT_QI_INT:
+ case V16SF_FTYPE_V16SF_V16SF_V16SI_INT_HI_INT:
+ case V2DF_FTYPE_V2DF_V2DF_V2DI_INT_QI_INT:
+ case V4SF_FTYPE_V4SF_V4SF_V4SI_INT_QI_INT:
+ nargs = 6;
+ nargs_constant = 3;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ gcc_assert (nargs <= ARRAY_SIZE (args));
+
+ if (optimize
+ || target == 0
+ || GET_MODE (target) != tmode
+ || !insn_p->operand[0].predicate (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ for (i = 0; i < nargs; i++)
+ {
+ tree arg = CALL_EXPR_ARG (exp, i);
+ rtx op = expand_normal (arg);
+ enum machine_mode mode = insn_p->operand[i + 1].mode;
+ bool match = insn_p->operand[i + 1].predicate (op, mode);
+
+ if (i == nargs - nargs_constant)
+ {
+ if (!match)
+ {
+ switch (icode)
+ {
+ case CODE_FOR_avx512f_getmantv8df_mask_round:
+ case CODE_FOR_avx512f_getmantv16sf_mask_round:
+ case CODE_FOR_avx512f_getmantv2df_round:
+ case CODE_FOR_avx512f_getmantv4sf_round:
+ error ("the immediate argument must be a 4-bit immediate");
+ return const0_rtx;
+ case CODE_FOR_avx512f_cmpv8df3_mask_round:
+ case CODE_FOR_avx512f_cmpv16sf3_mask_round:
+ case CODE_FOR_avx512f_vmcmpv2df3_mask_round:
+ case CODE_FOR_avx512f_vmcmpv4sf3_mask_round:
+ error ("the immediate argument must be a 5-bit immediate");
+ return const0_rtx;
+ default:
+ error ("the immediate argument must be an 8-bit immediate");
+ return const0_rtx;
+ }
+ }
+ }
+ else if (i == nargs-1)
+ {
+ if (!insn_p->operand[nargs].predicate (op, SImode))
+ {
+ error ("incorrect rounding operand");
+ return const0_rtx;
+ }
+
+ /* If there is no rounding use normal version of the pattern. */
+ if (INTVAL (op) == NO_ROUND)
+ redundant_embed_rnd = 1;
+ }
+ else
+ {
+ if (VECTOR_MODE_P (mode))
+ op = safe_vector_operand (op, mode);
+
+ if (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
+ {
+ if (optimize || !match)
+ op = copy_to_mode_reg (mode, op);
+ }
+ else
+ {
+ op = copy_to_reg (op);
+ op = simplify_gen_subreg (mode, op, GET_MODE (op), 0);
+ }
+ }
+
+ args[i].op = op;
+ args[i].mode = mode;
+ }
+
+ switch (nargs)
+ {
+ case 1:
+ pat = GEN_FCN (icode) (target, args[0].op);
+ break;
+ case 2:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op);
+ break;
+ case 3:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op,
+ args[2].op);
+ break;
+ case 4:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op,
+ args[2].op, args[3].op);
+ break;
+ case 5:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op,
+ args[2].op, args[3].op, args[4].op);
+ case 6:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op,
+ args[2].op, args[3].op, args[4].op,
+ args[5].op);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (!pat)
+ return 0;
+
+ if (redundant_embed_rnd)
+ pat = ix86_erase_embedded_rounding (pat);
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Subroutine of ix86_expand_builtin to take care of special insns
+ with variable number of operands. */
+
+static rtx
+ix86_expand_special_args_builtin (const struct builtin_description *d,
+ tree exp, rtx target)
+{
+ tree arg;
+ rtx pat, op;
+ unsigned int i, nargs, arg_adjust, memory;
+ bool aligned_mem = false;
+ struct
+ {
+ rtx op;
+ enum machine_mode mode;
+ } args[3];
+ enum insn_code icode = d->icode;
+ bool last_arg_constant = false;
+ const struct insn_data_d *insn_p = &insn_data[icode];
+ enum machine_mode tmode = insn_p->operand[0].mode;
+ enum { load, store } klass;
+
+ switch ((enum ix86_builtin_func_type) d->flag)
+ {
+ case VOID_FTYPE_VOID:
+ emit_insn (GEN_FCN (icode) (target));
+ return 0;
+ case VOID_FTYPE_UINT64:
+ case VOID_FTYPE_UNSIGNED:
+ nargs = 0;
+ klass = store;
+ memory = 0;
+ break;
+
+ case INT_FTYPE_VOID:
+ case UINT64_FTYPE_VOID:
+ case UNSIGNED_FTYPE_VOID:
+ nargs = 0;
+ klass = load;
+ memory = 0;
+ break;
+ case UINT64_FTYPE_PUNSIGNED:
+ case V2DI_FTYPE_PV2DI:
+ case V4DI_FTYPE_PV4DI:
+ case V32QI_FTYPE_PCCHAR:
+ case V16QI_FTYPE_PCCHAR:
+ case V8SF_FTYPE_PCV4SF:
+ case V8SF_FTYPE_PCFLOAT:
+ case V4SF_FTYPE_PCFLOAT:
+ case V4DF_FTYPE_PCV2DF:
+ case V4DF_FTYPE_PCDOUBLE:
+ case V2DF_FTYPE_PCDOUBLE:
+ case VOID_FTYPE_PVOID:
+ case V16SI_FTYPE_PV4SI:
+ case V16SF_FTYPE_PV4SF:
+ case V8DI_FTYPE_PV4DI:
+ case V8DI_FTYPE_PV8DI:
+ case V8DF_FTYPE_PV4DF:
+ nargs = 1;
+ klass = load;
+ memory = 0;
+ switch (icode)
+ {
+ case CODE_FOR_sse4_1_movntdqa:
+ case CODE_FOR_avx2_movntdqa:
+ case CODE_FOR_avx512f_movntdqa:
+ aligned_mem = true;
+ break;
+ default:
+ break;
+ }
+ break;
+ case VOID_FTYPE_PV2SF_V4SF:
+ case VOID_FTYPE_PV8DI_V8DI:
+ case VOID_FTYPE_PV4DI_V4DI:
+ case VOID_FTYPE_PV2DI_V2DI:
+ case VOID_FTYPE_PCHAR_V32QI:
+ case VOID_FTYPE_PCHAR_V16QI:
+ case VOID_FTYPE_PFLOAT_V16SF:
+ case VOID_FTYPE_PFLOAT_V8SF:
+ case VOID_FTYPE_PFLOAT_V4SF:
+ case VOID_FTYPE_PDOUBLE_V8DF:
+ case VOID_FTYPE_PDOUBLE_V4DF:
+ case VOID_FTYPE_PDOUBLE_V2DF:
+ case VOID_FTYPE_PLONGLONG_LONGLONG:
+ case VOID_FTYPE_PULONGLONG_ULONGLONG:
+ case VOID_FTYPE_PINT_INT:
+ nargs = 1;
+ klass = store;
+ /* Reserve memory operand for target. */
+ memory = ARRAY_SIZE (args);
+ switch (icode)
+ {
+ /* These builtins and instructions require the memory
+ to be properly aligned. */
+ case CODE_FOR_avx_movntv4di:
+ case CODE_FOR_sse2_movntv2di:
+ case CODE_FOR_avx_movntv8sf:
+ case CODE_FOR_sse_movntv4sf:
+ case CODE_FOR_sse4a_vmmovntv4sf:
+ case CODE_FOR_avx_movntv4df:
+ case CODE_FOR_sse2_movntv2df:
+ case CODE_FOR_sse4a_vmmovntv2df:
+ case CODE_FOR_sse2_movntidi:
+ case CODE_FOR_sse_movntq:
+ case CODE_FOR_sse2_movntisi:
+ case CODE_FOR_avx512f_movntv16sf:
+ case CODE_FOR_avx512f_movntv8df:
+ case CODE_FOR_avx512f_movntv8di:
+ aligned_mem = true;
+ break;
+ default:
+ break;
+ }
+ break;
+ case V4SF_FTYPE_V4SF_PCV2SF:
+ case V2DF_FTYPE_V2DF_PCDOUBLE:
+ nargs = 2;
+ klass = load;
+ memory = 1;
+ break;
+ case V8SF_FTYPE_PCV8SF_V8SI:
+ case V4DF_FTYPE_PCV4DF_V4DI:
+ case V4SF_FTYPE_PCV4SF_V4SI:
+ case V2DF_FTYPE_PCV2DF_V2DI:
+ case V8SI_FTYPE_PCV8SI_V8SI:
+ case V4DI_FTYPE_PCV4DI_V4DI:
+ case V4SI_FTYPE_PCV4SI_V4SI:
+ case V2DI_FTYPE_PCV2DI_V2DI:
+ nargs = 2;
+ klass = load;
+ memory = 0;
+ break;
+ case VOID_FTYPE_PV8DF_V8DF_QI:
+ case VOID_FTYPE_PV16SF_V16SF_HI:
+ case VOID_FTYPE_PV8DI_V8DI_QI:
+ case VOID_FTYPE_PV16SI_V16SI_HI:
+ switch (icode)
+ {
+ /* These builtins and instructions require the memory
+ to be properly aligned. */
+ case CODE_FOR_avx512f_storev16sf_mask:
+ case CODE_FOR_avx512f_storev16si_mask:
+ case CODE_FOR_avx512f_storev8df_mask:
+ case CODE_FOR_avx512f_storev8di_mask:
+ aligned_mem = true;
+ break;
+ default:
+ break;
+ }
+ /* FALLTHRU */
+ case VOID_FTYPE_PV8SF_V8SI_V8SF:
+ case VOID_FTYPE_PV4DF_V4DI_V4DF:
+ case VOID_FTYPE_PV4SF_V4SI_V4SF:
+ case VOID_FTYPE_PV2DF_V2DI_V2DF:
+ case VOID_FTYPE_PV8SI_V8SI_V8SI:
+ case VOID_FTYPE_PV4DI_V4DI_V4DI:
+ case VOID_FTYPE_PV4SI_V4SI_V4SI:
+ case VOID_FTYPE_PV2DI_V2DI_V2DI:
+ case VOID_FTYPE_PDOUBLE_V2DF_QI:
+ case VOID_FTYPE_PFLOAT_V4SF_QI:
+ case VOID_FTYPE_PV8SI_V8DI_QI:
+ case VOID_FTYPE_PV8HI_V8DI_QI:
+ case VOID_FTYPE_PV16HI_V16SI_HI:
+ case VOID_FTYPE_PV16QI_V8DI_QI:
+ case VOID_FTYPE_PV16QI_V16SI_HI:
+ nargs = 2;
+ klass = store;
+ /* Reserve memory operand for target. */
+ memory = ARRAY_SIZE (args);
+ break;
+ case V16SF_FTYPE_PCV16SF_V16SF_HI:
+ case V16SI_FTYPE_PCV16SI_V16SI_HI:
+ case V8DF_FTYPE_PCV8DF_V8DF_QI:
+ case V8DI_FTYPE_PCV8DI_V8DI_QI:
+ case V2DF_FTYPE_PCDOUBLE_V2DF_QI:
+ case V4SF_FTYPE_PCFLOAT_V4SF_QI:
+ nargs = 3;
+ klass = load;
+ memory = 0;
+ switch (icode)
+ {
+ /* These builtins and instructions require the memory
+ to be properly aligned. */
+ case CODE_FOR_avx512f_loadv16sf_mask:
+ case CODE_FOR_avx512f_loadv16si_mask:
+ case CODE_FOR_avx512f_loadv8df_mask:
+ case CODE_FOR_avx512f_loadv8di_mask:
+ aligned_mem = true;
+ break;
+ default:
+ break;
+ }
+ break;
+ case VOID_FTYPE_UINT_UINT_UINT:
+ case VOID_FTYPE_UINT64_UINT_UINT:
+ case UCHAR_FTYPE_UINT_UINT_UINT:
+ case UCHAR_FTYPE_UINT64_UINT_UINT:
+ nargs = 3;
+ klass = load;
+ memory = ARRAY_SIZE (args);
+ last_arg_constant = true;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ gcc_assert (nargs <= ARRAY_SIZE (args));
+
+ if (klass == store)
+ {
+ arg = CALL_EXPR_ARG (exp, 0);
+ op = expand_normal (arg);
+ gcc_assert (target == 0);
+ if (memory)
+ {
+ op = ix86_zero_extend_to_Pmode (op);
+ target = gen_rtx_MEM (tmode, op);
+ /* target at this point has just BITS_PER_UNIT MEM_ALIGN
+ on it. Try to improve it using get_pointer_alignment,
+ and if the special builtin is one that requires strict
+ mode alignment, also from it's GET_MODE_ALIGNMENT.
+ Failure to do so could lead to ix86_legitimate_combined_insn
+ rejecting all changes to such insns. */
+ unsigned int align = get_pointer_alignment (arg);
+ if (aligned_mem && align < GET_MODE_ALIGNMENT (tmode))
+ align = GET_MODE_ALIGNMENT (tmode);
+ if (MEM_ALIGN (target) < align)
+ set_mem_align (target, align);
+ }
+ else
+ target = force_reg (tmode, op);
+ arg_adjust = 1;
+ }
+ else
+ {
+ arg_adjust = 0;
+ if (optimize
+ || target == 0
+ || !register_operand (target, tmode)
+ || GET_MODE (target) != tmode)
+ target = gen_reg_rtx (tmode);
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ enum machine_mode mode = insn_p->operand[i + 1].mode;
+ bool match;
+
+ arg = CALL_EXPR_ARG (exp, i + arg_adjust);
+ op = expand_normal (arg);
+ match = insn_p->operand[i + 1].predicate (op, mode);
+
+ if (last_arg_constant && (i + 1) == nargs)
+ {
+ if (!match)
+ {
+ if (icode == CODE_FOR_lwp_lwpvalsi3
+ || icode == CODE_FOR_lwp_lwpinssi3
+ || icode == CODE_FOR_lwp_lwpvaldi3
+ || icode == CODE_FOR_lwp_lwpinsdi3)
+ error ("the last argument must be a 32-bit immediate");
+ else
+ error ("the last argument must be an 8-bit immediate");
+ return const0_rtx;
+ }
+ }
+ else
+ {
+ if (i == memory)
+ {
+ /* This must be the memory operand. */
+ op = ix86_zero_extend_to_Pmode (op);
+ op = gen_rtx_MEM (mode, op);
+ /* op at this point has just BITS_PER_UNIT MEM_ALIGN
+ on it. Try to improve it using get_pointer_alignment,
+ and if the special builtin is one that requires strict
+ mode alignment, also from it's GET_MODE_ALIGNMENT.
+ Failure to do so could lead to ix86_legitimate_combined_insn
+ rejecting all changes to such insns. */
+ unsigned int align = get_pointer_alignment (arg);
+ if (aligned_mem && align < GET_MODE_ALIGNMENT (mode))
+ align = GET_MODE_ALIGNMENT (mode);
+ if (MEM_ALIGN (op) < align)
+ set_mem_align (op, align);
+ }
+ else
+ {
+ /* This must be register. */
+ if (VECTOR_MODE_P (mode))
+ op = safe_vector_operand (op, mode);
+
+ if (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
+ op = copy_to_mode_reg (mode, op);
+ else
+ {
+ op = copy_to_reg (op);
+ op = simplify_gen_subreg (mode, op, GET_MODE (op), 0);
+ }
+ }
+ }
+
+ args[i].op = op;
+ args[i].mode = mode;
+ }
+
+ switch (nargs)
+ {
+ case 0:
+ pat = GEN_FCN (icode) (target);
+ break;
+ case 1:
+ pat = GEN_FCN (icode) (target, args[0].op);
+ break;
+ case 2:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op);
+ break;
+ case 3:
+ pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ return klass == store ? 0 : target;
+}
+
+/* Return the integer constant in ARG. Constrain it to be in the range
+ of the subparts of VEC_TYPE; issue an error if not. */
+
+static int
+get_element_number (tree vec_type, tree arg)
+{
+ unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1;
+
+ if (!tree_fits_uhwi_p (arg)
+ || (elt = tree_to_uhwi (arg), elt > max))
+ {
+ error ("selector must be an integer constant in the range 0..%wi", max);
+ return 0;
+ }
+
+ return elt;
+}
+
+/* A subroutine of ix86_expand_builtin. These builtins are a wrapper around
+ ix86_expand_vector_init. We DO have language-level syntax for this, in
+ the form of (type){ init-list }. Except that since we can't place emms
+ instructions from inside the compiler, we can't allow the use of MMX
+ registers unless the user explicitly asks for it. So we do *not* define
+ vec_set/vec_extract/vec_init patterns for MMX modes in mmx.md. Instead
+ we have builtins invoked by mmintrin.h that gives us license to emit
+ these sorts of instructions. */
+
+static rtx
+ix86_expand_vec_init_builtin (tree type, tree exp, rtx target)
+{
+ enum machine_mode tmode = TYPE_MODE (type);
+ enum machine_mode inner_mode = GET_MODE_INNER (tmode);
+ int i, n_elt = GET_MODE_NUNITS (tmode);
+ rtvec v = rtvec_alloc (n_elt);
+
+ gcc_assert (VECTOR_MODE_P (tmode));
+ gcc_assert (call_expr_nargs (exp) == n_elt);
+
+ for (i = 0; i < n_elt; ++i)
+ {
+ rtx x = expand_normal (CALL_EXPR_ARG (exp, i));
+ RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x);
+ }
+
+ if (!target || !register_operand (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ ix86_expand_vector_init (true, target, gen_rtx_PARALLEL (tmode, v));
+ return target;
+}
+
+/* A subroutine of ix86_expand_builtin. These builtins are a wrapper around
+ ix86_expand_vector_extract. They would be redundant (for non-MMX) if we
+ had a language-level syntax for referencing vector elements. */
+
+static rtx
+ix86_expand_vec_ext_builtin (tree exp, rtx target)
+{
+ enum machine_mode tmode, mode0;
+ tree arg0, arg1;
+ int elt;
+ rtx op0;
+
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+
+ op0 = expand_normal (arg0);
+ elt = get_element_number (TREE_TYPE (arg0), arg1);
+
+ tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
+ mode0 = TYPE_MODE (TREE_TYPE (arg0));
+ gcc_assert (VECTOR_MODE_P (mode0));
+
+ op0 = force_reg (mode0, op0);
+
+ if (optimize || !target || !register_operand (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ ix86_expand_vector_extract (true, target, op0, elt);
+
+ return target;
+}
+
+/* A subroutine of ix86_expand_builtin. These builtins are a wrapper around
+ ix86_expand_vector_set. They would be redundant (for non-MMX) if we had
+ a language-level syntax for referencing vector elements. */
+
+static rtx
+ix86_expand_vec_set_builtin (tree exp)
+{
+ enum machine_mode tmode, mode1;
+ tree arg0, arg1, arg2;
+ int elt;
+ rtx op0, op1, target;
+
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+ arg2 = CALL_EXPR_ARG (exp, 2);
+
+ tmode = TYPE_MODE (TREE_TYPE (arg0));
+ mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
+ gcc_assert (VECTOR_MODE_P (tmode));
+
+ op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL);
+ op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL);
+ elt = get_element_number (TREE_TYPE (arg0), arg2);
+
+ if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)
+ op1 = convert_modes (mode1, GET_MODE (op1), op1, true);
+
+ op0 = force_reg (tmode, op0);
+ op1 = force_reg (mode1, op1);
+
+ /* OP0 is the source of these builtin functions and shouldn't be
+ modified. Create a copy, use it and return it as target. */
+ target = gen_reg_rtx (tmode);
+ emit_move_insn (target, op0);
+ ix86_expand_vector_set (true, target, op1, elt);
+
+ return target;
+}
+
+/* Expand an expression EXP that calls a built-in function,
+ with result going to TARGET if that's convenient
+ (and in mode MODE if that's convenient).
+ SUBTARGET may be used as the target for computing one of EXP's operands.
+ IGNORE is nonzero if the value is to be ignored. */
+
+static rtx
+ix86_expand_builtin (tree exp, rtx target, rtx subtarget,
+ enum machine_mode mode, int ignore)
+{
+ const struct builtin_description *d;
+ size_t i;
+ enum insn_code icode;
+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
+ tree arg0, arg1, arg2, arg3, arg4;
+ rtx op0, op1, op2, op3, op4, pat, insn;
+ enum machine_mode mode0, mode1, mode2, mode3, mode4;
+ unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
+
+ /* For CPU builtins that can be folded, fold first and expand the fold. */
+ switch (fcode)
+ {
+ case IX86_BUILTIN_CPU_INIT:
+ {
+ /* Make it call __cpu_indicator_init in libgcc. */
+ tree call_expr, fndecl, type;
+ type = build_function_type_list (integer_type_node, NULL_TREE);
+ fndecl = build_fn_decl ("__cpu_indicator_init", type);
+ call_expr = build_call_expr (fndecl, 0);
+ return expand_expr (call_expr, target, mode, EXPAND_NORMAL);
+ }
+ case IX86_BUILTIN_CPU_IS:
+ case IX86_BUILTIN_CPU_SUPPORTS:
+ {
+ tree arg0 = CALL_EXPR_ARG (exp, 0);
+ tree fold_expr = fold_builtin_cpu (fndecl, &arg0);
+ gcc_assert (fold_expr != NULL_TREE);
+ return expand_expr (fold_expr, target, mode, EXPAND_NORMAL);
+ }
+ }
+
+ /* Determine whether the builtin function is available under the current ISA.
+ Originally the builtin was not created if it wasn't applicable to the
+ current ISA based on the command line switches. With function specific
+ options, we need to check in the context of the function making the call
+ whether it is supported. */
+ if (ix86_builtins_isa[fcode].isa
+ && !(ix86_builtins_isa[fcode].isa & ix86_isa_flags))
+ {
+ char *opts = ix86_target_string (ix86_builtins_isa[fcode].isa, 0, NULL,
+ NULL, (enum fpmath_unit) 0, false);
+
+ if (!opts)
+ error ("%qE needs unknown isa option", fndecl);
+ else
+ {
+ gcc_assert (opts != NULL);
+ error ("%qE needs isa option %s", fndecl, opts);
+ free (opts);
+ }
+ return const0_rtx;
+ }
+
+ switch (fcode)
+ {
+ case IX86_BUILTIN_MASKMOVQ:
+ case IX86_BUILTIN_MASKMOVDQU:
+ icode = (fcode == IX86_BUILTIN_MASKMOVQ
+ ? CODE_FOR_mmx_maskmovq
+ : CODE_FOR_sse2_maskmovdqu);
+ /* Note the arg order is different from the operand order. */
+ arg1 = CALL_EXPR_ARG (exp, 0);
+ arg2 = CALL_EXPR_ARG (exp, 1);
+ arg0 = CALL_EXPR_ARG (exp, 2);
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+ op2 = expand_normal (arg2);
+ mode0 = insn_data[icode].operand[0].mode;
+ mode1 = insn_data[icode].operand[1].mode;
+ mode2 = insn_data[icode].operand[2].mode;
+
+ op0 = ix86_zero_extend_to_Pmode (op0);
+ op0 = gen_rtx_MEM (mode1, op0);
+
+ if (!insn_data[icode].operand[0].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ if (!insn_data[icode].operand[1].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+ if (!insn_data[icode].operand[2].predicate (op2, mode2))
+ op2 = copy_to_mode_reg (mode2, op2);
+ pat = GEN_FCN (icode) (op0, op1, op2);
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ return 0;
+
+ case IX86_BUILTIN_LDMXCSR:
+ op0 = expand_normal (CALL_EXPR_ARG (exp, 0));
+ target = assign_386_stack_local (SImode, SLOT_TEMP);
+ emit_move_insn (target, op0);
+ emit_insn (gen_sse_ldmxcsr (target));
+ return 0;
+
+ case IX86_BUILTIN_STMXCSR:
+ target = assign_386_stack_local (SImode, SLOT_TEMP);
+ emit_insn (gen_sse_stmxcsr (target));
+ return copy_to_mode_reg (SImode, target);
+
+ case IX86_BUILTIN_CLFLUSH:
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op0 = expand_normal (arg0);
+ icode = CODE_FOR_sse2_clflush;
+ if (!insn_data[icode].operand[0].predicate (op0, Pmode))
+ op0 = ix86_zero_extend_to_Pmode (op0);
+
+ emit_insn (gen_sse2_clflush (op0));
+ return 0;
+
+ case IX86_BUILTIN_MONITOR:
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+ arg2 = CALL_EXPR_ARG (exp, 2);
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+ op2 = expand_normal (arg2);
+ if (!REG_P (op0))
+ op0 = ix86_zero_extend_to_Pmode (op0);
+ if (!REG_P (op1))
+ op1 = copy_to_mode_reg (SImode, op1);
+ if (!REG_P (op2))
+ op2 = copy_to_mode_reg (SImode, op2);
+ emit_insn (ix86_gen_monitor (op0, op1, op2));
+ return 0;
+
+ case IX86_BUILTIN_MWAIT:
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+ if (!REG_P (op0))
+ op0 = copy_to_mode_reg (SImode, op0);
+ if (!REG_P (op1))
+ op1 = copy_to_mode_reg (SImode, op1);
+ emit_insn (gen_sse3_mwait (op0, op1));
+ return 0;
+
+ case IX86_BUILTIN_VEC_INIT_V2SI:
+ case IX86_BUILTIN_VEC_INIT_V4HI:
+ case IX86_BUILTIN_VEC_INIT_V8QI:
+ return ix86_expand_vec_init_builtin (TREE_TYPE (exp), exp, target);
+
+ case IX86_BUILTIN_VEC_EXT_V2DF:
+ case IX86_BUILTIN_VEC_EXT_V2DI:
+ case IX86_BUILTIN_VEC_EXT_V4SF:
+ case IX86_BUILTIN_VEC_EXT_V4SI:
+ case IX86_BUILTIN_VEC_EXT_V8HI:
+ case IX86_BUILTIN_VEC_EXT_V2SI:
+ case IX86_BUILTIN_VEC_EXT_V4HI:
+ case IX86_BUILTIN_VEC_EXT_V16QI:
+ return ix86_expand_vec_ext_builtin (exp, target);
+
+ case IX86_BUILTIN_VEC_SET_V2DI:
+ case IX86_BUILTIN_VEC_SET_V4SF:
+ case IX86_BUILTIN_VEC_SET_V4SI:
+ case IX86_BUILTIN_VEC_SET_V8HI:
+ case IX86_BUILTIN_VEC_SET_V4HI:
+ case IX86_BUILTIN_VEC_SET_V16QI:
+ return ix86_expand_vec_set_builtin (exp);
+
+ case IX86_BUILTIN_INFQ:
+ case IX86_BUILTIN_HUGE_VALQ:
+ {
+ REAL_VALUE_TYPE inf;
+ rtx tmp;
+
+ real_inf (&inf);
+ tmp = CONST_DOUBLE_FROM_REAL_VALUE (inf, mode);
+
+ tmp = validize_mem (force_const_mem (mode, tmp));
+
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+
+ emit_move_insn (target, tmp);
+ return target;
+ }
+
+ case IX86_BUILTIN_RDPMC:
+ case IX86_BUILTIN_RDTSC:
+ case IX86_BUILTIN_RDTSCP:
+
+ op0 = gen_reg_rtx (DImode);
+ op1 = gen_reg_rtx (DImode);
+
+ if (fcode == IX86_BUILTIN_RDPMC)
+ {
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op2 = expand_normal (arg0);
+ if (!register_operand (op2, SImode))
+ op2 = copy_to_mode_reg (SImode, op2);
+
+ insn = (TARGET_64BIT
+ ? gen_rdpmc_rex64 (op0, op1, op2)
+ : gen_rdpmc (op0, op2));
+ emit_insn (insn);
+ }
+ else if (fcode == IX86_BUILTIN_RDTSC)
+ {
+ insn = (TARGET_64BIT
+ ? gen_rdtsc_rex64 (op0, op1)
+ : gen_rdtsc (op0));
+ emit_insn (insn);
+ }
+ else
+ {
+ op2 = gen_reg_rtx (SImode);
+
+ insn = (TARGET_64BIT
+ ? gen_rdtscp_rex64 (op0, op1, op2)
+ : gen_rdtscp (op0, op2));
+ emit_insn (insn);
+
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op4 = expand_normal (arg0);
+ if (!address_operand (op4, VOIDmode))
+ {
+ op4 = convert_memory_address (Pmode, op4);
+ op4 = copy_addr_to_reg (op4);
+ }
+ emit_move_insn (gen_rtx_MEM (SImode, op4), op2);
+ }
+
+ if (target == 0)
+ {
+ /* mode is VOIDmode if __builtin_rd* has been called
+ without lhs. */
+ if (mode == VOIDmode)
+ return target;
+ target = gen_reg_rtx (mode);
+ }
+
+ if (TARGET_64BIT)
+ {
+ op1 = expand_simple_binop (DImode, ASHIFT, op1, GEN_INT (32),
+ op1, 1, OPTAB_DIRECT);
+ op0 = expand_simple_binop (DImode, IOR, op0, op1,
+ op0, 1, OPTAB_DIRECT);
+ }
+
+ emit_move_insn (target, op0);
+ return target;
+
+ case IX86_BUILTIN_FXSAVE:
+ case IX86_BUILTIN_FXRSTOR:
+ case IX86_BUILTIN_FXSAVE64:
+ case IX86_BUILTIN_FXRSTOR64:
+ case IX86_BUILTIN_FNSTENV:
+ case IX86_BUILTIN_FLDENV:
+ case IX86_BUILTIN_FNSTSW:
+ mode0 = BLKmode;
+ switch (fcode)
+ {
+ case IX86_BUILTIN_FXSAVE:
+ icode = CODE_FOR_fxsave;
+ break;
+ case IX86_BUILTIN_FXRSTOR:
+ icode = CODE_FOR_fxrstor;
+ break;
+ case IX86_BUILTIN_FXSAVE64:
+ icode = CODE_FOR_fxsave64;
+ break;
+ case IX86_BUILTIN_FXRSTOR64:
+ icode = CODE_FOR_fxrstor64;
+ break;
+ case IX86_BUILTIN_FNSTENV:
+ icode = CODE_FOR_fnstenv;
+ break;
+ case IX86_BUILTIN_FLDENV:
+ icode = CODE_FOR_fldenv;
+ break;
+ case IX86_BUILTIN_FNSTSW:
+ icode = CODE_FOR_fnstsw;
+ mode0 = HImode;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op0 = expand_normal (arg0);
+
+ if (!address_operand (op0, VOIDmode))
+ {
+ op0 = convert_memory_address (Pmode, op0);
+ op0 = copy_addr_to_reg (op0);
+ }
+ op0 = gen_rtx_MEM (mode0, op0);
+
+ pat = GEN_FCN (icode) (op0);
+ if (pat)
+ emit_insn (pat);
+ return 0;
+
+ case IX86_BUILTIN_XSAVE:
+ case IX86_BUILTIN_XRSTOR:
+ case IX86_BUILTIN_XSAVE64:
+ case IX86_BUILTIN_XRSTOR64:
+ case IX86_BUILTIN_XSAVEOPT:
+ case IX86_BUILTIN_XSAVEOPT64:
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+
+ if (!address_operand (op0, VOIDmode))
+ {
+ op0 = convert_memory_address (Pmode, op0);
+ op0 = copy_addr_to_reg (op0);
+ }
+ op0 = gen_rtx_MEM (BLKmode, op0);
+
+ op1 = force_reg (DImode, op1);
+
+ if (TARGET_64BIT)
+ {
+ op2 = expand_simple_binop (DImode, LSHIFTRT, op1, GEN_INT (32),
+ NULL, 1, OPTAB_DIRECT);
+ switch (fcode)
+ {
+ case IX86_BUILTIN_XSAVE:
+ icode = CODE_FOR_xsave_rex64;
+ break;
+ case IX86_BUILTIN_XRSTOR:
+ icode = CODE_FOR_xrstor_rex64;
+ break;
+ case IX86_BUILTIN_XSAVE64:
+ icode = CODE_FOR_xsave64;
+ break;
+ case IX86_BUILTIN_XRSTOR64:
+ icode = CODE_FOR_xrstor64;
+ break;
+ case IX86_BUILTIN_XSAVEOPT:
+ icode = CODE_FOR_xsaveopt_rex64;
+ break;
+ case IX86_BUILTIN_XSAVEOPT64:
+ icode = CODE_FOR_xsaveopt64;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ op2 = gen_lowpart (SImode, op2);
+ op1 = gen_lowpart (SImode, op1);
+ pat = GEN_FCN (icode) (op0, op1, op2);
+ }
+ else
+ {
+ switch (fcode)
+ {
+ case IX86_BUILTIN_XSAVE:
+ icode = CODE_FOR_xsave;
+ break;
+ case IX86_BUILTIN_XRSTOR:
+ icode = CODE_FOR_xrstor;
+ break;
+ case IX86_BUILTIN_XSAVEOPT:
+ icode = CODE_FOR_xsaveopt;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ pat = GEN_FCN (icode) (op0, op1);
+ }
+
+ if (pat)
+ emit_insn (pat);
+ return 0;
+
+ case IX86_BUILTIN_LLWPCB:
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op0 = expand_normal (arg0);
+ icode = CODE_FOR_lwp_llwpcb;
+ if (!insn_data[icode].operand[0].predicate (op0, Pmode))
+ op0 = ix86_zero_extend_to_Pmode (op0);
+ emit_insn (gen_lwp_llwpcb (op0));
+ return 0;
+
+ case IX86_BUILTIN_SLWPCB:
+ icode = CODE_FOR_lwp_slwpcb;
+ if (!target
+ || !insn_data[icode].operand[0].predicate (target, Pmode))
+ target = gen_reg_rtx (Pmode);
+ emit_insn (gen_lwp_slwpcb (target));
+ return target;
+
+ case IX86_BUILTIN_BEXTRI32:
+ case IX86_BUILTIN_BEXTRI64:
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+ icode = (fcode == IX86_BUILTIN_BEXTRI32
+ ? CODE_FOR_tbm_bextri_si
+ : CODE_FOR_tbm_bextri_di);
+ if (!CONST_INT_P (op1))
+ {
+ error ("last argument must be an immediate");
+ return const0_rtx;
+ }
+ else
+ {
+ unsigned char length = (INTVAL (op1) >> 8) & 0xFF;
+ unsigned char lsb_index = INTVAL (op1) & 0xFF;
+ op1 = GEN_INT (length);
+ op2 = GEN_INT (lsb_index);
+ pat = GEN_FCN (icode) (target, op0, op1, op2);
+ if (pat)
+ emit_insn (pat);
+ return target;
+ }
+
+ case IX86_BUILTIN_RDRAND16_STEP:
+ icode = CODE_FOR_rdrandhi_1;
+ mode0 = HImode;
+ goto rdrand_step;
+
+ case IX86_BUILTIN_RDRAND32_STEP:
+ icode = CODE_FOR_rdrandsi_1;
+ mode0 = SImode;
+ goto rdrand_step;
+
+ case IX86_BUILTIN_RDRAND64_STEP:
+ icode = CODE_FOR_rdranddi_1;
+ mode0 = DImode;
+
+rdrand_step:
+ op0 = gen_reg_rtx (mode0);
+ emit_insn (GEN_FCN (icode) (op0));
+
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op1 = expand_normal (arg0);
+ if (!address_operand (op1, VOIDmode))
+ {
+ op1 = convert_memory_address (Pmode, op1);
+ op1 = copy_addr_to_reg (op1);
+ }
+ emit_move_insn (gen_rtx_MEM (mode0, op1), op0);
+
+ op1 = gen_reg_rtx (SImode);
+ emit_move_insn (op1, CONST1_RTX (SImode));
+
+ /* Emit SImode conditional move. */
+ if (mode0 == HImode)
+ {
+ op2 = gen_reg_rtx (SImode);
+ emit_insn (gen_zero_extendhisi2 (op2, op0));
+ }
+ else if (mode0 == SImode)
+ op2 = op0;
+ else
+ op2 = gen_rtx_SUBREG (SImode, op0, 0);
+
+ if (target == 0)
+ target = gen_reg_rtx (SImode);
+
+ pat = gen_rtx_GEU (VOIDmode, gen_rtx_REG (CCCmode, FLAGS_REG),
+ const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, target,
+ gen_rtx_IF_THEN_ELSE (SImode, pat, op2, op1)));
+ return target;
+
+ case IX86_BUILTIN_RDSEED16_STEP:
+ icode = CODE_FOR_rdseedhi_1;
+ mode0 = HImode;
+ goto rdseed_step;
+
+ case IX86_BUILTIN_RDSEED32_STEP:
+ icode = CODE_FOR_rdseedsi_1;
+ mode0 = SImode;
+ goto rdseed_step;
+
+ case IX86_BUILTIN_RDSEED64_STEP:
+ icode = CODE_FOR_rdseeddi_1;
+ mode0 = DImode;
+
+rdseed_step:
+ op0 = gen_reg_rtx (mode0);
+ emit_insn (GEN_FCN (icode) (op0));
+
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op1 = expand_normal (arg0);
+ if (!address_operand (op1, VOIDmode))
+ {
+ op1 = convert_memory_address (Pmode, op1);
+ op1 = copy_addr_to_reg (op1);
+ }
+ emit_move_insn (gen_rtx_MEM (mode0, op1), op0);
+
+ op2 = gen_reg_rtx (QImode);
+
+ pat = gen_rtx_LTU (QImode, gen_rtx_REG (CCCmode, FLAGS_REG),
+ const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, op2, pat));
+
+ if (target == 0)
+ target = gen_reg_rtx (SImode);
+
+ emit_insn (gen_zero_extendqisi2 (target, op2));
+ return target;
+
+ case IX86_BUILTIN_ADDCARRYX32:
+ icode = TARGET_ADX ? CODE_FOR_adcxsi3 : CODE_FOR_addsi3_carry;
+ mode0 = SImode;
+ goto addcarryx;
+
+ case IX86_BUILTIN_ADDCARRYX64:
+ icode = TARGET_ADX ? CODE_FOR_adcxdi3 : CODE_FOR_adddi3_carry;
+ mode0 = DImode;
+
+addcarryx:
+ arg0 = CALL_EXPR_ARG (exp, 0); /* unsigned char c_in. */
+ arg1 = CALL_EXPR_ARG (exp, 1); /* unsigned int src1. */
+ arg2 = CALL_EXPR_ARG (exp, 2); /* unsigned int src2. */
+ arg3 = CALL_EXPR_ARG (exp, 3); /* unsigned int *sum_out. */
+
+ op0 = gen_reg_rtx (QImode);
+
+ /* Generate CF from input operand. */
+ op1 = expand_normal (arg0);
+ op1 = copy_to_mode_reg (QImode, convert_to_mode (QImode, op1, 1));
+ emit_insn (gen_addqi3_cc (op0, op1, constm1_rtx));
+
+ /* Gen ADCX instruction to compute X+Y+CF. */
+ op2 = expand_normal (arg1);
+ op3 = expand_normal (arg2);
+
+ if (!REG_P (op2))
+ op2 = copy_to_mode_reg (mode0, op2);
+ if (!REG_P (op3))
+ op3 = copy_to_mode_reg (mode0, op3);
+
+ op0 = gen_reg_rtx (mode0);
+
+ op4 = gen_rtx_REG (CCCmode, FLAGS_REG);
+ pat = gen_rtx_LTU (VOIDmode, op4, const0_rtx);
+ emit_insn (GEN_FCN (icode) (op0, op2, op3, op4, pat));
+
+ /* Store the result. */
+ op4 = expand_normal (arg3);
+ if (!address_operand (op4, VOIDmode))
+ {
+ op4 = convert_memory_address (Pmode, op4);
+ op4 = copy_addr_to_reg (op4);
+ }
+ emit_move_insn (gen_rtx_MEM (mode0, op4), op0);
+
+ /* Return current CF value. */
+ if (target == 0)
+ target = gen_reg_rtx (QImode);
+
+ PUT_MODE (pat, QImode);
+ emit_insn (gen_rtx_SET (VOIDmode, target, pat));
+ return target;
+
+ case IX86_BUILTIN_READ_FLAGS:
+ emit_insn (gen_push (gen_rtx_REG (word_mode, FLAGS_REG)));
+
+ if (optimize
+ || target == NULL_RTX
+ || !nonimmediate_operand (target, word_mode)
+ || GET_MODE (target) != word_mode)
+ target = gen_reg_rtx (word_mode);
+
+ emit_insn (gen_pop (target));
+ return target;
+
+ case IX86_BUILTIN_WRITE_FLAGS:
+
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op0 = expand_normal (arg0);
+ if (!general_no_elim_operand (op0, word_mode))
+ op0 = copy_to_mode_reg (word_mode, op0);
+
+ emit_insn (gen_push (op0));
+ emit_insn (gen_pop (gen_rtx_REG (word_mode, FLAGS_REG)));
+ return 0;
+
+ case IX86_BUILTIN_KORTESTC16:
+ icode = CODE_FOR_kortestchi;
+ mode0 = HImode;
+ mode1 = CCCmode;
+ goto kortest;
+
+ case IX86_BUILTIN_KORTESTZ16:
+ icode = CODE_FOR_kortestzhi;
+ mode0 = HImode;
+ mode1 = CCZmode;
+
+ kortest:
+ arg0 = CALL_EXPR_ARG (exp, 0); /* Mask reg src1. */
+ arg1 = CALL_EXPR_ARG (exp, 1); /* Mask reg src2. */
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+
+ op0 = copy_to_reg (op0);
+ op0 = simplify_gen_subreg (mode0, op0, GET_MODE (op0), 0);
+ op1 = copy_to_reg (op1);
+ op1 = simplify_gen_subreg (mode0, op1, GET_MODE (op1), 0);
+
+ target = gen_reg_rtx (QImode);
+ emit_insn (gen_rtx_SET (mode0, target, const0_rtx));
+
+ /* Emit kortest. */
+ emit_insn (GEN_FCN (icode) (op0, op1));
+ /* And use setcc to return result from flags. */
+ ix86_expand_setcc (target, EQ,
+ gen_rtx_REG (mode1, FLAGS_REG), const0_rtx);
+ return target;
+
+ case IX86_BUILTIN_GATHERSIV2DF:
+ icode = CODE_FOR_avx2_gathersiv2df;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERSIV4DF:
+ icode = CODE_FOR_avx2_gathersiv4df;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERDIV2DF:
+ icode = CODE_FOR_avx2_gatherdiv2df;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERDIV4DF:
+ icode = CODE_FOR_avx2_gatherdiv4df;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERSIV4SF:
+ icode = CODE_FOR_avx2_gathersiv4sf;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERSIV8SF:
+ icode = CODE_FOR_avx2_gathersiv8sf;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERDIV4SF:
+ icode = CODE_FOR_avx2_gatherdiv4sf;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERDIV8SF:
+ icode = CODE_FOR_avx2_gatherdiv8sf;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERSIV2DI:
+ icode = CODE_FOR_avx2_gathersiv2di;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERSIV4DI:
+ icode = CODE_FOR_avx2_gathersiv4di;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERDIV2DI:
+ icode = CODE_FOR_avx2_gatherdiv2di;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERDIV4DI:
+ icode = CODE_FOR_avx2_gatherdiv4di;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERSIV4SI:
+ icode = CODE_FOR_avx2_gathersiv4si;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERSIV8SI:
+ icode = CODE_FOR_avx2_gathersiv8si;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERDIV4SI:
+ icode = CODE_FOR_avx2_gatherdiv4si;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERDIV8SI:
+ icode = CODE_FOR_avx2_gatherdiv8si;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERALTSIV4DF:
+ icode = CODE_FOR_avx2_gathersiv4df;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERALTDIV8SF:
+ icode = CODE_FOR_avx2_gatherdiv8sf;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERALTSIV4DI:
+ icode = CODE_FOR_avx2_gathersiv4di;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHERALTDIV8SI:
+ icode = CODE_FOR_avx2_gatherdiv8si;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3SIV16SF:
+ icode = CODE_FOR_avx512f_gathersiv16sf;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3SIV8DF:
+ icode = CODE_FOR_avx512f_gathersiv8df;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3DIV16SF:
+ icode = CODE_FOR_avx512f_gatherdiv16sf;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3DIV8DF:
+ icode = CODE_FOR_avx512f_gatherdiv8df;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3SIV16SI:
+ icode = CODE_FOR_avx512f_gathersiv16si;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3SIV8DI:
+ icode = CODE_FOR_avx512f_gathersiv8di;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3DIV16SI:
+ icode = CODE_FOR_avx512f_gatherdiv16si;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3DIV8DI:
+ icode = CODE_FOR_avx512f_gatherdiv8di;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3ALTSIV8DF:
+ icode = CODE_FOR_avx512f_gathersiv8df;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3ALTDIV16SF:
+ icode = CODE_FOR_avx512f_gatherdiv16sf;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3ALTSIV8DI:
+ icode = CODE_FOR_avx512f_gathersiv8di;
+ goto gather_gen;
+ case IX86_BUILTIN_GATHER3ALTDIV16SI:
+ icode = CODE_FOR_avx512f_gatherdiv16si;
+ goto gather_gen;
+ case IX86_BUILTIN_SCATTERSIV16SF:
+ icode = CODE_FOR_avx512f_scattersiv16sf;
+ goto scatter_gen;
+ case IX86_BUILTIN_SCATTERSIV8DF:
+ icode = CODE_FOR_avx512f_scattersiv8df;
+ goto scatter_gen;
+ case IX86_BUILTIN_SCATTERDIV16SF:
+ icode = CODE_FOR_avx512f_scatterdiv16sf;
+ goto scatter_gen;
+ case IX86_BUILTIN_SCATTERDIV8DF:
+ icode = CODE_FOR_avx512f_scatterdiv8df;
+ goto scatter_gen;
+ case IX86_BUILTIN_SCATTERSIV16SI:
+ icode = CODE_FOR_avx512f_scattersiv16si;
+ goto scatter_gen;
+ case IX86_BUILTIN_SCATTERSIV8DI:
+ icode = CODE_FOR_avx512f_scattersiv8di;
+ goto scatter_gen;
+ case IX86_BUILTIN_SCATTERDIV16SI:
+ icode = CODE_FOR_avx512f_scatterdiv16si;
+ goto scatter_gen;
+ case IX86_BUILTIN_SCATTERDIV8DI:
+ icode = CODE_FOR_avx512f_scatterdiv8di;
+ goto scatter_gen;
+
+ case IX86_BUILTIN_GATHERPFDPD:
+ icode = CODE_FOR_avx512pf_gatherpfv8sidf;
+ goto vec_prefetch_gen;
+ case IX86_BUILTIN_GATHERPFDPS:
+ icode = CODE_FOR_avx512pf_gatherpfv16sisf;
+ goto vec_prefetch_gen;
+ case IX86_BUILTIN_GATHERPFQPD:
+ icode = CODE_FOR_avx512pf_gatherpfv8didf;
+ goto vec_prefetch_gen;
+ case IX86_BUILTIN_GATHERPFQPS:
+ icode = CODE_FOR_avx512pf_gatherpfv8disf;
+ goto vec_prefetch_gen;
+ case IX86_BUILTIN_SCATTERPFDPD:
+ icode = CODE_FOR_avx512pf_scatterpfv8sidf;
+ goto vec_prefetch_gen;
+ case IX86_BUILTIN_SCATTERPFDPS:
+ icode = CODE_FOR_avx512pf_scatterpfv16sisf;
+ goto vec_prefetch_gen;
+ case IX86_BUILTIN_SCATTERPFQPD:
+ icode = CODE_FOR_avx512pf_scatterpfv8didf;
+ goto vec_prefetch_gen;
+ case IX86_BUILTIN_SCATTERPFQPS:
+ icode = CODE_FOR_avx512pf_scatterpfv8disf;
+ goto vec_prefetch_gen;
+
+ gather_gen:
+ rtx half;
+ rtx (*gen) (rtx, rtx);
+
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+ arg2 = CALL_EXPR_ARG (exp, 2);
+ arg3 = CALL_EXPR_ARG (exp, 3);
+ arg4 = CALL_EXPR_ARG (exp, 4);
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+ op2 = expand_normal (arg2);
+ op3 = expand_normal (arg3);
+ op4 = expand_normal (arg4);
+ /* Note the arg order is different from the operand order. */
+ mode0 = insn_data[icode].operand[1].mode;
+ mode2 = insn_data[icode].operand[3].mode;
+ mode3 = insn_data[icode].operand[4].mode;
+ mode4 = insn_data[icode].operand[5].mode;
+
+ if (target == NULL_RTX
+ || GET_MODE (target) != insn_data[icode].operand[0].mode
+ || !insn_data[icode].operand[0].predicate (target,
+ GET_MODE (target)))
+ subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
+ else
+ subtarget = target;
+
+ switch (fcode)
+ {
+ case IX86_BUILTIN_GATHER3ALTSIV8DF:
+ case IX86_BUILTIN_GATHER3ALTSIV8DI:
+ half = gen_reg_rtx (V8SImode);
+ if (!nonimmediate_operand (op2, V16SImode))
+ op2 = copy_to_mode_reg (V16SImode, op2);
+ emit_insn (gen_vec_extract_lo_v16si (half, op2));
+ op2 = half;
+ break;
+ case IX86_BUILTIN_GATHERALTSIV4DF:
+ case IX86_BUILTIN_GATHERALTSIV4DI:
+ half = gen_reg_rtx (V4SImode);
+ if (!nonimmediate_operand (op2, V8SImode))
+ op2 = copy_to_mode_reg (V8SImode, op2);
+ emit_insn (gen_vec_extract_lo_v8si (half, op2));
+ op2 = half;
+ break;
+ case IX86_BUILTIN_GATHER3ALTDIV16SF:
+ case IX86_BUILTIN_GATHER3ALTDIV16SI:
+ half = gen_reg_rtx (mode0);
+ if (mode0 == V8SFmode)
+ gen = gen_vec_extract_lo_v16sf;
+ else
+ gen = gen_vec_extract_lo_v16si;
+ if (!nonimmediate_operand (op0, GET_MODE (op0)))
+ op0 = copy_to_mode_reg (GET_MODE (op0), op0);
+ emit_insn (gen (half, op0));
+ op0 = half;
+ if (GET_MODE (op3) != VOIDmode)
+ {
+ if (!nonimmediate_operand (op3, GET_MODE (op3)))
+ op3 = copy_to_mode_reg (GET_MODE (op3), op3);
+ emit_insn (gen (half, op3));
+ op3 = half;
+ }
+ break;
+ case IX86_BUILTIN_GATHERALTDIV8SF:
+ case IX86_BUILTIN_GATHERALTDIV8SI:
+ half = gen_reg_rtx (mode0);
+ if (mode0 == V4SFmode)
+ gen = gen_vec_extract_lo_v8sf;
+ else
+ gen = gen_vec_extract_lo_v8si;
+ if (!nonimmediate_operand (op0, GET_MODE (op0)))
+ op0 = copy_to_mode_reg (GET_MODE (op0), op0);
+ emit_insn (gen (half, op0));
+ op0 = half;
+ if (GET_MODE (op3) != VOIDmode)
+ {
+ if (!nonimmediate_operand (op3, GET_MODE (op3)))
+ op3 = copy_to_mode_reg (GET_MODE (op3), op3);
+ emit_insn (gen (half, op3));
+ op3 = half;
+ }
+ break;
+ default:
+ break;
+ }
+
+ /* Force memory operand only with base register here. But we
+ don't want to do it on memory operand for other builtin
+ functions. */
+ op1 = ix86_zero_extend_to_Pmode (op1);
+
+ if (!insn_data[icode].operand[1].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ if (!insn_data[icode].operand[2].predicate (op1, Pmode))
+ op1 = copy_to_mode_reg (Pmode, op1);
+ if (!insn_data[icode].operand[3].predicate (op2, mode2))
+ op2 = copy_to_mode_reg (mode2, op2);
+ if (GET_MODE (op3) == mode3 || GET_MODE (op3) == VOIDmode)
+ {
+ if (!insn_data[icode].operand[4].predicate (op3, mode3))
+ op3 = copy_to_mode_reg (mode3, op3);
+ }
+ else
+ {
+ op3 = copy_to_reg (op3);
+ op3 = simplify_gen_subreg (mode3, op3, GET_MODE (op3), 0);
+ }
+ if (!insn_data[icode].operand[5].predicate (op4, mode4))
+ {
+ error ("the last argument must be scale 1, 2, 4, 8");
+ return const0_rtx;
+ }
+
+ /* Optimize. If mask is known to have all high bits set,
+ replace op0 with pc_rtx to signal that the instruction
+ overwrites the whole destination and doesn't use its
+ previous contents. */
+ if (optimize)
+ {
+ if (TREE_CODE (arg3) == INTEGER_CST)
+ {
+ if (integer_all_onesp (arg3))
+ op0 = pc_rtx;
+ }
+ else if (TREE_CODE (arg3) == VECTOR_CST)
+ {
+ unsigned int negative = 0;
+ for (i = 0; i < VECTOR_CST_NELTS (arg3); ++i)
+ {
+ tree cst = VECTOR_CST_ELT (arg3, i);
+ if (TREE_CODE (cst) == INTEGER_CST
+ && tree_int_cst_sign_bit (cst))
+ negative++;
+ else if (TREE_CODE (cst) == REAL_CST
+ && REAL_VALUE_NEGATIVE (TREE_REAL_CST (cst)))
+ negative++;
+ }
+ if (negative == TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg3)))
+ op0 = pc_rtx;
+ }
+ else if (TREE_CODE (arg3) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (arg3)) == VECTOR_TYPE)
+ {
+ /* Recognize also when mask is like:
+ __v2df src = _mm_setzero_pd ();
+ __v2df mask = _mm_cmpeq_pd (src, src);
+ or
+ __v8sf src = _mm256_setzero_ps ();
+ __v8sf mask = _mm256_cmp_ps (src, src, _CMP_EQ_OQ);
+ as that is a cheaper way to load all ones into
+ a register than having to load a constant from
+ memory. */
+ gimple def_stmt = SSA_NAME_DEF_STMT (arg3);
+ if (is_gimple_call (def_stmt))
+ {
+ tree fndecl = gimple_call_fndecl (def_stmt);
+ if (fndecl
+ && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
+ switch ((unsigned int) DECL_FUNCTION_CODE (fndecl))
+ {
+ case IX86_BUILTIN_CMPPD:
+ case IX86_BUILTIN_CMPPS:
+ case IX86_BUILTIN_CMPPD256:
+ case IX86_BUILTIN_CMPPS256:
+ if (!integer_zerop (gimple_call_arg (def_stmt, 2)))
+ break;
+ /* FALLTHRU */
+ case IX86_BUILTIN_CMPEQPD:
+ case IX86_BUILTIN_CMPEQPS:
+ if (initializer_zerop (gimple_call_arg (def_stmt, 0))
+ && initializer_zerop (gimple_call_arg (def_stmt,
+ 1)))
+ op0 = pc_rtx;
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ }
+
+ pat = GEN_FCN (icode) (subtarget, op0, op1, op2, op3, op4);
+ if (! pat)
+ return const0_rtx;
+ emit_insn (pat);
+
+ switch (fcode)
+ {
+ case IX86_BUILTIN_GATHER3DIV16SF:
+ if (target == NULL_RTX)
+ target = gen_reg_rtx (V8SFmode);
+ emit_insn (gen_vec_extract_lo_v16sf (target, subtarget));
+ break;
+ case IX86_BUILTIN_GATHER3DIV16SI:
+ if (target == NULL_RTX)
+ target = gen_reg_rtx (V8SImode);
+ emit_insn (gen_vec_extract_lo_v16si (target, subtarget));
+ break;
+ case IX86_BUILTIN_GATHERDIV8SF:
+ if (target == NULL_RTX)
+ target = gen_reg_rtx (V4SFmode);
+ emit_insn (gen_vec_extract_lo_v8sf (target, subtarget));
+ break;
+ case IX86_BUILTIN_GATHERDIV8SI:
+ if (target == NULL_RTX)
+ target = gen_reg_rtx (V4SImode);
+ emit_insn (gen_vec_extract_lo_v8si (target, subtarget));
+ break;
+ default:
+ target = subtarget;
+ break;
+ }
+ return target;
+
+ scatter_gen:
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+ arg2 = CALL_EXPR_ARG (exp, 2);
+ arg3 = CALL_EXPR_ARG (exp, 3);
+ arg4 = CALL_EXPR_ARG (exp, 4);
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+ op2 = expand_normal (arg2);
+ op3 = expand_normal (arg3);
+ op4 = expand_normal (arg4);
+ mode1 = insn_data[icode].operand[1].mode;
+ mode2 = insn_data[icode].operand[2].mode;
+ mode3 = insn_data[icode].operand[3].mode;
+ mode4 = insn_data[icode].operand[4].mode;
+
+ /* Force memory operand only with base register here. But we
+ don't want to do it on memory operand for other builtin
+ functions. */
+ op0 = force_reg (Pmode, convert_to_mode (Pmode, op0, 1));
+
+ if (!insn_data[icode].operand[0].predicate (op0, Pmode))
+ op0 = copy_to_mode_reg (Pmode, op0);
+
+ if (GET_MODE (op1) == mode1 || GET_MODE (op1) == VOIDmode)
+ {
+ if (!insn_data[icode].operand[1].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+ }
+ else
+ {
+ op1 = copy_to_reg (op1);
+ op1 = simplify_gen_subreg (mode1, op1, GET_MODE (op1), 0);
+ }
+
+ if (!insn_data[icode].operand[2].predicate (op2, mode2))
+ op2 = copy_to_mode_reg (mode2, op2);
+
+ if (!insn_data[icode].operand[3].predicate (op3, mode3))
+ op3 = copy_to_mode_reg (mode3, op3);
+
+ if (!insn_data[icode].operand[4].predicate (op4, mode4))
+ {
+ error ("the last argument must be scale 1, 2, 4, 8");
+ return const0_rtx;
+ }
+
+ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4);
+ if (! pat)
+ return const0_rtx;
+
+ emit_insn (pat);
+ return 0;
+
+ vec_prefetch_gen:
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ arg1 = CALL_EXPR_ARG (exp, 1);
+ arg2 = CALL_EXPR_ARG (exp, 2);
+ arg3 = CALL_EXPR_ARG (exp, 3);
+ arg4 = CALL_EXPR_ARG (exp, 4);
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+ op2 = expand_normal (arg2);
+ op3 = expand_normal (arg3);
+ op4 = expand_normal (arg4);
+ mode0 = insn_data[icode].operand[0].mode;
+ mode1 = insn_data[icode].operand[1].mode;
+ mode3 = insn_data[icode].operand[3].mode;
+ mode4 = insn_data[icode].operand[4].mode;
+
+ if (GET_MODE (op0) == mode0
+ || (GET_MODE (op0) == VOIDmode && op0 != constm1_rtx))
+ {
+ if (!insn_data[icode].operand[0].predicate (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+ }
+ else if (op0 != constm1_rtx)
+ {
+ op0 = copy_to_reg (op0);
+ op0 = simplify_gen_subreg (mode0, op0, GET_MODE (op0), 0);
+ }
+
+ if (!insn_data[icode].operand[1].predicate (op1, mode1))
+ op1 = copy_to_mode_reg (mode1, op1);
+
+ /* Force memory operand only with base register here. But we
+ don't want to do it on memory operand for other builtin
+ functions. */
+ op2 = force_reg (Pmode, convert_to_mode (Pmode, op2, 1));
+
+ if (!insn_data[icode].operand[2].predicate (op2, Pmode))
+ op2 = copy_to_mode_reg (Pmode, op2);
+
+ if (!insn_data[icode].operand[3].predicate (op3, mode3))
+ {
+ error ("the forth argument must be scale 1, 2, 4, 8");
+ return const0_rtx;
+ }
+
+ if (!insn_data[icode].operand[4].predicate (op4, mode4))
+ {
+ error ("incorrect hint operand");
+ return const0_rtx;
+ }
+
+ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4);
+ if (! pat)
+ return const0_rtx;
+
+ emit_insn (pat);
+
+ return 0;
+
+ case IX86_BUILTIN_XABORT:
+ icode = CODE_FOR_xabort;
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op0 = expand_normal (arg0);
+ mode0 = insn_data[icode].operand[0].mode;
+ if (!insn_data[icode].operand[0].predicate (op0, mode0))
+ {
+ error ("the xabort's argument must be an 8-bit immediate");
+ return const0_rtx;
+ }
+ emit_insn (gen_xabort (op0));
+ return 0;
+
+ default:
+ break;
+ }
+
+ for (i = 0, d = bdesc_special_args;
+ i < ARRAY_SIZE (bdesc_special_args);
+ i++, d++)
+ if (d->code == fcode)
+ return ix86_expand_special_args_builtin (d, exp, target);
+
+ for (i = 0, d = bdesc_args;
+ i < ARRAY_SIZE (bdesc_args);
+ i++, d++)
+ if (d->code == fcode)
+ switch (fcode)
+ {
+ case IX86_BUILTIN_FABSQ:
+ case IX86_BUILTIN_COPYSIGNQ:
+ if (!TARGET_SSE)
+ /* Emit a normal call if SSE isn't available. */
+ return expand_call (exp, target, ignore);
+ default:
+ return ix86_expand_args_builtin (d, exp, target);
+ }
+
+ for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++)
+ if (d->code == fcode)
+ return ix86_expand_sse_comi (d, exp, target);
+
+ for (i = 0, d = bdesc_round_args; i < ARRAY_SIZE (bdesc_round_args); i++, d++)
+ if (d->code == fcode)
+ return ix86_expand_round_builtin (d, exp, target);
+
+ for (i = 0, d = bdesc_pcmpestr;
+ i < ARRAY_SIZE (bdesc_pcmpestr);
+ i++, d++)
+ if (d->code == fcode)
+ return ix86_expand_sse_pcmpestr (d, exp, target);
+
+ for (i = 0, d = bdesc_pcmpistr;
+ i < ARRAY_SIZE (bdesc_pcmpistr);
+ i++, d++)
+ if (d->code == fcode)
+ return ix86_expand_sse_pcmpistr (d, exp, target);
+
+ for (i = 0, d = bdesc_multi_arg; i < ARRAY_SIZE (bdesc_multi_arg); i++, d++)
+ if (d->code == fcode)
+ return ix86_expand_multi_arg_builtin (d->icode, exp, target,
+ (enum ix86_builtin_func_type)
+ d->flag, d->comparison);
+
+ gcc_unreachable ();
+}
+
+/* This returns the target-specific builtin with code CODE if
+ current_function_decl has visibility on this builtin, which is checked
+ using isa flags. Returns NULL_TREE otherwise. */
+
+static tree ix86_get_builtin (enum ix86_builtins code)
+{
+ struct cl_target_option *opts;
+ tree target_tree = NULL_TREE;
+
+ /* Determine the isa flags of current_function_decl. */
+
+ if (current_function_decl)
+ target_tree = DECL_FUNCTION_SPECIFIC_TARGET (current_function_decl);
+
+ if (target_tree == NULL)
+ target_tree = target_option_default_node;
+
+ opts = TREE_TARGET_OPTION (target_tree);
+
+ if (ix86_builtins_isa[(int) code].isa & opts->x_ix86_isa_flags)
+ return ix86_builtin_decl (code, true);
+ else
+ return NULL_TREE;
+}
+
+/* Returns a function decl for a vectorized version of the builtin function
+ with builtin function code FN and the result vector type TYPE, or NULL_TREE
+ if it is not available. */
+
+static tree
+ix86_builtin_vectorized_function (tree fndecl, tree type_out,
+ tree type_in)
+{
+ enum machine_mode in_mode, out_mode;
+ int in_n, out_n;
+ enum built_in_function fn = DECL_FUNCTION_CODE (fndecl);
+
+ if (TREE_CODE (type_out) != VECTOR_TYPE
+ || TREE_CODE (type_in) != VECTOR_TYPE
+ || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
+ return NULL_TREE;
+
+ out_mode = TYPE_MODE (TREE_TYPE (type_out));
+ out_n = TYPE_VECTOR_SUBPARTS (type_out);
+ in_mode = TYPE_MODE (TREE_TYPE (type_in));
+ in_n = TYPE_VECTOR_SUBPARTS (type_in);
+
+ switch (fn)
+ {
+ case BUILT_IN_SQRT:
+ if (out_mode == DFmode && in_mode == DFmode)
+ {
+ if (out_n == 2 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_SQRTPD);
+ else if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_SQRTPD256);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_SQRTPD512);
+ }
+ break;
+
+ case BUILT_IN_EXP2F:
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 16 && in_n == 16)
+ return ix86_get_builtin (IX86_BUILTIN_EXP2PS);
+ }
+ break;
+
+ case BUILT_IN_SQRTF:
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_SQRTPS_NR);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_SQRTPS_NR256);
+ else if (out_n == 16 && in_n == 16)
+ return ix86_get_builtin (IX86_BUILTIN_SQRTPS_NR512);
+ }
+ break;
+
+ case BUILT_IN_IFLOOR:
+ case BUILT_IN_LFLOOR:
+ case BUILT_IN_LLFLOOR:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SImode && in_mode == DFmode)
+ {
+ if (out_n == 4 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX);
+ else if (out_n == 8 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX256);
+ else if (out_n == 16 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX512);
+ }
+ break;
+
+ case BUILT_IN_IFLOORF:
+ case BUILT_IN_LFLOORF:
+ case BUILT_IN_LLFLOORF:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SImode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPS_SFIX);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPS_SFIX256);
+ }
+ break;
+
+ case BUILT_IN_ICEIL:
+ case BUILT_IN_LCEIL:
+ case BUILT_IN_LLCEIL:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SImode && in_mode == DFmode)
+ {
+ if (out_n == 4 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPD_VEC_PACK_SFIX);
+ else if (out_n == 8 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPD_VEC_PACK_SFIX256);
+ else if (out_n == 16 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPD_VEC_PACK_SFIX512);
+ }
+ break;
+
+ case BUILT_IN_ICEILF:
+ case BUILT_IN_LCEILF:
+ case BUILT_IN_LLCEILF:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SImode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPS_SFIX);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPS_SFIX256);
+ }
+ break;
+
+ case BUILT_IN_IRINT:
+ case BUILT_IN_LRINT:
+ case BUILT_IN_LLRINT:
+ if (out_mode == SImode && in_mode == DFmode)
+ {
+ if (out_n == 4 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_VEC_PACK_SFIX);
+ else if (out_n == 8 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_VEC_PACK_SFIX256);
+ }
+ break;
+
+ case BUILT_IN_IRINTF:
+ case BUILT_IN_LRINTF:
+ case BUILT_IN_LLRINTF:
+ if (out_mode == SImode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_CVTPS2DQ);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_CVTPS2DQ256);
+ }
+ break;
+
+ case BUILT_IN_IROUND:
+ case BUILT_IN_LROUND:
+ case BUILT_IN_LLROUND:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SImode && in_mode == DFmode)
+ {
+ if (out_n == 4 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX);
+ else if (out_n == 8 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX256);
+ else if (out_n == 16 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX512);
+ }
+ break;
+
+ case BUILT_IN_IROUNDF:
+ case BUILT_IN_LROUNDF:
+ case BUILT_IN_LLROUNDF:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SImode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPS_AZ_SFIX);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPS_AZ_SFIX256);
+ }
+ break;
+
+ case BUILT_IN_COPYSIGN:
+ if (out_mode == DFmode && in_mode == DFmode)
+ {
+ if (out_n == 2 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_CPYSGNPD);
+ else if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_CPYSGNPD256);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_CPYSGNPD512);
+ }
+ break;
+
+ case BUILT_IN_COPYSIGNF:
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_CPYSGNPS);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_CPYSGNPS256);
+ else if (out_n == 16 && in_n == 16)
+ return ix86_get_builtin (IX86_BUILTIN_CPYSGNPS512);
+ }
+ break;
+
+ case BUILT_IN_FLOOR:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == DFmode && in_mode == DFmode)
+ {
+ if (out_n == 2 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPD);
+ else if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPD256);
+ }
+ break;
+
+ case BUILT_IN_FLOORF:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPS);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_FLOORPS256);
+ }
+ break;
+
+ case BUILT_IN_CEIL:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == DFmode && in_mode == DFmode)
+ {
+ if (out_n == 2 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPD);
+ else if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPD256);
+ }
+ break;
+
+ case BUILT_IN_CEILF:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPS);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_CEILPS256);
+ }
+ break;
+
+ case BUILT_IN_TRUNC:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == DFmode && in_mode == DFmode)
+ {
+ if (out_n == 2 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_TRUNCPD);
+ else if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_TRUNCPD256);
+ }
+ break;
+
+ case BUILT_IN_TRUNCF:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_TRUNCPS);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_TRUNCPS256);
+ }
+ break;
+
+ case BUILT_IN_RINT:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == DFmode && in_mode == DFmode)
+ {
+ if (out_n == 2 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_RINTPD);
+ else if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_RINTPD256);
+ }
+ break;
+
+ case BUILT_IN_RINTF:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_RINTPS);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_RINTPS256);
+ }
+ break;
+
+ case BUILT_IN_ROUND:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == DFmode && in_mode == DFmode)
+ {
+ if (out_n == 2 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPD_AZ);
+ else if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPD_AZ256);
+ }
+ break;
+
+ case BUILT_IN_ROUNDF:
+ /* The round insn does not trap on denormals. */
+ if (flag_trapping_math || !TARGET_ROUND)
+ break;
+
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPS_AZ);
+ else if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_ROUNDPS_AZ256);
+ }
+ break;
+
+ case BUILT_IN_FMA:
+ if (out_mode == DFmode && in_mode == DFmode)
+ {
+ if (out_n == 2 && in_n == 2)
+ return ix86_get_builtin (IX86_BUILTIN_VFMADDPD);
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_VFMADDPD256);
+ }
+ break;
+
+ case BUILT_IN_FMAF:
+ if (out_mode == SFmode && in_mode == SFmode)
+ {
+ if (out_n == 4 && in_n == 4)
+ return ix86_get_builtin (IX86_BUILTIN_VFMADDPS);
+ if (out_n == 8 && in_n == 8)
+ return ix86_get_builtin (IX86_BUILTIN_VFMADDPS256);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ /* Dispatch to a handler for a vectorization library. */
+ if (ix86_veclib_handler)
+ return ix86_veclib_handler ((enum built_in_function) fn, type_out,
+ type_in);
+
+ return NULL_TREE;
+}
+
+/* Handler for an SVML-style interface to
+ a library with vectorized intrinsics. */
+
+static tree
+ix86_veclibabi_svml (enum built_in_function fn, tree type_out, tree type_in)
+{
+ char name[20];
+ tree fntype, new_fndecl, args;
+ unsigned arity;
+ const char *bname;
+ enum machine_mode el_mode, in_mode;
+ int n, in_n;
+
+ /* The SVML is suitable for unsafe math only. */
+ if (!flag_unsafe_math_optimizations)
+ return NULL_TREE;
+
+ el_mode = TYPE_MODE (TREE_TYPE (type_out));
+ n = TYPE_VECTOR_SUBPARTS (type_out);
+ in_mode = TYPE_MODE (TREE_TYPE (type_in));
+ in_n = TYPE_VECTOR_SUBPARTS (type_in);
+ if (el_mode != in_mode
+ || n != in_n)
+ return NULL_TREE;
+
+ switch (fn)
+ {
+ case BUILT_IN_EXP:
+ case BUILT_IN_LOG:
+ case BUILT_IN_LOG10:
+ case BUILT_IN_POW:
+ case BUILT_IN_TANH:
+ case BUILT_IN_TAN:
+ case BUILT_IN_ATAN:
+ case BUILT_IN_ATAN2:
+ case BUILT_IN_ATANH:
+ case BUILT_IN_CBRT:
+ case BUILT_IN_SINH:
+ case BUILT_IN_SIN:
+ case BUILT_IN_ASINH:
+ case BUILT_IN_ASIN:
+ case BUILT_IN_COSH:
+ case BUILT_IN_COS:
+ case BUILT_IN_ACOSH:
+ case BUILT_IN_ACOS:
+ if (el_mode != DFmode || n != 2)
+ return NULL_TREE;
+ break;
+
+ case BUILT_IN_EXPF:
+ case BUILT_IN_LOGF:
+ case BUILT_IN_LOG10F:
+ case BUILT_IN_POWF:
+ case BUILT_IN_TANHF:
+ case BUILT_IN_TANF:
+ case BUILT_IN_ATANF:
+ case BUILT_IN_ATAN2F:
+ case BUILT_IN_ATANHF:
+ case BUILT_IN_CBRTF:
+ case BUILT_IN_SINHF:
+ case BUILT_IN_SINF:
+ case BUILT_IN_ASINHF:
+ case BUILT_IN_ASINF:
+ case BUILT_IN_COSHF:
+ case BUILT_IN_COSF:
+ case BUILT_IN_ACOSHF:
+ case BUILT_IN_ACOSF:
+ if (el_mode != SFmode || n != 4)
+ return NULL_TREE;
+ break;
+
+ default:
+ return NULL_TREE;
+ }
+
+ bname = IDENTIFIER_POINTER (DECL_NAME (builtin_decl_implicit (fn)));
+
+ if (fn == BUILT_IN_LOGF)
+ strcpy (name, "vmlsLn4");
+ else if (fn == BUILT_IN_LOG)
+ strcpy (name, "vmldLn2");
+ else if (n == 4)
+ {
+ sprintf (name, "vmls%s", bname+10);
+ name[strlen (name)-1] = '4';
+ }
+ else
+ sprintf (name, "vmld%s2", bname+10);
+
+ /* Convert to uppercase. */
+ name[4] &= ~0x20;
+
+ arity = 0;
+ for (args = DECL_ARGUMENTS (builtin_decl_implicit (fn));
+ args;
+ args = TREE_CHAIN (args))
+ arity++;
+
+ if (arity == 1)
+ fntype = build_function_type_list (type_out, type_in, NULL);
+ else
+ fntype = build_function_type_list (type_out, type_in, type_in, NULL);
+
+ /* Build a function declaration for the vectorized function. */
+ new_fndecl = build_decl (BUILTINS_LOCATION,
+ FUNCTION_DECL, get_identifier (name), fntype);
+ TREE_PUBLIC (new_fndecl) = 1;
+ DECL_EXTERNAL (new_fndecl) = 1;
+ DECL_IS_NOVOPS (new_fndecl) = 1;
+ TREE_READONLY (new_fndecl) = 1;
+
+ return new_fndecl;
+}
+
+/* Handler for an ACML-style interface to
+ a library with vectorized intrinsics. */
+
+static tree
+ix86_veclibabi_acml (enum built_in_function fn, tree type_out, tree type_in)
+{
+ char name[20] = "__vr.._";
+ tree fntype, new_fndecl, args;
+ unsigned arity;
+ const char *bname;
+ enum machine_mode el_mode, in_mode;
+ int n, in_n;
+
+ /* The ACML is 64bits only and suitable for unsafe math only as
+ it does not correctly support parts of IEEE with the required
+ precision such as denormals. */
+ if (!TARGET_64BIT
+ || !flag_unsafe_math_optimizations)
+ return NULL_TREE;
+
+ el_mode = TYPE_MODE (TREE_TYPE (type_out));
+ n = TYPE_VECTOR_SUBPARTS (type_out);
+ in_mode = TYPE_MODE (TREE_TYPE (type_in));
+ in_n = TYPE_VECTOR_SUBPARTS (type_in);
+ if (el_mode != in_mode
+ || n != in_n)
+ return NULL_TREE;
+
+ switch (fn)
+ {
+ case BUILT_IN_SIN:
+ case BUILT_IN_COS:
+ case BUILT_IN_EXP:
+ case BUILT_IN_LOG:
+ case BUILT_IN_LOG2:
+ case BUILT_IN_LOG10:
+ name[4] = 'd';
+ name[5] = '2';
+ if (el_mode != DFmode
+ || n != 2)
+ return NULL_TREE;
+ break;
+
+ case BUILT_IN_SINF:
+ case BUILT_IN_COSF:
+ case BUILT_IN_EXPF:
+ case BUILT_IN_POWF:
+ case BUILT_IN_LOGF:
+ case BUILT_IN_LOG2F:
+ case BUILT_IN_LOG10F:
+ name[4] = 's';
+ name[5] = '4';
+ if (el_mode != SFmode
+ || n != 4)
+ return NULL_TREE;
+ break;
+
+ default:
+ return NULL_TREE;
+ }
+
+ bname = IDENTIFIER_POINTER (DECL_NAME (builtin_decl_implicit (fn)));
+ sprintf (name + 7, "%s", bname+10);
+
+ arity = 0;
+ for (args = DECL_ARGUMENTS (builtin_decl_implicit (fn));
+ args;
+ args = TREE_CHAIN (args))
+ arity++;
+
+ if (arity == 1)
+ fntype = build_function_type_list (type_out, type_in, NULL);
+ else
+ fntype = build_function_type_list (type_out, type_in, type_in, NULL);
+
+ /* Build a function declaration for the vectorized function. */
+ new_fndecl = build_decl (BUILTINS_LOCATION,
+ FUNCTION_DECL, get_identifier (name), fntype);
+ TREE_PUBLIC (new_fndecl) = 1;
+ DECL_EXTERNAL (new_fndecl) = 1;
+ DECL_IS_NOVOPS (new_fndecl) = 1;
+ TREE_READONLY (new_fndecl) = 1;
+
+ return new_fndecl;
+}
+
+/* Returns a decl of a function that implements gather load with
+ memory type MEM_VECTYPE and index type INDEX_VECTYPE and SCALE.
+ Return NULL_TREE if it is not available. */
+
+static tree
+ix86_vectorize_builtin_gather (const_tree mem_vectype,
+ const_tree index_type, int scale)
+{
+ bool si;
+ enum ix86_builtins code;
+
+ if (! TARGET_AVX2)
+ return NULL_TREE;
+
+ if ((TREE_CODE (index_type) != INTEGER_TYPE
+ && !POINTER_TYPE_P (index_type))
+ || (TYPE_MODE (index_type) != SImode
+ && TYPE_MODE (index_type) != DImode))
+ return NULL_TREE;
+
+ if (TYPE_PRECISION (index_type) > POINTER_SIZE)
+ return NULL_TREE;
+
+ /* v*gather* insn sign extends index to pointer mode. */
+ if (TYPE_PRECISION (index_type) < POINTER_SIZE
+ && TYPE_UNSIGNED (index_type))
+ return NULL_TREE;
+
+ if (scale <= 0
+ || scale > 8
+ || (scale & (scale - 1)) != 0)
+ return NULL_TREE;
+
+ si = TYPE_MODE (index_type) == SImode;
+ switch (TYPE_MODE (mem_vectype))
+ {
+ case V2DFmode:
+ code = si ? IX86_BUILTIN_GATHERSIV2DF : IX86_BUILTIN_GATHERDIV2DF;
+ break;
+ case V4DFmode:
+ code = si ? IX86_BUILTIN_GATHERALTSIV4DF : IX86_BUILTIN_GATHERDIV4DF;
+ break;
+ case V2DImode:
+ code = si ? IX86_BUILTIN_GATHERSIV2DI : IX86_BUILTIN_GATHERDIV2DI;
+ break;
+ case V4DImode:
+ code = si ? IX86_BUILTIN_GATHERALTSIV4DI : IX86_BUILTIN_GATHERDIV4DI;
+ break;
+ case V4SFmode:
+ code = si ? IX86_BUILTIN_GATHERSIV4SF : IX86_BUILTIN_GATHERDIV4SF;
+ break;
+ case V8SFmode:
+ code = si ? IX86_BUILTIN_GATHERSIV8SF : IX86_BUILTIN_GATHERALTDIV8SF;
+ break;
+ case V4SImode:
+ code = si ? IX86_BUILTIN_GATHERSIV4SI : IX86_BUILTIN_GATHERDIV4SI;
+ break;
+ case V8SImode:
+ code = si ? IX86_BUILTIN_GATHERSIV8SI : IX86_BUILTIN_GATHERALTDIV8SI;
+ break;
+ case V8DFmode:
+ if (TARGET_AVX512F)
+ code = si ? IX86_BUILTIN_GATHER3ALTSIV8DF : IX86_BUILTIN_GATHER3DIV8DF;
+ else
+ return NULL_TREE;
+ break;
+ case V8DImode:
+ if (TARGET_AVX512F)
+ code = si ? IX86_BUILTIN_GATHER3ALTSIV8DI : IX86_BUILTIN_GATHER3DIV8DI;
+ else
+ return NULL_TREE;
+ break;
+ case V16SFmode:
+ if (TARGET_AVX512F)
+ code = si ? IX86_BUILTIN_GATHER3SIV16SF : IX86_BUILTIN_GATHER3ALTDIV16SF;
+ else
+ return NULL_TREE;
+ break;
+ case V16SImode:
+ if (TARGET_AVX512F)
+ code = si ? IX86_BUILTIN_GATHER3SIV16SI : IX86_BUILTIN_GATHER3ALTDIV16SI;
+ else
+ return NULL_TREE;
+ break;
+ default:
+ return NULL_TREE;
+ }
+
+ return ix86_get_builtin (code);
+}
+
+/* Returns a code for a target-specific builtin that implements
+ reciprocal of the function, or NULL_TREE if not available. */
+
+static tree
+ix86_builtin_reciprocal (unsigned int fn, bool md_fn,
+ bool sqrt ATTRIBUTE_UNUSED)
+{
+ if (! (TARGET_SSE_MATH && !optimize_insn_for_size_p ()
+ && flag_finite_math_only && !flag_trapping_math
+ && flag_unsafe_math_optimizations))
+ return NULL_TREE;
+
+ if (md_fn)
+ /* Machine dependent builtins. */
+ switch (fn)
+ {
+ /* Vectorized version of sqrt to rsqrt conversion. */
+ case IX86_BUILTIN_SQRTPS_NR:
+ return ix86_get_builtin (IX86_BUILTIN_RSQRTPS_NR);
+
+ case IX86_BUILTIN_SQRTPS_NR256:
+ return ix86_get_builtin (IX86_BUILTIN_RSQRTPS_NR256);
+
+ default:
+ return NULL_TREE;
+ }
+ else
+ /* Normal builtins. */
+ switch (fn)
+ {
+ /* Sqrt to rsqrt conversion. */
+ case BUILT_IN_SQRTF:
+ return ix86_get_builtin (IX86_BUILTIN_RSQRTF);
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+/* Helper for avx_vpermilps256_operand et al. This is also used by
+ the expansion functions to turn the parallel back into a mask.
+ The return value is 0 for no match and the imm8+1 for a match. */
+
+int
+avx_vpermilp_parallel (rtx par, enum machine_mode mode)
+{
+ unsigned i, nelt = GET_MODE_NUNITS (mode);
+ unsigned mask = 0;
+ unsigned char ipar[16] = {}; /* Silence -Wuninitialized warning. */
+
+ if (XVECLEN (par, 0) != (int) nelt)
+ return 0;
+
+ /* Validate that all of the elements are constants, and not totally
+ out of range. Copy the data into an integral array to make the
+ subsequent checks easier. */
+ for (i = 0; i < nelt; ++i)
+ {
+ rtx er = XVECEXP (par, 0, i);
+ unsigned HOST_WIDE_INT ei;
+
+ if (!CONST_INT_P (er))
+ return 0;
+ ei = INTVAL (er);
+ if (ei >= nelt)
+ return 0;
+ ipar[i] = ei;
+ }
+
+ switch (mode)
+ {
+ case V8DFmode:
+ /* In the 512-bit DFmode case, we can only move elements within
+ a 128-bit lane. First fill the second part of the mask,
+ then fallthru. */
+ for (i = 4; i < 6; ++i)
+ {
+ if (ipar[i] < 4 || ipar[i] >= 6)
+ return 0;
+ mask |= (ipar[i] - 4) << i;
+ }
+ for (i = 6; i < 8; ++i)
+ {
+ if (ipar[i] < 6)
+ return 0;
+ mask |= (ipar[i] - 6) << i;
+ }
+ /* FALLTHRU */
+
+ case V4DFmode:
+ /* In the 256-bit DFmode case, we can only move elements within
+ a 128-bit lane. */
+ for (i = 0; i < 2; ++i)
+ {
+ if (ipar[i] >= 2)
+ return 0;
+ mask |= ipar[i] << i;
+ }
+ for (i = 2; i < 4; ++i)
+ {
+ if (ipar[i] < 2)
+ return 0;
+ mask |= (ipar[i] - 2) << i;
+ }
+ break;
+
+ case V16SFmode:
+ /* In 512 bit SFmode case, permutation in the upper 256 bits
+ must mirror the permutation in the lower 256-bits. */
+ for (i = 0; i < 8; ++i)
+ if (ipar[i] + 8 != ipar[i + 8])
+ return 0;
+ /* FALLTHRU */
+
+ case V8SFmode:
+ /* In 256 bit SFmode case, we have full freedom of
+ movement within the low 128-bit lane, but the high 128-bit
+ lane must mirror the exact same pattern. */
+ for (i = 0; i < 4; ++i)
+ if (ipar[i] + 4 != ipar[i + 4])
+ return 0;
+ nelt = 4;
+ /* FALLTHRU */
+
+ case V2DFmode:
+ case V4SFmode:
+ /* In the 128-bit case, we've full freedom in the placement of
+ the elements from the source operand. */
+ for (i = 0; i < nelt; ++i)
+ mask |= ipar[i] << (i * (nelt / 2));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Make sure success has a non-zero value by adding one. */
+ return mask + 1;
+}
+
+/* Helper for avx_vperm2f128_v4df_operand et al. This is also used by
+ the expansion functions to turn the parallel back into a mask.
+ The return value is 0 for no match and the imm8+1 for a match. */
+
+int
+avx_vperm2f128_parallel (rtx par, enum machine_mode mode)
+{
+ unsigned i, nelt = GET_MODE_NUNITS (mode), nelt2 = nelt / 2;
+ unsigned mask = 0;
+ unsigned char ipar[8] = {}; /* Silence -Wuninitialized warning. */
+
+ if (XVECLEN (par, 0) != (int) nelt)
+ return 0;
+
+ /* Validate that all of the elements are constants, and not totally
+ out of range. Copy the data into an integral array to make the
+ subsequent checks easier. */
+ for (i = 0; i < nelt; ++i)
+ {
+ rtx er = XVECEXP (par, 0, i);
+ unsigned HOST_WIDE_INT ei;
+
+ if (!CONST_INT_P (er))
+ return 0;
+ ei = INTVAL (er);
+ if (ei >= 2 * nelt)
+ return 0;
+ ipar[i] = ei;
+ }
+
+ /* Validate that the halves of the permute are halves. */
+ for (i = 0; i < nelt2 - 1; ++i)
+ if (ipar[i] + 1 != ipar[i + 1])
+ return 0;
+ for (i = nelt2; i < nelt - 1; ++i)
+ if (ipar[i] + 1 != ipar[i + 1])
+ return 0;
+
+ /* Reconstruct the mask. */
+ for (i = 0; i < 2; ++i)
+ {
+ unsigned e = ipar[i * nelt2];
+ if (e % nelt2)
+ return 0;
+ e /= nelt2;
+ mask |= e << (i * 4);
+ }
+
+ /* Make sure success has a non-zero value by adding one. */
+ return mask + 1;
+}
+
+/* Return a register priority for hard reg REGNO. */
+static int
+ix86_register_priority (int hard_regno)
+{
+ /* ebp and r13 as the base always wants a displacement, r12 as the
+ base always wants an index. So discourage their usage in an
+ address. */
+ if (hard_regno == R12_REG || hard_regno == R13_REG)
+ return 0;
+ if (hard_regno == BP_REG)
+ return 1;
+ /* New x86-64 int registers result in bigger code size. Discourage
+ them. */
+ if (FIRST_REX_INT_REG <= hard_regno && hard_regno <= LAST_REX_INT_REG)
+ return 2;
+ /* New x86-64 SSE registers result in bigger code size. Discourage
+ them. */
+ if (FIRST_REX_SSE_REG <= hard_regno && hard_regno <= LAST_REX_SSE_REG)
+ return 2;
+ /* Usage of AX register results in smaller code. Prefer it. */
+ if (hard_regno == 0)
+ return 4;
+ return 3;
+}
+
+/* Implement TARGET_PREFERRED_RELOAD_CLASS.
+
+ Put float CONST_DOUBLE in the constant pool instead of fp regs.
+ QImode must go into class Q_REGS.
+ Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
+ movdf to do mem-to-mem moves through integer regs. */
+
+static reg_class_t
+ix86_preferred_reload_class (rtx x, reg_class_t regclass)
+{
+ enum machine_mode mode = GET_MODE (x);
+
+ /* We're only allowed to return a subclass of CLASS. Many of the
+ following checks fail for NO_REGS, so eliminate that early. */
+ if (regclass == NO_REGS)
+ return NO_REGS;
+
+ /* All classes can load zeros. */
+ if (x == CONST0_RTX (mode))
+ return regclass;
+
+ /* Force constants into memory if we are loading a (nonzero) constant into
+ an MMX, SSE or MASK register. This is because there are no MMX/SSE/MASK
+ instructions to load from a constant. */
+ if (CONSTANT_P (x)
+ && (MAYBE_MMX_CLASS_P (regclass)
+ || MAYBE_SSE_CLASS_P (regclass)
+ || MAYBE_MASK_CLASS_P (regclass)))
+ return NO_REGS;
+
+ /* Prefer SSE regs only, if we can use them for math. */
+ if (TARGET_SSE_MATH && !TARGET_MIX_SSE_I387 && SSE_FLOAT_MODE_P (mode))
+ return SSE_CLASS_P (regclass) ? regclass : NO_REGS;
+
+ /* Floating-point constants need more complex checks. */
+ if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != VOIDmode)
+ {
+ /* General regs can load everything. */
+ if (reg_class_subset_p (regclass, GENERAL_REGS))
+ return regclass;
+
+ /* Floats can load 0 and 1 plus some others. Note that we eliminated
+ zero above. We only want to wind up preferring 80387 registers if
+ we plan on doing computation with them. */
+ if (TARGET_80387
+ && standard_80387_constant_p (x) > 0)
+ {
+ /* Limit class to non-sse. */
+ if (regclass == FLOAT_SSE_REGS)
+ return FLOAT_REGS;
+ if (regclass == FP_TOP_SSE_REGS)
+ return FP_TOP_REG;
+ if (regclass == FP_SECOND_SSE_REGS)
+ return FP_SECOND_REG;
+ if (regclass == FLOAT_INT_REGS || regclass == FLOAT_REGS)
+ return regclass;
+ }
+
+ return NO_REGS;
+ }
+
+ /* Generally when we see PLUS here, it's the function invariant
+ (plus soft-fp const_int). Which can only be computed into general
+ regs. */
+ if (GET_CODE (x) == PLUS)
+ return reg_class_subset_p (regclass, GENERAL_REGS) ? regclass : NO_REGS;
+
+ /* QImode constants are easy to load, but non-constant QImode data
+ must go into Q_REGS. */
+ if (GET_MODE (x) == QImode && !CONSTANT_P (x))
+ {
+ if (reg_class_subset_p (regclass, Q_REGS))
+ return regclass;
+ if (reg_class_subset_p (Q_REGS, regclass))
+ return Q_REGS;
+ return NO_REGS;
+ }
+
+ return regclass;
+}
+
+/* Discourage putting floating-point values in SSE registers unless
+ SSE math is being used, and likewise for the 387 registers. */
+static reg_class_t
+ix86_preferred_output_reload_class (rtx x, reg_class_t regclass)
+{
+ enum machine_mode mode = GET_MODE (x);
+
+ /* Restrict the output reload class to the register bank that we are doing
+ math on. If we would like not to return a subset of CLASS, reject this
+ alternative: if reload cannot do this, it will still use its choice. */
+ mode = GET_MODE (x);
+ if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode))
+ return MAYBE_SSE_CLASS_P (regclass) ? ALL_SSE_REGS : NO_REGS;
+
+ if (X87_FLOAT_MODE_P (mode))
+ {
+ if (regclass == FP_TOP_SSE_REGS)
+ return FP_TOP_REG;
+ else if (regclass == FP_SECOND_SSE_REGS)
+ return FP_SECOND_REG;
+ else
+ return FLOAT_CLASS_P (regclass) ? regclass : NO_REGS;
+ }
+
+ return regclass;
+}
+
+static reg_class_t
+ix86_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
+ enum machine_mode mode, secondary_reload_info *sri)
+{
+ /* Double-word spills from general registers to non-offsettable memory
+ references (zero-extended addresses) require special handling. */
+ if (TARGET_64BIT
+ && MEM_P (x)
+ && GET_MODE_SIZE (mode) > UNITS_PER_WORD
+ && INTEGER_CLASS_P (rclass)
+ && !offsettable_memref_p (x))
+ {
+ sri->icode = (in_p
+ ? CODE_FOR_reload_noff_load
+ : CODE_FOR_reload_noff_store);
+ /* Add the cost of moving address to a temporary. */
+ sri->extra_cost = 1;
+
+ return NO_REGS;
+ }
+
+ /* QImode spills from non-QI registers require
+ intermediate register on 32bit targets. */
+ if (mode == QImode
+ && (MAYBE_MASK_CLASS_P (rclass)
+ || (!TARGET_64BIT && !in_p
+ && INTEGER_CLASS_P (rclass)
+ && MAYBE_NON_Q_CLASS_P (rclass))))
+ {
+ int regno;
+
+ if (REG_P (x))
+ regno = REGNO (x);
+ else
+ regno = -1;
+
+ if (regno >= FIRST_PSEUDO_REGISTER || GET_CODE (x) == SUBREG)
+ regno = true_regnum (x);
+
+ /* Return Q_REGS if the operand is in memory. */
+ if (regno == -1)
+ return Q_REGS;
+ }
+
+ /* This condition handles corner case where an expression involving
+ pointers gets vectorized. We're trying to use the address of a
+ stack slot as a vector initializer.
+
+ (set (reg:V2DI 74 [ vect_cst_.2 ])
+ (vec_duplicate:V2DI (reg/f:DI 20 frame)))
+
+ Eventually frame gets turned into sp+offset like this:
+
+ (set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74])
+ (vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp)
+ (const_int 392 [0x188]))))
+
+ That later gets turned into:
+
+ (set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74])
+ (vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp)
+ (mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64]))))
+
+ We'll have the following reload recorded:
+
+ Reload 0: reload_in (DI) =
+ (plus:DI (reg/f:DI 7 sp)
+ (mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64]))
+ reload_out (V2DI) = (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74])
+ SSE_REGS, RELOAD_OTHER (opnum = 0), can't combine
+ reload_in_reg: (plus:DI (reg/f:DI 7 sp) (const_int 392 [0x188]))
+ reload_out_reg: (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74])
+ reload_reg_rtx: (reg:V2DI 22 xmm1)
+
+ Which isn't going to work since SSE instructions can't handle scalar
+ additions. Returning GENERAL_REGS forces the addition into integer
+ register and reload can handle subsequent reloads without problems. */
+
+ if (in_p && GET_CODE (x) == PLUS
+ && SSE_CLASS_P (rclass)
+ && SCALAR_INT_MODE_P (mode))
+ return GENERAL_REGS;
+
+ return NO_REGS;
+}
+
+/* Implement TARGET_CLASS_LIKELY_SPILLED_P. */
+
+static bool
+ix86_class_likely_spilled_p (reg_class_t rclass)
+{
+ switch (rclass)
+ {
+ case AREG:
+ case DREG:
+ case CREG:
+ case BREG:
+ case AD_REGS:
+ case SIREG:
+ case DIREG:
+ case SSE_FIRST_REG:
+ case FP_TOP_REG:
+ case FP_SECOND_REG:
+ return true;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* If we are copying between general and FP registers, we need a memory
+ location. The same is true for SSE and MMX registers.
+
+ To optimize register_move_cost performance, allow inline variant.
+
+ The macro can't work reliably when one of the CLASSES is class containing
+ registers from multiple units (SSE, MMX, integer). We avoid this by never
+ combining those units in single alternative in the machine description.
+ Ensure that this constraint holds to avoid unexpected surprises.
+
+ When STRICT is false, we are being called from REGISTER_MOVE_COST, so do not
+ enforce these sanity checks. */
+
+static inline bool
+inline_secondary_memory_needed (enum reg_class class1, enum reg_class class2,
+ enum machine_mode mode, int strict)
+{
+ if (lra_in_progress && (class1 == NO_REGS || class2 == NO_REGS))
+ return false;
+ if (MAYBE_FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class1)
+ || MAYBE_FLOAT_CLASS_P (class2) != FLOAT_CLASS_P (class2)
+ || MAYBE_SSE_CLASS_P (class1) != SSE_CLASS_P (class1)
+ || MAYBE_SSE_CLASS_P (class2) != SSE_CLASS_P (class2)
+ || MAYBE_MMX_CLASS_P (class1) != MMX_CLASS_P (class1)
+ || MAYBE_MMX_CLASS_P (class2) != MMX_CLASS_P (class2))
+ {
+ gcc_assert (!strict || lra_in_progress);
+ return true;
+ }
+
+ if (FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class2))
+ return true;
+
+ /* ??? This is a lie. We do have moves between mmx/general, and for
+ mmx/sse2. But by saying we need secondary memory we discourage the
+ register allocator from using the mmx registers unless needed. */
+ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2))
+ return true;
+
+ if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2))
+ {
+ /* SSE1 doesn't have any direct moves from other classes. */
+ if (!TARGET_SSE2)
+ return true;
+
+ /* If the target says that inter-unit moves are more expensive
+ than moving through memory, then don't generate them. */
+ if ((SSE_CLASS_P (class1) && !TARGET_INTER_UNIT_MOVES_FROM_VEC)
+ || (SSE_CLASS_P (class2) && !TARGET_INTER_UNIT_MOVES_TO_VEC))
+ return true;
+
+ /* Between SSE and general, we have moves no larger than word size. */
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ return true;
+ }
+
+ return false;
+}
+
+bool
+ix86_secondary_memory_needed (enum reg_class class1, enum reg_class class2,
+ enum machine_mode mode, int strict)
+{
+ return inline_secondary_memory_needed (class1, class2, mode, strict);
+}
+
+/* Implement the TARGET_CLASS_MAX_NREGS hook.
+
+ On the 80386, this is the size of MODE in words,
+ except in the FP regs, where a single reg is always enough. */
+
+static unsigned char
+ix86_class_max_nregs (reg_class_t rclass, enum machine_mode mode)
+{
+ if (MAYBE_INTEGER_CLASS_P (rclass))
+ {
+ if (mode == XFmode)
+ return (TARGET_64BIT ? 2 : 3);
+ else if (mode == XCmode)
+ return (TARGET_64BIT ? 4 : 6);
+ else
+ return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
+ }
+ else
+ {
+ if (COMPLEX_MODE_P (mode))
+ return 2;
+ else
+ return 1;
+ }
+}
+
+/* Return true if the registers in CLASS cannot represent the change from
+ modes FROM to TO. */
+
+bool
+ix86_cannot_change_mode_class (enum machine_mode from, enum machine_mode to,
+ enum reg_class regclass)
+{
+ if (from == to)
+ return false;
+
+ /* x87 registers can't do subreg at all, as all values are reformatted
+ to extended precision. */
+ if (MAYBE_FLOAT_CLASS_P (regclass))
+ return true;
+
+ if (MAYBE_SSE_CLASS_P (regclass) || MAYBE_MMX_CLASS_P (regclass))
+ {
+ /* Vector registers do not support QI or HImode loads. If we don't
+ disallow a change to these modes, reload will assume it's ok to
+ drop the subreg from (subreg:SI (reg:HI 100) 0). This affects
+ the vec_dupv4hi pattern. */
+ if (GET_MODE_SIZE (from) < 4)
+ return true;
+
+ /* Vector registers do not support subreg with nonzero offsets, which
+ are otherwise valid for integer registers. Since we can't see
+ whether we have a nonzero offset from here, prohibit all
+ nonparadoxical subregs changing size. */
+ if (GET_MODE_SIZE (to) < GET_MODE_SIZE (from))
+ return true;
+ }
+
+ return false;
+}
+
+/* Return the cost of moving data of mode M between a
+ register and memory. A value of 2 is the default; this cost is
+ relative to those in `REGISTER_MOVE_COST'.
+
+ This function is used extensively by register_move_cost that is used to
+ build tables at startup. Make it inline in this case.
+ When IN is 2, return maximum of in and out move cost.
+
+ If moving between registers and memory is more expensive than
+ between two registers, you should define this macro to express the
+ relative cost.
+
+ Model also increased moving costs of QImode registers in non
+ Q_REGS classes.
+ */
+static inline int
+inline_memory_move_cost (enum machine_mode mode, enum reg_class regclass,
+ int in)
+{
+ int cost;
+ if (FLOAT_CLASS_P (regclass))
+ {
+ int index;
+ switch (mode)
+ {
+ case SFmode:
+ index = 0;
+ break;
+ case DFmode:
+ index = 1;
+ break;
+ case XFmode:
+ index = 2;
+ break;
+ default:
+ return 100;
+ }
+ if (in == 2)
+ return MAX (ix86_cost->fp_load [index], ix86_cost->fp_store [index]);
+ return in ? ix86_cost->fp_load [index] : ix86_cost->fp_store [index];
+ }
+ if (SSE_CLASS_P (regclass))
+ {
+ int index;
+ switch (GET_MODE_SIZE (mode))
+ {
+ case 4:
+ index = 0;
+ break;
+ case 8:
+ index = 1;
+ break;
+ case 16:
+ index = 2;
+ break;
+ default:
+ return 100;
+ }
+ if (in == 2)
+ return MAX (ix86_cost->sse_load [index], ix86_cost->sse_store [index]);
+ return in ? ix86_cost->sse_load [index] : ix86_cost->sse_store [index];
+ }
+ if (MMX_CLASS_P (regclass))
+ {
+ int index;
+ switch (GET_MODE_SIZE (mode))
+ {
+ case 4:
+ index = 0;
+ break;
+ case 8:
+ index = 1;
+ break;
+ default:
+ return 100;
+ }
+ if (in)
+ return MAX (ix86_cost->mmx_load [index], ix86_cost->mmx_store [index]);
+ return in ? ix86_cost->mmx_load [index] : ix86_cost->mmx_store [index];
+ }
+ switch (GET_MODE_SIZE (mode))
+ {
+ case 1:
+ if (Q_CLASS_P (regclass) || TARGET_64BIT)
+ {
+ if (!in)
+ return ix86_cost->int_store[0];
+ if (TARGET_PARTIAL_REG_DEPENDENCY
+ && optimize_function_for_speed_p (cfun))
+ cost = ix86_cost->movzbl_load;
+ else
+ cost = ix86_cost->int_load[0];
+ if (in == 2)
+ return MAX (cost, ix86_cost->int_store[0]);
+ return cost;
+ }
+ else
+ {
+ if (in == 2)
+ return MAX (ix86_cost->movzbl_load, ix86_cost->int_store[0] + 4);
+ if (in)
+ return ix86_cost->movzbl_load;
+ else
+ return ix86_cost->int_store[0] + 4;
+ }
+ break;
+ case 2:
+ if (in == 2)
+ return MAX (ix86_cost->int_load[1], ix86_cost->int_store[1]);
+ return in ? ix86_cost->int_load[1] : ix86_cost->int_store[1];
+ default:
+ /* Compute number of 32bit moves needed. TFmode is moved as XFmode. */
+ if (mode == TFmode)
+ mode = XFmode;
+ if (in == 2)
+ cost = MAX (ix86_cost->int_load[2] , ix86_cost->int_store[2]);
+ else if (in)
+ cost = ix86_cost->int_load[2];
+ else
+ cost = ix86_cost->int_store[2];
+ return (cost * (((int) GET_MODE_SIZE (mode)
+ + UNITS_PER_WORD - 1) / UNITS_PER_WORD));
+ }
+}
+
+static int
+ix86_memory_move_cost (enum machine_mode mode, reg_class_t regclass,
+ bool in)
+{
+ return inline_memory_move_cost (mode, (enum reg_class) regclass, in ? 1 : 0);
+}
+
+
+/* Return the cost of moving data from a register in class CLASS1 to
+ one in class CLASS2.
+
+ It is not required that the cost always equal 2 when FROM is the same as TO;
+ on some machines it is expensive to move between registers if they are not
+ general registers. */
+
+static int
+ix86_register_move_cost (enum machine_mode mode, reg_class_t class1_i,
+ reg_class_t class2_i)
+{
+ enum reg_class class1 = (enum reg_class) class1_i;
+ enum reg_class class2 = (enum reg_class) class2_i;
+
+ /* In case we require secondary memory, compute cost of the store followed
+ by load. In order to avoid bad register allocation choices, we need
+ for this to be *at least* as high as the symmetric MEMORY_MOVE_COST. */
+
+ if (inline_secondary_memory_needed (class1, class2, mode, 0))
+ {
+ int cost = 1;
+
+ cost += inline_memory_move_cost (mode, class1, 2);
+ cost += inline_memory_move_cost (mode, class2, 2);
+
+ /* In case of copying from general_purpose_register we may emit multiple
+ stores followed by single load causing memory size mismatch stall.
+ Count this as arbitrarily high cost of 20. */
+ if (targetm.class_max_nregs (class1, mode)
+ > targetm.class_max_nregs (class2, mode))
+ cost += 20;
+
+ /* In the case of FP/MMX moves, the registers actually overlap, and we
+ have to switch modes in order to treat them differently. */
+ if ((MMX_CLASS_P (class1) && MAYBE_FLOAT_CLASS_P (class2))
+ || (MMX_CLASS_P (class2) && MAYBE_FLOAT_CLASS_P (class1)))
+ cost += 20;
+
+ return cost;
+ }
+
+ /* Moves between SSE/MMX and integer unit are expensive. */
+ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)
+ || SSE_CLASS_P (class1) != SSE_CLASS_P (class2))
+
+ /* ??? By keeping returned value relatively high, we limit the number
+ of moves between integer and MMX/SSE registers for all targets.
+ Additionally, high value prevents problem with x86_modes_tieable_p(),
+ where integer modes in MMX/SSE registers are not tieable
+ because of missing QImode and HImode moves to, from or between
+ MMX/SSE registers. */
+ return MAX (8, ix86_cost->mmxsse_to_integer);
+
+ if (MAYBE_FLOAT_CLASS_P (class1))
+ return ix86_cost->fp_move;
+ if (MAYBE_SSE_CLASS_P (class1))
+ return ix86_cost->sse_move;
+ if (MAYBE_MMX_CLASS_P (class1))
+ return ix86_cost->mmx_move;
+ return 2;
+}
+
+/* Return TRUE if hard register REGNO can hold a value of machine-mode
+ MODE. */
+
+bool
+ix86_hard_regno_mode_ok (int regno, enum machine_mode mode)
+{
+ /* Flags and only flags can only hold CCmode values. */
+ if (CC_REGNO_P (regno))
+ return GET_MODE_CLASS (mode) == MODE_CC;
+ if (GET_MODE_CLASS (mode) == MODE_CC
+ || GET_MODE_CLASS (mode) == MODE_RANDOM
+ || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
+ return false;
+ if (STACK_REGNO_P (regno))
+ return VALID_FP_MODE_P (mode);
+ if (MASK_REGNO_P (regno))
+ return VALID_MASK_REG_MODE (mode);
+ if (SSE_REGNO_P (regno))
+ {
+ /* We implement the move patterns for all vector modes into and
+ out of SSE registers, even when no operation instructions
+ are available. */
+
+ /* For AVX-512 we allow, regardless of regno:
+ - XI mode
+ - any of 512-bit wide vector mode
+ - any scalar mode. */
+ if (TARGET_AVX512F
+ && (mode == XImode
+ || VALID_AVX512F_REG_MODE (mode)
+ || VALID_AVX512F_SCALAR_MODE (mode)))
+ return true;
+
+ /* xmm16-xmm31 are only available for AVX-512. */
+ if (EXT_REX_SSE_REGNO_P (regno))
+ return false;
+
+ /* OImode and AVX modes are available only when AVX is enabled. */
+ return ((TARGET_AVX
+ && VALID_AVX256_REG_OR_OI_MODE (mode))
+ || VALID_SSE_REG_MODE (mode)
+ || VALID_SSE2_REG_MODE (mode)
+ || VALID_MMX_REG_MODE (mode)
+ || VALID_MMX_REG_MODE_3DNOW (mode));
+ }
+ if (MMX_REGNO_P (regno))
+ {
+ /* We implement the move patterns for 3DNOW modes even in MMX mode,
+ so if the register is available at all, then we can move data of
+ the given mode into or out of it. */
+ return (VALID_MMX_REG_MODE (mode)
+ || VALID_MMX_REG_MODE_3DNOW (mode));
+ }
+
+ if (mode == QImode)
+ {
+ /* Take care for QImode values - they can be in non-QI regs,
+ but then they do cause partial register stalls. */
+ if (ANY_QI_REGNO_P (regno))
+ return true;
+ if (!TARGET_PARTIAL_REG_STALL)
+ return true;
+ /* LRA checks if the hard register is OK for the given mode.
+ QImode values can live in non-QI regs, so we allow all
+ registers here. */
+ if (lra_in_progress)
+ return true;
+ return !can_create_pseudo_p ();
+ }
+ /* We handle both integer and floats in the general purpose registers. */
+ else if (VALID_INT_MODE_P (mode))
+ return true;
+ else if (VALID_FP_MODE_P (mode))
+ return true;
+ else if (VALID_DFP_MODE_P (mode))
+ return true;
+ /* Lots of MMX code casts 8 byte vector modes to DImode. If we then go
+ on to use that value in smaller contexts, this can easily force a
+ pseudo to be allocated to GENERAL_REGS. Since this is no worse than
+ supporting DImode, allow it. */
+ else if (VALID_MMX_REG_MODE_3DNOW (mode) || VALID_MMX_REG_MODE (mode))
+ return true;
+
+ return false;
+}
+
+/* A subroutine of ix86_modes_tieable_p. Return true if MODE is a
+ tieable integer mode. */
+
+static bool
+ix86_tieable_integer_mode_p (enum machine_mode mode)
+{
+ switch (mode)
+ {
+ case HImode:
+ case SImode:
+ return true;
+
+ case QImode:
+ return TARGET_64BIT || !TARGET_PARTIAL_REG_STALL;
+
+ case DImode:
+ return TARGET_64BIT;
+
+ default:
+ return false;
+ }
+}
+
+/* Return true if MODE1 is accessible in a register that can hold MODE2
+ without copying. That is, all register classes that can hold MODE2
+ can also hold MODE1. */
+
+bool
+ix86_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2)
+{
+ if (mode1 == mode2)
+ return true;
+
+ if (ix86_tieable_integer_mode_p (mode1)
+ && ix86_tieable_integer_mode_p (mode2))
+ return true;
+
+ /* MODE2 being XFmode implies fp stack or general regs, which means we
+ can tie any smaller floating point modes to it. Note that we do not
+ tie this with TFmode. */
+ if (mode2 == XFmode)
+ return mode1 == SFmode || mode1 == DFmode;
+
+ /* MODE2 being DFmode implies fp stack, general or sse regs, which means
+ that we can tie it with SFmode. */
+ if (mode2 == DFmode)
+ return mode1 == SFmode;
+
+ /* If MODE2 is only appropriate for an SSE register, then tie with
+ any other mode acceptable to SSE registers. */
+ if (GET_MODE_SIZE (mode2) == 32
+ && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2))
+ return (GET_MODE_SIZE (mode1) == 32
+ && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1));
+ if (GET_MODE_SIZE (mode2) == 16
+ && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2))
+ return (GET_MODE_SIZE (mode1) == 16
+ && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1));
+
+ /* If MODE2 is appropriate for an MMX register, then tie
+ with any other mode acceptable to MMX registers. */
+ if (GET_MODE_SIZE (mode2) == 8
+ && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode2))
+ return (GET_MODE_SIZE (mode1) == 8
+ && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode1));
+
+ return false;
+}
+
+/* Return the cost of moving between two registers of mode MODE. */
+
+static int
+ix86_set_reg_reg_cost (enum machine_mode mode)
+{
+ unsigned int units = UNITS_PER_WORD;
+
+ switch (GET_MODE_CLASS (mode))
+ {
+ default:
+ break;
+
+ case MODE_CC:
+ units = GET_MODE_SIZE (CCmode);
+ break;
+
+ case MODE_FLOAT:
+ if ((TARGET_SSE && mode == TFmode)
+ || (TARGET_80387 && mode == XFmode)
+ || ((TARGET_80387 || TARGET_SSE2) && mode == DFmode)
+ || ((TARGET_80387 || TARGET_SSE) && mode == SFmode))
+ units = GET_MODE_SIZE (mode);
+ break;
+
+ case MODE_COMPLEX_FLOAT:
+ if ((TARGET_SSE && mode == TCmode)
+ || (TARGET_80387 && mode == XCmode)
+ || ((TARGET_80387 || TARGET_SSE2) && mode == DCmode)
+ || ((TARGET_80387 || TARGET_SSE) && mode == SCmode))
+ units = GET_MODE_SIZE (mode);
+ break;
+
+ case MODE_VECTOR_INT:
+ case MODE_VECTOR_FLOAT:
+ if ((TARGET_AVX512F && VALID_AVX512F_REG_MODE (mode))
+ || (TARGET_AVX && VALID_AVX256_REG_MODE (mode))
+ || (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode))
+ || (TARGET_SSE && VALID_SSE_REG_MODE (mode))
+ || (TARGET_MMX && VALID_MMX_REG_MODE (mode)))
+ units = GET_MODE_SIZE (mode);
+ }
+
+ /* Return the cost of moving between two registers of mode MODE,
+ assuming that the move will be in pieces of at most UNITS bytes. */
+ return COSTS_N_INSNS ((GET_MODE_SIZE (mode) + units - 1) / units);
+}
+
+/* Compute a (partial) cost for rtx X. Return true if the complete
+ cost has been computed, and false if subexpressions should be
+ scanned. In either case, *TOTAL contains the cost result. */
+
+static bool
+ix86_rtx_costs (rtx x, int code_i, int outer_code_i, int opno, int *total,
+ bool speed)
+{
+ rtx mask;
+ enum rtx_code code = (enum rtx_code) code_i;
+ enum rtx_code outer_code = (enum rtx_code) outer_code_i;
+ enum machine_mode mode = GET_MODE (x);
+ const struct processor_costs *cost = speed ? ix86_cost : &ix86_size_cost;
+
+ switch (code)
+ {
+ case SET:
+ if (register_operand (SET_DEST (x), VOIDmode)
+ && reg_or_0_operand (SET_SRC (x), VOIDmode))
+ {
+ *total = ix86_set_reg_reg_cost (GET_MODE (SET_DEST (x)));
+ return true;
+ }
+ return false;
+
+ case CONST_INT:
+ case CONST:
+ case LABEL_REF:
+ case SYMBOL_REF:
+ if (TARGET_64BIT && !x86_64_immediate_operand (x, VOIDmode))
+ *total = 3;
+ else if (TARGET_64BIT && !x86_64_zext_immediate_operand (x, VOIDmode))
+ *total = 2;
+ else if (flag_pic && SYMBOLIC_CONST (x)
+ && (!TARGET_64BIT
+ || (!GET_CODE (x) != LABEL_REF
+ && (GET_CODE (x) != SYMBOL_REF
+ || !SYMBOL_REF_LOCAL_P (x)))))
+ *total = 1;
+ else
+ *total = 0;
+ return true;
+
+ case CONST_DOUBLE:
+ if (mode == VOIDmode)
+ {
+ *total = 0;
+ return true;
+ }
+ switch (standard_80387_constant_p (x))
+ {
+ case 1: /* 0.0 */
+ *total = 1;
+ return true;
+ default: /* Other constants */
+ *total = 2;
+ return true;
+ case 0:
+ case -1:
+ break;
+ }
+ if (SSE_FLOAT_MODE_P (mode))
+ {
+ case CONST_VECTOR:
+ switch (standard_sse_constant_p (x))
+ {
+ case 0:
+ break;
+ case 1: /* 0: xor eliminates false dependency */
+ *total = 0;
+ return true;
+ default: /* -1: cmp contains false dependency */
+ *total = 1;
+ return true;
+ }
+ }
+ /* Fall back to (MEM (SYMBOL_REF)), since that's where
+ it'll probably end up. Add a penalty for size. */
+ *total = (COSTS_N_INSNS (1)
+ + (flag_pic != 0 && !TARGET_64BIT)
+ + (mode == SFmode ? 0 : mode == DFmode ? 1 : 2));
+ return true;
+
+ case ZERO_EXTEND:
+ /* The zero extensions is often completely free on x86_64, so make
+ it as cheap as possible. */
+ if (TARGET_64BIT && mode == DImode
+ && GET_MODE (XEXP (x, 0)) == SImode)
+ *total = 1;
+ else if (TARGET_ZERO_EXTEND_WITH_AND)
+ *total = cost->add;
+ else
+ *total = cost->movzx;
+ return false;
+
+ case SIGN_EXTEND:
+ *total = cost->movsx;
+ return false;
+
+ case ASHIFT:
+ if (SCALAR_INT_MODE_P (mode)
+ && GET_MODE_SIZE (mode) < UNITS_PER_WORD
+ && CONST_INT_P (XEXP (x, 1)))
+ {
+ HOST_WIDE_INT value = INTVAL (XEXP (x, 1));
+ if (value == 1)
+ {
+ *total = cost->add;
+ return false;
+ }
+ if ((value == 2 || value == 3)
+ && cost->lea <= cost->shift_const)
+ {
+ *total = cost->lea;
+ return false;
+ }
+ }
+ /* FALLTHRU */
+
+ case ROTATE:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ case ROTATERT:
+ if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
+ {
+ /* ??? Should be SSE vector operation cost. */
+ /* At least for published AMD latencies, this really is the same
+ as the latency for a simple fpu operation like fabs. */
+ /* V*QImode is emulated with 1-11 insns. */
+ if (mode == V16QImode || mode == V32QImode)
+ {
+ int count = 11;
+ if (TARGET_XOP && mode == V16QImode)
+ {
+ /* For XOP we use vpshab, which requires a broadcast of the
+ value to the variable shift insn. For constants this
+ means a V16Q const in mem; even when we can perform the
+ shift with one insn set the cost to prefer paddb. */
+ if (CONSTANT_P (XEXP (x, 1)))
+ {
+ *total = (cost->fabs
+ + rtx_cost (XEXP (x, 0), code, 0, speed)
+ + (speed ? 2 : COSTS_N_BYTES (16)));
+ return true;
+ }
+ count = 3;
+ }
+ else if (TARGET_SSSE3)
+ count = 7;
+ *total = cost->fabs * count;
+ }
+ else
+ *total = cost->fabs;
+ }
+ else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ {
+ if (CONST_INT_P (XEXP (x, 1)))
+ {
+ if (INTVAL (XEXP (x, 1)) > 32)
+ *total = cost->shift_const + COSTS_N_INSNS (2);
+ else
+ *total = cost->shift_const * 2;
+ }
+ else
+ {
+ if (GET_CODE (XEXP (x, 1)) == AND)
+ *total = cost->shift_var * 2;
+ else
+ *total = cost->shift_var * 6 + COSTS_N_INSNS (2);
+ }
+ }
+ else
+ {
+ if (CONST_INT_P (XEXP (x, 1)))
+ *total = cost->shift_const;
+ else if (GET_CODE (XEXP (x, 1)) == SUBREG
+ && GET_CODE (XEXP (XEXP (x, 1), 0)) == AND)
+ {
+ /* Return the cost after shift-and truncation. */
+ *total = cost->shift_var;
+ return true;
+ }
+ else
+ *total = cost->shift_var;
+ }
+ return false;
+
+ case FMA:
+ {
+ rtx sub;
+
+ gcc_assert (FLOAT_MODE_P (mode));
+ gcc_assert (TARGET_FMA || TARGET_FMA4 || TARGET_AVX512F);
+
+ /* ??? SSE scalar/vector cost should be used here. */
+ /* ??? Bald assumption that fma has the same cost as fmul. */
+ *total = cost->fmul;
+ *total += rtx_cost (XEXP (x, 1), FMA, 1, speed);
+
+ /* Negate in op0 or op2 is free: FMS, FNMA, FNMS. */
+ sub = XEXP (x, 0);
+ if (GET_CODE (sub) == NEG)
+ sub = XEXP (sub, 0);
+ *total += rtx_cost (sub, FMA, 0, speed);
+
+ sub = XEXP (x, 2);
+ if (GET_CODE (sub) == NEG)
+ sub = XEXP (sub, 0);
+ *total += rtx_cost (sub, FMA, 2, speed);
+ return true;
+ }
+
+ case MULT:
+ if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)
+ {
+ /* ??? SSE scalar cost should be used here. */
+ *total = cost->fmul;
+ return false;
+ }
+ else if (X87_FLOAT_MODE_P (mode))
+ {
+ *total = cost->fmul;
+ return false;
+ }
+ else if (FLOAT_MODE_P (mode))
+ {
+ /* ??? SSE vector cost should be used here. */
+ *total = cost->fmul;
+ return false;
+ }
+ else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
+ {
+ /* V*QImode is emulated with 7-13 insns. */
+ if (mode == V16QImode || mode == V32QImode)
+ {
+ int extra = 11;
+ if (TARGET_XOP && mode == V16QImode)
+ extra = 5;
+ else if (TARGET_SSSE3)
+ extra = 6;
+ *total = cost->fmul * 2 + cost->fabs * extra;
+ }
+ /* V*DImode is emulated with 5-8 insns. */
+ else if (mode == V2DImode || mode == V4DImode)
+ {
+ if (TARGET_XOP && mode == V2DImode)
+ *total = cost->fmul * 2 + cost->fabs * 3;
+ else
+ *total = cost->fmul * 3 + cost->fabs * 5;
+ }
+ /* Without sse4.1, we don't have PMULLD; it's emulated with 7
+ insns, including two PMULUDQ. */
+ else if (mode == V4SImode && !(TARGET_SSE4_1 || TARGET_AVX))
+ *total = cost->fmul * 2 + cost->fabs * 5;
+ else
+ *total = cost->fmul;
+ return false;
+ }
+ else
+ {
+ rtx op0 = XEXP (x, 0);
+ rtx op1 = XEXP (x, 1);
+ int nbits;
+ if (CONST_INT_P (XEXP (x, 1)))
+ {
+ unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1));
+ for (nbits = 0; value != 0; value &= value - 1)
+ nbits++;
+ }
+ else
+ /* This is arbitrary. */
+ nbits = 7;
+
+ /* Compute costs correctly for widening multiplication. */
+ if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
+ && GET_MODE_SIZE (GET_MODE (XEXP (op0, 0))) * 2
+ == GET_MODE_SIZE (mode))
+ {
+ int is_mulwiden = 0;
+ enum machine_mode inner_mode = GET_MODE (op0);
+
+ if (GET_CODE (op0) == GET_CODE (op1))
+ is_mulwiden = 1, op1 = XEXP (op1, 0);
+ else if (CONST_INT_P (op1))
+ {
+ if (GET_CODE (op0) == SIGN_EXTEND)
+ is_mulwiden = trunc_int_for_mode (INTVAL (op1), inner_mode)
+ == INTVAL (op1);
+ else
+ is_mulwiden = !(INTVAL (op1) & ~GET_MODE_MASK (inner_mode));
+ }
+
+ if (is_mulwiden)
+ op0 = XEXP (op0, 0), mode = GET_MODE (op0);
+ }
+
+ *total = (cost->mult_init[MODE_INDEX (mode)]
+ + nbits * cost->mult_bit
+ + rtx_cost (op0, outer_code, opno, speed)
+ + rtx_cost (op1, outer_code, opno, speed));
+
+ return true;
+ }
+
+ case DIV:
+ case UDIV:
+ case MOD:
+ case UMOD:
+ if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)
+ /* ??? SSE cost should be used here. */
+ *total = cost->fdiv;
+ else if (X87_FLOAT_MODE_P (mode))
+ *total = cost->fdiv;
+ else if (FLOAT_MODE_P (mode))
+ /* ??? SSE vector cost should be used here. */
+ *total = cost->fdiv;
+ else
+ *total = cost->divide[MODE_INDEX (mode)];
+ return false;
+
+ case PLUS:
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
+ {
+ if (GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
+ && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
+ && CONSTANT_P (XEXP (x, 1)))
+ {
+ HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1));
+ if (val == 2 || val == 4 || val == 8)
+ {
+ *total = cost->lea;
+ *total += rtx_cost (XEXP (XEXP (x, 0), 1),
+ outer_code, opno, speed);
+ *total += rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0),
+ outer_code, opno, speed);
+ *total += rtx_cost (XEXP (x, 1), outer_code, opno, speed);
+ return true;
+ }
+ }
+ else if (GET_CODE (XEXP (x, 0)) == MULT
+ && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
+ {
+ HOST_WIDE_INT val = INTVAL (XEXP (XEXP (x, 0), 1));
+ if (val == 2 || val == 4 || val == 8)
+ {
+ *total = cost->lea;
+ *total += rtx_cost (XEXP (XEXP (x, 0), 0),
+ outer_code, opno, speed);
+ *total += rtx_cost (XEXP (x, 1), outer_code, opno, speed);
+ return true;
+ }
+ }
+ else if (GET_CODE (XEXP (x, 0)) == PLUS)
+ {
+ *total = cost->lea;
+ *total += rtx_cost (XEXP (XEXP (x, 0), 0),
+ outer_code, opno, speed);
+ *total += rtx_cost (XEXP (XEXP (x, 0), 1),
+ outer_code, opno, speed);
+ *total += rtx_cost (XEXP (x, 1), outer_code, opno, speed);
+ return true;
+ }
+ }
+ /* FALLTHRU */
+
+ case MINUS:
+ if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)
+ {
+ /* ??? SSE cost should be used here. */
+ *total = cost->fadd;
+ return false;
+ }
+ else if (X87_FLOAT_MODE_P (mode))
+ {
+ *total = cost->fadd;
+ return false;
+ }
+ else if (FLOAT_MODE_P (mode))
+ {
+ /* ??? SSE vector cost should be used here. */
+ *total = cost->fadd;
+ return false;
+ }
+ /* FALLTHRU */
+
+ case AND:
+ case IOR:
+ case XOR:
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ {
+ *total = (cost->add * 2
+ + (rtx_cost (XEXP (x, 0), outer_code, opno, speed)
+ << (GET_MODE (XEXP (x, 0)) != DImode))
+ + (rtx_cost (XEXP (x, 1), outer_code, opno, speed)
+ << (GET_MODE (XEXP (x, 1)) != DImode)));
+ return true;
+ }
+ /* FALLTHRU */
+
+ case NEG:
+ if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)
+ {
+ /* ??? SSE cost should be used here. */
+ *total = cost->fchs;
+ return false;
+ }
+ else if (X87_FLOAT_MODE_P (mode))
+ {
+ *total = cost->fchs;
+ return false;
+ }
+ else if (FLOAT_MODE_P (mode))
+ {
+ /* ??? SSE vector cost should be used here. */
+ *total = cost->fchs;
+ return false;
+ }
+ /* FALLTHRU */
+
+ case NOT:
+ if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
+ {
+ /* ??? Should be SSE vector operation cost. */
+ /* At least for published AMD latencies, this really is the same
+ as the latency for a simple fpu operation like fabs. */
+ *total = cost->fabs;
+ }
+ else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ *total = cost->add * 2;
+ else
+ *total = cost->add;
+ return false;
+
+ case COMPARE:
+ if (GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT
+ && XEXP (XEXP (x, 0), 1) == const1_rtx
+ && CONST_INT_P (XEXP (XEXP (x, 0), 2))
+ && XEXP (x, 1) == const0_rtx)
+ {
+ /* This kind of construct is implemented using test[bwl].
+ Treat it as if we had an AND. */
+ *total = (cost->add
+ + rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, opno, speed)
+ + rtx_cost (const1_rtx, outer_code, opno, speed));
+ return true;
+ }
+ return false;
+
+ case FLOAT_EXTEND:
+ if (!(SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH))
+ *total = 0;
+ return false;
+
+ case ABS:
+ if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)
+ /* ??? SSE cost should be used here. */
+ *total = cost->fabs;
+ else if (X87_FLOAT_MODE_P (mode))
+ *total = cost->fabs;
+ else if (FLOAT_MODE_P (mode))
+ /* ??? SSE vector cost should be used here. */
+ *total = cost->fabs;
+ return false;
+
+ case SQRT:
+ if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)
+ /* ??? SSE cost should be used here. */
+ *total = cost->fsqrt;
+ else if (X87_FLOAT_MODE_P (mode))
+ *total = cost->fsqrt;
+ else if (FLOAT_MODE_P (mode))
+ /* ??? SSE vector cost should be used here. */
+ *total = cost->fsqrt;
+ return false;
+
+ case UNSPEC:
+ if (XINT (x, 1) == UNSPEC_TP)
+ *total = 0;
+ return false;
+
+ case VEC_SELECT:
+ case VEC_CONCAT:
+ case VEC_DUPLICATE:
+ /* ??? Assume all of these vector manipulation patterns are
+ recognizable. In which case they all pretty much have the
+ same cost. */
+ *total = cost->fabs;
+ return true;
+ case VEC_MERGE:
+ mask = XEXP (x, 2);
+ /* This is masked instruction, assume the same cost,
+ as nonmasked variant. */
+ if (TARGET_AVX512F && register_operand (mask, GET_MODE (mask)))
+ *total = rtx_cost (XEXP (x, 0), outer_code, opno, speed);
+ else
+ *total = cost->fabs;
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+#if TARGET_MACHO
+
+static int current_machopic_label_num;
+
+/* Given a symbol name and its associated stub, write out the
+ definition of the stub. */
+
+void
+machopic_output_stub (FILE *file, const char *symb, const char *stub)
+{
+ unsigned int length;
+ char *binder_name, *symbol_name, lazy_ptr_name[32];
+ int label = ++current_machopic_label_num;
+
+ /* For 64-bit we shouldn't get here. */
+ gcc_assert (!TARGET_64BIT);
+
+ /* Lose our funky encoding stuff so it doesn't contaminate the stub. */
+ symb = targetm.strip_name_encoding (symb);
+
+ length = strlen (stub);
+ binder_name = XALLOCAVEC (char, length + 32);
+ GEN_BINDER_NAME_FOR_STUB (binder_name, stub, length);
+
+ length = strlen (symb);
+ symbol_name = XALLOCAVEC (char, length + 32);
+ GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);
+
+ sprintf (lazy_ptr_name, "L%d$lz", label);
+
+ if (MACHOPIC_ATT_STUB)
+ switch_to_section (darwin_sections[machopic_picsymbol_stub3_section]);
+ else if (MACHOPIC_PURE)
+ switch_to_section (darwin_sections[machopic_picsymbol_stub2_section]);
+ else
+ switch_to_section (darwin_sections[machopic_symbol_stub_section]);
+
+ fprintf (file, "%s:\n", stub);
+ fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
+
+ if (MACHOPIC_ATT_STUB)
+ {
+ fprintf (file, "\thlt ; hlt ; hlt ; hlt ; hlt\n");
+ }
+ else if (MACHOPIC_PURE)
+ {
+ /* PIC stub. */
+ /* 25-byte PIC stub using "CALL get_pc_thunk". */
+ rtx tmp = gen_rtx_REG (SImode, 2 /* ECX */);
+ output_set_got (tmp, NULL_RTX); /* "CALL ___<cpu>.get_pc_thunk.cx". */
+ fprintf (file, "LPC$%d:\tmovl\t%s-LPC$%d(%%ecx),%%ecx\n",
+ label, lazy_ptr_name, label);
+ fprintf (file, "\tjmp\t*%%ecx\n");
+ }
+ else
+ fprintf (file, "\tjmp\t*%s\n", lazy_ptr_name);
+
+ /* The AT&T-style ("self-modifying") stub is not lazily bound, thus
+ it needs no stub-binding-helper. */
+ if (MACHOPIC_ATT_STUB)
+ return;
+
+ fprintf (file, "%s:\n", binder_name);
+
+ if (MACHOPIC_PURE)
+ {
+ fprintf (file, "\tlea\t%s-%s(%%ecx),%%ecx\n", lazy_ptr_name, binder_name);
+ fprintf (file, "\tpushl\t%%ecx\n");
+ }
+ else
+ fprintf (file, "\tpushl\t$%s\n", lazy_ptr_name);
+
+ fputs ("\tjmp\tdyld_stub_binding_helper\n", file);
+
+ /* N.B. Keep the correspondence of these
+ 'symbol_ptr/symbol_ptr2/symbol_ptr3' sections consistent with the
+ old-pic/new-pic/non-pic stubs; altering this will break
+ compatibility with existing dylibs. */
+ if (MACHOPIC_PURE)
+ {
+ /* 25-byte PIC stub using "CALL get_pc_thunk". */
+ switch_to_section (darwin_sections[machopic_lazy_symbol_ptr2_section]);
+ }
+ else
+ /* 16-byte -mdynamic-no-pic stub. */
+ switch_to_section(darwin_sections[machopic_lazy_symbol_ptr3_section]);
+
+ fprintf (file, "%s:\n", lazy_ptr_name);
+ fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
+ fprintf (file, ASM_LONG "%s\n", binder_name);
+}
+#endif /* TARGET_MACHO */
+
+/* Order the registers for register allocator. */
+
+void
+x86_order_regs_for_local_alloc (void)
+{
+ int pos = 0;
+ int i;
+
+ /* First allocate the local general purpose registers. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (GENERAL_REGNO_P (i) && call_used_regs[i])
+ reg_alloc_order [pos++] = i;
+
+ /* Global general purpose registers. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (GENERAL_REGNO_P (i) && !call_used_regs[i])
+ reg_alloc_order [pos++] = i;
+
+ /* x87 registers come first in case we are doing FP math
+ using them. */
+ if (!TARGET_SSE_MATH)
+ for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
+ reg_alloc_order [pos++] = i;
+
+ /* SSE registers. */
+ for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++)
+ reg_alloc_order [pos++] = i;
+ for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)
+ reg_alloc_order [pos++] = i;
+
+ /* Extended REX SSE registers. */
+ for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++)
+ reg_alloc_order [pos++] = i;
+
+ /* Mask register. */
+ for (i = FIRST_MASK_REG; i <= LAST_MASK_REG; i++)
+ reg_alloc_order [pos++] = i;
+
+ /* x87 registers. */
+ if (TARGET_SSE_MATH)
+ for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
+ reg_alloc_order [pos++] = i;
+
+ for (i = FIRST_MMX_REG; i <= LAST_MMX_REG; i++)
+ reg_alloc_order [pos++] = i;
+
+ /* Initialize the rest of array as we do not allocate some registers
+ at all. */
+ while (pos < FIRST_PSEUDO_REGISTER)
+ reg_alloc_order [pos++] = 0;
+}
+
+/* Handle a "callee_pop_aggregate_return" attribute; arguments as
+ in struct attribute_spec handler. */
+static tree
+ix86_handle_callee_pop_aggregate_return (tree *node, tree name,
+ tree args,
+ int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_TYPE
+ && TREE_CODE (*node) != METHOD_TYPE
+ && TREE_CODE (*node) != FIELD_DECL
+ && TREE_CODE (*node) != TYPE_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+ if (TARGET_64BIT)
+ {
+ warning (OPT_Wattributes, "%qE attribute only available for 32-bit",
+ name);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+ if (is_attribute_p ("callee_pop_aggregate_return", name))
+ {
+ tree cst;
+
+ cst = TREE_VALUE (args);
+ if (TREE_CODE (cst) != INTEGER_CST)
+ {
+ warning (OPT_Wattributes,
+ "%qE attribute requires an integer constant argument",
+ name);
+ *no_add_attrs = true;
+ }
+ else if (compare_tree_int (cst, 0) != 0
+ && compare_tree_int (cst, 1) != 0)
+ {
+ warning (OPT_Wattributes,
+ "argument to %qE attribute is neither zero, nor one",
+ name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "ms_abi" or "sysv" attribute; arguments as in
+ struct attribute_spec.handler. */
+static tree
+ix86_handle_abi_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_TYPE
+ && TREE_CODE (*node) != METHOD_TYPE
+ && TREE_CODE (*node) != FIELD_DECL
+ && TREE_CODE (*node) != TYPE_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ /* Can combine regparm with all attributes but fastcall. */
+ if (is_attribute_p ("ms_abi", name))
+ {
+ if (lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("ms_abi and sysv_abi attributes are not compatible");
+ }
+
+ return NULL_TREE;
+ }
+ else if (is_attribute_p ("sysv_abi", name))
+ {
+ if (lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (*node)))
+ {
+ error ("ms_abi and sysv_abi attributes are not compatible");
+ }
+
+ return NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
+ struct attribute_spec.handler. */
+static tree
+ix86_handle_struct_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
+{
+ tree *type = NULL;
+ if (DECL_P (*node))
+ {
+ if (TREE_CODE (*node) == TYPE_DECL)
+ type = &TREE_TYPE (*node);
+ }
+ else
+ type = node;
+
+ if (!(type && RECORD_OR_UNION_TYPE_P (*type)))
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored",
+ name);
+ *no_add_attrs = true;
+ }
+
+ else if ((is_attribute_p ("ms_struct", name)
+ && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type)))
+ || ((is_attribute_p ("gcc_struct", name)
+ && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type)))))
+ {
+ warning (OPT_Wattributes, "%qE incompatible attribute ignored",
+ name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+static tree
+ix86_handle_fndecl_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+ return NULL_TREE;
+}
+
+static bool
+ix86_ms_bitfield_layout_p (const_tree record_type)
+{
+ return ((TARGET_MS_BITFIELD_LAYOUT
+ && !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
+ || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type)));
+}
+
+/* Returns an expression indicating where the this parameter is
+ located on entry to the FUNCTION. */
+
+static rtx
+x86_this_parameter (tree function)
+{
+ tree type = TREE_TYPE (function);
+ bool aggr = aggregate_value_p (TREE_TYPE (type), type) != 0;
+ int nregs;
+
+ if (TARGET_64BIT)
+ {
+ const int *parm_regs;
+
+ if (ix86_function_type_abi (type) == MS_ABI)
+ parm_regs = x86_64_ms_abi_int_parameter_registers;
+ else
+ parm_regs = x86_64_int_parameter_registers;
+ return gen_rtx_REG (Pmode, parm_regs[aggr]);
+ }
+
+ nregs = ix86_function_regparm (type, function);
+
+ if (nregs > 0 && !stdarg_p (type))
+ {
+ int regno;
+ unsigned int ccvt = ix86_get_callcvt (type);
+
+ if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
+ regno = aggr ? DX_REG : CX_REG;
+ else if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
+ {
+ regno = CX_REG;
+ if (aggr)
+ return gen_rtx_MEM (SImode,
+ plus_constant (Pmode, stack_pointer_rtx, 4));
+ }
+ else
+ {
+ regno = AX_REG;
+ if (aggr)
+ {
+ regno = DX_REG;
+ if (nregs == 1)
+ return gen_rtx_MEM (SImode,
+ plus_constant (Pmode,
+ stack_pointer_rtx, 4));
+ }
+ }
+ return gen_rtx_REG (SImode, regno);
+ }
+
+ return gen_rtx_MEM (SImode, plus_constant (Pmode, stack_pointer_rtx,
+ aggr ? 8 : 4));
+}
+
+/* Determine whether x86_output_mi_thunk can succeed. */
+
+static bool
+x86_can_output_mi_thunk (const_tree thunk ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT delta ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT vcall_offset, const_tree function)
+{
+ /* 64-bit can handle anything. */
+ if (TARGET_64BIT)
+ return true;
+
+ /* For 32-bit, everything's fine if we have one free register. */
+ if (ix86_function_regparm (TREE_TYPE (function), function) < 3)
+ return true;
+
+ /* Need a free register for vcall_offset. */
+ if (vcall_offset)
+ return false;
+
+ /* Need a free register for GOT references. */
+ if (flag_pic && !targetm.binds_local_p (function))
+ return false;
+
+ /* Otherwise ok. */
+ return true;
+}
+
+/* Output the assembler code for a thunk function. THUNK_DECL is the
+ declaration for the thunk function itself, FUNCTION is the decl for
+ the target function. DELTA is an immediate constant offset to be
+ added to THIS. If VCALL_OFFSET is nonzero, the word at
+ *(*this + vcall_offset) should be added to THIS. */
+
+static void
+x86_output_mi_thunk (FILE *file,
+ tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta,
+ HOST_WIDE_INT vcall_offset, tree function)
+{
+ rtx this_param = x86_this_parameter (function);
+ rtx this_reg, tmp, fnaddr;
+ unsigned int tmp_regno;
+
+ if (TARGET_64BIT)
+ tmp_regno = R10_REG;
+ else
+ {
+ unsigned int ccvt = ix86_get_callcvt (TREE_TYPE (function));
+ if ((ccvt & IX86_CALLCVT_FASTCALL) != 0)
+ tmp_regno = AX_REG;
+ else if ((ccvt & IX86_CALLCVT_THISCALL) != 0)
+ tmp_regno = DX_REG;
+ else
+ tmp_regno = CX_REG;
+ }
+
+ emit_note (NOTE_INSN_PROLOGUE_END);
+
+ /* If VCALL_OFFSET, we'll need THIS in a register. Might as well
+ pull it in now and let DELTA benefit. */
+ if (REG_P (this_param))
+ this_reg = this_param;
+ else if (vcall_offset)
+ {
+ /* Put the this parameter into %eax. */
+ this_reg = gen_rtx_REG (Pmode, AX_REG);
+ emit_move_insn (this_reg, this_param);
+ }
+ else
+ this_reg = NULL_RTX;
+
+ /* Adjust the this parameter by a fixed constant. */
+ if (delta)
+ {
+ rtx delta_rtx = GEN_INT (delta);
+ rtx delta_dst = this_reg ? this_reg : this_param;
+
+ if (TARGET_64BIT)
+ {
+ if (!x86_64_general_operand (delta_rtx, Pmode))
+ {
+ tmp = gen_rtx_REG (Pmode, tmp_regno);
+ emit_move_insn (tmp, delta_rtx);
+ delta_rtx = tmp;
+ }
+ }
+
+ ix86_emit_binop (PLUS, Pmode, delta_dst, delta_rtx);
+ }
+
+ /* Adjust the this parameter by a value stored in the vtable. */
+ if (vcall_offset)
+ {
+ rtx vcall_addr, vcall_mem, this_mem;
+
+ tmp = gen_rtx_REG (Pmode, tmp_regno);
+
+ this_mem = gen_rtx_MEM (ptr_mode, this_reg);
+ if (Pmode != ptr_mode)
+ this_mem = gen_rtx_ZERO_EXTEND (Pmode, this_mem);
+ emit_move_insn (tmp, this_mem);
+
+ /* Adjust the this parameter. */
+ vcall_addr = plus_constant (Pmode, tmp, vcall_offset);
+ if (TARGET_64BIT
+ && !ix86_legitimate_address_p (ptr_mode, vcall_addr, true))
+ {
+ rtx tmp2 = gen_rtx_REG (Pmode, R11_REG);
+ emit_move_insn (tmp2, GEN_INT (vcall_offset));
+ vcall_addr = gen_rtx_PLUS (Pmode, tmp, tmp2);
+ }
+
+ vcall_mem = gen_rtx_MEM (ptr_mode, vcall_addr);
+ if (Pmode != ptr_mode)
+ emit_insn (gen_addsi_1_zext (this_reg,
+ gen_rtx_REG (ptr_mode,
+ REGNO (this_reg)),
+ vcall_mem));
+ else
+ ix86_emit_binop (PLUS, Pmode, this_reg, vcall_mem);
+ }
+
+ /* If necessary, drop THIS back to its stack slot. */
+ if (this_reg && this_reg != this_param)
+ emit_move_insn (this_param, this_reg);
+
+ fnaddr = XEXP (DECL_RTL (function), 0);
+ if (TARGET_64BIT)
+ {
+ if (!flag_pic || targetm.binds_local_p (function)
+ || TARGET_PECOFF)
+ ;
+ else
+ {
+ tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, fnaddr), UNSPEC_GOTPCREL);
+ tmp = gen_rtx_CONST (Pmode, tmp);
+ fnaddr = gen_const_mem (Pmode, tmp);
+ }
+ }
+ else
+ {
+ if (!flag_pic || targetm.binds_local_p (function))
+ ;
+#if TARGET_MACHO
+ else if (TARGET_MACHO)
+ {
+ fnaddr = machopic_indirect_call_target (DECL_RTL (function));
+ fnaddr = XEXP (fnaddr, 0);
+ }
+#endif /* TARGET_MACHO */
+ else
+ {
+ tmp = gen_rtx_REG (Pmode, CX_REG);
+ output_set_got (tmp, NULL_RTX);
+
+ fnaddr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, fnaddr), UNSPEC_GOT);
+ fnaddr = gen_rtx_CONST (Pmode, fnaddr);
+ fnaddr = gen_rtx_PLUS (Pmode, tmp, fnaddr);
+ fnaddr = gen_const_mem (Pmode, fnaddr);
+ }
+ }
+
+ /* Our sibling call patterns do not allow memories, because we have no
+ predicate that can distinguish between frame and non-frame memory.
+ For our purposes here, we can get away with (ab)using a jump pattern,
+ because we're going to do no optimization. */
+ if (MEM_P (fnaddr))
+ emit_jump_insn (gen_indirect_jump (fnaddr));
+ else
+ {
+ if (ix86_cmodel == CM_LARGE_PIC && SYMBOLIC_CONST (fnaddr))
+ fnaddr = legitimize_pic_address (fnaddr,
+ gen_rtx_REG (Pmode, tmp_regno));
+
+ if (!sibcall_insn_operand (fnaddr, word_mode))
+ {
+ tmp = gen_rtx_REG (word_mode, tmp_regno);
+ if (GET_MODE (fnaddr) != word_mode)
+ fnaddr = gen_rtx_ZERO_EXTEND (word_mode, fnaddr);
+ emit_move_insn (tmp, fnaddr);
+ fnaddr = tmp;
+ }
+
+ tmp = gen_rtx_MEM (QImode, fnaddr);
+ tmp = gen_rtx_CALL (VOIDmode, tmp, const0_rtx);
+ tmp = emit_call_insn (tmp);
+ SIBLING_CALL_P (tmp) = 1;
+ }
+ emit_barrier ();
+
+ /* Emit just enough of rest_of_compilation to get the insns emitted.
+ Note that use_thunk calls assemble_start_function et al. */
+ tmp = get_insns ();
+ shorten_branches (tmp);
+ final_start_function (tmp, file, 1);
+ final (tmp, file, 1);
+ final_end_function ();
+}
+
+static void
+x86_file_start (void)
+{
+ default_file_start ();
+ if (TARGET_16BIT)
+ fputs ("\t.code16gcc\n", asm_out_file);
+#if TARGET_MACHO
+ darwin_file_start ();
+#endif
+ if (X86_FILE_START_VERSION_DIRECTIVE)
+ fputs ("\t.version\t\"01.01\"\n", asm_out_file);
+ if (X86_FILE_START_FLTUSED)
+ fputs ("\t.global\t__fltused\n", asm_out_file);
+ if (ix86_asm_dialect == ASM_INTEL)
+ fputs ("\t.intel_syntax noprefix\n", asm_out_file);
+}
+
+int
+x86_field_alignment (tree field, int computed)
+{
+ enum machine_mode mode;
+ tree type = TREE_TYPE (field);
+
+ if (TARGET_64BIT || TARGET_ALIGN_DOUBLE)
+ return computed;
+ mode = TYPE_MODE (strip_array_types (type));
+ if (mode == DFmode || mode == DCmode
+ || GET_MODE_CLASS (mode) == MODE_INT
+ || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
+ return MIN (32, computed);
+ return computed;
+}
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. */
+void
+x86_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED)
+{
+ const char *mcount_name = (flag_fentry ? MCOUNT_NAME_BEFORE_PROLOGUE
+ : MCOUNT_NAME);
+
+ if (TARGET_64BIT)
+ {
+#ifndef NO_PROFILE_COUNTERS
+ fprintf (file, "\tleaq\t%sP%d(%%rip),%%r11\n", LPREFIX, labelno);
+#endif
+
+ if (!TARGET_PECOFF && flag_pic)
+ fprintf (file, "\tcall\t*%s@GOTPCREL(%%rip)\n", mcount_name);
+ else
+ fprintf (file, "\tcall\t%s\n", mcount_name);
+ }
+ else if (flag_pic)
+ {
+#ifndef NO_PROFILE_COUNTERS
+ fprintf (file, "\tleal\t%sP%d@GOTOFF(%%ebx),%%" PROFILE_COUNT_REGISTER "\n",
+ LPREFIX, labelno);
+#endif
+ fprintf (file, "\tcall\t*%s@GOT(%%ebx)\n", mcount_name);
+ }
+ else
+ {
+#ifndef NO_PROFILE_COUNTERS
+ fprintf (file, "\tmovl\t$%sP%d,%%" PROFILE_COUNT_REGISTER "\n",
+ LPREFIX, labelno);
+#endif
+ fprintf (file, "\tcall\t%s\n", mcount_name);
+ }
+}
+
+/* We don't have exact information about the insn sizes, but we may assume
+ quite safely that we are informed about all 1 byte insns and memory
+ address sizes. This is enough to eliminate unnecessary padding in
+ 99% of cases. */
+
+static int
+min_insn_size (rtx insn)
+{
+ int l = 0, len;
+
+ if (!INSN_P (insn) || !active_insn_p (insn))
+ return 0;
+
+ /* Discard alignments we've emit and jump instructions. */
+ if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
+ && XINT (PATTERN (insn), 1) == UNSPECV_ALIGN)
+ return 0;
+
+ /* Important case - calls are always 5 bytes.
+ It is common to have many calls in the row. */
+ if (CALL_P (insn)
+ && symbolic_reference_mentioned_p (PATTERN (insn))
+ && !SIBLING_CALL_P (insn))
+ return 5;
+ len = get_attr_length (insn);
+ if (len <= 1)
+ return 1;
+
+ /* For normal instructions we rely on get_attr_length being exact,
+ with a few exceptions. */
+ if (!JUMP_P (insn))
+ {
+ enum attr_type type = get_attr_type (insn);
+
+ switch (type)
+ {
+ case TYPE_MULTI:
+ if (GET_CODE (PATTERN (insn)) == ASM_INPUT
+ || asm_noperands (PATTERN (insn)) >= 0)
+ return 0;
+ break;
+ case TYPE_OTHER:
+ case TYPE_FCMP:
+ break;
+ default:
+ /* Otherwise trust get_attr_length. */
+ return len;
+ }
+
+ l = get_attr_length_address (insn);
+ if (l < 4 && symbolic_reference_mentioned_p (PATTERN (insn)))
+ l = 4;
+ }
+ if (l)
+ return 1+l;
+ else
+ return 2;
+}
+
+#ifdef ASM_OUTPUT_MAX_SKIP_PAD
+
+/* AMD K8 core mispredicts jumps when there are more than 3 jumps in 16 byte
+ window. */
+
+static void
+ix86_avoid_jump_mispredicts (void)
+{
+ rtx insn, start = get_insns ();
+ int nbytes = 0, njumps = 0;
+ int isjump = 0;
+
+ /* Look for all minimal intervals of instructions containing 4 jumps.
+ The intervals are bounded by START and INSN. NBYTES is the total
+ size of instructions in the interval including INSN and not including
+ START. When the NBYTES is smaller than 16 bytes, it is possible
+ that the end of START and INSN ends up in the same 16byte page.
+
+ The smallest offset in the page INSN can start is the case where START
+ ends on the offset 0. Offset of INSN is then NBYTES - sizeof (INSN).
+ We add p2align to 16byte window with maxskip 15 - NBYTES + sizeof (INSN).
+
+ Don't consider asm goto as jump, while it can contain a jump, it doesn't
+ have to, control transfer to label(s) can be performed through other
+ means, and also we estimate minimum length of all asm stmts as 0. */
+ for (insn = start; insn; insn = NEXT_INSN (insn))
+ {
+ int min_size;
+
+ if (LABEL_P (insn))
+ {
+ int align = label_to_alignment (insn);
+ int max_skip = label_to_max_skip (insn);
+
+ if (max_skip > 15)
+ max_skip = 15;
+ /* If align > 3, only up to 16 - max_skip - 1 bytes can be
+ already in the current 16 byte page, because otherwise
+ ASM_OUTPUT_MAX_SKIP_ALIGN could skip max_skip or fewer
+ bytes to reach 16 byte boundary. */
+ if (align <= 0
+ || (align <= 3 && max_skip != (1 << align) - 1))
+ max_skip = 0;
+ if (dump_file)
+ fprintf (dump_file, "Label %i with max_skip %i\n",
+ INSN_UID (insn), max_skip);
+ if (max_skip)
+ {
+ while (nbytes + max_skip >= 16)
+ {
+ start = NEXT_INSN (start);
+ if ((JUMP_P (start) && asm_noperands (PATTERN (start)) < 0)
+ || CALL_P (start))
+ njumps--, isjump = 1;
+ else
+ isjump = 0;
+ nbytes -= min_insn_size (start);
+ }
+ }
+ continue;
+ }
+
+ min_size = min_insn_size (insn);
+ nbytes += min_size;
+ if (dump_file)
+ fprintf (dump_file, "Insn %i estimated to %i bytes\n",
+ INSN_UID (insn), min_size);
+ if ((JUMP_P (insn) && asm_noperands (PATTERN (insn)) < 0)
+ || CALL_P (insn))
+ njumps++;
+ else
+ continue;
+
+ while (njumps > 3)
+ {
+ start = NEXT_INSN (start);
+ if ((JUMP_P (start) && asm_noperands (PATTERN (start)) < 0)
+ || CALL_P (start))
+ njumps--, isjump = 1;
+ else
+ isjump = 0;
+ nbytes -= min_insn_size (start);
+ }
+ gcc_assert (njumps >= 0);
+ if (dump_file)
+ fprintf (dump_file, "Interval %i to %i has %i bytes\n",
+ INSN_UID (start), INSN_UID (insn), nbytes);
+
+ if (njumps == 3 && isjump && nbytes < 16)
+ {
+ int padsize = 15 - nbytes + min_insn_size (insn);
+
+ if (dump_file)
+ fprintf (dump_file, "Padding insn %i by %i bytes!\n",
+ INSN_UID (insn), padsize);
+ emit_insn_before (gen_pad (GEN_INT (padsize)), insn);
+ }
+ }
+}
+#endif
+
+/* AMD Athlon works faster
+ when RET is not destination of conditional jump or directly preceded
+ by other jump instruction. We avoid the penalty by inserting NOP just
+ before the RET instructions in such cases. */
+static void
+ix86_pad_returns (void)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ {
+ basic_block bb = e->src;
+ rtx ret = BB_END (bb);
+ rtx prev;
+ bool replace = false;
+
+ if (!JUMP_P (ret) || !ANY_RETURN_P (PATTERN (ret))
+ || optimize_bb_for_size_p (bb))
+ continue;
+ for (prev = PREV_INSN (ret); prev; prev = PREV_INSN (prev))
+ if (active_insn_p (prev) || LABEL_P (prev))
+ break;
+ if (prev && LABEL_P (prev))
+ {
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (EDGE_FREQUENCY (e) && e->src->index >= 0
+ && !(e->flags & EDGE_FALLTHRU))
+ {
+ replace = true;
+ break;
+ }
+ }
+ if (!replace)
+ {
+ prev = prev_active_insn (ret);
+ if (prev
+ && ((JUMP_P (prev) && any_condjump_p (prev))
+ || CALL_P (prev)))
+ replace = true;
+ /* Empty functions get branch mispredict even when
+ the jump destination is not visible to us. */
+ if (!prev && !optimize_function_for_size_p (cfun))
+ replace = true;
+ }
+ if (replace)
+ {
+ emit_jump_insn_before (gen_simple_return_internal_long (), ret);
+ delete_insn (ret);
+ }
+ }
+}
+
+/* Count the minimum number of instructions in BB. Return 4 if the
+ number of instructions >= 4. */
+
+static int
+ix86_count_insn_bb (basic_block bb)
+{
+ rtx insn;
+ int insn_count = 0;
+
+ /* Count number of instructions in this block. Return 4 if the number
+ of instructions >= 4. */
+ FOR_BB_INSNS (bb, insn)
+ {
+ /* Only happen in exit blocks. */
+ if (JUMP_P (insn)
+ && ANY_RETURN_P (PATTERN (insn)))
+ break;
+
+ if (NONDEBUG_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) != USE
+ && GET_CODE (PATTERN (insn)) != CLOBBER)
+ {
+ insn_count++;
+ if (insn_count >= 4)
+ return insn_count;
+ }
+ }
+
+ return insn_count;
+}
+
+
+/* Count the minimum number of instructions in code path in BB.
+ Return 4 if the number of instructions >= 4. */
+
+static int
+ix86_count_insn (basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+ int min_prev_count;
+
+ /* Only bother counting instructions along paths with no
+ more than 2 basic blocks between entry and exit. Given
+ that BB has an edge to exit, determine if a predecessor
+ of BB has an edge from entry. If so, compute the number
+ of instructions in the predecessor block. If there
+ happen to be multiple such blocks, compute the minimum. */
+ min_prev_count = 4;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ edge prev_e;
+ edge_iterator prev_ei;
+
+ if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ {
+ min_prev_count = 0;
+ break;
+ }
+ FOR_EACH_EDGE (prev_e, prev_ei, e->src->preds)
+ {
+ if (prev_e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ {
+ int count = ix86_count_insn_bb (e->src);
+ if (count < min_prev_count)
+ min_prev_count = count;
+ break;
+ }
+ }
+ }
+
+ if (min_prev_count < 4)
+ min_prev_count += ix86_count_insn_bb (bb);
+
+ return min_prev_count;
+}
+
+/* Pad short function to 4 instructions. */
+
+static void
+ix86_pad_short_function (void)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ {
+ rtx ret = BB_END (e->src);
+ if (JUMP_P (ret) && ANY_RETURN_P (PATTERN (ret)))
+ {
+ int insn_count = ix86_count_insn (e->src);
+
+ /* Pad short function. */
+ if (insn_count < 4)
+ {
+ rtx insn = ret;
+
+ /* Find epilogue. */
+ while (insn
+ && (!NOTE_P (insn)
+ || NOTE_KIND (insn) != NOTE_INSN_EPILOGUE_BEG))
+ insn = PREV_INSN (insn);
+
+ if (!insn)
+ insn = ret;
+
+ /* Two NOPs count as one instruction. */
+ insn_count = 2 * (4 - insn_count);
+ emit_insn_before (gen_nops (GEN_INT (insn_count)), insn);
+ }
+ }
+ }
+}
+
+/* Fix up a Windows system unwinder issue. If an EH region falls through into
+ the epilogue, the Windows system unwinder will apply epilogue logic and
+ produce incorrect offsets. This can be avoided by adding a nop between
+ the last insn that can throw and the first insn of the epilogue. */
+
+static void
+ix86_seh_fixup_eh_fallthru (void)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ {
+ rtx insn, next;
+
+ /* Find the beginning of the epilogue. */
+ for (insn = BB_END (e->src); insn != NULL; insn = PREV_INSN (insn))
+ if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
+ break;
+ if (insn == NULL)
+ continue;
+
+ /* We only care about preceding insns that can throw. */
+ insn = prev_active_insn (insn);
+ if (insn == NULL || !can_throw_internal (insn))
+ continue;
+
+ /* Do not separate calls from their debug information. */
+ for (next = NEXT_INSN (insn); next != NULL; next = NEXT_INSN (next))
+ if (NOTE_P (next)
+ && (NOTE_KIND (next) == NOTE_INSN_VAR_LOCATION
+ || NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION))
+ insn = next;
+ else
+ break;
+
+ emit_insn_after (gen_nops (const1_rtx), insn);
+ }
+}
+
+/* Implement machine specific optimizations. We implement padding of returns
+ for K8 CPUs and pass to avoid 4 jumps in the single 16 byte window. */
+static void
+ix86_reorg (void)
+{
+ /* We are freeing block_for_insn in the toplev to keep compatibility
+ with old MDEP_REORGS that are not CFG based. Recompute it now. */
+ compute_bb_for_insn ();
+
+ if (TARGET_SEH && current_function_has_exception_handlers ())
+ ix86_seh_fixup_eh_fallthru ();
+
+ if (optimize && optimize_function_for_speed_p (cfun))
+ {
+ if (TARGET_PAD_SHORT_FUNCTION)
+ ix86_pad_short_function ();
+ else if (TARGET_PAD_RETURNS)
+ ix86_pad_returns ();
+#ifdef ASM_OUTPUT_MAX_SKIP_PAD
+ if (TARGET_FOUR_JUMP_LIMIT)
+ ix86_avoid_jump_mispredicts ();
+#endif
+ }
+}
+
+/* Return nonzero when QImode register that must be represented via REX prefix
+ is used. */
+bool
+x86_extended_QIreg_mentioned_p (rtx insn)
+{
+ int i;
+ extract_insn_cached (insn);
+ for (i = 0; i < recog_data.n_operands; i++)
+ if (GENERAL_REG_P (recog_data.operand[i])
+ && !QI_REGNO_P (REGNO (recog_data.operand[i])))
+ return true;
+ return false;
+}
+
+/* Return nonzero when P points to register encoded via REX prefix.
+ Called via for_each_rtx. */
+static int
+extended_reg_mentioned_1 (rtx *p, void *data ATTRIBUTE_UNUSED)
+{
+ unsigned int regno;
+ if (!REG_P (*p))
+ return 0;
+ regno = REGNO (*p);
+ return REX_INT_REGNO_P (regno) || REX_SSE_REGNO_P (regno);
+}
+
+/* Return true when INSN mentions register that must be encoded using REX
+ prefix. */
+bool
+x86_extended_reg_mentioned_p (rtx insn)
+{
+ return for_each_rtx (INSN_P (insn) ? &PATTERN (insn) : &insn,
+ extended_reg_mentioned_1, NULL);
+}
+
+/* If profitable, negate (without causing overflow) integer constant
+ of mode MODE at location LOC. Return true in this case. */
+bool
+x86_maybe_negate_const_int (rtx *loc, enum machine_mode mode)
+{
+ HOST_WIDE_INT val;
+
+ if (!CONST_INT_P (*loc))
+ return false;
+
+ switch (mode)
+ {
+ case DImode:
+ /* DImode x86_64 constants must fit in 32 bits. */
+ gcc_assert (x86_64_immediate_operand (*loc, mode));
+
+ mode = SImode;
+ break;
+
+ case SImode:
+ case HImode:
+ case QImode:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Avoid overflows. */
+ if (mode_signbit_p (mode, *loc))
+ return false;
+
+ val = INTVAL (*loc);
+
+ /* Make things pretty and `subl $4,%eax' rather than `addl $-4,%eax'.
+ Exceptions: -128 encodes smaller than 128, so swap sign and op. */
+ if ((val < 0 && val != -128)
+ || val == 128)
+ {
+ *loc = GEN_INT (-val);
+ return true;
+ }
+
+ return false;
+}
+
+/* Generate an unsigned DImode/SImode to FP conversion. This is the same code
+ optabs would emit if we didn't have TFmode patterns. */
+
+void
+x86_emit_floatuns (rtx operands[2])
+{
+ rtx neglab, donelab, i0, i1, f0, in, out;
+ enum machine_mode mode, inmode;
+
+ inmode = GET_MODE (operands[1]);
+ gcc_assert (inmode == SImode || inmode == DImode);
+
+ out = operands[0];
+ in = force_reg (inmode, operands[1]);
+ mode = GET_MODE (out);
+ neglab = gen_label_rtx ();
+ donelab = gen_label_rtx ();
+ f0 = gen_reg_rtx (mode);
+
+ emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, inmode, 0, neglab);
+
+ expand_float (out, in, 0);
+
+ emit_jump_insn (gen_jump (donelab));
+ emit_barrier ();
+
+ emit_label (neglab);
+
+ i0 = expand_simple_binop (inmode, LSHIFTRT, in, const1_rtx, NULL,
+ 1, OPTAB_DIRECT);
+ i1 = expand_simple_binop (inmode, AND, in, const1_rtx, NULL,
+ 1, OPTAB_DIRECT);
+ i0 = expand_simple_binop (inmode, IOR, i0, i1, i0, 1, OPTAB_DIRECT);
+
+ expand_float (f0, i0, 0);
+
+ emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0)));
+
+ emit_label (donelab);
+}
+
+/* AVX512F does support 64-byte integer vector operations,
+ thus the longest vector we are faced with is V64QImode. */
+#define MAX_VECT_LEN 64
+
+struct expand_vec_perm_d
+{
+ rtx target, op0, op1;
+ unsigned char perm[MAX_VECT_LEN];
+ enum machine_mode vmode;
+ unsigned char nelt;
+ bool one_operand_p;
+ bool testing_p;
+};
+
+static bool canonicalize_perm (struct expand_vec_perm_d *d);
+static bool expand_vec_perm_1 (struct expand_vec_perm_d *d);
+static bool expand_vec_perm_broadcast_1 (struct expand_vec_perm_d *d);
+
+/* Get a vector mode of the same size as the original but with elements
+ twice as wide. This is only guaranteed to apply to integral vectors. */
+
+static inline enum machine_mode
+get_mode_wider_vector (enum machine_mode o)
+{
+ /* ??? Rely on the ordering that genmodes.c gives to vectors. */
+ enum machine_mode n = GET_MODE_WIDER_MODE (o);
+ gcc_assert (GET_MODE_NUNITS (o) == GET_MODE_NUNITS (n) * 2);
+ gcc_assert (GET_MODE_SIZE (o) == GET_MODE_SIZE (n));
+ return n;
+}
+
+/* A subroutine of ix86_expand_vector_init_duplicate. Tries to
+ fill target with val via vec_duplicate. */
+
+static bool
+ix86_vector_duplicate_value (enum machine_mode mode, rtx target, rtx val)
+{
+ bool ok;
+ rtx insn, dup;
+
+ /* First attempt to recognize VAL as-is. */
+ dup = gen_rtx_VEC_DUPLICATE (mode, val);
+ insn = emit_insn (gen_rtx_SET (VOIDmode, target, dup));
+ if (recog_memoized (insn) < 0)
+ {
+ rtx seq;
+ /* If that fails, force VAL into a register. */
+
+ start_sequence ();
+ XEXP (dup, 0) = force_reg (GET_MODE_INNER (mode), val);
+ seq = get_insns ();
+ end_sequence ();
+ if (seq)
+ emit_insn_before (seq, insn);
+
+ ok = recog_memoized (insn) >= 0;
+ gcc_assert (ok);
+ }
+ return true;
+}
+
+/* A subroutine of ix86_expand_vector_init. Store into TARGET a vector
+ with all elements equal to VAR. Return true if successful. */
+
+static bool
+ix86_expand_vector_init_duplicate (bool mmx_ok, enum machine_mode mode,
+ rtx target, rtx val)
+{
+ bool ok;
+
+ switch (mode)
+ {
+ case V2SImode:
+ case V2SFmode:
+ if (!mmx_ok)
+ return false;
+ /* FALLTHRU */
+
+ case V4DFmode:
+ case V4DImode:
+ case V8SFmode:
+ case V8SImode:
+ case V2DFmode:
+ case V2DImode:
+ case V4SFmode:
+ case V4SImode:
+ case V16SImode:
+ case V8DImode:
+ case V16SFmode:
+ case V8DFmode:
+ return ix86_vector_duplicate_value (mode, target, val);
+
+ case V4HImode:
+ if (!mmx_ok)
+ return false;
+ if (TARGET_SSE || TARGET_3DNOW_A)
+ {
+ rtx x;
+
+ val = gen_lowpart (SImode, val);
+ x = gen_rtx_TRUNCATE (HImode, val);
+ x = gen_rtx_VEC_DUPLICATE (mode, x);
+ emit_insn (gen_rtx_SET (VOIDmode, target, x));
+ return true;
+ }
+ goto widen;
+
+ case V8QImode:
+ if (!mmx_ok)
+ return false;
+ goto widen;
+
+ case V8HImode:
+ if (TARGET_SSE2)
+ {
+ struct expand_vec_perm_d dperm;
+ rtx tmp1, tmp2;
+
+ permute:
+ memset (&dperm, 0, sizeof (dperm));
+ dperm.target = target;
+ dperm.vmode = mode;
+ dperm.nelt = GET_MODE_NUNITS (mode);
+ dperm.op0 = dperm.op1 = gen_reg_rtx (mode);
+ dperm.one_operand_p = true;
+
+ /* Extend to SImode using a paradoxical SUBREG. */
+ tmp1 = gen_reg_rtx (SImode);
+ emit_move_insn (tmp1, gen_lowpart (SImode, val));
+
+ /* Insert the SImode value as low element of a V4SImode vector. */
+ tmp2 = gen_reg_rtx (V4SImode);
+ emit_insn (gen_vec_setv4si_0 (tmp2, CONST0_RTX (V4SImode), tmp1));
+ emit_move_insn (dperm.op0, gen_lowpart (mode, tmp2));
+
+ ok = (expand_vec_perm_1 (&dperm)
+ || expand_vec_perm_broadcast_1 (&dperm));
+ gcc_assert (ok);
+ return ok;
+ }
+ goto widen;
+
+ case V16QImode:
+ if (TARGET_SSE2)
+ goto permute;
+ goto widen;
+
+ widen:
+ /* Replicate the value once into the next wider mode and recurse. */
+ {
+ enum machine_mode smode, wsmode, wvmode;
+ rtx x;
+
+ smode = GET_MODE_INNER (mode);
+ wvmode = get_mode_wider_vector (mode);
+ wsmode = GET_MODE_INNER (wvmode);
+
+ val = convert_modes (wsmode, smode, val, true);
+ x = expand_simple_binop (wsmode, ASHIFT, val,
+ GEN_INT (GET_MODE_BITSIZE (smode)),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ val = expand_simple_binop (wsmode, IOR, val, x, x, 1, OPTAB_LIB_WIDEN);
+
+ x = gen_reg_rtx (wvmode);
+ ok = ix86_expand_vector_init_duplicate (mmx_ok, wvmode, x, val);
+ gcc_assert (ok);
+ emit_move_insn (target, gen_lowpart (GET_MODE (target), x));
+ return ok;
+ }
+
+ case V16HImode:
+ case V32QImode:
+ {
+ enum machine_mode hvmode = (mode == V16HImode ? V8HImode : V16QImode);
+ rtx x = gen_reg_rtx (hvmode);
+
+ ok = ix86_expand_vector_init_duplicate (false, hvmode, x, val);
+ gcc_assert (ok);
+
+ x = gen_rtx_VEC_CONCAT (mode, x, x);
+ emit_insn (gen_rtx_SET (VOIDmode, target, x));
+ }
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* A subroutine of ix86_expand_vector_init. Store into TARGET a vector
+ whose ONE_VAR element is VAR, and other elements are zero. Return true
+ if successful. */
+
+static bool
+ix86_expand_vector_init_one_nonzero (bool mmx_ok, enum machine_mode mode,
+ rtx target, rtx var, int one_var)
+{
+ enum machine_mode vsimode;
+ rtx new_target;
+ rtx x, tmp;
+ bool use_vector_set = false;
+
+ switch (mode)
+ {
+ case V2DImode:
+ /* For SSE4.1, we normally use vector set. But if the second
+ element is zero and inter-unit moves are OK, we use movq
+ instead. */
+ use_vector_set = (TARGET_64BIT && TARGET_SSE4_1
+ && !(TARGET_INTER_UNIT_MOVES_TO_VEC
+ && one_var == 0));
+ break;
+ case V16QImode:
+ case V4SImode:
+ case V4SFmode:
+ use_vector_set = TARGET_SSE4_1;
+ break;
+ case V8HImode:
+ use_vector_set = TARGET_SSE2;
+ break;
+ case V4HImode:
+ use_vector_set = TARGET_SSE || TARGET_3DNOW_A;
+ break;
+ case V32QImode:
+ case V16HImode:
+ case V8SImode:
+ case V8SFmode:
+ case V4DFmode:
+ use_vector_set = TARGET_AVX;
+ break;
+ case V4DImode:
+ /* Use ix86_expand_vector_set in 64bit mode only. */
+ use_vector_set = TARGET_AVX && TARGET_64BIT;
+ break;
+ default:
+ break;
+ }
+
+ if (use_vector_set)
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, target, CONST0_RTX (mode)));
+ var = force_reg (GET_MODE_INNER (mode), var);
+ ix86_expand_vector_set (mmx_ok, target, var, one_var);
+ return true;
+ }
+
+ switch (mode)
+ {
+ case V2SFmode:
+ case V2SImode:
+ if (!mmx_ok)
+ return false;
+ /* FALLTHRU */
+
+ case V2DFmode:
+ case V2DImode:
+ if (one_var != 0)
+ return false;
+ var = force_reg (GET_MODE_INNER (mode), var);
+ x = gen_rtx_VEC_CONCAT (mode, var, CONST0_RTX (GET_MODE_INNER (mode)));
+ emit_insn (gen_rtx_SET (VOIDmode, target, x));
+ return true;
+
+ case V4SFmode:
+ case V4SImode:
+ if (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
+ new_target = gen_reg_rtx (mode);
+ else
+ new_target = target;
+ var = force_reg (GET_MODE_INNER (mode), var);
+ x = gen_rtx_VEC_DUPLICATE (mode, var);
+ x = gen_rtx_VEC_MERGE (mode, x, CONST0_RTX (mode), const1_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, new_target, x));
+ if (one_var != 0)
+ {
+ /* We need to shuffle the value to the correct position, so
+ create a new pseudo to store the intermediate result. */
+
+ /* With SSE2, we can use the integer shuffle insns. */
+ if (mode != V4SFmode && TARGET_SSE2)
+ {
+ emit_insn (gen_sse2_pshufd_1 (new_target, new_target,
+ const1_rtx,
+ GEN_INT (one_var == 1 ? 0 : 1),
+ GEN_INT (one_var == 2 ? 0 : 1),
+ GEN_INT (one_var == 3 ? 0 : 1)));
+ if (target != new_target)
+ emit_move_insn (target, new_target);
+ return true;
+ }
+
+ /* Otherwise convert the intermediate result to V4SFmode and
+ use the SSE1 shuffle instructions. */
+ if (mode != V4SFmode)
+ {
+ tmp = gen_reg_rtx (V4SFmode);
+ emit_move_insn (tmp, gen_lowpart (V4SFmode, new_target));
+ }
+ else
+ tmp = new_target;
+
+ emit_insn (gen_sse_shufps_v4sf (tmp, tmp, tmp,
+ const1_rtx,
+ GEN_INT (one_var == 1 ? 0 : 1),
+ GEN_INT (one_var == 2 ? 0+4 : 1+4),
+ GEN_INT (one_var == 3 ? 0+4 : 1+4)));
+
+ if (mode != V4SFmode)
+ emit_move_insn (target, gen_lowpart (V4SImode, tmp));
+ else if (tmp != target)
+ emit_move_insn (target, tmp);
+ }
+ else if (target != new_target)
+ emit_move_insn (target, new_target);
+ return true;
+
+ case V8HImode:
+ case V16QImode:
+ vsimode = V4SImode;
+ goto widen;
+ case V4HImode:
+ case V8QImode:
+ if (!mmx_ok)
+ return false;
+ vsimode = V2SImode;
+ goto widen;
+ widen:
+ if (one_var != 0)
+ return false;
+
+ /* Zero extend the variable element to SImode and recurse. */
+ var = convert_modes (SImode, GET_MODE_INNER (mode), var, true);
+
+ x = gen_reg_rtx (vsimode);
+ if (!ix86_expand_vector_init_one_nonzero (mmx_ok, vsimode, x,
+ var, one_var))
+ gcc_unreachable ();
+
+ emit_move_insn (target, gen_lowpart (mode, x));
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* A subroutine of ix86_expand_vector_init. Store into TARGET a vector
+ consisting of the values in VALS. It is known that all elements
+ except ONE_VAR are constants. Return true if successful. */
+
+static bool
+ix86_expand_vector_init_one_var (bool mmx_ok, enum machine_mode mode,
+ rtx target, rtx vals, int one_var)
+{
+ rtx var = XVECEXP (vals, 0, one_var);
+ enum machine_mode wmode;
+ rtx const_vec, x;
+
+ const_vec = copy_rtx (vals);
+ XVECEXP (const_vec, 0, one_var) = CONST0_RTX (GET_MODE_INNER (mode));
+ const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (const_vec, 0));
+
+ switch (mode)
+ {
+ case V2DFmode:
+ case V2DImode:
+ case V2SFmode:
+ case V2SImode:
+ /* For the two element vectors, it's just as easy to use
+ the general case. */
+ return false;
+
+ case V4DImode:
+ /* Use ix86_expand_vector_set in 64bit mode only. */
+ if (!TARGET_64BIT)
+ return false;
+ case V4DFmode:
+ case V8SFmode:
+ case V8SImode:
+ case V16HImode:
+ case V32QImode:
+ case V4SFmode:
+ case V4SImode:
+ case V8HImode:
+ case V4HImode:
+ break;
+
+ case V16QImode:
+ if (TARGET_SSE4_1)
+ break;
+ wmode = V8HImode;
+ goto widen;
+ case V8QImode:
+ wmode = V4HImode;
+ goto widen;
+ widen:
+ /* There's no way to set one QImode entry easily. Combine
+ the variable value with its adjacent constant value, and
+ promote to an HImode set. */
+ x = XVECEXP (vals, 0, one_var ^ 1);
+ if (one_var & 1)
+ {
+ var = convert_modes (HImode, QImode, var, true);
+ var = expand_simple_binop (HImode, ASHIFT, var, GEN_INT (8),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ x = GEN_INT (INTVAL (x) & 0xff);
+ }
+ else
+ {
+ var = convert_modes (HImode, QImode, var, true);
+ x = gen_int_mode (INTVAL (x) << 8, HImode);
+ }
+ if (x != const0_rtx)
+ var = expand_simple_binop (HImode, IOR, var, x, var,
+ 1, OPTAB_LIB_WIDEN);
+
+ x = gen_reg_rtx (wmode);
+ emit_move_insn (x, gen_lowpart (wmode, const_vec));
+ ix86_expand_vector_set (mmx_ok, x, var, one_var >> 1);
+
+ emit_move_insn (target, gen_lowpart (mode, x));
+ return true;
+
+ default:
+ return false;
+ }
+
+ emit_move_insn (target, const_vec);
+ ix86_expand_vector_set (mmx_ok, target, var, one_var);
+ return true;
+}
+
+/* A subroutine of ix86_expand_vector_init_general. Use vector
+ concatenate to handle the most general case: all values variable,
+ and none identical. */
+
+static void
+ix86_expand_vector_init_concat (enum machine_mode mode,
+ rtx target, rtx *ops, int n)
+{
+ enum machine_mode cmode, hmode = VOIDmode, gmode = VOIDmode;
+ rtx first[16], second[8], third[4];
+ rtvec v;
+ int i, j;
+
+ switch (n)
+ {
+ case 2:
+ switch (mode)
+ {
+ case V16SImode:
+ cmode = V8SImode;
+ break;
+ case V16SFmode:
+ cmode = V8SFmode;
+ break;
+ case V8DImode:
+ cmode = V4DImode;
+ break;
+ case V8DFmode:
+ cmode = V4DFmode;
+ break;
+ case V8SImode:
+ cmode = V4SImode;
+ break;
+ case V8SFmode:
+ cmode = V4SFmode;
+ break;
+ case V4DImode:
+ cmode = V2DImode;
+ break;
+ case V4DFmode:
+ cmode = V2DFmode;
+ break;
+ case V4SImode:
+ cmode = V2SImode;
+ break;
+ case V4SFmode:
+ cmode = V2SFmode;
+ break;
+ case V2DImode:
+ cmode = DImode;
+ break;
+ case V2SImode:
+ cmode = SImode;
+ break;
+ case V2DFmode:
+ cmode = DFmode;
+ break;
+ case V2SFmode:
+ cmode = SFmode;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (!register_operand (ops[1], cmode))
+ ops[1] = force_reg (cmode, ops[1]);
+ if (!register_operand (ops[0], cmode))
+ ops[0] = force_reg (cmode, ops[0]);
+ emit_insn (gen_rtx_SET (VOIDmode, target,
+ gen_rtx_VEC_CONCAT (mode, ops[0],
+ ops[1])));
+ break;
+
+ case 4:
+ switch (mode)
+ {
+ case V4DImode:
+ cmode = V2DImode;
+ break;
+ case V4DFmode:
+ cmode = V2DFmode;
+ break;
+ case V4SImode:
+ cmode = V2SImode;
+ break;
+ case V4SFmode:
+ cmode = V2SFmode;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ goto half;
+
+ case 8:
+ switch (mode)
+ {
+ case V8DImode:
+ cmode = V2DImode;
+ hmode = V4DImode;
+ break;
+ case V8DFmode:
+ cmode = V2DFmode;
+ hmode = V4DFmode;
+ break;
+ case V8SImode:
+ cmode = V2SImode;
+ hmode = V4SImode;
+ break;
+ case V8SFmode:
+ cmode = V2SFmode;
+ hmode = V4SFmode;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ goto half;
+
+ case 16:
+ switch (mode)
+ {
+ case V16SImode:
+ cmode = V2SImode;
+ hmode = V4SImode;
+ gmode = V8SImode;
+ break;
+ case V16SFmode:
+ cmode = V2SFmode;
+ hmode = V4SFmode;
+ gmode = V8SFmode;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ goto half;
+
+half:
+ /* FIXME: We process inputs backward to help RA. PR 36222. */
+ i = n - 1;
+ j = (n >> 1) - 1;
+ for (; i > 0; i -= 2, j--)
+ {
+ first[j] = gen_reg_rtx (cmode);
+ v = gen_rtvec (2, ops[i - 1], ops[i]);
+ ix86_expand_vector_init (false, first[j],
+ gen_rtx_PARALLEL (cmode, v));
+ }
+
+ n >>= 1;
+ if (n > 4)
+ {
+ gcc_assert (hmode != VOIDmode);
+ gcc_assert (gmode != VOIDmode);
+ for (i = j = 0; i < n; i += 2, j++)
+ {
+ second[j] = gen_reg_rtx (hmode);
+ ix86_expand_vector_init_concat (hmode, second [j],
+ &first [i], 2);
+ }
+ n >>= 1;
+ for (i = j = 0; i < n; i += 2, j++)
+ {
+ third[j] = gen_reg_rtx (gmode);
+ ix86_expand_vector_init_concat (gmode, third[j],
+ &second[i], 2);
+ }
+ n >>= 1;
+ ix86_expand_vector_init_concat (mode, target, third, n);
+ }
+ else if (n > 2)
+ {
+ gcc_assert (hmode != VOIDmode);
+ for (i = j = 0; i < n; i += 2, j++)
+ {
+ second[j] = gen_reg_rtx (hmode);
+ ix86_expand_vector_init_concat (hmode, second [j],
+ &first [i], 2);
+ }
+ n >>= 1;
+ ix86_expand_vector_init_concat (mode, target, second, n);
+ }
+ else
+ ix86_expand_vector_init_concat (mode, target, first, n);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* A subroutine of ix86_expand_vector_init_general. Use vector
+ interleave to handle the most general case: all values variable,
+ and none identical. */
+
+static void
+ix86_expand_vector_init_interleave (enum machine_mode mode,
+ rtx target, rtx *ops, int n)
+{
+ enum machine_mode first_imode, second_imode, third_imode, inner_mode;
+ int i, j;
+ rtx op0, op1;
+ rtx (*gen_load_even) (rtx, rtx, rtx);
+ rtx (*gen_interleave_first_low) (rtx, rtx, rtx);
+ rtx (*gen_interleave_second_low) (rtx, rtx, rtx);
+
+ switch (mode)
+ {
+ case V8HImode:
+ gen_load_even = gen_vec_setv8hi;
+ gen_interleave_first_low = gen_vec_interleave_lowv4si;
+ gen_interleave_second_low = gen_vec_interleave_lowv2di;
+ inner_mode = HImode;
+ first_imode = V4SImode;
+ second_imode = V2DImode;
+ third_imode = VOIDmode;
+ break;
+ case V16QImode:
+ gen_load_even = gen_vec_setv16qi;
+ gen_interleave_first_low = gen_vec_interleave_lowv8hi;
+ gen_interleave_second_low = gen_vec_interleave_lowv4si;
+ inner_mode = QImode;
+ first_imode = V8HImode;
+ second_imode = V4SImode;
+ third_imode = V2DImode;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ for (i = 0; i < n; i++)
+ {
+ /* Extend the odd elment to SImode using a paradoxical SUBREG. */
+ op0 = gen_reg_rtx (SImode);
+ emit_move_insn (op0, gen_lowpart (SImode, ops [i + i]));
+
+ /* Insert the SImode value as low element of V4SImode vector. */
+ op1 = gen_reg_rtx (V4SImode);
+ op0 = gen_rtx_VEC_MERGE (V4SImode,
+ gen_rtx_VEC_DUPLICATE (V4SImode,
+ op0),
+ CONST0_RTX (V4SImode),
+ const1_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, op1, op0));
+
+ /* Cast the V4SImode vector back to a vector in orignal mode. */
+ op0 = gen_reg_rtx (mode);
+ emit_move_insn (op0, gen_lowpart (mode, op1));
+
+ /* Load even elements into the second position. */
+ emit_insn (gen_load_even (op0,
+ force_reg (inner_mode,
+ ops [i + i + 1]),
+ const1_rtx));
+
+ /* Cast vector to FIRST_IMODE vector. */
+ ops[i] = gen_reg_rtx (first_imode);
+ emit_move_insn (ops[i], gen_lowpart (first_imode, op0));
+ }
+
+ /* Interleave low FIRST_IMODE vectors. */
+ for (i = j = 0; i < n; i += 2, j++)
+ {
+ op0 = gen_reg_rtx (first_imode);
+ emit_insn (gen_interleave_first_low (op0, ops[i], ops[i + 1]));
+
+ /* Cast FIRST_IMODE vector to SECOND_IMODE vector. */
+ ops[j] = gen_reg_rtx (second_imode);
+ emit_move_insn (ops[j], gen_lowpart (second_imode, op0));
+ }
+
+ /* Interleave low SECOND_IMODE vectors. */
+ switch (second_imode)
+ {
+ case V4SImode:
+ for (i = j = 0; i < n / 2; i += 2, j++)
+ {
+ op0 = gen_reg_rtx (second_imode);
+ emit_insn (gen_interleave_second_low (op0, ops[i],
+ ops[i + 1]));
+
+ /* Cast the SECOND_IMODE vector to the THIRD_IMODE
+ vector. */
+ ops[j] = gen_reg_rtx (third_imode);
+ emit_move_insn (ops[j], gen_lowpart (third_imode, op0));
+ }
+ second_imode = V2DImode;
+ gen_interleave_second_low = gen_vec_interleave_lowv2di;
+ /* FALLTHRU */
+
+ case V2DImode:
+ op0 = gen_reg_rtx (second_imode);
+ emit_insn (gen_interleave_second_low (op0, ops[0],
+ ops[1]));
+
+ /* Cast the SECOND_IMODE vector back to a vector on original
+ mode. */
+ emit_insn (gen_rtx_SET (VOIDmode, target,
+ gen_lowpart (mode, op0)));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* A subroutine of ix86_expand_vector_init. Handle the most general case:
+ all values variable, and none identical. */
+
+static void
+ix86_expand_vector_init_general (bool mmx_ok, enum machine_mode mode,
+ rtx target, rtx vals)
+{
+ rtx ops[64], op0, op1;
+ enum machine_mode half_mode = VOIDmode;
+ int n, i;
+
+ switch (mode)
+ {
+ case V2SFmode:
+ case V2SImode:
+ if (!mmx_ok && !TARGET_SSE)
+ break;
+ /* FALLTHRU */
+
+ case V16SImode:
+ case V16SFmode:
+ case V8DFmode:
+ case V8DImode:
+ case V8SFmode:
+ case V8SImode:
+ case V4DFmode:
+ case V4DImode:
+ case V4SFmode:
+ case V4SImode:
+ case V2DFmode:
+ case V2DImode:
+ n = GET_MODE_NUNITS (mode);
+ for (i = 0; i < n; i++)
+ ops[i] = XVECEXP (vals, 0, i);
+ ix86_expand_vector_init_concat (mode, target, ops, n);
+ return;
+
+ case V32QImode:
+ half_mode = V16QImode;
+ goto half;
+
+ case V16HImode:
+ half_mode = V8HImode;
+ goto half;
+
+half:
+ n = GET_MODE_NUNITS (mode);
+ for (i = 0; i < n; i++)
+ ops[i] = XVECEXP (vals, 0, i);
+ op0 = gen_reg_rtx (half_mode);
+ op1 = gen_reg_rtx (half_mode);
+ ix86_expand_vector_init_interleave (half_mode, op0, ops,
+ n >> 2);
+ ix86_expand_vector_init_interleave (half_mode, op1,
+ &ops [n >> 1], n >> 2);
+ emit_insn (gen_rtx_SET (VOIDmode, target,
+ gen_rtx_VEC_CONCAT (mode, op0, op1)));
+ return;
+
+ case V16QImode:
+ if (!TARGET_SSE4_1)
+ break;
+ /* FALLTHRU */
+
+ case V8HImode:
+ if (!TARGET_SSE2)
+ break;
+
+ /* Don't use ix86_expand_vector_init_interleave if we can't
+ move from GPR to SSE register directly. */
+ if (!TARGET_INTER_UNIT_MOVES_TO_VEC)
+ break;
+
+ n = GET_MODE_NUNITS (mode);
+ for (i = 0; i < n; i++)
+ ops[i] = XVECEXP (vals, 0, i);
+ ix86_expand_vector_init_interleave (mode, target, ops, n >> 1);
+ return;
+
+ case V4HImode:
+ case V8QImode:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ {
+ int i, j, n_elts, n_words, n_elt_per_word;
+ enum machine_mode inner_mode;
+ rtx words[4], shift;
+
+ inner_mode = GET_MODE_INNER (mode);
+ n_elts = GET_MODE_NUNITS (mode);
+ n_words = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
+ n_elt_per_word = n_elts / n_words;
+ shift = GEN_INT (GET_MODE_BITSIZE (inner_mode));
+
+ for (i = 0; i < n_words; ++i)
+ {
+ rtx word = NULL_RTX;
+
+ for (j = 0; j < n_elt_per_word; ++j)
+ {
+ rtx elt = XVECEXP (vals, 0, (i+1)*n_elt_per_word - j - 1);
+ elt = convert_modes (word_mode, inner_mode, elt, true);
+
+ if (j == 0)
+ word = elt;
+ else
+ {
+ word = expand_simple_binop (word_mode, ASHIFT, word, shift,
+ word, 1, OPTAB_LIB_WIDEN);
+ word = expand_simple_binop (word_mode, IOR, word, elt,
+ word, 1, OPTAB_LIB_WIDEN);
+ }
+ }
+
+ words[i] = word;
+ }
+
+ if (n_words == 1)
+ emit_move_insn (target, gen_lowpart (mode, words[0]));
+ else if (n_words == 2)
+ {
+ rtx tmp = gen_reg_rtx (mode);
+ emit_clobber (tmp);
+ emit_move_insn (gen_lowpart (word_mode, tmp), words[0]);
+ emit_move_insn (gen_highpart (word_mode, tmp), words[1]);
+ emit_move_insn (target, tmp);
+ }
+ else if (n_words == 4)
+ {
+ rtx tmp = gen_reg_rtx (V4SImode);
+ gcc_assert (word_mode == SImode);
+ vals = gen_rtx_PARALLEL (V4SImode, gen_rtvec_v (4, words));
+ ix86_expand_vector_init_general (false, V4SImode, tmp, vals);
+ emit_move_insn (target, gen_lowpart (mode, tmp));
+ }
+ else
+ gcc_unreachable ();
+ }
+}
+
+/* Initialize vector TARGET via VALS. Suppress the use of MMX
+ instructions unless MMX_OK is true. */
+
+void
+ix86_expand_vector_init (bool mmx_ok, rtx target, rtx vals)
+{
+ enum machine_mode mode = GET_MODE (target);
+ enum machine_mode inner_mode = GET_MODE_INNER (mode);
+ int n_elts = GET_MODE_NUNITS (mode);
+ int n_var = 0, one_var = -1;
+ bool all_same = true, all_const_zero = true;
+ int i;
+ rtx x;
+
+ for (i = 0; i < n_elts; ++i)
+ {
+ x = XVECEXP (vals, 0, i);
+ if (!(CONST_INT_P (x)
+ || GET_CODE (x) == CONST_DOUBLE
+ || GET_CODE (x) == CONST_FIXED))
+ n_var++, one_var = i;
+ else if (x != CONST0_RTX (inner_mode))
+ all_const_zero = false;
+ if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
+ all_same = false;
+ }
+
+ /* Constants are best loaded from the constant pool. */
+ if (n_var == 0)
+ {
+ emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
+ return;
+ }
+
+ /* If all values are identical, broadcast the value. */
+ if (all_same
+ && ix86_expand_vector_init_duplicate (mmx_ok, mode, target,
+ XVECEXP (vals, 0, 0)))
+ return;
+
+ /* Values where only one field is non-constant are best loaded from
+ the pool and overwritten via move later. */
+ if (n_var == 1)
+ {
+ if (all_const_zero
+ && ix86_expand_vector_init_one_nonzero (mmx_ok, mode, target,
+ XVECEXP (vals, 0, one_var),
+ one_var))
+ return;
+
+ if (ix86_expand_vector_init_one_var (mmx_ok, mode, target, vals, one_var))
+ return;
+ }
+
+ ix86_expand_vector_init_general (mmx_ok, mode, target, vals);
+}
+
+void
+ix86_expand_vector_set (bool mmx_ok, rtx target, rtx val, int elt)
+{
+ enum machine_mode mode = GET_MODE (target);
+ enum machine_mode inner_mode = GET_MODE_INNER (mode);
+ enum machine_mode half_mode;
+ bool use_vec_merge = false;
+ rtx tmp;
+ static rtx (*gen_extract[6][2]) (rtx, rtx)
+ = {
+ { gen_vec_extract_lo_v32qi, gen_vec_extract_hi_v32qi },
+ { gen_vec_extract_lo_v16hi, gen_vec_extract_hi_v16hi },
+ { gen_vec_extract_lo_v8si, gen_vec_extract_hi_v8si },
+ { gen_vec_extract_lo_v4di, gen_vec_extract_hi_v4di },
+ { gen_vec_extract_lo_v8sf, gen_vec_extract_hi_v8sf },
+ { gen_vec_extract_lo_v4df, gen_vec_extract_hi_v4df }
+ };
+ static rtx (*gen_insert[6][2]) (rtx, rtx, rtx)
+ = {
+ { gen_vec_set_lo_v32qi, gen_vec_set_hi_v32qi },
+ { gen_vec_set_lo_v16hi, gen_vec_set_hi_v16hi },
+ { gen_vec_set_lo_v8si, gen_vec_set_hi_v8si },
+ { gen_vec_set_lo_v4di, gen_vec_set_hi_v4di },
+ { gen_vec_set_lo_v8sf, gen_vec_set_hi_v8sf },
+ { gen_vec_set_lo_v4df, gen_vec_set_hi_v4df }
+ };
+ int i, j, n;
+
+ switch (mode)
+ {
+ case V2SFmode:
+ case V2SImode:
+ if (mmx_ok)
+ {
+ tmp = gen_reg_rtx (GET_MODE_INNER (mode));
+ ix86_expand_vector_extract (true, tmp, target, 1 - elt);
+ if (elt == 0)
+ tmp = gen_rtx_VEC_CONCAT (mode, val, tmp);
+ else
+ tmp = gen_rtx_VEC_CONCAT (mode, tmp, val);
+ emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
+ return;
+ }
+ break;
+
+ case V2DImode:
+ use_vec_merge = TARGET_SSE4_1 && TARGET_64BIT;
+ if (use_vec_merge)
+ break;
+
+ tmp = gen_reg_rtx (GET_MODE_INNER (mode));
+ ix86_expand_vector_extract (false, tmp, target, 1 - elt);
+ if (elt == 0)
+ tmp = gen_rtx_VEC_CONCAT (mode, val, tmp);
+ else
+ tmp = gen_rtx_VEC_CONCAT (mode, tmp, val);
+ emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
+ return;
+
+ case V2DFmode:
+ {
+ rtx op0, op1;
+
+ /* For the two element vectors, we implement a VEC_CONCAT with
+ the extraction of the other element. */
+
+ tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (1 - elt)));
+ tmp = gen_rtx_VEC_SELECT (inner_mode, target, tmp);
+
+ if (elt == 0)
+ op0 = val, op1 = tmp;
+ else
+ op0 = tmp, op1 = val;
+
+ tmp = gen_rtx_VEC_CONCAT (mode, op0, op1);
+ emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
+ }
+ return;
+
+ case V4SFmode:
+ use_vec_merge = TARGET_SSE4_1;
+ if (use_vec_merge)
+ break;
+
+ switch (elt)
+ {
+ case 0:
+ use_vec_merge = true;
+ break;
+
+ case 1:
+ /* tmp = target = A B C D */
+ tmp = copy_to_reg (target);
+ /* target = A A B B */
+ emit_insn (gen_vec_interleave_lowv4sf (target, target, target));
+ /* target = X A B B */
+ ix86_expand_vector_set (false, target, val, 0);
+ /* target = A X C D */
+ emit_insn (gen_sse_shufps_v4sf (target, target, tmp,
+ const1_rtx, const0_rtx,
+ GEN_INT (2+4), GEN_INT (3+4)));
+ return;
+
+ case 2:
+ /* tmp = target = A B C D */
+ tmp = copy_to_reg (target);
+ /* tmp = X B C D */
+ ix86_expand_vector_set (false, tmp, val, 0);
+ /* target = A B X D */
+ emit_insn (gen_sse_shufps_v4sf (target, target, tmp,
+ const0_rtx, const1_rtx,
+ GEN_INT (0+4), GEN_INT (3+4)));
+ return;
+
+ case 3:
+ /* tmp = target = A B C D */
+ tmp = copy_to_reg (target);
+ /* tmp = X B C D */
+ ix86_expand_vector_set (false, tmp, val, 0);
+ /* target = A B X D */
+ emit_insn (gen_sse_shufps_v4sf (target, target, tmp,
+ const0_rtx, const1_rtx,
+ GEN_INT (2+4), GEN_INT (0+4)));
+ return;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case V4SImode:
+ use_vec_merge = TARGET_SSE4_1;
+ if (use_vec_merge)
+ break;
+
+ /* Element 0 handled by vec_merge below. */
+ if (elt == 0)
+ {
+ use_vec_merge = true;
+ break;
+ }
+
+ if (TARGET_SSE2)
+ {
+ /* With SSE2, use integer shuffles to swap element 0 and ELT,
+ store into element 0, then shuffle them back. */
+
+ rtx order[4];
+
+ order[0] = GEN_INT (elt);
+ order[1] = const1_rtx;
+ order[2] = const2_rtx;
+ order[3] = GEN_INT (3);
+ order[elt] = const0_rtx;
+
+ emit_insn (gen_sse2_pshufd_1 (target, target, order[0],
+ order[1], order[2], order[3]));
+
+ ix86_expand_vector_set (false, target, val, 0);
+
+ emit_insn (gen_sse2_pshufd_1 (target, target, order[0],
+ order[1], order[2], order[3]));
+ }
+ else
+ {
+ /* For SSE1, we have to reuse the V4SF code. */
+ rtx t = gen_reg_rtx (V4SFmode);
+ ix86_expand_vector_set (false, t, gen_lowpart (SFmode, val), elt);
+ emit_move_insn (target, gen_lowpart (mode, t));
+ }
+ return;
+
+ case V8HImode:
+ use_vec_merge = TARGET_SSE2;
+ break;
+ case V4HImode:
+ use_vec_merge = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A);
+ break;
+
+ case V16QImode:
+ use_vec_merge = TARGET_SSE4_1;
+ break;
+
+ case V8QImode:
+ break;
+
+ case V32QImode:
+ half_mode = V16QImode;
+ j = 0;
+ n = 16;
+ goto half;
+
+ case V16HImode:
+ half_mode = V8HImode;
+ j = 1;
+ n = 8;
+ goto half;
+
+ case V8SImode:
+ half_mode = V4SImode;
+ j = 2;
+ n = 4;
+ goto half;
+
+ case V4DImode:
+ half_mode = V2DImode;
+ j = 3;
+ n = 2;
+ goto half;
+
+ case V8SFmode:
+ half_mode = V4SFmode;
+ j = 4;
+ n = 4;
+ goto half;
+
+ case V4DFmode:
+ half_mode = V2DFmode;
+ j = 5;
+ n = 2;
+ goto half;
+
+half:
+ /* Compute offset. */
+ i = elt / n;
+ elt %= n;
+
+ gcc_assert (i <= 1);
+
+ /* Extract the half. */
+ tmp = gen_reg_rtx (half_mode);
+ emit_insn (gen_extract[j][i] (tmp, target));
+
+ /* Put val in tmp at elt. */
+ ix86_expand_vector_set (false, tmp, val, elt);
+
+ /* Put it back. */
+ emit_insn (gen_insert[j][i] (target, target, tmp));
+ return;
+
+ default:
+ break;
+ }
+
+ if (use_vec_merge)
+ {
+ tmp = gen_rtx_VEC_DUPLICATE (mode, val);
+ tmp = gen_rtx_VEC_MERGE (mode, tmp, target, GEN_INT (1 << elt));
+ emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
+ }
+ else
+ {
+ rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
+
+ emit_move_insn (mem, target);
+
+ tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode));
+ emit_move_insn (tmp, val);
+
+ emit_move_insn (target, mem);
+ }
+}
+
+void
+ix86_expand_vector_extract (bool mmx_ok, rtx target, rtx vec, int elt)
+{
+ enum machine_mode mode = GET_MODE (vec);
+ enum machine_mode inner_mode = GET_MODE_INNER (mode);
+ bool use_vec_extr = false;
+ rtx tmp;
+
+ switch (mode)
+ {
+ case V2SImode:
+ case V2SFmode:
+ if (!mmx_ok)
+ break;
+ /* FALLTHRU */
+
+ case V2DFmode:
+ case V2DImode:
+ use_vec_extr = true;
+ break;
+
+ case V4SFmode:
+ use_vec_extr = TARGET_SSE4_1;
+ if (use_vec_extr)
+ break;
+
+ switch (elt)
+ {
+ case 0:
+ tmp = vec;
+ break;
+
+ case 1:
+ case 3:
+ tmp = gen_reg_rtx (mode);
+ emit_insn (gen_sse_shufps_v4sf (tmp, vec, vec,
+ GEN_INT (elt), GEN_INT (elt),
+ GEN_INT (elt+4), GEN_INT (elt+4)));
+ break;
+
+ case 2:
+ tmp = gen_reg_rtx (mode);
+ emit_insn (gen_vec_interleave_highv4sf (tmp, vec, vec));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ vec = tmp;
+ use_vec_extr = true;
+ elt = 0;
+ break;
+
+ case V4SImode:
+ use_vec_extr = TARGET_SSE4_1;
+ if (use_vec_extr)
+ break;
+
+ if (TARGET_SSE2)
+ {
+ switch (elt)
+ {
+ case 0:
+ tmp = vec;
+ break;
+
+ case 1:
+ case 3:
+ tmp = gen_reg_rtx (mode);
+ emit_insn (gen_sse2_pshufd_1 (tmp, vec,
+ GEN_INT (elt), GEN_INT (elt),
+ GEN_INT (elt), GEN_INT (elt)));
+ break;
+
+ case 2:
+ tmp = gen_reg_rtx (mode);
+ emit_insn (gen_vec_interleave_highv4si (tmp, vec, vec));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ vec = tmp;
+ use_vec_extr = true;
+ elt = 0;
+ }
+ else
+ {
+ /* For SSE1, we have to reuse the V4SF code. */
+ ix86_expand_vector_extract (false, gen_lowpart (SFmode, target),
+ gen_lowpart (V4SFmode, vec), elt);
+ return;
+ }
+ break;
+
+ case V8HImode:
+ use_vec_extr = TARGET_SSE2;
+ break;
+ case V4HImode:
+ use_vec_extr = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A);
+ break;
+
+ case V16QImode:
+ use_vec_extr = TARGET_SSE4_1;
+ break;
+
+ case V8SFmode:
+ if (TARGET_AVX)
+ {
+ tmp = gen_reg_rtx (V4SFmode);
+ if (elt < 4)
+ emit_insn (gen_vec_extract_lo_v8sf (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v8sf (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 3);
+ return;
+ }
+ break;
+
+ case V4DFmode:
+ if (TARGET_AVX)
+ {
+ tmp = gen_reg_rtx (V2DFmode);
+ if (elt < 2)
+ emit_insn (gen_vec_extract_lo_v4df (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v4df (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 1);
+ return;
+ }
+ break;
+
+ case V32QImode:
+ if (TARGET_AVX)
+ {
+ tmp = gen_reg_rtx (V16QImode);
+ if (elt < 16)
+ emit_insn (gen_vec_extract_lo_v32qi (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v32qi (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 15);
+ return;
+ }
+ break;
+
+ case V16HImode:
+ if (TARGET_AVX)
+ {
+ tmp = gen_reg_rtx (V8HImode);
+ if (elt < 8)
+ emit_insn (gen_vec_extract_lo_v16hi (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v16hi (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 7);
+ return;
+ }
+ break;
+
+ case V8SImode:
+ if (TARGET_AVX)
+ {
+ tmp = gen_reg_rtx (V4SImode);
+ if (elt < 4)
+ emit_insn (gen_vec_extract_lo_v8si (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v8si (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 3);
+ return;
+ }
+ break;
+
+ case V4DImode:
+ if (TARGET_AVX)
+ {
+ tmp = gen_reg_rtx (V2DImode);
+ if (elt < 2)
+ emit_insn (gen_vec_extract_lo_v4di (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v4di (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 1);
+ return;
+ }
+ break;
+
+ case V16SFmode:
+ tmp = gen_reg_rtx (V8SFmode);
+ if (elt < 8)
+ emit_insn (gen_vec_extract_lo_v16sf (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v16sf (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 7);
+ return;
+
+ case V8DFmode:
+ tmp = gen_reg_rtx (V4DFmode);
+ if (elt < 4)
+ emit_insn (gen_vec_extract_lo_v8df (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v8df (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 3);
+ return;
+
+ case V16SImode:
+ tmp = gen_reg_rtx (V8SImode);
+ if (elt < 8)
+ emit_insn (gen_vec_extract_lo_v16si (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v16si (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 7);
+ return;
+
+ case V8DImode:
+ tmp = gen_reg_rtx (V4DImode);
+ if (elt < 4)
+ emit_insn (gen_vec_extract_lo_v8di (tmp, vec));
+ else
+ emit_insn (gen_vec_extract_hi_v8di (tmp, vec));
+ ix86_expand_vector_extract (false, target, tmp, elt & 3);
+ return;
+
+ case V8QImode:
+ /* ??? Could extract the appropriate HImode element and shift. */
+ default:
+ break;
+ }
+
+ if (use_vec_extr)
+ {
+ tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (elt)));
+ tmp = gen_rtx_VEC_SELECT (inner_mode, vec, tmp);
+
+ /* Let the rtl optimizers know about the zero extension performed. */
+ if (inner_mode == QImode || inner_mode == HImode)
+ {
+ tmp = gen_rtx_ZERO_EXTEND (SImode, tmp);
+ target = gen_lowpart (SImode, target);
+ }
+
+ emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
+ }
+ else
+ {
+ rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
+
+ emit_move_insn (mem, vec);
+
+ tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode));
+ emit_move_insn (target, tmp);
+ }
+}
+
+/* Generate code to copy vector bits i / 2 ... i - 1 from vector SRC
+ to bits 0 ... i / 2 - 1 of vector DEST, which has the same mode.
+ The upper bits of DEST are undefined, though they shouldn't cause
+ exceptions (some bits from src or all zeros are ok). */
+
+static void
+emit_reduc_half (rtx dest, rtx src, int i)
+{
+ rtx tem, d = dest;
+ switch (GET_MODE (src))
+ {
+ case V4SFmode:
+ if (i == 128)
+ tem = gen_sse_movhlps (dest, src, src);
+ else
+ tem = gen_sse_shufps_v4sf (dest, src, src, const1_rtx, const1_rtx,
+ GEN_INT (1 + 4), GEN_INT (1 + 4));
+ break;
+ case V2DFmode:
+ tem = gen_vec_interleave_highv2df (dest, src, src);
+ break;
+ case V16QImode:
+ case V8HImode:
+ case V4SImode:
+ case V2DImode:
+ d = gen_reg_rtx (V1TImode);
+ tem = gen_sse2_lshrv1ti3 (d, gen_lowpart (V1TImode, src),
+ GEN_INT (i / 2));
+ break;
+ case V8SFmode:
+ if (i == 256)
+ tem = gen_avx_vperm2f128v8sf3 (dest, src, src, const1_rtx);
+ else
+ tem = gen_avx_shufps256 (dest, src, src,
+ GEN_INT (i == 128 ? 2 + (3 << 2) : 1));
+ break;
+ case V4DFmode:
+ if (i == 256)
+ tem = gen_avx_vperm2f128v4df3 (dest, src, src, const1_rtx);
+ else
+ tem = gen_avx_shufpd256 (dest, src, src, const1_rtx);
+ break;
+ case V32QImode:
+ case V16HImode:
+ case V8SImode:
+ case V4DImode:
+ if (i == 256)
+ {
+ if (GET_MODE (dest) != V4DImode)
+ d = gen_reg_rtx (V4DImode);
+ tem = gen_avx2_permv2ti (d, gen_lowpart (V4DImode, src),
+ gen_lowpart (V4DImode, src),
+ const1_rtx);
+ }
+ else
+ {
+ d = gen_reg_rtx (V2TImode);
+ tem = gen_avx2_lshrv2ti3 (d, gen_lowpart (V2TImode, src),
+ GEN_INT (i / 2));
+ }
+ break;
+ case V16SImode:
+ case V16SFmode:
+ case V8DImode:
+ case V8DFmode:
+ if (i > 128)
+ tem = gen_avx512f_shuf_i32x4_1 (gen_lowpart (V16SImode, dest),
+ gen_lowpart (V16SImode, src),
+ gen_lowpart (V16SImode, src),
+ GEN_INT (0x4 + (i == 512 ? 4 : 0)),
+ GEN_INT (0x5 + (i == 512 ? 4 : 0)),
+ GEN_INT (0x6 + (i == 512 ? 4 : 0)),
+ GEN_INT (0x7 + (i == 512 ? 4 : 0)),
+ GEN_INT (0xC), GEN_INT (0xD),
+ GEN_INT (0xE), GEN_INT (0xF),
+ GEN_INT (0x10), GEN_INT (0x11),
+ GEN_INT (0x12), GEN_INT (0x13),
+ GEN_INT (0x14), GEN_INT (0x15),
+ GEN_INT (0x16), GEN_INT (0x17));
+ else
+ tem = gen_avx512f_pshufd_1 (gen_lowpart (V16SImode, dest),
+ gen_lowpart (V16SImode, src),
+ GEN_INT (i == 128 ? 0x2 : 0x1),
+ GEN_INT (0x3),
+ GEN_INT (0x3),
+ GEN_INT (0x3),
+ GEN_INT (i == 128 ? 0x6 : 0x5),
+ GEN_INT (0x7),
+ GEN_INT (0x7),
+ GEN_INT (0x7),
+ GEN_INT (i == 128 ? 0xA : 0x9),
+ GEN_INT (0xB),
+ GEN_INT (0xB),
+ GEN_INT (0xB),
+ GEN_INT (i == 128 ? 0xE : 0xD),
+ GEN_INT (0xF),
+ GEN_INT (0xF),
+ GEN_INT (0xF));
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ emit_insn (tem);
+ if (d != dest)
+ emit_move_insn (dest, gen_lowpart (GET_MODE (dest), d));
+}
+
+/* Expand a vector reduction. FN is the binary pattern to reduce;
+ DEST is the destination; IN is the input vector. */
+
+void
+ix86_expand_reduc (rtx (*fn) (rtx, rtx, rtx), rtx dest, rtx in)
+{
+ rtx half, dst, vec = in;
+ enum machine_mode mode = GET_MODE (in);
+ int i;
+
+ /* SSE4 has a special instruction for V8HImode UMIN reduction. */
+ if (TARGET_SSE4_1
+ && mode == V8HImode
+ && fn == gen_uminv8hi3)
+ {
+ emit_insn (gen_sse4_1_phminposuw (dest, in));
+ return;
+ }
+
+ for (i = GET_MODE_BITSIZE (mode);
+ i > GET_MODE_BITSIZE (GET_MODE_INNER (mode));
+ i >>= 1)
+ {
+ half = gen_reg_rtx (mode);
+ emit_reduc_half (half, vec, i);
+ if (i == GET_MODE_BITSIZE (GET_MODE_INNER (mode)) * 2)
+ dst = dest;
+ else
+ dst = gen_reg_rtx (mode);
+ emit_insn (fn (dst, half, vec));
+ vec = dst;
+ }
+}
+
+/* Target hook for scalar_mode_supported_p. */
+static bool
+ix86_scalar_mode_supported_p (enum machine_mode mode)
+{
+ if (DECIMAL_FLOAT_MODE_P (mode))
+ return default_decimal_float_supported_p ();
+ else if (mode == TFmode)
+ return true;
+ else
+ return default_scalar_mode_supported_p (mode);
+}
+
+/* Implements target hook vector_mode_supported_p. */
+static bool
+ix86_vector_mode_supported_p (enum machine_mode mode)
+{
+ if (TARGET_SSE && VALID_SSE_REG_MODE (mode))
+ return true;
+ if (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode))
+ return true;
+ if (TARGET_AVX && VALID_AVX256_REG_MODE (mode))
+ return true;
+ if (TARGET_AVX512F && VALID_AVX512F_REG_MODE (mode))
+ return true;
+ if (TARGET_MMX && VALID_MMX_REG_MODE (mode))
+ return true;
+ if (TARGET_3DNOW && VALID_MMX_REG_MODE_3DNOW (mode))
+ return true;
+ return false;
+}
+
+/* Target hook for c_mode_for_suffix. */
+static enum machine_mode
+ix86_c_mode_for_suffix (char suffix)
+{
+ if (suffix == 'q')
+ return TFmode;
+ if (suffix == 'w')
+ return XFmode;
+
+ return VOIDmode;
+}
+
+/* Worker function for TARGET_MD_ASM_CLOBBERS.
+
+ We do this in the new i386 backend to maintain source compatibility
+ with the old cc0-based compiler. */
+
+static tree
+ix86_md_asm_clobbers (tree outputs ATTRIBUTE_UNUSED,
+ tree inputs ATTRIBUTE_UNUSED,
+ tree clobbers)
+{
+ clobbers = tree_cons (NULL_TREE, build_string (5, "flags"),
+ clobbers);
+ clobbers = tree_cons (NULL_TREE, build_string (4, "fpsr"),
+ clobbers);
+ return clobbers;
+}
+
+/* Implements target vector targetm.asm.encode_section_info. */
+
+static void ATTRIBUTE_UNUSED
+ix86_encode_section_info (tree decl, rtx rtl, int first)
+{
+ default_encode_section_info (decl, rtl, first);
+
+ if (TREE_CODE (decl) == VAR_DECL
+ && (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
+ && ix86_in_large_data_p (decl))
+ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FAR_ADDR;
+}
+
+/* Worker function for REVERSE_CONDITION. */
+
+enum rtx_code
+ix86_reverse_condition (enum rtx_code code, enum machine_mode mode)
+{
+ return (mode != CCFPmode && mode != CCFPUmode
+ ? reverse_condition (code)
+ : reverse_condition_maybe_unordered (code));
+}
+
+/* Output code to perform an x87 FP register move, from OPERANDS[1]
+ to OPERANDS[0]. */
+
+const char *
+output_387_reg_move (rtx insn, rtx *operands)
+{
+ if (REG_P (operands[0]))
+ {
+ if (REG_P (operands[1])
+ && find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
+ {
+ if (REGNO (operands[0]) == FIRST_STACK_REG)
+ return output_387_ffreep (operands, 0);
+ return "fstp\t%y0";
+ }
+ if (STACK_TOP_P (operands[0]))
+ return "fld%Z1\t%y1";
+ return "fst\t%y0";
+ }
+ else if (MEM_P (operands[0]))
+ {
+ gcc_assert (REG_P (operands[1]));
+ if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
+ return "fstp%Z0\t%y0";
+ else
+ {
+ /* There is no non-popping store to memory for XFmode.
+ So if we need one, follow the store with a load. */
+ if (GET_MODE (operands[0]) == XFmode)
+ return "fstp%Z0\t%y0\n\tfld%Z0\t%y0";
+ else
+ return "fst%Z0\t%y0";
+ }
+ }
+ else
+ gcc_unreachable();
+}
+
+/* Output code to perform a conditional jump to LABEL, if C2 flag in
+ FP status register is set. */
+
+void
+ix86_emit_fp_unordered_jump (rtx label)
+{
+ rtx reg = gen_reg_rtx (HImode);
+ rtx temp;
+
+ emit_insn (gen_x86_fnstsw_1 (reg));
+
+ if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_insn_for_size_p ()))
+ {
+ emit_insn (gen_x86_sahf_1 (reg));
+
+ temp = gen_rtx_REG (CCmode, FLAGS_REG);
+ temp = gen_rtx_UNORDERED (VOIDmode, temp, const0_rtx);
+ }
+ else
+ {
+ emit_insn (gen_testqi_ext_ccno_0 (reg, GEN_INT (0x04)));
+
+ temp = gen_rtx_REG (CCNOmode, FLAGS_REG);
+ temp = gen_rtx_NE (VOIDmode, temp, const0_rtx);
+ }
+
+ temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp,
+ gen_rtx_LABEL_REF (VOIDmode, label),
+ pc_rtx);
+ temp = gen_rtx_SET (VOIDmode, pc_rtx, temp);
+
+ emit_jump_insn (temp);
+ predict_jump (REG_BR_PROB_BASE * 10 / 100);
+}
+
+/* Output code to perform a log1p XFmode calculation. */
+
+void ix86_emit_i387_log1p (rtx op0, rtx op1)
+{
+ rtx label1 = gen_label_rtx ();
+ rtx label2 = gen_label_rtx ();
+
+ rtx tmp = gen_reg_rtx (XFmode);
+ rtx tmp2 = gen_reg_rtx (XFmode);
+ rtx test;
+
+ emit_insn (gen_absxf2 (tmp, op1));
+ test = gen_rtx_GE (VOIDmode, tmp,
+ CONST_DOUBLE_FROM_REAL_VALUE (
+ REAL_VALUE_ATOF ("0.29289321881345247561810596348408353", XFmode),
+ XFmode));
+ emit_jump_insn (gen_cbranchxf4 (test, XEXP (test, 0), XEXP (test, 1), label1));
+
+ emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */
+ emit_insn (gen_fyl2xp1xf3_i387 (op0, op1, tmp2));
+ emit_jump (label2);
+
+ emit_label (label1);
+ emit_move_insn (tmp, CONST1_RTX (XFmode));
+ emit_insn (gen_addxf3 (tmp, op1, tmp));
+ emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */
+ emit_insn (gen_fyl2xxf3_i387 (op0, tmp, tmp2));
+
+ emit_label (label2);
+}
+
+/* Emit code for round calculation. */
+void ix86_emit_i387_round (rtx op0, rtx op1)
+{
+ enum machine_mode inmode = GET_MODE (op1);
+ enum machine_mode outmode = GET_MODE (op0);
+ rtx e1, e2, res, tmp, tmp1, half;
+ rtx scratch = gen_reg_rtx (HImode);
+ rtx flags = gen_rtx_REG (CCNOmode, FLAGS_REG);
+ rtx jump_label = gen_label_rtx ();
+ rtx insn;
+ rtx (*gen_abs) (rtx, rtx);
+ rtx (*gen_neg) (rtx, rtx);
+
+ switch (inmode)
+ {
+ case SFmode:
+ gen_abs = gen_abssf2;
+ break;
+ case DFmode:
+ gen_abs = gen_absdf2;
+ break;
+ case XFmode:
+ gen_abs = gen_absxf2;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ switch (outmode)
+ {
+ case SFmode:
+ gen_neg = gen_negsf2;
+ break;
+ case DFmode:
+ gen_neg = gen_negdf2;
+ break;
+ case XFmode:
+ gen_neg = gen_negxf2;
+ break;
+ case HImode:
+ gen_neg = gen_neghi2;
+ break;
+ case SImode:
+ gen_neg = gen_negsi2;
+ break;
+ case DImode:
+ gen_neg = gen_negdi2;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ e1 = gen_reg_rtx (inmode);
+ e2 = gen_reg_rtx (inmode);
+ res = gen_reg_rtx (outmode);
+
+ half = CONST_DOUBLE_FROM_REAL_VALUE (dconsthalf, inmode);
+
+ /* round(a) = sgn(a) * floor(fabs(a) + 0.5) */
+
+ /* scratch = fxam(op1) */
+ emit_insn (gen_rtx_SET (VOIDmode, scratch,
+ gen_rtx_UNSPEC (HImode, gen_rtvec (1, op1),
+ UNSPEC_FXAM)));
+ /* e1 = fabs(op1) */
+ emit_insn (gen_abs (e1, op1));
+
+ /* e2 = e1 + 0.5 */
+ half = force_reg (inmode, half);
+ emit_insn (gen_rtx_SET (VOIDmode, e2,
+ gen_rtx_PLUS (inmode, e1, half)));
+
+ /* res = floor(e2) */
+ if (inmode != XFmode)
+ {
+ tmp1 = gen_reg_rtx (XFmode);
+
+ emit_insn (gen_rtx_SET (VOIDmode, tmp1,
+ gen_rtx_FLOAT_EXTEND (XFmode, e2)));
+ }
+ else
+ tmp1 = e2;
+
+ switch (outmode)
+ {
+ case SFmode:
+ case DFmode:
+ {
+ rtx tmp0 = gen_reg_rtx (XFmode);
+
+ emit_insn (gen_frndintxf2_floor (tmp0, tmp1));
+
+ emit_insn (gen_rtx_SET (VOIDmode, res,
+ gen_rtx_UNSPEC (outmode, gen_rtvec (1, tmp0),
+ UNSPEC_TRUNC_NOOP)));
+ }
+ break;
+ case XFmode:
+ emit_insn (gen_frndintxf2_floor (res, tmp1));
+ break;
+ case HImode:
+ emit_insn (gen_lfloorxfhi2 (res, tmp1));
+ break;
+ case SImode:
+ emit_insn (gen_lfloorxfsi2 (res, tmp1));
+ break;
+ case DImode:
+ emit_insn (gen_lfloorxfdi2 (res, tmp1));
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ /* flags = signbit(a) */
+ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x02)));
+
+ /* if (flags) then res = -res */
+ tmp = gen_rtx_IF_THEN_ELSE (VOIDmode,
+ gen_rtx_EQ (VOIDmode, flags, const0_rtx),
+ gen_rtx_LABEL_REF (VOIDmode, jump_label),
+ pc_rtx);
+ insn = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
+ predict_jump (REG_BR_PROB_BASE * 50 / 100);
+ JUMP_LABEL (insn) = jump_label;
+
+ emit_insn (gen_neg (res, res));
+
+ emit_label (jump_label);
+ LABEL_NUSES (jump_label) = 1;
+
+ emit_move_insn (op0, res);
+}
+
+/* Output code to perform a Newton-Rhapson approximation of a single precision
+ floating point divide [http://en.wikipedia.org/wiki/N-th_root_algorithm]. */
+
+void ix86_emit_swdivsf (rtx res, rtx a, rtx b, enum machine_mode mode)
+{
+ rtx x0, x1, e0, e1;
+
+ x0 = gen_reg_rtx (mode);
+ e0 = gen_reg_rtx (mode);
+ e1 = gen_reg_rtx (mode);
+ x1 = gen_reg_rtx (mode);
+
+ /* a / b = a * ((rcp(b) + rcp(b)) - (b * rcp(b) * rcp (b))) */
+
+ b = force_reg (mode, b);
+
+ /* x0 = rcp(b) estimate */
+ if (mode == V16SFmode || mode == V8DFmode)
+ emit_insn (gen_rtx_SET (VOIDmode, x0,
+ gen_rtx_UNSPEC (mode, gen_rtvec (1, b),
+ UNSPEC_RCP14)));
+ else
+ emit_insn (gen_rtx_SET (VOIDmode, x0,
+ gen_rtx_UNSPEC (mode, gen_rtvec (1, b),
+ UNSPEC_RCP)));
+
+ /* e0 = x0 * b */
+ emit_insn (gen_rtx_SET (VOIDmode, e0,
+ gen_rtx_MULT (mode, x0, b)));
+
+ /* e0 = x0 * e0 */
+ emit_insn (gen_rtx_SET (VOIDmode, e0,
+ gen_rtx_MULT (mode, x0, e0)));
+
+ /* e1 = x0 + x0 */
+ emit_insn (gen_rtx_SET (VOIDmode, e1,
+ gen_rtx_PLUS (mode, x0, x0)));
+
+ /* x1 = e1 - e0 */
+ emit_insn (gen_rtx_SET (VOIDmode, x1,
+ gen_rtx_MINUS (mode, e1, e0)));
+
+ /* res = a * x1 */
+ emit_insn (gen_rtx_SET (VOIDmode, res,
+ gen_rtx_MULT (mode, a, x1)));
+}
+
+/* Output code to perform a Newton-Rhapson approximation of a
+ single precision floating point [reciprocal] square root. */
+
+void ix86_emit_swsqrtsf (rtx res, rtx a, enum machine_mode mode,
+ bool recip)
+{
+ rtx x0, e0, e1, e2, e3, mthree, mhalf;
+ REAL_VALUE_TYPE r;
+ int unspec;
+
+ x0 = gen_reg_rtx (mode);
+ e0 = gen_reg_rtx (mode);
+ e1 = gen_reg_rtx (mode);
+ e2 = gen_reg_rtx (mode);
+ e3 = gen_reg_rtx (mode);
+
+ real_from_integer (&r, VOIDmode, -3, -1, 0);
+ mthree = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
+
+ real_arithmetic (&r, NEGATE_EXPR, &dconsthalf, NULL);
+ mhalf = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
+ unspec = UNSPEC_RSQRT;
+
+ if (VECTOR_MODE_P (mode))
+ {
+ mthree = ix86_build_const_vector (mode, true, mthree);
+ mhalf = ix86_build_const_vector (mode, true, mhalf);
+ /* There is no 512-bit rsqrt. There is however rsqrt14. */
+ if (GET_MODE_SIZE (mode) == 64)
+ unspec = UNSPEC_RSQRT14;
+ }
+
+ /* sqrt(a) = -0.5 * a * rsqrtss(a) * (a * rsqrtss(a) * rsqrtss(a) - 3.0)
+ rsqrt(a) = -0.5 * rsqrtss(a) * (a * rsqrtss(a) * rsqrtss(a) - 3.0) */
+
+ a = force_reg (mode, a);
+
+ /* x0 = rsqrt(a) estimate */
+ emit_insn (gen_rtx_SET (VOIDmode, x0,
+ gen_rtx_UNSPEC (mode, gen_rtvec (1, a),
+ unspec)));
+
+ /* If (a == 0.0) Filter out infinity to prevent NaN for sqrt(0.0). */
+ if (!recip)
+ {
+ rtx zero, mask;
+
+ zero = gen_reg_rtx (mode);
+ mask = gen_reg_rtx (mode);
+
+ zero = force_reg (mode, CONST0_RTX(mode));
+
+ /* Handle masked compare. */
+ if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 64)
+ {
+ mask = gen_reg_rtx (HImode);
+ /* Imm value 0x4 corresponds to not-equal comparison. */
+ emit_insn (gen_avx512f_cmpv16sf3 (mask, zero, a, GEN_INT (0x4)));
+ emit_insn (gen_avx512f_blendmv16sf (x0, zero, x0, mask));
+ }
+ else
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, mask,
+ gen_rtx_NE (mode, zero, a)));
+
+ emit_insn (gen_rtx_SET (VOIDmode, x0,
+ gen_rtx_AND (mode, x0, mask)));
+ }
+ }
+
+ /* e0 = x0 * a */
+ emit_insn (gen_rtx_SET (VOIDmode, e0,
+ gen_rtx_MULT (mode, x0, a)));
+ /* e1 = e0 * x0 */
+ emit_insn (gen_rtx_SET (VOIDmode, e1,
+ gen_rtx_MULT (mode, e0, x0)));
+
+ /* e2 = e1 - 3. */
+ mthree = force_reg (mode, mthree);
+ emit_insn (gen_rtx_SET (VOIDmode, e2,
+ gen_rtx_PLUS (mode, e1, mthree)));
+
+ mhalf = force_reg (mode, mhalf);
+ if (recip)
+ /* e3 = -.5 * x0 */
+ emit_insn (gen_rtx_SET (VOIDmode, e3,
+ gen_rtx_MULT (mode, x0, mhalf)));
+ else
+ /* e3 = -.5 * e0 */
+ emit_insn (gen_rtx_SET (VOIDmode, e3,
+ gen_rtx_MULT (mode, e0, mhalf)));
+ /* ret = e2 * e3 */
+ emit_insn (gen_rtx_SET (VOIDmode, res,
+ gen_rtx_MULT (mode, e2, e3)));
+}
+
+#ifdef TARGET_SOLARIS
+/* Solaris implementation of TARGET_ASM_NAMED_SECTION. */
+
+static void
+i386_solaris_elf_named_section (const char *name, unsigned int flags,
+ tree decl)
+{
+ /* With Binutils 2.15, the "@unwind" marker must be specified on
+ every occurrence of the ".eh_frame" section, not just the first
+ one. */
+ if (TARGET_64BIT
+ && strcmp (name, ".eh_frame") == 0)
+ {
+ fprintf (asm_out_file, "\t.section\t%s,\"%s\",@unwind\n", name,
+ flags & SECTION_WRITE ? "aw" : "a");
+ return;
+ }
+
+#ifndef USE_GAS
+ if (HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE)
+ {
+ solaris_elf_asm_comdat_section (name, flags, decl);
+ return;
+ }
+#endif
+
+ default_elf_asm_named_section (name, flags, decl);
+}
+#endif /* TARGET_SOLARIS */
+
+/* Return the mangling of TYPE if it is an extended fundamental type. */
+
+static const char *
+ix86_mangle_type (const_tree type)
+{
+ type = TYPE_MAIN_VARIANT (type);
+
+ if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
+ && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
+ return NULL;
+
+ switch (TYPE_MODE (type))
+ {
+ case TFmode:
+ /* __float128 is "g". */
+ return "g";
+ case XFmode:
+ /* "long double" or __float80 is "e". */
+ return "e";
+ default:
+ return NULL;
+ }
+}
+
+/* For 32-bit code we can save PIC register setup by using
+ __stack_chk_fail_local hidden function instead of calling
+ __stack_chk_fail directly. 64-bit code doesn't need to setup any PIC
+ register, so it is better to call __stack_chk_fail directly. */
+
+static tree ATTRIBUTE_UNUSED
+ix86_stack_protect_fail (void)
+{
+ return TARGET_64BIT
+ ? default_external_stack_protect_fail ()
+ : default_hidden_stack_protect_fail ();
+}
+
+/* Select a format to encode pointers in exception handling data. CODE
+ is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
+ true if the symbol may be affected by dynamic relocations.
+
+ ??? All x86 object file formats are capable of representing this.
+ After all, the relocation needed is the same as for the call insn.
+ Whether or not a particular assembler allows us to enter such, I
+ guess we'll have to see. */
+int
+asm_preferred_eh_data_format (int code, int global)
+{
+ if (flag_pic)
+ {
+ int type = DW_EH_PE_sdata8;
+ if (!TARGET_64BIT
+ || ix86_cmodel == CM_SMALL_PIC
+ || (ix86_cmodel == CM_MEDIUM_PIC && (global || code)))
+ type = DW_EH_PE_sdata4;
+ return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type;
+ }
+ if (ix86_cmodel == CM_SMALL
+ || (ix86_cmodel == CM_MEDIUM && code))
+ return DW_EH_PE_udata4;
+ return DW_EH_PE_absptr;
+}
+
+/* Expand copysign from SIGN to the positive value ABS_VALUE
+ storing in RESULT. If MASK is non-null, it shall be a mask to mask out
+ the sign-bit. */
+static void
+ix86_sse_copysign_to_positive (rtx result, rtx abs_value, rtx sign, rtx mask)
+{
+ enum machine_mode mode = GET_MODE (sign);
+ rtx sgn = gen_reg_rtx (mode);
+ if (mask == NULL_RTX)
+ {
+ enum machine_mode vmode;
+
+ if (mode == SFmode)
+ vmode = V4SFmode;
+ else if (mode == DFmode)
+ vmode = V2DFmode;
+ else
+ vmode = mode;
+
+ mask = ix86_build_signbit_mask (vmode, VECTOR_MODE_P (mode), false);
+ if (!VECTOR_MODE_P (mode))
+ {
+ /* We need to generate a scalar mode mask in this case. */
+ rtx tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, const0_rtx));
+ tmp = gen_rtx_VEC_SELECT (mode, mask, tmp);
+ mask = gen_reg_rtx (mode);
+ emit_insn (gen_rtx_SET (VOIDmode, mask, tmp));
+ }
+ }
+ else
+ mask = gen_rtx_NOT (mode, mask);
+ emit_insn (gen_rtx_SET (VOIDmode, sgn,
+ gen_rtx_AND (mode, mask, sign)));
+ emit_insn (gen_rtx_SET (VOIDmode, result,
+ gen_rtx_IOR (mode, abs_value, sgn)));
+}
+
+/* Expand fabs (OP0) and return a new rtx that holds the result. The
+ mask for masking out the sign-bit is stored in *SMASK, if that is
+ non-null. */
+static rtx
+ix86_expand_sse_fabs (rtx op0, rtx *smask)
+{
+ enum machine_mode vmode, mode = GET_MODE (op0);
+ rtx xa, mask;
+
+ xa = gen_reg_rtx (mode);
+ if (mode == SFmode)
+ vmode = V4SFmode;
+ else if (mode == DFmode)
+ vmode = V2DFmode;
+ else
+ vmode = mode;
+ mask = ix86_build_signbit_mask (vmode, VECTOR_MODE_P (mode), true);
+ if (!VECTOR_MODE_P (mode))
+ {
+ /* We need to generate a scalar mode mask in this case. */
+ rtx tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, const0_rtx));
+ tmp = gen_rtx_VEC_SELECT (mode, mask, tmp);
+ mask = gen_reg_rtx (mode);
+ emit_insn (gen_rtx_SET (VOIDmode, mask, tmp));
+ }
+ emit_insn (gen_rtx_SET (VOIDmode, xa,
+ gen_rtx_AND (mode, op0, mask)));
+
+ if (smask)
+ *smask = mask;
+
+ return xa;
+}
+
+/* Expands a comparison of OP0 with OP1 using comparison code CODE,
+ swapping the operands if SWAP_OPERANDS is true. The expanded
+ code is a forward jump to a newly created label in case the
+ comparison is true. The generated label rtx is returned. */
+static rtx
+ix86_expand_sse_compare_and_jump (enum rtx_code code, rtx op0, rtx op1,
+ bool swap_operands)
+{
+ enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code);
+ rtx label, tmp;
+
+ if (swap_operands)
+ {
+ tmp = op0;
+ op0 = op1;
+ op1 = tmp;
+ }
+
+ label = gen_label_rtx ();
+ tmp = gen_rtx_REG (fpcmp_mode, FLAGS_REG);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp,
+ gen_rtx_COMPARE (fpcmp_mode, op0, op1)));
+ tmp = gen_rtx_fmt_ee (code, VOIDmode, tmp, const0_rtx);
+ tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
+ gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx);
+ tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
+ JUMP_LABEL (tmp) = label;
+
+ return label;
+}
+
+/* Expand a mask generating SSE comparison instruction comparing OP0 with OP1
+ using comparison code CODE. Operands are swapped for the comparison if
+ SWAP_OPERANDS is true. Returns a rtx for the generated mask. */
+static rtx
+ix86_expand_sse_compare_mask (enum rtx_code code, rtx op0, rtx op1,
+ bool swap_operands)
+{
+ rtx (*insn)(rtx, rtx, rtx, rtx);
+ enum machine_mode mode = GET_MODE (op0);
+ rtx mask = gen_reg_rtx (mode);
+
+ if (swap_operands)
+ {
+ rtx tmp = op0;
+ op0 = op1;
+ op1 = tmp;
+ }
+
+ insn = mode == DFmode ? gen_setcc_df_sse : gen_setcc_sf_sse;
+
+ emit_insn (insn (mask, op0, op1,
+ gen_rtx_fmt_ee (code, mode, op0, op1)));
+ return mask;
+}
+
+/* Generate and return a rtx of mode MODE for 2**n where n is the number
+ of bits of the mantissa of MODE, which must be one of DFmode or SFmode. */
+static rtx
+ix86_gen_TWO52 (enum machine_mode mode)
+{
+ REAL_VALUE_TYPE TWO52r;
+ rtx TWO52;
+
+ real_ldexp (&TWO52r, &dconst1, mode == DFmode ? 52 : 23);
+ TWO52 = const_double_from_real_value (TWO52r, mode);
+ TWO52 = force_reg (mode, TWO52);
+
+ return TWO52;
+}
+
+/* Expand SSE sequence for computing lround from OP1 storing
+ into OP0. */
+void
+ix86_expand_lround (rtx op0, rtx op1)
+{
+ /* C code for the stuff we're doing below:
+ tmp = op1 + copysign (nextafter (0.5, 0.0), op1)
+ return (long)tmp;
+ */
+ enum machine_mode mode = GET_MODE (op1);
+ const struct real_format *fmt;
+ REAL_VALUE_TYPE pred_half, half_minus_pred_half;
+ rtx adj;
+
+ /* load nextafter (0.5, 0.0) */
+ fmt = REAL_MODE_FORMAT (mode);
+ real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode);
+ REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half);
+
+ /* adj = copysign (0.5, op1) */
+ adj = force_reg (mode, const_double_from_real_value (pred_half, mode));
+ ix86_sse_copysign_to_positive (adj, adj, force_reg (mode, op1), NULL_RTX);
+
+ /* adj = op1 + adj */
+ adj = expand_simple_binop (mode, PLUS, adj, op1, NULL_RTX, 0, OPTAB_DIRECT);
+
+ /* op0 = (imode)adj */
+ expand_fix (op0, adj, 0);
+}
+
+/* Expand SSE2 sequence for computing lround from OPERAND1 storing
+ into OPERAND0. */
+void
+ix86_expand_lfloorceil (rtx op0, rtx op1, bool do_floor)
+{
+ /* C code for the stuff we're doing below (for do_floor):
+ xi = (long)op1;
+ xi -= (double)xi > op1 ? 1 : 0;
+ return xi;
+ */
+ enum machine_mode fmode = GET_MODE (op1);
+ enum machine_mode imode = GET_MODE (op0);
+ rtx ireg, freg, label, tmp;
+
+ /* reg = (long)op1 */
+ ireg = gen_reg_rtx (imode);
+ expand_fix (ireg, op1, 0);
+
+ /* freg = (double)reg */
+ freg = gen_reg_rtx (fmode);
+ expand_float (freg, ireg, 0);
+
+ /* ireg = (freg > op1) ? ireg - 1 : ireg */
+ label = ix86_expand_sse_compare_and_jump (UNLE,
+ freg, op1, !do_floor);
+ tmp = expand_simple_binop (imode, do_floor ? MINUS : PLUS,
+ ireg, const1_rtx, NULL_RTX, 0, OPTAB_DIRECT);
+ emit_move_insn (ireg, tmp);
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ emit_move_insn (op0, ireg);
+}
+
+/* Expand rint (IEEE round to nearest) rounding OPERAND1 and storing the
+ result in OPERAND0. */
+void
+ix86_expand_rint (rtx operand0, rtx operand1)
+{
+ /* C code for the stuff we're doing below:
+ xa = fabs (operand1);
+ if (!isless (xa, 2**52))
+ return operand1;
+ xa = xa + 2**52 - 2**52;
+ return copysign (xa, operand1);
+ */
+ enum machine_mode mode = GET_MODE (operand0);
+ rtx res, xa, label, TWO52, mask;
+
+ res = gen_reg_rtx (mode);
+ emit_move_insn (res, operand1);
+
+ /* xa = abs (operand1) */
+ xa = ix86_expand_sse_fabs (res, &mask);
+
+ /* if (!isless (xa, TWO52)) goto label; */
+ TWO52 = ix86_gen_TWO52 (mode);
+ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false);
+
+ xa = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT);
+ xa = expand_simple_binop (mode, MINUS, xa, TWO52, xa, 0, OPTAB_DIRECT);
+
+ ix86_sse_copysign_to_positive (res, xa, res, mask);
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ emit_move_insn (operand0, res);
+}
+
+/* Expand SSE2 sequence for computing floor or ceil from OPERAND1 storing
+ into OPERAND0. */
+void
+ix86_expand_floorceildf_32 (rtx operand0, rtx operand1, bool do_floor)
+{
+ /* C code for the stuff we expand below.
+ double xa = fabs (x), x2;
+ if (!isless (xa, TWO52))
+ return x;
+ xa = xa + TWO52 - TWO52;
+ x2 = copysign (xa, x);
+ Compensate. Floor:
+ if (x2 > x)
+ x2 -= 1;
+ Compensate. Ceil:
+ if (x2 < x)
+ x2 -= -1;
+ return x2;
+ */
+ enum machine_mode mode = GET_MODE (operand0);
+ rtx xa, TWO52, tmp, label, one, res, mask;
+
+ TWO52 = ix86_gen_TWO52 (mode);
+
+ /* Temporary for holding the result, initialized to the input
+ operand to ease control flow. */
+ res = gen_reg_rtx (mode);
+ emit_move_insn (res, operand1);
+
+ /* xa = abs (operand1) */
+ xa = ix86_expand_sse_fabs (res, &mask);
+
+ /* if (!isless (xa, TWO52)) goto label; */
+ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false);
+
+ /* xa = xa + TWO52 - TWO52; */
+ xa = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT);
+ xa = expand_simple_binop (mode, MINUS, xa, TWO52, xa, 0, OPTAB_DIRECT);
+
+ /* xa = copysign (xa, operand1) */
+ ix86_sse_copysign_to_positive (xa, xa, res, mask);
+
+ /* generate 1.0 or -1.0 */
+ one = force_reg (mode,
+ const_double_from_real_value (do_floor
+ ? dconst1 : dconstm1, mode));
+
+ /* Compensate: xa = xa - (xa > operand1 ? 1 : 0) */
+ tmp = ix86_expand_sse_compare_mask (UNGT, xa, res, !do_floor);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp,
+ gen_rtx_AND (mode, one, tmp)));
+ /* We always need to subtract here to preserve signed zero. */
+ tmp = expand_simple_binop (mode, MINUS,
+ xa, tmp, NULL_RTX, 0, OPTAB_DIRECT);
+ emit_move_insn (res, tmp);
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ emit_move_insn (operand0, res);
+}
+
+/* Expand SSE2 sequence for computing floor or ceil from OPERAND1 storing
+ into OPERAND0. */
+void
+ix86_expand_floorceil (rtx operand0, rtx operand1, bool do_floor)
+{
+ /* C code for the stuff we expand below.
+ double xa = fabs (x), x2;
+ if (!isless (xa, TWO52))
+ return x;
+ x2 = (double)(long)x;
+ Compensate. Floor:
+ if (x2 > x)
+ x2 -= 1;
+ Compensate. Ceil:
+ if (x2 < x)
+ x2 += 1;
+ if (HONOR_SIGNED_ZEROS (mode))
+ return copysign (x2, x);
+ return x2;
+ */
+ enum machine_mode mode = GET_MODE (operand0);
+ rtx xa, xi, TWO52, tmp, label, one, res, mask;
+
+ TWO52 = ix86_gen_TWO52 (mode);
+
+ /* Temporary for holding the result, initialized to the input
+ operand to ease control flow. */
+ res = gen_reg_rtx (mode);
+ emit_move_insn (res, operand1);
+
+ /* xa = abs (operand1) */
+ xa = ix86_expand_sse_fabs (res, &mask);
+
+ /* if (!isless (xa, TWO52)) goto label; */
+ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false);
+
+ /* xa = (double)(long)x */
+ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode);
+ expand_fix (xi, res, 0);
+ expand_float (xa, xi, 0);
+
+ /* generate 1.0 */
+ one = force_reg (mode, const_double_from_real_value (dconst1, mode));
+
+ /* Compensate: xa = xa - (xa > operand1 ? 1 : 0) */
+ tmp = ix86_expand_sse_compare_mask (UNGT, xa, res, !do_floor);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp,
+ gen_rtx_AND (mode, one, tmp)));
+ tmp = expand_simple_binop (mode, do_floor ? MINUS : PLUS,
+ xa, tmp, NULL_RTX, 0, OPTAB_DIRECT);
+ emit_move_insn (res, tmp);
+
+ if (HONOR_SIGNED_ZEROS (mode))
+ ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), mask);
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ emit_move_insn (operand0, res);
+}
+
+/* Expand SSE sequence for computing round from OPERAND1 storing
+ into OPERAND0. Sequence that works without relying on DImode truncation
+ via cvttsd2siq that is only available on 64bit targets. */
+void
+ix86_expand_rounddf_32 (rtx operand0, rtx operand1)
+{
+ /* C code for the stuff we expand below.
+ double xa = fabs (x), xa2, x2;
+ if (!isless (xa, TWO52))
+ return x;
+ Using the absolute value and copying back sign makes
+ -0.0 -> -0.0 correct.
+ xa2 = xa + TWO52 - TWO52;
+ Compensate.
+ dxa = xa2 - xa;
+ if (dxa <= -0.5)
+ xa2 += 1;
+ else if (dxa > 0.5)
+ xa2 -= 1;
+ x2 = copysign (xa2, x);
+ return x2;
+ */
+ enum machine_mode mode = GET_MODE (operand0);
+ rtx xa, xa2, dxa, TWO52, tmp, label, half, mhalf, one, res, mask;
+
+ TWO52 = ix86_gen_TWO52 (mode);
+
+ /* Temporary for holding the result, initialized to the input
+ operand to ease control flow. */
+ res = gen_reg_rtx (mode);
+ emit_move_insn (res, operand1);
+
+ /* xa = abs (operand1) */
+ xa = ix86_expand_sse_fabs (res, &mask);
+
+ /* if (!isless (xa, TWO52)) goto label; */
+ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false);
+
+ /* xa2 = xa + TWO52 - TWO52; */
+ xa2 = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT);
+ xa2 = expand_simple_binop (mode, MINUS, xa2, TWO52, xa2, 0, OPTAB_DIRECT);
+
+ /* dxa = xa2 - xa; */
+ dxa = expand_simple_binop (mode, MINUS, xa2, xa, NULL_RTX, 0, OPTAB_DIRECT);
+
+ /* generate 0.5, 1.0 and -0.5 */
+ half = force_reg (mode, const_double_from_real_value (dconsthalf, mode));
+ one = expand_simple_binop (mode, PLUS, half, half, NULL_RTX, 0, OPTAB_DIRECT);
+ mhalf = expand_simple_binop (mode, MINUS, half, one, NULL_RTX,
+ 0, OPTAB_DIRECT);
+
+ /* Compensate. */
+ tmp = gen_reg_rtx (mode);
+ /* xa2 = xa2 - (dxa > 0.5 ? 1 : 0) */
+ tmp = ix86_expand_sse_compare_mask (UNGT, dxa, half, false);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp,
+ gen_rtx_AND (mode, one, tmp)));
+ xa2 = expand_simple_binop (mode, MINUS, xa2, tmp, NULL_RTX, 0, OPTAB_DIRECT);
+ /* xa2 = xa2 + (dxa <= -0.5 ? 1 : 0) */
+ tmp = ix86_expand_sse_compare_mask (UNGE, mhalf, dxa, false);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp,
+ gen_rtx_AND (mode, one, tmp)));
+ xa2 = expand_simple_binop (mode, PLUS, xa2, tmp, NULL_RTX, 0, OPTAB_DIRECT);
+
+ /* res = copysign (xa2, operand1) */
+ ix86_sse_copysign_to_positive (res, xa2, force_reg (mode, operand1), mask);
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ emit_move_insn (operand0, res);
+}
+
+/* Expand SSE sequence for computing trunc from OPERAND1 storing
+ into OPERAND0. */
+void
+ix86_expand_trunc (rtx operand0, rtx operand1)
+{
+ /* C code for SSE variant we expand below.
+ double xa = fabs (x), x2;
+ if (!isless (xa, TWO52))
+ return x;
+ x2 = (double)(long)x;
+ if (HONOR_SIGNED_ZEROS (mode))
+ return copysign (x2, x);
+ return x2;
+ */
+ enum machine_mode mode = GET_MODE (operand0);
+ rtx xa, xi, TWO52, label, res, mask;
+
+ TWO52 = ix86_gen_TWO52 (mode);
+
+ /* Temporary for holding the result, initialized to the input
+ operand to ease control flow. */
+ res = gen_reg_rtx (mode);
+ emit_move_insn (res, operand1);
+
+ /* xa = abs (operand1) */
+ xa = ix86_expand_sse_fabs (res, &mask);
+
+ /* if (!isless (xa, TWO52)) goto label; */
+ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false);
+
+ /* x = (double)(long)x */
+ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode);
+ expand_fix (xi, res, 0);
+ expand_float (res, xi, 0);
+
+ if (HONOR_SIGNED_ZEROS (mode))
+ ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), mask);
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ emit_move_insn (operand0, res);
+}
+
+/* Expand SSE sequence for computing trunc from OPERAND1 storing
+ into OPERAND0. */
+void
+ix86_expand_truncdf_32 (rtx operand0, rtx operand1)
+{
+ enum machine_mode mode = GET_MODE (operand0);
+ rtx xa, mask, TWO52, label, one, res, smask, tmp;
+
+ /* C code for SSE variant we expand below.
+ double xa = fabs (x), x2;
+ if (!isless (xa, TWO52))
+ return x;
+ xa2 = xa + TWO52 - TWO52;
+ Compensate:
+ if (xa2 > xa)
+ xa2 -= 1.0;
+ x2 = copysign (xa2, x);
+ return x2;
+ */
+
+ TWO52 = ix86_gen_TWO52 (mode);
+
+ /* Temporary for holding the result, initialized to the input
+ operand to ease control flow. */
+ res = gen_reg_rtx (mode);
+ emit_move_insn (res, operand1);
+
+ /* xa = abs (operand1) */
+ xa = ix86_expand_sse_fabs (res, &smask);
+
+ /* if (!isless (xa, TWO52)) goto label; */
+ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false);
+
+ /* res = xa + TWO52 - TWO52; */
+ tmp = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT);
+ tmp = expand_simple_binop (mode, MINUS, tmp, TWO52, tmp, 0, OPTAB_DIRECT);
+ emit_move_insn (res, tmp);
+
+ /* generate 1.0 */
+ one = force_reg (mode, const_double_from_real_value (dconst1, mode));
+
+ /* Compensate: res = xa2 - (res > xa ? 1 : 0) */
+ mask = ix86_expand_sse_compare_mask (UNGT, res, xa, false);
+ emit_insn (gen_rtx_SET (VOIDmode, mask,
+ gen_rtx_AND (mode, mask, one)));
+ tmp = expand_simple_binop (mode, MINUS,
+ res, mask, NULL_RTX, 0, OPTAB_DIRECT);
+ emit_move_insn (res, tmp);
+
+ /* res = copysign (res, operand1) */
+ ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), smask);
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ emit_move_insn (operand0, res);
+}
+
+/* Expand SSE sequence for computing round from OPERAND1 storing
+ into OPERAND0. */
+void
+ix86_expand_round (rtx operand0, rtx operand1)
+{
+ /* C code for the stuff we're doing below:
+ double xa = fabs (x);
+ if (!isless (xa, TWO52))
+ return x;
+ xa = (double)(long)(xa + nextafter (0.5, 0.0));
+ return copysign (xa, x);
+ */
+ enum machine_mode mode = GET_MODE (operand0);
+ rtx res, TWO52, xa, label, xi, half, mask;
+ const struct real_format *fmt;
+ REAL_VALUE_TYPE pred_half, half_minus_pred_half;
+
+ /* Temporary for holding the result, initialized to the input
+ operand to ease control flow. */
+ res = gen_reg_rtx (mode);
+ emit_move_insn (res, operand1);
+
+ TWO52 = ix86_gen_TWO52 (mode);
+ xa = ix86_expand_sse_fabs (res, &mask);
+ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false);
+
+ /* load nextafter (0.5, 0.0) */
+ fmt = REAL_MODE_FORMAT (mode);
+ real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode);
+ REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half);
+
+ /* xa = xa + 0.5 */
+ half = force_reg (mode, const_double_from_real_value (pred_half, mode));
+ xa = expand_simple_binop (mode, PLUS, xa, half, NULL_RTX, 0, OPTAB_DIRECT);
+
+ /* xa = (double)(int64_t)xa */
+ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode);
+ expand_fix (xi, xa, 0);
+ expand_float (xa, xi, 0);
+
+ /* res = copysign (xa, operand1) */
+ ix86_sse_copysign_to_positive (res, xa, force_reg (mode, operand1), mask);
+
+ emit_label (label);
+ LABEL_NUSES (label) = 1;
+
+ emit_move_insn (operand0, res);
+}
+
+/* Expand SSE sequence for computing round
+ from OP1 storing into OP0 using sse4 round insn. */
+void
+ix86_expand_round_sse4 (rtx op0, rtx op1)
+{
+ enum machine_mode mode = GET_MODE (op0);
+ rtx e1, e2, res, half;
+ const struct real_format *fmt;
+ REAL_VALUE_TYPE pred_half, half_minus_pred_half;
+ rtx (*gen_copysign) (rtx, rtx, rtx);
+ rtx (*gen_round) (rtx, rtx, rtx);
+
+ switch (mode)
+ {
+ case SFmode:
+ gen_copysign = gen_copysignsf3;
+ gen_round = gen_sse4_1_roundsf2;
+ break;
+ case DFmode:
+ gen_copysign = gen_copysigndf3;
+ gen_round = gen_sse4_1_rounddf2;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ /* round (a) = trunc (a + copysign (0.5, a)) */
+
+ /* load nextafter (0.5, 0.0) */
+ fmt = REAL_MODE_FORMAT (mode);
+ real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode);
+ REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half);
+ half = const_double_from_real_value (pred_half, mode);
+
+ /* e1 = copysign (0.5, op1) */
+ e1 = gen_reg_rtx (mode);
+ emit_insn (gen_copysign (e1, half, op1));
+
+ /* e2 = op1 + e1 */
+ e2 = expand_simple_binop (mode, PLUS, op1, e1, NULL_RTX, 0, OPTAB_DIRECT);
+
+ /* res = trunc (e2) */
+ res = gen_reg_rtx (mode);
+ emit_insn (gen_round (res, e2, GEN_INT (ROUND_TRUNC)));
+
+ emit_move_insn (op0, res);
+}
+
+
+/* Table of valid machine attributes. */
+static const struct attribute_spec ix86_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
+ affects_type_identity } */
+ /* Stdcall attribute says callee is responsible for popping arguments
+ if they are not variable. */
+ { "stdcall", 0, 0, false, true, true, ix86_handle_cconv_attribute,
+ true },
+ /* Fastcall attribute says callee is responsible for popping arguments
+ if they are not variable. */
+ { "fastcall", 0, 0, false, true, true, ix86_handle_cconv_attribute,
+ true },
+ /* Thiscall attribute says callee is responsible for popping arguments
+ if they are not variable. */
+ { "thiscall", 0, 0, false, true, true, ix86_handle_cconv_attribute,
+ true },
+ /* Cdecl attribute says the callee is a normal C declaration */
+ { "cdecl", 0, 0, false, true, true, ix86_handle_cconv_attribute,
+ true },
+ /* Regparm attribute specifies how many integer arguments are to be
+ passed in registers. */
+ { "regparm", 1, 1, false, true, true, ix86_handle_cconv_attribute,
+ true },
+ /* Sseregparm attribute says we are using x86_64 calling conventions
+ for FP arguments. */
+ { "sseregparm", 0, 0, false, true, true, ix86_handle_cconv_attribute,
+ true },
+ /* The transactional memory builtins are implicitly regparm or fastcall
+ depending on the ABI. Override the generic do-nothing attribute that
+ these builtins were declared with. */
+ { "*tm regparm", 0, 0, false, true, true, ix86_handle_tm_regparm_attribute,
+ true },
+ /* force_align_arg_pointer says this function realigns the stack at entry. */
+ { (const char *)&ix86_force_align_arg_pointer_string, 0, 0,
+ false, true, true, ix86_handle_cconv_attribute, false },
+#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
+ { "dllimport", 0, 0, false, false, false, handle_dll_attribute, false },
+ { "dllexport", 0, 0, false, false, false, handle_dll_attribute, false },
+ { "shared", 0, 0, true, false, false, ix86_handle_shared_attribute,
+ false },
+#endif
+ { "ms_struct", 0, 0, false, false, false, ix86_handle_struct_attribute,
+ false },
+ { "gcc_struct", 0, 0, false, false, false, ix86_handle_struct_attribute,
+ false },
+#ifdef SUBTARGET_ATTRIBUTE_TABLE
+ SUBTARGET_ATTRIBUTE_TABLE,
+#endif
+ /* ms_abi and sysv_abi calling convention function attributes. */
+ { "ms_abi", 0, 0, false, true, true, ix86_handle_abi_attribute, true },
+ { "sysv_abi", 0, 0, false, true, true, ix86_handle_abi_attribute, true },
+ { "ms_hook_prologue", 0, 0, true, false, false, ix86_handle_fndecl_attribute,
+ false },
+ { "callee_pop_aggregate_return", 1, 1, false, true, true,
+ ix86_handle_callee_pop_aggregate_return, true },
+ /* End element. */
+ { NULL, 0, 0, false, false, false, NULL, false }
+};
+
+/* Implement targetm.vectorize.builtin_vectorization_cost. */
+static int
+ix86_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
+ tree vectype,
+ int misalign ATTRIBUTE_UNUSED)
+{
+ unsigned elements;
+
+ switch (type_of_cost)
+ {
+ case scalar_stmt:
+ return ix86_cost->scalar_stmt_cost;
+
+ case scalar_load:
+ return ix86_cost->scalar_load_cost;
+
+ case scalar_store:
+ return ix86_cost->scalar_store_cost;
+
+ case vector_stmt:
+ return ix86_cost->vec_stmt_cost;
+
+ case vector_load:
+ return ix86_cost->vec_align_load_cost;
+
+ case vector_store:
+ return ix86_cost->vec_store_cost;
+
+ case vec_to_scalar:
+ return ix86_cost->vec_to_scalar_cost;
+
+ case scalar_to_vec:
+ return ix86_cost->scalar_to_vec_cost;
+
+ case unaligned_load:
+ case unaligned_store:
+ return ix86_cost->vec_unalign_load_cost;
+
+ case cond_branch_taken:
+ return ix86_cost->cond_taken_branch_cost;
+
+ case cond_branch_not_taken:
+ return ix86_cost->cond_not_taken_branch_cost;
+
+ case vec_perm:
+ case vec_promote_demote:
+ return ix86_cost->vec_stmt_cost;
+
+ case vec_construct:
+ elements = TYPE_VECTOR_SUBPARTS (vectype);
+ return elements / 2 + 1;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* A cached (set (nil) (vselect (vconcat (nil) (nil)) (parallel [])))
+ insn, so that expand_vselect{,_vconcat} doesn't have to create a fresh
+ insn every time. */
+
+static GTY(()) rtx vselect_insn;
+
+/* Initialize vselect_insn. */
+
+static void
+init_vselect_insn (void)
+{
+ unsigned i;
+ rtx x;
+
+ x = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (MAX_VECT_LEN));
+ for (i = 0; i < MAX_VECT_LEN; ++i)
+ XVECEXP (x, 0, i) = const0_rtx;
+ x = gen_rtx_VEC_SELECT (V2DFmode, gen_rtx_VEC_CONCAT (V4DFmode, const0_rtx,
+ const0_rtx), x);
+ x = gen_rtx_SET (VOIDmode, const0_rtx, x);
+ start_sequence ();
+ vselect_insn = emit_insn (x);
+ end_sequence ();
+}
+
+/* Construct (set target (vec_select op0 (parallel perm))) and
+ return true if that's a valid instruction in the active ISA. */
+
+static bool
+expand_vselect (rtx target, rtx op0, const unsigned char *perm,
+ unsigned nelt, bool testing_p)
+{
+ unsigned int i;
+ rtx x, save_vconcat;
+ int icode;
+
+ if (vselect_insn == NULL_RTX)
+ init_vselect_insn ();
+
+ x = XEXP (SET_SRC (PATTERN (vselect_insn)), 1);
+ PUT_NUM_ELEM (XVEC (x, 0), nelt);
+ for (i = 0; i < nelt; ++i)
+ XVECEXP (x, 0, i) = GEN_INT (perm[i]);
+ save_vconcat = XEXP (SET_SRC (PATTERN (vselect_insn)), 0);
+ XEXP (SET_SRC (PATTERN (vselect_insn)), 0) = op0;
+ PUT_MODE (SET_SRC (PATTERN (vselect_insn)), GET_MODE (target));
+ SET_DEST (PATTERN (vselect_insn)) = target;
+ icode = recog_memoized (vselect_insn);
+
+ if (icode >= 0 && !testing_p)
+ emit_insn (copy_rtx (PATTERN (vselect_insn)));
+
+ SET_DEST (PATTERN (vselect_insn)) = const0_rtx;
+ XEXP (SET_SRC (PATTERN (vselect_insn)), 0) = save_vconcat;
+ INSN_CODE (vselect_insn) = -1;
+
+ return icode >= 0;
+}
+
+/* Similar, but generate a vec_concat from op0 and op1 as well. */
+
+static bool
+expand_vselect_vconcat (rtx target, rtx op0, rtx op1,
+ const unsigned char *perm, unsigned nelt,
+ bool testing_p)
+{
+ enum machine_mode v2mode;
+ rtx x;
+ bool ok;
+
+ if (vselect_insn == NULL_RTX)
+ init_vselect_insn ();
+
+ v2mode = GET_MODE_2XWIDER_MODE (GET_MODE (op0));
+ x = XEXP (SET_SRC (PATTERN (vselect_insn)), 0);
+ PUT_MODE (x, v2mode);
+ XEXP (x, 0) = op0;
+ XEXP (x, 1) = op1;
+ ok = expand_vselect (target, x, perm, nelt, testing_p);
+ XEXP (x, 0) = const0_rtx;
+ XEXP (x, 1) = const0_rtx;
+ return ok;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D
+ in terms of blendp[sd] / pblendw / pblendvb / vpblendd. */
+
+static bool
+expand_vec_perm_blend (struct expand_vec_perm_d *d)
+{
+ enum machine_mode vmode = d->vmode;
+ unsigned i, mask, nelt = d->nelt;
+ rtx target, op0, op1, x;
+ rtx rperm[32], vperm;
+
+ if (d->one_operand_p)
+ return false;
+ if (TARGET_AVX2 && GET_MODE_SIZE (vmode) == 32)
+ ;
+ else if (TARGET_AVX && (vmode == V4DFmode || vmode == V8SFmode))
+ ;
+ else if (TARGET_SSE4_1 && GET_MODE_SIZE (vmode) == 16)
+ ;
+ else
+ return false;
+
+ /* This is a blend, not a permute. Elements must stay in their
+ respective lanes. */
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned e = d->perm[i];
+ if (!(e == i || e == i + nelt))
+ return false;
+ }
+
+ if (d->testing_p)
+ return true;
+
+ /* ??? Without SSE4.1, we could implement this with and/andn/or. This
+ decision should be extracted elsewhere, so that we only try that
+ sequence once all budget==3 options have been tried. */
+ target = d->target;
+ op0 = d->op0;
+ op1 = d->op1;
+ mask = 0;
+
+ switch (vmode)
+ {
+ case V4DFmode:
+ case V8SFmode:
+ case V2DFmode:
+ case V4SFmode:
+ case V8HImode:
+ case V8SImode:
+ for (i = 0; i < nelt; ++i)
+ mask |= (d->perm[i] >= nelt) << i;
+ break;
+
+ case V2DImode:
+ for (i = 0; i < 2; ++i)
+ mask |= (d->perm[i] >= 2 ? 15 : 0) << (i * 4);
+ vmode = V8HImode;
+ goto do_subreg;
+
+ case V4SImode:
+ for (i = 0; i < 4; ++i)
+ mask |= (d->perm[i] >= 4 ? 3 : 0) << (i * 2);
+ vmode = V8HImode;
+ goto do_subreg;
+
+ case V16QImode:
+ /* See if bytes move in pairs so we can use pblendw with
+ an immediate argument, rather than pblendvb with a vector
+ argument. */
+ for (i = 0; i < 16; i += 2)
+ if (d->perm[i] + 1 != d->perm[i + 1])
+ {
+ use_pblendvb:
+ for (i = 0; i < nelt; ++i)
+ rperm[i] = (d->perm[i] < nelt ? const0_rtx : constm1_rtx);
+
+ finish_pblendvb:
+ vperm = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm));
+ vperm = force_reg (vmode, vperm);
+
+ if (GET_MODE_SIZE (vmode) == 16)
+ emit_insn (gen_sse4_1_pblendvb (target, op0, op1, vperm));
+ else
+ emit_insn (gen_avx2_pblendvb (target, op0, op1, vperm));
+ if (target != d->target)
+ emit_move_insn (d->target, gen_lowpart (d->vmode, target));
+ return true;
+ }
+
+ for (i = 0; i < 8; ++i)
+ mask |= (d->perm[i * 2] >= 16) << i;
+ vmode = V8HImode;
+ /* FALLTHRU */
+
+ do_subreg:
+ target = gen_reg_rtx (vmode);
+ op0 = gen_lowpart (vmode, op0);
+ op1 = gen_lowpart (vmode, op1);
+ break;
+
+ case V32QImode:
+ /* See if bytes move in pairs. If not, vpblendvb must be used. */
+ for (i = 0; i < 32; i += 2)
+ if (d->perm[i] + 1 != d->perm[i + 1])
+ goto use_pblendvb;
+ /* See if bytes move in quadruplets. If yes, vpblendd
+ with immediate can be used. */
+ for (i = 0; i < 32; i += 4)
+ if (d->perm[i] + 2 != d->perm[i + 2])
+ break;
+ if (i < 32)
+ {
+ /* See if bytes move the same in both lanes. If yes,
+ vpblendw with immediate can be used. */
+ for (i = 0; i < 16; i += 2)
+ if (d->perm[i] + 16 != d->perm[i + 16])
+ goto use_pblendvb;
+
+ /* Use vpblendw. */
+ for (i = 0; i < 16; ++i)
+ mask |= (d->perm[i * 2] >= 32) << i;
+ vmode = V16HImode;
+ goto do_subreg;
+ }
+
+ /* Use vpblendd. */
+ for (i = 0; i < 8; ++i)
+ mask |= (d->perm[i * 4] >= 32) << i;
+ vmode = V8SImode;
+ goto do_subreg;
+
+ case V16HImode:
+ /* See if words move in pairs. If yes, vpblendd can be used. */
+ for (i = 0; i < 16; i += 2)
+ if (d->perm[i] + 1 != d->perm[i + 1])
+ break;
+ if (i < 16)
+ {
+ /* See if words move the same in both lanes. If not,
+ vpblendvb must be used. */
+ for (i = 0; i < 8; i++)
+ if (d->perm[i] + 8 != d->perm[i + 8])
+ {
+ /* Use vpblendvb. */
+ for (i = 0; i < 32; ++i)
+ rperm[i] = (d->perm[i / 2] < 16 ? const0_rtx : constm1_rtx);
+
+ vmode = V32QImode;
+ nelt = 32;
+ target = gen_reg_rtx (vmode);
+ op0 = gen_lowpart (vmode, op0);
+ op1 = gen_lowpart (vmode, op1);
+ goto finish_pblendvb;
+ }
+
+ /* Use vpblendw. */
+ for (i = 0; i < 16; ++i)
+ mask |= (d->perm[i] >= 16) << i;
+ break;
+ }
+
+ /* Use vpblendd. */
+ for (i = 0; i < 8; ++i)
+ mask |= (d->perm[i * 2] >= 16) << i;
+ vmode = V8SImode;
+ goto do_subreg;
+
+ case V4DImode:
+ /* Use vpblendd. */
+ for (i = 0; i < 4; ++i)
+ mask |= (d->perm[i] >= 4 ? 3 : 0) << (i * 2);
+ vmode = V8SImode;
+ goto do_subreg;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* This matches five different patterns with the different modes. */
+ x = gen_rtx_VEC_MERGE (vmode, op1, op0, GEN_INT (mask));
+ x = gen_rtx_SET (VOIDmode, target, x);
+ emit_insn (x);
+ if (target != d->target)
+ emit_move_insn (d->target, gen_lowpart (d->vmode, target));
+
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D
+ in terms of the variable form of vpermilps.
+
+ Note that we will have already failed the immediate input vpermilps,
+ which requires that the high and low part shuffle be identical; the
+ variable form doesn't require that. */
+
+static bool
+expand_vec_perm_vpermil (struct expand_vec_perm_d *d)
+{
+ rtx rperm[8], vperm;
+ unsigned i;
+
+ if (!TARGET_AVX || d->vmode != V8SFmode || !d->one_operand_p)
+ return false;
+
+ /* We can only permute within the 128-bit lane. */
+ for (i = 0; i < 8; ++i)
+ {
+ unsigned e = d->perm[i];
+ if (i < 4 ? e >= 4 : e < 4)
+ return false;
+ }
+
+ if (d->testing_p)
+ return true;
+
+ for (i = 0; i < 8; ++i)
+ {
+ unsigned e = d->perm[i];
+
+ /* Within each 128-bit lane, the elements of op0 are numbered
+ from 0 and the elements of op1 are numbered from 4. */
+ if (e >= 8 + 4)
+ e -= 8;
+ else if (e >= 4)
+ e -= 4;
+
+ rperm[i] = GEN_INT (e);
+ }
+
+ vperm = gen_rtx_CONST_VECTOR (V8SImode, gen_rtvec_v (8, rperm));
+ vperm = force_reg (V8SImode, vperm);
+ emit_insn (gen_avx_vpermilvarv8sf3 (d->target, d->op0, vperm));
+
+ return true;
+}
+
+/* Return true if permutation D can be performed as VMODE permutation
+ instead. */
+
+static bool
+valid_perm_using_mode_p (enum machine_mode vmode, struct expand_vec_perm_d *d)
+{
+ unsigned int i, j, chunk;
+
+ if (GET_MODE_CLASS (vmode) != MODE_VECTOR_INT
+ || GET_MODE_CLASS (d->vmode) != MODE_VECTOR_INT
+ || GET_MODE_SIZE (vmode) != GET_MODE_SIZE (d->vmode))
+ return false;
+
+ if (GET_MODE_NUNITS (vmode) >= d->nelt)
+ return true;
+
+ chunk = d->nelt / GET_MODE_NUNITS (vmode);
+ for (i = 0; i < d->nelt; i += chunk)
+ if (d->perm[i] & (chunk - 1))
+ return false;
+ else
+ for (j = 1; j < chunk; ++j)
+ if (d->perm[i] + j != d->perm[i + j])
+ return false;
+
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D
+ in terms of pshufb, vpperm, vpermq, vpermd, vpermps or vperm2i128. */
+
+static bool
+expand_vec_perm_pshufb (struct expand_vec_perm_d *d)
+{
+ unsigned i, nelt, eltsz, mask;
+ unsigned char perm[32];
+ enum machine_mode vmode = V16QImode;
+ rtx rperm[32], vperm, target, op0, op1;
+
+ nelt = d->nelt;
+
+ if (!d->one_operand_p)
+ {
+ if (!TARGET_XOP || GET_MODE_SIZE (d->vmode) != 16)
+ {
+ if (TARGET_AVX2
+ && valid_perm_using_mode_p (V2TImode, d))
+ {
+ if (d->testing_p)
+ return true;
+
+ /* Use vperm2i128 insn. The pattern uses
+ V4DImode instead of V2TImode. */
+ target = d->target;
+ if (d->vmode != V4DImode)
+ target = gen_reg_rtx (V4DImode);
+ op0 = gen_lowpart (V4DImode, d->op0);
+ op1 = gen_lowpart (V4DImode, d->op1);
+ rperm[0]
+ = GEN_INT (((d->perm[0] & (nelt / 2)) ? 1 : 0)
+ || ((d->perm[nelt / 2] & (nelt / 2)) ? 2 : 0));
+ emit_insn (gen_avx2_permv2ti (target, op0, op1, rperm[0]));
+ if (target != d->target)
+ emit_move_insn (d->target, gen_lowpart (d->vmode, target));
+ return true;
+ }
+ return false;
+ }
+ }
+ else
+ {
+ if (GET_MODE_SIZE (d->vmode) == 16)
+ {
+ if (!TARGET_SSSE3)
+ return false;
+ }
+ else if (GET_MODE_SIZE (d->vmode) == 32)
+ {
+ if (!TARGET_AVX2)
+ return false;
+
+ /* V4DImode should be already handled through
+ expand_vselect by vpermq instruction. */
+ gcc_assert (d->vmode != V4DImode);
+
+ vmode = V32QImode;
+ if (d->vmode == V8SImode
+ || d->vmode == V16HImode
+ || d->vmode == V32QImode)
+ {
+ /* First see if vpermq can be used for
+ V8SImode/V16HImode/V32QImode. */
+ if (valid_perm_using_mode_p (V4DImode, d))
+ {
+ for (i = 0; i < 4; i++)
+ perm[i] = (d->perm[i * nelt / 4] * 4 / nelt) & 3;
+ if (d->testing_p)
+ return true;
+ target = gen_reg_rtx (V4DImode);
+ if (expand_vselect (target, gen_lowpart (V4DImode, d->op0),
+ perm, 4, false))
+ {
+ emit_move_insn (d->target,
+ gen_lowpart (d->vmode, target));
+ return true;
+ }
+ return false;
+ }
+
+ /* Next see if vpermd can be used. */
+ if (valid_perm_using_mode_p (V8SImode, d))
+ vmode = V8SImode;
+ }
+ /* Or if vpermps can be used. */
+ else if (d->vmode == V8SFmode)
+ vmode = V8SImode;
+
+ if (vmode == V32QImode)
+ {
+ /* vpshufb only works intra lanes, it is not
+ possible to shuffle bytes in between the lanes. */
+ for (i = 0; i < nelt; ++i)
+ if ((d->perm[i] ^ i) & (nelt / 2))
+ return false;
+ }
+ }
+ else
+ return false;
+ }
+
+ if (d->testing_p)
+ return true;
+
+ if (vmode == V8SImode)
+ for (i = 0; i < 8; ++i)
+ rperm[i] = GEN_INT ((d->perm[i * nelt / 8] * 8 / nelt) & 7);
+ else
+ {
+ eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode));
+ if (!d->one_operand_p)
+ mask = 2 * nelt - 1;
+ else if (vmode == V16QImode)
+ mask = nelt - 1;
+ else
+ mask = nelt / 2 - 1;
+
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned j, e = d->perm[i] & mask;
+ for (j = 0; j < eltsz; ++j)
+ rperm[i * eltsz + j] = GEN_INT (e * eltsz + j);
+ }
+ }
+
+ vperm = gen_rtx_CONST_VECTOR (vmode,
+ gen_rtvec_v (GET_MODE_NUNITS (vmode), rperm));
+ vperm = force_reg (vmode, vperm);
+
+ target = d->target;
+ if (d->vmode != vmode)
+ target = gen_reg_rtx (vmode);
+ op0 = gen_lowpart (vmode, d->op0);
+ if (d->one_operand_p)
+ {
+ if (vmode == V16QImode)
+ emit_insn (gen_ssse3_pshufbv16qi3 (target, op0, vperm));
+ else if (vmode == V32QImode)
+ emit_insn (gen_avx2_pshufbv32qi3 (target, op0, vperm));
+ else if (vmode == V8SFmode)
+ emit_insn (gen_avx2_permvarv8sf (target, op0, vperm));
+ else
+ emit_insn (gen_avx2_permvarv8si (target, op0, vperm));
+ }
+ else
+ {
+ op1 = gen_lowpart (vmode, d->op1);
+ emit_insn (gen_xop_pperm (target, op0, op1, vperm));
+ }
+ if (target != d->target)
+ emit_move_insn (d->target, gen_lowpart (d->vmode, target));
+
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to instantiate D
+ in a single instruction. */
+
+static bool
+expand_vec_perm_1 (struct expand_vec_perm_d *d)
+{
+ unsigned i, nelt = d->nelt;
+ unsigned char perm2[MAX_VECT_LEN];
+
+ /* Check plain VEC_SELECT first, because AVX has instructions that could
+ match both SEL and SEL+CONCAT, but the plain SEL will allow a memory
+ input where SEL+CONCAT may not. */
+ if (d->one_operand_p)
+ {
+ int mask = nelt - 1;
+ bool identity_perm = true;
+ bool broadcast_perm = true;
+
+ for (i = 0; i < nelt; i++)
+ {
+ perm2[i] = d->perm[i] & mask;
+ if (perm2[i] != i)
+ identity_perm = false;
+ if (perm2[i])
+ broadcast_perm = false;
+ }
+
+ if (identity_perm)
+ {
+ if (!d->testing_p)
+ emit_move_insn (d->target, d->op0);
+ return true;
+ }
+ else if (broadcast_perm && TARGET_AVX2)
+ {
+ /* Use vpbroadcast{b,w,d}. */
+ rtx (*gen) (rtx, rtx) = NULL;
+ switch (d->vmode)
+ {
+ case V32QImode:
+ gen = gen_avx2_pbroadcastv32qi_1;
+ break;
+ case V16HImode:
+ gen = gen_avx2_pbroadcastv16hi_1;
+ break;
+ case V8SImode:
+ gen = gen_avx2_pbroadcastv8si_1;
+ break;
+ case V16QImode:
+ gen = gen_avx2_pbroadcastv16qi;
+ break;
+ case V8HImode:
+ gen = gen_avx2_pbroadcastv8hi;
+ break;
+ case V8SFmode:
+ gen = gen_avx2_vec_dupv8sf_1;
+ break;
+ /* For other modes prefer other shuffles this function creates. */
+ default: break;
+ }
+ if (gen != NULL)
+ {
+ if (!d->testing_p)
+ emit_insn (gen (d->target, d->op0));
+ return true;
+ }
+ }
+
+ if (expand_vselect (d->target, d->op0, perm2, nelt, d->testing_p))
+ return true;
+
+ /* There are plenty of patterns in sse.md that are written for
+ SEL+CONCAT and are not replicated for a single op. Perhaps
+ that should be changed, to avoid the nastiness here. */
+
+ /* Recognize interleave style patterns, which means incrementing
+ every other permutation operand. */
+ for (i = 0; i < nelt; i += 2)
+ {
+ perm2[i] = d->perm[i] & mask;
+ perm2[i + 1] = (d->perm[i + 1] & mask) + nelt;
+ }
+ if (expand_vselect_vconcat (d->target, d->op0, d->op0, perm2, nelt,
+ d->testing_p))
+ return true;
+
+ /* Recognize shufps, which means adding {0, 0, nelt, nelt}. */
+ if (nelt >= 4)
+ {
+ for (i = 0; i < nelt; i += 4)
+ {
+ perm2[i + 0] = d->perm[i + 0] & mask;
+ perm2[i + 1] = d->perm[i + 1] & mask;
+ perm2[i + 2] = (d->perm[i + 2] & mask) + nelt;
+ perm2[i + 3] = (d->perm[i + 3] & mask) + nelt;
+ }
+
+ if (expand_vselect_vconcat (d->target, d->op0, d->op0, perm2, nelt,
+ d->testing_p))
+ return true;
+ }
+ }
+
+ /* Finally, try the fully general two operand permute. */
+ if (expand_vselect_vconcat (d->target, d->op0, d->op1, d->perm, nelt,
+ d->testing_p))
+ return true;
+
+ /* Recognize interleave style patterns with reversed operands. */
+ if (!d->one_operand_p)
+ {
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned e = d->perm[i];
+ if (e >= nelt)
+ e -= nelt;
+ else
+ e += nelt;
+ perm2[i] = e;
+ }
+
+ if (expand_vselect_vconcat (d->target, d->op1, d->op0, perm2, nelt,
+ d->testing_p))
+ return true;
+ }
+
+ /* Try the SSE4.1 blend variable merge instructions. */
+ if (expand_vec_perm_blend (d))
+ return true;
+
+ /* Try one of the AVX vpermil variable permutations. */
+ if (expand_vec_perm_vpermil (d))
+ return true;
+
+ /* Try the SSSE3 pshufb or XOP vpperm or AVX2 vperm2i128,
+ vpshufb, vpermd, vpermps or vpermq variable permutation. */
+ if (expand_vec_perm_pshufb (d))
+ return true;
+
+ /* Try the AVX512F vpermi2 instructions. */
+ rtx vec[64];
+ enum machine_mode mode = d->vmode;
+ if (mode == V8DFmode)
+ mode = V8DImode;
+ else if (mode == V16SFmode)
+ mode = V16SImode;
+ for (i = 0; i < nelt; ++i)
+ vec[i] = GEN_INT (d->perm[i]);
+ rtx mask = gen_rtx_CONST_VECTOR (mode, gen_rtvec_v (nelt, vec));
+ if (ix86_expand_vec_perm_vpermi2 (d->target, d->op0, mask, d->op1))
+ return true;
+
+ return false;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D
+ in terms of a pair of pshuflw + pshufhw instructions. */
+
+static bool
+expand_vec_perm_pshuflw_pshufhw (struct expand_vec_perm_d *d)
+{
+ unsigned char perm2[MAX_VECT_LEN];
+ unsigned i;
+ bool ok;
+
+ if (d->vmode != V8HImode || !d->one_operand_p)
+ return false;
+
+ /* The two permutations only operate in 64-bit lanes. */
+ for (i = 0; i < 4; ++i)
+ if (d->perm[i] >= 4)
+ return false;
+ for (i = 4; i < 8; ++i)
+ if (d->perm[i] < 4)
+ return false;
+
+ if (d->testing_p)
+ return true;
+
+ /* Emit the pshuflw. */
+ memcpy (perm2, d->perm, 4);
+ for (i = 4; i < 8; ++i)
+ perm2[i] = i;
+ ok = expand_vselect (d->target, d->op0, perm2, 8, d->testing_p);
+ gcc_assert (ok);
+
+ /* Emit the pshufhw. */
+ memcpy (perm2 + 4, d->perm + 4, 4);
+ for (i = 0; i < 4; ++i)
+ perm2[i] = i;
+ ok = expand_vselect (d->target, d->target, perm2, 8, d->testing_p);
+ gcc_assert (ok);
+
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify
+ the permutation using the SSSE3 palignr instruction. This succeeds
+ when all of the elements in PERM fit within one vector and we merely
+ need to shift them down so that a single vector permutation has a
+ chance to succeed. */
+
+static bool
+expand_vec_perm_palignr (struct expand_vec_perm_d *d)
+{
+ unsigned i, nelt = d->nelt;
+ unsigned min, max;
+ bool in_order, ok;
+ rtx shift, target;
+ struct expand_vec_perm_d dcopy;
+
+ /* Even with AVX, palignr only operates on 128-bit vectors. */
+ if (!TARGET_SSSE3 || GET_MODE_SIZE (d->vmode) != 16)
+ return false;
+
+ min = nelt, max = 0;
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned e = d->perm[i];
+ if (e < min)
+ min = e;
+ if (e > max)
+ max = e;
+ }
+ if (min == 0 || max - min >= nelt)
+ return false;
+
+ /* Given that we have SSSE3, we know we'll be able to implement the
+ single operand permutation after the palignr with pshufb. */
+ if (d->testing_p)
+ return true;
+
+ dcopy = *d;
+ shift = GEN_INT (min * GET_MODE_BITSIZE (GET_MODE_INNER (d->vmode)));
+ target = gen_reg_rtx (TImode);
+ emit_insn (gen_ssse3_palignrti (target, gen_lowpart (TImode, d->op1),
+ gen_lowpart (TImode, d->op0), shift));
+
+ dcopy.op0 = dcopy.op1 = gen_lowpart (d->vmode, target);
+ dcopy.one_operand_p = true;
+
+ in_order = true;
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned e = dcopy.perm[i] - min;
+ if (e != i)
+ in_order = false;
+ dcopy.perm[i] = e;
+ }
+
+ /* Test for the degenerate case where the alignment by itself
+ produces the desired permutation. */
+ if (in_order)
+ {
+ emit_move_insn (d->target, dcopy.op0);
+ return true;
+ }
+
+ ok = expand_vec_perm_1 (&dcopy);
+ gcc_assert (ok);
+
+ return ok;
+}
+
+static bool expand_vec_perm_interleave3 (struct expand_vec_perm_d *d);
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify
+ a two vector permutation into a single vector permutation by using
+ an interleave operation to merge the vectors. */
+
+static bool
+expand_vec_perm_interleave2 (struct expand_vec_perm_d *d)
+{
+ struct expand_vec_perm_d dremap, dfinal;
+ unsigned i, nelt = d->nelt, nelt2 = nelt / 2;
+ unsigned HOST_WIDE_INT contents;
+ unsigned char remap[2 * MAX_VECT_LEN];
+ rtx seq;
+ bool ok, same_halves = false;
+
+ if (GET_MODE_SIZE (d->vmode) == 16)
+ {
+ if (d->one_operand_p)
+ return false;
+ }
+ else if (GET_MODE_SIZE (d->vmode) == 32)
+ {
+ if (!TARGET_AVX)
+ return false;
+ /* For 32-byte modes allow even d->one_operand_p.
+ The lack of cross-lane shuffling in some instructions
+ might prevent a single insn shuffle. */
+ dfinal = *d;
+ dfinal.testing_p = true;
+ /* If expand_vec_perm_interleave3 can expand this into
+ a 3 insn sequence, give up and let it be expanded as
+ 3 insn sequence. While that is one insn longer,
+ it doesn't need a memory operand and in the common
+ case that both interleave low and high permutations
+ with the same operands are adjacent needs 4 insns
+ for both after CSE. */
+ if (expand_vec_perm_interleave3 (&dfinal))
+ return false;
+ }
+ else
+ return false;
+
+ /* Examine from whence the elements come. */
+ contents = 0;
+ for (i = 0; i < nelt; ++i)
+ contents |= ((unsigned HOST_WIDE_INT) 1) << d->perm[i];
+
+ memset (remap, 0xff, sizeof (remap));
+ dremap = *d;
+
+ if (GET_MODE_SIZE (d->vmode) == 16)
+ {
+ unsigned HOST_WIDE_INT h1, h2, h3, h4;
+
+ /* Split the two input vectors into 4 halves. */
+ h1 = (((unsigned HOST_WIDE_INT) 1) << nelt2) - 1;
+ h2 = h1 << nelt2;
+ h3 = h2 << nelt2;
+ h4 = h3 << nelt2;
+
+ /* If the elements from the low halves use interleave low, and similarly
+ for interleave high. If the elements are from mis-matched halves, we
+ can use shufps for V4SF/V4SI or do a DImode shuffle. */
+ if ((contents & (h1 | h3)) == contents)
+ {
+ /* punpckl* */
+ for (i = 0; i < nelt2; ++i)
+ {
+ remap[i] = i * 2;
+ remap[i + nelt] = i * 2 + 1;
+ dremap.perm[i * 2] = i;
+ dremap.perm[i * 2 + 1] = i + nelt;
+ }
+ if (!TARGET_SSE2 && d->vmode == V4SImode)
+ dremap.vmode = V4SFmode;
+ }
+ else if ((contents & (h2 | h4)) == contents)
+ {
+ /* punpckh* */
+ for (i = 0; i < nelt2; ++i)
+ {
+ remap[i + nelt2] = i * 2;
+ remap[i + nelt + nelt2] = i * 2 + 1;
+ dremap.perm[i * 2] = i + nelt2;
+ dremap.perm[i * 2 + 1] = i + nelt + nelt2;
+ }
+ if (!TARGET_SSE2 && d->vmode == V4SImode)
+ dremap.vmode = V4SFmode;
+ }
+ else if ((contents & (h1 | h4)) == contents)
+ {
+ /* shufps */
+ for (i = 0; i < nelt2; ++i)
+ {
+ remap[i] = i;
+ remap[i + nelt + nelt2] = i + nelt2;
+ dremap.perm[i] = i;
+ dremap.perm[i + nelt2] = i + nelt + nelt2;
+ }
+ if (nelt != 4)
+ {
+ /* shufpd */
+ dremap.vmode = V2DImode;
+ dremap.nelt = 2;
+ dremap.perm[0] = 0;
+ dremap.perm[1] = 3;
+ }
+ }
+ else if ((contents & (h2 | h3)) == contents)
+ {
+ /* shufps */
+ for (i = 0; i < nelt2; ++i)
+ {
+ remap[i + nelt2] = i;
+ remap[i + nelt] = i + nelt2;
+ dremap.perm[i] = i + nelt2;
+ dremap.perm[i + nelt2] = i + nelt;
+ }
+ if (nelt != 4)
+ {
+ /* shufpd */
+ dremap.vmode = V2DImode;
+ dremap.nelt = 2;
+ dremap.perm[0] = 1;
+ dremap.perm[1] = 2;
+ }
+ }
+ else
+ return false;
+ }
+ else
+ {
+ unsigned int nelt4 = nelt / 4, nzcnt = 0;
+ unsigned HOST_WIDE_INT q[8];
+ unsigned int nonzero_halves[4];
+
+ /* Split the two input vectors into 8 quarters. */
+ q[0] = (((unsigned HOST_WIDE_INT) 1) << nelt4) - 1;
+ for (i = 1; i < 8; ++i)
+ q[i] = q[0] << (nelt4 * i);
+ for (i = 0; i < 4; ++i)
+ if (((q[2 * i] | q[2 * i + 1]) & contents) != 0)
+ {
+ nonzero_halves[nzcnt] = i;
+ ++nzcnt;
+ }
+
+ if (nzcnt == 1)
+ {
+ gcc_assert (d->one_operand_p);
+ nonzero_halves[1] = nonzero_halves[0];
+ same_halves = true;
+ }
+ else if (d->one_operand_p)
+ {
+ gcc_assert (nonzero_halves[0] == 0);
+ gcc_assert (nonzero_halves[1] == 1);
+ }
+
+ if (nzcnt <= 2)
+ {
+ if (d->perm[0] / nelt2 == nonzero_halves[1])
+ {
+ /* Attempt to increase the likelihood that dfinal
+ shuffle will be intra-lane. */
+ char tmph = nonzero_halves[0];
+ nonzero_halves[0] = nonzero_halves[1];
+ nonzero_halves[1] = tmph;
+ }
+
+ /* vperm2f128 or vperm2i128. */
+ for (i = 0; i < nelt2; ++i)
+ {
+ remap[i + nonzero_halves[1] * nelt2] = i + nelt2;
+ remap[i + nonzero_halves[0] * nelt2] = i;
+ dremap.perm[i + nelt2] = i + nonzero_halves[1] * nelt2;
+ dremap.perm[i] = i + nonzero_halves[0] * nelt2;
+ }
+
+ if (d->vmode != V8SFmode
+ && d->vmode != V4DFmode
+ && d->vmode != V8SImode)
+ {
+ dremap.vmode = V8SImode;
+ dremap.nelt = 8;
+ for (i = 0; i < 4; ++i)
+ {
+ dremap.perm[i] = i + nonzero_halves[0] * 4;
+ dremap.perm[i + 4] = i + nonzero_halves[1] * 4;
+ }
+ }
+ }
+ else if (d->one_operand_p)
+ return false;
+ else if (TARGET_AVX2
+ && (contents & (q[0] | q[2] | q[4] | q[6])) == contents)
+ {
+ /* vpunpckl* */
+ for (i = 0; i < nelt4; ++i)
+ {
+ remap[i] = i * 2;
+ remap[i + nelt] = i * 2 + 1;
+ remap[i + nelt2] = i * 2 + nelt2;
+ remap[i + nelt + nelt2] = i * 2 + nelt2 + 1;
+ dremap.perm[i * 2] = i;
+ dremap.perm[i * 2 + 1] = i + nelt;
+ dremap.perm[i * 2 + nelt2] = i + nelt2;
+ dremap.perm[i * 2 + nelt2 + 1] = i + nelt + nelt2;
+ }
+ }
+ else if (TARGET_AVX2
+ && (contents & (q[1] | q[3] | q[5] | q[7])) == contents)
+ {
+ /* vpunpckh* */
+ for (i = 0; i < nelt4; ++i)
+ {
+ remap[i + nelt4] = i * 2;
+ remap[i + nelt + nelt4] = i * 2 + 1;
+ remap[i + nelt2 + nelt4] = i * 2 + nelt2;
+ remap[i + nelt + nelt2 + nelt4] = i * 2 + nelt2 + 1;
+ dremap.perm[i * 2] = i + nelt4;
+ dremap.perm[i * 2 + 1] = i + nelt + nelt4;
+ dremap.perm[i * 2 + nelt2] = i + nelt2 + nelt4;
+ dremap.perm[i * 2 + nelt2 + 1] = i + nelt + nelt2 + nelt4;
+ }
+ }
+ else
+ return false;
+ }
+
+ /* Use the remapping array set up above to move the elements from their
+ swizzled locations into their final destinations. */
+ dfinal = *d;
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned e = remap[d->perm[i]];
+ gcc_assert (e < nelt);
+ /* If same_halves is true, both halves of the remapped vector are the
+ same. Avoid cross-lane accesses if possible. */
+ if (same_halves && i >= nelt2)
+ {
+ gcc_assert (e < nelt2);
+ dfinal.perm[i] = e + nelt2;
+ }
+ else
+ dfinal.perm[i] = e;
+ }
+ if (!d->testing_p)
+ {
+ dremap.target = gen_reg_rtx (dremap.vmode);
+ dfinal.op0 = gen_lowpart (dfinal.vmode, dremap.target);
+ }
+ dfinal.op1 = dfinal.op0;
+ dfinal.one_operand_p = true;
+
+ /* Test if the final remap can be done with a single insn. For V4SFmode or
+ V4SImode this *will* succeed. For V8HImode or V16QImode it may not. */
+ start_sequence ();
+ ok = expand_vec_perm_1 (&dfinal);
+ seq = get_insns ();
+ end_sequence ();
+
+ if (!ok)
+ return false;
+
+ if (d->testing_p)
+ return true;
+
+ if (dremap.vmode != dfinal.vmode)
+ {
+ dremap.op0 = gen_lowpart (dremap.vmode, dremap.op0);
+ dremap.op1 = gen_lowpart (dremap.vmode, dremap.op1);
+ }
+
+ ok = expand_vec_perm_1 (&dremap);
+ gcc_assert (ok);
+
+ emit_insn (seq);
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify
+ a single vector cross-lane permutation into vpermq followed
+ by any of the single insn permutations. */
+
+static bool
+expand_vec_perm_vpermq_perm_1 (struct expand_vec_perm_d *d)
+{
+ struct expand_vec_perm_d dremap, dfinal;
+ unsigned i, j, nelt = d->nelt, nelt2 = nelt / 2, nelt4 = nelt / 4;
+ unsigned contents[2];
+ bool ok;
+
+ if (!(TARGET_AVX2
+ && (d->vmode == V32QImode || d->vmode == V16HImode)
+ && d->one_operand_p))
+ return false;
+
+ contents[0] = 0;
+ contents[1] = 0;
+ for (i = 0; i < nelt2; ++i)
+ {
+ contents[0] |= 1u << (d->perm[i] / nelt4);
+ contents[1] |= 1u << (d->perm[i + nelt2] / nelt4);
+ }
+
+ for (i = 0; i < 2; ++i)
+ {
+ unsigned int cnt = 0;
+ for (j = 0; j < 4; ++j)
+ if ((contents[i] & (1u << j)) != 0 && ++cnt > 2)
+ return false;
+ }
+
+ if (d->testing_p)
+ return true;
+
+ dremap = *d;
+ dremap.vmode = V4DImode;
+ dremap.nelt = 4;
+ dremap.target = gen_reg_rtx (V4DImode);
+ dremap.op0 = gen_lowpart (V4DImode, d->op0);
+ dremap.op1 = dremap.op0;
+ dremap.one_operand_p = true;
+ for (i = 0; i < 2; ++i)
+ {
+ unsigned int cnt = 0;
+ for (j = 0; j < 4; ++j)
+ if ((contents[i] & (1u << j)) != 0)
+ dremap.perm[2 * i + cnt++] = j;
+ for (; cnt < 2; ++cnt)
+ dremap.perm[2 * i + cnt] = 0;
+ }
+
+ dfinal = *d;
+ dfinal.op0 = gen_lowpart (dfinal.vmode, dremap.target);
+ dfinal.op1 = dfinal.op0;
+ dfinal.one_operand_p = true;
+ for (i = 0, j = 0; i < nelt; ++i)
+ {
+ if (i == nelt2)
+ j = 2;
+ dfinal.perm[i] = (d->perm[i] & (nelt4 - 1)) | (j ? nelt2 : 0);
+ if ((d->perm[i] / nelt4) == dremap.perm[j])
+ ;
+ else if ((d->perm[i] / nelt4) == dremap.perm[j + 1])
+ dfinal.perm[i] |= nelt4;
+ else
+ gcc_unreachable ();
+ }
+
+ ok = expand_vec_perm_1 (&dremap);
+ gcc_assert (ok);
+
+ ok = expand_vec_perm_1 (&dfinal);
+ gcc_assert (ok);
+
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to expand
+ a vector permutation using two instructions, vperm2f128 resp.
+ vperm2i128 followed by any single in-lane permutation. */
+
+static bool
+expand_vec_perm_vperm2f128 (struct expand_vec_perm_d *d)
+{
+ struct expand_vec_perm_d dfirst, dsecond;
+ unsigned i, j, nelt = d->nelt, nelt2 = nelt / 2, perm;
+ bool ok;
+
+ if (!TARGET_AVX
+ || GET_MODE_SIZE (d->vmode) != 32
+ || (d->vmode != V8SFmode && d->vmode != V4DFmode && !TARGET_AVX2))
+ return false;
+
+ dsecond = *d;
+ dsecond.one_operand_p = false;
+ dsecond.testing_p = true;
+
+ /* ((perm << 2)|perm) & 0x33 is the vperm2[fi]128
+ immediate. For perm < 16 the second permutation uses
+ d->op0 as first operand, for perm >= 16 it uses d->op1
+ as first operand. The second operand is the result of
+ vperm2[fi]128. */
+ for (perm = 0; perm < 32; perm++)
+ {
+ /* Ignore permutations which do not move anything cross-lane. */
+ if (perm < 16)
+ {
+ /* The second shuffle for e.g. V4DFmode has
+ 0123 and ABCD operands.
+ Ignore AB23, as 23 is already in the second lane
+ of the first operand. */
+ if ((perm & 0xc) == (1 << 2)) continue;
+ /* And 01CD, as 01 is in the first lane of the first
+ operand. */
+ if ((perm & 3) == 0) continue;
+ /* And 4567, as then the vperm2[fi]128 doesn't change
+ anything on the original 4567 second operand. */
+ if ((perm & 0xf) == ((3 << 2) | 2)) continue;
+ }
+ else
+ {
+ /* The second shuffle for e.g. V4DFmode has
+ 4567 and ABCD operands.
+ Ignore AB67, as 67 is already in the second lane
+ of the first operand. */
+ if ((perm & 0xc) == (3 << 2)) continue;
+ /* And 45CD, as 45 is in the first lane of the first
+ operand. */
+ if ((perm & 3) == 2) continue;
+ /* And 0123, as then the vperm2[fi]128 doesn't change
+ anything on the original 0123 first operand. */
+ if ((perm & 0xf) == (1 << 2)) continue;
+ }
+
+ for (i = 0; i < nelt; i++)
+ {
+ j = d->perm[i] / nelt2;
+ if (j == ((perm >> (2 * (i >= nelt2))) & 3))
+ dsecond.perm[i] = nelt + (i & nelt2) + (d->perm[i] & (nelt2 - 1));
+ else if (j == (unsigned) (i >= nelt2) + 2 * (perm >= 16))
+ dsecond.perm[i] = d->perm[i] & (nelt - 1);
+ else
+ break;
+ }
+
+ if (i == nelt)
+ {
+ start_sequence ();
+ ok = expand_vec_perm_1 (&dsecond);
+ end_sequence ();
+ }
+ else
+ ok = false;
+
+ if (ok)
+ {
+ if (d->testing_p)
+ return true;
+
+ /* Found a usable second shuffle. dfirst will be
+ vperm2f128 on d->op0 and d->op1. */
+ dsecond.testing_p = false;
+ dfirst = *d;
+ dfirst.target = gen_reg_rtx (d->vmode);
+ for (i = 0; i < nelt; i++)
+ dfirst.perm[i] = (i & (nelt2 - 1))
+ + ((perm >> (2 * (i >= nelt2))) & 3) * nelt2;
+
+ ok = expand_vec_perm_1 (&dfirst);
+ gcc_assert (ok);
+
+ /* And dsecond is some single insn shuffle, taking
+ d->op0 and result of vperm2f128 (if perm < 16) or
+ d->op1 and result of vperm2f128 (otherwise). */
+ dsecond.op1 = dfirst.target;
+ if (perm >= 16)
+ dsecond.op0 = dfirst.op1;
+
+ ok = expand_vec_perm_1 (&dsecond);
+ gcc_assert (ok);
+
+ return true;
+ }
+
+ /* For one operand, the only useful vperm2f128 permutation is 0x10. */
+ if (d->one_operand_p)
+ return false;
+ }
+
+ return false;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify
+ a two vector permutation using 2 intra-lane interleave insns
+ and cross-lane shuffle for 32-byte vectors. */
+
+static bool
+expand_vec_perm_interleave3 (struct expand_vec_perm_d *d)
+{
+ unsigned i, nelt;
+ rtx (*gen) (rtx, rtx, rtx);
+
+ if (d->one_operand_p)
+ return false;
+ if (TARGET_AVX2 && GET_MODE_SIZE (d->vmode) == 32)
+ ;
+ else if (TARGET_AVX && (d->vmode == V8SFmode || d->vmode == V4DFmode))
+ ;
+ else
+ return false;
+
+ nelt = d->nelt;
+ if (d->perm[0] != 0 && d->perm[0] != nelt / 2)
+ return false;
+ for (i = 0; i < nelt; i += 2)
+ if (d->perm[i] != d->perm[0] + i / 2
+ || d->perm[i + 1] != d->perm[0] + i / 2 + nelt)
+ return false;
+
+ if (d->testing_p)
+ return true;
+
+ switch (d->vmode)
+ {
+ case V32QImode:
+ if (d->perm[0])
+ gen = gen_vec_interleave_highv32qi;
+ else
+ gen = gen_vec_interleave_lowv32qi;
+ break;
+ case V16HImode:
+ if (d->perm[0])
+ gen = gen_vec_interleave_highv16hi;
+ else
+ gen = gen_vec_interleave_lowv16hi;
+ break;
+ case V8SImode:
+ if (d->perm[0])
+ gen = gen_vec_interleave_highv8si;
+ else
+ gen = gen_vec_interleave_lowv8si;
+ break;
+ case V4DImode:
+ if (d->perm[0])
+ gen = gen_vec_interleave_highv4di;
+ else
+ gen = gen_vec_interleave_lowv4di;
+ break;
+ case V8SFmode:
+ if (d->perm[0])
+ gen = gen_vec_interleave_highv8sf;
+ else
+ gen = gen_vec_interleave_lowv8sf;
+ break;
+ case V4DFmode:
+ if (d->perm[0])
+ gen = gen_vec_interleave_highv4df;
+ else
+ gen = gen_vec_interleave_lowv4df;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ emit_insn (gen (d->target, d->op0, d->op1));
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement
+ a single vector permutation using a single intra-lane vector
+ permutation, vperm2f128 swapping the lanes and vblend* insn blending
+ the non-swapped and swapped vectors together. */
+
+static bool
+expand_vec_perm_vperm2f128_vblend (struct expand_vec_perm_d *d)
+{
+ struct expand_vec_perm_d dfirst, dsecond;
+ unsigned i, j, msk, nelt = d->nelt, nelt2 = nelt / 2;
+ rtx seq;
+ bool ok;
+ rtx (*blend) (rtx, rtx, rtx, rtx) = NULL;
+
+ if (!TARGET_AVX
+ || TARGET_AVX2
+ || (d->vmode != V8SFmode && d->vmode != V4DFmode)
+ || !d->one_operand_p)
+ return false;
+
+ dfirst = *d;
+ for (i = 0; i < nelt; i++)
+ dfirst.perm[i] = 0xff;
+ for (i = 0, msk = 0; i < nelt; i++)
+ {
+ j = (d->perm[i] & nelt2) ? i | nelt2 : i & ~nelt2;
+ if (dfirst.perm[j] != 0xff && dfirst.perm[j] != d->perm[i])
+ return false;
+ dfirst.perm[j] = d->perm[i];
+ if (j != i)
+ msk |= (1 << i);
+ }
+ for (i = 0; i < nelt; i++)
+ if (dfirst.perm[i] == 0xff)
+ dfirst.perm[i] = i;
+
+ if (!d->testing_p)
+ dfirst.target = gen_reg_rtx (dfirst.vmode);
+
+ start_sequence ();
+ ok = expand_vec_perm_1 (&dfirst);
+ seq = get_insns ();
+ end_sequence ();
+
+ if (!ok)
+ return false;
+
+ if (d->testing_p)
+ return true;
+
+ emit_insn (seq);
+
+ dsecond = *d;
+ dsecond.op0 = dfirst.target;
+ dsecond.op1 = dfirst.target;
+ dsecond.one_operand_p = true;
+ dsecond.target = gen_reg_rtx (dsecond.vmode);
+ for (i = 0; i < nelt; i++)
+ dsecond.perm[i] = i ^ nelt2;
+
+ ok = expand_vec_perm_1 (&dsecond);
+ gcc_assert (ok);
+
+ blend = d->vmode == V8SFmode ? gen_avx_blendps256 : gen_avx_blendpd256;
+ emit_insn (blend (d->target, dfirst.target, dsecond.target, GEN_INT (msk)));
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Implement a V4DF
+ permutation using two vperm2f128, followed by a vshufpd insn blending
+ the two vectors together. */
+
+static bool
+expand_vec_perm_2vperm2f128_vshuf (struct expand_vec_perm_d *d)
+{
+ struct expand_vec_perm_d dfirst, dsecond, dthird;
+ bool ok;
+
+ if (!TARGET_AVX || (d->vmode != V4DFmode))
+ return false;
+
+ if (d->testing_p)
+ return true;
+
+ dfirst = *d;
+ dsecond = *d;
+ dthird = *d;
+
+ dfirst.perm[0] = (d->perm[0] & ~1);
+ dfirst.perm[1] = (d->perm[0] & ~1) + 1;
+ dfirst.perm[2] = (d->perm[2] & ~1);
+ dfirst.perm[3] = (d->perm[2] & ~1) + 1;
+ dsecond.perm[0] = (d->perm[1] & ~1);
+ dsecond.perm[1] = (d->perm[1] & ~1) + 1;
+ dsecond.perm[2] = (d->perm[3] & ~1);
+ dsecond.perm[3] = (d->perm[3] & ~1) + 1;
+ dthird.perm[0] = (d->perm[0] % 2);
+ dthird.perm[1] = (d->perm[1] % 2) + 4;
+ dthird.perm[2] = (d->perm[2] % 2) + 2;
+ dthird.perm[3] = (d->perm[3] % 2) + 6;
+
+ dfirst.target = gen_reg_rtx (dfirst.vmode);
+ dsecond.target = gen_reg_rtx (dsecond.vmode);
+ dthird.op0 = dfirst.target;
+ dthird.op1 = dsecond.target;
+ dthird.one_operand_p = false;
+
+ canonicalize_perm (&dfirst);
+ canonicalize_perm (&dsecond);
+
+ ok = expand_vec_perm_1 (&dfirst)
+ && expand_vec_perm_1 (&dsecond)
+ && expand_vec_perm_1 (&dthird);
+
+ gcc_assert (ok);
+
+ return true;
+}
+
+/* A subroutine of expand_vec_perm_even_odd_1. Implement the double-word
+ permutation with two pshufb insns and an ior. We should have already
+ failed all two instruction sequences. */
+
+static bool
+expand_vec_perm_pshufb2 (struct expand_vec_perm_d *d)
+{
+ rtx rperm[2][16], vperm, l, h, op, m128;
+ unsigned int i, nelt, eltsz;
+
+ if (!TARGET_SSSE3 || GET_MODE_SIZE (d->vmode) != 16)
+ return false;
+ gcc_assert (!d->one_operand_p);
+
+ if (d->testing_p)
+ return true;
+
+ nelt = d->nelt;
+ eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode));
+
+ /* Generate two permutation masks. If the required element is within
+ the given vector it is shuffled into the proper lane. If the required
+ element is in the other vector, force a zero into the lane by setting
+ bit 7 in the permutation mask. */
+ m128 = GEN_INT (-128);
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned j, e = d->perm[i];
+ unsigned which = (e >= nelt);
+ if (e >= nelt)
+ e -= nelt;
+
+ for (j = 0; j < eltsz; ++j)
+ {
+ rperm[which][i*eltsz + j] = GEN_INT (e*eltsz + j);
+ rperm[1-which][i*eltsz + j] = m128;
+ }
+ }
+
+ vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm[0]));
+ vperm = force_reg (V16QImode, vperm);
+
+ l = gen_reg_rtx (V16QImode);
+ op = gen_lowpart (V16QImode, d->op0);
+ emit_insn (gen_ssse3_pshufbv16qi3 (l, op, vperm));
+
+ vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm[1]));
+ vperm = force_reg (V16QImode, vperm);
+
+ h = gen_reg_rtx (V16QImode);
+ op = gen_lowpart (V16QImode, d->op1);
+ emit_insn (gen_ssse3_pshufbv16qi3 (h, op, vperm));
+
+ op = d->target;
+ if (d->vmode != V16QImode)
+ op = gen_reg_rtx (V16QImode);
+ emit_insn (gen_iorv16qi3 (op, l, h));
+ if (op != d->target)
+ emit_move_insn (d->target, gen_lowpart (d->vmode, op));
+
+ return true;
+}
+
+/* Implement arbitrary permutation of one V32QImode and V16QImode operand
+ with two vpshufb insns, vpermq and vpor. We should have already failed
+ all two or three instruction sequences. */
+
+static bool
+expand_vec_perm_vpshufb2_vpermq (struct expand_vec_perm_d *d)
+{
+ rtx rperm[2][32], vperm, l, h, hp, op, m128;
+ unsigned int i, nelt, eltsz;
+
+ if (!TARGET_AVX2
+ || !d->one_operand_p
+ || (d->vmode != V32QImode && d->vmode != V16HImode))
+ return false;
+
+ if (d->testing_p)
+ return true;
+
+ nelt = d->nelt;
+ eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode));
+
+ /* Generate two permutation masks. If the required element is within
+ the same lane, it is shuffled in. If the required element from the
+ other lane, force a zero by setting bit 7 in the permutation mask.
+ In the other mask the mask has non-negative elements if element
+ is requested from the other lane, but also moved to the other lane,
+ so that the result of vpshufb can have the two V2TImode halves
+ swapped. */
+ m128 = GEN_INT (-128);
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned j, e = d->perm[i] & (nelt / 2 - 1);
+ unsigned which = ((d->perm[i] ^ i) & (nelt / 2)) * eltsz;
+
+ for (j = 0; j < eltsz; ++j)
+ {
+ rperm[!!which][(i * eltsz + j) ^ which] = GEN_INT (e * eltsz + j);
+ rperm[!which][(i * eltsz + j) ^ (which ^ 16)] = m128;
+ }
+ }
+
+ vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[1]));
+ vperm = force_reg (V32QImode, vperm);
+
+ h = gen_reg_rtx (V32QImode);
+ op = gen_lowpart (V32QImode, d->op0);
+ emit_insn (gen_avx2_pshufbv32qi3 (h, op, vperm));
+
+ /* Swap the 128-byte lanes of h into hp. */
+ hp = gen_reg_rtx (V4DImode);
+ op = gen_lowpart (V4DImode, h);
+ emit_insn (gen_avx2_permv4di_1 (hp, op, const2_rtx, GEN_INT (3), const0_rtx,
+ const1_rtx));
+
+ vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[0]));
+ vperm = force_reg (V32QImode, vperm);
+
+ l = gen_reg_rtx (V32QImode);
+ op = gen_lowpart (V32QImode, d->op0);
+ emit_insn (gen_avx2_pshufbv32qi3 (l, op, vperm));
+
+ op = d->target;
+ if (d->vmode != V32QImode)
+ op = gen_reg_rtx (V32QImode);
+ emit_insn (gen_iorv32qi3 (op, l, gen_lowpart (V32QImode, hp)));
+ if (op != d->target)
+ emit_move_insn (d->target, gen_lowpart (d->vmode, op));
+
+ return true;
+}
+
+/* A subroutine of expand_vec_perm_even_odd_1. Implement extract-even
+ and extract-odd permutations of two V32QImode and V16QImode operand
+ with two vpshufb insns, vpor and vpermq. We should have already
+ failed all two or three instruction sequences. */
+
+static bool
+expand_vec_perm_vpshufb2_vpermq_even_odd (struct expand_vec_perm_d *d)
+{
+ rtx rperm[2][32], vperm, l, h, ior, op, m128;
+ unsigned int i, nelt, eltsz;
+
+ if (!TARGET_AVX2
+ || d->one_operand_p
+ || (d->vmode != V32QImode && d->vmode != V16HImode))
+ return false;
+
+ for (i = 0; i < d->nelt; ++i)
+ if ((d->perm[i] ^ (i * 2)) & (3 * d->nelt / 2))
+ return false;
+
+ if (d->testing_p)
+ return true;
+
+ nelt = d->nelt;
+ eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode));
+
+ /* Generate two permutation masks. In the first permutation mask
+ the first quarter will contain indexes for the first half
+ of the op0, the second quarter will contain bit 7 set, third quarter
+ will contain indexes for the second half of the op0 and the
+ last quarter bit 7 set. In the second permutation mask
+ the first quarter will contain bit 7 set, the second quarter
+ indexes for the first half of the op1, the third quarter bit 7 set
+ and last quarter indexes for the second half of the op1.
+ I.e. the first mask e.g. for V32QImode extract even will be:
+ 0, 2, ..., 0xe, -128, ..., -128, 0, 2, ..., 0xe, -128, ..., -128
+ (all values masked with 0xf except for -128) and second mask
+ for extract even will be
+ -128, ..., -128, 0, 2, ..., 0xe, -128, ..., -128, 0, 2, ..., 0xe. */
+ m128 = GEN_INT (-128);
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned j, e = d->perm[i] & (nelt / 2 - 1);
+ unsigned which = d->perm[i] >= nelt;
+ unsigned xorv = (i >= nelt / 4 && i < 3 * nelt / 4) ? 24 : 0;
+
+ for (j = 0; j < eltsz; ++j)
+ {
+ rperm[which][(i * eltsz + j) ^ xorv] = GEN_INT (e * eltsz + j);
+ rperm[1 - which][(i * eltsz + j) ^ xorv] = m128;
+ }
+ }
+
+ vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[0]));
+ vperm = force_reg (V32QImode, vperm);
+
+ l = gen_reg_rtx (V32QImode);
+ op = gen_lowpart (V32QImode, d->op0);
+ emit_insn (gen_avx2_pshufbv32qi3 (l, op, vperm));
+
+ vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[1]));
+ vperm = force_reg (V32QImode, vperm);
+
+ h = gen_reg_rtx (V32QImode);
+ op = gen_lowpart (V32QImode, d->op1);
+ emit_insn (gen_avx2_pshufbv32qi3 (h, op, vperm));
+
+ ior = gen_reg_rtx (V32QImode);
+ emit_insn (gen_iorv32qi3 (ior, l, h));
+
+ /* Permute the V4DImode quarters using { 0, 2, 1, 3 } permutation. */
+ op = gen_reg_rtx (V4DImode);
+ ior = gen_lowpart (V4DImode, ior);
+ emit_insn (gen_avx2_permv4di_1 (op, ior, const0_rtx, const2_rtx,
+ const1_rtx, GEN_INT (3)));
+ emit_move_insn (d->target, gen_lowpart (d->vmode, op));
+
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Implement extract-even
+ and extract-odd permutations. */
+
+static bool
+expand_vec_perm_even_odd_1 (struct expand_vec_perm_d *d, unsigned odd)
+{
+ rtx t1, t2, t3, t4, t5;
+
+ switch (d->vmode)
+ {
+ case V4DFmode:
+ if (d->testing_p)
+ break;
+ t1 = gen_reg_rtx (V4DFmode);
+ t2 = gen_reg_rtx (V4DFmode);
+
+ /* Shuffle the lanes around into { 0 1 4 5 } and { 2 3 6 7 }. */
+ emit_insn (gen_avx_vperm2f128v4df3 (t1, d->op0, d->op1, GEN_INT (0x20)));
+ emit_insn (gen_avx_vperm2f128v4df3 (t2, d->op0, d->op1, GEN_INT (0x31)));
+
+ /* Now an unpck[lh]pd will produce the result required. */
+ if (odd)
+ t3 = gen_avx_unpckhpd256 (d->target, t1, t2);
+ else
+ t3 = gen_avx_unpcklpd256 (d->target, t1, t2);
+ emit_insn (t3);
+ break;
+
+ case V8SFmode:
+ {
+ int mask = odd ? 0xdd : 0x88;
+
+ if (d->testing_p)
+ break;
+ t1 = gen_reg_rtx (V8SFmode);
+ t2 = gen_reg_rtx (V8SFmode);
+ t3 = gen_reg_rtx (V8SFmode);
+
+ /* Shuffle within the 128-bit lanes to produce:
+ { 0 2 8 a 4 6 c e } | { 1 3 9 b 5 7 d f }. */
+ emit_insn (gen_avx_shufps256 (t1, d->op0, d->op1,
+ GEN_INT (mask)));
+
+ /* Shuffle the lanes around to produce:
+ { 4 6 c e 0 2 8 a } and { 5 7 d f 1 3 9 b }. */
+ emit_insn (gen_avx_vperm2f128v8sf3 (t2, t1, t1,
+ GEN_INT (0x3)));
+
+ /* Shuffle within the 128-bit lanes to produce:
+ { 0 2 4 6 4 6 0 2 } | { 1 3 5 7 5 7 1 3 }. */
+ emit_insn (gen_avx_shufps256 (t3, t1, t2, GEN_INT (0x44)));
+
+ /* Shuffle within the 128-bit lanes to produce:
+ { 8 a c e c e 8 a } | { 9 b d f d f 9 b }. */
+ emit_insn (gen_avx_shufps256 (t2, t1, t2, GEN_INT (0xee)));
+
+ /* Shuffle the lanes around to produce:
+ { 0 2 4 6 8 a c e } | { 1 3 5 7 9 b d f }. */
+ emit_insn (gen_avx_vperm2f128v8sf3 (d->target, t3, t2,
+ GEN_INT (0x20)));
+ }
+ break;
+
+ case V2DFmode:
+ case V4SFmode:
+ case V2DImode:
+ case V4SImode:
+ /* These are always directly implementable by expand_vec_perm_1. */
+ gcc_unreachable ();
+
+ case V8HImode:
+ if (TARGET_SSSE3)
+ return expand_vec_perm_pshufb2 (d);
+ else
+ {
+ if (d->testing_p)
+ break;
+ /* We need 2*log2(N)-1 operations to achieve odd/even
+ with interleave. */
+ t1 = gen_reg_rtx (V8HImode);
+ t2 = gen_reg_rtx (V8HImode);
+ emit_insn (gen_vec_interleave_highv8hi (t1, d->op0, d->op1));
+ emit_insn (gen_vec_interleave_lowv8hi (d->target, d->op0, d->op1));
+ emit_insn (gen_vec_interleave_highv8hi (t2, d->target, t1));
+ emit_insn (gen_vec_interleave_lowv8hi (d->target, d->target, t1));
+ if (odd)
+ t3 = gen_vec_interleave_highv8hi (d->target, d->target, t2);
+ else
+ t3 = gen_vec_interleave_lowv8hi (d->target, d->target, t2);
+ emit_insn (t3);
+ }
+ break;
+
+ case V16QImode:
+ if (TARGET_SSSE3)
+ return expand_vec_perm_pshufb2 (d);
+ else
+ {
+ if (d->testing_p)
+ break;
+ t1 = gen_reg_rtx (V16QImode);
+ t2 = gen_reg_rtx (V16QImode);
+ t3 = gen_reg_rtx (V16QImode);
+ emit_insn (gen_vec_interleave_highv16qi (t1, d->op0, d->op1));
+ emit_insn (gen_vec_interleave_lowv16qi (d->target, d->op0, d->op1));
+ emit_insn (gen_vec_interleave_highv16qi (t2, d->target, t1));
+ emit_insn (gen_vec_interleave_lowv16qi (d->target, d->target, t1));
+ emit_insn (gen_vec_interleave_highv16qi (t3, d->target, t2));
+ emit_insn (gen_vec_interleave_lowv16qi (d->target, d->target, t2));
+ if (odd)
+ t3 = gen_vec_interleave_highv16qi (d->target, d->target, t3);
+ else
+ t3 = gen_vec_interleave_lowv16qi (d->target, d->target, t3);
+ emit_insn (t3);
+ }
+ break;
+
+ case V16HImode:
+ case V32QImode:
+ return expand_vec_perm_vpshufb2_vpermq_even_odd (d);
+
+ case V4DImode:
+ if (!TARGET_AVX2)
+ {
+ struct expand_vec_perm_d d_copy = *d;
+ d_copy.vmode = V4DFmode;
+ if (d->testing_p)
+ d_copy.target = gen_lowpart (V4DFmode, d->target);
+ else
+ d_copy.target = gen_reg_rtx (V4DFmode);
+ d_copy.op0 = gen_lowpart (V4DFmode, d->op0);
+ d_copy.op1 = gen_lowpart (V4DFmode, d->op1);
+ if (expand_vec_perm_even_odd_1 (&d_copy, odd))
+ {
+ if (!d->testing_p)
+ emit_move_insn (d->target,
+ gen_lowpart (V4DImode, d_copy.target));
+ return true;
+ }
+ return false;
+ }
+
+ if (d->testing_p)
+ break;
+
+ t1 = gen_reg_rtx (V4DImode);
+ t2 = gen_reg_rtx (V4DImode);
+
+ /* Shuffle the lanes around into { 0 1 4 5 } and { 2 3 6 7 }. */
+ emit_insn (gen_avx2_permv2ti (t1, d->op0, d->op1, GEN_INT (0x20)));
+ emit_insn (gen_avx2_permv2ti (t2, d->op0, d->op1, GEN_INT (0x31)));
+
+ /* Now an vpunpck[lh]qdq will produce the result required. */
+ if (odd)
+ t3 = gen_avx2_interleave_highv4di (d->target, t1, t2);
+ else
+ t3 = gen_avx2_interleave_lowv4di (d->target, t1, t2);
+ emit_insn (t3);
+ break;
+
+ case V8SImode:
+ if (!TARGET_AVX2)
+ {
+ struct expand_vec_perm_d d_copy = *d;
+ d_copy.vmode = V8SFmode;
+ if (d->testing_p)
+ d_copy.target = gen_lowpart (V8SFmode, d->target);
+ else
+ d_copy.target = gen_reg_rtx (V8SFmode);
+ d_copy.op0 = gen_lowpart (V8SFmode, d->op0);
+ d_copy.op1 = gen_lowpart (V8SFmode, d->op1);
+ if (expand_vec_perm_even_odd_1 (&d_copy, odd))
+ {
+ if (!d->testing_p)
+ emit_move_insn (d->target,
+ gen_lowpart (V8SImode, d_copy.target));
+ return true;
+ }
+ return false;
+ }
+
+ if (d->testing_p)
+ break;
+
+ t1 = gen_reg_rtx (V8SImode);
+ t2 = gen_reg_rtx (V8SImode);
+ t3 = gen_reg_rtx (V4DImode);
+ t4 = gen_reg_rtx (V4DImode);
+ t5 = gen_reg_rtx (V4DImode);
+
+ /* Shuffle the lanes around into
+ { 0 1 2 3 8 9 a b } and { 4 5 6 7 c d e f }. */
+ emit_insn (gen_avx2_permv2ti (t3, gen_lowpart (V4DImode, d->op0),
+ gen_lowpart (V4DImode, d->op1),
+ GEN_INT (0x20)));
+ emit_insn (gen_avx2_permv2ti (t4, gen_lowpart (V4DImode, d->op0),
+ gen_lowpart (V4DImode, d->op1),
+ GEN_INT (0x31)));
+
+ /* Swap the 2nd and 3rd position in each lane into
+ { 0 2 1 3 8 a 9 b } and { 4 6 5 7 c e d f }. */
+ emit_insn (gen_avx2_pshufdv3 (t1, gen_lowpart (V8SImode, t3),
+ GEN_INT (2 * 4 + 1 * 16 + 3 * 64)));
+ emit_insn (gen_avx2_pshufdv3 (t2, gen_lowpart (V8SImode, t4),
+ GEN_INT (2 * 4 + 1 * 16 + 3 * 64)));
+
+ /* Now an vpunpck[lh]qdq will produce
+ { 0 2 4 6 8 a c e } resp. { 1 3 5 7 9 b d f }. */
+ if (odd)
+ t3 = gen_avx2_interleave_highv4di (t5, gen_lowpart (V4DImode, t1),
+ gen_lowpart (V4DImode, t2));
+ else
+ t3 = gen_avx2_interleave_lowv4di (t5, gen_lowpart (V4DImode, t1),
+ gen_lowpart (V4DImode, t2));
+ emit_insn (t3);
+ emit_move_insn (d->target, gen_lowpart (V8SImode, t5));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return true;
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Pattern match
+ extract-even and extract-odd permutations. */
+
+static bool
+expand_vec_perm_even_odd (struct expand_vec_perm_d *d)
+{
+ unsigned i, odd, nelt = d->nelt;
+
+ odd = d->perm[0];
+ if (odd != 0 && odd != 1)
+ return false;
+
+ for (i = 1; i < nelt; ++i)
+ if (d->perm[i] != 2 * i + odd)
+ return false;
+
+ return expand_vec_perm_even_odd_1 (d, odd);
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Implement broadcast
+ permutations. We assume that expand_vec_perm_1 has already failed. */
+
+static bool
+expand_vec_perm_broadcast_1 (struct expand_vec_perm_d *d)
+{
+ unsigned elt = d->perm[0], nelt2 = d->nelt / 2;
+ enum machine_mode vmode = d->vmode;
+ unsigned char perm2[4];
+ rtx op0 = d->op0, dest;
+ bool ok;
+
+ switch (vmode)
+ {
+ case V4DFmode:
+ case V8SFmode:
+ /* These are special-cased in sse.md so that we can optionally
+ use the vbroadcast instruction. They expand to two insns
+ if the input happens to be in a register. */
+ gcc_unreachable ();
+
+ case V2DFmode:
+ case V2DImode:
+ case V4SFmode:
+ case V4SImode:
+ /* These are always implementable using standard shuffle patterns. */
+ gcc_unreachable ();
+
+ case V8HImode:
+ case V16QImode:
+ /* These can be implemented via interleave. We save one insn by
+ stopping once we have promoted to V4SImode and then use pshufd. */
+ if (d->testing_p)
+ return true;
+ do
+ {
+ rtx dest;
+ rtx (*gen) (rtx, rtx, rtx)
+ = vmode == V16QImode ? gen_vec_interleave_lowv16qi
+ : gen_vec_interleave_lowv8hi;
+
+ if (elt >= nelt2)
+ {
+ gen = vmode == V16QImode ? gen_vec_interleave_highv16qi
+ : gen_vec_interleave_highv8hi;
+ elt -= nelt2;
+ }
+ nelt2 /= 2;
+
+ dest = gen_reg_rtx (vmode);
+ emit_insn (gen (dest, op0, op0));
+ vmode = get_mode_wider_vector (vmode);
+ op0 = gen_lowpart (vmode, dest);
+ }
+ while (vmode != V4SImode);
+
+ memset (perm2, elt, 4);
+ dest = gen_reg_rtx (V4SImode);
+ ok = expand_vselect (dest, op0, perm2, 4, d->testing_p);
+ gcc_assert (ok);
+ if (!d->testing_p)
+ emit_move_insn (d->target, gen_lowpart (d->vmode, dest));
+ return true;
+
+ case V32QImode:
+ case V16HImode:
+ case V8SImode:
+ case V4DImode:
+ /* For AVX2 broadcasts of the first element vpbroadcast* or
+ vpermq should be used by expand_vec_perm_1. */
+ gcc_assert (!TARGET_AVX2 || d->perm[0]);
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* A subroutine of ix86_expand_vec_perm_builtin_1. Pattern match
+ broadcast permutations. */
+
+static bool
+expand_vec_perm_broadcast (struct expand_vec_perm_d *d)
+{
+ unsigned i, elt, nelt = d->nelt;
+
+ if (!d->one_operand_p)
+ return false;
+
+ elt = d->perm[0];
+ for (i = 1; i < nelt; ++i)
+ if (d->perm[i] != elt)
+ return false;
+
+ return expand_vec_perm_broadcast_1 (d);
+}
+
+/* Implement arbitrary permutation of two V32QImode and V16QImode operands
+ with 4 vpshufb insns, 2 vpermq and 3 vpor. We should have already failed
+ all the shorter instruction sequences. */
+
+static bool
+expand_vec_perm_vpshufb4_vpermq2 (struct expand_vec_perm_d *d)
+{
+ rtx rperm[4][32], vperm, l[2], h[2], op, m128;
+ unsigned int i, nelt, eltsz;
+ bool used[4];
+
+ if (!TARGET_AVX2
+ || d->one_operand_p
+ || (d->vmode != V32QImode && d->vmode != V16HImode))
+ return false;
+
+ if (d->testing_p)
+ return true;
+
+ nelt = d->nelt;
+ eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode));
+
+ /* Generate 4 permutation masks. If the required element is within
+ the same lane, it is shuffled in. If the required element from the
+ other lane, force a zero by setting bit 7 in the permutation mask.
+ In the other mask the mask has non-negative elements if element
+ is requested from the other lane, but also moved to the other lane,
+ so that the result of vpshufb can have the two V2TImode halves
+ swapped. */
+ m128 = GEN_INT (-128);
+ for (i = 0; i < 32; ++i)
+ {
+ rperm[0][i] = m128;
+ rperm[1][i] = m128;
+ rperm[2][i] = m128;
+ rperm[3][i] = m128;
+ }
+ used[0] = false;
+ used[1] = false;
+ used[2] = false;
+ used[3] = false;
+ for (i = 0; i < nelt; ++i)
+ {
+ unsigned j, e = d->perm[i] & (nelt / 2 - 1);
+ unsigned xlane = ((d->perm[i] ^ i) & (nelt / 2)) * eltsz;
+ unsigned int which = ((d->perm[i] & nelt) ? 2 : 0) + (xlane ? 1 : 0);
+
+ for (j = 0; j < eltsz; ++j)
+ rperm[which][(i * eltsz + j) ^ xlane] = GEN_INT (e * eltsz + j);
+ used[which] = true;
+ }
+
+ for (i = 0; i < 2; ++i)
+ {
+ if (!used[2 * i + 1])
+ {
+ h[i] = NULL_RTX;
+ continue;
+ }
+ vperm = gen_rtx_CONST_VECTOR (V32QImode,
+ gen_rtvec_v (32, rperm[2 * i + 1]));
+ vperm = force_reg (V32QImode, vperm);
+ h[i] = gen_reg_rtx (V32QImode);
+ op = gen_lowpart (V32QImode, i ? d->op1 : d->op0);
+ emit_insn (gen_avx2_pshufbv32qi3 (h[i], op, vperm));
+ }
+
+ /* Swap the 128-byte lanes of h[X]. */
+ for (i = 0; i < 2; ++i)
+ {
+ if (h[i] == NULL_RTX)
+ continue;
+ op = gen_reg_rtx (V4DImode);
+ emit_insn (gen_avx2_permv4di_1 (op, gen_lowpart (V4DImode, h[i]),
+ const2_rtx, GEN_INT (3), const0_rtx,
+ const1_rtx));
+ h[i] = gen_lowpart (V32QImode, op);
+ }
+
+ for (i = 0; i < 2; ++i)
+ {
+ if (!used[2 * i])
+ {
+ l[i] = NULL_RTX;
+ continue;
+ }
+ vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[2 * i]));
+ vperm = force_reg (V32QImode, vperm);
+ l[i] = gen_reg_rtx (V32QImode);
+ op = gen_lowpart (V32QImode, i ? d->op1 : d->op0);
+ emit_insn (gen_avx2_pshufbv32qi3 (l[i], op, vperm));
+ }
+
+ for (i = 0; i < 2; ++i)
+ {
+ if (h[i] && l[i])
+ {
+ op = gen_reg_rtx (V32QImode);
+ emit_insn (gen_iorv32qi3 (op, l[i], h[i]));
+ l[i] = op;
+ }
+ else if (h[i])
+ l[i] = h[i];
+ }
+
+ gcc_assert (l[0] && l[1]);
+ op = d->target;
+ if (d->vmode != V32QImode)
+ op = gen_reg_rtx (V32QImode);
+ emit_insn (gen_iorv32qi3 (op, l[0], l[1]));
+ if (op != d->target)
+ emit_move_insn (d->target, gen_lowpart (d->vmode, op));
+ return true;
+}
+
+/* The guts of ix86_expand_vec_perm_const, also used by the ok hook.
+ With all of the interface bits taken care of, perform the expansion
+ in D and return true on success. */
+
+static bool
+ix86_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
+{
+ /* Try a single instruction expansion. */
+ if (expand_vec_perm_1 (d))
+ return true;
+
+ /* Try sequences of two instructions. */
+
+ if (expand_vec_perm_pshuflw_pshufhw (d))
+ return true;
+
+ if (expand_vec_perm_palignr (d))
+ return true;
+
+ if (expand_vec_perm_interleave2 (d))
+ return true;
+
+ if (expand_vec_perm_broadcast (d))
+ return true;
+
+ if (expand_vec_perm_vpermq_perm_1 (d))
+ return true;
+
+ if (expand_vec_perm_vperm2f128 (d))
+ return true;
+
+ /* Try sequences of three instructions. */
+
+ if (expand_vec_perm_2vperm2f128_vshuf (d))
+ return true;
+
+ if (expand_vec_perm_pshufb2 (d))
+ return true;
+
+ if (expand_vec_perm_interleave3 (d))
+ return true;
+
+ if (expand_vec_perm_vperm2f128_vblend (d))
+ return true;
+
+ /* Try sequences of four instructions. */
+
+ if (expand_vec_perm_vpshufb2_vpermq (d))
+ return true;
+
+ if (expand_vec_perm_vpshufb2_vpermq_even_odd (d))
+ return true;
+
+ /* ??? Look for narrow permutations whose element orderings would
+ allow the promotion to a wider mode. */
+
+ /* ??? Look for sequences of interleave or a wider permute that place
+ the data into the correct lanes for a half-vector shuffle like
+ pshuf[lh]w or vpermilps. */
+
+ /* ??? Look for sequences of interleave that produce the desired results.
+ The combinatorics of punpck[lh] get pretty ugly... */
+
+ if (expand_vec_perm_even_odd (d))
+ return true;
+
+ /* Even longer sequences. */
+ if (expand_vec_perm_vpshufb4_vpermq2 (d))
+ return true;
+
+ return false;
+}
+
+/* If a permutation only uses one operand, make it clear. Returns true
+ if the permutation references both operands. */
+
+static bool
+canonicalize_perm (struct expand_vec_perm_d *d)
+{
+ int i, which, nelt = d->nelt;
+
+ for (i = which = 0; i < nelt; ++i)
+ which |= (d->perm[i] < nelt ? 1 : 2);
+
+ d->one_operand_p = true;
+ switch (which)
+ {
+ default:
+ gcc_unreachable();
+
+ case 3:
+ if (!rtx_equal_p (d->op0, d->op1))
+ {
+ d->one_operand_p = false;
+ break;
+ }
+ /* The elements of PERM do not suggest that only the first operand
+ is used, but both operands are identical. Allow easier matching
+ of the permutation by folding the permutation into the single
+ input vector. */
+ /* FALLTHRU */
+
+ case 2:
+ for (i = 0; i < nelt; ++i)
+ d->perm[i] &= nelt - 1;
+ d->op0 = d->op1;
+ break;
+
+ case 1:
+ d->op1 = d->op0;
+ break;
+ }
+
+ return (which == 3);
+}
+
+bool
+ix86_expand_vec_perm_const (rtx operands[4])
+{
+ struct expand_vec_perm_d d;
+ unsigned char perm[MAX_VECT_LEN];
+ int i, nelt;
+ bool two_args;
+ rtx sel;
+
+ d.target = operands[0];
+ d.op0 = operands[1];
+ d.op1 = operands[2];
+ sel = operands[3];
+
+ d.vmode = GET_MODE (d.target);
+ gcc_assert (VECTOR_MODE_P (d.vmode));
+ d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
+ d.testing_p = false;
+
+ gcc_assert (GET_CODE (sel) == CONST_VECTOR);
+ gcc_assert (XVECLEN (sel, 0) == nelt);
+ gcc_checking_assert (sizeof (d.perm) == sizeof (perm));
+
+ for (i = 0; i < nelt; ++i)
+ {
+ rtx e = XVECEXP (sel, 0, i);
+ int ei = INTVAL (e) & (2 * nelt - 1);
+ d.perm[i] = ei;
+ perm[i] = ei;
+ }
+
+ two_args = canonicalize_perm (&d);
+
+ if (ix86_expand_vec_perm_const_1 (&d))
+ return true;
+
+ /* If the selector says both arguments are needed, but the operands are the
+ same, the above tried to expand with one_operand_p and flattened selector.
+ If that didn't work, retry without one_operand_p; we succeeded with that
+ during testing. */
+ if (two_args && d.one_operand_p)
+ {
+ d.one_operand_p = false;
+ memcpy (d.perm, perm, sizeof (perm));
+ return ix86_expand_vec_perm_const_1 (&d);
+ }
+
+ return false;
+}
+
+/* Implement targetm.vectorize.vec_perm_const_ok. */
+
+static bool
+ix86_vectorize_vec_perm_const_ok (enum machine_mode vmode,
+ const unsigned char *sel)
+{
+ struct expand_vec_perm_d d;
+ unsigned int i, nelt, which;
+ bool ret;
+
+ d.vmode = vmode;
+ d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
+ d.testing_p = true;
+
+ /* Given sufficient ISA support we can just return true here
+ for selected vector modes. */
+ if (d.vmode == V16SImode || d.vmode == V16SFmode
+ || d.vmode == V8DFmode || d.vmode == V8DImode)
+ /* All implementable with a single vpermi2 insn. */
+ return true;
+ if (GET_MODE_SIZE (d.vmode) == 16)
+ {
+ /* All implementable with a single vpperm insn. */
+ if (TARGET_XOP)
+ return true;
+ /* All implementable with 2 pshufb + 1 ior. */
+ if (TARGET_SSSE3)
+ return true;
+ /* All implementable with shufpd or unpck[lh]pd. */
+ if (d.nelt == 2)
+ return true;
+ }
+
+ /* Extract the values from the vector CST into the permutation
+ array in D. */
+ memcpy (d.perm, sel, nelt);
+ for (i = which = 0; i < nelt; ++i)
+ {
+ unsigned char e = d.perm[i];
+ gcc_assert (e < 2 * nelt);
+ which |= (e < nelt ? 1 : 2);
+ }
+
+ /* For all elements from second vector, fold the elements to first. */
+ if (which == 2)
+ for (i = 0; i < nelt; ++i)
+ d.perm[i] -= nelt;
+
+ /* Check whether the mask can be applied to the vector type. */
+ d.one_operand_p = (which != 3);
+
+ /* Implementable with shufps or pshufd. */
+ if (d.one_operand_p && (d.vmode == V4SFmode || d.vmode == V4SImode))
+ return true;
+
+ /* Otherwise we have to go through the motions and see if we can
+ figure out how to generate the requested permutation. */
+ d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1);
+ d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2);
+ if (!d.one_operand_p)
+ d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3);
+
+ start_sequence ();
+ ret = ix86_expand_vec_perm_const_1 (&d);
+ end_sequence ();
+
+ return ret;
+}
+
+void
+ix86_expand_vec_extract_even_odd (rtx targ, rtx op0, rtx op1, unsigned odd)
+{
+ struct expand_vec_perm_d d;
+ unsigned i, nelt;
+
+ d.target = targ;
+ d.op0 = op0;
+ d.op1 = op1;
+ d.vmode = GET_MODE (targ);
+ d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
+ d.one_operand_p = false;
+ d.testing_p = false;
+
+ for (i = 0; i < nelt; ++i)
+ d.perm[i] = i * 2 + odd;
+
+ /* We'll either be able to implement the permutation directly... */
+ if (expand_vec_perm_1 (&d))
+ return;
+
+ /* ... or we use the special-case patterns. */
+ expand_vec_perm_even_odd_1 (&d, odd);
+}
+
+static void
+ix86_expand_vec_interleave (rtx targ, rtx op0, rtx op1, bool high_p)
+{
+ struct expand_vec_perm_d d;
+ unsigned i, nelt, base;
+ bool ok;
+
+ d.target = targ;
+ d.op0 = op0;
+ d.op1 = op1;
+ d.vmode = GET_MODE (targ);
+ d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
+ d.one_operand_p = false;
+ d.testing_p = false;
+
+ base = high_p ? nelt / 2 : 0;
+ for (i = 0; i < nelt / 2; ++i)
+ {
+ d.perm[i * 2] = i + base;
+ d.perm[i * 2 + 1] = i + base + nelt;
+ }
+
+ /* Note that for AVX this isn't one instruction. */
+ ok = ix86_expand_vec_perm_const_1 (&d);
+ gcc_assert (ok);
+}
+
+
+/* Expand a vector operation CODE for a V*QImode in terms of the
+ same operation on V*HImode. */
+
+void
+ix86_expand_vecop_qihi (enum rtx_code code, rtx dest, rtx op1, rtx op2)
+{
+ enum machine_mode qimode = GET_MODE (dest);
+ enum machine_mode himode;
+ rtx (*gen_il) (rtx, rtx, rtx);
+ rtx (*gen_ih) (rtx, rtx, rtx);
+ rtx op1_l, op1_h, op2_l, op2_h, res_l, res_h;
+ struct expand_vec_perm_d d;
+ bool ok, full_interleave;
+ bool uns_p = false;
+ int i;
+
+ switch (qimode)
+ {
+ case V16QImode:
+ himode = V8HImode;
+ gen_il = gen_vec_interleave_lowv16qi;
+ gen_ih = gen_vec_interleave_highv16qi;
+ break;
+ case V32QImode:
+ himode = V16HImode;
+ gen_il = gen_avx2_interleave_lowv32qi;
+ gen_ih = gen_avx2_interleave_highv32qi;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ op2_l = op2_h = op2;
+ switch (code)
+ {
+ case MULT:
+ /* Unpack data such that we've got a source byte in each low byte of
+ each word. We don't care what goes into the high byte of each word.
+ Rather than trying to get zero in there, most convenient is to let
+ it be a copy of the low byte. */
+ op2_l = gen_reg_rtx (qimode);
+ op2_h = gen_reg_rtx (qimode);
+ emit_insn (gen_il (op2_l, op2, op2));
+ emit_insn (gen_ih (op2_h, op2, op2));
+ /* FALLTHRU */
+
+ op1_l = gen_reg_rtx (qimode);
+ op1_h = gen_reg_rtx (qimode);
+ emit_insn (gen_il (op1_l, op1, op1));
+ emit_insn (gen_ih (op1_h, op1, op1));
+ full_interleave = qimode == V16QImode;
+ break;
+
+ case ASHIFT:
+ case LSHIFTRT:
+ uns_p = true;
+ /* FALLTHRU */
+ case ASHIFTRT:
+ op1_l = gen_reg_rtx (himode);
+ op1_h = gen_reg_rtx (himode);
+ ix86_expand_sse_unpack (op1_l, op1, uns_p, false);
+ ix86_expand_sse_unpack (op1_h, op1, uns_p, true);
+ full_interleave = true;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Perform the operation. */
+ res_l = expand_simple_binop (himode, code, op1_l, op2_l, NULL_RTX,
+ 1, OPTAB_DIRECT);
+ res_h = expand_simple_binop (himode, code, op1_h, op2_h, NULL_RTX,
+ 1, OPTAB_DIRECT);
+ gcc_assert (res_l && res_h);
+
+ /* Merge the data back into the right place. */
+ d.target = dest;
+ d.op0 = gen_lowpart (qimode, res_l);
+ d.op1 = gen_lowpart (qimode, res_h);
+ d.vmode = qimode;
+ d.nelt = GET_MODE_NUNITS (qimode);
+ d.one_operand_p = false;
+ d.testing_p = false;
+
+ if (full_interleave)
+ {
+ /* For SSE2, we used an full interleave, so the desired
+ results are in the even elements. */
+ for (i = 0; i < 32; ++i)
+ d.perm[i] = i * 2;
+ }
+ else
+ {
+ /* For AVX, the interleave used above was not cross-lane. So the
+ extraction is evens but with the second and third quarter swapped.
+ Happily, that is even one insn shorter than even extraction. */
+ for (i = 0; i < 32; ++i)
+ d.perm[i] = i * 2 + ((i & 24) == 8 ? 16 : (i & 24) == 16 ? -16 : 0);
+ }
+
+ ok = ix86_expand_vec_perm_const_1 (&d);
+ gcc_assert (ok);
+
+ set_unique_reg_note (get_last_insn (), REG_EQUAL,
+ gen_rtx_fmt_ee (code, qimode, op1, op2));
+}
+
+/* Helper function of ix86_expand_mul_widen_evenodd. Return true
+ if op is CONST_VECTOR with all odd elements equal to their
+ preceding element. */
+
+static bool
+const_vector_equal_evenodd_p (rtx op)
+{
+ enum machine_mode mode = GET_MODE (op);
+ int i, nunits = GET_MODE_NUNITS (mode);
+ if (GET_CODE (op) != CONST_VECTOR
+ || nunits != CONST_VECTOR_NUNITS (op))
+ return false;
+ for (i = 0; i < nunits; i += 2)
+ if (CONST_VECTOR_ELT (op, i) != CONST_VECTOR_ELT (op, i + 1))
+ return false;
+ return true;
+}
+
+void
+ix86_expand_mul_widen_evenodd (rtx dest, rtx op1, rtx op2,
+ bool uns_p, bool odd_p)
+{
+ enum machine_mode mode = GET_MODE (op1);
+ enum machine_mode wmode = GET_MODE (dest);
+ rtx x;
+ rtx orig_op1 = op1, orig_op2 = op2;
+
+ if (!nonimmediate_operand (op1, mode))
+ op1 = force_reg (mode, op1);
+ if (!nonimmediate_operand (op2, mode))
+ op2 = force_reg (mode, op2);
+
+ /* We only play even/odd games with vectors of SImode. */
+ gcc_assert (mode == V4SImode || mode == V8SImode || mode == V16SImode);
+
+ /* If we're looking for the odd results, shift those members down to
+ the even slots. For some cpus this is faster than a PSHUFD. */
+ if (odd_p)
+ {
+ /* For XOP use vpmacsdqh, but only for smult, as it is only
+ signed. */
+ if (TARGET_XOP && mode == V4SImode && !uns_p)
+ {
+ x = force_reg (wmode, CONST0_RTX (wmode));
+ emit_insn (gen_xop_pmacsdqh (dest, op1, op2, x));
+ return;
+ }
+
+ x = GEN_INT (GET_MODE_UNIT_BITSIZE (mode));
+ if (!const_vector_equal_evenodd_p (orig_op1))
+ op1 = expand_binop (wmode, lshr_optab, gen_lowpart (wmode, op1),
+ x, NULL, 1, OPTAB_DIRECT);
+ if (!const_vector_equal_evenodd_p (orig_op2))
+ op2 = expand_binop (wmode, lshr_optab, gen_lowpart (wmode, op2),
+ x, NULL, 1, OPTAB_DIRECT);
+ op1 = gen_lowpart (mode, op1);
+ op2 = gen_lowpart (mode, op2);
+ }
+
+ if (mode == V16SImode)
+ {
+ if (uns_p)
+ x = gen_vec_widen_umult_even_v16si (dest, op1, op2);
+ else
+ x = gen_vec_widen_smult_even_v16si (dest, op1, op2);
+ }
+ else if (mode == V8SImode)
+ {
+ if (uns_p)
+ x = gen_vec_widen_umult_even_v8si (dest, op1, op2);
+ else
+ x = gen_vec_widen_smult_even_v8si (dest, op1, op2);
+ }
+ else if (uns_p)
+ x = gen_vec_widen_umult_even_v4si (dest, op1, op2);
+ else if (TARGET_SSE4_1)
+ x = gen_sse4_1_mulv2siv2di3 (dest, op1, op2);
+ else
+ {
+ rtx s1, s2, t0, t1, t2;
+
+ /* The easiest way to implement this without PMULDQ is to go through
+ the motions as if we are performing a full 64-bit multiply. With
+ the exception that we need to do less shuffling of the elements. */
+
+ /* Compute the sign-extension, aka highparts, of the two operands. */
+ s1 = ix86_expand_sse_cmp (gen_reg_rtx (mode), GT, CONST0_RTX (mode),
+ op1, pc_rtx, pc_rtx);
+ s2 = ix86_expand_sse_cmp (gen_reg_rtx (mode), GT, CONST0_RTX (mode),
+ op2, pc_rtx, pc_rtx);
+
+ /* Multiply LO(A) * HI(B), and vice-versa. */
+ t1 = gen_reg_rtx (wmode);
+ t2 = gen_reg_rtx (wmode);
+ emit_insn (gen_vec_widen_umult_even_v4si (t1, s1, op2));
+ emit_insn (gen_vec_widen_umult_even_v4si (t2, s2, op1));
+
+ /* Multiply LO(A) * LO(B). */
+ t0 = gen_reg_rtx (wmode);
+ emit_insn (gen_vec_widen_umult_even_v4si (t0, op1, op2));
+
+ /* Combine and shift the highparts into place. */
+ t1 = expand_binop (wmode, add_optab, t1, t2, t1, 1, OPTAB_DIRECT);
+ t1 = expand_binop (wmode, ashl_optab, t1, GEN_INT (32), t1,
+ 1, OPTAB_DIRECT);
+
+ /* Combine high and low parts. */
+ force_expand_binop (wmode, add_optab, t0, t1, dest, 1, OPTAB_DIRECT);
+ return;
+ }
+ emit_insn (x);
+}
+
+void
+ix86_expand_mul_widen_hilo (rtx dest, rtx op1, rtx op2,
+ bool uns_p, bool high_p)
+{
+ enum machine_mode wmode = GET_MODE (dest);
+ enum machine_mode mode = GET_MODE (op1);
+ rtx t1, t2, t3, t4, mask;
+
+ switch (mode)
+ {
+ case V4SImode:
+ t1 = gen_reg_rtx (mode);
+ t2 = gen_reg_rtx (mode);
+ if (TARGET_XOP && !uns_p)
+ {
+ /* With XOP, we have pmacsdqh, aka mul_widen_odd. In this case,
+ shuffle the elements once so that all elements are in the right
+ place for immediate use: { A C B D }. */
+ emit_insn (gen_sse2_pshufd_1 (t1, op1, const0_rtx, const2_rtx,
+ const1_rtx, GEN_INT (3)));
+ emit_insn (gen_sse2_pshufd_1 (t2, op2, const0_rtx, const2_rtx,
+ const1_rtx, GEN_INT (3)));
+ }
+ else
+ {
+ /* Put the elements into place for the multiply. */
+ ix86_expand_vec_interleave (t1, op1, op1, high_p);
+ ix86_expand_vec_interleave (t2, op2, op2, high_p);
+ high_p = false;
+ }
+ ix86_expand_mul_widen_evenodd (dest, t1, t2, uns_p, high_p);
+ break;
+
+ case V8SImode:
+ /* Shuffle the elements between the lanes. After this we
+ have { A B E F | C D G H } for each operand. */
+ t1 = gen_reg_rtx (V4DImode);
+ t2 = gen_reg_rtx (V4DImode);
+ emit_insn (gen_avx2_permv4di_1 (t1, gen_lowpart (V4DImode, op1),
+ const0_rtx, const2_rtx,
+ const1_rtx, GEN_INT (3)));
+ emit_insn (gen_avx2_permv4di_1 (t2, gen_lowpart (V4DImode, op2),
+ const0_rtx, const2_rtx,
+ const1_rtx, GEN_INT (3)));
+
+ /* Shuffle the elements within the lanes. After this we
+ have { A A B B | C C D D } or { E E F F | G G H H }. */
+ t3 = gen_reg_rtx (V8SImode);
+ t4 = gen_reg_rtx (V8SImode);
+ mask = GEN_INT (high_p
+ ? 2 + (2 << 2) + (3 << 4) + (3 << 6)
+ : 0 + (0 << 2) + (1 << 4) + (1 << 6));
+ emit_insn (gen_avx2_pshufdv3 (t3, gen_lowpart (V8SImode, t1), mask));
+ emit_insn (gen_avx2_pshufdv3 (t4, gen_lowpart (V8SImode, t2), mask));
+
+ ix86_expand_mul_widen_evenodd (dest, t3, t4, uns_p, false);
+ break;
+
+ case V8HImode:
+ case V16HImode:
+ t1 = expand_binop (mode, smul_optab, op1, op2, NULL_RTX,
+ uns_p, OPTAB_DIRECT);
+ t2 = expand_binop (mode,
+ uns_p ? umul_highpart_optab : smul_highpart_optab,
+ op1, op2, NULL_RTX, uns_p, OPTAB_DIRECT);
+ gcc_assert (t1 && t2);
+
+ t3 = gen_reg_rtx (mode);
+ ix86_expand_vec_interleave (t3, t1, t2, high_p);
+ emit_move_insn (dest, gen_lowpart (wmode, t3));
+ break;
+
+ case V16QImode:
+ case V32QImode:
+ t1 = gen_reg_rtx (wmode);
+ t2 = gen_reg_rtx (wmode);
+ ix86_expand_sse_unpack (t1, op1, uns_p, high_p);
+ ix86_expand_sse_unpack (t2, op2, uns_p, high_p);
+
+ emit_insn (gen_rtx_SET (VOIDmode, dest, gen_rtx_MULT (wmode, t1, t2)));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+void
+ix86_expand_sse2_mulv4si3 (rtx op0, rtx op1, rtx op2)
+{
+ rtx res_1, res_2, res_3, res_4;
+
+ res_1 = gen_reg_rtx (V4SImode);
+ res_2 = gen_reg_rtx (V4SImode);
+ res_3 = gen_reg_rtx (V2DImode);
+ res_4 = gen_reg_rtx (V2DImode);
+ ix86_expand_mul_widen_evenodd (res_3, op1, op2, true, false);
+ ix86_expand_mul_widen_evenodd (res_4, op1, op2, true, true);
+
+ /* Move the results in element 2 down to element 1; we don't care
+ what goes in elements 2 and 3. Then we can merge the parts
+ back together with an interleave.
+
+ Note that two other sequences were tried:
+ (1) Use interleaves at the start instead of psrldq, which allows
+ us to use a single shufps to merge things back at the end.
+ (2) Use shufps here to combine the two vectors, then pshufd to
+ put the elements in the correct order.
+ In both cases the cost of the reformatting stall was too high
+ and the overall sequence slower. */
+
+ emit_insn (gen_sse2_pshufd_1 (res_1, gen_lowpart (V4SImode, res_3),
+ const0_rtx, const2_rtx,
+ const0_rtx, const0_rtx));
+ emit_insn (gen_sse2_pshufd_1 (res_2, gen_lowpart (V4SImode, res_4),
+ const0_rtx, const2_rtx,
+ const0_rtx, const0_rtx));
+ res_1 = emit_insn (gen_vec_interleave_lowv4si (op0, res_1, res_2));
+
+ set_unique_reg_note (res_1, REG_EQUAL, gen_rtx_MULT (V4SImode, op1, op2));
+}
+
+void
+ix86_expand_sse2_mulvxdi3 (rtx op0, rtx op1, rtx op2)
+{
+ enum machine_mode mode = GET_MODE (op0);
+ rtx t1, t2, t3, t4, t5, t6;
+
+ if (TARGET_XOP && mode == V2DImode)
+ {
+ /* op1: A,B,C,D, op2: E,F,G,H */
+ op1 = gen_lowpart (V4SImode, op1);
+ op2 = gen_lowpart (V4SImode, op2);
+
+ t1 = gen_reg_rtx (V4SImode);
+ t2 = gen_reg_rtx (V4SImode);
+ t3 = gen_reg_rtx (V2DImode);
+ t4 = gen_reg_rtx (V2DImode);
+
+ /* t1: B,A,D,C */
+ emit_insn (gen_sse2_pshufd_1 (t1, op1,
+ GEN_INT (1),
+ GEN_INT (0),
+ GEN_INT (3),
+ GEN_INT (2)));
+
+ /* t2: (B*E),(A*F),(D*G),(C*H) */
+ emit_insn (gen_mulv4si3 (t2, t1, op2));
+
+ /* t3: (B*E)+(A*F), (D*G)+(C*H) */
+ emit_insn (gen_xop_phadddq (t3, t2));
+
+ /* t4: ((B*E)+(A*F))<<32, ((D*G)+(C*H))<<32 */
+ emit_insn (gen_ashlv2di3 (t4, t3, GEN_INT (32)));
+
+ /* op0: (((B*E)+(A*F))<<32)+(B*F), (((D*G)+(C*H))<<32)+(D*H) */
+ emit_insn (gen_xop_pmacsdql (op0, op1, op2, t4));
+ }
+ else
+ {
+ enum machine_mode nmode;
+ rtx (*umul) (rtx, rtx, rtx);
+
+ if (mode == V2DImode)
+ {
+ umul = gen_vec_widen_umult_even_v4si;
+ nmode = V4SImode;
+ }
+ else if (mode == V4DImode)
+ {
+ umul = gen_vec_widen_umult_even_v8si;
+ nmode = V8SImode;
+ }
+ else if (mode == V8DImode)
+ {
+ umul = gen_vec_widen_umult_even_v16si;
+ nmode = V16SImode;
+ }
+ else
+ gcc_unreachable ();
+
+
+ /* Multiply low parts. */
+ t1 = gen_reg_rtx (mode);
+ emit_insn (umul (t1, gen_lowpart (nmode, op1), gen_lowpart (nmode, op2)));
+
+ /* Shift input vectors right 32 bits so we can multiply high parts. */
+ t6 = GEN_INT (32);
+ t2 = expand_binop (mode, lshr_optab, op1, t6, NULL, 1, OPTAB_DIRECT);
+ t3 = expand_binop (mode, lshr_optab, op2, t6, NULL, 1, OPTAB_DIRECT);
+
+ /* Multiply high parts by low parts. */
+ t4 = gen_reg_rtx (mode);
+ t5 = gen_reg_rtx (mode);
+ emit_insn (umul (t4, gen_lowpart (nmode, t2), gen_lowpart (nmode, op2)));
+ emit_insn (umul (t5, gen_lowpart (nmode, t3), gen_lowpart (nmode, op1)));
+
+ /* Combine and shift the highparts back. */
+ t4 = expand_binop (mode, add_optab, t4, t5, t4, 1, OPTAB_DIRECT);
+ t4 = expand_binop (mode, ashl_optab, t4, t6, t4, 1, OPTAB_DIRECT);
+
+ /* Combine high and low parts. */
+ force_expand_binop (mode, add_optab, t1, t4, op0, 1, OPTAB_DIRECT);
+ }
+
+ set_unique_reg_note (get_last_insn (), REG_EQUAL,
+ gen_rtx_MULT (mode, op1, op2));
+}
+
+/* Calculate integer abs() using only SSE2 instructions. */
+
+void
+ix86_expand_sse2_abs (rtx target, rtx input)
+{
+ enum machine_mode mode = GET_MODE (target);
+ rtx tmp0, tmp1, x;
+
+ switch (mode)
+ {
+ /* For 32-bit signed integer X, the best way to calculate the absolute
+ value of X is (((signed) X >> (W-1)) ^ X) - ((signed) X >> (W-1)). */
+ case V4SImode:
+ tmp0 = expand_simple_binop (mode, ASHIFTRT, input,
+ GEN_INT (GET_MODE_BITSIZE
+ (GET_MODE_INNER (mode)) - 1),
+ NULL, 0, OPTAB_DIRECT);
+ tmp1 = expand_simple_binop (mode, XOR, tmp0, input,
+ NULL, 0, OPTAB_DIRECT);
+ x = expand_simple_binop (mode, MINUS, tmp1, tmp0,
+ target, 0, OPTAB_DIRECT);
+ break;
+
+ /* For 16-bit signed integer X, the best way to calculate the absolute
+ value of X is max (X, -X), as SSE2 provides the PMAXSW insn. */
+ case V8HImode:
+ tmp0 = expand_unop (mode, neg_optab, input, NULL_RTX, 0);
+
+ x = expand_simple_binop (mode, SMAX, tmp0, input,
+ target, 0, OPTAB_DIRECT);
+ break;
+
+ /* For 8-bit signed integer X, the best way to calculate the absolute
+ value of X is min ((unsigned char) X, (unsigned char) (-X)),
+ as SSE2 provides the PMINUB insn. */
+ case V16QImode:
+ tmp0 = expand_unop (mode, neg_optab, input, NULL_RTX, 0);
+
+ x = expand_simple_binop (V16QImode, UMIN, tmp0, input,
+ target, 0, OPTAB_DIRECT);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (x != target)
+ emit_move_insn (target, x);
+}
+
+/* Expand an insert into a vector register through pinsr insn.
+ Return true if successful. */
+
+bool
+ix86_expand_pinsr (rtx *operands)
+{
+ rtx dst = operands[0];
+ rtx src = operands[3];
+
+ unsigned int size = INTVAL (operands[1]);
+ unsigned int pos = INTVAL (operands[2]);
+
+ if (GET_CODE (dst) == SUBREG)
+ {
+ pos += SUBREG_BYTE (dst) * BITS_PER_UNIT;
+ dst = SUBREG_REG (dst);
+ }
+
+ if (GET_CODE (src) == SUBREG)
+ src = SUBREG_REG (src);
+
+ switch (GET_MODE (dst))
+ {
+ case V16QImode:
+ case V8HImode:
+ case V4SImode:
+ case V2DImode:
+ {
+ enum machine_mode srcmode, dstmode;
+ rtx (*pinsr)(rtx, rtx, rtx, rtx);
+
+ srcmode = mode_for_size (size, MODE_INT, 0);
+
+ switch (srcmode)
+ {
+ case QImode:
+ if (!TARGET_SSE4_1)
+ return false;
+ dstmode = V16QImode;
+ pinsr = gen_sse4_1_pinsrb;
+ break;
+
+ case HImode:
+ if (!TARGET_SSE2)
+ return false;
+ dstmode = V8HImode;
+ pinsr = gen_sse2_pinsrw;
+ break;
+
+ case SImode:
+ if (!TARGET_SSE4_1)
+ return false;
+ dstmode = V4SImode;
+ pinsr = gen_sse4_1_pinsrd;
+ break;
+
+ case DImode:
+ gcc_assert (TARGET_64BIT);
+ if (!TARGET_SSE4_1)
+ return false;
+ dstmode = V2DImode;
+ pinsr = gen_sse4_1_pinsrq;
+ break;
+
+ default:
+ return false;
+ }
+
+ rtx d = dst;
+ if (GET_MODE (dst) != dstmode)
+ d = gen_reg_rtx (dstmode);
+ src = gen_lowpart (srcmode, src);
+
+ pos /= size;
+
+ emit_insn (pinsr (d, gen_lowpart (dstmode, dst), src,
+ GEN_INT (1 << pos)));
+ if (d != dst)
+ emit_move_insn (dst, gen_lowpart (GET_MODE (dst), d));
+ return true;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/* This function returns the calling abi specific va_list type node.
+ It returns the FNDECL specific va_list type. */
+
+static tree
+ix86_fn_abi_va_list (tree fndecl)
+{
+ if (!TARGET_64BIT)
+ return va_list_type_node;
+ gcc_assert (fndecl != NULL_TREE);
+
+ if (ix86_function_abi ((const_tree) fndecl) == MS_ABI)
+ return ms_va_list_type_node;
+ else
+ return sysv_va_list_type_node;
+}
+
+/* Returns the canonical va_list type specified by TYPE. If there
+ is no valid TYPE provided, it return NULL_TREE. */
+
+static tree
+ix86_canonical_va_list_type (tree type)
+{
+ tree wtype, htype;
+
+ /* Resolve references and pointers to va_list type. */
+ if (TREE_CODE (type) == MEM_REF)
+ type = TREE_TYPE (type);
+ else if (POINTER_TYPE_P (type) && POINTER_TYPE_P (TREE_TYPE(type)))
+ type = TREE_TYPE (type);
+ else if (POINTER_TYPE_P (type) && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
+ type = TREE_TYPE (type);
+
+ if (TARGET_64BIT && va_list_type_node != NULL_TREE)
+ {
+ wtype = va_list_type_node;
+ gcc_assert (wtype != NULL_TREE);
+ htype = type;
+ if (TREE_CODE (wtype) == ARRAY_TYPE)
+ {
+ /* If va_list is an array type, the argument may have decayed
+ to a pointer type, e.g. by being passed to another function.
+ In that case, unwrap both types so that we can compare the
+ underlying records. */
+ if (TREE_CODE (htype) == ARRAY_TYPE
+ || POINTER_TYPE_P (htype))
+ {
+ wtype = TREE_TYPE (wtype);
+ htype = TREE_TYPE (htype);
+ }
+ }
+ if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype))
+ return va_list_type_node;
+ wtype = sysv_va_list_type_node;
+ gcc_assert (wtype != NULL_TREE);
+ htype = type;
+ if (TREE_CODE (wtype) == ARRAY_TYPE)
+ {
+ /* If va_list is an array type, the argument may have decayed
+ to a pointer type, e.g. by being passed to another function.
+ In that case, unwrap both types so that we can compare the
+ underlying records. */
+ if (TREE_CODE (htype) == ARRAY_TYPE
+ || POINTER_TYPE_P (htype))
+ {
+ wtype = TREE_TYPE (wtype);
+ htype = TREE_TYPE (htype);
+ }
+ }
+ if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype))
+ return sysv_va_list_type_node;
+ wtype = ms_va_list_type_node;
+ gcc_assert (wtype != NULL_TREE);
+ htype = type;
+ if (TREE_CODE (wtype) == ARRAY_TYPE)
+ {
+ /* If va_list is an array type, the argument may have decayed
+ to a pointer type, e.g. by being passed to another function.
+ In that case, unwrap both types so that we can compare the
+ underlying records. */
+ if (TREE_CODE (htype) == ARRAY_TYPE
+ || POINTER_TYPE_P (htype))
+ {
+ wtype = TREE_TYPE (wtype);
+ htype = TREE_TYPE (htype);
+ }
+ }
+ if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype))
+ return ms_va_list_type_node;
+ return NULL_TREE;
+ }
+ return std_canonical_va_list_type (type);
+}
+
+/* Iterate through the target-specific builtin types for va_list.
+ IDX denotes the iterator, *PTREE is set to the result type of
+ the va_list builtin, and *PNAME to its internal type.
+ Returns zero if there is no element for this index, otherwise
+ IDX should be increased upon the next call.
+ Note, do not iterate a base builtin's name like __builtin_va_list.
+ Used from c_common_nodes_and_builtins. */
+
+static int
+ix86_enum_va_list (int idx, const char **pname, tree *ptree)
+{
+ if (TARGET_64BIT)
+ {
+ switch (idx)
+ {
+ default:
+ break;
+
+ case 0:
+ *ptree = ms_va_list_type_node;
+ *pname = "__builtin_ms_va_list";
+ return 1;
+
+ case 1:
+ *ptree = sysv_va_list_type_node;
+ *pname = "__builtin_sysv_va_list";
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+#undef TARGET_SCHED_DISPATCH
+#define TARGET_SCHED_DISPATCH has_dispatch
+#undef TARGET_SCHED_DISPATCH_DO
+#define TARGET_SCHED_DISPATCH_DO do_dispatch
+#undef TARGET_SCHED_REASSOCIATION_WIDTH
+#define TARGET_SCHED_REASSOCIATION_WIDTH ix86_reassociation_width
+#undef TARGET_SCHED_REORDER
+#define TARGET_SCHED_REORDER ix86_sched_reorder
+#undef TARGET_SCHED_ADJUST_PRIORITY
+#define TARGET_SCHED_ADJUST_PRIORITY ix86_adjust_priority
+#undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
+#define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK \
+ ix86_dependencies_evaluation_hook
+
+/* The size of the dispatch window is the total number of bytes of
+ object code allowed in a window. */
+#define DISPATCH_WINDOW_SIZE 16
+
+/* Number of dispatch windows considered for scheduling. */
+#define MAX_DISPATCH_WINDOWS 3
+
+/* Maximum number of instructions in a window. */
+#define MAX_INSN 4
+
+/* Maximum number of immediate operands in a window. */
+#define MAX_IMM 4
+
+/* Maximum number of immediate bits allowed in a window. */
+#define MAX_IMM_SIZE 128
+
+/* Maximum number of 32 bit immediates allowed in a window. */
+#define MAX_IMM_32 4
+
+/* Maximum number of 64 bit immediates allowed in a window. */
+#define MAX_IMM_64 2
+
+/* Maximum total of loads or prefetches allowed in a window. */
+#define MAX_LOAD 2
+
+/* Maximum total of stores allowed in a window. */
+#define MAX_STORE 1
+
+#undef BIG
+#define BIG 100
+
+
+/* Dispatch groups. Istructions that affect the mix in a dispatch window. */
+enum dispatch_group {
+ disp_no_group = 0,
+ disp_load,
+ disp_store,
+ disp_load_store,
+ disp_prefetch,
+ disp_imm,
+ disp_imm_32,
+ disp_imm_64,
+ disp_branch,
+ disp_cmp,
+ disp_jcc,
+ disp_last
+};
+
+/* Number of allowable groups in a dispatch window. It is an array
+ indexed by dispatch_group enum. 100 is used as a big number,
+ because the number of these kind of operations does not have any
+ effect in dispatch window, but we need them for other reasons in
+ the table. */
+static unsigned int num_allowable_groups[disp_last] = {
+ 0, 2, 1, 1, 2, 4, 4, 2, 1, BIG, BIG
+};
+
+char group_name[disp_last + 1][16] = {
+ "disp_no_group", "disp_load", "disp_store", "disp_load_store",
+ "disp_prefetch", "disp_imm", "disp_imm_32", "disp_imm_64",
+ "disp_branch", "disp_cmp", "disp_jcc", "disp_last"
+};
+
+/* Instruction path. */
+enum insn_path {
+ no_path = 0,
+ path_single, /* Single micro op. */
+ path_double, /* Double micro op. */
+ path_multi, /* Instructions with more than 2 micro op.. */
+ last_path
+};
+
+/* sched_insn_info defines a window to the instructions scheduled in
+ the basic block. It contains a pointer to the insn_info table and
+ the instruction scheduled.
+
+ Windows are allocated for each basic block and are linked
+ together. */
+typedef struct sched_insn_info_s {
+ rtx insn;
+ enum dispatch_group group;
+ enum insn_path path;
+ int byte_len;
+ int imm_bytes;
+} sched_insn_info;
+
+/* Linked list of dispatch windows. This is a two way list of
+ dispatch windows of a basic block. It contains information about
+ the number of uops in the window and the total number of
+ instructions and of bytes in the object code for this dispatch
+ window. */
+typedef struct dispatch_windows_s {
+ int num_insn; /* Number of insn in the window. */
+ int num_uops; /* Number of uops in the window. */
+ int window_size; /* Number of bytes in the window. */
+ int window_num; /* Window number between 0 or 1. */
+ int num_imm; /* Number of immediates in an insn. */
+ int num_imm_32; /* Number of 32 bit immediates in an insn. */
+ int num_imm_64; /* Number of 64 bit immediates in an insn. */
+ int imm_size; /* Total immediates in the window. */
+ int num_loads; /* Total memory loads in the window. */
+ int num_stores; /* Total memory stores in the window. */
+ int violation; /* Violation exists in window. */
+ sched_insn_info *window; /* Pointer to the window. */
+ struct dispatch_windows_s *next;
+ struct dispatch_windows_s *prev;
+} dispatch_windows;
+
+/* Immediate valuse used in an insn. */
+typedef struct imm_info_s
+ {
+ int imm;
+ int imm32;
+ int imm64;
+ } imm_info;
+
+static dispatch_windows *dispatch_window_list;
+static dispatch_windows *dispatch_window_list1;
+
+/* Get dispatch group of insn. */
+
+static enum dispatch_group
+get_mem_group (rtx insn)
+{
+ enum attr_memory memory;
+
+ if (INSN_CODE (insn) < 0)
+ return disp_no_group;
+ memory = get_attr_memory (insn);
+ if (memory == MEMORY_STORE)
+ return disp_store;
+
+ if (memory == MEMORY_LOAD)
+ return disp_load;
+
+ if (memory == MEMORY_BOTH)
+ return disp_load_store;
+
+ return disp_no_group;
+}
+
+/* Return true if insn is a compare instruction. */
+
+static bool
+is_cmp (rtx insn)
+{
+ enum attr_type type;
+
+ type = get_attr_type (insn);
+ return (type == TYPE_TEST
+ || type == TYPE_ICMP
+ || type == TYPE_FCMP
+ || GET_CODE (PATTERN (insn)) == COMPARE);
+}
+
+/* Return true if a dispatch violation encountered. */
+
+static bool
+dispatch_violation (void)
+{
+ if (dispatch_window_list->next)
+ return dispatch_window_list->next->violation;
+ return dispatch_window_list->violation;
+}
+
+/* Return true if insn is a branch instruction. */
+
+static bool
+is_branch (rtx insn)
+{
+ return (CALL_P (insn) || JUMP_P (insn));
+}
+
+/* Return true if insn is a prefetch instruction. */
+
+static bool
+is_prefetch (rtx insn)
+{
+ return NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == PREFETCH;
+}
+
+/* This function initializes a dispatch window and the list container holding a
+ pointer to the window. */
+
+static void
+init_window (int window_num)
+{
+ int i;
+ dispatch_windows *new_list;
+
+ if (window_num == 0)
+ new_list = dispatch_window_list;
+ else
+ new_list = dispatch_window_list1;
+
+ new_list->num_insn = 0;
+ new_list->num_uops = 0;
+ new_list->window_size = 0;
+ new_list->next = NULL;
+ new_list->prev = NULL;
+ new_list->window_num = window_num;
+ new_list->num_imm = 0;
+ new_list->num_imm_32 = 0;
+ new_list->num_imm_64 = 0;
+ new_list->imm_size = 0;
+ new_list->num_loads = 0;
+ new_list->num_stores = 0;
+ new_list->violation = false;
+
+ for (i = 0; i < MAX_INSN; i++)
+ {
+ new_list->window[i].insn = NULL;
+ new_list->window[i].group = disp_no_group;
+ new_list->window[i].path = no_path;
+ new_list->window[i].byte_len = 0;
+ new_list->window[i].imm_bytes = 0;
+ }
+ return;
+}
+
+/* This function allocates and initializes a dispatch window and the
+ list container holding a pointer to the window. */
+
+static dispatch_windows *
+allocate_window (void)
+{
+ dispatch_windows *new_list = XNEW (struct dispatch_windows_s);
+ new_list->window = XNEWVEC (struct sched_insn_info_s, MAX_INSN + 1);
+
+ return new_list;
+}
+
+/* This routine initializes the dispatch scheduling information. It
+ initiates building dispatch scheduler tables and constructs the
+ first dispatch window. */
+
+static void
+init_dispatch_sched (void)
+{
+ /* Allocate a dispatch list and a window. */
+ dispatch_window_list = allocate_window ();
+ dispatch_window_list1 = allocate_window ();
+ init_window (0);
+ init_window (1);
+}
+
+/* This function returns true if a branch is detected. End of a basic block
+ does not have to be a branch, but here we assume only branches end a
+ window. */
+
+static bool
+is_end_basic_block (enum dispatch_group group)
+{
+ return group == disp_branch;
+}
+
+/* This function is called when the end of a window processing is reached. */
+
+static void
+process_end_window (void)
+{
+ gcc_assert (dispatch_window_list->num_insn <= MAX_INSN);
+ if (dispatch_window_list->next)
+ {
+ gcc_assert (dispatch_window_list1->num_insn <= MAX_INSN);
+ gcc_assert (dispatch_window_list->window_size
+ + dispatch_window_list1->window_size <= 48);
+ init_window (1);
+ }
+ init_window (0);
+}
+
+/* Allocates a new dispatch window and adds it to WINDOW_LIST.
+ WINDOW_NUM is either 0 or 1. A maximum of two windows are generated
+ for 48 bytes of instructions. Note that these windows are not dispatch
+ windows that their sizes are DISPATCH_WINDOW_SIZE. */
+
+static dispatch_windows *
+allocate_next_window (int window_num)
+{
+ if (window_num == 0)
+ {
+ if (dispatch_window_list->next)
+ init_window (1);
+ init_window (0);
+ return dispatch_window_list;
+ }
+
+ dispatch_window_list->next = dispatch_window_list1;
+ dispatch_window_list1->prev = dispatch_window_list;
+
+ return dispatch_window_list1;
+}
+
+/* Increment the number of immediate operands of an instruction. */
+
+static int
+find_constant_1 (rtx *in_rtx, imm_info *imm_values)
+{
+ if (*in_rtx == 0)
+ return 0;
+
+ switch ( GET_CODE (*in_rtx))
+ {
+ case CONST:
+ case SYMBOL_REF:
+ case CONST_INT:
+ (imm_values->imm)++;
+ if (x86_64_immediate_operand (*in_rtx, SImode))
+ (imm_values->imm32)++;
+ else
+ (imm_values->imm64)++;
+ break;
+
+ case CONST_DOUBLE:
+ (imm_values->imm)++;
+ (imm_values->imm64)++;
+ break;
+
+ case CODE_LABEL:
+ if (LABEL_KIND (*in_rtx) == LABEL_NORMAL)
+ {
+ (imm_values->imm)++;
+ (imm_values->imm32)++;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* Compute number of immediate operands of an instruction. */
+
+static void
+find_constant (rtx in_rtx, imm_info *imm_values)
+{
+ for_each_rtx (INSN_P (in_rtx) ? &PATTERN (in_rtx) : &in_rtx,
+ (rtx_function) find_constant_1, (void *) imm_values);
+}
+
+/* Return total size of immediate operands of an instruction along with number
+ of corresponding immediate-operands. It initializes its parameters to zero
+ befor calling FIND_CONSTANT.
+ INSN is the input instruction. IMM is the total of immediates.
+ IMM32 is the number of 32 bit immediates. IMM64 is the number of 64
+ bit immediates. */
+
+static int
+get_num_immediates (rtx insn, int *imm, int *imm32, int *imm64)
+{
+ imm_info imm_values = {0, 0, 0};
+
+ find_constant (insn, &imm_values);
+ *imm = imm_values.imm;
+ *imm32 = imm_values.imm32;
+ *imm64 = imm_values.imm64;
+ return imm_values.imm32 * 4 + imm_values.imm64 * 8;
+}
+
+/* This function indicates if an operand of an instruction is an
+ immediate. */
+
+static bool
+has_immediate (rtx insn)
+{
+ int num_imm_operand;
+ int num_imm32_operand;
+ int num_imm64_operand;
+
+ if (insn)
+ return get_num_immediates (insn, &num_imm_operand, &num_imm32_operand,
+ &num_imm64_operand);
+ return false;
+}
+
+/* Return single or double path for instructions. */
+
+static enum insn_path
+get_insn_path (rtx insn)
+{
+ enum attr_amdfam10_decode path = get_attr_amdfam10_decode (insn);
+
+ if ((int)path == 0)
+ return path_single;
+
+ if ((int)path == 1)
+ return path_double;
+
+ return path_multi;
+}
+
+/* Return insn dispatch group. */
+
+static enum dispatch_group
+get_insn_group (rtx insn)
+{
+ enum dispatch_group group = get_mem_group (insn);
+ if (group)
+ return group;
+
+ if (is_branch (insn))
+ return disp_branch;
+
+ if (is_cmp (insn))
+ return disp_cmp;
+
+ if (has_immediate (insn))
+ return disp_imm;
+
+ if (is_prefetch (insn))
+ return disp_prefetch;
+
+ return disp_no_group;
+}
+
+/* Count number of GROUP restricted instructions in a dispatch
+ window WINDOW_LIST. */
+
+static int
+count_num_restricted (rtx insn, dispatch_windows *window_list)
+{
+ enum dispatch_group group = get_insn_group (insn);
+ int imm_size;
+ int num_imm_operand;
+ int num_imm32_operand;
+ int num_imm64_operand;
+
+ if (group == disp_no_group)
+ return 0;
+
+ if (group == disp_imm)
+ {
+ imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand,
+ &num_imm64_operand);
+ if (window_list->imm_size + imm_size > MAX_IMM_SIZE
+ || num_imm_operand + window_list->num_imm > MAX_IMM
+ || (num_imm32_operand > 0
+ && (window_list->num_imm_32 + num_imm32_operand > MAX_IMM_32
+ || window_list->num_imm_64 * 2 + num_imm32_operand > MAX_IMM_32))
+ || (num_imm64_operand > 0
+ && (window_list->num_imm_64 + num_imm64_operand > MAX_IMM_64
+ || window_list->num_imm_32 + num_imm64_operand * 2 > MAX_IMM_32))
+ || (window_list->imm_size + imm_size == MAX_IMM_SIZE
+ && num_imm64_operand > 0
+ && ((window_list->num_imm_64 > 0
+ && window_list->num_insn >= 2)
+ || window_list->num_insn >= 3)))
+ return BIG;
+
+ return 1;
+ }
+
+ if ((group == disp_load_store
+ && (window_list->num_loads >= MAX_LOAD
+ || window_list->num_stores >= MAX_STORE))
+ || ((group == disp_load
+ || group == disp_prefetch)
+ && window_list->num_loads >= MAX_LOAD)
+ || (group == disp_store
+ && window_list->num_stores >= MAX_STORE))
+ return BIG;
+
+ return 1;
+}
+
+/* This function returns true if insn satisfies dispatch rules on the
+ last window scheduled. */
+
+static bool
+fits_dispatch_window (rtx insn)
+{
+ dispatch_windows *window_list = dispatch_window_list;
+ dispatch_windows *window_list_next = dispatch_window_list->next;
+ unsigned int num_restrict;
+ enum dispatch_group group = get_insn_group (insn);
+ enum insn_path path = get_insn_path (insn);
+ int sum;
+
+ /* Make disp_cmp and disp_jcc get scheduled at the latest. These
+ instructions should be given the lowest priority in the
+ scheduling process in Haifa scheduler to make sure they will be
+ scheduled in the same dispatch window as the reference to them. */
+ if (group == disp_jcc || group == disp_cmp)
+ return false;
+
+ /* Check nonrestricted. */
+ if (group == disp_no_group || group == disp_branch)
+ return true;
+
+ /* Get last dispatch window. */
+ if (window_list_next)
+ window_list = window_list_next;
+
+ if (window_list->window_num == 1)
+ {
+ sum = window_list->prev->window_size + window_list->window_size;
+
+ if (sum == 32
+ || (min_insn_size (insn) + sum) >= 48)
+ /* Window 1 is full. Go for next window. */
+ return true;
+ }
+
+ num_restrict = count_num_restricted (insn, window_list);
+
+ if (num_restrict > num_allowable_groups[group])
+ return false;
+
+ /* See if it fits in the first window. */
+ if (window_list->window_num == 0)
+ {
+ /* The first widow should have only single and double path
+ uops. */
+ if (path == path_double
+ && (window_list->num_uops + 2) > MAX_INSN)
+ return false;
+ else if (path != path_single)
+ return false;
+ }
+ return true;
+}
+
+/* Add an instruction INSN with NUM_UOPS micro-operations to the
+ dispatch window WINDOW_LIST. */
+
+static void
+add_insn_window (rtx insn, dispatch_windows *window_list, int num_uops)
+{
+ int byte_len = min_insn_size (insn);
+ int num_insn = window_list->num_insn;
+ int imm_size;
+ sched_insn_info *window = window_list->window;
+ enum dispatch_group group = get_insn_group (insn);
+ enum insn_path path = get_insn_path (insn);
+ int num_imm_operand;
+ int num_imm32_operand;
+ int num_imm64_operand;
+
+ if (!window_list->violation && group != disp_cmp
+ && !fits_dispatch_window (insn))
+ window_list->violation = true;
+
+ imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand,
+ &num_imm64_operand);
+
+ /* Initialize window with new instruction. */
+ window[num_insn].insn = insn;
+ window[num_insn].byte_len = byte_len;
+ window[num_insn].group = group;
+ window[num_insn].path = path;
+ window[num_insn].imm_bytes = imm_size;
+
+ window_list->window_size += byte_len;
+ window_list->num_insn = num_insn + 1;
+ window_list->num_uops = window_list->num_uops + num_uops;
+ window_list->imm_size += imm_size;
+ window_list->num_imm += num_imm_operand;
+ window_list->num_imm_32 += num_imm32_operand;
+ window_list->num_imm_64 += num_imm64_operand;
+
+ if (group == disp_store)
+ window_list->num_stores += 1;
+ else if (group == disp_load
+ || group == disp_prefetch)
+ window_list->num_loads += 1;
+ else if (group == disp_load_store)
+ {
+ window_list->num_stores += 1;
+ window_list->num_loads += 1;
+ }
+}
+
+/* Adds a scheduled instruction, INSN, to the current dispatch window.
+ If the total bytes of instructions or the number of instructions in
+ the window exceed allowable, it allocates a new window. */
+
+static void
+add_to_dispatch_window (rtx insn)
+{
+ int byte_len;
+ dispatch_windows *window_list;
+ dispatch_windows *next_list;
+ dispatch_windows *window0_list;
+ enum insn_path path;
+ enum dispatch_group insn_group;
+ bool insn_fits;
+ int num_insn;
+ int num_uops;
+ int window_num;
+ int insn_num_uops;
+ int sum;
+
+ if (INSN_CODE (insn) < 0)
+ return;
+
+ byte_len = min_insn_size (insn);
+ window_list = dispatch_window_list;
+ next_list = window_list->next;
+ path = get_insn_path (insn);
+ insn_group = get_insn_group (insn);
+
+ /* Get the last dispatch window. */
+ if (next_list)
+ window_list = dispatch_window_list->next;
+
+ if (path == path_single)
+ insn_num_uops = 1;
+ else if (path == path_double)
+ insn_num_uops = 2;
+ else
+ insn_num_uops = (int) path;
+
+ /* If current window is full, get a new window.
+ Window number zero is full, if MAX_INSN uops are scheduled in it.
+ Window number one is full, if window zero's bytes plus window
+ one's bytes is 32, or if the bytes of the new instruction added
+ to the total makes it greater than 48, or it has already MAX_INSN
+ instructions in it. */
+ num_insn = window_list->num_insn;
+ num_uops = window_list->num_uops;
+ window_num = window_list->window_num;
+ insn_fits = fits_dispatch_window (insn);
+
+ if (num_insn >= MAX_INSN
+ || num_uops + insn_num_uops > MAX_INSN
+ || !(insn_fits))
+ {
+ window_num = ~window_num & 1;
+ window_list = allocate_next_window (window_num);
+ }
+
+ if (window_num == 0)
+ {
+ add_insn_window (insn, window_list, insn_num_uops);
+ if (window_list->num_insn >= MAX_INSN
+ && insn_group == disp_branch)
+ {
+ process_end_window ();
+ return;
+ }
+ }
+ else if (window_num == 1)
+ {
+ window0_list = window_list->prev;
+ sum = window0_list->window_size + window_list->window_size;
+ if (sum == 32
+ || (byte_len + sum) >= 48)
+ {
+ process_end_window ();
+ window_list = dispatch_window_list;
+ }
+
+ add_insn_window (insn, window_list, insn_num_uops);
+ }
+ else
+ gcc_unreachable ();
+
+ if (is_end_basic_block (insn_group))
+ {
+ /* End of basic block is reached do end-basic-block process. */
+ process_end_window ();
+ return;
+ }
+}
+
+/* Print the dispatch window, WINDOW_NUM, to FILE. */
+
+DEBUG_FUNCTION static void
+debug_dispatch_window_file (FILE *file, int window_num)
+{
+ dispatch_windows *list;
+ int i;
+
+ if (window_num == 0)
+ list = dispatch_window_list;
+ else
+ list = dispatch_window_list1;
+
+ fprintf (file, "Window #%d:\n", list->window_num);
+ fprintf (file, " num_insn = %d, num_uops = %d, window_size = %d\n",
+ list->num_insn, list->num_uops, list->window_size);
+ fprintf (file, " num_imm = %d, num_imm_32 = %d, num_imm_64 = %d, imm_size = %d\n",
+ list->num_imm, list->num_imm_32, list->num_imm_64, list->imm_size);
+
+ fprintf (file, " num_loads = %d, num_stores = %d\n", list->num_loads,
+ list->num_stores);
+ fprintf (file, " insn info:\n");
+
+ for (i = 0; i < MAX_INSN; i++)
+ {
+ if (!list->window[i].insn)
+ break;
+ fprintf (file, " group[%d] = %s, insn[%d] = %p, path[%d] = %d byte_len[%d] = %d, imm_bytes[%d] = %d\n",
+ i, group_name[list->window[i].group],
+ i, (void *)list->window[i].insn,
+ i, list->window[i].path,
+ i, list->window[i].byte_len,
+ i, list->window[i].imm_bytes);
+ }
+}
+
+/* Print to stdout a dispatch window. */
+
+DEBUG_FUNCTION void
+debug_dispatch_window (int window_num)
+{
+ debug_dispatch_window_file (stdout, window_num);
+}
+
+/* Print INSN dispatch information to FILE. */
+
+DEBUG_FUNCTION static void
+debug_insn_dispatch_info_file (FILE *file, rtx insn)
+{
+ int byte_len;
+ enum insn_path path;
+ enum dispatch_group group;
+ int imm_size;
+ int num_imm_operand;
+ int num_imm32_operand;
+ int num_imm64_operand;
+
+ if (INSN_CODE (insn) < 0)
+ return;
+
+ byte_len = min_insn_size (insn);
+ path = get_insn_path (insn);
+ group = get_insn_group (insn);
+ imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand,
+ &num_imm64_operand);
+
+ fprintf (file, " insn info:\n");
+ fprintf (file, " group = %s, path = %d, byte_len = %d\n",
+ group_name[group], path, byte_len);
+ fprintf (file, " num_imm = %d, num_imm_32 = %d, num_imm_64 = %d, imm_size = %d\n",
+ num_imm_operand, num_imm32_operand, num_imm64_operand, imm_size);
+}
+
+/* Print to STDERR the status of the ready list with respect to
+ dispatch windows. */
+
+DEBUG_FUNCTION void
+debug_ready_dispatch (void)
+{
+ int i;
+ int no_ready = number_in_ready ();
+
+ fprintf (stdout, "Number of ready: %d\n", no_ready);
+
+ for (i = 0; i < no_ready; i++)
+ debug_insn_dispatch_info_file (stdout, get_ready_element (i));
+}
+
+/* This routine is the driver of the dispatch scheduler. */
+
+static void
+do_dispatch (rtx insn, int mode)
+{
+ if (mode == DISPATCH_INIT)
+ init_dispatch_sched ();
+ else if (mode == ADD_TO_DISPATCH_WINDOW)
+ add_to_dispatch_window (insn);
+}
+
+/* Return TRUE if Dispatch Scheduling is supported. */
+
+static bool
+has_dispatch (rtx insn, int action)
+{
+ if ((TARGET_BDVER1 || TARGET_BDVER2 || TARGET_BDVER3 || TARGET_BDVER4)
+ && flag_dispatch_scheduler)
+ switch (action)
+ {
+ default:
+ return false;
+
+ case IS_DISPATCH_ON:
+ return true;
+ break;
+
+ case IS_CMP:
+ return is_cmp (insn);
+
+ case DISPATCH_VIOLATION:
+ return dispatch_violation ();
+
+ case FITS_DISPATCH_WINDOW:
+ return fits_dispatch_window (insn);
+ }
+
+ return false;
+}
+
+/* Implementation of reassociation_width target hook used by
+ reassoc phase to identify parallelism level in reassociated
+ tree. Statements tree_code is passed in OPC. Arguments type
+ is passed in MODE.
+
+ Currently parallel reassociation is enabled for Atom
+ processors only and we set reassociation width to be 2
+ because Atom may issue up to 2 instructions per cycle.
+
+ Return value should be fixed if parallel reassociation is
+ enabled for other processors. */
+
+static int
+ix86_reassociation_width (unsigned int opc ATTRIBUTE_UNUSED,
+ enum machine_mode mode)
+{
+ int res = 1;
+
+ if (INTEGRAL_MODE_P (mode) && TARGET_REASSOC_INT_TO_PARALLEL)
+ res = 2;
+ else if (FLOAT_MODE_P (mode) && TARGET_REASSOC_FP_TO_PARALLEL)
+ res = 2;
+
+ return res;
+}
+
+/* ??? No autovectorization into MMX or 3DNOW until we can reliably
+ place emms and femms instructions. */
+
+static enum machine_mode
+ix86_preferred_simd_mode (enum machine_mode mode)
+{
+ if (!TARGET_SSE)
+ return word_mode;
+
+ switch (mode)
+ {
+ case QImode:
+ return (TARGET_AVX && !TARGET_PREFER_AVX128) ? V32QImode : V16QImode;
+ case HImode:
+ return (TARGET_AVX && !TARGET_PREFER_AVX128) ? V16HImode : V8HImode;
+ case SImode:
+ return TARGET_AVX512F ? V16SImode :
+ (TARGET_AVX && !TARGET_PREFER_AVX128) ? V8SImode : V4SImode;
+ case DImode:
+ return TARGET_AVX512F ? V8DImode :
+ (TARGET_AVX && !TARGET_PREFER_AVX128) ? V4DImode : V2DImode;
+
+ case SFmode:
+ if (TARGET_AVX512F)
+ return V16SFmode;
+ else if (TARGET_AVX && !TARGET_PREFER_AVX128)
+ return V8SFmode;
+ else
+ return V4SFmode;
+
+ case DFmode:
+ if (!TARGET_VECTORIZE_DOUBLE)
+ return word_mode;
+ else if (TARGET_AVX512F)
+ return V8DFmode;
+ else if (TARGET_AVX && !TARGET_PREFER_AVX128)
+ return V4DFmode;
+ else if (TARGET_SSE2)
+ return V2DFmode;
+ /* FALLTHRU */
+
+ default:
+ return word_mode;
+ }
+}
+
+/* If AVX is enabled then try vectorizing with both 256bit and 128bit
+ vectors. If AVX512F is enabled then try vectorizing with 512bit,
+ 256bit and 128bit vectors. */
+
+static unsigned int
+ix86_autovectorize_vector_sizes (void)
+{
+ return TARGET_AVX512F ? 64 | 32 | 16 :
+ (TARGET_AVX && !TARGET_PREFER_AVX128) ? 32 | 16 : 0;
+}
+
+
+
+/* Return class of registers which could be used for pseudo of MODE
+ and of class RCLASS for spilling instead of memory. Return NO_REGS
+ if it is not possible or non-profitable. */
+static reg_class_t
+ix86_spill_class (reg_class_t rclass, enum machine_mode mode)
+{
+ if (TARGET_SSE && TARGET_GENERAL_REGS_SSE_SPILL && ! TARGET_MMX
+ && (mode == SImode || (TARGET_64BIT && mode == DImode))
+ && INTEGER_CLASS_P (rclass))
+ return ALL_SSE_REGS;
+ return NO_REGS;
+}
+
+/* Implement targetm.vectorize.init_cost. */
+
+static void *
+ix86_init_cost (struct loop *loop_info ATTRIBUTE_UNUSED)
+{
+ unsigned *cost = XNEWVEC (unsigned, 3);
+ cost[vect_prologue] = cost[vect_body] = cost[vect_epilogue] = 0;
+ return cost;
+}
+
+/* Implement targetm.vectorize.add_stmt_cost. */
+
+static unsigned
+ix86_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
+ struct _stmt_vec_info *stmt_info, int misalign,
+ enum vect_cost_model_location where)
+{
+ unsigned *cost = (unsigned *) data;
+ unsigned retval = 0;
+
+ tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
+ int stmt_cost = ix86_builtin_vectorization_cost (kind, vectype, misalign);
+
+ /* Statements in an inner loop relative to the loop being
+ vectorized are weighted more heavily. The value here is
+ arbitrary and could potentially be improved with analysis. */
+ if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
+ count *= 50; /* FIXME. */
+
+ retval = (unsigned) (count * stmt_cost);
+ cost[where] += retval;
+
+ return retval;
+}
+
+/* Implement targetm.vectorize.finish_cost. */
+
+static void
+ix86_finish_cost (void *data, unsigned *prologue_cost,
+ unsigned *body_cost, unsigned *epilogue_cost)
+{
+ unsigned *cost = (unsigned *) data;
+ *prologue_cost = cost[vect_prologue];
+ *body_cost = cost[vect_body];
+ *epilogue_cost = cost[vect_epilogue];
+}
+
+/* Implement targetm.vectorize.destroy_cost_data. */
+
+static void
+ix86_destroy_cost_data (void *data)
+{
+ free (data);
+}
+
+/* Validate target specific memory model bits in VAL. */
+
+static unsigned HOST_WIDE_INT
+ix86_memmodel_check (unsigned HOST_WIDE_INT val)
+{
+ unsigned HOST_WIDE_INT model = val & MEMMODEL_MASK;
+ bool strong;
+
+ if (val & ~(unsigned HOST_WIDE_INT)(IX86_HLE_ACQUIRE|IX86_HLE_RELEASE
+ |MEMMODEL_MASK)
+ || ((val & IX86_HLE_ACQUIRE) && (val & IX86_HLE_RELEASE)))
+ {
+ warning (OPT_Winvalid_memory_model,
+ "Unknown architecture specific memory model");
+ return MEMMODEL_SEQ_CST;
+ }
+ strong = (model == MEMMODEL_ACQ_REL || model == MEMMODEL_SEQ_CST);
+ if (val & IX86_HLE_ACQUIRE && !(model == MEMMODEL_ACQUIRE || strong))
+ {
+ warning (OPT_Winvalid_memory_model,
+ "HLE_ACQUIRE not used with ACQUIRE or stronger memory model");
+ return MEMMODEL_SEQ_CST | IX86_HLE_ACQUIRE;
+ }
+ if (val & IX86_HLE_RELEASE && !(model == MEMMODEL_RELEASE || strong))
+ {
+ warning (OPT_Winvalid_memory_model,
+ "HLE_RELEASE not used with RELEASE or stronger memory model");
+ return MEMMODEL_SEQ_CST | IX86_HLE_RELEASE;
+ }
+ return val;
+}
+
+/* Set CLONEI->vecsize_mangle, CLONEI->vecsize_int,
+ CLONEI->vecsize_float and if CLONEI->simdlen is 0, also
+ CLONEI->simdlen. Return 0 if SIMD clones shouldn't be emitted,
+ or number of vecsize_mangle variants that should be emitted. */
+
+static int
+ix86_simd_clone_compute_vecsize_and_simdlen (struct cgraph_node *node,
+ struct cgraph_simd_clone *clonei,
+ tree base_type, int num)
+{
+ int ret = 1;
+
+ if (clonei->simdlen
+ && (clonei->simdlen < 2
+ || clonei->simdlen > 16
+ || (clonei->simdlen & (clonei->simdlen - 1)) != 0))
+ {
+ warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
+ "unsupported simdlen %d", clonei->simdlen);
+ return 0;
+ }
+
+ tree ret_type = TREE_TYPE (TREE_TYPE (node->decl));
+ if (TREE_CODE (ret_type) != VOID_TYPE)
+ switch (TYPE_MODE (ret_type))
+ {
+ case QImode:
+ case HImode:
+ case SImode:
+ case DImode:
+ case SFmode:
+ case DFmode:
+ /* case SCmode: */
+ /* case DCmode: */
+ break;
+ default:
+ warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
+ "unsupported return type %qT for simd\n", ret_type);
+ return 0;
+ }
+
+ tree t;
+ int i;
+
+ for (t = DECL_ARGUMENTS (node->decl), i = 0; t; t = DECL_CHAIN (t), i++)
+ /* FIXME: Shouldn't we allow such arguments if they are uniform? */
+ switch (TYPE_MODE (TREE_TYPE (t)))
+ {
+ case QImode:
+ case HImode:
+ case SImode:
+ case DImode:
+ case SFmode:
+ case DFmode:
+ /* case SCmode: */
+ /* case DCmode: */
+ break;
+ default:
+ warning_at (DECL_SOURCE_LOCATION (node->decl), 0,
+ "unsupported argument type %qT for simd\n", TREE_TYPE (t));
+ return 0;
+ }
+
+ if (clonei->cilk_elemental)
+ {
+ /* Parse here processor clause. If not present, default to 'b'. */
+ clonei->vecsize_mangle = 'b';
+ }
+ else if (!TREE_PUBLIC (node->decl))
+ {
+ /* If the function isn't exported, we can pick up just one ISA
+ for the clones. */
+ if (TARGET_AVX2)
+ clonei->vecsize_mangle = 'd';
+ else if (TARGET_AVX)
+ clonei->vecsize_mangle = 'c';
+ else
+ clonei->vecsize_mangle = 'b';
+ ret = 1;
+ }
+ else
+ {
+ clonei->vecsize_mangle = "bcd"[num];
+ ret = 3;
+ }
+ switch (clonei->vecsize_mangle)
+ {
+ case 'b':
+ clonei->vecsize_int = 128;
+ clonei->vecsize_float = 128;
+ break;
+ case 'c':
+ clonei->vecsize_int = 128;
+ clonei->vecsize_float = 256;
+ break;
+ case 'd':
+ clonei->vecsize_int = 256;
+ clonei->vecsize_float = 256;
+ break;
+ }
+ if (clonei->simdlen == 0)
+ {
+ if (SCALAR_INT_MODE_P (TYPE_MODE (base_type)))
+ clonei->simdlen = clonei->vecsize_int;
+ else
+ clonei->simdlen = clonei->vecsize_float;
+ clonei->simdlen /= GET_MODE_BITSIZE (TYPE_MODE (base_type));
+ if (clonei->simdlen > 16)
+ clonei->simdlen = 16;
+ }
+ return ret;
+}
+
+/* Add target attribute to SIMD clone NODE if needed. */
+
+static void
+ix86_simd_clone_adjust (struct cgraph_node *node)
+{
+ const char *str = NULL;
+ gcc_assert (node->decl == cfun->decl);
+ switch (node->simdclone->vecsize_mangle)
+ {
+ case 'b':
+ if (!TARGET_SSE2)
+ str = "sse2";
+ break;
+ case 'c':
+ if (!TARGET_AVX)
+ str = "avx";
+ break;
+ case 'd':
+ if (!TARGET_AVX2)
+ str = "avx2";
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ if (str == NULL)
+ return;
+ push_cfun (NULL);
+ tree args = build_tree_list (NULL_TREE, build_string (strlen (str), str));
+ bool ok = ix86_valid_target_attribute_p (node->decl, NULL, args, 0);
+ gcc_assert (ok);
+ pop_cfun ();
+ ix86_previous_fndecl = NULL_TREE;
+ ix86_set_current_function (node->decl);
+}
+
+/* If SIMD clone NODE can't be used in a vectorized loop
+ in current function, return -1, otherwise return a badness of using it
+ (0 if it is most desirable from vecsize_mangle point of view, 1
+ slightly less desirable, etc.). */
+
+static int
+ix86_simd_clone_usable (struct cgraph_node *node)
+{
+ switch (node->simdclone->vecsize_mangle)
+ {
+ case 'b':
+ if (!TARGET_SSE2)
+ return -1;
+ if (!TARGET_AVX)
+ return 0;
+ return TARGET_AVX2 ? 2 : 1;
+ case 'c':
+ if (!TARGET_AVX)
+ return -1;
+ return TARGET_AVX2 ? 1 : 0;
+ break;
+ case 'd':
+ if (!TARGET_AVX2)
+ return -1;
+ return 0;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* This function gives out the number of memory references.
+ This value determines the unrolling factor for
+ bdver3 and bdver4 architectures. */
+
+static int
+ix86_loop_memcount (rtx *x, unsigned *mem_count)
+{
+ if (*x != NULL_RTX && MEM_P (*x))
+ {
+ enum machine_mode mode;
+ unsigned int n_words;
+
+ mode = GET_MODE (*x);
+ n_words = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
+
+ if (n_words > 4)
+ (*mem_count)+=2;
+ else
+ (*mem_count)+=1;
+ }
+ return 0;
+}
+
+/* This function adjusts the unroll factor based on
+ the hardware capabilities. For ex, bdver3 has
+ a loop buffer which makes unrolling of smaller
+ loops less important. This function decides the
+ unroll factor using number of memory references
+ (value 32 is used) as a heuristic. */
+
+static unsigned
+ix86_loop_unroll_adjust (unsigned nunroll, struct loop *loop)
+{
+ basic_block *bbs;
+ rtx insn;
+ unsigned i;
+ unsigned mem_count = 0;
+
+ if (!TARGET_ADJUST_UNROLL)
+ return nunroll;
+
+ /* Count the number of memory references within the loop body. */
+ bbs = get_loop_body (loop);
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ for (insn = BB_HEAD (bbs[i]); insn != BB_END (bbs[i]); insn = NEXT_INSN (insn))
+ if (NONDEBUG_INSN_P (insn))
+ for_each_rtx (&insn, (rtx_function) ix86_loop_memcount, &mem_count);
+ }
+ free (bbs);
+
+ if (mem_count && mem_count <=32)
+ return 32/mem_count;
+
+ return nunroll;
+}
+
+
+/* Implement TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P. */
+
+static bool
+ix86_float_exceptions_rounding_supported_p (void)
+{
+ /* For x87 floating point with standard excess precision handling,
+ there is no adddf3 pattern (since x87 floating point only has
+ XFmode operations) so the default hook implementation gets this
+ wrong. */
+ return TARGET_80387 || TARGET_SSE_MATH;
+}
+
+/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */
+
+static void
+ix86_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
+{
+ if (!TARGET_80387 && !TARGET_SSE_MATH)
+ return;
+ tree exceptions_var = create_tmp_var (integer_type_node, NULL);
+ if (TARGET_80387)
+ {
+ tree fenv_index_type = build_index_type (size_int (6));
+ tree fenv_type = build_array_type (unsigned_type_node, fenv_index_type);
+ tree fenv_var = create_tmp_var (fenv_type, NULL);
+ mark_addressable (fenv_var);
+ tree fenv_ptr = build_pointer_type (fenv_type);
+ tree fenv_addr = build1 (ADDR_EXPR, fenv_ptr, fenv_var);
+ fenv_addr = fold_convert (ptr_type_node, fenv_addr);
+ tree fnstenv = ix86_builtins[IX86_BUILTIN_FNSTENV];
+ tree fldenv = ix86_builtins[IX86_BUILTIN_FLDENV];
+ tree fnstsw = ix86_builtins[IX86_BUILTIN_FNSTSW];
+ tree fnclex = ix86_builtins[IX86_BUILTIN_FNCLEX];
+ tree hold_fnstenv = build_call_expr (fnstenv, 1, fenv_addr);
+ tree hold_fnclex = build_call_expr (fnclex, 0);
+ *hold = build2 (COMPOUND_EXPR, void_type_node, hold_fnstenv,
+ hold_fnclex);
+ *clear = build_call_expr (fnclex, 0);
+ tree sw_var = create_tmp_var (short_unsigned_type_node, NULL);
+ mark_addressable (sw_var);
+ tree su_ptr = build_pointer_type (short_unsigned_type_node);
+ tree sw_addr = build1 (ADDR_EXPR, su_ptr, sw_var);
+ tree fnstsw_call = build_call_expr (fnstsw, 1, sw_addr);
+ tree exceptions_x87 = fold_convert (integer_type_node, sw_var);
+ tree update_mod = build2 (MODIFY_EXPR, integer_type_node,
+ exceptions_var, exceptions_x87);
+ *update = build2 (COMPOUND_EXPR, integer_type_node,
+ fnstsw_call, update_mod);
+ tree update_fldenv = build_call_expr (fldenv, 1, fenv_addr);
+ *update = build2 (COMPOUND_EXPR, void_type_node, *update, update_fldenv);
+ }
+ if (TARGET_SSE_MATH)
+ {
+ tree mxcsr_orig_var = create_tmp_var (unsigned_type_node, NULL);
+ tree mxcsr_mod_var = create_tmp_var (unsigned_type_node, NULL);
+ tree stmxcsr = ix86_builtins[IX86_BUILTIN_STMXCSR];
+ tree ldmxcsr = ix86_builtins[IX86_BUILTIN_LDMXCSR];
+ tree stmxcsr_hold_call = build_call_expr (stmxcsr, 0);
+ tree hold_assign_orig = build2 (MODIFY_EXPR, unsigned_type_node,
+ mxcsr_orig_var, stmxcsr_hold_call);
+ tree hold_mod_val = build2 (BIT_IOR_EXPR, unsigned_type_node,
+ mxcsr_orig_var,
+ build_int_cst (unsigned_type_node, 0x1f80));
+ hold_mod_val = build2 (BIT_AND_EXPR, unsigned_type_node, hold_mod_val,
+ build_int_cst (unsigned_type_node, 0xffffffc0));
+ tree hold_assign_mod = build2 (MODIFY_EXPR, unsigned_type_node,
+ mxcsr_mod_var, hold_mod_val);
+ tree ldmxcsr_hold_call = build_call_expr (ldmxcsr, 1, mxcsr_mod_var);
+ tree hold_all = build2 (COMPOUND_EXPR, unsigned_type_node,
+ hold_assign_orig, hold_assign_mod);
+ hold_all = build2 (COMPOUND_EXPR, void_type_node, hold_all,
+ ldmxcsr_hold_call);
+ if (*hold)
+ *hold = build2 (COMPOUND_EXPR, void_type_node, *hold, hold_all);
+ else
+ *hold = hold_all;
+ tree ldmxcsr_clear_call = build_call_expr (ldmxcsr, 1, mxcsr_mod_var);
+ if (*clear)
+ *clear = build2 (COMPOUND_EXPR, void_type_node, *clear,
+ ldmxcsr_clear_call);
+ else
+ *clear = ldmxcsr_clear_call;
+ tree stxmcsr_update_call = build_call_expr (stmxcsr, 0);
+ tree exceptions_sse = fold_convert (integer_type_node,
+ stxmcsr_update_call);
+ if (*update)
+ {
+ tree exceptions_mod = build2 (BIT_IOR_EXPR, integer_type_node,
+ exceptions_var, exceptions_sse);
+ tree exceptions_assign = build2 (MODIFY_EXPR, integer_type_node,
+ exceptions_var, exceptions_mod);
+ *update = build2 (COMPOUND_EXPR, integer_type_node, *update,
+ exceptions_assign);
+ }
+ else
+ *update = build2 (MODIFY_EXPR, integer_type_node,
+ exceptions_var, exceptions_sse);
+ tree ldmxcsr_update_call = build_call_expr (ldmxcsr, 1, mxcsr_orig_var);
+ *update = build2 (COMPOUND_EXPR, void_type_node, *update,
+ ldmxcsr_update_call);
+ }
+ tree atomic_feraiseexcept
+ = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
+ tree atomic_feraiseexcept_call = build_call_expr (atomic_feraiseexcept,
+ 1, exceptions_var);
+ *update = build2 (COMPOUND_EXPR, void_type_node, *update,
+ atomic_feraiseexcept_call);
+}
+
+/* Initialize the GCC target structure. */
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY ix86_return_in_memory
+
+#undef TARGET_LEGITIMIZE_ADDRESS
+#define TARGET_LEGITIMIZE_ADDRESS ix86_legitimize_address
+
+#undef TARGET_ATTRIBUTE_TABLE
+#define TARGET_ATTRIBUTE_TABLE ix86_attribute_table
+#undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
+#define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
+#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
+# undef TARGET_MERGE_DECL_ATTRIBUTES
+# define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
+#endif
+
+#undef TARGET_COMP_TYPE_ATTRIBUTES
+#define TARGET_COMP_TYPE_ATTRIBUTES ix86_comp_type_attributes
+
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS ix86_init_builtins
+#undef TARGET_BUILTIN_DECL
+#define TARGET_BUILTIN_DECL ix86_builtin_decl
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN ix86_expand_builtin
+
+#undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
+#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
+ ix86_builtin_vectorized_function
+
+#undef TARGET_VECTORIZE_BUILTIN_TM_LOAD
+#define TARGET_VECTORIZE_BUILTIN_TM_LOAD ix86_builtin_tm_load
+
+#undef TARGET_VECTORIZE_BUILTIN_TM_STORE
+#define TARGET_VECTORIZE_BUILTIN_TM_STORE ix86_builtin_tm_store
+
+#undef TARGET_VECTORIZE_BUILTIN_GATHER
+#define TARGET_VECTORIZE_BUILTIN_GATHER ix86_vectorize_builtin_gather
+
+#undef TARGET_BUILTIN_RECIPROCAL
+#define TARGET_BUILTIN_RECIPROCAL ix86_builtin_reciprocal
+
+#undef TARGET_ASM_FUNCTION_EPILOGUE
+#define TARGET_ASM_FUNCTION_EPILOGUE ix86_output_function_epilogue
+
+#undef TARGET_ENCODE_SECTION_INFO
+#ifndef SUBTARGET_ENCODE_SECTION_INFO
+#define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
+#else
+#define TARGET_ENCODE_SECTION_INFO SUBTARGET_ENCODE_SECTION_INFO
+#endif
+
+#undef TARGET_ASM_OPEN_PAREN
+#define TARGET_ASM_OPEN_PAREN ""
+#undef TARGET_ASM_CLOSE_PAREN
+#define TARGET_ASM_CLOSE_PAREN ""
+
+#undef TARGET_ASM_BYTE_OP
+#define TARGET_ASM_BYTE_OP ASM_BYTE
+
+#undef TARGET_ASM_ALIGNED_HI_OP
+#define TARGET_ASM_ALIGNED_HI_OP ASM_SHORT
+#undef TARGET_ASM_ALIGNED_SI_OP
+#define TARGET_ASM_ALIGNED_SI_OP ASM_LONG
+#ifdef ASM_QUAD
+#undef TARGET_ASM_ALIGNED_DI_OP
+#define TARGET_ASM_ALIGNED_DI_OP ASM_QUAD
+#endif
+
+#undef TARGET_PROFILE_BEFORE_PROLOGUE
+#define TARGET_PROFILE_BEFORE_PROLOGUE ix86_profile_before_prologue
+
+#undef TARGET_MANGLE_DECL_ASSEMBLER_NAME
+#define TARGET_MANGLE_DECL_ASSEMBLER_NAME ix86_mangle_decl_assembler_name
+
+#undef TARGET_ASM_UNALIGNED_HI_OP
+#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
+#undef TARGET_ASM_UNALIGNED_SI_OP
+#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
+#undef TARGET_ASM_UNALIGNED_DI_OP
+#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
+
+#undef TARGET_PRINT_OPERAND
+#define TARGET_PRINT_OPERAND ix86_print_operand
+#undef TARGET_PRINT_OPERAND_ADDRESS
+#define TARGET_PRINT_OPERAND_ADDRESS ix86_print_operand_address
+#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
+#define TARGET_PRINT_OPERAND_PUNCT_VALID_P ix86_print_operand_punct_valid_p
+#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
+#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA i386_asm_output_addr_const_extra
+
+#undef TARGET_SCHED_INIT_GLOBAL
+#define TARGET_SCHED_INIT_GLOBAL ix86_sched_init_global
+#undef TARGET_SCHED_ADJUST_COST
+#define TARGET_SCHED_ADJUST_COST ix86_adjust_cost
+#undef TARGET_SCHED_ISSUE_RATE
+#define TARGET_SCHED_ISSUE_RATE ix86_issue_rate
+#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
+#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
+ ia32_multipass_dfa_lookahead
+#undef TARGET_SCHED_MACRO_FUSION_P
+#define TARGET_SCHED_MACRO_FUSION_P ix86_macro_fusion_p
+#undef TARGET_SCHED_MACRO_FUSION_PAIR_P
+#define TARGET_SCHED_MACRO_FUSION_PAIR_P ix86_macro_fusion_pair_p
+
+#undef TARGET_FUNCTION_OK_FOR_SIBCALL
+#define TARGET_FUNCTION_OK_FOR_SIBCALL ix86_function_ok_for_sibcall
+
+#undef TARGET_MEMMODEL_CHECK
+#define TARGET_MEMMODEL_CHECK ix86_memmodel_check
+
+#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
+#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV ix86_atomic_assign_expand_fenv
+
+#ifdef HAVE_AS_TLS
+#undef TARGET_HAVE_TLS
+#define TARGET_HAVE_TLS true
+#endif
+#undef TARGET_CANNOT_FORCE_CONST_MEM
+#define TARGET_CANNOT_FORCE_CONST_MEM ix86_cannot_force_const_mem
+#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
+#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
+
+#undef TARGET_DELEGITIMIZE_ADDRESS
+#define TARGET_DELEGITIMIZE_ADDRESS ix86_delegitimize_address
+
+#undef TARGET_MS_BITFIELD_LAYOUT_P
+#define TARGET_MS_BITFIELD_LAYOUT_P ix86_ms_bitfield_layout_p
+
+#if TARGET_MACHO
+#undef TARGET_BINDS_LOCAL_P
+#define TARGET_BINDS_LOCAL_P darwin_binds_local_p
+#endif
+#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
+#undef TARGET_BINDS_LOCAL_P
+#define TARGET_BINDS_LOCAL_P i386_pe_binds_local_p
+#endif
+
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK x86_output_mi_thunk
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK x86_can_output_mi_thunk
+
+#undef TARGET_ASM_FILE_START
+#define TARGET_ASM_FILE_START x86_file_start
+
+#undef TARGET_OPTION_OVERRIDE
+#define TARGET_OPTION_OVERRIDE ix86_option_override
+
+#undef TARGET_REGISTER_MOVE_COST
+#define TARGET_REGISTER_MOVE_COST ix86_register_move_cost
+#undef TARGET_MEMORY_MOVE_COST
+#define TARGET_MEMORY_MOVE_COST ix86_memory_move_cost
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS ix86_rtx_costs
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST ix86_address_cost
+
+#undef TARGET_FIXED_CONDITION_CODE_REGS
+#define TARGET_FIXED_CONDITION_CODE_REGS ix86_fixed_condition_code_regs
+#undef TARGET_CC_MODES_COMPATIBLE
+#define TARGET_CC_MODES_COMPATIBLE ix86_cc_modes_compatible
+
+#undef TARGET_MACHINE_DEPENDENT_REORG
+#define TARGET_MACHINE_DEPENDENT_REORG ix86_reorg
+
+#undef TARGET_BUILTIN_SETJMP_FRAME_VALUE
+#define TARGET_BUILTIN_SETJMP_FRAME_VALUE ix86_builtin_setjmp_frame_value
+
+#undef TARGET_BUILD_BUILTIN_VA_LIST
+#define TARGET_BUILD_BUILTIN_VA_LIST ix86_build_builtin_va_list
+
+#undef TARGET_FOLD_BUILTIN
+#define TARGET_FOLD_BUILTIN ix86_fold_builtin
+
+#undef TARGET_COMPARE_VERSION_PRIORITY
+#define TARGET_COMPARE_VERSION_PRIORITY ix86_compare_version_priority
+
+#undef TARGET_GENERATE_VERSION_DISPATCHER_BODY
+#define TARGET_GENERATE_VERSION_DISPATCHER_BODY \
+ ix86_generate_version_dispatcher_body
+
+#undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER
+#define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER \
+ ix86_get_function_versions_dispatcher
+
+#undef TARGET_ENUM_VA_LIST_P
+#define TARGET_ENUM_VA_LIST_P ix86_enum_va_list
+
+#undef TARGET_FN_ABI_VA_LIST
+#define TARGET_FN_ABI_VA_LIST ix86_fn_abi_va_list
+
+#undef TARGET_CANONICAL_VA_LIST_TYPE
+#define TARGET_CANONICAL_VA_LIST_TYPE ix86_canonical_va_list_type
+
+#undef TARGET_EXPAND_BUILTIN_VA_START
+#define TARGET_EXPAND_BUILTIN_VA_START ix86_va_start
+
+#undef TARGET_MD_ASM_CLOBBERS
+#define TARGET_MD_ASM_CLOBBERS ix86_md_asm_clobbers
+
+#undef TARGET_PROMOTE_PROTOTYPES
+#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
+#undef TARGET_SETUP_INCOMING_VARARGS
+#define TARGET_SETUP_INCOMING_VARARGS ix86_setup_incoming_varargs
+#undef TARGET_MUST_PASS_IN_STACK
+#define TARGET_MUST_PASS_IN_STACK ix86_must_pass_in_stack
+#undef TARGET_FUNCTION_ARG_ADVANCE
+#define TARGET_FUNCTION_ARG_ADVANCE ix86_function_arg_advance
+#undef TARGET_FUNCTION_ARG
+#define TARGET_FUNCTION_ARG ix86_function_arg
+#undef TARGET_FUNCTION_ARG_BOUNDARY
+#define TARGET_FUNCTION_ARG_BOUNDARY ix86_function_arg_boundary
+#undef TARGET_PASS_BY_REFERENCE
+#define TARGET_PASS_BY_REFERENCE ix86_pass_by_reference
+#undef TARGET_INTERNAL_ARG_POINTER
+#define TARGET_INTERNAL_ARG_POINTER ix86_internal_arg_pointer
+#undef TARGET_UPDATE_STACK_BOUNDARY
+#define TARGET_UPDATE_STACK_BOUNDARY ix86_update_stack_boundary
+#undef TARGET_GET_DRAP_RTX
+#define TARGET_GET_DRAP_RTX ix86_get_drap_rtx
+#undef TARGET_STRICT_ARGUMENT_NAMING
+#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
+#undef TARGET_STATIC_CHAIN
+#define TARGET_STATIC_CHAIN ix86_static_chain
+#undef TARGET_TRAMPOLINE_INIT
+#define TARGET_TRAMPOLINE_INIT ix86_trampoline_init
+#undef TARGET_RETURN_POPS_ARGS
+#define TARGET_RETURN_POPS_ARGS ix86_return_pops_args
+
+#undef TARGET_LEGITIMATE_COMBINED_INSN
+#define TARGET_LEGITIMATE_COMBINED_INSN ix86_legitimate_combined_insn
+
+#undef TARGET_ASAN_SHADOW_OFFSET
+#define TARGET_ASAN_SHADOW_OFFSET ix86_asan_shadow_offset
+
+#undef TARGET_GIMPLIFY_VA_ARG_EXPR
+#define TARGET_GIMPLIFY_VA_ARG_EXPR ix86_gimplify_va_arg
+
+#undef TARGET_SCALAR_MODE_SUPPORTED_P
+#define TARGET_SCALAR_MODE_SUPPORTED_P ix86_scalar_mode_supported_p
+
+#undef TARGET_VECTOR_MODE_SUPPORTED_P
+#define TARGET_VECTOR_MODE_SUPPORTED_P ix86_vector_mode_supported_p
+
+#undef TARGET_C_MODE_FOR_SUFFIX
+#define TARGET_C_MODE_FOR_SUFFIX ix86_c_mode_for_suffix
+
+#ifdef HAVE_AS_TLS
+#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
+#define TARGET_ASM_OUTPUT_DWARF_DTPREL i386_output_dwarf_dtprel
+#endif
+
+#ifdef SUBTARGET_INSERT_ATTRIBUTES
+#undef TARGET_INSERT_ATTRIBUTES
+#define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES
+#endif
+
+#undef TARGET_MANGLE_TYPE
+#define TARGET_MANGLE_TYPE ix86_mangle_type
+
+#if !TARGET_MACHO
+#undef TARGET_STACK_PROTECT_FAIL
+#define TARGET_STACK_PROTECT_FAIL ix86_stack_protect_fail
+#endif
+
+#undef TARGET_FUNCTION_VALUE
+#define TARGET_FUNCTION_VALUE ix86_function_value
+
+#undef TARGET_FUNCTION_VALUE_REGNO_P
+#define TARGET_FUNCTION_VALUE_REGNO_P ix86_function_value_regno_p
+
+#undef TARGET_PROMOTE_FUNCTION_MODE
+#define TARGET_PROMOTE_FUNCTION_MODE ix86_promote_function_mode
+
+#undef TARGET_MEMBER_TYPE_FORCES_BLK
+#define TARGET_MEMBER_TYPE_FORCES_BLK ix86_member_type_forces_blk
+
+#undef TARGET_INSTANTIATE_DECLS
+#define TARGET_INSTANTIATE_DECLS ix86_instantiate_decls
+
+#undef TARGET_SECONDARY_RELOAD
+#define TARGET_SECONDARY_RELOAD ix86_secondary_reload
+
+#undef TARGET_CLASS_MAX_NREGS
+#define TARGET_CLASS_MAX_NREGS ix86_class_max_nregs
+
+#undef TARGET_PREFERRED_RELOAD_CLASS
+#define TARGET_PREFERRED_RELOAD_CLASS ix86_preferred_reload_class
+#undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
+#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS ix86_preferred_output_reload_class
+#undef TARGET_CLASS_LIKELY_SPILLED_P
+#define TARGET_CLASS_LIKELY_SPILLED_P ix86_class_likely_spilled_p
+
+#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
+#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
+ ix86_builtin_vectorization_cost
+#undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
+#define TARGET_VECTORIZE_VEC_PERM_CONST_OK \
+ ix86_vectorize_vec_perm_const_ok
+#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
+#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \
+ ix86_preferred_simd_mode
+#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES
+#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \
+ ix86_autovectorize_vector_sizes
+#undef TARGET_VECTORIZE_INIT_COST
+#define TARGET_VECTORIZE_INIT_COST ix86_init_cost
+#undef TARGET_VECTORIZE_ADD_STMT_COST
+#define TARGET_VECTORIZE_ADD_STMT_COST ix86_add_stmt_cost
+#undef TARGET_VECTORIZE_FINISH_COST
+#define TARGET_VECTORIZE_FINISH_COST ix86_finish_cost
+#undef TARGET_VECTORIZE_DESTROY_COST_DATA
+#define TARGET_VECTORIZE_DESTROY_COST_DATA ix86_destroy_cost_data
+
+#undef TARGET_SET_CURRENT_FUNCTION
+#define TARGET_SET_CURRENT_FUNCTION ix86_set_current_function
+
+#undef TARGET_OPTION_VALID_ATTRIBUTE_P
+#define TARGET_OPTION_VALID_ATTRIBUTE_P ix86_valid_target_attribute_p
+
+#undef TARGET_OPTION_SAVE
+#define TARGET_OPTION_SAVE ix86_function_specific_save
+
+#undef TARGET_OPTION_RESTORE
+#define TARGET_OPTION_RESTORE ix86_function_specific_restore
+
+#undef TARGET_OPTION_PRINT
+#define TARGET_OPTION_PRINT ix86_function_specific_print
+
+#undef TARGET_OPTION_FUNCTION_VERSIONS
+#define TARGET_OPTION_FUNCTION_VERSIONS ix86_function_versions
+
+#undef TARGET_CAN_INLINE_P
+#define TARGET_CAN_INLINE_P ix86_can_inline_p
+
+#undef TARGET_EXPAND_TO_RTL_HOOK
+#define TARGET_EXPAND_TO_RTL_HOOK ix86_maybe_switch_abi
+
+#undef TARGET_LEGITIMATE_ADDRESS_P
+#define TARGET_LEGITIMATE_ADDRESS_P ix86_legitimate_address_p
+
+#undef TARGET_LRA_P
+#define TARGET_LRA_P hook_bool_void_true
+
+#undef TARGET_REGISTER_PRIORITY
+#define TARGET_REGISTER_PRIORITY ix86_register_priority
+
+#undef TARGET_REGISTER_USAGE_LEVELING_P
+#define TARGET_REGISTER_USAGE_LEVELING_P hook_bool_void_true
+
+#undef TARGET_LEGITIMATE_CONSTANT_P
+#define TARGET_LEGITIMATE_CONSTANT_P ix86_legitimate_constant_p
+
+#undef TARGET_FRAME_POINTER_REQUIRED
+#define TARGET_FRAME_POINTER_REQUIRED ix86_frame_pointer_required
+
+#undef TARGET_CAN_ELIMINATE
+#define TARGET_CAN_ELIMINATE ix86_can_eliminate
+
+#undef TARGET_EXTRA_LIVE_ON_ENTRY
+#define TARGET_EXTRA_LIVE_ON_ENTRY ix86_live_on_entry
+
+#undef TARGET_ASM_CODE_END
+#define TARGET_ASM_CODE_END ix86_code_end
+
+#undef TARGET_CONDITIONAL_REGISTER_USAGE
+#define TARGET_CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage
+
+#if TARGET_MACHO
+#undef TARGET_INIT_LIBFUNCS
+#define TARGET_INIT_LIBFUNCS darwin_rename_builtins
+#endif
+
+#undef TARGET_LOOP_UNROLL_ADJUST
+#define TARGET_LOOP_UNROLL_ADJUST ix86_loop_unroll_adjust
+
+#undef TARGET_SPILL_CLASS
+#define TARGET_SPILL_CLASS ix86_spill_class
+
+#undef TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN
+#define TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN \
+ ix86_simd_clone_compute_vecsize_and_simdlen
+
+#undef TARGET_SIMD_CLONE_ADJUST
+#define TARGET_SIMD_CLONE_ADJUST \
+ ix86_simd_clone_adjust
+
+#undef TARGET_SIMD_CLONE_USABLE
+#define TARGET_SIMD_CLONE_USABLE \
+ ix86_simd_clone_usable
+
+#undef TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P
+#define TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P \
+ ix86_float_exceptions_rounding_supported_p
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+#include "gt-i386.h"